11,478 research outputs found

    A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements

    Get PDF
    Multipath propagation causes major impairments to Global Positioning System (GPS) based navigation. Multipath results in biased GPS measurements, hence inaccurate position estimates. In this work, multipath effects are considered as abrupt changes affecting the navigation system. A multiple model formulation is proposed whereby the changes are represented by a discrete valued process. The detection of the errors induced by multipath is handled by a Rao-Blackwellized particle filter (RBPF). The RBPF estimates the indicator process jointly with the navigation states and multipath biases. The interest of this approach is its ability to integrate a priori constraints about the propagation environment. The detection is improved by using information from near future GPS measurements at the particle filter (PF) sampling step. A computationally modest delayed sampling is developed, which is based on a minimal duration assumption for multipath effects. Finally, the standard PF resampling stage is modified to include an hypothesis test based decision step

    Cooperative Vehicle Tracking in Large Environments

    Get PDF
    Vehicle position tracking and prediction over large areas is of significant importance in many industrial applications, such as mining operations. In a small area, this can be easily achieved by providing vehicles with a constant communication link to a control centre and having the vehicles broadcast their position. The problem changes dramatically when vehicles operate within a large environment of potentially hundreds of square kilometres and in difficult terrain. This thesis presents algorithms for cooperative tracking of vehicles based on a vehicle motion model that incorporates the properties of the working area, and information collected by infrastructure collection points and other mobile agents. The probabilistic motion prediction approach provides long-term estimates of vehicle positions using motion profiles built for the particular environment and considering the vehicle stopping probability. A limited number of data collection points distributed around the field are used to update the position estimates, with negative information also used to improve the estimation. The thesis introduces the concept of observation harvesting, a process in which peer-to-peer communication between vehicles allows egocentric position updates and inter-vehicle measurements to be relayed among vehicles and finally conveyed to the collection points for an improved position estimate. It uses a store-and-synchronise concept to deal with intermittent communication and aims to disseminate data in an opportunistic manner. A nonparametric filtering algorithm for cooperative tracking is proposed to incorporate the information harvested, including the negative, relative, and time delayed observations. An important contribution of this thesis is to enable the optimisation of fleet scheduling when full coverage networks are not available or feasible. The proposed approaches were validated with comprehensive experimental results using data collected from a large-scale mining operation

    Cooperative Vehicle Tracking in Large Environments

    Get PDF
    Vehicle position tracking and prediction over large areas is of significant importance in many industrial applications, such as mining operations. In a small area, this can be easily achieved by providing vehicles with a constant communication link to a control centre and having the vehicles broadcast their position. The problem changes dramatically when vehicles operate within a large environment of potentially hundreds of square kilometres and in difficult terrain. This thesis presents algorithms for cooperative tracking of vehicles based on a vehicle motion model that incorporates the properties of the working area, and information collected by infrastructure collection points and other mobile agents. The probabilistic motion prediction approach provides long-term estimates of vehicle positions using motion profiles built for the particular environment and considering the vehicle stopping probability. A limited number of data collection points distributed around the field are used to update the position estimates, with negative information also used to improve the estimation. The thesis introduces the concept of observation harvesting, a process in which peer-to-peer communication between vehicles allows egocentric position updates and inter-vehicle measurements to be relayed among vehicles and finally conveyed to the collection points for an improved position estimate. It uses a store-and-synchronise concept to deal with intermittent communication and aims to disseminate data in an opportunistic manner. A nonparametric filtering algorithm for cooperative tracking is proposed to incorporate the information harvested, including the negative, relative, and time delayed observations. An important contribution of this thesis is to enable the optimisation of fleet scheduling when full coverage networks are not available or feasible. The proposed approaches were validated with comprehensive experimental results using data collected from a large-scale mining operation

    An Improved Approach For Multi-Robot Localization

    Get PDF
    Cooperative multi-robot localization techniques use sensor measurements to estimate poses (locations, orientations) of robots relative to a given map of the environment. Existing approaches update a robot\u27s pose instantly whenever it detects another robot. However, such instant update may not be always necessary and effective, since both robots\u27 pose estimates could be highly uncertain at the time of the detection. In this thesis, we develop a new information exchange mechanism to collaborative multi-robot localization. We also propose a new scheme to calculate how much information is contained in a robot\u27s belief by using entropy. Instead of updating beliefs whenever detection occurs, our approach first compares the beliefs of the robots which are involved in the detection, and then decide whether the information exchange is necessary. Therefore, it avoids unnecessary information exchange whenever one robot perceives another robot. On the other hand, this approach does allow information exchange between detecting robots and such information exchange always contributes positively to the localization process, hence, improving the effectiveness and efficiency of multi-robot localization. The technique has been implemented and tested using two mobile robots as well as simulations. The results indicate significant improvements in localization speed and accuracy when compared to the single mobile robot localization

    Quantum Direct Communication

    Get PDF

    Two improved methods for mobile robot localization

    Get PDF
    Mobile robot localization is the problem of determining the robot\u27s pose given the map of its environment, based on the sensor reading and its movement. It is a fundamental and very important problem in the research of mobile robotics. Grid localization and Monte Carlo localization (MCL) are two of the most widely used approaches for localization, especially the MCL. However each of these two popular methods has its own problems. How to reduce the computation cost and better the accuracy is our main concern. In order to improve the performance of localization, we propose two improved localization algorithms. The first algorithm is called moving grid cell based MCL, which takes advantages of both grid localization and MCL and overcomes their respective shortcomings. The second algorithm is dynamic MCL based on clustering, which uses a cluster analysis component to reduce the computation cost

    A multi-hypothesis approach for range-only simultaneous localization and mapping with aerial robots

    Get PDF
    Los sistemas de Range-only SLAM (o RO-SLAM) tienen como objetivo la construcción de un mapa formado por la posición de un conjunto de sensores de distancia y la localización simultánea del robot con respecto a dicho mapa, utilizando únicamente para ello medidas de distancia. Los sensores de distancia son dispositivos capaces de medir la distancia relativa entre cada par de dispositivos. Estos sensores son especialmente interesantes para su applicación a vehículos aéreos debido a su reducido tamaño y peso. Además, estos dispositivos son capaces de operar en interiores o zonas con carencia de señal GPS y no requieren de una línea de visión directa entre cada par de dispositivos a diferencia de otros sensores como cámaras o sensores laser, permitiendo así obtener una lectura de datos continuada sin oclusiones. Sin embargo, estos sensores presentan un modelo de observación no lineal con una deficiencia de rango debido a la carencia de información de orientación relativa entre cada par de sensores. Además, cuando se incrementa la dimensionalidad del problema de 2D a 3D para su aplicación a vehículos aéreos, el número de variables ocultas del modelo aumenta haciendo el problema más costoso computacionalmente especialmente ante implementaciones multi-hipótesis. Esta tesis estudia y propone diferentes métodos que permitan la aplicación eficiente de estos sistemas RO-SLAM con vehículos terrestres o aéreos en entornos reales. Para ello se estudia la escalabilidad del sistema en relación al número de variables ocultas y el número de dispositivos a posicionar en el mapa. A diferencia de otros métodos descritos en la literatura de RO-SLAM, los algoritmos propuestos en esta tesis tienen en cuenta las correlaciones existentes entre cada par de dispositivos especialmente para la integración de medidas estÃa˛ticas entre pares de sensores del mapa. Además, esta tesis estudia el ruido y las medidas espúreas que puedan generar los sensores de distancia para mejorar la robustez de los algoritmos propuestos con técnicas de detección y filtración. También se proponen métodos de integración de medidas de otros sensores como cámaras, altímetros o GPS para refinar las estimaciones realizadas por el sistema RO-SLAM. Otros capítulos estudian y proponen técnicas para la integración de los algoritmos RO-SLAM presentados a sistemas con múltiples robots, así como el uso de técnicas de percepción activa que permitan reducir la incertidumbre del sistema ante trayectorias con carencia de trilateración entre el robot y los sensores de destancia estáticos del mapa. Todos los métodos propuestos han sido validados mediante simulaciones y experimentos con sistemas reales detallados en esta tesis. Además, todos los sistemas software implementados, así como los conjuntos de datos registrados durante la experimentación han sido publicados y documentados para su uso en la comunidad científica
    corecore