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Abstract 

Mobile robot localization is the problem of determining the robot's pose given the map 

of its environment, based on the sensor reading and its movement. It is a fundamental and 

very important problem in the research of mobile robotics. 

Grid localization and Monte Carlo localization (MCL) are two of the most widely used 

approaches for localization, especially the MCL. However each of these two popular meth

ods has its own problems. How to reduce the computation cost and better the accuracy is 

our main concern. 

In order to improve the performance of localization, we propose two improved local

ization algorithms. The first algorithm is called moving grid cell based MCL, which takes 

advantages of both grid localization and MCL and overcomes their respective shortcom

ings. The second algorithm is dynamic MCL based on clustering, which uses a cluster 

analysis component to reduce the computation cost. 
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Chapter 1 

INTRODUCTION 

For a mobile robot, it is very important to know its position as most robot's tasks need 

the positional information. This is the most fundamental problem in mobile robotics and 

known as mobile robot localization problem[l][2][3]. Informally, mobile robot localization 

problem is the problem of determining the robot's pose given the map of the environment 

and the sensor readings. 

There are three kinds of mobile robot localization problems which are characterized by 

the type of initial knowledge of its pose: position tracking, global localization, and kid

napped robot problem[10]. In position tracking the initial pose is known, and the localiza

tion is achieved by compensating incremental noise in the movement. In global localization, 

the initial pose is unknown, and it is much more difficult and challenging since the robot 

has to determine its pose from scratch. The kidnapped robot problem occurs when the robot 

is taken from its current position to somewhere else without being notified the replacement 

during the localization process. It is a variant of the global localization which is even more 

difficult. In this thesis we mainly focus on global localization. 

During the past two decades, many algorithms using probabilistic approaches for local-
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ization have been proposed, including grid localization^], Monte Carlo localization(MCL)[l], 

and many hybrid approaches. These algorithms represent the uncertainty of a robot's pose 

by using probability distributions over the whole space of robot's possible poses instead 

of relying on a single best guess[10]. The probabilistic localization algorithms are part 

of probabilistic robotics, a research area that represents information using the calculus of 

probability theory. Building on the filed of mathematical statistics, probabilistic robotics 

endows robots with a new level of robustness in real-world situations [10]. 

Among all the probabilistic localization algorithms, grid localization and Monte Carlo 

localization(MCL) are most widely used, especially Monte Carlo localization. Grid lo

calization approximates robot's pose in a metric model of environment[7]. The map of the 

environment is divided into grid cells, and each grid cell stores the probability that the robot 

is in this cell. MCL represents the pose of robot by maintaining a set of particle samples, 

which are randomly drawn according to the probability distributions of the robot's pose[l]. 

1.1 Motivation and Contribution 

Grid localization and MCL are two of the most widely used approaches for localization, 

especially the MCL. Each of these two popular methods has its own problems. How to 

reduce the computation cost and better the accuracy is our main concern. In order to im

prove the performance of localization, we propose two improved localization algorithms 

both of which are extension of MCL. One is called Moving Grid Cell Based MCL which 

combines grid localization and MCL, and the other is dynamic MCL based on clustering 

which employs a clustering component to reduce the computational cost in the localization 

process. 
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1.2 Outline 

The rest of the thesis is structured as follows. 

Chapter 2: Background knowledge. This chapter provides the background knowl

edge of our proposed methods. First, we will explain the idea of probabilistic robotics, then 

the mobile localization problem is discussed. What's more, two main algorithms for mobile 

robot localization , grid localization and Monte Carlo localization, are presented. 

Chapter 3: Proposed methods. In this chapter, two proposed methods are presented 

separately. Details of each method are discussed, also the illustrations of how each method 

works are shown. 

Chapter 4: Experiment results. In this chapter, experiment results are demonstrated 

which show the advantage of both proposed methods compared with traditional MCL. Both 

experiments in the real environment of the physical world and simulated environment on 

PC are implemented. 

Chapter 5: Conclusion and future works. The conclusion of the thesis is given in this 

chapter, and the future work is also presented. 
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Chapter 2 

BACKGROUND KNOWLEDGE 

This chapter provides the background knowledge of our proposed methods. We first review 

the basic ideas of probabilistic robotics. Then the problem of mobile robot localization 

is introduced. After that we explain the related knowledge about localization. Finally the 

most widely used two algorithms for mobile robot localization, grid localization and Monte 

Carlo localization, are discussed. 

2.1 Uncertainty 

By definition, robotics is the science of sensing and acting on the physical world by using 

computer-controlled devices[10]. Robotics systems have been widely used in the world 

around us and playing an increasing important role. For a robot, it usually consists of the 

four main components. (1) a physical body, so it can exist in the real world. (2) sensor, so 

it can sense the environment. (3) effector and actuators, so it can act. (4) a controller, so it 

can be autonomous [18]. 

To do tasks in the real world, robot has to accommodate many uncertainties[10], which 
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are caused by a number of factors. First, the environments of the robot are usually un

predictable especially in the highly dynamic environments such as highways and offices. 

Second, the sensors always have their limitations. The range and resolution of a sensor re

lies on its physical limitations and the noises. Third, the motor used for the robot actuation 

is unpredictable. Control noise and mechanical failure always cause uncertainty. Fourth, 

the software of the robot may also cause uncertainty as all internal models of the physi

cal world are approximate. The real world cannot be fully extracted into models. Finally 

some uncertainty arises from algorithmic approximations. In a real-time system, accuracy 

sometime has to be sacrificed in order to achieve timely response. 

As the robot is more and more widely used, uncertainty is becoming a major issue 

for the design of robot systems. How to cope with uncertainty is the main concern for 

researchers. 

2.2 Probabilistic Robotics 

Probabilistic robotics is relatively new in the area of robotics which addresses the problem 

of uncertainty. The key idea in probabilistic robotics is to represent uncertainty using prob

ability theory. Instead of a single best guess, probabilistic robotics represents information 

by using probability distributions over all possible guesses.[10] 

Compared with traditional methods, probabilistic methods have a weaker requirement 

on the accuracy of the robot's model, so it prevents the programmer from the heavy work

load of building accurate models. What's more, probabilistic methods have lower require

ments on the accuracy of robotic sensors. Building on the filed of mathematical statis

tics, probabilistic robotics endows robots with a new level of robustness in real-world 

situations, such as localization[19], mapping[25], simultaneous localization and mapping 

5 



(SLAM)[22], planning[10] and control[10]. 

2.2.1 State 

In probabilistic robotics, the environment is a dynamical system that possesses internal 

state. Robots can get information about the environment through sensors and maintain an 

internal belief about the environment. 

Environments are characterized by state[\0]. It is the collection of the information 

about the robot and its environment. State that changes over time such as moving people 

around the robot is called dynamic state, while others that remain static such as the location 

of a wall are called static state. The state also includes variables about robot itself such as 

pose, velocity and so on. 

Typical state variables used in robotics are: (1) robot's pose which consists of location 

and orientation in a global coordinate. (2) in robot manipulation the state includes variables 

for the configuration of the robot's actuators which is often referred to as kinematic state. 

(3) robot's velocity and the velocities of its joints, which are usually referred to as dynamic 

state. (4) location and features of surrounding object in the environment. An object may 

be a wall or a desk, and features may be the visual appearance such as color or texture. (5) 

locations and velocities of moving objects and people may be state variables too.[10] 

A state is called complete if it is the best predicator of the future. But in practice it is 

not possible to get a complete state for a robot system. A complete state not only includes 

all aspects of the environment that may affect the future but also the robot itself. Some of 

these aspects are very hard to get. 

In this thesis, we use xt to denote the state at time t and time is discrete, which means 

all event will take place at discreet time step t = 0, 1,2,3 
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2.2.2 Environment Interaction 

Between the robot and the environment there are two fundamental interactions: environ

ment sensor measurement and control actions[4][10]. The robot can obtain information 

about the state of the environment through its sensors, and affect the environment through 

its actuators. Examples of the first type of interaction include the camera image or a range 

scan. The result of a perceptional interaction is called a measurement. Usually, sensor 

measurements arrive have some delay, so they provide information about the state of cer

tain moments ago. Examples of the second type of interaction include the motion of robot 

or manipulation of an object. We assume that the robot always takes control actions even it 

does not perform any action itself. In practice, the robot continuously takes control actions 

and gets measurements at the same time. 

The robot keeps a record of all past sensor measurements and control actions, which 

is referred to as the data. Through the two types of interactions , the robot receives two 

different data streams, measurement data and control data. 

Measurement data gives a robot the information regarding of the momentary state of 

the environment. We assume that the robot gets one measurement at one time. The mea

surement data from time t\ to time ?2 is denoted as z,, :t2 and the measurement data at time 

t is denoted as zt. Control data sometimes is also referred to as movement data or motion 

data in the context of mobile robot localization problem. We also assume that there is only 

one control data at one time, even the robot does not do anything. Control data provides 

information about the changes of the state. We use w,, :f2 to denote the movement data from 

time t\ to time ti, and ut to denote the movement data at time t. 

Both measurement data and control data play very important roles. On one hand, mea

surement data provides information about the environment which helps to increase the 
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robot's knowledge. Control data, on the other hand, brings a loss of knowledge because 

of the uncertainly in the real world. One thing needs to be emphasized on is that the sensor 

measurement and control actions take place at the same time. 

Probabilistic approaches for robotics have two different components to process these 

two kinds of data[10]. One is measurement model, and the other is motion model. Mea

surement model, denoted as p{z.t\xt), is the conditional probability of Zt given the state xt. 

Motion model is the state transition probability p(xt\ut,xt-\). It is the posterior distribution 

of xt after incorporating the control data ut at xt- \. This two models are very important for 

estimating robot's state. 

2.2.3 Probabilistic Generative Laws 

The evolution of state is controlled by probabilistic laws. The state xt is conditioned 

on all past states, measurements and controls, which can be presented in the following 

form: p{xt\xo-j-\,z\:t-\,u\;t)[W\- Here we assume that robot first takes a control ac

tion u\, then gets a measurement z\. If the state is complete then it is a sufficient sum

mary of all past events. Particularly, xt-\ is a sufficient statistic for all previous controls 

(«i:f-i) and measurements (zi:f-i) up to time t — 1. So state xt could be expressed as 

p(xt\xo:t-\ ,zi-j-\ ,u\:t) = p(xt\xt-i,ut). The equation is an instance of conditional indepen

dence, which means if we know the values of the conditioning variables, such a s Xf—\ ]Ufi 

then certain variables, such as xt, are independent of other variables, such as zut-i and 

u\:t-\. Also, if xt is complete, we will get another important conditional independence: 

p(zt\xo:t,z\:t-\,u\:t) = p(zt\xt), which means the state xt is sufficient to predict the mea

surement data zt, in other words, other variables such as past control data, measurement 

data and past states are not relevant. 
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The probability p(xt\xt-\,ut) is called state transition probability, which shows how 

state xt evolves based on the control data ut and the previous state xt~\. The probabil

ity p(zt\xt) is the measurement probability which specifies how measurement data zt is 

generated according to the state xt. The state transition probability and the measurement 

probability present the dynamical stochastic system where the robot exists. Figure 2.1 illus

trates the evolution of state and measurements. State xt is stochastically dependent on the 

previous state Jt,_i and the control data ut, and the measurement zt depends stochastically 

on the state xt. The model in Figure 2.1 is well known as hidden Markov model or dynamic 

Bayes network[23][24][27]. 

Figure 2.1: The dynamic Bayes network that characterizes the evolution of control, states 
and measurements. [10] 

2.2.4 Belief 

In this part we will introduce an important concept called belief[\0]. Belief is robot's 

internal knowledge with respect to the state. The state usually cannot be measured directly, 

so the robot has to infer its belief from the data collected. In probabilistic robotics, belief is 

represented by conditional probability distributions. 
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A belief distribution assigns a probability to each possible state hypothesis with regards 

to the true state[10]. The belief at time t is denoted as bel(xt) = p{xt\z\;t,u\:t)- It is a 

posterior probability over all possible states conditional on all past control data and all past 

measurement data collected so far. Sometimes it is often important to calculate a posterior 

after taking the control action ut but before incorporating measurement data Zt, which is 

denoted as bel(xt) = p(xt\zut-\,u\:t). This posterior is usually referred as prediction, and it 

reflects that bel(xt) predicts state xt based on previous state xt-\ without incorporating the 

measurement data zt- Then we also need to calculate bel{xt) from bel(xt) by incorporating 

Zt, which is called measurement update. 

2.2.5 Bayes Filter 

Bayes filter is a recursive algorithm that estimates the state of a dynamical system based on 

both measurement data and control data and it is the most general algorithm for calculating 

beliefs[l][10]. Table 2.1 shows a single iteration of the Bayes Filter algorithm. As shown 

in Table 2.1, the belief bel{xt) is calculated from the previous belief bel{xt-\). The inputs 

are the bel(xt-\), control data ut and measurement data Zt• The output is the belief bel(xt). 

Bayes filter algorithm is performed in two essential phases, prediction phase (line 2) and 

update phase (line 3). 

In the first phase, it calculates the belief over state xt by incorporating the control data 

ut based on the previous state xt-\. Particularly, we can see that bel(xt) is calculated by 

the integral of two probability distributions, the prior assigned to state xt-\ and the prob

ability that ut causes a transition from xt-\ to x,[10]. This phase is called control update 

or prediction phase. In the second phase, it processes the probability that the measurement 

data zt may be observed at state xt and incorporates this probability p{zt\xt) into bel(xt). 
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Table 2.1: Bayes Filter [10] 

Algorithm Bayes_filter (bel(xt-\, ut,zt) 

1: for all xt do 

2: bel(xt) — J p(xt\ut,Xt-\)bel(xt-i)dxt-\ 

3: bel(xt)=T\p(zt\x,)bel(xt) 

4: endfor 

5: return bel(xt) 

However bel(xt) may not integrate to 1, so it uses the normalization constant t| to normalize 

the results. The second step is called measurement update or update phase. 

Bayes filter needs an initial belief bel(xo) at time t = 0 as an input in order to recursively 

calculate the new belief. If the values of XQ is known, then bel(xo) should be initialized with 

a point mass distribution which centers all probability mass on the value of XQ, and all the 

others are assigned a probability of zero. If the initial value XQ is totally unknown, bel(xo) 

should be initialized using a uniform distribution over all possible values of XQ. If the initial 

value xo is partially known, then bel(xo) can be initialized by non-uniform distributions. 

There is one important assumption called Markov Assumption which is adopted by 

Bayes filter. Markov assumption plays a fundamental role in this whole thesis. It assumes 

that past and future data are independent if the current state xt is known. It tells that the 

current belief bel(xt) is sufficient to represent the past history of robot. In robotics, Markov 

assumption is only an approximation. 
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2.3 Mobile Robot Localization 

Bayes filter is an important algorithm for state estimation problems, and it has many ap

plications one of which is mobile robot localization problem. Mobile robot localization 

is the problem of determining a robot's pose given the map of the environment and the 

sensor readings[10][19]. It is one of the most important problems in mobile robotics as 

most robot's tasks need the positional information. In practice, the pose of robot cannot 

be sensed directly, so the pose has to be inferred from measurement data and control data. 

Also, a single measurement data is usually not enough to determine the pose, so the robot 

has to integrate data over time. Figure 2.2 illustrates a graphical model for localization. The 

goal of the robot is to determine its position based on the measurements and movements 

given the map of the environment. In Figure 2.2, the values of shaded nodes are known 

including the map m, the measurement z and the control u. The goal of localization is to 

calculate the robot's pose x. 

Figure 2.2: Graphical model of mobile robot localization^ 10] 
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2.3.1 Category of Localization 

From different aspects, localization can be divided into many different categories. Accord

ing to the nature of environment and the initial knowledge of the robot, here we discuss 

four important types of localization problems[10]. 

Firstly, localization problems can be characterized by the type of knowledge whether 

is known at the beginning or at run-time. Under this category, there are three kinds of 

localization problems with an increasing difficulty. Position tracking( or local localization) 

is the simplest one. The initial pose of robot is known and the localization is done by 

accommodating the noise in the robot's movement. The uncertainty of the pose is usually 

approximated by a unimodal distribution such as a Gaussian. It is a local problem as the 

uncertainty is local and restricted to places near the robot's true pose. In global location, 

the initial pose is not known and the robot is placed somewhere in the environment. Global 

localization is more difficult than position tracking since it has to determine its pose from 

scratch. The third problem is called kidnapped robot problem. It is a variant of the global 

localization but more difficult. The robot is kidnapped and taken to somewhere else without 

being notified. Kidnapped robot problem becomes important because even the most state-

of-the-art localization approaches can fail sometimes. The ability to recover from failures 

is especially important for truly autonomous robots. 

Secondly, the environment has a substantial impact on the difficulty of localization[19]. 

Environments can be static or dynamic. In static environment the only variable quantity is 

the robot's pose. All other objects in the environment remain at the same place all the time. 

However in a dynamic environment, objects may change its position or configuration from 

time to time. Example of changes are like people, movable furnitures and so on. Most real 

environments in the physical world are dynamic. It is clear that localization in dynamic 
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environments is more difficult than that in static ones. 

Thirdly, according to whether or not the localization algorithm controls the motion, 

the localization can be divided into passive localization and active localization[6][17]. In 

passive localization, the localization algorithm only observes on the robot's operating, and 

has nothing to do with the control of robot. The motion of robot is not designed to facilitate 

localization so the robot may move randomly. In active localization, the algorithm controls 

the robot in order to minimize the error or cost during the localization. Active localization 

algorithms usually produce better results than passive ones. 

Lastly, with respect to the number of robots involved the localization can be divided 

into single-robot localization and multi-robot localization^] [20]. Single robot localization 

is the most studied approach. It handles a single robot only and there is no communi

cation problems since all the data is collected to a single robot platform. In multi-robot 

localization, the robots have to detect each other. The issues that arises usually include 

representation of beliefs and the communication between different robots. 

In this thesis, we focus on the global passive localization for a single robot in a static 

environment. 

2.3.2 Markov Localization 

Localization algorithms are variants of the Bayes filter. In the context of localization, Bayes 

filter is also known as Markov localization[10][19]. Table 2.2 depicts the basic algorithm. 

Comparing with Table 2.1, we can see that the difference is that Markov localization needs 

the map m of the environment as one input. The map m is very important in the measure

ment model p(zt\xt,m) (line 3), and is also needed in the motion model p{xt\ut,xt-\,m) 

(line 4). The same as Bayes filter, Markov localization calculates the probabilistic belief 
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Table 2.2: Markov localization [10] 

Algorithm Markov .localization {bel (xt-\,ut,zt, m) 

1: for all xt do 

2: bel(xt) = J p(xt\u,,xt-i,m)bel(xt-i)dxx-\ 

3: bel(xt)=r\p(zt\xt,m)bel(xt) 

4: endfor 

5: return bel(xt) 

bel{xt) at time t from time t — 1 recursively. 

Markov localization is able to handle the position tracking problem, the global localiza

tion problem and the kidnapped robot problem in static environment. In position tracking 

the initial pose is known, so bel(xo) is initialized by a point-mass distribution. However in 

practice the initial pose is often known in approximation, so bel(xo) is usually initialized 

by a Gaussian distribution centered around xo- In global localization, the initial pose is 

unknown, so bel(xo) is initialized by a uniform distribution over all possible spaces in the 

map. 

Markov localization is independent of the representation of the state space and it can be 

implemented by using different state representation methods, for example, histogram filter 

and particle filter. 

2.3.3 Representation of State Space 

In this part, we will discuss two state representation methods[21], histogram filter[7] and 

particle filter[26]. They approximate posterior over continuous spaces with finite values. 

Histogram filter decomposes the state space into finite regions and represents the cumula-

15 



tive posterior for each region by a histogram which assigns a single probability value to 

each region. Particle filter approximates the posterior by a finite number of samples which 

populate the state space, and the samples are drawn randomly from the posterior. As these 

two methods are well-suited for representing multi-modal beliefs, they are widely used 

when a robot has to deal with global uncertainty, such as global localization problem[10]. 

2.4 Localization Algorithms 

Since mobile robot localization is one of the most important and fundamental problems in 

the field of mobile robot, so there are a number of probabilistic algorithms proposed for 

mobile robot localization. Many of them only address the position tracking problem, such 

as Extended Kalman Filter(EKF)[10]. They all employ Kalman filter which is based on the 

assumption that the uncertainty of the robot's pose can be represented by a unimodal Gaus

sian distribution. What's more, they adopt other assumptions such as Gaussian distributed 

noise and Gaussian distributed initial uncertainty. Under these assumptions Kalman fil

ter performs very well for position tracking problem. In global localization problem the 

uncertainty of robot needs to be represented by multi-modal distributions, but Karman fil

ter cannot, so it is not useful when dealing with global localization problem. In order 

to overcome this limitation of Kalman filter, Multi-hypothesis tracking(MHT) algorithm 

[5]represents the belief of pose by multiple Gaussians, which is mixture of normal distribu

tions. It can handle the global localization problem, but the computational cost is very high. 

However grid localization and Monte Carlo localization(MCL) could handle multi-modal 

distribution at a reasonable computational cost which makes them suitable for global local

ization problem. In the following, we will discuss these two important global localization 

algorithms. 
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2.4.1 Grid Localization 

In grid localization[7], it uses a histogram filter to represent the posterior belief over a grid 

decomposition of the pose space. Figure 2.3 demonstrates an example of grid decomposi

tion. The map of the environment is divided into many grid cells. Each grid cell represents 

a robot's possible pose in the environment. Each layer represents a different orientation of 

the robot, and in this example only three orientations are shown. 

Environment 

Figure 2.3: Example of grid decomposition over the robot pose.[10] 

The algorithm of grid localization is depicted in Table 2.3. Grid cell is denoted as 

Xk, and each grid cell is attached with a probability bel{xt) = {pk,t}, which stands for the 

possibility that the robot is in this grid cell. The notion meanix^) stands for the center-of-

mass of the grid cell JC*. Grid localization is also a recursive algorithm, and in Table 2.3 it 

shows a single iteration. It needs the previous value {pk,t-\}, the most recent measurement 

data it, control data ut, and the map m. It goes through all the grid cells each time and 

Grid 
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Figure 2.4: Example of grid localization in one-dimensional hallway.[10] 
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Table 2.3: Grid localization algorithm [10] 

Algorithm Grid_Localization({/7^j 

1: 

2: 

3: 

4: 

5: 

for all k do 

Pk,t — ]£/V-imotion_model 

Pkj = T] measurement-model 

endfor 

return {pkJ} 

_l},«,,Z,,m) 

(mean(xk),ut, 

(zt,mean(xk), 

mean(x 

m) 

/)) 

updates the probability for each grid cell. Line 2 incorporates the control data and line 3 

incorporates the measurement data. 

Figure 2.4 shows an example of grid localization in a one-dimensional hallway. In 

Figure 2.4 The robot starts without knowing its pose, so the belief is represented by a 

uniform histogram. Then in the following pictures, as it moves and senses, some grid cells' 

probability values are increasing while some are decreasing. 

There are two issues in grid localization. One is the trade-off between the resolution of 

grid cells and the accuracy of result, and the state transition problem. The result of the grid 

localization depends on the resolution of grid cells. A finer resolution produces a better 

result, but also requires greater computational cost. While with a coarse resolution of grid 

cells, though the computational cost is reduced, the result may not be accurate. Another 

issue is in the motion model when dealing with a high-resolution measurement model and 

a coarse-resolution motion model. As only using the center of a grid cell to represent the 

grid cell, which in the Table 2.3 is denoted as mean(xk), may lead to a poor result. For 

instance, if the robot moves 1 cm/s, and the motion model updates every second, while the 

size of the grid cell is 15 cm. The robot may stay in the same grid cell even after the robot 
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moves several steps. It will not cause a state transition. A common solution to this issue 

is to modify both the motion model and the measurement model by inflating the amount of 

noise. However this solution will reduce the information extracted from the measurement. 

Similarly we can also inflate the motion model so that the robot can be guaranteed to move 

from one grid cell to another even the motion between each update is smaller than the size 

of the grid cell. However this may make the robot move faster than commanded, which will 

cause more uncertainty in the process of localization. 

2.4.2 Monte Carlo Localization 

In this part, we will introduce Monte Carlo localization (MCL)[1], one of most popular 

localization algorithms. It is easy to implement and works both for position tracking and 

global localization problems [10] . 

The filter used in MCL which represents posteriors by finitely many samples is known 

as particle filter[26], which we introduced in the previous part. MCL represents the belief 

bel(xt) by a set x? = {4 ,x) , . . . ,x) '} of M particles over the entire state space, and each 

particle denotes a possible pose of the robot. MCL is also a version of sampling/importance 

re-sampling (SIR)[11]. 

The MCL algorithm is depicted in Figure 2.4, and it shows a single iteration. The initial 

belief bel(xo) is represented by M particles that are uniformly and randomly distributed in 

the whole state space of the environment and each particle is assigned with a weight of 

A/ -1 , which is called importance factor. In each iteration, MCL algorithm takes as inputs 

the previous belief bel(xt-\), movement data ut, measurement data it and the map m of the 

environment. 

MCL includes the following three steps: 
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Table 2.4: MCL algorithm [10] 

Algorithm MCL(x? -i,ut,zt,m) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

it = Xt = $ 

for m = 1 to M do 

x, = sample_motion_model(M,,xj_|) 

w, = measurement-model(z(,xjm ,m) 

&=£+<*!mU!ml> 
endfor 

for m = 1 to M do 

draw i with probability a w. 

add xy to X/ 

10: endfor 

12: return X( 

(1) Robot motion. Motion model for sample particles is applied in line 3. After each 

step of movement, MCL incorporates the movement data ut, and from the previous particle 

set it generates M new particles that approximate the robot's pose. 

(2) Robot measurement. Measurement model is applied in line 4. In this step, sensor 

readings are incorporated by reweighting the sample set, during which the weight of each 

particle will change. 

(3) Important resampling. This phase(line 7-10) is often referred as sequential impor

tance sampling with resampling. New unweigted particles are drawn from the current sam

ple set. The probability of drawing a new particle is related to it weight (importance factor). 

When the MCL finishes successfully, most particles will converge to a certain area 

which represents the position of robot. In Figure 2.5, an example of MCL is shown. In 
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Figure 2.5 (a) The robot is globally uncertain about its position and the particles spread all 

possible spaces. In Figure 2.5 (b), when the robot reaches the upper left corner of the map, 

its belief is still concentrated around four possible locations. In Figure 2.5 (c), finally after 

several movements, the robot localizes itself and all particle converge to a small area. 

\ 
Robot position 

y 
Robot position 

Figure 2.5: Illustration of Monte Carlo localization.[10] 
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Chapter 3 

PROPOSED METHODS 

1 

3.1 Motivation 

As discussed in the background knowledge, the grid localization has two problems: (1) the 

trade-off between the resolution of grid cell and accuracy of result and (2) the state transition 

problem. For the MCL algorithm, although it is one of the most efficient algorithms for 

mobile robot localization, yet it is still able to be improved with respect to efficiency and 

computational cost. For that purpose, how to reduce the number of particles and reduce 

the computational cost is the key concern. During the past years many algorithms that 

extend MCL have been proposed in order to further improve the performance and reduce 

the computational cost, such as adaptive samples based MCL approach[12], mixture MCL 

approach[14], coevolution based adaptive MCL[13], reverse MCL Approach[9] and so on. 

'This chapter also incorporates the outcome of a joint research undertaken in collaboration with Jingxi 
Chen and Sepideh Seifzadeh under the supervision of Dr. Dan Wu. In all cases, the key ideas, primary 
contributions, experimental designs, data analysis and interpretation, were performed by the author, and the 
contribution of co-authors was primarily through the provision of constructive comments. 
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However combining grid localization and MCL is not well exploited, and few efforts have 

been made in incorporating clustering approach into MCL, so in this thesis we propose two 

different novel extensions of MCL. One is Moving Grid Cell Based MCL, which combines 

grid localization and MCL, and the other is dynamic MCL based on clustering, which 

employs a clustering component in the localization process. 

3.2 Moving Grid Cell Based MCL 

The first proposed method is called Moving Grid Cell Based MCL. It is based on grid local

ization and MCL, and could solve the problems existing in the traditional grid localization 

and reduce the computational cost of the whole localization process. 

There are three parts of this method: (1) The first part is called moving grid cell lo

calization part, and in this part the grid cells are used the same way as how particles are 

used in traditional MCL. The size of grid cells here is bigger than the size of those used in 

traditional grid localization, which makes the the number of grid cells much smaller. We 

consider each grid cell as a particle and apply MCL algorithm on these grid cells. Hence, 

these grid cells are moveable instead of stationary. So we eliminate the state transition 

problem of the traditional grid localization. Since the size of grid cells is big, so we can 

only get a coarse pose of robot once MCL algorithm is finished. (2) The second part is 

called verification part, we add the verification part in order to verify the result of mov

ing grid cell localization part. This will help to improve the accuracy of localization. The 

verification is achieved through comparing the expected measurement data based on the 

previous result with the real measurement data the robot gets. If the difference of these two 

data is out of a certain range, then it suggests the accuracy does not meet our requirement, 

and the algorithm will go through the moving grid cell localization part again. (3) The third 
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Table 3.1: Moving Grid Cell Based MCL 

Algorithm Moving-Grid_Cell-BasedJVICL(Map) 

1: Moving_Grid_Cell_Localization 

2: Verify _Grid_Cell-Localization 

3: if Verify_flag==true 

4: then go to line 6 

5: else goto line 1 

6: InitialiseJVICL 

7: MCL 

part is traditional MCL part. We apply traditional MCL algorithm to obtain the final pose 

of the robot. Instead of in the whole environment, the particles are only initialized in the 

restricted area covered by those grid cells produced by the first part. Both the large size of 

grid cell in the first part and the restricted area where the particles are initialized in the third 

part let us use a smaller number of both grid cells and particles. This helps to reduce the 

computational cost. We outline the proposed Moving Grid Cell Based MCL algorithm in 

Table 3.1. 

As shown in Table 3.1, the algorithm needs the map of the environment as an input. As 

mentioned there are three parts of our proposed algorithm, including (1) moving grid cell 

localization part (line 1), (2) verification part (line 2-5), and (3) the MCL part (line 6-7). 

Line 1 applies the moving grid cell localization algorithm which is shown in Table 3.2. Line 

2 applies the verification grid cell localization algorithm which is shown in Table 3.3 . Line 

7 applies the traditional MCL algorithm which is shown in Table 3.4. In the following, we 

will give the detailed descriptions of each part. 
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Table 3.2: Moving Grid Cell Localization 

Algorithm Moving_Grid_Cell_localization(Map) 

1: Intialise-GricLCell 

2: For all grid cells 

3: Grid_Cell_Predict 

4: Grid_Cell.Update 

5: End for 

6: if Grid_Cell_Number < Grid_Cell_Threshold 

7: then Return Grid_Cell_Result 

8: else go to line 2 

3.2.1 Moving Grid Cell Localization Part 

In the traditional grid localization, the number of grid cells is usually very large in order to 

get an accurate result. Two factors will affect the number of grid cells. One factor is the 

size of the grid cell, and the other is the resolution of orientation. A smaller cell size and 

finer resolution of orientation will lead to a more accurate result, however they will greatly 

increase the computational cost. In this part, we use a larger size of grid cell and only a 

small number of orientation, which makes the number of total grid cells much smaller. 

As shown in Table 3.2, we first initialize all grid cells with equal probability that sum 

up to 1. We use 3-D representation of the map which includes x-dimension, y-dimensions 

and the orientation 8. The way the grid cell used in this part is the same as the particle used 

in the traditional MCL algorithm, so the grid cell can be regarded as a big particle. During 

the localization process the grid cell is moving like a particle. In line 3 it incorporates the 

movement data. Instead of stationary, the position of all grid cells will change in accordance 
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with the movement of robot. If the grid is out of the environment, its probability will be 

set to zero. Line 4 will incorporate the measurement data and update the probability for 

grid cells. Then if the grid cell has a probability of zero, it will be removed from the grid 

cell set. As the number of grid cells reduces, when it reaches a certain predefined threshold 

according to the map, the moving grid cell localization will stop and return the grid cells 

left to the next part, otherwise it will continue. 

We use a less number of grid cells and treat them as particles to get a coarse position 

in this part, and then in the third part we will get a more accurate position. As the initial 

number of grid cells is smaller, the computational cost is reduced. Moreover, during the 

process as the number of the grid cells is reducing as the probability of many grid cells are 

becoming zero which makes them discarded, so the computational cost is reduced further. 

Since we only use a small number of orientations for each grid cell in the part, in the 

third part we will compensate for this loss of accuracy in orientation, and we will explain 

this in more details in the third part. Because the grid cell is now moving in our proposed 

algorithm, the state transition problem existing in the traditional grid localization is avoided. 

Therefore, we don't have to worry about the motion model, the robot can move at any 

speed. After this first part, only several grid cells are left, the probability that these grid 

cells contain the true pose of robot are very high. 

3.2.2 Verification Part 

The Verify Grid Cell Localization algorithm is shown in Table 3.3. The input of this algo

rithm is the grid cells returned in the first part. For each grid cell returned from the moving 

grid cell localization part, it will first calculate how long it takes for the robot to reach the 

next landmark according to the current pose suggested by the grid cells, which is referred 

27 



Table 3.3: Verify Grid Cell Localization 

Algorithm Verify_Grid_Cell_Localization(Grid_CelLResult) 

1: For all Grid_Cell_Result 

2: Grid_Cell_Predict 

3: Get_Measurement 

4: End for 

5: Compare Measurement with the Expectation 

6: if difference within a Threshold 

7: then Verify_flag=true 

8: else Verify_flag=false 

to as Expectation in line 5, then it will let the robot move, and record the time the robot 

takes to reach the next landmark in the real environment. 

If the difference between these two recorded times for each grid cell is within a certain 

predefined range, which means the results returned from last part are reliable, then the 

verification result will be true, and it will move on and pass the verified grid cell results to 

the MCL part. If the difference is out of the predefined range, which means the results from 

the first part are not reliable, and the verification result will be false, so it needs to go back 

to the first part and go through it again. 

The verification part helps to improve the accuracy of localization. When the result 

accuracy of the first part does not meet the our requirement, the difference between the 

calculated time (Expectation) and the time robot takes in the real environment will be big, so 

the algorithm in Table 3.3 will find this out and go back to the moving grid cell localization 

part again. 
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Table 3.4: MCL algorithm [10] 

Algorithm MCL(xf - 1 , ut, zt, m) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Xr = it = 4> 

for m = 1 to M do 

x, = sample_motion_model(M,,jc|_j) 

w, = measurement-model (zt, x j , m) 
- , ^ [ml f/nl ^ 

endfor 

for m = 1 to M do 

draw i with probability a w} 

add x, to X? 

10: endfor 

12: return %f 

What's more, the verification part can be adjusted according to different situations. If 

a high accuracy is required, we can make a more complex verification in this part, which 

means not only to test the the next landmark, also the second next landmark and so on. 

3.2.3 The MCL Part 

The third part is the regular MCL part. It is the same as the traditional MCL as shown in 

Table 3.4 except how the particles are initialized. From the previous parts we have obtained 

a coarse pose of robot , so we only need to initialize the particles in the restricted areas 

instead of in the whole environment. 

In line 6 of Table 3.4, the particles are generated within the grid cells which are returned 
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from the moving grid cell localization part and verified in the second part. The x-dimension 

and y-dimension is randomly and uniformly generated inside the grid cells, but the orienta

tion 6 is generated according to the grid cell's orientation where the particle is in. Because 

in the moving grid cell localization part, the orientation of the grid cell is discrete and not 

all possible orientations are covered by grid cells, so if the orientation of the robot doesn't 

fall into the discrete orientation we choose, the accuracy might be questionable. So in the 

MCL part, we initialize the orientation of particles according to the grid cell's orientation, 

for example, if the orientation of the grid cell is G, then the orientation of particles in this 

grid cell may be between 9—15 and 6 4-15. This will help to compensate the possible 

inaccuracy of the orientation in the moving grid cell localization part. 

During the process of the MCL algorithm, the probabilities of particles are updated 

based on the motion model and measurement model. The MCL goes on until the localiza

tion is finished. The number of the particles used in this part is not fixed, we can change 

the number according to different situations based on the requirement of accuracy. 

It is noted that since we already obtain a coarse pose of the robot in the moving grid cell 

localization part, then we generate particles only in a restricted area of the environment. We 

do not need as many particles as those used in the traditional MCL in which particles have 

to be populated in the whole possible spaces. 

3.2.4 Illustration of the Proposed Method One 

Figure 3.1 shows the progress when executing the proposed method one in a simulated 

environment. The big blue circle denotes the robot and the black line denotes the boundary 

of the environment. In Figure 3.1 (A) and (B), the colored squares denote the grid cells, 

and in Figure 3.1 (C) and (D) the small red circle denotes the particle. 
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A B 

D 

Figure 3.1: Illustration of the Proposed Method One. (A) Initialization of grid cells, (B) 
The moving grid cell localization finished, (C) Initialization of particles after verification, 
(D) Final result. 
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Figure 3.1 (A) shows the grid cells initialized in the the first part. Each colored square 

denotes a moving grid cell, and in order to make it easy to distinguish each grid cell, the 

color of a grid cell is different from its neighbors. Figure 3.1 (B) shows the position of the 

grid cell left after the moving grid cell localization part is done. Figure 3.1 (C) shows the 

particles initialized after the verification part, and Figure 3.1 (D) shows the result after the 

MCL part. Figure 3.1 (D) shows the final position of robot after the whole algorithm is 

finished. 

3.3 Dynamic MCL Based on Clustering 

The second proposed method is dynamic MCL based on clustering. In [16] a novel method 

based on clustering is proposed to help robot to be aware of its progress of localization. 

Inspired by that, we propose a dynamic MCL which significantly reduces the number of 

particles during the execution of localization by employing a clustering component. The 

overall structure of the proposal method is shown in Table 3.5. 

As shown in Table 3.5, the second proposed method consists of three parts: (1) MCL+BSAS 

part (line 1-6), (2) Reducing part (line 7), (3) MCL part (line 8). The four inputs of the 

method are the map Map of the environment, the initial particle set % which populates the 

whole environment, threshold 0 for distance similarity used in the BSAS algorithm, and 

threshold r\ used for termination of the first part. Before we give the detailed descriptions 

of each part, first we will introduce the background knowledge of clustering. 
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Table 3.5: Dynamic MCL 

Algorithm Dynamic MCL (Map, %, 6, t|, 

1 

2 

3 

4 

5 

6 

7 

8 

Do{ 

X,=MCL(Xt-\,ut,Zt) 
Ct=BSAS(x,,Q) 

m = Max(Ct) 

p = m/Ntotal 

} While (p < t | ) 

Xf =/*«/««? (Xf,n) 
MCL (Map, x,') 

n ) 

3.3.1 Clustering and BSAS Algorithm 

By definition, a cluster is "an aggregate of points in the test space such that the distance 

between any two points in the cluster is less than the distance between any point in the 

cluster and any point not in it" [28]. Cluster analysis or clustering is the assignment of a set 

of points into clusters. 

An important part in all clustering algorithms is to select a proximity measure or dis

tance measure, which determines how the similarity of two data points is calculated[29]. 

The proximity measure affects the shape of the clusters, as some elements may be close to 

one another according to one distance and far away according to another. In the context 

of MCL localization, the pose of a robot consists of x and y coordinates and the accuracy 

of localization result has strong relation with Euclidean distance, so it is effective and rea

sonable that we choose the Euclidean distance d(Pi,Pj) = yj{x-t - Xj)2 + (y, - yj)2 as our 

proximity measure for two points P, and P} when clustering particles. 

During clustering in order to calculate the distance d{Pi,Ck) between a particle F, and 

a cluster Q which usually already contains a lot of particles in it, we need a representa-
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(A) (B) CC) 

Figure 3.2: Cluster Representatives. (A) Point representative for compact clusters, (B) 
Hyperplane representatives for clusters of linear shape, (C) Hyperspherical representatives 
for clusters of hyperspherical shape.[15] 

tive of the cluster Q . As shown in Figure 3.2, there are three common options for rep

resenting the cluster, point representatives, hyperplane representatives and hyperspherical 

representatives[15]. In these three methods, the point representative is most suitable for 

compact clusters that usually appear in MCL. Therefore, for a cluster containing N parti

cles, we use the mean point Pmean — ^(Pi) as the representative of the cluster which is a 

very common choice. 

Many types of algorithms have been proposed in the field of clustering, such as hierar

chical clustering, partitional clustering, kernel-based clustering, sequential data clustering 

and so on[29][31]. Since in the localization we need to process the particles in real time, 

so the efficiency of clustering algorithm is very important and crucial for real time perfor

mance. In our proposed method, we have chosen the sequential algorithm Basic Sequential 

Algorithmic Scheme (BSAS)[29][30] due to its simplicity, efficiency, and easy implemen

tation. 

In BSAS, the number of clusters is not required to be known initially. During the clus

tering process, new clusters are created. Also each particle is presented to the algorithm 

only once during clustering. 

• • 
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Table 3.6: BSAS Algorithm [29] 

Algorithm BSAS (xixi---xN),Q) 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10 

m = l,Cm = {x\} 

for / = 2 to N do 

find CK : d(x;,Q) = min\<j<md(xi,Cj) 

if d(xi,Ck) > 9 then 

m = m + l,Cm = {x,} 

else 
Q = Q (J {*/}> update 

its representative if necessary 

end if 

: end for 

The BSAS algorithm is shown in Table 3.6, X{XI---XN) is the input particle set to be 

clustered. For each particle, BSAS either assigns it to an existing cluster or a newly created 

cluster, depending on the distance from already formed clusters. The parameter 0 is the 

threshold of dissimilarity, which determines how particles are clustered. Line 1 initializes 

the first cluster with the first point. Line 2 to line 10 loop through all the data left. Line 

3 calculates dissimilarity measures between the current point and every existing clusters to 

find a minimum one. From line 5 to line 9, if the minimum measure is larger than 6, a new 

cluster will be created, otherwise the current point will be assigned to the existing cluster 

which has a minimum dissimilarity measure to it. 

In the following part, detailed description of our second proposed method will be pre

sented. 
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3.3.2 MCL+BSAS Part 

The first part of this method is MCL+BSAS part. In this part, we employ the idea in [16]. 

This part is iterative and for each iteration, after MCL in line 2, we apply the clustering 

algorithm BSAS to the particle set in line 3 so that the BSAS algorithm can provide valuable 

information about the distribution of the particles. 

As shown in Table 3.5, %t obtained in line 2 is the new particle set after one iteration 

of MCL. In line 3, Q is the cluster set which we get after applying the BSAS algorithm to 

the whole particle set %,. Variable 6 is used as the threshold in BSAS to decide whether 

a particles belongs to an existing cluster or be assigned to a newly created cluster. In line 

4, after clustering we could find the cluster with the largest number of particles, and return 

the number of particles in this cluster as m. In line 5, the variable p is calculated, and p 

is defined as the percentage of m out of the total number of particles (Ntota[). p is used to 

evaluate the progress of localization by the MCL algorithm in line 2 and help us keep track 

of the convergence degree of particles. 

When the value of p exceeds a predefined threshold TJ, the algorithm will assume the 

particles have concentrated to a certain degree such that the true robot position is more likely 

to be in this cluster which has the largest number of particles. With this newly obtained 

knowledge, we do not need to use as many as Ntotai particles for localization and we are 

ready to reduce the number of particles for the rest of the localization process. Then the 

algorithm will go to part two, the reducing part. 

3.3.3 Reducing Part 

In this part, we will reduce the number of particles and generate a new set of small number 

of particles based on the previous particles set. As shown in line 7 in Table 3.5, the inputs 
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are the particle set % obtained from the previous part and n(n < 1) which indicates how 

many particles should be reduced. %t is the new particle set after reducing. 

The reason that we try to reduce the number of particles is as follows: as the MCL goes 

on, the particles gradually converge to certain areas in the environment. These "certain 

areas" in our approach is the clusters obtained via the BSAS algorithm. In the cluster with 

the largest number of particles, the density of particles is very high. If this density exceeds 

a predefined threshold, then it is possible that we can proportionally reduce the number 

of particles in each cluster without jeopardizing the localization progress. For instance, 

if we only have three clusters, each having 300, 85, and 20 particles, respectively. If we 

proportionally reduce the number of particles in each cluster in half to 150, 42, and 10 

particles, respectively, and if we continue the localization using the MCL algorithm, we 

may still succeed. So when the proposed algorithm finds the concentration of particles 

exceed a predefined threshold which means the algorithm no longer needs that number of 

particles, then we start to reduce the number of particles. 

The method we use here for reducing the number of particles is to randomly pick a 

certain percent particles from the previous particles set in each cluster, and the percentage 

value is defined by the variable n. The reason of this is due to its simplicity in implemen

tation as in mobile robot localization we mainly focus on the efficiency. After this part, the 

number of particles used in our algorithm is n * Nlota[, which is smaller than the original 

number, and hence this certainly reduces the computational cost. 

3.3.4 MCL Part 

The third part is the regular MCL part in line 8. It is shown in Table 3.7 and it uses the 

traditional MCL algorithm except the initial particle set used here, denoted as xj, is obtained 
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Table 3.7: MCL algorithm [10] 

Algorithm MCL(& -\,ut,zt,m) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Xi=1t = § 

for m = 1 to M do 

x, = samplejnotion_model(M,,x)_,) 

w, = measurement_model(zf,xj ,m) 

endfor 

for m = 1 to M do 

draw i with probability a w. 

add 4 to %t 

10: endfor 

12: return %t 

from line 7. It is a much smaller subset of %t. The number of particles in %'t used in this 

part is much smaller than the particle set %t in line 7 when the algorithm exits the loop. The 

MCL algorithm in this part also takes the map Map of the environment as another input. 

The MCL goes on until the localization is finished. 

3.3.5 Illustration of the Proposed Method Two 

In this part, we illustrate how our proposed algorithm works in a simulated environment 

for the purpose of understanding the algorithm. More detailed experimental results will be 

presented in next chapter. Figure 3.3 shows the progress when implementing our second 

proposed algorithm in simulation. The small red circle denotes the particle, the big blue 
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circle denotes the robot and the black line denotes the boundary of the environment. 

Figure 3.3 (A) shows the initialization of particles and the particles populate the whole 

state space. Figure 3.3 (B) shows that the algorithm has found the number of particles in 

the largest cluster is larger than the predefined threshold 6, and the first part is finished. We 

can see from Figure 3.3 (B), there are two big concentrations of particles and this means the 

uncertainty of the robot's pose has been reduced a lot, compared with Figure 3.3 (A). Then 

in Figure 3.3 (C) it shows the algorithm has reduced the number of particles to one third 

based on the particle set in Figure 3.3 (B). Figure 3.3 (D) shows the localization is finished 

successfully using only one third of the original particles. 

< • 
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Figure 3.3: Illustration of the Proposed Method Two. (A) Initialization of particles, (B) Part 
1 is finished, (C) Part 2 is finished, (D) Localization is finished. 
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Chapter 4 

EXPERIMENT RESULTS 

In this chapter, we will first present the implementation details of our experiments, includ

ing the hardware platform and software platform, then demonstrate the experimental results 

of the two proposed methods in both real and simulated environments. 

4.1 Implementation Details 

4.1.1 Hardware Platform 

The hardware platform used to test our proposed methods is the LOGO MINDSTORMS 

NXT Robot, a programmable robotics kit released by LEGO GROUP in 2006[33][34]. It 

comes with the NXT-G programming software, and it supports many unofficial program

ming languages such NXC, NBC, LeJOS NXJ and RobotC[34]. 

Figure 4.1 shows the main components of the kit including the NXT intelligent brick, 

three motors, one touch sensor, one sound sensor, one ultrasonic sensor and one light sensor. 

The NXT kit also includes Lego Technic pieces such as gears, axles, and beams, which help 
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Figure 4.1: NXT main components. (A) Intelligent brick, (B)(C)(D) Motor, (E) Touch 
sensor, (F) Sound sensor, (G) Light sensor, (H) Ultrasonic sensor. [33] 

to build the robot.[34] Figure 4.2 shows a robot built with the NXT kit. 

The NXT brick is the most important part in this kit. It has three ports for connecting 

with the motor and four ports for connecting the sensor. The brick has a 100 x 64 pixel 

monochrome LCD display and four buttons that can be used to operate the menu. It also 

has a speaker which can play sound files at sampling rates up to 8 kHz. Power can be 

supplied by 6 AA (1.5 V each) batteries or by a Li-Ion rechargeable battery. NXT brick 

contains an Atmel 32-bit ARM processor running at 48 MHZ, and this processor has direct 

access to 64 KB of RAM. [32] 

NXT supports both USB and bluetooth connection. The code and data can be upload to 

the NXT using these two methods, also the firmware can be upgraded by USB connection. 

The USB port can transmit data at 12 Mbits per second, and bluetooth transmits data at 

460.8 Kbits per second. Bluetooth gives us a solution if the program is more than 256 
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KB, and allows the program access the memory of PC instead of relying on the built-in 

memory of NXT, so we can put the reflex actions on the NXT brick and the brains on the 

PC. Bluetooth also allows NXT interact with resources a computer interacts with, such as 

a webcam, database, network, printer and so on. [32] 

Figure 4.2: NXT Robot.[33] 

The motor has built-in reduction gear assemblies with internal optical rotary encoders 

that sense their rotations within one degree of accuracy. The touch sensor could detect 

whether it is currently pressed, has been bumped, or released. The light sensor detects the 

light level in one direction, and also includes an LED for illuminating an object. The light 

sensor can sense reflected light values (using the built-in red LED), or ambient light. If 

calibrated, the sensor can also be used as a distance sensor. The sound sensor measures 
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volume level on a scale of 0 to 100, 100 being very loud and 0 being completely silent.[32] 

The ultrasonic sensor can measure the distance from the sensor to something that it 

is facing, and detect movement. It can show the distance in both centimeters and inches. 

The maximum distance it can measure is 255 cm with a precision of 3 centimeters. The 

ultrasonic sensor works by sending out ultrasonic sound waves that bounce off an object 

ahead of it and then back. It produces a sonar cone, which means it detects object in front 

of it within a con share. This cone opens at an angle of about 30 degrees.[32] 

NXT also supports many third part sensors, which greatly increase the abilities to sense 

environmental conditions. HiTechnic is a company that make sensors for LEGO, such as 

compass sensor, tilt sensor and so on. [32] 

4.1.2 Programming Platform 

In this thesis the program is built using Java. In order to program with Java, we use two 

java packages, one is LeJOS NXJ and the other is iCommand[32][35]. 

LeJOS is a firmware replacement for NXT brick. It includes a Java virtual machine, 

which allows NXT be programmed in the Java programming language. As LeJOS is a 

firmware replacement, the new LeJOS NXJ firmware must be flashed onto the NXT brick 

, and replace the standard LEGO MINDSTORMS firmware(NXT-G). LeJOS includes a 

linker for linking user Java classes with classes.jar to form a binary file that can be uploaded 

and run on the NXT brick, and a PC API for writing PC programs that communicate with 

LeJOS NXJ programs using Java streams over Bluetooth or USB. The iCommand pack

age is a sister-project of LeJOS NXJ. It mirrors LeJOS NXJ as closely as possible. The 

main difference is that the LeJOS NXJ runs on the NXT brick while iCommand runs on 

PC. The iCommand controls the NXT by sending individual commands through bluetooth 
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connection, and gets the information from the NXT sensors. Using LeJOS and iCommand 

packages allow us not worry about the size of the code limited by the memory size of NXT 

brick, and access all the memory resource of PC.[35] 

4.2 Experiment Design 

The idea behind the experiment design is as follows. First we apply the traditional MCL to 

the environment, then we run our two proposed algorithms in the same environment, then 

we compare the performance of localization with traditional MCL. 

In this part, we will first present the performance of traditional MCL in both real envi

ronment and simulated environment, then in the following parts, we will discuss the exper

iment of each proposed method. 

4.2.1 Traditional MCL in Real Environment 

Figure 4.3 shows the NXT used in the real experiment, and the environment is shown in 

Figure 4.4. The environment is asymmetric and the black line is the boundary of the region. 

The reason of testing our algorithm in this environment is due to its simplicity. But also 

the simpler the environment is, the more difficult the localization is. If there are too many 

unique landmarks which give a lot of information to robot, it will make localization much 

more easier. We use the light sensor of the NXT robot, which helps to detect the boundary 

of the region. 

We first apply the traditional MCL in the environment to see how many particles are 

needed so that the localization successful rate is satisfactory. For each value of particle 

number, we run traditional MCL 20 times. 
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Figure 4.3: LEGO MINDSTORMS NXT in our experiment. 

Figure 4.4: Environment for the real experiment. 
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Figure 4.5: Performance of traditional MCL in the real environment. 

As shown in Figure 4.5, the localization successful rate is a bit lower when the number 

of particle is below 3000. For 2000 particles, the successful rate is 50% and for 2500 parti

cles, the successful rate is 80%. When the number of particle reaches 3000, the traditional 

MCL gets a successful rate of nearly 100%. For 3000 particles the successful rate is 100%, 

for 3500 particles the successful rate is 95%, and for 4000 particles, the rate is 100%. 

4.2.2 Traditional MCL in Simulated Environment 

Traditional MCL is also implemented on PC in an area which is proportionate to the one 

used in real environment. For each value of particle number, we also run the algorithm 20 

times. 

From Figure 4.6, we can see that the localization successful rate is also lower when the 

number of particle is below 3000. For 2000 particles, the successful rate is 40% and for 
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Figure 4.6: Performance of traditional MCL in the simulated environment. 

2500 particles, the successful rate is 70%. For 3000 particles, the successful rate is 95%, 

and for 3500 and 4000 particles, both rates are 100%. 

4.3 Experiment Result for Proposed Method One 

4.3.1 Parameters Setting in Algorithm 

In the proposed method one, we can see that the computational cost is determined by the 

number of grid cells and the number of particles. As the particles are only generated in the 

restricted area so this number is quite small. As discussed before, the number of orientations 

is a important factor that will affect the number of grid cells, so in our experiment we try 

different numbers of orientations, and see the performance of our proposed method. 
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4.3.2 Experiment in Real Environment 

First the method is implemented in the same environment shown in Figure 4.4. The number 

of orientations of the grid cells is denoted as N. In the environment for one dimension there 

are 21 grid cells, so the total number of grid cells is N * 21. The number of particle used 

is 100, so the total number of grid cells and particles is TV * 21 + 100, and it is denoted as 

Ntotai- For each TV , we repeat the proposed methods 20 times. 

Table 4.1: Proposed Method One Successful Rate (Real environment) 

Number of Orientation (N) 

Ntotai 
Successful Rate(%) 

12 
352 
25 

24 
604 
40 

36 
856 
55 

48 
1108 
75 

60 
1360 
85 

72 
1612 
85 

96 
2116 
90 

As shown in the Table 4.1, the successful rate is quite low when Ntota[ is below 1000, 

and when Ntotai is above 1000, the successful rates are apparently higher. In the Figure 4.5, 

we know that in the same environment the successful rate of traditional MCL is quite low 

when the number of particles is below 2500. After comparing the result of our proposed 

method one and the traditional MCL, we can find that our first proposed method can achieve 

higher successful rate of localization with lower computational cost. 

4.3.3 Experiment in Simulated Environment 

The proposed method one is also implemented on PC in the same simulated environment. 

Same as the last part, the number of orientation is denoted as TV, and in the simulated 

environment for one dimension there are 21 grid cells so the total number of grid cells 

is N * 21. The number of particle used is also 100, so the total number of grid cells and 

particles is also TV * 21 + 100, and it is denoted as Ntotai. For each N, we also repeat the 

proposed method 20 times. 
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Table 4.2: Proposed Method One Successful Rate (Simulated environment) 

Number of Orientation (N) 

Ntotal 
Successful Rate(%) 

12 
352 
20 

24 
604 
30 

36 
856 
50 

48 
1108 
75 

60 
1360 
80 

72 
1612 
80 

96 
2116 

90 

As shown in the Table 4.2, the successful rate is also quite low when Ntotai is below 

1000, and when Ntotai is above 1000, the successful rates become apparently higher. From 

Figure 4.6, we know that in the same simulated environment the successful rate of tradi

tional MCL is quite low when the number of particles is below 2500. The experiment in 

the simulated environment also shows that our first proposed method can achieve higher 

successful rate of localization with lower computational cost. 

4.4 Experiment Result for Proposed Method Two 

4.4.1 Parameters Setting in Algorithm 

It can be seen that in the proposed method two, there are three important parameters. They 

are the threshold 9 used for clustering, threshold r| used for terminating the first part, and 

the n used in the second part for determining how many particles should be reduced. 

As mentioned in the previous section, 0 determines the spreadness of the particles in a 

cluster, and if 9 is too big the accuracy of localization will be greatly affected. T| decides 

when to reduce the number of particles, if it is too big it will take more time to succeed, and 

then the reducing part will be delayed, which means the computational cost is not greatly 

reduced since most of the time we use the same number of particles as we started, n will 

also affect the accuracy of the localization because if we reduce too many particles that 

the remaining particles might not represent the uncertainty left in the localization process 
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properly. 

In our experiments, we set 0 and r| to fixed values which are appropriate for our ex

perimental environment. The reason of doing this is that our main concern in MCL is the 

number of particles which is determined by the value of n. So we only use different values 

of n to test the proposed algorithm. 

4.4.2 Experiment in Real Environment 

From Figure 4.5, we know that the required number of particles for the robot to successfully 

localize itself in this environment is 3000. 

After figuring out that 3000 particles are enough for this environment, we start to apply 

our proposed algorithm to see whether it performs well when the number of particles is 

reduced during the localization process. 

For our second proposed algorithm, we set threshold 6 which determines the spread-

ness of the cluster to be 9 cm, and set threshold rj used for terminating the first part to be 

25%, which means after the number of particles in biggest cluster reaches 25% of the total 

particles, it will start to reduce the number of particles in each cluster. Then for parameter n 

which determines how many particles are reduced, we choose three different values to see 

the localization successful rate. For each value we repeat the experiment 20 times. 

Table 4.3: Proposed Method Two Successful Rate (Real environment 0 = 9cm, T| = 
25%,n = 1/2,1/3,1/4 ) 

Number of Particles 

3000 
3500 
4000 

1/2 

100 
100 
100 

1/3 

95 
100 
100 

1/4 

55 
100 
100 

For reducing part, we try three different n, i.e., 1/2, 1/3 and 1/4. As we can see from 
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Table 4.3, when we use 3000 particles, if we reduce the particles to half or one third, the 

successful rate is still high, however if we reduce to one fourth, the rate is much lower. The 

result is encouraging since reducing the number of particles to half of what is required by 

the traditional MCL still maintains a very high success rate. For 3500 or 4000 particles, 

reducing to half, one third or one fourth, all still produce very good results. The real en

vironment experiments demonstrate that our proposed method two can produce very good 

results when we reduce the number of particles compared with using the traditional MCL. 

4.4.3 Experiment in Simulated Environment 

From Figure 4.6, we know that the required number of particles for the robot to successfully 

localize itself in this environment is also 3000. 

Then we start to apply our second proposed algorithm to the simulated environment. 

We set threshold 0 to be 60 pixels, and set threshold T| used for terminating the first part to 

be 25%. Then for parameter n we choose the same three different values 1/2, 1/3 and 1/4. 

For each n, we repeat the experiment 20 times. 

Table 4.4: Proposed Method Two Successful Rate (Simulated environment 0 = 
60pixel,r\ = 25%,n = 1/2,1/3,1/4 ) 

Number of Particles 

3000 
3500 
4000 

1/2 

100 
95 
100 

1/3 

95 
95 
100 

1/4 

60 
100 
100 

For reducing part, we try three different n, 1/2, 1/3 and 1/4. As we can see from Table 

4.4, when we use 3000 particles, if we reduce the particles to half or one third, the successful 

rate is still high, however if we reduce to one fourth, the rate becomes lower. For 3500 or 

4000 particles, reducing to half, one third or one fourth, all still produce very good results. 
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The simulated experiments also show that our proposed method two performs very well 

when we reduce the number of particles significantly. 
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Chapter 5 

CONCLUSION AND FUTURE 

WORKS 

5.1 Conclusion 

Mobile robot localization is a very important and fundamental problem in robotics. Dur

ing the past decades, many algorithms for mobile robot localization have been proposed. 

Among these algorithms, Monte Carlo localization(MCL) is one of the most popular and 

efficient due to its better performance and less computational cost. However, MCL is still 

able to be further improved, so in this thesis we present two extensions of MCL both could 

improve the performance and reduce the computational cost of MCL. One is called moving 

grid cell based MCL algorithm which is a hybrid of grid localization and MCL, and the 

other is a dynamic MCL algorithm based on clustering. 

Experiment results performed in both real and simulated environments demonstrate the 

effectiveness and low computational cost of each proposed method compared with tradi

tional MCL. 
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5.2 Future Work 

Our proposed methods can be further improved in the following aspects. 

Active localization: The methods proposed in this thesis are passive, and the robot is 

controlled by a predefined movement pattern and the robot's navigation does not facilitate 

the localization progress. So one objective of this thesis is to incorporate active approaches 

to control the movement of the robot, which means actively selecting the most efficient 

motion direction and sensor direction. 

Multi-robot localization: The methods proposed only deal with single robot localiza

tion problem. We want to apply our methods to multi-robot localization problem which 

is more difficult than single robot localization problem. In multi-robot localization, we 

not only have to consider the movement and measurement of the robot, also the detecting 

problem between different robots. The issues that arises usually include representation of 

beliefs and the communication between different robots. 

Kidnapped robot problem: Our proposed methods focus on global localization. We 

also want to improve our methods to solve kidnapped robot problem, where the robot is 

kidnapped and taken to somewhere else without being notified. Kidnapped robot prob

lem becomes important because localization approaches can fail sometimes. The ability to 

recover from failures is especially important for truly autonomous robots. 
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