
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Two improved methods for mobile robot localization Two improved methods for mobile robot localization

Yuefeng Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Wang, Yuefeng, "Two improved methods for mobile robot localization" (2010). Electronic Theses and
Dissertations. 8267.
https://scholar.uwindsor.ca/etd/8267

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8267?utm_source=scholar.uwindsor.ca%2Fetd%2F8267&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

TWO IMPROVED METHODS FOR MOBILE ROBOT
LOCALIZATION

by
Yuefeng Wang

A Thesis
Submitted to the Faculty of Graduate Studies

through School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2010

©2010 Yuefeng Wang

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-62723-5
Our file Notre reference
ISBN: 978-0-494-62723-5

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Dedication of Co-Authorship / Previous Publication

I. Co-Authorship Declaration

I hereby declare that this thesis incorporates material that is result of joint research, as

follows:

This thesis also incorporates the outcome of a joint research undertaken in collabora

tion with Jingxi Chen and Sepideh Seifzadeh under the supervision of Dr. Dan Wu. The

collaboration is covered in Chapter 3 of the thesis. In all cases, the key ideas, primary con

tributions, experimental designs, data analysis and interpretation, were performed by the

author, and the contribution of co-authors was primarily through the provision of construc

tive comments.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that

I have properly acknowledged the contribution of other researchers to my thesis, and have

obtained written permission from each of the co-author(s) to include the above material(s)

in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it refers,

is the product of my own work.

II. Declaration of Previous Publication

This thesis includes two original papers that have been previously published/submitted

for publication in peer reviewed journals, as follows:

111

Thesis Chapter

Chapter 3

Chapter 3, 4

Publication title/full citation

A moving grid cell based MCL algorithm for

mobile robot localization, The 2009 IEEE

International Conference on Robotics and

Biomimetics (ROBIO 2009)

A dynamic MCL algorithm based on

clustering for mobile robot localization,

The 2010 International IEEE/RSJ Conference

on Intelligent Robots and Systems

(IROS 2010)

Publication status

published

submitted

I certify that I have obtained a written permission from the copyright owner(s) to include

the above published material(s) in my thesis. I certify that the above material describes work

completed during my registration as graduate student at the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon anyones

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or oth

erwise, are fully acknowledged in accordance with the standard referencing practices. Fur

thermore, to the extent that I have included copyrighted material that surpasses the bounds

of fair dealing within the meaning of the Canada Copyright Act, I certify that I have ob

tained a written permission from the copyright owner(s) to include such material(s) in my

thesis.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iv

Abstract

Mobile robot localization is the problem of determining the robot's pose given the map

of its environment, based on the sensor reading and its movement. It is a fundamental and

very important problem in the research of mobile robotics.

Grid localization and Monte Carlo localization (MCL) are two of the most widely used

approaches for localization, especially the MCL. However each of these two popular meth

ods has its own problems. How to reduce the computation cost and better the accuracy is

our main concern.

In order to improve the performance of localization, we propose two improved local

ization algorithms. The first algorithm is called moving grid cell based MCL, which takes

advantages of both grid localization and MCL and overcomes their respective shortcom

ings. The second algorithm is dynamic MCL based on clustering, which uses a cluster

analysis component to reduce the computation cost.

v

Dedication

This thesis is dedicated to my parents for their endless support.

Also, it is dedicated to the people I care about and the people who care about me.

VI

Acknowledgements

My thanks and appreciation to my supervisor Dr. Dan Wu who helps me a lot during

my whole master's study. His encouragement, guidance and support enable me to complete

my research and write this thesis.

I am grateful as well to my external reader, Dr. Jonathan Wu, my internal reader, Dr.

Yung Tsin and my thesis committee chair, Dr. Subir Bandyopadhyay for spending their

previous time reviewing this thesis and giving their valuable comments and suggestions.

Also, I want to thank my friends. They help me solve many difficult problems during

my research.

Lastly, I would like to express my deep and sincere gratitude to my parents, and they

always give me great confidence and support whenever I meet any difficulty.

vn

Contents

DECLARATION OF PREVIOUS PUBLICATION Hi

ABSTRACT v

DEDICATION vi

ACKNOWLEDGEMENTS vii

LIST OF FIGURES x

LIST OF TABLES xi

1 INTRODUCTION 1
1.1 Motivation and Contribution 2
1.2 Outline 3

2 BACKGROUND KNOWLEDGE 4
2.1 Uncertainty 4
2.2 Probabilistic Robotics 5

2.2.1 State 6
2.2.2 Environment Interaction 7
2.2.3 Probabilistic Generative Laws 8
2.2.4 Belief 9
2.2.5 Bayes Filter 10

2.3 Mobile Robot Localization 12
2.3.1 Category of Localization 13
2.3.2 Markov Localization 14
2.3.3 Representation of State Space 15

2.4 Localization Algorithms 16
2.4.1 Grid Localization 17
2.4.2 Monte Carlo Localization 20

Vl l l

3 PROPOSED METHODS 23
3.1 Motivation 23
3.2 Moving Grid Cell Based MCL 24

3.2.1 Moving Grid Cell Localization Part 26
3.2.2 Verification Part 27
3.2.3 The MCL Part 29
3.2.4 Illustration of the Proposed Method One 30

3.3 Dynamic MCL Based on Clustering 32
3.3.1 Clustering and BSAS Algorithm 33
3.3.2 MCL+BSAS Part 36
3.3.3 Reducing Part 36
3.3.4 MCL Part 37
3.3.5 Illustration of the Proposed Method Two 38

4 EXPERIMENT RESULTS 40
4.1 Implementation Details 40

4.1.1 Hardware Platform 40
4.1.2 Programming Platform 43

4.2 Experiment Design 44
4.2.1 Traditional MCL in Real Environment 44
4.2.2 Traditional MCL in Simulated Environment 46

4.3 Experiment Result for Proposed Method One 47
4.3.1 Parameters Setting in Algorithm 47
4.3.2 Experiment in Real Environment 48
4.3.3 Experiment in Simulated Environment 48

4.4 Experiment Result for Proposed Method Two 49
4.4.1 Parameters Setting in Algorithm 49
4.4.2 Experiment in Real Environment 50
4.4.3 Experiment in Simulated Environment 51

5 CONCLUSION AND FUTURE WORKS 53
5.1 Conclusion 53
5.2 Future Work 54

Bibliography 55

Vita Auctoris 59

IX

List of Figures

2.1 The dynamic Bayes network that characterizes the evolution of control,
states and measurements. [10] 9

2.2 Graphical model of mobile robot localization.[10] 12
2.3 Example of grid decomposition over the robot pose.[10] 17
2.4 Example of grid localization in one-dimensional hallway.[10] 18
2.5 Illustration of Monte Carlo localization. [10] 22

3.1 Illustration of the Proposed Method One. (A) Initialization of grid cells,
(B) The moving grid cell localization finished, (C) Initialization of particles
after verification, (D) Final result 31

3.2 Cluster Representatives. (A) Point representative for compact clusters, (B)
Hyperplane representatives for clusters of linear shape, (C) Hyperspherical
representatives for clusters of hyperspherical shape.[15] 34

3.3 Illustration of the Proposed Method Two. (A) Initialization of particles, (B)
Part 1 is finished, (C) Part 2 is finished, (D) Localization is finished 39

4.1 NXT main components. (A) Intelligent brick, (B)(C)(D) Motor, (E) Touch
sensor, (F) Sound sensor, (G) Light sensor, (H) Ultrasonic sensor. [33] . . . 41

4.2 NXTRobot.[33] 42
4.3 LEGO MINDSTORMS NXT in our experiment 45
4.4 Environment for the real experiment 45
4.5 Performance of traditional MCL in the real environment 46
4.6 Performance of traditional MCL in the simulated environment 47

x

List of Tables

2.1 Bayes Filter [10] 11
2.2 Markov localization [10] 15
2.3 Grid localization algorithm [10] 19
2.4 MCL algorithm [10] 21

3.1 Moving Grid Cell Based MCL 25
3.2 Moving Grid Cell Localization 26
3.3 Verify Grid Cell Localization 28
3.4 MCL algorithm [10] 29
3.5 Dynamic MCL 33
3.6 BSAS Algorithm [29] 35
3.7 MCL algorithm [10] 38

4.1 Proposed Method One Successful Rate (Real environment) 48
4.2 Proposed Method One Successful Rate (Simulated environment) 49
4.3 Proposed Method Two Successful Rate (Real environment 9 = 9cm, r\ =

25%,n = 1/2,1/3,1/4) 50
4.4 Proposed Method Two Successful Rate (Simulated environment 0 = 60pixel,r\ =

25%,n= 1/2,1/3,1/4) 51

XI

Chapter 1

INTRODUCTION

For a mobile robot, it is very important to know its position as most robot's tasks need

the positional information. This is the most fundamental problem in mobile robotics and

known as mobile robot localization problem[l][2][3]. Informally, mobile robot localization

problem is the problem of determining the robot's pose given the map of the environment

and the sensor readings.

There are three kinds of mobile robot localization problems which are characterized by

the type of initial knowledge of its pose: position tracking, global localization, and kid

napped robot problem[10]. In position tracking the initial pose is known, and the localiza

tion is achieved by compensating incremental noise in the movement. In global localization,

the initial pose is unknown, and it is much more difficult and challenging since the robot

has to determine its pose from scratch. The kidnapped robot problem occurs when the robot

is taken from its current position to somewhere else without being notified the replacement

during the localization process. It is a variant of the global localization which is even more

difficult. In this thesis we mainly focus on global localization.

During the past two decades, many algorithms using probabilistic approaches for local-

1

ization have been proposed, including grid localization^], Monte Carlo localization(MCL)[l],

and many hybrid approaches. These algorithms represent the uncertainty of a robot's pose

by using probability distributions over the whole space of robot's possible poses instead

of relying on a single best guess[10]. The probabilistic localization algorithms are part

of probabilistic robotics, a research area that represents information using the calculus of

probability theory. Building on the filed of mathematical statistics, probabilistic robotics

endows robots with a new level of robustness in real-world situations [10].

Among all the probabilistic localization algorithms, grid localization and Monte Carlo

localization(MCL) are most widely used, especially Monte Carlo localization. Grid lo

calization approximates robot's pose in a metric model of environment[7]. The map of the

environment is divided into grid cells, and each grid cell stores the probability that the robot

is in this cell. MCL represents the pose of robot by maintaining a set of particle samples,

which are randomly drawn according to the probability distributions of the robot's pose[l].

1.1 Motivation and Contribution

Grid localization and MCL are two of the most widely used approaches for localization,

especially the MCL. Each of these two popular methods has its own problems. How to

reduce the computation cost and better the accuracy is our main concern. In order to im

prove the performance of localization, we propose two improved localization algorithms

both of which are extension of MCL. One is called Moving Grid Cell Based MCL which

combines grid localization and MCL, and the other is dynamic MCL based on clustering

which employs a clustering component to reduce the computational cost in the localization

process.

2

1.2 Outline

The rest of the thesis is structured as follows.

Chapter 2: Background knowledge. This chapter provides the background knowl

edge of our proposed methods. First, we will explain the idea of probabilistic robotics, then

the mobile localization problem is discussed. What's more, two main algorithms for mobile

robot localization , grid localization and Monte Carlo localization, are presented.

Chapter 3: Proposed methods. In this chapter, two proposed methods are presented

separately. Details of each method are discussed, also the illustrations of how each method

works are shown.

Chapter 4: Experiment results. In this chapter, experiment results are demonstrated

which show the advantage of both proposed methods compared with traditional MCL. Both

experiments in the real environment of the physical world and simulated environment on

PC are implemented.

Chapter 5: Conclusion and future works. The conclusion of the thesis is given in this

chapter, and the future work is also presented.

3

Chapter 2

BACKGROUND KNOWLEDGE

This chapter provides the background knowledge of our proposed methods. We first review

the basic ideas of probabilistic robotics. Then the problem of mobile robot localization

is introduced. After that we explain the related knowledge about localization. Finally the

most widely used two algorithms for mobile robot localization, grid localization and Monte

Carlo localization, are discussed.

2.1 Uncertainty

By definition, robotics is the science of sensing and acting on the physical world by using

computer-controlled devices[10]. Robotics systems have been widely used in the world

around us and playing an increasing important role. For a robot, it usually consists of the

four main components. (1) a physical body, so it can exist in the real world. (2) sensor, so

it can sense the environment. (3) effector and actuators, so it can act. (4) a controller, so it

can be autonomous [18].

To do tasks in the real world, robot has to accommodate many uncertainties[10], which

4

are caused by a number of factors. First, the environments of the robot are usually un

predictable especially in the highly dynamic environments such as highways and offices.

Second, the sensors always have their limitations. The range and resolution of a sensor re

lies on its physical limitations and the noises. Third, the motor used for the robot actuation

is unpredictable. Control noise and mechanical failure always cause uncertainty. Fourth,

the software of the robot may also cause uncertainty as all internal models of the physi

cal world are approximate. The real world cannot be fully extracted into models. Finally

some uncertainty arises from algorithmic approximations. In a real-time system, accuracy

sometime has to be sacrificed in order to achieve timely response.

As the robot is more and more widely used, uncertainty is becoming a major issue

for the design of robot systems. How to cope with uncertainty is the main concern for

researchers.

2.2 Probabilistic Robotics

Probabilistic robotics is relatively new in the area of robotics which addresses the problem

of uncertainty. The key idea in probabilistic robotics is to represent uncertainty using prob

ability theory. Instead of a single best guess, probabilistic robotics represents information

by using probability distributions over all possible guesses.[10]

Compared with traditional methods, probabilistic methods have a weaker requirement

on the accuracy of the robot's model, so it prevents the programmer from the heavy work

load of building accurate models. What's more, probabilistic methods have lower require

ments on the accuracy of robotic sensors. Building on the filed of mathematical statis

tics, probabilistic robotics endows robots with a new level of robustness in real-world

situations, such as localization[19], mapping[25], simultaneous localization and mapping

5

(SLAM)[22], planning[10] and control[10].

2.2.1 State

In probabilistic robotics, the environment is a dynamical system that possesses internal

state. Robots can get information about the environment through sensors and maintain an

internal belief about the environment.

Environments are characterized by state[\0]. It is the collection of the information

about the robot and its environment. State that changes over time such as moving people

around the robot is called dynamic state, while others that remain static such as the location

of a wall are called static state. The state also includes variables about robot itself such as

pose, velocity and so on.

Typical state variables used in robotics are: (1) robot's pose which consists of location

and orientation in a global coordinate. (2) in robot manipulation the state includes variables

for the configuration of the robot's actuators which is often referred to as kinematic state.

(3) robot's velocity and the velocities of its joints, which are usually referred to as dynamic

state. (4) location and features of surrounding object in the environment. An object may

be a wall or a desk, and features may be the visual appearance such as color or texture. (5)

locations and velocities of moving objects and people may be state variables too.[10]

A state is called complete if it is the best predicator of the future. But in practice it is

not possible to get a complete state for a robot system. A complete state not only includes

all aspects of the environment that may affect the future but also the robot itself. Some of

these aspects are very hard to get.

In this thesis, we use xt to denote the state at time t and time is discrete, which means

all event will take place at discreet time step t = 0, 1,2,3

6

2.2.2 Environment Interaction

Between the robot and the environment there are two fundamental interactions: environ

ment sensor measurement and control actions[4][10]. The robot can obtain information

about the state of the environment through its sensors, and affect the environment through

its actuators. Examples of the first type of interaction include the camera image or a range

scan. The result of a perceptional interaction is called a measurement. Usually, sensor

measurements arrive have some delay, so they provide information about the state of cer

tain moments ago. Examples of the second type of interaction include the motion of robot

or manipulation of an object. We assume that the robot always takes control actions even it

does not perform any action itself. In practice, the robot continuously takes control actions

and gets measurements at the same time.

The robot keeps a record of all past sensor measurements and control actions, which

is referred to as the data. Through the two types of interactions , the robot receives two

different data streams, measurement data and control data.

Measurement data gives a robot the information regarding of the momentary state of

the environment. We assume that the robot gets one measurement at one time. The mea

surement data from time t\ to time ?2 is denoted as z,, :t2 and the measurement data at time

t is denoted as zt. Control data sometimes is also referred to as movement data or motion

data in the context of mobile robot localization problem. We also assume that there is only

one control data at one time, even the robot does not do anything. Control data provides

information about the changes of the state. We use w,, :f2 to denote the movement data from

time t\ to time ti, and ut to denote the movement data at time t.

Both measurement data and control data play very important roles. On one hand, mea

surement data provides information about the environment which helps to increase the

7

robot's knowledge. Control data, on the other hand, brings a loss of knowledge because

of the uncertainly in the real world. One thing needs to be emphasized on is that the sensor

measurement and control actions take place at the same time.

Probabilistic approaches for robotics have two different components to process these

two kinds of data[10]. One is measurement model, and the other is motion model. Mea

surement model, denoted as p{z.t\xt), is the conditional probability of Zt given the state xt.

Motion model is the state transition probability p(xt\ut,xt-\). It is the posterior distribution

of xt after incorporating the control data ut at xt- \. This two models are very important for

estimating robot's state.

2.2.3 Probabilistic Generative Laws

The evolution of state is controlled by probabilistic laws. The state xt is conditioned

on all past states, measurements and controls, which can be presented in the following

form: p{xt\xo-j-\,z\:t-\,u\;t)[W\- Here we assume that robot first takes a control ac

tion u\, then gets a measurement z\. If the state is complete then it is a sufficient sum

mary of all past events. Particularly, xt-\ is a sufficient statistic for all previous controls

(«i:f-i) and measurements (zi:f-i) up to time t — 1. So state xt could be expressed as

p(xt\xo:t-\ ,zi-j-\ ,u\:t) = p(xt\xt-i,ut). The equation is an instance of conditional indepen

dence, which means if we know the values of the conditioning variables, such a s Xf—\]Ufi

then certain variables, such as xt, are independent of other variables, such as zut-i and

u\:t-\. Also, if xt is complete, we will get another important conditional independence:

p(zt\xo:t,z\:t-\,u\:t) = p(zt\xt), which means the state xt is sufficient to predict the mea

surement data zt, in other words, other variables such as past control data, measurement

data and past states are not relevant.

8

The probability p(xt\xt-\,ut) is called state transition probability, which shows how

state xt evolves based on the control data ut and the previous state xt~\. The probabil

ity p(zt\xt) is the measurement probability which specifies how measurement data zt is

generated according to the state xt. The state transition probability and the measurement

probability present the dynamical stochastic system where the robot exists. Figure 2.1 illus

trates the evolution of state and measurements. State xt is stochastically dependent on the

previous state Jt,_i and the control data ut, and the measurement zt depends stochastically

on the state xt. The model in Figure 2.1 is well known as hidden Markov model or dynamic

Bayes network[23][24][27].

Figure 2.1: The dynamic Bayes network that characterizes the evolution of control, states
and measurements. [10]

2.2.4 Belief

In this part we will introduce an important concept called belief[\0]. Belief is robot's

internal knowledge with respect to the state. The state usually cannot be measured directly,

so the robot has to infer its belief from the data collected. In probabilistic robotics, belief is

represented by conditional probability distributions.

9

A belief distribution assigns a probability to each possible state hypothesis with regards

to the true state[10]. The belief at time t is denoted as bel(xt) = p{xt\z\;t,u\:t)- It is a

posterior probability over all possible states conditional on all past control data and all past

measurement data collected so far. Sometimes it is often important to calculate a posterior

after taking the control action ut but before incorporating measurement data Zt, which is

denoted as bel(xt) = p(xt\zut-\,u\:t). This posterior is usually referred as prediction, and it

reflects that bel(xt) predicts state xt based on previous state xt-\ without incorporating the

measurement data zt- Then we also need to calculate bel{xt) from bel(xt) by incorporating

Zt, which is called measurement update.

2.2.5 Bayes Filter

Bayes filter is a recursive algorithm that estimates the state of a dynamical system based on

both measurement data and control data and it is the most general algorithm for calculating

beliefs[l][10]. Table 2.1 shows a single iteration of the Bayes Filter algorithm. As shown

in Table 2.1, the belief bel{xt) is calculated from the previous belief bel{xt-\). The inputs

are the bel(xt-\), control data ut and measurement data Zt• The output is the belief bel(xt).

Bayes filter algorithm is performed in two essential phases, prediction phase (line 2) and

update phase (line 3).

In the first phase, it calculates the belief over state xt by incorporating the control data

ut based on the previous state xt-\. Particularly, we can see that bel(xt) is calculated by

the integral of two probability distributions, the prior assigned to state xt-\ and the prob

ability that ut causes a transition from xt-\ to x,[10]. This phase is called control update

or prediction phase. In the second phase, it processes the probability that the measurement

data zt may be observed at state xt and incorporates this probability p{zt\xt) into bel(xt).

10

Table 2.1: Bayes Filter [10]

Algorithm Bayes_filter (bel(xt-\, ut,zt)

1: for all xt do

2: bel(xt) — J p(xt\ut,Xt-\)bel(xt-i)dxt-\

3: bel(xt)=T\p(zt\x,)bel(xt)

4: endfor

5: return bel(xt)

However bel(xt) may not integrate to 1, so it uses the normalization constant t| to normalize

the results. The second step is called measurement update or update phase.

Bayes filter needs an initial belief bel(xo) at time t = 0 as an input in order to recursively

calculate the new belief. If the values of XQ is known, then bel(xo) should be initialized with

a point mass distribution which centers all probability mass on the value of XQ, and all the

others are assigned a probability of zero. If the initial value XQ is totally unknown, bel(xo)

should be initialized using a uniform distribution over all possible values of XQ. If the initial

value xo is partially known, then bel(xo) can be initialized by non-uniform distributions.

There is one important assumption called Markov Assumption which is adopted by

Bayes filter. Markov assumption plays a fundamental role in this whole thesis. It assumes

that past and future data are independent if the current state xt is known. It tells that the

current belief bel(xt) is sufficient to represent the past history of robot. In robotics, Markov

assumption is only an approximation.

11

2.3 Mobile Robot Localization

Bayes filter is an important algorithm for state estimation problems, and it has many ap

plications one of which is mobile robot localization problem. Mobile robot localization

is the problem of determining a robot's pose given the map of the environment and the

sensor readings[10][19]. It is one of the most important problems in mobile robotics as

most robot's tasks need the positional information. In practice, the pose of robot cannot

be sensed directly, so the pose has to be inferred from measurement data and control data.

Also, a single measurement data is usually not enough to determine the pose, so the robot

has to integrate data over time. Figure 2.2 illustrates a graphical model for localization. The

goal of the robot is to determine its position based on the measurements and movements

given the map of the environment. In Figure 2.2, the values of shaded nodes are known

including the map m, the measurement z and the control u. The goal of localization is to

calculate the robot's pose x.

Figure 2.2: Graphical model of mobile robot localization^ 10]

12

2.3.1 Category of Localization

From different aspects, localization can be divided into many different categories. Accord

ing to the nature of environment and the initial knowledge of the robot, here we discuss

four important types of localization problems[10].

Firstly, localization problems can be characterized by the type of knowledge whether

is known at the beginning or at run-time. Under this category, there are three kinds of

localization problems with an increasing difficulty. Position tracking(or local localization)

is the simplest one. The initial pose of robot is known and the localization is done by

accommodating the noise in the robot's movement. The uncertainty of the pose is usually

approximated by a unimodal distribution such as a Gaussian. It is a local problem as the

uncertainty is local and restricted to places near the robot's true pose. In global location,

the initial pose is not known and the robot is placed somewhere in the environment. Global

localization is more difficult than position tracking since it has to determine its pose from

scratch. The third problem is called kidnapped robot problem. It is a variant of the global

localization but more difficult. The robot is kidnapped and taken to somewhere else without

being notified. Kidnapped robot problem becomes important because even the most state-

of-the-art localization approaches can fail sometimes. The ability to recover from failures

is especially important for truly autonomous robots.

Secondly, the environment has a substantial impact on the difficulty of localization[19].

Environments can be static or dynamic. In static environment the only variable quantity is

the robot's pose. All other objects in the environment remain at the same place all the time.

However in a dynamic environment, objects may change its position or configuration from

time to time. Example of changes are like people, movable furnitures and so on. Most real

environments in the physical world are dynamic. It is clear that localization in dynamic

13

environments is more difficult than that in static ones.

Thirdly, according to whether or not the localization algorithm controls the motion,

the localization can be divided into passive localization and active localization[6][17]. In

passive localization, the localization algorithm only observes on the robot's operating, and

has nothing to do with the control of robot. The motion of robot is not designed to facilitate

localization so the robot may move randomly. In active localization, the algorithm controls

the robot in order to minimize the error or cost during the localization. Active localization

algorithms usually produce better results than passive ones.

Lastly, with respect to the number of robots involved the localization can be divided

into single-robot localization and multi-robot localization^] [20]. Single robot localization

is the most studied approach. It handles a single robot only and there is no communi

cation problems since all the data is collected to a single robot platform. In multi-robot

localization, the robots have to detect each other. The issues that arises usually include

representation of beliefs and the communication between different robots.

In this thesis, we focus on the global passive localization for a single robot in a static

environment.

2.3.2 Markov Localization

Localization algorithms are variants of the Bayes filter. In the context of localization, Bayes

filter is also known as Markov localization[10][19]. Table 2.2 depicts the basic algorithm.

Comparing with Table 2.1, we can see that the difference is that Markov localization needs

the map m of the environment as one input. The map m is very important in the measure

ment model p(zt\xt,m) (line 3), and is also needed in the motion model p{xt\ut,xt-\,m)

(line 4). The same as Bayes filter, Markov localization calculates the probabilistic belief

14

Table 2.2: Markov localization [10]

Algorithm Markov .localization {bel (xt-\,ut,zt, m)

1: for all xt do

2: bel(xt) = J p(xt\u,,xt-i,m)bel(xt-i)dxx-\

3: bel(xt)=r\p(zt\xt,m)bel(xt)

4: endfor

5: return bel(xt)

bel{xt) at time t from time t — 1 recursively.

Markov localization is able to handle the position tracking problem, the global localiza

tion problem and the kidnapped robot problem in static environment. In position tracking

the initial pose is known, so bel(xo) is initialized by a point-mass distribution. However in

practice the initial pose is often known in approximation, so bel(xo) is usually initialized

by a Gaussian distribution centered around xo- In global localization, the initial pose is

unknown, so bel(xo) is initialized by a uniform distribution over all possible spaces in the

map.

Markov localization is independent of the representation of the state space and it can be

implemented by using different state representation methods, for example, histogram filter

and particle filter.

2.3.3 Representation of State Space

In this part, we will discuss two state representation methods[21], histogram filter[7] and

particle filter[26]. They approximate posterior over continuous spaces with finite values.

Histogram filter decomposes the state space into finite regions and represents the cumula-

15

tive posterior for each region by a histogram which assigns a single probability value to

each region. Particle filter approximates the posterior by a finite number of samples which

populate the state space, and the samples are drawn randomly from the posterior. As these

two methods are well-suited for representing multi-modal beliefs, they are widely used

when a robot has to deal with global uncertainty, such as global localization problem[10].

2.4 Localization Algorithms

Since mobile robot localization is one of the most important and fundamental problems in

the field of mobile robot, so there are a number of probabilistic algorithms proposed for

mobile robot localization. Many of them only address the position tracking problem, such

as Extended Kalman Filter(EKF)[10]. They all employ Kalman filter which is based on the

assumption that the uncertainty of the robot's pose can be represented by a unimodal Gaus

sian distribution. What's more, they adopt other assumptions such as Gaussian distributed

noise and Gaussian distributed initial uncertainty. Under these assumptions Kalman fil

ter performs very well for position tracking problem. In global localization problem the

uncertainty of robot needs to be represented by multi-modal distributions, but Karman fil

ter cannot, so it is not useful when dealing with global localization problem. In order

to overcome this limitation of Kalman filter, Multi-hypothesis tracking(MHT) algorithm

[5]represents the belief of pose by multiple Gaussians, which is mixture of normal distribu

tions. It can handle the global localization problem, but the computational cost is very high.

However grid localization and Monte Carlo localization(MCL) could handle multi-modal

distribution at a reasonable computational cost which makes them suitable for global local

ization problem. In the following, we will discuss these two important global localization

algorithms.

16

2.4.1 Grid Localization

In grid localization[7], it uses a histogram filter to represent the posterior belief over a grid

decomposition of the pose space. Figure 2.3 demonstrates an example of grid decomposi

tion. The map of the environment is divided into many grid cells. Each grid cell represents

a robot's possible pose in the environment. Each layer represents a different orientation of

the robot, and in this example only three orientations are shown.

Environment

Figure 2.3: Example of grid decomposition over the robot pose.[10]

The algorithm of grid localization is depicted in Table 2.3. Grid cell is denoted as

Xk, and each grid cell is attached with a probability bel{xt) = {pk,t}, which stands for the

possibility that the robot is in this grid cell. The notion meanix^) stands for the center-of-

mass of the grid cell JC*. Grid localization is also a recursive algorithm, and in Table 2.3 it

shows a single iteration. It needs the previous value {pk,t-\}, the most recent measurement

data it, control data ut, and the map m. It goes through all the grid cells each time and

Grid

17

U> I , ' , ' , ' , ' , t , t , i , ' , i . i J . J , i , U - . ' , ' , ' , i . ' , ' , ' , 11 > , ' , ' , ' i ' , ' AJ i ' • ' i ' i ' i '•!••, ' i ' i T T

bel(x)

' " " " " '" " " ' ii i ii ii in - rT l l l l l l l ' " •" I

(b) ,1-, 1 ,1,1,1,1,1=03

i l ! ! ! ! ! ! ! !
. i , . . , . . i . . - - t . i • ' , • i. J ••••* i i i

i ' i ' i ' i • i ' i • i • i • i • t I g f n r ' - r ^m l̂
1 . ' . ' . ' . ' . ' . ' ' ' , ' , ' , ' , ' , ' , ' . ' . T7r~T

i ' f f " "

p(*|x)

~ - * " v - - - • ~ * i ' 4 ;
:̂V~

bel(x)

B j ^ Q s s o s J l b a -n-rfirw

(c)

' i ' i ' i '

bel(x)

•w-rfTh-^-rH'iyjl-^- —^rfTH—

(d)

p(ZiX)

b e l (\)

^^Ssmaa^A h n I I m m

ie) I . I . I . 1 . 1 . 1 , i . i . i i . i 1 . 1 . 1 , . i . M . I i n
r'"T"''r,]"1 r*T''T,'"i"'"i' r'"r'"T
1 , l , t , l ,1 , [, [, l - r t , y l,.r,l„r„T.,t„l„T„l„r •t..T.,[.,T„l,„[„l„rJ-(I ,. ,l..t.J t l . ,.l ,.l

bel(x)

—~ri~hi—^ n n^-^

Figure 2.4: Example of grid localization in one-dimensional hallway.[10]

18

Table 2.3: Grid localization algorithm [10]

Algorithm Grid_Localization({/7^j

1:

2:

3:

4:

5:

for all k do

Pk,t —]£/V-imotion_model

Pkj = T] measurement-model

endfor

return {pkJ}

_l},«,,Z,,m)

(mean(xk),ut,

(zt,mean(xk),

mean(x

m)

/))

updates the probability for each grid cell. Line 2 incorporates the control data and line 3

incorporates the measurement data.

Figure 2.4 shows an example of grid localization in a one-dimensional hallway. In

Figure 2.4 The robot starts without knowing its pose, so the belief is represented by a

uniform histogram. Then in the following pictures, as it moves and senses, some grid cells'

probability values are increasing while some are decreasing.

There are two issues in grid localization. One is the trade-off between the resolution of

grid cells and the accuracy of result, and the state transition problem. The result of the grid

localization depends on the resolution of grid cells. A finer resolution produces a better

result, but also requires greater computational cost. While with a coarse resolution of grid

cells, though the computational cost is reduced, the result may not be accurate. Another

issue is in the motion model when dealing with a high-resolution measurement model and

a coarse-resolution motion model. As only using the center of a grid cell to represent the

grid cell, which in the Table 2.3 is denoted as mean(xk), may lead to a poor result. For

instance, if the robot moves 1 cm/s, and the motion model updates every second, while the

size of the grid cell is 15 cm. The robot may stay in the same grid cell even after the robot

19

moves several steps. It will not cause a state transition. A common solution to this issue

is to modify both the motion model and the measurement model by inflating the amount of

noise. However this solution will reduce the information extracted from the measurement.

Similarly we can also inflate the motion model so that the robot can be guaranteed to move

from one grid cell to another even the motion between each update is smaller than the size

of the grid cell. However this may make the robot move faster than commanded, which will

cause more uncertainty in the process of localization.

2.4.2 Monte Carlo Localization

In this part, we will introduce Monte Carlo localization (MCL)[1], one of most popular

localization algorithms. It is easy to implement and works both for position tracking and

global localization problems [10] .

The filter used in MCL which represents posteriors by finitely many samples is known

as particle filter[26], which we introduced in the previous part. MCL represents the belief

bel(xt) by a set x? = {4 ,x) , . . . ,x) '} of M particles over the entire state space, and each

particle denotes a possible pose of the robot. MCL is also a version of sampling/importance

re-sampling (SIR)[11].

The MCL algorithm is depicted in Figure 2.4, and it shows a single iteration. The initial

belief bel(xo) is represented by M particles that are uniformly and randomly distributed in

the whole state space of the environment and each particle is assigned with a weight of

A/ -1 , which is called importance factor. In each iteration, MCL algorithm takes as inputs

the previous belief bel(xt-\), movement data ut, measurement data it and the map m of the

environment.

MCL includes the following three steps:

20

Table 2.4: MCL algorithm [10]

Algorithm MCL(x? -i,ut,zt,m)

1

2

3

4

5

6

7

8

9

it = Xt = $

for m = 1 to M do

x, = sample_motion_model(M,,xj_|)

w, = measurement-model(z(,xjm ,m)

&=£+<*!mU!ml>
endfor

for m = 1 to M do

draw i with probability a w.

add xy to X/

10: endfor

12: return X(

(1) Robot motion. Motion model for sample particles is applied in line 3. After each

step of movement, MCL incorporates the movement data ut, and from the previous particle

set it generates M new particles that approximate the robot's pose.

(2) Robot measurement. Measurement model is applied in line 4. In this step, sensor

readings are incorporated by reweighting the sample set, during which the weight of each

particle will change.

(3) Important resampling. This phase(line 7-10) is often referred as sequential impor

tance sampling with resampling. New unweigted particles are drawn from the current sam

ple set. The probability of drawing a new particle is related to it weight (importance factor).

When the MCL finishes successfully, most particles will converge to a certain area

which represents the position of robot. In Figure 2.5, an example of MCL is shown. In

21

Figure 2.5 (a) The robot is globally uncertain about its position and the particles spread all

possible spaces. In Figure 2.5 (b), when the robot reaches the upper left corner of the map,

its belief is still concentrated around four possible locations. In Figure 2.5 (c), finally after

several movements, the robot localizes itself and all particle converge to a small area.

\
Robot position

y
Robot position

Figure 2.5: Illustration of Monte Carlo localization.[10]

22

Chapter 3

PROPOSED METHODS

1

3.1 Motivation

As discussed in the background knowledge, the grid localization has two problems: (1) the

trade-off between the resolution of grid cell and accuracy of result and (2) the state transition

problem. For the MCL algorithm, although it is one of the most efficient algorithms for

mobile robot localization, yet it is still able to be improved with respect to efficiency and

computational cost. For that purpose, how to reduce the number of particles and reduce

the computational cost is the key concern. During the past years many algorithms that

extend MCL have been proposed in order to further improve the performance and reduce

the computational cost, such as adaptive samples based MCL approach[12], mixture MCL

approach[14], coevolution based adaptive MCL[13], reverse MCL Approach[9] and so on.

'This chapter also incorporates the outcome of a joint research undertaken in collaboration with Jingxi
Chen and Sepideh Seifzadeh under the supervision of Dr. Dan Wu. In all cases, the key ideas, primary
contributions, experimental designs, data analysis and interpretation, were performed by the author, and the
contribution of co-authors was primarily through the provision of constructive comments.

23

However combining grid localization and MCL is not well exploited, and few efforts have

been made in incorporating clustering approach into MCL, so in this thesis we propose two

different novel extensions of MCL. One is Moving Grid Cell Based MCL, which combines

grid localization and MCL, and the other is dynamic MCL based on clustering, which

employs a clustering component in the localization process.

3.2 Moving Grid Cell Based MCL

The first proposed method is called Moving Grid Cell Based MCL. It is based on grid local

ization and MCL, and could solve the problems existing in the traditional grid localization

and reduce the computational cost of the whole localization process.

There are three parts of this method: (1) The first part is called moving grid cell lo

calization part, and in this part the grid cells are used the same way as how particles are

used in traditional MCL. The size of grid cells here is bigger than the size of those used in

traditional grid localization, which makes the the number of grid cells much smaller. We

consider each grid cell as a particle and apply MCL algorithm on these grid cells. Hence,

these grid cells are moveable instead of stationary. So we eliminate the state transition

problem of the traditional grid localization. Since the size of grid cells is big, so we can

only get a coarse pose of robot once MCL algorithm is finished. (2) The second part is

called verification part, we add the verification part in order to verify the result of mov

ing grid cell localization part. This will help to improve the accuracy of localization. The

verification is achieved through comparing the expected measurement data based on the

previous result with the real measurement data the robot gets. If the difference of these two

data is out of a certain range, then it suggests the accuracy does not meet our requirement,

and the algorithm will go through the moving grid cell localization part again. (3) The third

24

Table 3.1: Moving Grid Cell Based MCL

Algorithm Moving-Grid_Cell-BasedJVICL(Map)

1: Moving_Grid_Cell_Localization

2: Verify _Grid_Cell-Localization

3: if Verify_flag==true

4: then go to line 6

5: else goto line 1

6: InitialiseJVICL

7: MCL

part is traditional MCL part. We apply traditional MCL algorithm to obtain the final pose

of the robot. Instead of in the whole environment, the particles are only initialized in the

restricted area covered by those grid cells produced by the first part. Both the large size of

grid cell in the first part and the restricted area where the particles are initialized in the third

part let us use a smaller number of both grid cells and particles. This helps to reduce the

computational cost. We outline the proposed Moving Grid Cell Based MCL algorithm in

Table 3.1.

As shown in Table 3.1, the algorithm needs the map of the environment as an input. As

mentioned there are three parts of our proposed algorithm, including (1) moving grid cell

localization part (line 1), (2) verification part (line 2-5), and (3) the MCL part (line 6-7).

Line 1 applies the moving grid cell localization algorithm which is shown in Table 3.2. Line

2 applies the verification grid cell localization algorithm which is shown in Table 3.3 . Line

7 applies the traditional MCL algorithm which is shown in Table 3.4. In the following, we

will give the detailed descriptions of each part.

25

Table 3.2: Moving Grid Cell Localization

Algorithm Moving_Grid_Cell_localization(Map)

1: Intialise-GricLCell

2: For all grid cells

3: Grid_Cell_Predict

4: Grid_Cell.Update

5: End for

6: if Grid_Cell_Number < Grid_Cell_Threshold

7: then Return Grid_Cell_Result

8: else go to line 2

3.2.1 Moving Grid Cell Localization Part

In the traditional grid localization, the number of grid cells is usually very large in order to

get an accurate result. Two factors will affect the number of grid cells. One factor is the

size of the grid cell, and the other is the resolution of orientation. A smaller cell size and

finer resolution of orientation will lead to a more accurate result, however they will greatly

increase the computational cost. In this part, we use a larger size of grid cell and only a

small number of orientation, which makes the number of total grid cells much smaller.

As shown in Table 3.2, we first initialize all grid cells with equal probability that sum

up to 1. We use 3-D representation of the map which includes x-dimension, y-dimensions

and the orientation 8. The way the grid cell used in this part is the same as the particle used

in the traditional MCL algorithm, so the grid cell can be regarded as a big particle. During

the localization process the grid cell is moving like a particle. In line 3 it incorporates the

movement data. Instead of stationary, the position of all grid cells will change in accordance

26

with the movement of robot. If the grid is out of the environment, its probability will be

set to zero. Line 4 will incorporate the measurement data and update the probability for

grid cells. Then if the grid cell has a probability of zero, it will be removed from the grid

cell set. As the number of grid cells reduces, when it reaches a certain predefined threshold

according to the map, the moving grid cell localization will stop and return the grid cells

left to the next part, otherwise it will continue.

We use a less number of grid cells and treat them as particles to get a coarse position

in this part, and then in the third part we will get a more accurate position. As the initial

number of grid cells is smaller, the computational cost is reduced. Moreover, during the

process as the number of the grid cells is reducing as the probability of many grid cells are

becoming zero which makes them discarded, so the computational cost is reduced further.

Since we only use a small number of orientations for each grid cell in the part, in the

third part we will compensate for this loss of accuracy in orientation, and we will explain

this in more details in the third part. Because the grid cell is now moving in our proposed

algorithm, the state transition problem existing in the traditional grid localization is avoided.

Therefore, we don't have to worry about the motion model, the robot can move at any

speed. After this first part, only several grid cells are left, the probability that these grid

cells contain the true pose of robot are very high.

3.2.2 Verification Part

The Verify Grid Cell Localization algorithm is shown in Table 3.3. The input of this algo

rithm is the grid cells returned in the first part. For each grid cell returned from the moving

grid cell localization part, it will first calculate how long it takes for the robot to reach the

next landmark according to the current pose suggested by the grid cells, which is referred

27

Table 3.3: Verify Grid Cell Localization

Algorithm Verify_Grid_Cell_Localization(Grid_CelLResult)

1: For all Grid_Cell_Result

2: Grid_Cell_Predict

3: Get_Measurement

4: End for

5: Compare Measurement with the Expectation

6: if difference within a Threshold

7: then Verify_flag=true

8: else Verify_flag=false

to as Expectation in line 5, then it will let the robot move, and record the time the robot

takes to reach the next landmark in the real environment.

If the difference between these two recorded times for each grid cell is within a certain

predefined range, which means the results returned from last part are reliable, then the

verification result will be true, and it will move on and pass the verified grid cell results to

the MCL part. If the difference is out of the predefined range, which means the results from

the first part are not reliable, and the verification result will be false, so it needs to go back

to the first part and go through it again.

The verification part helps to improve the accuracy of localization. When the result

accuracy of the first part does not meet the our requirement, the difference between the

calculated time (Expectation) and the time robot takes in the real environment will be big, so

the algorithm in Table 3.3 will find this out and go back to the moving grid cell localization

part again.

28

Table 3.4: MCL algorithm [10]

Algorithm MCL(xf - 1 , ut, zt, m)

1

2

3

4

5

6

7

8

9

Xr = it = 4>

for m = 1 to M do

x, = sample_motion_model(M,,jc|_j)

w, = measurement-model (zt, x j , m)
- , ^ [ml f/nl ^

endfor

for m = 1 to M do

draw i with probability a w}

add x, to X?

10: endfor

12: return %f

What's more, the verification part can be adjusted according to different situations. If

a high accuracy is required, we can make a more complex verification in this part, which

means not only to test the the next landmark, also the second next landmark and so on.

3.2.3 The MCL Part

The third part is the regular MCL part. It is the same as the traditional MCL as shown in

Table 3.4 except how the particles are initialized. From the previous parts we have obtained

a coarse pose of robot , so we only need to initialize the particles in the restricted areas

instead of in the whole environment.

In line 6 of Table 3.4, the particles are generated within the grid cells which are returned

29

from the moving grid cell localization part and verified in the second part. The x-dimension

and y-dimension is randomly and uniformly generated inside the grid cells, but the orienta

tion 6 is generated according to the grid cell's orientation where the particle is in. Because

in the moving grid cell localization part, the orientation of the grid cell is discrete and not

all possible orientations are covered by grid cells, so if the orientation of the robot doesn't

fall into the discrete orientation we choose, the accuracy might be questionable. So in the

MCL part, we initialize the orientation of particles according to the grid cell's orientation,

for example, if the orientation of the grid cell is G, then the orientation of particles in this

grid cell may be between 9—15 and 6 4-15. This will help to compensate the possible

inaccuracy of the orientation in the moving grid cell localization part.

During the process of the MCL algorithm, the probabilities of particles are updated

based on the motion model and measurement model. The MCL goes on until the localiza

tion is finished. The number of the particles used in this part is not fixed, we can change

the number according to different situations based on the requirement of accuracy.

It is noted that since we already obtain a coarse pose of the robot in the moving grid cell

localization part, then we generate particles only in a restricted area of the environment. We

do not need as many particles as those used in the traditional MCL in which particles have

to be populated in the whole possible spaces.

3.2.4 Illustration of the Proposed Method One

Figure 3.1 shows the progress when executing the proposed method one in a simulated

environment. The big blue circle denotes the robot and the black line denotes the boundary

of the environment. In Figure 3.1 (A) and (B), the colored squares denote the grid cells,

and in Figure 3.1 (C) and (D) the small red circle denotes the particle.

30

A B

D

Figure 3.1: Illustration of the Proposed Method One. (A) Initialization of grid cells, (B)
The moving grid cell localization finished, (C) Initialization of particles after verification,
(D) Final result.

31

Figure 3.1 (A) shows the grid cells initialized in the the first part. Each colored square

denotes a moving grid cell, and in order to make it easy to distinguish each grid cell, the

color of a grid cell is different from its neighbors. Figure 3.1 (B) shows the position of the

grid cell left after the moving grid cell localization part is done. Figure 3.1 (C) shows the

particles initialized after the verification part, and Figure 3.1 (D) shows the result after the

MCL part. Figure 3.1 (D) shows the final position of robot after the whole algorithm is

finished.

3.3 Dynamic MCL Based on Clustering

The second proposed method is dynamic MCL based on clustering. In [16] a novel method

based on clustering is proposed to help robot to be aware of its progress of localization.

Inspired by that, we propose a dynamic MCL which significantly reduces the number of

particles during the execution of localization by employing a clustering component. The

overall structure of the proposal method is shown in Table 3.5.

As shown in Table 3.5, the second proposed method consists of three parts: (1) MCL+BSAS

part (line 1-6), (2) Reducing part (line 7), (3) MCL part (line 8). The four inputs of the

method are the map Map of the environment, the initial particle set % which populates the

whole environment, threshold 0 for distance similarity used in the BSAS algorithm, and

threshold r\ used for termination of the first part. Before we give the detailed descriptions

of each part, first we will introduce the background knowledge of clustering.

32

Table 3.5: Dynamic MCL

Algorithm Dynamic MCL (Map, %, 6, t|,

1

2

3

4

5

6

7

8

Do{

X,=MCL(Xt-\,ut,Zt)
Ct=BSAS(x,,Q)

m = Max(Ct)

p = m/Ntotal

} While (p < t |)

Xf =/*«/««? (Xf,n)
MCL (Map, x,')

n)

3.3.1 Clustering and BSAS Algorithm

By definition, a cluster is "an aggregate of points in the test space such that the distance

between any two points in the cluster is less than the distance between any point in the

cluster and any point not in it" [28]. Cluster analysis or clustering is the assignment of a set

of points into clusters.

An important part in all clustering algorithms is to select a proximity measure or dis

tance measure, which determines how the similarity of two data points is calculated[29].

The proximity measure affects the shape of the clusters, as some elements may be close to

one another according to one distance and far away according to another. In the context

of MCL localization, the pose of a robot consists of x and y coordinates and the accuracy

of localization result has strong relation with Euclidean distance, so it is effective and rea

sonable that we choose the Euclidean distance d(Pi,Pj) = yj{x-t - Xj)2 + (y, - yj)2 as our

proximity measure for two points P, and P} when clustering particles.

During clustering in order to calculate the distance d{Pi,Ck) between a particle F, and

a cluster Q which usually already contains a lot of particles in it, we need a representa-

33

• • . •
• • •

(A) (B) CC)

Figure 3.2: Cluster Representatives. (A) Point representative for compact clusters, (B)
Hyperplane representatives for clusters of linear shape, (C) Hyperspherical representatives
for clusters of hyperspherical shape.[15]

tive of the cluster Q . As shown in Figure 3.2, there are three common options for rep

resenting the cluster, point representatives, hyperplane representatives and hyperspherical

representatives[15]. In these three methods, the point representative is most suitable for

compact clusters that usually appear in MCL. Therefore, for a cluster containing N parti

cles, we use the mean point Pmean — ^(Pi) as the representative of the cluster which is a

very common choice.

Many types of algorithms have been proposed in the field of clustering, such as hierar

chical clustering, partitional clustering, kernel-based clustering, sequential data clustering

and so on[29][31]. Since in the localization we need to process the particles in real time,

so the efficiency of clustering algorithm is very important and crucial for real time perfor

mance. In our proposed method, we have chosen the sequential algorithm Basic Sequential

Algorithmic Scheme (BSAS)[29][30] due to its simplicity, efficiency, and easy implemen

tation.

In BSAS, the number of clusters is not required to be known initially. During the clus

tering process, new clusters are created. Also each particle is presented to the algorithm

only once during clustering.

• •

34

Table 3.6: BSAS Algorithm [29]

Algorithm BSAS (xixi---xN),Q)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10

m = l,Cm = {x\}

for / = 2 to N do

find CK : d(x;,Q) = min\<j<md(xi,Cj)

if d(xi,Ck) > 9 then

m = m + l,Cm = {x,}

else
Q = Q (J {*/}> update

its representative if necessary

end if

: end for

The BSAS algorithm is shown in Table 3.6, X{XI---XN) is the input particle set to be

clustered. For each particle, BSAS either assigns it to an existing cluster or a newly created

cluster, depending on the distance from already formed clusters. The parameter 0 is the

threshold of dissimilarity, which determines how particles are clustered. Line 1 initializes

the first cluster with the first point. Line 2 to line 10 loop through all the data left. Line

3 calculates dissimilarity measures between the current point and every existing clusters to

find a minimum one. From line 5 to line 9, if the minimum measure is larger than 6, a new

cluster will be created, otherwise the current point will be assigned to the existing cluster

which has a minimum dissimilarity measure to it.

In the following part, detailed description of our second proposed method will be pre

sented.

35

3.3.2 MCL+BSAS Part

The first part of this method is MCL+BSAS part. In this part, we employ the idea in [16].

This part is iterative and for each iteration, after MCL in line 2, we apply the clustering

algorithm BSAS to the particle set in line 3 so that the BSAS algorithm can provide valuable

information about the distribution of the particles.

As shown in Table 3.5, %t obtained in line 2 is the new particle set after one iteration

of MCL. In line 3, Q is the cluster set which we get after applying the BSAS algorithm to

the whole particle set %,. Variable 6 is used as the threshold in BSAS to decide whether

a particles belongs to an existing cluster or be assigned to a newly created cluster. In line

4, after clustering we could find the cluster with the largest number of particles, and return

the number of particles in this cluster as m. In line 5, the variable p is calculated, and p

is defined as the percentage of m out of the total number of particles (Ntota[). p is used to

evaluate the progress of localization by the MCL algorithm in line 2 and help us keep track

of the convergence degree of particles.

When the value of p exceeds a predefined threshold TJ, the algorithm will assume the

particles have concentrated to a certain degree such that the true robot position is more likely

to be in this cluster which has the largest number of particles. With this newly obtained

knowledge, we do not need to use as many as Ntotai particles for localization and we are

ready to reduce the number of particles for the rest of the localization process. Then the

algorithm will go to part two, the reducing part.

3.3.3 Reducing Part

In this part, we will reduce the number of particles and generate a new set of small number

of particles based on the previous particles set. As shown in line 7 in Table 3.5, the inputs

36

are the particle set % obtained from the previous part and n(n < 1) which indicates how

many particles should be reduced. %t is the new particle set after reducing.

The reason that we try to reduce the number of particles is as follows: as the MCL goes

on, the particles gradually converge to certain areas in the environment. These "certain

areas" in our approach is the clusters obtained via the BSAS algorithm. In the cluster with

the largest number of particles, the density of particles is very high. If this density exceeds

a predefined threshold, then it is possible that we can proportionally reduce the number

of particles in each cluster without jeopardizing the localization progress. For instance,

if we only have three clusters, each having 300, 85, and 20 particles, respectively. If we

proportionally reduce the number of particles in each cluster in half to 150, 42, and 10

particles, respectively, and if we continue the localization using the MCL algorithm, we

may still succeed. So when the proposed algorithm finds the concentration of particles

exceed a predefined threshold which means the algorithm no longer needs that number of

particles, then we start to reduce the number of particles.

The method we use here for reducing the number of particles is to randomly pick a

certain percent particles from the previous particles set in each cluster, and the percentage

value is defined by the variable n. The reason of this is due to its simplicity in implemen

tation as in mobile robot localization we mainly focus on the efficiency. After this part, the

number of particles used in our algorithm is n * Nlota[, which is smaller than the original

number, and hence this certainly reduces the computational cost.

3.3.4 MCL Part

The third part is the regular MCL part in line 8. It is shown in Table 3.7 and it uses the

traditional MCL algorithm except the initial particle set used here, denoted as xj, is obtained

37

Table 3.7: MCL algorithm [10]

Algorithm MCL(& -\,ut,zt,m)

1

2

3

4

5

6

7

8

9

Xi=1t = §

for m = 1 to M do

x, = samplejnotion_model(M,,x)_,)

w, = measurement_model(zf,xj ,m)

endfor

for m = 1 to M do

draw i with probability a w.

add 4 to %t

10: endfor

12: return %t

from line 7. It is a much smaller subset of %t. The number of particles in %'t used in this

part is much smaller than the particle set %t in line 7 when the algorithm exits the loop. The

MCL algorithm in this part also takes the map Map of the environment as another input.

The MCL goes on until the localization is finished.

3.3.5 Illustration of the Proposed Method Two

In this part, we illustrate how our proposed algorithm works in a simulated environment

for the purpose of understanding the algorithm. More detailed experimental results will be

presented in next chapter. Figure 3.3 shows the progress when implementing our second

proposed algorithm in simulation. The small red circle denotes the particle, the big blue

38

circle denotes the robot and the black line denotes the boundary of the environment.

Figure 3.3 (A) shows the initialization of particles and the particles populate the whole

state space. Figure 3.3 (B) shows that the algorithm has found the number of particles in

the largest cluster is larger than the predefined threshold 6, and the first part is finished. We

can see from Figure 3.3 (B), there are two big concentrations of particles and this means the

uncertainty of the robot's pose has been reduced a lot, compared with Figure 3.3 (A). Then

in Figure 3.3 (C) it shows the algorithm has reduced the number of particles to one third

based on the particle set in Figure 3.3 (B). Figure 3.3 (D) shows the localization is finished

successfully using only one third of the original particles.

< •

B

aSPf

fit.
s ^^M^

t**&w&*

a

!

c
1

D

Figure 3.3: Illustration of the Proposed Method Two. (A) Initialization of particles, (B) Part
1 is finished, (C) Part 2 is finished, (D) Localization is finished.

39

Chapter 4

EXPERIMENT RESULTS

In this chapter, we will first present the implementation details of our experiments, includ

ing the hardware platform and software platform, then demonstrate the experimental results

of the two proposed methods in both real and simulated environments.

4.1 Implementation Details

4.1.1 Hardware Platform

The hardware platform used to test our proposed methods is the LOGO MINDSTORMS

NXT Robot, a programmable robotics kit released by LEGO GROUP in 2006[33][34]. It

comes with the NXT-G programming software, and it supports many unofficial program

ming languages such NXC, NBC, LeJOS NXJ and RobotC[34].

Figure 4.1 shows the main components of the kit including the NXT intelligent brick,

three motors, one touch sensor, one sound sensor, one ultrasonic sensor and one light sensor.

The NXT kit also includes Lego Technic pieces such as gears, axles, and beams, which help

40

Figure 4.1: NXT main components. (A) Intelligent brick, (B)(C)(D) Motor, (E) Touch
sensor, (F) Sound sensor, (G) Light sensor, (H) Ultrasonic sensor. [33]

to build the robot.[34] Figure 4.2 shows a robot built with the NXT kit.

The NXT brick is the most important part in this kit. It has three ports for connecting

with the motor and four ports for connecting the sensor. The brick has a 100 x 64 pixel

monochrome LCD display and four buttons that can be used to operate the menu. It also

has a speaker which can play sound files at sampling rates up to 8 kHz. Power can be

supplied by 6 AA (1.5 V each) batteries or by a Li-Ion rechargeable battery. NXT brick

contains an Atmel 32-bit ARM processor running at 48 MHZ, and this processor has direct

access to 64 KB of RAM. [32]

NXT supports both USB and bluetooth connection. The code and data can be upload to

the NXT using these two methods, also the firmware can be upgraded by USB connection.

The USB port can transmit data at 12 Mbits per second, and bluetooth transmits data at

460.8 Kbits per second. Bluetooth gives us a solution if the program is more than 256

41

KB, and allows the program access the memory of PC instead of relying on the built-in

memory of NXT, so we can put the reflex actions on the NXT brick and the brains on the

PC. Bluetooth also allows NXT interact with resources a computer interacts with, such as

a webcam, database, network, printer and so on. [32]

Figure 4.2: NXT Robot.[33]

The motor has built-in reduction gear assemblies with internal optical rotary encoders

that sense their rotations within one degree of accuracy. The touch sensor could detect

whether it is currently pressed, has been bumped, or released. The light sensor detects the

light level in one direction, and also includes an LED for illuminating an object. The light

sensor can sense reflected light values (using the built-in red LED), or ambient light. If

calibrated, the sensor can also be used as a distance sensor. The sound sensor measures

42

volume level on a scale of 0 to 100, 100 being very loud and 0 being completely silent.[32]

The ultrasonic sensor can measure the distance from the sensor to something that it

is facing, and detect movement. It can show the distance in both centimeters and inches.

The maximum distance it can measure is 255 cm with a precision of 3 centimeters. The

ultrasonic sensor works by sending out ultrasonic sound waves that bounce off an object

ahead of it and then back. It produces a sonar cone, which means it detects object in front

of it within a con share. This cone opens at an angle of about 30 degrees.[32]

NXT also supports many third part sensors, which greatly increase the abilities to sense

environmental conditions. HiTechnic is a company that make sensors for LEGO, such as

compass sensor, tilt sensor and so on. [32]

4.1.2 Programming Platform

In this thesis the program is built using Java. In order to program with Java, we use two

java packages, one is LeJOS NXJ and the other is iCommand[32][35].

LeJOS is a firmware replacement for NXT brick. It includes a Java virtual machine,

which allows NXT be programmed in the Java programming language. As LeJOS is a

firmware replacement, the new LeJOS NXJ firmware must be flashed onto the NXT brick

, and replace the standard LEGO MINDSTORMS firmware(NXT-G). LeJOS includes a

linker for linking user Java classes with classes.jar to form a binary file that can be uploaded

and run on the NXT brick, and a PC API for writing PC programs that communicate with

LeJOS NXJ programs using Java streams over Bluetooth or USB. The iCommand pack

age is a sister-project of LeJOS NXJ. It mirrors LeJOS NXJ as closely as possible. The

main difference is that the LeJOS NXJ runs on the NXT brick while iCommand runs on

PC. The iCommand controls the NXT by sending individual commands through bluetooth

43

connection, and gets the information from the NXT sensors. Using LeJOS and iCommand

packages allow us not worry about the size of the code limited by the memory size of NXT

brick, and access all the memory resource of PC.[35]

4.2 Experiment Design

The idea behind the experiment design is as follows. First we apply the traditional MCL to

the environment, then we run our two proposed algorithms in the same environment, then

we compare the performance of localization with traditional MCL.

In this part, we will first present the performance of traditional MCL in both real envi

ronment and simulated environment, then in the following parts, we will discuss the exper

iment of each proposed method.

4.2.1 Traditional MCL in Real Environment

Figure 4.3 shows the NXT used in the real experiment, and the environment is shown in

Figure 4.4. The environment is asymmetric and the black line is the boundary of the region.

The reason of testing our algorithm in this environment is due to its simplicity. But also

the simpler the environment is, the more difficult the localization is. If there are too many

unique landmarks which give a lot of information to robot, it will make localization much

more easier. We use the light sensor of the NXT robot, which helps to detect the boundary

of the region.

We first apply the traditional MCL in the environment to see how many particles are

needed so that the localization successful rate is satisfactory. For each value of particle

number, we run traditional MCL 20 times.

44

Figure 4.3: LEGO MINDSTORMS NXT in our experiment.

Figure 4.4: Environment for the real experiment.

45

/—\
*
*̂-
u
+*
<a
«
F—1

3 <4H
in
u
o
9

VI

1UU

90

80

70

60

50 <

40

30

20

10

n

^r

1 1 1

2000 2500 3000 3500

Number of Particles

4000

Figure 4.5: Performance of traditional MCL in the real environment.

As shown in Figure 4.5, the localization successful rate is a bit lower when the number

of particle is below 3000. For 2000 particles, the successful rate is 50% and for 2500 parti

cles, the successful rate is 80%. When the number of particle reaches 3000, the traditional

MCL gets a successful rate of nearly 100%. For 3000 particles the successful rate is 100%,

for 3500 particles the successful rate is 95%, and for 4000 particles, the rate is 100%.

4.2.2 Traditional MCL in Simulated Environment

Traditional MCL is also implemented on PC in an area which is proportionate to the one

used in real environment. For each value of particle number, we also run the algorithm 20

times.

From Figure 4.6, we can see that the localization successful rate is also lower when the

number of particle is below 3000. For 2000 particles, the successful rate is 40% and for

46

/"v

*

R
a
te

S

u
ce

ss
fu

l

100

90

80

70

60

50

40 <

30

20

10

r ^ ^ ^ ^ » »

. • ^

2000 2500 3000 3500

Number of Particles

4000

Figure 4.6: Performance of traditional MCL in the simulated environment.

2500 particles, the successful rate is 70%. For 3000 particles, the successful rate is 95%,

and for 3500 and 4000 particles, both rates are 100%.

4.3 Experiment Result for Proposed Method One

4.3.1 Parameters Setting in Algorithm

In the proposed method one, we can see that the computational cost is determined by the

number of grid cells and the number of particles. As the particles are only generated in the

restricted area so this number is quite small. As discussed before, the number of orientations

is a important factor that will affect the number of grid cells, so in our experiment we try

different numbers of orientations, and see the performance of our proposed method.

47

4.3.2 Experiment in Real Environment

First the method is implemented in the same environment shown in Figure 4.4. The number

of orientations of the grid cells is denoted as N. In the environment for one dimension there

are 21 grid cells, so the total number of grid cells is N * 21. The number of particle used

is 100, so the total number of grid cells and particles is TV * 21 + 100, and it is denoted as

Ntotai- For each TV , we repeat the proposed methods 20 times.

Table 4.1: Proposed Method One Successful Rate (Real environment)

Number of Orientation (N)

Ntotai
Successful Rate(%)

12
352
25

24
604
40

36
856
55

48
1108
75

60
1360
85

72
1612
85

96
2116
90

As shown in the Table 4.1, the successful rate is quite low when Ntota[is below 1000,

and when Ntotai is above 1000, the successful rates are apparently higher. In the Figure 4.5,

we know that in the same environment the successful rate of traditional MCL is quite low

when the number of particles is below 2500. After comparing the result of our proposed

method one and the traditional MCL, we can find that our first proposed method can achieve

higher successful rate of localization with lower computational cost.

4.3.3 Experiment in Simulated Environment

The proposed method one is also implemented on PC in the same simulated environment.

Same as the last part, the number of orientation is denoted as TV, and in the simulated

environment for one dimension there are 21 grid cells so the total number of grid cells

is N * 21. The number of particle used is also 100, so the total number of grid cells and

particles is also TV * 21 + 100, and it is denoted as Ntotai. For each N, we also repeat the

proposed method 20 times.

48

Table 4.2: Proposed Method One Successful Rate (Simulated environment)

Number of Orientation (N)

Ntotal
Successful Rate(%)

12
352
20

24
604
30

36
856
50

48
1108
75

60
1360
80

72
1612
80

96
2116

90

As shown in the Table 4.2, the successful rate is also quite low when Ntotai is below

1000, and when Ntotai is above 1000, the successful rates become apparently higher. From

Figure 4.6, we know that in the same simulated environment the successful rate of tradi

tional MCL is quite low when the number of particles is below 2500. The experiment in

the simulated environment also shows that our first proposed method can achieve higher

successful rate of localization with lower computational cost.

4.4 Experiment Result for Proposed Method Two

4.4.1 Parameters Setting in Algorithm

It can be seen that in the proposed method two, there are three important parameters. They

are the threshold 9 used for clustering, threshold r| used for terminating the first part, and

the n used in the second part for determining how many particles should be reduced.

As mentioned in the previous section, 0 determines the spreadness of the particles in a

cluster, and if 9 is too big the accuracy of localization will be greatly affected. T| decides

when to reduce the number of particles, if it is too big it will take more time to succeed, and

then the reducing part will be delayed, which means the computational cost is not greatly

reduced since most of the time we use the same number of particles as we started, n will

also affect the accuracy of the localization because if we reduce too many particles that

the remaining particles might not represent the uncertainty left in the localization process

49

properly.

In our experiments, we set 0 and r| to fixed values which are appropriate for our ex

perimental environment. The reason of doing this is that our main concern in MCL is the

number of particles which is determined by the value of n. So we only use different values

of n to test the proposed algorithm.

4.4.2 Experiment in Real Environment

From Figure 4.5, we know that the required number of particles for the robot to successfully

localize itself in this environment is 3000.

After figuring out that 3000 particles are enough for this environment, we start to apply

our proposed algorithm to see whether it performs well when the number of particles is

reduced during the localization process.

For our second proposed algorithm, we set threshold 6 which determines the spread-

ness of the cluster to be 9 cm, and set threshold rj used for terminating the first part to be

25%, which means after the number of particles in biggest cluster reaches 25% of the total

particles, it will start to reduce the number of particles in each cluster. Then for parameter n

which determines how many particles are reduced, we choose three different values to see

the localization successful rate. For each value we repeat the experiment 20 times.

Table 4.3: Proposed Method Two Successful Rate (Real environment 0 = 9cm, T| =
25%,n = 1/2,1/3,1/4)

Number of Particles

3000
3500
4000

1/2

100
100
100

1/3

95
100
100

1/4

55
100
100

For reducing part, we try three different n, i.e., 1/2, 1/3 and 1/4. As we can see from

50

Table 4.3, when we use 3000 particles, if we reduce the particles to half or one third, the

successful rate is still high, however if we reduce to one fourth, the rate is much lower. The

result is encouraging since reducing the number of particles to half of what is required by

the traditional MCL still maintains a very high success rate. For 3500 or 4000 particles,

reducing to half, one third or one fourth, all still produce very good results. The real en

vironment experiments demonstrate that our proposed method two can produce very good

results when we reduce the number of particles compared with using the traditional MCL.

4.4.3 Experiment in Simulated Environment

From Figure 4.6, we know that the required number of particles for the robot to successfully

localize itself in this environment is also 3000.

Then we start to apply our second proposed algorithm to the simulated environment.

We set threshold 0 to be 60 pixels, and set threshold T| used for terminating the first part to

be 25%. Then for parameter n we choose the same three different values 1/2, 1/3 and 1/4.

For each n, we repeat the experiment 20 times.

Table 4.4: Proposed Method Two Successful Rate (Simulated environment 0 =
60pixel,r\ = 25%,n = 1/2,1/3,1/4)

Number of Particles

3000
3500
4000

1/2

100
95
100

1/3

95
95
100

1/4

60
100
100

For reducing part, we try three different n, 1/2, 1/3 and 1/4. As we can see from Table

4.4, when we use 3000 particles, if we reduce the particles to half or one third, the successful

rate is still high, however if we reduce to one fourth, the rate becomes lower. For 3500 or

4000 particles, reducing to half, one third or one fourth, all still produce very good results.

51

The simulated experiments also show that our proposed method two performs very well

when we reduce the number of particles significantly.

52

Chapter 5

CONCLUSION AND FUTURE

WORKS

5.1 Conclusion

Mobile robot localization is a very important and fundamental problem in robotics. Dur

ing the past decades, many algorithms for mobile robot localization have been proposed.

Among these algorithms, Monte Carlo localization(MCL) is one of the most popular and

efficient due to its better performance and less computational cost. However, MCL is still

able to be further improved, so in this thesis we present two extensions of MCL both could

improve the performance and reduce the computational cost of MCL. One is called moving

grid cell based MCL algorithm which is a hybrid of grid localization and MCL, and the

other is a dynamic MCL algorithm based on clustering.

Experiment results performed in both real and simulated environments demonstrate the

effectiveness and low computational cost of each proposed method compared with tradi

tional MCL.

53

5.2 Future Work

Our proposed methods can be further improved in the following aspects.

Active localization: The methods proposed in this thesis are passive, and the robot is

controlled by a predefined movement pattern and the robot's navigation does not facilitate

the localization progress. So one objective of this thesis is to incorporate active approaches

to control the movement of the robot, which means actively selecting the most efficient

motion direction and sensor direction.

Multi-robot localization: The methods proposed only deal with single robot localiza

tion problem. We want to apply our methods to multi-robot localization problem which

is more difficult than single robot localization problem. In multi-robot localization, we

not only have to consider the movement and measurement of the robot, also the detecting

problem between different robots. The issues that arises usually include representation of

beliefs and the communication between different robots.

Kidnapped robot problem: Our proposed methods focus on global localization. We

also want to improve our methods to solve kidnapped robot problem, where the robot is

kidnapped and taken to somewhere else without being notified. Kidnapped robot prob

lem becomes important because localization approaches can fail sometimes. The ability to

recover from failures is especially important for truly autonomous robots.

54

Bibliography

[1] D.Fox, W.Burgard, F.Dellaert and S.Thrun, Monte Carlo Localization:Efficient Posi

tion Estimation for Mobile Robots. Proc. AAAI-99, Orlando, USA.(1999).

[2] F.Dellaert, D.Fox, W.Burgard and S.Thrun. Monte Carlo Localization for Mobile

Robots. IEEE International Conference on Robotics and Automation, ICRA.(1999)

[3] S.Thrun, D.Fox, W.burgard, and F.Dellaert. Robust monte carlo localization for mo

bile robots. Artificial Intelligence.(2001)

[4] S.Thrun, J.Schulte and C.Rosenberg. Interaction with mobile robots in public places.

IEEE Intelligence Systems, Page(s):7-11.(2000)

[5] PJensfelt and S.Kristensen,Active global localization for a mobile robot using multi-

plehypothesis tracking. IEEE Trans.Robotics Automation.V61.17,No.5,Page(s):748 -

760.(2001)

[6] N.Trawny and T.Barfoot. Optimized Motion Strategies for Cooperative Localiza

tion of Mobile Robots. Proceedings of the 2004 IEEE International Conference on

Robotics and Automation.(2004)

[7] W.Burgard, D.Fox, D.Hennig, and T.Schmidt, Estimation the absolute position of a

mobile robot using position probability grids. Proc. AAAI-96,Oregon, USA.(1996)

55

[8] D.Fox, W.Burgard, H.Kruppa and S.Thrun.A Probabilistic Approach to Collaborative

Multi-Robot Localization. Autonomous Robots. Volume 8, Number 3, Page(s):325-

344.(2000)

[9] H.Hose and H.L.Akin. The Reverse Monte Carlo localization algorithm. Robotics and

Autonomous Systems ,55 , Pages(s):480-489.(2007)

[10] S.Thrun, W.Burgard and D.Fox. Probabilistic Robotics. The MIT Press.(2005)

[11] D.Rubin. Using the SIR algorithm to simulate posterior distributions. Bayesian Statis

tics 3. Oxford University Press.(1988)

[12] D.Fox. Adapting the Sample Size in Particle Filters Through KLD-Sampling. Inter

national Journal of Robotics Research.(2003)

[13] R.Luo and B.Hong. Coevolution Based Adaptive Monte Carlo Localiza-

ton(CEAMCL). International Journal of Advanced Robotic Systems, Volume ^Num

ber 3, Page(s): 183-190.(2004)

[14] S. Thrun, D. Fox, and W. Burgard. Monte carlo localization with mixture proposal

distribution. Proceedings of the AAAI National Conference on Artificial Intelligence,

Austin, TX.(2000)

[15] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press.(2006)

[16] D.Wu, J.Chen and Y.Wang. Bring Consciousness to Mobile Robot Being Localized.

Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics,

Page(s):741 -746.(2009)

56

[17] D.Fox, W.Burgard and S.Thrun. Active markov localization for mobile robots.

Robotics and Autonomous Systems.(1998)

[18] Maja J Mataric. The robotics primer. The MIT Press.(2007)

[19] D.Fox, W.Burgard and S.Thrun. Markov Localization for mobile robots in dynamic

environments. Journal of Artificial Intellgence Research, Page(s):391-427.(1999)

[20] S.I.Roumeliotis and G.A.Bekey. Distributed multi-robot localization. IEEE Trans.

Robotics and Autumation, Page(s):781-795.(2000)

[21] R.Cheeseman and P.Smith. On the representation and estimation of spatial uncertainty.

International Journal of Robotics, Page(s):56-58.(1986)

[22] M.Csorba. Simultaneous Localisation and Mapping Building. PhD.thesis. University

ofOXford.(1997)

[23] Z.Ghahramani. Learning Dynamic Bayesian Networks. Lecture Notes in Computer

Science, Vol.1387, Page(s): 168-197.(1997)

[24] L.P.Kaelbling, A.R.Cassandra and J.A.Kurien. Acting under uncertainty: Discrete

bayesian models for mobile-robot navigation. Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems.(1996)

[25] S.Thrun. Robotic mapping: A survey. Exploring Artificial Intelligence in the New

Millenium. Morgan Kaufmann.(2002)

[26] S.Thrun. Particle filters in robotics. Proceedings of the 17th Annual Conference on

Unvertainty in AI(UAI).(2002)

57

[27] S.Thrun. Bayesian Landmark Learning for Mobile Robot Localization. Machine

Learning. Springer.(1998)

[28] R.Xu and D.Wunsch. Clustering. John Wiley & Sons.(2009).

[29] B.Everitt, S.Landau and M.Leese. Cluster Analysis. Arnold Publisher.(2001)

[30] P.Trahanias and E.Scordalakis. An efficient sequential clustering method. Pattern

Recognition, Vol.22(4), Page(s):449-453.(1989)

[31] P.Berkhin. Survey of clustering data mining techniques. Technical Report, Accrue

Software Inc.(2002)

[32] B.Bagnall. Maximum Lego NXT:Building Robots with Java Brains. Variant

Press.(2007)

[33] The LEGO Group.http://mindstorms.lego.com.

[34] Wikipedia website.http://en.wikipedia.org/wiki/Lego_MindstormsJSfXT.

[35] Lejos. http://lejos.sourceforge.net.

58

http://mindstorms.lego.com
http://en.wikipedia.org/wiki/Lego_MindstormsJSfXT
http://lejos.sourceforge.net

Vita Auctoris

NAME: Yuefeng Wang

PLACE OF BIRTH: Shandong, China

YEAR OF BIRTH: 1986

EDUCATION: Shandong University, Shandong, China

2004-2008 B.Eng.

University of Windsor, Windsor, Ontario

2008-2010 M.Sc.

59

	Two improved methods for mobile robot localization
	Recommended Citation

	ProQuest Dissertations

