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Abstract 

Cooperative multi-robot localization techniques use sensor measurements to 

estimate poses (locations, orientations) of robots relative to a given map of the 

environment. Existing approaches update a robot's pose instantly whenever it detects 

another robot. However, such instant update may not be always necessary and 

effective, since both robots' pose estimates could be highly uncertain at the time of the 

detection. In this thesis, we develop a new information exchange mechanism to 

collaborative multi-robot localization. We also propose a new scheme to calculate how 

much information is contained in a robot's belief by using entropy. Instead of updating 

beliefs whenever detection occurs, our approach first compares the beliefs of the 

robots which are involved in the detection, and then decide whether the information 

exchange is necessary. Therefore, it avoids unnecessary information exchange 

whenever one robot perceives another robot. On the other hand, this approach does 

allow information exchange between detecting robots and such information exchange 

always contributes positively to the localization process, hence, improving the 

effectiveness and efficiency of multi-robot localization. The technique has been 

implemented and tested using two mobile robots as well as simulations. The results 

indicate significant improvements in localization speed and accuracy when compared 

to the single mobile robot localization. 

Keywords: multi-robot, localization, Monte Carlo, belief, entropy, density estimation 
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Chapter 1 

Introduction 

Most mobile robot tasks require a robot to have accurate information about its 

localization through its sensors. Therefore, sensor-based mobile robot localization has 

been recognized as one of the fundamental problems in the research of mobile 

robotics [13]. More formally, mobile robot localization is the problem of estimating a 

robot's pose (location, orientation) in a global coordinate system, given a map of its 

environment and the history of its sensory and odometry readings [14]. The mobile 

robot localization problem comes in many different flavors [3, 15]. The most simple 

localization problem - which has received by far the most attention in the literature -

is position tracking [3, 5, 81]. Here the initial pose of the robot is known, and the 

problem is to compensate incremental errors in a robot's odometry. More challenging 

is the global localization problem [5, 22, 41], where a robot is not given its initial pose 

but instead has to determine it from scratch. Significant efforts have been put to solve 

the global localization problem and a variety of effective techniques have been 

developed [6, 10, 23, 41]. Thereinafter, the proposed method in this thesis will focus 

on global localization. 

Kalman Filters (KF) [19, 24, 33, 52], Extended Kalman Filters (EKF) [8, 22, 40, 

41], Markov localization [6, 15, 21, 23, 26, 34, 36] and Monte Carlo Localization 

(MCL) [10, 57] are all well known approaches to solve the localization problem. In 

position tracking where the uncertainty of the position of a robot can be modeled 

using a unimodal distribution, Kalman and Extended Kalman Filters can be used 

effectively for localization. However, in the problem of global localization, using a 

unimodal distribution will fail. Monte Carlo localization has proven to be effective in 

dealing with problems where multimodal distributions are required to model the 

position of the robot [10]. A multi-robot system has some apparent advantages over a 

single robot system. Fox example, a multi-robot system can collect and integrate 
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multiple sensory information from different robots in the system. 

Most of the existing works virtually address localization of a single robot only. 

The problem of cooperative multi-robot localization is not fully explored. At first 

glance, one could solve the problem of localizing N robots by localizing each robot 

independently [13]. Nonetheless, if robots can detect each other, there is an 

opportunity to do better. When a robot detects the location of another robot relative to 

itself, both robots can refine their internal beliefs based on the other robot's estimate 

by exchanging information, hence improve their localization accuracy respectively. 

The ability to exchange information during localization is particularly attractive within 

the context of global localization, where the detection of one robot can possibly 

reduce the uncertainty of the other robot in the estimated location dramatically. 

To solve the multi-robot localization problem, researchers have proposed some 

methods. Amongst them, a probabilistic approach to collaborative multi-robot 

localization [13] is one of the most important ones, because the probabilistic nature of 

this approach makes it possible that teams of robots perform global localization in a 

real time fashion [13]. This method is based on Markov localization, a family of 

probabilistic approaches that have been applied with great success to single robot 

localization [4, 15, 28, 59]. Moreover, their approach uses sampling based 

representation [2, 10], which is able to approximate complex, multi-modal belief 

representations in real time. The authors also emphasize that information exchange 

between robots is important for cooperative multi-robot localization. To transfer 

information across different robots, probabilistic "detection model" is used to model 

the robots' abilities to recognize each other. When one robot detects another, these 

detection models are used to synchronize the individual robot's belief, thereby 

reducing the uncertainty of both robots during localization. 

The above probabilistic method of cooperative multi-robot localization updates a 

robot's pose immediately whenever it perceives another robot. However, this instant 
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update may not contribute positively to the localization process. For example, if one 

robot detects another one and both robots' internal beliefs are highly uncertain, it 

might be more appropriate to delay the update or information exchange [13]. If later 

on one of the robots becomes much more certain and it detects another robot, then 

updating the belief of the detected robot could possibly speed up the localization of 

the detected robot. 

In the following, the motivation of the thesis is first presented, after which the 

contributions of this thesis are highlighted, and the structure of the remaining chapters 

are outlined. 

1.1 Motivation 

Nearly all tasks of mobile robots require a robot to have accurate knowledge 

about its location. In order for a mobile robot to autonomously navigate, it must be 

able to localize itself. In other words, knowledge of position and orientation in the 

context of its surrounding is necessary for avoiding obstacles and developing path 

plans. Moreover, without knowledge of position, a mobile robot can not accurately 

execute its commands. 

Recently, it has been noted that research efforts have been shifted from single 

robot to multi-robot systems. Multi-robot systems have been proposed for a variety of 

applications including space exploration, search and rescue, military surveillance, and 

hazardous cleanup [63]. One of the first problems that one needs to tackle in a 

multi-robot system is to localize each robot in the system. A multi-robot system has 

some obvious advantages over a single robot system. For instance, a multi-robot 

system can collect and integrate multiple sensory information from different robots in 

the system [42]. By integrating these multiple sensory data (also called sensor fusion); 

the system can possibly obtain better localization performance. The benefits of sensor 
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fusion are three-folded. Firstly, multi-robot can share their sensor information, which 

will increase the robustness of the localization algorithm for each robot. Secondly, the 

robots can exchange their pose estimates with each other, and use their geometric 

relationship to derive more reference information for localization [53]. Thirdly, 

different robots can be equipped with different type of sensors, so that the whole 

system can achieve more comprehensive environment characterization. 

Most of the current research addresses localization of a single robot only. The 

problem of cooperative multi-robot localization is not fully explored. However, there 

are still some research works on multi-robot localization. The most commonly used 

approaches include Kalman Filters [43] and portable landmarks [38]. Most of the 

other research works are based on these works. In 2002, a new approach to 

collaborative multi-robot localization is presented by Fox and Thrun [13]. Each robot 

in its system maintains a probability distribution modeling its own uncertainty. When 

a robot detects the location of another robot relative to itself, both robots can possibly 

refine their internal beliefs based on the other robot's estimate, hence improve their 

localization accuracy. Nevertheless, the authors point out several limitations of their 

approach at the end of the paper. One of the limitations is that their method updates a 

robot's pose immediately whenever it perceives another robot. Because of this 

limitation, two robots will exchange their pose estimates in any case as long as they 

detect each other. However, this instant update may not contribute positively to the 

localization process. For example, if one robot detects another one and both robots' 

internal beliefs are highly uncertain, it might be more appropriate to delay the update 

or information exchange. If later on one of the robots becomes much more certain and 

it detects another robot, then updating the belief of the detected robot could possibly 

speed up the localization of the detected robot. In other words, if both robots have 

blurry knowledge of their poses at the detection time, it is not necessary to exchange 

their internal beliefs. Therefore, this approach suffers from the problem of delayed 

information exchange (also called delayed integration in [13]). This presents 

challenge and opportunity to develop an improved multi-robot localization approach 
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that can yield better localization results than conventional, single robot localization. 

1.2 Contributions 

This thesis is concerned with the problem of cooperative multi-robot localization 

in small-scale, particularly indoor, environments. The principal contributions of this 

thesis are as follows: 

The primary contribution of this thesis is that we develop a new information 

exchange mechanism for collaborative multi-robot localization. We also propose a 

new scheme to calculate how much information is contained in a robot's belief by 

using entropy. In our approach, we study the problem of how multiple robots first 

compare with their beliefs, and then decide whether the information exchange is 

necessary. Our approach therefore avoids unnecessary information exchange 

whenever one robot perceives another robot. On the other hand, this approach does 

allow information exchange between detecting robots which contributes positively to 

the localization process, hence, improving the effectiveness and efficiency of 

multi-robot localization. Experimental results, carried out in real and simulated 

environments, demonstrate that our approach can reduce the uncertainty in 

localization significantly, when compared to conventional, single robot localization at 

lower sensor costs and relatively small communication overhead. 

The second important contribution of this thesis is to overcome the sensor 

limitations of the given robots for implementing our proposed approach to multi-robot 

localization. Our approach extends the early work on Monte Carlo localization for 

single mobile robot localization. The Monte Carlo localization algorithm has been 

already successfully implemented by using many of the real robot platforms which are 

equipped with very powerful sensors, such as laser range finder, sonar and 

upward-pointed camera. Under the help of these sensors, robot can localize itself 
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much easier with more accuracy. In our proposed approach, the low-cost vacuum 

cleaning robots iRobot Discovery [65] and iRobot Create [66] are used. Both are the 

third generation iRobot robots which support the programming interface available for 

research and education. Comparing with a robot which equips with different powerful 

sensors, Roomba is only equipped with bumper sensors and virtual wall sensors for 

detecting the external environment and detecting other robots within this environment. 

Under the limit sensor's help, the implementation of our proposed approach would be 

a challenge. Therefore, the successful implementation of our method provides a 

cost-effective solution to apply complex robotic algorithms to these inexpensive robot 

platforms. 

The third contribution of this thesis is that we develop a software application to 

carry out the proposed approach. The experimental results obtained through this 

application indicate feasibility of our approach in real and in simulation robots. 

1.3 Guide to the Thesis 

This thesis is organized as follows. 

Chapter 2: Background. This chapter provides an introduction to the subjects that 

the proposed method builds upon. After explaining the idea of probabilistic robotics 

and uncertainty, the method of single mobile robot localization will be given. The 

Monte Carlo localization is specifically emphasized, since they constitute the core of 

the proposed approach. The attention then moves to the discussion of multi-robot 

localization. 

Chapter 3: The Approach. The proposed multi-robot localization method based on 

Monte Carlo localization is presented in detail in this chapter. First the definition of 

the problem is described, followed by detailed presentation of the proposed approach. 
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Chapter 4: Experiments. The detailed information of the implementation and the 

experimental results will be described. The results section is divided into two main 

parts: experiments on the real robots and experiments in simulation. Finally, these 

experimental results are used for comparing with experimental results of single robot 

localization and the evaluations are obtained. 

Chapter 5: Conclusion. This final chapter brings conclusion of the thesis and 

presents a sketch of possible future work. 
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Chapter 2 

Background Knowledge 

This chapter provides the background knowledge on which the proposed method 

is based. After explaining the idea of probabilistic robotics, we will address the 

problem of single mobile robot localization. We then explain one of the most 

important probabilistic algorithms for single mobile robot localization, namely, the 

Monte Carlo localization (MCL) algorithm. The MCL algorithm is the core of the 

proposed approach. Finally, current multi-robot localization methods are reviewed. 

2.1 Uncertainty in Robotics 

Robotics is the science of perceiving and manipulating the physical world through 

computer controlled devices [60]. Examples of successful robotic systems include 

mobile platforms for space navigation, search and rescue, and cars that drive by 

themselves [60], and many more. Robotic systems in the physical world are able to 

perceive information in their environment through sensors and manipulate through 

physical forces. The idea of intelligent manipulating devices has an enormous 

potential to better our life. Would not it be great if all the cars were able to safety 

travel by themselves, making car accidents a conception of the past? Would not it be 

wonderful if robots would take care of all the high risk tasks instead of human being? 

To be intelligent, in real world robotic applications, robots have to be able to 

accommodate a number of uncertainties [25] which exist in the physical world. 

There are several elements that contribute to a robot's uncertainty [60]. First of all, 

robot environments are highly unpredictable. Second of all, sensors are restricted in 

what they can perceive. The resolution and range of a sensor is subject to physical 

limitations. Third, robot motion which involves motors is unpredictable. Uncertainty 

comes from effects such as control noise and mechanical malfunction. Fourth, 
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uncertainty may be caused by the robot's software application. All the internal models 

of the world are approximate. Models are abstraction of the real world. Therefore, 

they can only partially model the processes of the robot and its environment. Model 

errors are a source of uncertainty in robotics. Finally, uncertainty is further created 

through approximations of robotic algorithm. Because robots are real time systems, 

many robotic algorithms are approximations for achieving timely response by 

sacrificing accuracy. As robotics is more and more popular nowadays, managing 

uncertainty has become one of the most important steps for designing robust real 

world robot systems. This raises the question as how to deal with uncertainty [55] in 

robotics. What type of internal world models should robots use? And how should 

robots make decisions even if they are uncertain about their external world? 

2.2 Probabilistic Robotics 

The probabilistic approach to robotics addresses above questions. Probabilistic 

robotics is a fairly new approach to robotics which deals with uncertainty in robot 

observation and action. The key idea in probabilistic robotics is to represent 

uncertainty probabilistically. In particular, world models in the probabilistic approach 

are conditional probability distributions, which describe the dependence of certain 

variables on others in probabilistic terms. A robot's internal knowledge is also 

represented by probability distributions, which are derived by integrating sensor 

measurements into the probabilistic world models given to the robot [55]. Hence, 

probabilistic robotics provides an appropriate mechanism for coping with uncertainty. 

As the result, they surpass alternative techniques in many real world applications [12, 

58, 62]. 

Probabilistic robotics has already achieved a great success in the field of robotics. 

For example, the 2005 DARPA Grand Challenge [67] was a prize competition for 

driverless cars, sponsored by the Defense Advanced Research Project Agency 
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(DARPA) [68], the most prominent research organization of the United Stated 

Department of Defense. The Grand Challenges [69] was the first long distance 

competition for driverless cars in the world. The U.S. congress authorized DARPA to 

offer prize money ($1 million) for the first Grand Challenge to facilitate robotic 

development. The prize money had been increased to US $2 million for the second 

Grand Challenge. This competition required each team of players to create the fully 

autonomous ground vehicles capable of completing a substantial off-road course 

within a limited time. Stanley [61] shown in Figure 2.1 is such kind of autonomous 

vehicle created by Stanford University's Stanford Racing Team. It competed in, and 

won, the 2005 DARPA Grand Challenge, earning the Stanford Racing Team the US $2 

million dollar prize, the largest prize money in robotic history. Here, many of the 

probabilistic robotic algorithms are used to build the controller of the Stanley. 

Figure 2.1: Stanley, the winner of the 2005 DARPA Grand Challenge. [70] 

2.2.1 State 

In probabilistic robotics, the world of a robot, or environment, is a dynamical 

system which includes state [55]. In other words, environments are characterized by 
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state which can be defined as the collection of all aspects of the robot and its 

environment that can impact the future. Throughout this thesis, state will be denoted 

x. The state at time t will be denoted x,. Typical state variables used in this thesis are: 

(a) the robot's pose includes its location and orientation relative to a global coordinate. 

For mobile robots exploring in planar environments, the pose is usually given by three 

variables including its two location coordinates in the plane and its heading direction; 

(b) the location and features of surrounding objects in the environment are also state 

variables. An object may be a table, a wall or a door. Features of such objects may be 

their color or texture. For the problem studied in this thesis, the location of objects 

will be static; (c) in robot manipulation, the pose includes variables for the 

configuration of the robot's actuators. The robot configuration is often referred to as 

kinematics state. There are many other state variables that may impact a robot's 

operation. The list of potential state variables is endless. In most cases of robotic 

problems, state changes over time. Time, in this thesis, will be discrete, that is, all 

events will take place at discrete time steps t = 0,1,2.... If a robot starts its operation 

at a distinct point in time, we will denote this time as t = 0. 

In most of the robotic applications, determining what to do is easy if one knows 

certain quantities [60]. For instance, moving a mobile robot is simple if the accurate 

position of the robot and all close by obstacles are known. Unfortunately, these 

variables are not directly measurable. Instead, a robot has to rely on its sensors to 

gather such kind of information. However, sensors carry only partial information 

about these quantities, and their measurements are noisy. As the result, the robot needs 

to maintain an internal knowledge respect to the state of its environment. Therefore, 

Estimating state from sensor data is the core issue of probabilistic robotics. State 

estimation addresses the problem of estimating quantities from sensor data that are not 

directly observable, but that can be inferred [60]. Thus, state estimation aims to 

recovery state variables from the sensor data. 
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2.2.2 Robot Environment Interaction 

The robot can also influence its environment through its actuators. Each control 

action affects both the environment state, and the robot's internal knowledge with 

respect to this state. There are two basic types of interactions between a robot and its 

environment [35] shown in Figure 2.2: The robot is capable of gathering information 

about the state through its sensors, and it is also able to influence the state of its 

environment through its sensors. The first type of interaction is the process by which 

the robot uses its sensors to obtain information about the state of its surrounding. For 

example, a robot may take a camera image, a range scan or even use the bumper to 

touch the obstacle to obtain information about the state of the environment. The result 

of such an interaction called a measurement or an observation. The second type of 

interaction can be defined as the control actions which change the state of the world. 

Examples of control actions include robot motion and the manipulation of objects. A 

robot might keep all past sensor measurements and control actions. We will call such a 

collection as the data. In accordance to the two types of environment interaction, the 

robot has two different data streams. 

t • A . * * " 

orid model, belief 

Perceptual/action (fata 

Control ^.viicrn 

Actions 

Figure 2.2: Robot environment interaction. [60] 

The first stream is the measurement data which provides information about a 
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momentary of the environment. The measurement data at time t will be denoted as 

z,. In this thesis, we assume the robot takes one measurement or observation at a time. 

The notation z,.t = z, ,ztJ.,z, ^,...,z, denotes a collection of all measurements 

obtained from time tl to time t2, where tl <t2. The second stream is control data 

which carries information about the change of the state in the environment. One 

source of control data is odometer. Odometers are sensors that measure the revolution 

of a robot's wheel. Even though odometers are sensors, it is customary to treat it as the 

control data, because they measure the effect of the control action [60]. Control data 

will be denoted as u,. As measurement data, we denote sequence of control data by 

u,^, where t{ <t2 ut u = ut ,ut+lut+2,—,uh . Both measurement data and control 

data play totally different roles in robotic system. Observation data provides 

information about the environment's state, thus it tends to increase the robot's 

knowledge. On the other hand, control data tends to bring a loss of knowledge due to 

the uncertainty in robot actuation and robot environment. 

2.2.3 Belief 

The above two different data streams can be used to estimate another important 

concept in probabilistic robotics, namely, belief. The belief reflects a robot's 

knowledge about the state of the environment. Probabilistic robotics represents beliefs 

using conditional probability distributions. Belief distributions are posterior 

probabilities over state variables conditioned on the data including measurement data 

and control data. We denote belief over the state variable xt by bel(xt) which is a 

short form for the posterior bel(xt) = p{xt I zu, uv.t). This posterior is the probability 

distribution over the state x, at time t, conditioned on all past measurements zhl 

and all past controls uH. 
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2.2.4 Probabilistic Laws 

As described in the above section, the belief is used to represent a robot's 

knowledge about the state of its environment. Then the next question one may ask is 

how to evaluate the state? The evolution of state is controlled by probabilistic laws 

[60]. The state x, is generated from the state xtA. At first glance, the state xt may 

be conditioned on all past states, measurements, and controls. Therefore, the 

probabilistic law characterizing the evolution of state can be given by a probability 

distribution of the following form p(jc, I *,),_,,£,.,_,,«,.,) . An import fact is the 

following: If the state x is complete then it is a sufficient summary of all that 

happened in previous time steps [60]. In particular, JC,_, is a sufficient statistic of all 

previous measurements and controls up to this point in time, that is, i/1:/_, and zx,t_x. 

For all the variables in the expression above, only the control data ut effects if we 

know the state x,_,. In terms of probabilistic, this fact can be represented by the 

equation [60] 

p(Xt I JCftM.ZtM.Mt,) = P(X, I X,_y,Ut). (1) 

The key point expressed by this equation is an example of conditional 

independence which states that the state variable xt is independent of uht_t and 

zx.,_{ if one knows the values of the previous state variable JC,_, and control data ut, 

the conditioning variables. Based on the above description, one can also model the 

process by which how measurements are generated. If the state xt is known, we have 

another important conditional independence equation [60] 

P(Z, I X0.,, Z,.f_, ,«i :,) = P(Z, \X,). (2) 
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This equation shows that the measurement z, is only conditioned on the state 

variable xt. Knowledge of any other variable such as previous measurements, 

controls, and previous states is not relevant. 

We call p(xt I xM , ut) in Equation (1) as the state transition probability or 

motion model [60]. It specifies how state evolves over time with respect to robot 

control ut and previous state xt_x . The p(z, I xt) in Equation (2) is called the 

measurement probability or measurement model [60]. It specifies the measurements 

z, which are generated from the current state xt. The state transition probability and 

the measurement probability together describe the complete system of the robot and 

its environment. Figure 2.3 illustrates the evolution of the state and measurements 

defined by these two conditional probabilities. The state at time t is dependent on 

the state at time t-l and control u,. The measurement z, depends on the state at 

time t. Such kind of generative model is also known as dynamic Bayes network [18]. 

Figure 2.3: The dynamic Bayes network (DBN) which characterizes the evolution of 
states, controls, and measurements. [60] 

2.2.5 The Bayes Filter Algorithm 

The above two conditional probabilities: motion model and measurement model 
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are commonly used to estimate the belief in probabilistic robotics, and the basic 

algorithm for estimating beliefs in probabilistic robotics is using Bayes filter 

algorithm [60]. This algorithm calculates the belief distribution given measurement 

data and control data. Table 2.1 shows the basic algorithm of Bayes filter in pseudo 

code. From the table we know that the Bayes filter is recursive, by which the belief 

bel{xt) at time t is calculated from the belief bel(xt_x) at time t-\. Its input is 

the belief at time t -1, along with the most recent control ut and the most recent 

measurement z,. Its output is the belief at time t. The Bayes filter algorithm 

includes two important steps. In line 3, it handles the control ut. By doing so, it 

calculates a belief over the state xt_x and the control ut. One may notice that the 

equation in line 3 involving the state transition probability which transit the state from 

x,_, to state x,. And we call this update equation as the control update. The 

probability distribution bel(xt) is often referred to as prediction in the context of 

probabilistic robotics [60]. It reflects the fact that bel{xt) predicts the state at time t 

based on the previous state posterior, before incorporating the measurement at time t. 

The second important step of the Bayes filter is called the measurement update in line 

4 in which the measurement probability is involved. It does so for each posterior xt. 

By incorporating the state transit probability and measurement probability, one can 

calculate the final belief bel(x,) which is returned in line 6 of Bayes filter algorithm. 

To determine the posterior belief recursively, the Bayes filter algorithm requires an 

initial belief bel(x0) at time t = 0. The initial belief characterizes the initial 

knowledge about the environmental state. In this thesis, we assign a uniform 

distribution to bel(x0). 

In probabilistic robotics, Bayes filter algorithm is implemented in many different 

ways. There are quite a few algorithms are derived from the Bayes filter. Each one is 
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based on different assumptions of the measurement probability, the state transition 

probability, and the distribution of the belief [60]. In many robotic problems, beliefs 

have to be approximated because of real-time response requirement. Therefore, 

designing a suitable approximation algorithm is usually a challenging problem. When 

choosing an approximation, one has to trade off many different properties such as 

computational efficiency, approximation accuracy, and ease of implementation. 

1: 
?• 

3: 

4: 
5: 
6: 

Algorithm Biwsjfittfrf&elfa'i.j), % %): 

for all xt do 

W(l() = j p{l, u't.A-i) foii'/j_i) dl 

bd{xt) = ijpi:t ft)bd\r,j 
endfof 

i t a W ! / j j 

Table 2.1: The Bayes filter algorithm. [60] 

2.3 Mobile Robot Localization 

There are many existing implementations of Bayes filter. One of the important 

ones is the algorithm of mobile robot localization. Mobile robot localization is the 

problem of determining a robot's pose (localization, orientation) relative to the given 

map of the environment. The localization problem is a core problem in mobile 

robotics. It plays an important role in a variety of successful mobile robot systems [9, 

17, 31, 39, 50]. Nearly all robotic tasks require knowledge about the location of the 

robot and the location of objects that are being manipulated. Thus, the mobile robot 

localization has been referred to as the most fundamental problem for providing a 

mobile robot with autonomous capabilities [7]. Figure 2.4 illustrates a graphical model 

for the single mobile robot localization problem. The robot is given a map of its 

17 



environment and its target is to determine its pose relative to this given map. In this 

Figure, the value of shaded nodes are known: the map m, the measurements z , and 

the controls u. The goal of localization is to infer the robot pose variable x. 

Figure 2.4: Graphical model of mobile robot localization. [60] 

2.3.1 Classification of Localization Problems 

The mobile robot localization problem comes in many different flavors. This 

classification divides localization problems along a number of important dimensions 

such as the property of the environment and the initial knowledge which a robot might 

have. 

The first dimension to classify localization problems is by the type of knowledge 

that is available at the initial time to a robot. There are two cases under this dimension. 

The most simple localization problem is position tracking. Here the initial knowledge 

of robot's pose is known, and the problem is to compensate incremental errors in a 

robot's odometry. Algorithms of position tracking often rely on the assumption that 

the pose error is small. Within the context of position tracking, the pose uncertainty is 

often approximated by a uniform distribution like a Gaussian distribution. More 

challenging one is the global localization problem, where a robot is not given its initial 

pose but instead has to determine it by its own. The global localization problem is 

more difficult, since the error in the robot's estimate can not be assumed to be small. 
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As a result, a robot should be able to handle multiple, distinct hypotheses. 

The second dimension is the environment which has a substantial impact on the 

difficulty of localization. Environments can be static or dynamic. Static environments 

are environments where the only variable quantity is the robot's pose. Only the robot 

moves in this environment while other objects remain at the same location at the same 

time. Dynamic environments possess objects other than the robot whose location or 

configuration changes over time [60]. Examples of such changes are: people, doors, 

and movable objects. Obviously, localization in dynamic environments is more 

difficult than localization in static ones. In this thesis, we focus on static environment. 

The third dimension is whether or not the localization algorithm controls the 

motion of the robot. There are two cases. The first one is called passive localization 

[14], where the localization module only monitors the robot operating. The robot is 

controlled through some methods, and the robot's motion is not aimed at speeding up 

the process of localization. For instance, the robot may move randomly. The other one 

is called active localization [60] which controls the robot so as to minimize the 

localization error. This thesis entirely considers passive localization algorithm. 

The fourth dimension is related to the number of robots in the problem. Single 

mobile robot localization is the most studied localization problem. It handles a single 

mobile robot only. Single robot localization collects all data at a single robot platform, 

and there is no communication involved. The multi-robot localization problem 

involves more than one robot. The research on multi-robot localization raises 

interesting problems such as representation of beliefs of multiple robots and the 

communication between a group of robots [13, 29, 43]. 

The above four dimensions describe the four important aspects of the mobile 

robot localization problem. 
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2.3.2 The map representation 

The problem of mobile robot localization is based on a given map, which means 

that the map is initially known to the robot. In this section, we briefly explain the map 

representation within the context of mobile robot localization. 

The problem of localization has been developed for a set of map representations. 

A map is a list objects in the environments along with its properties. Within the 

context of mobile robot localization, the most common used map representations are 

feature-based map and localization-based map. Feature-based maps can only specify 

the shape of the environment at the specific locations, that is to say the locations of the 

objects contained in the map. On the other side, location-based maps afford a label for 

any location in the environment. It keeps information not only about objects in the 

environment, but also about the absence of the objects like free space. In some 

problems, objects will be in the form of landmarks [13], which are distinct, stationary 

features of the environment that can be acknowledged reliably. Figure 2.5 shows the 

example of the location-based map and feature-based map respectively. In location 

based map (Figure 2.5(a)), the black areas are obstacles, and the white areas are free 

space. In feature based map (Figure 2.5(b)), the black dots mean landmarks, and the 

thin linkages indicate the topology of these landmarks. 

(«) 

Figure 2.5: The map representation for robot localization: (a) A location-based map; 
(b) A feature-based map. [60] 
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2.3.3 Related Works 

Because localization is a fundamental problem in the field of mobile robot, there 

are many existing probabilistic approaches to address the problem of single mobile 

robot localization. However, the majority of existing algorithms address only the 

position tracking problem. Among them, most of the earlier approaches employ 

Kalman filter [19, 24, 33, 52] based algorithms. These approaches are based on the 

assumption that the uncertainty in the robot's pose can be represented by a unimodal 

Gaussian distribution. They also exploit a range of restrictive assumptions such as 

Gaussian distributed noise and Gaussian distributed initial uncertainty. Under these 

assumptions Kalman filters provides extremely robust and efficient algorithm for the 

problem of position tracking. Nevertheless, the uncertainty in the robot's pose needs to 

be represented by multi-modal distribution in the global localization problem. Since 

the above Kalman filter algorithms can not represent multi-modal probability 

distributions, which makes inapplicable to global localization problem. This is one of 

the limitations for Kalman filter based algorithms. 

This limitation is overcome by different approaches which have used increasingly 

richer schemes to represent uncertainty. These different approaches can be 

distinguished by the type of representation for the state space. Extended Kalman 

filters [8, 22, 40, 41] represent beliefs by using mixtures of Gaussians, thus enabling 

them to handle multiple, distinct hypotheses, each of which is represented by a 

separated Gaussian. Nevertheless, this approach inherits from Kalman filters which 

also exploit a range of restrictive assumptions such as Gaussian distributed noise. To 

meet this kind assumption, all practical implementations only extract low dimensional 

features from the sensor data, so discarding lots of the information acquired by the 

robot's sensor. Grid based Markov localization [15] can handle multi-modal and non 

Gaussian probability distribution at a fine resolution. Grid based methods perform 

numerical integration over an evenly spaced grid. These approaches represent beliefs 
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by piecewise constant functions like histograms over the space of all possible poses. 

Grid based methods are powerful, but suffer from excessive computation overhead 

and a priori commitment to the size and resolution of the state space. The 

computational requirements have an effect on accuracy as well, since not all 

measurements can be processed in real-time, and valuable information about the state 

space might be discarded. 

It is noted that all the above algorithms share the same idea of probabilistic theory. 

They all estimate posterior distribution over the robot's poses under certain 

independence assumptions which will also be the case for the method illustrated in 

this thesis. 

2.3.4 Monte Carlo Localization 

Previous approaches were either computationally cumbersome, or had to resort to 

extremely coarse-grained resolutions. In this section, we review one of the latest and 

commonly used probabilistic approaches to single mobile robot localization called 

Monte Carlo localization (MCL). MCL constitutes the core of the proposed approach. 

MCL solves the global localization problem in an extremely effective and efficient 

way. Although it is relatively young, MCL has already become one of the most 

popular localization algorithms in robotics. It is easy to implement and works well 

across a broad range of localization problems. 

The key idea of MCL is to represent the belief by a set of samples, drawn 

according to the posterior distribution over the robot's poses. That is to say, rather than 

approximating posteriors in parametric form such as Kalman filter, MCL represents 

the posterior by a collection of weighted samples which approximates the desired 

probability distribution. The idea of estimating state space recursively through 

samples is not new. In the statistical literature, it is known as particle filters [54]. 
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Within the context of localization, the particle representation has a range of 

characteristics: (a) Particle filters can accommodate arbitrary sensor characteristics 

and noise distributions, (b) Particle filters are universal density approximations which 

weaken the restrictive assumptions on the shape of the posterior density when 

compared to previous parametric algorithms such as Kalman filters, (c) Particle filters 

focus computational resources in areas that are most relevant, (d) Particle filters 

control the number of samples online, which can adapt to available computational 

resources, (e) Finally, particles filters are easy to implement, which makes them an 

appealing pattern for mobile robot localization. The particle filter is a nonparametric 

implementation of the Bayes filter. The key idea of particle filter is to represent the 

posterior bel{xt) by a set of random state samples draw from this posterior. Such a 

representation is approximate, but it is nonparametric, and thus can represent a much 

broader space of distributions than Gaussian based algorithms. In particle filters, the 

samples of the posterior distribution are called particles and are denoted as 

X, = xl
t
i],x[

t
2],...,xl

t
Mi. Each particle jcjra| (withl < m < M ) is a concrete instance of 

the state at time t. M denotes the number of particles in the particle set Xt. In other 

words, a particle is a hypothesis as to what the true world state may be at time t. 

1: 
2: 
3; 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

Algorithm Particle J i t ter^ _ l, uf, %): 
Xt — Xt = $ 
for m = 1 to M db 

sample xf1- ~~ pi ,r, u,, ,r}^) 

endfor 
for ffi = 1 to M db 

draw i with probability oc t*4 
add xf' to Xt 

eadfor 
return A% 

Table 2.2: The particle filter algorithm. [60] 
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Because the intuition behind particle filters is to approximate the belief bel(x,) 

by the set of particles Xt, the probability for a state hypothesis x, will be 

proportional to its posterior bel(xt) x\m] ~ p(xt I zhl,ux.t) [60]. As the result, the more 

the number of samples falls in the region of the state space, the more likely it is the 

true state falls into this region. Because the particle filter is a recursive Bayes filter, it 

constructs the belief bel{xt) recursively from the previous belief fee/(xr_,). Since 

beliefs are represented by a set of particles, particle filters construct the particle set 

Xt recursively from the set Xt_Y. Table 2.2 shows the particle filter algorithm. The 

input of this algorithm is the particle set X,_,, along with the most recent control data 

u, and the most recent measurement data z, • Line 4 generates a hypothetical state 

x,1'"1 for time t based on the particle jtj™! and control u,. This step involves 

sampling from the state transition distribution p(xt \xt_x,ut). Line 5 calculates the 

importance factor for each particle x\m]. The importance factor [44] is non-negative 

numerical parameters for determining the weight (importance) of each sample, 

denoted w\m]. Importance factors are used to incorporate the measurement z, into 

the particle set. So the importance is the probability of the measurement z, under the 

particle x\m]. From line 8 to line 11, this algorithm implements what is known as 

resampling or importance sampling [51]. Resampling transforms a particle set of M 

particles into another particle set by incorporating the importance weights into the 

resampling process, the distribution of the particle change. The resampling step is a 

probabilistic implementation of the Darwinian idea of survival of the fittest [60]. It 

refocuses the particle set to regions in the state space with high posterior probability. 

By doing so, it focuses the computational resources to regions in the state space where 

most relevant. 
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Table 2.3 shows the basic MCL algorithm which is obtained by substituting the 

probabilistic motion model and measurement model into the particle filter algorithm. 

The basic MCL algorithm represents belief bel(xt) by a set of M particles 

Xt = {x[
t
>], x\2] ,...x\M]}. The input of this algorithm is the particle set Xt_x, along with 

the most recent control data ut, the most recent measurement data z,, and the given 

map of the environment. The initial set of samples represents the initial belief 

bel(x0) about the state of the whole system. For instance, in global mobile robot 

localization, the initial belief is a set of poses drawn according to a uniform 

distribution over the robot's universe, annotated by the uniform importance factor — 
M 

to each particle. The line 4 samples from probability motion model by using particles 

from previous belief as a starting point. The probability measurement model is then 

applied in line 5 to determine the importance factor (weight) of that particle. The 

above sampling process is repeated m times, producing a set of m weighted 

samples x]'](i = l,2,...m) for current state space. Line 8 to line 11 is the resampling 

routine for MCL algorithm. 

1: 
<j. 

3: 

4: 

5: 
6: 
7: 
8: 

9: 

10: 
11: 
12: 

Algorithm MCL(*^_j, %, zt, m): 
Xt = Xt = $ 
for m = 1 to M do 

a;f'* = sample_motioia_n).odel('8|:, xfjt) 

tt'| = measurement; jrunlcjl^j.JFi.m) 

endfar 
form = 1 taiWdfo 

fat; 

draw i with probability ex. «?|s 

addaf'to^ 
esdfer 
retom Xt 

Table 2.3: The algorithm of Monte Carlo localization. [60] 
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Figure 2.6: Global localization of a mobile robot using MCL: (a) Global uncertainty, 
particles are uniformly distributed; (b) Particles after approximately 1 meter of robot 
motion. Due to environment symmetry, most particles are centered on two locations; 
(c) After the robot enters one room, thus breaking the symmetry. [13] 

26 



Figure 2.6 shows an example of MCL within the context of global localization for 

single mobile robot in an office environment. This robot is equipped with laser range 

finders. It is also given a map of the environment. In Figure 2.6(a), the robot is 

initially globally uncertain; hence all the particles are spread uniformly through the 

free space. Figure 2.6(b) shows the particle set after approximately 1 meters of robot 

motion. Due to the symmetry of the environment, MCL has disambiguated the robot's 

pose centered on two locations. Finally, Figure 2.6(c) illustrates that after another 1 

meter of robot motion, the robot has entered into one room. The ambiguity is resolved, 

and the robot knows where it is. The majority of samples are now centered closely on 

the correct position. 

2.3.5 Multi-Robot Localization. 

Recently, it has been noted that research efforts have been shifted from single 

robot to multi-robot systems. Multi-robot systems have been proposed for a variety of 

applications including space exploration, search and rescue, military surveillance, and 

hazardous cleanup [63]. One of the first problems that one needs to tackle in a 

multi-robot system is to localize each robot in the system. A multi-robot system has 

some obvious advantages over a single robot system. For instance, a multi-robot 

system can collect and integrate multiple sensory information from different robots in 

the system [42]. By integrating these multiple sensory data (also called sensor fusion); 

the system can possibly obtain better localization performance. The benefits of sensor 

fusion are three-folded. Firstly, multi-robot can share their sensor information, which 

will increase the robustness of the localization algorithm for each robot. Secondly, the 

robots can exchange their pose estimates with each other, and use their geometric 

relationship to derive more reference information for localization [53]. Thirdly, 

different robots can be equipped with different type of sensors, so that the whole 

system can achieve more comprehensive environment description. 
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There are some existing algorithms addressing the problem of multi-robot 

localization. The most commonly used approaches include Kalman filters [19, 24, 33, 

52] and portable landmarks [29, 38]. Most of the early works focus on the question of 

how to reduce the odometry error using a cooperative team of robots. One popular 

approach to cooperative robot localization is to use the mover and observer strategy, 

where two groups of robot are involved, a stationary one and a moving one. The 

measurements are then used to correct the odometry error accumulated by the moving 

robots. In some cases, odometry data is discarded and localization relies only on 

observations by the stationary robots. Within this context, Kurazume [29] introduced 

the notion of regarding robots as the portable landmarks. A similar method is 

presented in [38]. The authors deal with the problem of exploration of unknown 

environment using two mobile robots. In order to reduce the odometry error, one robot 

is equipped with a camera tracking system that allow it to determines its relative 

position and orientation with respect to a second robot which carries a helix target 

pattern and acting as a portable landmark. Although the mover and observer approach 

has proven successful, all approaches have the following limitation: (a) only one robot 

or a team of robots is allowed to move at a certain time instant; (b) the two robots or 

teams of robots must maintain visual contact at all the time; (c) this kind of approach 

slows down the overall speed. However, all these approaches only seek to reduce the 

odometry error. None of them incorporates environmental feedback into the 

estimation, and consequently they are unable to localize robots relative to each other, 

or relative to their environments. Even if the initial localizations of all robots are 

known, they will be getting lost ultimately. 

Another approach is to allow all the robots to move at the same time. As an 

example of the method, the extended Kalman filter (EKF) approach to robot 

localization has been applied to cooperative localization by Roumeliotis and Bekey 

[43]. They present an approach to multi-robot localization in which sensor data from a 

heterogeneous collection of robots are combined through a single Kalman filter to 

estimate the pose of each robot in the team. They also show that how this centralized 
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Kalman filter can be broken down into n separate Kalman filters, one for each robot 

to allow for distributed processing. Their distributed approach allows a robot to store 

sensor information when not in contact with the group and to incorporate it whenever 

encounters happen. The motion model of the robots ensures propagation of position 

estimate and associated uncertainty when the robot can not observe any other robot, as 

well as consistent data fusion in case of a relative measurement. Therefore, this 

approach enables the group of robots to move continuously without having to be 

stayed within visible range at all the time. 

Fox et al. [13] propose a statistical method for collaborative multi-robot 

localization. This approach extends their earlier work on MCL single mobile robot 

localization. Their method uses a sample based version of Markov localization, 

capable of localizing mobile robots in the real time fashion. To avoid exponential 

complexity in the number of robots, a factorial representation is used where each robot 

in their system maintains a probability distribution describing its own pose. When a 

robot determines the location of another robot relative to its own, both robots can 

refine their internal beliefs based on the other robot's estimate, thus improving their 

localization accuracy. The ability to exchange information during localization is 

particularly attractive in the context of global localization. To transfer information 

across different robots, the probabilistic detection model was proposed to model the 

robot's ability to recognize each other. When one robot detects another, these detection 

models are used to refine the individual robot's belief, consequently possibly reducing 

the uncertainty of both robots during localization. In [13], a combination of camera 

images and laser range scans are used to determine another robot's relative location. 

The reliability of the detection process is modeled by learning a parametric detection 

model from data, using the maximum likelihood estimator. During localization, 

detections are used to introduce additional probabilistic constraints which tie one 

robot's belief to another robot's belief. To combine sample sets generated at different 

robots in which each robot's belief is represented by a separated sample set, their 

approach transforms detections into density trees [27] which approximate discrete 
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sample sets by piecewise constant density functions. These trees are then used to help 

to refine the importance factors (weight) of other robot's belief, thus reducing their 

uncertainty in response to the detection. As the result, the robots are able to localize 

themselves faster and maintain higher accuracy. 
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Chapter 3 

An Improved Approach For Multi-Robot 

Localization 

3.1 Limitation of Existing Method 

As reviewed in chapter2, Fox et al. [13] proposed a statistical method to 

collaborative multi-robot localization using MCL. This approach extends their earlier 

work on MCL for the single mobile robot localization [14]. Their approach in [13] 

uses a sample based version of Markov localization, capable of localizing mobile 

robots in a real time fashion. When teams of robots localize themselves in the same 

environment, probabilistic methods are used to refine each robot's belief whenever 

one robot detects another. However, the authors point out several limitations of their 

method in [13]. One of the limitations is that robots update their belief estimates 

constantly whenever one robot perceives another robot. Because of this limitation, two 

robots will exchange their pose estimates in any case as long as they detect each other. 

However, this instant update may not contribute positively to the localization process. 

For example, if one robot detects another one and both robots' beliefs are highly 

uncertain, it might be more appropriate to delay the update or information exchange. 

If later on one of the robots becomes much more certain and it detects another robot, 

then updating the belief of the detected robot could possibly speed up the localization 

of the detected robot. In other words, if both robots have blurry knowledge of their 

poses at the detection time, it is not necessary to exchange their internal beliefs. 

Therefore, this approach suffers from the problem of delayed information exchange 

(also called delayed integration in [13]). 
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3.2 The Proposed Method 

In this chapter, we propose an approach to address the delayed information 

exchange problem. It is our belief that robots do not have to exchange information 

whenever they detect each other. Such information exchange should only occur when 

this exchange will benefit the localization process. Therefore, in our method, when 

one robot detects another robot, we first compare their beliefs to see which robot is 

more certain about its location, and then, based on the result of the comparison, we 

decide whether information exchange is necessary. In our approach, we assume that 

there is only a remote chance that more than two robots detect each other 

simultaneously, which happens rarely and will be ignored when it happens. In order to 

solve the problem of delayed information exchange, Fox et al. in [13] suggested that 

the robots are required to keep track of their actions and measurements after detecting 

other robots and landmarks. Following this suggestion, in the proposed approach we 

use a status variable of landmark detection to separate all robots within a team into 

two situations: 

(a) The first situation is that a robot has already detected a landmark in the 

environment (the status variable of landmark detection is set to true). In this situation, 

a robot's belief usually becomes more certain by gathering some information of its 

pose relative to the environment through landmark detection. 

(b) The second situation is that a robot has not yet detected any of the landmarks 

in the environment (the status variable of landmark detection is set to false). In this 

situation, a robot's belief about its pose is normally highly uncertain. 

Based on the above two situations, our method divides the events of robots' 

detections with other robots into three groups: 
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(a) In the first group, both robots detect each other before they observe any of the 

landmarks in the environment. In this group, both robots' beliefs about their 

environment and their poses relative to this environment are highly uncertain. 

Therefore, there is no need to exchange their beliefs at the detection time. 

(b) In the second group, when two robots detect each other, one of the robots has 

already detected a landmark, while another robot has not yet detected any of the 

landmarks. In this group, one robot has already obtained some knowledge about its 

pose relative to its surroundings by perceiving a landmark early, while another robot's 

belief is still very much uncertain. Thus, two robots will exchange their beliefs at the 

time of detection, which means that the former robot is about to use its belief which 

contains more information to refine the latter robot's belief which contains less 

information. By doing so, the former robot helps the latter robot to accelerate its 

localization process. 

(c) In the last group, both robots have already detected landmarks prior to their 

detection to each other. In this group, both robots have some knowledge about their 

poses relative to their environment, so that they require comparing their beliefs during 

the detection to see which robot is more certain about its location. In order to compare 

the beliefs between two robots, our approach first applies density estimation to extract 

probability density for each robot's belief, and then make use of these probability 

density values to calculate how much information is contained with each robot's belief. 

Subsequently, the belief of the robot which contains more information is used to refine 

the belief of the robot which contains less information. 

Our approach therefore avoids unnecessary information exchange whenever one 

robot perceives another robot. On the other hand, this approach does allow 

information exchange between detecting robots which contributes positively to the 

localization process, hence, improving the effectiveness and efficiency of multi-robot 

localization. The complete approach in the form of pseudo code is summarized in 
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Table 3.1. In the following sections, the detailed explanations of the above proposed 

approach will be provided. 

Initially, each robot in the team does the single robot MCL, and each robot 

maintains a particle set to represent its own internal belief about its pose. 

When two robots detect each other: 

(a) if both robots have not perceived any landmarks before, 

there is no belief exchange between two robots; 

(b) if one robot has already detected the landmark before, while another robot has 

not detected any of the landmarks yet, 

the former robot will make use of its current belief to help the latter robot to 

refine its belief; 

(c) if both robots have already detected landmark, 

both robots will calculate the entropy of their beliefs and make comparison: 

if one robot's entropy of its belief is less than the other robot, 

the former robot will help the latter robot to refine its belief; 

else if one robot's entropy of its belief is greater than the other robot, 

the former robot's belief will be refined by the latter robot's belief; 

else 

there is no information exchange between two robots. 

If both robots have already exchanged their beliefs, they can not exchange their 

beliefs again until the next time after one of the robots observes the landmark or both 

robots detect the landmarks. 

Process of calculating entropy of a robot's belief 

(a) calculate the probability density of a particle set through kernel density 

estimation; 

(b) plug these probability density values into the formula of entropy. 

(c) this process will return the entropy value of a robot's belief. 

Table 3.1: The proposed approach for multi-robot localization. 
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3.2.1 Problem Statement 

In this section, we specify the multi-robot localization problem which will be 

addressed in this thesis. First of all, we state the following assumptions: 

(a) A group of M independent robots move in a two-dimensional space. Each 

robot maintains its own belief information that models only its own uncertainty [13]. 

(b) Each robot carries both interior sensing devices such as odometry reader and 

exterior sensing devices such as bumper. These sensors measure the self motion of the 

robot and perceive the external environment for localizing features such as landmarks. 

(c) There is a remote chance that more than two robots detect each other 

simultaneously, which happens rarely and will be ignored when it happens. (Our 

experiment in the next chapter justifies that this is a practical assumption.) 

(d) The last assumption is that our robots all have the same sensors. 

In this thesis, we study the problem of determining a principled way to develop 

the information exchange mechanism during the interactions between members of a 

group of robots. The information exchange between the robots is only necessary and 

useful when two robots detect each other and satisfy some conditions. To formulate 

the problem in such a way will be allowing for information exchange satisfying with 

minimal communications requirement and contributing positively to the localization 

process. 

3.2.2 Explanations of Proposed Method 

In this section, we explain our proposed method in detail. Because the core idea 
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of multi-robot localization is to incorporate measurements taken at different robots, 

each robot in the group can benefit from information gathered by other robots. At first 

glance, we could solve the problem of localizing N robots by localizing each robot 

independently. In our approach, each robot maintains its own belief which models 

only its own uncertainty. In the absence of detections, each member of a group of 

robots performs MCL independently. Detections are used to provide additional 

information between the two robots involved, which will be leading to refine local 

estimates of each robot. 

As mentioned in the section 3.1, in order to solve the problem of delayed 

information exchange, our approach lets the robots keep track of their actions and 

measurements after detecting other robots or landmarks. By doing so, our method 

separates all the robots within a team into two situations based on the robot's status of 

landmark detection: 

(a) The first situation is that a robot has already detected any of the landmarks in 

the environment. In our approach, we make use of a status variable of landmark 

detection to record whether a robot has detected a landmark or not. Initially, this status 

variable of landmark detection is set to false to reflect that a robot knows nothing 

about its environment. In this situation, our approach will set the status variable of 

landmark detection to true, which indicates that the robot becomes more certain about 

its pose relative to its environment by gathering some information of its environment 

through landmark detection. 

(b) The second situation is that a robot has not yet detected any of the landmarks 

in the environment. In this situation, the status variable of landmark detection keeps 

its initial value, which means that the robot is still extremely uncertain about its pose 

relative to its environment. By using the status variable of landmark detection, our 

approach is capable of tracking the measurements after detecting the landmark. 
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Based on the above discussion, our method divides the events of robots' 

detections to other robots into three scenarios: 

(a) In the first scenario, both robots detect each other before perceiving any of the 

landmarks in the environment. Because the pair of robots' beliefs about their poses 

relative to their surroundings are both highly uncertain, it is not necessary to exchange 

their beliefs during the detection time. The information exchange will not make any 

positive contributions to the localization process of each robot at this time. 

Figure 3.1 illustrates the first scenario where two robots detect each other without 

information exchange. In Figure 3.1, we have a 2D L-shaped environment which 

includes two robots A, B represented by two labeled dark circles (robot A and robot B 

are in the same environment) and a rectangle-shaped obstacle. Because our proposed 

approach is based on the MCL (the implementation details of motion model and 

measurement model based on our robot will be presented in the next chapter), the 

robot's belief is represented by a collection of weighted particles (the particles in 

Figure 3.1 are represented by a set of small black dot). For the sake of easy to 

demonstrate our three scenarios, the particle set in Figure 3.1(a) is used to represent 

the robot A's current belief. Particle set in Figure 3.1(b) is used to represent the current 

belief of robot B. Initially, both robots are global uncertainty about their environment. 

In this scenario, although two robots wander around in the environment for a while, 

they both have not yet detected any of the landmarks, which indicates that both robots' 

beliefs are highly uncertain. When robot A and robot B detect each other within the 

context of scenario one, it is unnecessary to exchange any information between two 

robots. By doing so, we are able to save the computational resource from exchanging 

needless information compared with the method proposed in [13]. 

37 



* . * 

. • # . : •. 
• * • • • « 

(a) 

• * # 

» • • 

• « 
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Figure 3.1: Two robots detect each other without information exchange: (a) The 
current belief of robot A is represented by a set of weighted particles (a set of small 
black dot); (b) The current belief of robot B is represented by a set of weighted 
particles. (Robot A and B are in the same environment) 

(b) In the second scenario during the time of two robots detecting each other, one 

of the robots has already detected a landmark, while another robot has not yet detected 

any of the landmarks. In this scenario, the former robot has already obtained some 

38 



knowledge about its pose relative to its environment by detecting a landmark in the 

early time, while the latter robot is still highly uncertain about its pose. Therefore, two 

robots will exchange their beliefs at the detection time. The former robot that has more 

certain belief will help the latter robot to refine its pose estimate. 

Figure 3.2 illustrates the second scenario where two robots detect each other with 

information exchange. In this Figure, we have exactly the same environment setup as 

in Figure 3.1. Figure 3.2(a) shows that robot A's belief becomes more certain by 

detecting a landmark in the environment. Because robot B has not yet detected any of 

the landmarks, the particle set in Figure 3.2(b) shows that the current belief of this 

robot is still highly uncertainty. Figure 3.2(c) illustrates the resulting particle set of 

robot B after exchanging information with robot A. This Figure demonstrates that the 

robot A makes use of its belief to help robot B to refine its belief. As the result, the 

localization process of robot B is accelerated. 

(c) In the last scenario, both of the robots have already detected landmarks prior 

to their detection to each other. In this scenario, both robots have already obtained 

some knowledge about their poses relative to the environment. According to our 

approach described in section 3.2, we first compare these two robots' beliefs to see 

which robot is more certain about its location, and then, based on the result of the 

comparison, we decide how to exchange information between two robots. Figure 3.3 

illustrates this scenario where both robots have already obtained some knowledge 

about their poses by landmark detection. When robot A and robot B detect each other, 

they need to compare their beliefs. 

In order to compare with the beliefs of two robots, we need to evaluate the degree 

of uncertainty within the belief of each robot. To evaluate the uncertainty, our 

approach employs the entropy. In the next section, the background knowledge of 

information theory will be presented. 
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Figure 3.2: Two robots detect each other with information exchange: (a) Robot A's 
belief becomes more certain by detecting a landmark; (b) The belief of robot B is still 
very much uncertain; (c) The result belief of robot B after refined by robot A' belief. 
(Robot A and B are in the same environment) 
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Figure 3.3: Illustration of scenario three: (a) Robot A's belief becomes more certain 
by detecting a landmark; (b) The belief of robot B also becomes more certain through 
the landmark detection. They first need to compare their beliefs, and then decide how 
to exchange their information. (Robot A and B are in the same environment) 
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3.3 Background Knowledge of Information Theory 

Information theory [48] is a branch of applied mathematics and engineering 

involving the quantification of information. Information theory is generally considered 

to have been founded in 1948 by Claude Shannon in his seminal work: A 

Mathematical Theory of Communication [48]. Information theory is a broad and deep 

mathematical theory, with equally broad and deep applications. Information theory is 

based on probability theory and statistics. 

A key measure of information that comes up in the theory is known as 

information entropy [72], which is usually expressed by the average number of bits 

needed for storage or communication. Intuitively, entropy quantifies the uncertainty 

involved in a random variable. For example, a fair coin flip will have less entropy than 

a roll of a die. Information entropy quantifies the information contained in a message, 

usually in bits or bits/symbol. The choice of logarithmic base in the following formula 

determines the unit of information entropy that is used. The most common unit of 

information is the bit, based on the binary logarithm. Other units include the nat, 

which is based on the natural logarithm. 

The entropy H of & discrete random variable X that can take on possible 

values {xl.. .xn} is defined as: 

H(X) = Ex[I(x)] = -£ />U ; ) log, p(x,) [48] (1), 
xeX 

where I(x) is the information content or self information, which is the entropy 

contribution of an individual message; p(x,) = Pr(X - JC,)is the probability function 

of outcome x,, and b is the base of the logarithm used. Possible values of b are 2, 

e, and 10. The unit of the entropy H is bit for b = 2, nat for b = e, and digit for 
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b = 10. An important property of information entropy is that it has maximized 

uncertainty when all the random variables in the variable set are all having the equal 

probability. 

3.4 Explanations of Proposed Method (Continue I) 

As we described the last scenario in section 3.2, if both robots have already 

obtained some knowledge about their poses relative to the environment during the 

detection time, we need to evaluate the degree of uncertainty for each robot's belief. In 

order to evaluate the degree of uncertainty, our approach makes use of formula (1) to 

calculate how much uncertainty along with each robot's belief, and then uses these 

entropy values for the comparison. For instance, we have two robots A and B in the 

environment. At the time of detection, the entropy value of robot A's belief is HA, 

and the entropy value of robot B's belief is HB. Obviously, there are three different 

situations if one compares HA with HB . 

(a) The first situation is that HA > HB, which indicates that robot A's belief is 

less certain than robot B's. Because the belief of robot B contains more information 

than robot A does, the robot B will use its belief to refine the belief of robot A. 

(b) The second situation is that HA<HB, which means that robot A's belief is 

more certain than robot B's. The robot A will use its more certain belief about its pose 

to help refine robot B's belief. 

(c) The last situation is that HA=HB, which shows that robot A and robot B 

have the same degree of uncertainty for their beliefs. Because both robots have the 

same degree of uncertainty for their beliefs in the last circumstance, there is no 
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information exchange between robots. 

In order to apply the formula of entropy, we must know the probability density 

values of all the discrete random variables in the dataset. Within the context of MCL 

based multiple robots localization, the belief of a robot is represented by a collection 

of weighted particles. Because each particle in the particle set has two dimensional 

coordinates x and y, we may refer each particle as a two dimensional random 

variable. Consequently, we have a set of discrete random variables in the two 

dimensional space to represent the belief of a robot. Then the problem of calculating 

the probability density values of the particle set will be transformed to calculate the 

probability density values of a collection of discrete two dimensional random 

variables. There are many existing approaches [20, 46] addressing the problem of 

extracting the probability density values. One of the commonly used approaches to 

solve this problem is density estimation [49]. 

Our approach will exploit the technique of density estimation for calculating the 

probability density values. In the next section, the background knowledge of density 

estimation including idea of density estimation, kernel density estimation [37], and 

multivariate kernel density estimation [47] will be presented. 

3.5 Background Knowledge of Density Estimation 

In probability and statistics, density estimation is the construction of an estimate, 

based on observed data, of an unobservable underlying probability density function. 

The unobservable density function is thought of as the density according to which a 

large population is distributed; the data are usually thought of as a random sample 

from that population. A variety of approaches to density estimation are used, including 

kernel density approximation [37] and a range of data clustering techniques. 
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In statistics, kernel density estimation is a way of estimating the probability 

density function of a random variable. If xv x2,... xN are random variables in a sample 

set, then the kernel density approximation of its probability density function is: 

^w^i^^)[47](2)' 

where N is the number of random variables, K is some kernel [73] which is a 

weighting function used in non-parametric estimation techniques, and h is the 

smoothing parameter which attempts to capture important patterns in the data while 

leaving out noise. 

In our case, we need to calculate probability density of all the particles in the 

particle set. Because each particle is a two dimensional random variable which 

includes coordinates xand y, we must be able to estimate multivariate densities. 

Consider a d dimensional random vector x = (xl,x2,...xd)
T where xl,x2,...,xd are 

one dimensional random variables. Drawing a random sample of size N in this 

setting means that we have N observations for each of the d random variables, 

x1,x2,...,xd. Suppose that we collect the ith observation of each of the d random 

variables in the vector xt: 

x, = (xn,xa,...,xjd),i = 1,2,...,n [47] (3), 

where xVj is the ith observation of the random variable Xj. Our goal now is to 

estimate the probability density of x = (x,, x2,...xd ) T , which is just the joint probability 

density function p of the random variables x,, x2,..., xd: p(x) = p{xx ,...xd). 
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From the above one dimensional case we might consider adapting the kernel 

density estimator to the d dimensional case, and write in the following form: 

n^Txn h n^~f h h h 

where K denotes a multivariate kernel function operating on d arguments. We 

assume that the smoothing parameter h is the same for each component. What form 

should the multiple dimensional kernels take on? The easiest solution is to use a 

multiplicative kernel K(u) - K{u{)*...* K{ud) [47], where K denotes a univariate 

kernel function. In our case becomes: 

P(x)--fJ{Y[yK(^pL)} [47]. (5) 

To get a better understanding, let us consider the two dimensional case where 

x = (xl,x2)
T. In this case, the multivariate kernel density function becomes: 

p(x) = L t \ K ( ^ ^ , ^ ^ ^ ) = ~t\K(^^K(^^^) [75]. (6) 
ntth2 h h ntth2 h h 

Each of the n observations is of the form (xa,xi2), where the first component 

gives the value that the random variable xl takes on at ith observation and the 

second component does the same for xz. Notice that we get a contribution to the sum 

for observation / only if xn falls into the interval [xx -h,xl+ h) and if xn falls 

into the interval [x2 -h,x2+h). If even one of the two components fails to fall into 

the respective interval then one of the indicator functions takes the value 0 and 
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consequently the observation does not count [75]. 

3.6 Explanations of Proposed Method (Continue II) 

According to the previous explained formula (5) of multivariate kernel density 

estimation and formula (1), our approach is capable of calculating the entropy of a 

robot's belief. The entropy value reflects the uncertainty about a robot's knowledge of 

its pose relative to its surroundings. For example, if two robots A and B detect each 

other after observing the landmarks, they will use above described method to compute 

entropies of their beliefs. If robot A's entropy is smaller than robot B's, which 

indicates that robot A' belief is more certain than robot B's, and then robot A will use 

its belief to refine robot B's belief, and vice versa. In doing so, the robot whose belief 

is uncertain will benefit from the process of this information exchange. Accordingly, 

the localization process of the whole system will be accelerated. 

Because the longer the passage of time is since the last detection with another 

robot, the more chance the robot loses its position or becomes uncertainty again. To 

avoid exchanging unnecessary information between two robots, we add one constrain 

to our method. In our approach, if both robots have already exchanged their beliefs 

with each other, the previous defined status variable of landmark detection in section 

3.2.2 for both robots will be set to false, which indicates that they can not exchange 

their beliefs again until the next time after one of the robots observes the landmark or 

both robots detect the landmarks. By doing so, our method lets the robot exchange its 

belief with another robot only after the robot's significant movement (e.g. detects a 

landmark) from the last detection of another robot. In Figure 3.4 (Because we do not 

need to show the belief of the robot, we get rid of all the particles in this Figure), if 

robot A has already exchanged its belief during the detection with robot B, the robot A 

will not exchange its belief with robot B in Figure 3.4(b) until after the next time robot 

A observes a landmark or both robots detect the landmark. For the sake of avoiding 
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unnecessary information exchange, a robot would exchange its belief after significant 

movement from last detection of another robot. Therefore, our approach handles with 

the delayed information integration in a more appropriate way. 

The above sections described the method for multi-robot localization. Since each 

robot in our system performs single mobile robot MCL, the MCL algorithm is the 

basis of our approach. In the following section, we are about to explain the main 

components which are included in MCL. 

(b) 
Figure 3.4: Illustration of additional constrain: (a) Robot A just exchanged its belief 
with Robot B; (b) Robot A will not exchange its belief with robot B until after the next 
time of significant movement (e.g. landmark detection) for one of the robots or both. 
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3.7 Components of MCL 

As mentioned in Chapter2, our proposed method is based on the MCL which 

consists of three key components: motion model, measurement model, and importance 

sampling. In the following, we explain these components in detail. 

3.7.1 Motion Model 

The motion model is one of the important components in the field of probabilistic 

robotics for implementing the Bayes filter algorithms. Motion model is also called 

state transition probability p(xt I xt_x, ut), which plays an essential role in the step of 

the Bayes filter [60]. This section provides detailed explanation of probabilistic 

motion models as they are used in our approach. 

Kinematics is the calculus describing the effect of control actions on the 

configuration of a robot [7]. We entirely focus on mobile robot kinematics for robots 

operating in planar environments, whose kinematical state is represented by three 

variables referred to as pose [60]. The pose of a mobile robot operating in a plane 

comprises the two dimensional coordinates relative to its external coordinate frame, 

along with its orientation. We denote the former as x and y, and the latter by 6. 

Pose without orientation will be called location. The probabilistic kinematical model 

or motion model plays the role of the state transition model in mobile robotics. This 

model is the conditional probability density p(xt I x,_{,ut) as we explained in chapter 

2. Here x, and x,_{ are both robot poses, and u, is a motion command. This model 

describes the posterior distribution over kinematical states that a robot supposes to be 

when executing the motion command u, at x,^. In our implementations, u, is 

provided by a robot's odometry. Figure 3.5 shows two examples to illustrate the 
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motion model for a mobile robot operating in a planar environment. In both cases, a 

robot's initial pose is jtM. The probability distribution p(xt lxM,w,)is represented 

by the shady area. It means that the darker the area, the more likely the true pose of a 

robot will be. In Figure 3.5(a), a robot moves forward some distance, which might 

accumulate error for both translation and rotation as indicated. Figure 3.5(b) shows the 

result distribution of a more complicated motion command, which causes to a larger 

spread of uncertainty compared with the first case. 

(a) (1» 

Figure 3.5: The examples of the motion model. [60] 

As mentioned above, we use odometry measurements as the control commands 

for calculating the posteriors over poses. This will lead us to a specific probabilistic 

motion model referred to as odometry motion model which uses odometry 

measurements for motion controls. 

Let us first define the format of our control information. At time t, the pose of a 

robot is modeled by the random variable x,. We need to use the robot's odometry to 

estimate this pose. Nevertheless, due to the slippage and drift there is no fixed 

coordinate transformation between the coordinates used by the robot's internal 

odometry and its external world coordinates. The key idea of odometry motion model 

[60] is using the relative motion information measured by the robot's internal 

odometry. To extract relative odometry, «,is transformed into a sequence of three 

steps: a rotation, followed by a straight line motion, and then another rotation [55]. 
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This decomposition is illustrated in Figure 3.6. The first turn is called Smtl, the 

translation 8tmns, and the second rotation Smt2. Each pair of positions (the robot has a 

starting position and an ending position for each control command) has an unique 

parameter vector (SronStransSmt2)
T , these parameters are adequate to rebuild the 

relative motion between two positions. Therefore, Srotl, Stmns, and 8mt2 supply 

sufficient information of the relative motion encoded by the odometry data. The 

probabilistic odometry motion model assumes that these three parameters are 

corrupted by independent noise [55]. 

Figure 3.6: The odometry motion model. [60] 

There are two forms of algorithm for computing the probability p(xt I xM,w,): 

one is closed form calculation, another is sampling form. Because MCL uses samples 

to represent a robot's pose, our method makes use of sampling form algorithm for 

computing this probability density. The algorithm sample_motion_model_odometry 

[60] showed in Table 3.2 implements this sampling approach. It accepts an initial pose 

JCM and an odometry data ut as inputs, and outputs a random pose at time / drawn 

distributed according top(xt\xt_t,ut). The variables, a{to a4, are robot specific 

error parameters which specify the noise in robot motion. They model the accuracy of 

the robot (The less accurate a robot, the larger these parameters). The parameters a2 
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and a3 are used to control translation error, while parameters ocl and aA are used 

to control angular error. 

Algorithm sampl«jDotioBjDoM_»doinetiy(a|, xt_x): 

4*1 = 4rti - sanple{ftilrrti + atkims} 

4rtB» = 4 r» - sample^ 5Umi + 04(^*1 + 4*3)) 

4t2 = 4ot2 - sariipleffti l M 2 + cttftnu) 

i/=i+Wsii^+4*i) 

retamxt = (x\y',0f 

Table 3.2: The sample odometry motion model algorithm. [60] 

m ft) fei 

Figure 3.7: Sampling from the odometry motion model. [60] 

Figure 3.7 shows examples of sample sets generated by algorithm of 

sample_motion_rnodel_odometry. The sample set in Figure 3.7(a) is a typical one, 
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whereas the ones shown in Figure 3.7(b) and 3.7(c) indicate unusually large 

translation and rotation errors respectively. 

Figure 3.8 illustrates the odometry motion model in action. The solid line displays 

the actions taken by a robot, and the samples represent the robot's belief at different 

pose. This figure shows that how the uncertainty grows as the robot moves. The 

samples are spread out in an increasingly large space without perceiving the external 

world. 

Figure 3.8: Sampling approximation of a robot's belief. [60] 

3.7.2 Measurement Model 

Other than probability motion model, there is another specific model in 

probabilistic robotics used in MCL, called measurement models [60]. The probability 

measurement models describe the formation process by which sensor measurements 

are generated in the physical world. Nowadays, robots can be equipped with many 

different sensors such as tactile sensors, range sensors, or cameras. The specifics of 

the measurement models depend on different sensors. For example, laser range finders 

are best modeled by using a laser beam in order to determine the distance to a 

reflective object. Probabilistic robotics explicitly models the noise in sensor 
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measurements. Formally, the measurement model is defined as a conditional 

probability distribution p(z,\xt,m) , where xt is the robot pose, z, is the 

measurement at time t, and m is the map of the environment. This conditional 

probability distribution p{zt\xt,m) is used to specify the measurements z, are 

generated from the environmental state xt according to the given map of the 

environment m. The measurement model according to our specific robot platform 

will be given in the next chapter. 

3.7.3 Resampling 

Another important component of MCL is known as resampling or importance 

sampling [10, 14]. The key idea of resampling is that choosing M random numbers 

and selecting those particles that correspond to these random numbers, the distribution 

of selected particles is according to the probability proportional to the particles' 

weights. The step of resampling transforms a particle set of M particles into another 

particle set by incorporating the importance weights into the resampling process, the 

distribution of the particle change: Whereas before the resampling step, they 

distributed according to bel(xt), after the resampling they are approximately 

accordingly to the posterior bel(xt). The resampling procedure is a probabilistic 

implementation of the Darwinian idea of survival of the fittest [60]. It refocuses the 

particle set to regions in the state space with high posterior probability. By doing so, it 

focuses the computational resources to regions in the state space where most relevant. 

3.8 Summary 

In this chapter, we propose a new information exchange mechanism for 

collaborative multi-robot localization. We also propose a new scheme to calculate how 
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much information is contained in a robot's belief by using information theory. 

According to the analysis, it is expected that our approach can avoid unnecessary 

information exchange whenever one robot perceives another robot. On the other hand, 

it is also expected that this approach does allow information exchange between 

detecting robots which contributes positively to the localization process, hence, 

improving the effectiveness and efficiency of multi-robot localization. In the next 

chapter, we will demonstrate the above analysis. The detailed implementations of the 

above proposed approach and the experimental results will also be presented in the 

following chapter. 
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Chapter 4 

Implementation and Experimental Results 

In this chapter, we will present the implementation details of our experiments in 

section 4.1, which include hardware platform and its setup, programming environment, 

and implementation of MCL algorithm on iRobot Create and iRobot Discovery. The 

experimental results will be given in section 4.2. 

4.1 Implementation Details 

4.1.1 Hardware Platform 

In our experiment, the vacuum cleaning robots Roomba [76] will be used. 

Roomba is an autonomous robotic cleaner created by iRobot Corporation. The 

Roomba was first released in 2002 with updates and new models released every year 

since. Compared to other vacuum cleaners, the typical Roomba robotic vacuum 

cleaner is very inexpensive at under $300 for even the most expensive Roomba and 

$150 for the least expensive. The iRobot's Roomba vacuum represents the growing 

ubiquity of robotics perhaps better than any other single platform. Over two million 

Roombas clean floors in homes and businesses [64]. The platform has become a 

standard for task based, low cost robotics available for research and education. 

Roomba can be programmed and accessed without any modification. 

We use the third generation of Roomba in our experiment, which includes many 

more improvements than the first and second generation. In addition to dirt sensor, 

these models include a home base dock for self-charging, a remote control, and the 

most important for robotic fans, a serial port. The current generation of Roomba is 

organized in three sections [30]: 

56 



Sensor front: All of the sensors such as bump, wall, cliff, and home base contacts 

are up front. In fact, almost all the sensors are mounted on the movable front bumper. 

This movable bumper not only enables a way to measure contact which gives triggers 

a switch, but also absorbs shock to minimize damage. The Roomba firmware is 

designed to always travel forward, so it places its most sensitive parts forward. 

Motor middle: The main drive motors, vacuum motors, vacuum brushes, side 

cleaning brush, and battery are all in the center. This kind of physical structure makes 

Roomba very stable when moving. 

Vacuum back: Just like a normal vacuum cleaner, the entire back of Roomba 

contains the vacuum and vacuum bag for holding dirt. 

As described above, the Roomba equips with many useful sensors. Figure 4.1 

shows a Roomba along with a variety of sensors. The Roomba navigates mainly by its 

mechanical bump sensors, infrared wall sensors. For detecting dangerous conditions, 

it also has infrared cliff detectors and wheel drop sensors. In the following, we 

describe some sensors which are used in our experiment. 

Figure 4.1: Location of Roomba sensors. [30] 
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Bump Sensors: Roomba has two bump sensors on the front, located at 11 o'clock 

and 1 o'clock positions. The spring loaded front bumper moves to trigger one or both 

of these sensors. Each is implemented as an optical interrupter. In the case of 

Roomba's bump sensor, the interrupter is a small plastic arm connected to the bumper. 

Infrared Sensors: There are six infrared sensors on the Roomba, all on the front 

bumper. Four of these facing to the ground are the cliff sensors, and another facing to 

the right is the wall sensor. These five sensors work much like the bump sensors, 

because there is an LED emitter and a photo detector looking for the LED's light. But 

unlike the interrupter based sensor, these sensors are looking for the reflected light of 

the LED. For the cliff sensors, they are looking for light reflected from the floor. For 

the wall sensor, it is looking for a wall. The last infrared sensor is the remote control, 

virtual wall or docking station sensor which can be found at the 12 o'clock position on 

the bumper. This sensor works just like any other remote control sensor for consumer 

electronics. In our experiments of real robot, we use virtual wall sensor to perceive 

another robot. 

Internal Sensors: The most commonly used internal sensors are the odometer 

sensor. We are able to retrieve the distance and angle values from this sensor. The 

distance is obtained from the optical interrupter sensor on the wheels. The value 

comes from counting the number of beam interruptions caused from the toothed 

interrupter disc. The firmware specification gives a distance resolution of 1 mm. 

Although the distance value is a straightforward measurement, the angle value is an 

odometry difference. Roomba has a distance sensor on each wheel, and the angle in 

the sensor data is the difference in the distance traveled by each wheel. This difference 

describes a rotation around the center point between the two wheels. The wheel drop 

sensors have a micro switch which detects when the wheel is down. These wheel 

drops are equivalent to cliff detection since they are indicating that the Roomba is in 

some unforeseen situation and should stop from its current task. The last collection of 

internal sensors is the power measurement sensors. 
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In order to connect and communicate with Roomba, we use a device called 

RooTooth [30]. RooTooth provides a cable less solution for controlling the Roomba. It 

also provides Bluetooth capabilities to Roomba and allows us to connect and 

communicate with it through any Bluetooth enabled devices over Bluetooth's Serial 

Port Profile (SPP). RooTooth is ideal for wirelessly interfacing the Roomba to 

common Bluetooth enabled devices such as PCs, laptops, and cell phones [30]. 

Communication with Roomba occurs through a virtual COM Port created on the 

device by using Bluetooth's SPP, which allows for serial communications wirelessly. 

Any of the programs which can talk to the serial port is capable of sending commands 

to the Roomba as well as receive information from it. The RooTooth is designed for 

accommodating Class 1 or Class2 Bluetooth radio modem serial modules at 2.4GHz 

frequency. Figure 4.2 shows a RooTooth adapter. RooTooth simply plugs into 

Roomba's expansion port and enables this vacuum cleaner to take advantage of the 

Roomba Open Interface (ROI) which will be described in section 4.1.2. Therefore, it 

offers the most flexible and stable way of communication and it also brings 

connection quality over distance dropping slowly. 

Figure 4.2: RooTooth Bluetooth Roomba adapter. [30] 
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4.1.2 Programming Environment 

The Roomba manufactured after October, 2005 contains an electronic and 

software interface that allows us to control or modify Roomba's behavior and 

remotely monitor its sensors. This interface is called the iRobot Roomba Open 

Interface or iRobot ROI [77] (The detailed information of iRobot ROI will be 

provided in Appendix A). The iRobot ROI is a serial protocol that allows users to 

control a Roomba through its external serial port, called Mini-DIN connector shown 

in Figure 4.3. The ROI includes commands to control all of Roomba's actuators such 

as motors, lights, and speaker and also request sensor data from all of Roomba's 

sensors. Thus, much of the low level hard work dealing with motors and sensors has 

been taken care of inside the Roomba itself. It offers an almost complete view of the 

Roomba's internals. It abstracts certain functions, making then easier to use. By using 

the ROI, users can add functionality to the normal Roomba behavior or they can 

create completely new operating instructions for Roomba. 
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Figure 4.3: Roomba ROI connector Mini DIN. [30] 
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When using the ROI, Roomba can exist in one of five states. These states 

represent both how Roomba behaves and how it responds to ROI commands. Actions 

by Roomba can also change the state. Some of the ROI commands are only used to 

select the suitable state because some commands only work under certain state. 

Herewith the followings are list of five states [30]: 

(a) Off: Roomba responds to no commands over the ROI, but can be woken up 

and put into the on state by using the power button. 

(b) On: Roomba is awake and is awaiting a START command over the ROI. In 

this state Roomba is able to work normally through its button or remote control. The 

only way out of this state through the ROI is using the START command. 

(c) Passive: Roomba has received the START command. In this state sensors can 

be retrieved, but no control of the robot is executed over the ROI. The Roomba 

buttons work as usual. The state is used to monitor the Roomba as it goes about its 

work. The usual step from this state is to send the CONTROL command to enter safe 

mode. 

(d) Safe: Roomba has received the CONTROL command from passive state or 

the SAFE command from full state. Everything that can be done in passive state is still 

possible, but now Roomba can be controlled. The buttons on Roomba no longer 

change the robot's behavior; instead their states are reflected in the Roomba sensors 

data. All commands are now available, but a built-in safety feature exists to help us 

not damage the Roomba. This safety feature is activated if Roomba detects the 

following: a cliff is encountered while moving forward, any wheel drops, and the 

charger is plugged in. 

(e) Full: If Roomba receives a FULL command while in safe state, it will switch 

to this state. This state is the same as safe mode except that the safety features is 
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turned off. To get out of this state, send the SAFE command. Sending the POWER 

button command will put Roomba into off state. 

The Roomba changes from one state to the next depending on either ROI 

commands or external events. Figure 4.4 shows the Roomba ROI state change 

diagram. 

Power button, 
DD line toggle 

SPOT/CLEAN/MAX 

POWER 

Figure 4.4: Roomba ROI state diagram. [30] 

The ROI protocol is quite rudimentary. The protocol is a simple byte oriented 

binary serial protocol. It would be a lot easier if there is a library to help us to make 

things work. The RoombaComm API [78] is just such an encapsulation of the ROI 

binary commands into the more easily accessible Java classes. RoombaComm API is a 

Java library for communicating and controlling the Roomba. It works on any 

operating system that RXTX [79] (serial and parallel I/O libraries supporting Sun's 

CommAPI) supports including Windows, Linux, and Mac OS. RoombaComm API is 

also used to make coding easier. The goals of this library is to provide full access to 

the entire ROI protocol and a collection of high level functionality on the top of the 

ROI protocol, creating a library that is as cross platform as possible. 
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Because we need to use a lot of the graphics and animations in our experiments, 

we then decide to use Processing [80]. The Processing is a free open source 

programming language and environment for people who want to write graphical 

programming quickly and easily. In many ways, processing is a descendant of the 

Logo programming language. Both are visually focused and provide a number of 

functions to make drawing graphics and building animations easier. However, 

Processing can do much more. It can operate in 3D, work with video and sound, 

perform physical simulations, and do many other things. It is continuously being 

expanded and improved through libraries created by anyone with good ideas. 

Processing is implemented in Java. The Processing language is no different from Java 

at all; it just removes the complexity from Java. Therefore, Processing is a kind of 

Java IDE. It enables us to create, compile, and run dynamic graphical programs. The 

most important thing for us to do the experiment is that Processing is fairly easy to use 

the full Java class library or wrap up any other Java class into a Processing library. 

This is what has been done to allow us to make use of RoombaComm in Processing. 

4.1.3 Implementations of Motion Model and Measurement Model 

We have already illustrated how Roomba works and how to interact with Roomba. 

In this section, we are about to describe the implementations of motion model and 

measurement model for MCL using to Roomba. 

As described in section 3.7.1, the motion model of MCL can be implemented by 

using sampling algorithm sample_motion_model_odometry. In order to use this 

algorithm, one needs to make use of the odometry measurements as the basis for 

calculating the robot's motion over time. Odometry is commonly obtained by 

integrating wheel encoder information. Most of the commercial robots provide 

odometry using kinematic information. In our experiment, we can access odometry 

reading of Roomba through RoombaComm API. In doing so, we can obtain the 

63 



odometry information for Roomba such as distance traveled, angle turned. 

Subsequently, this information is used for computing probability distribution 

p(xr I xr_,, u,) which is the motion model. 

Other than motion model, MCL has another important component which is 

measurement model. Roomba is equipped with bumper sensors and infrared sensors to 

perceive its surroundings. Compared with other robots which equip with more 

powerful sensors, Roomba only has such limited sensors to detect the external 

environment. In order to implement the measurement model, we need to distinguish 

two types of detections: (a) a robot detects the landmark such as wall or any other 

obstacles in the environment; (b) detection between two robots. We use Roomba's 

bumper sensors to measure the first type of detection. If the bumper sensors return 

readings, it indicates that Roomba has detected any of the landmarks. For the sake of 

detecting between robots, we put a virtual wall (a standard IR remote transmitter) on 

the top of one robot. If another robot's virtual wall sensor has reading, it means that 

there must be a robot close by itself. On condition that a robot has the first type of 

detection, we assign the high probability (high importance) to particles which are 

close to the landmarks in the environment, and low probability (low importance) to 

the rest of the particles. By doing so, these weighted particles can be used for the step 

of importance sampling or resampling described in section 3.7.3. In the event a robot 

receives the second type of detection, our algorithm will decide if it is necessary to 

exchange information with another robot. 

In section 4.1, we have described our experimental environment, including 

hardware and software. Since our approach is based on MCL, we have also explained 

the implementation details about motion model, measurement mode using Roomba. In 

the next section, the detailed experimental results will be presented. 

64 



4.2 Experimental Results 

In this section we present experiments conducted with both real and simulated 

robots. The central question driving our experiments is: to what extent can cooperative 

multi-robot localization improve the localization quality through our proposed 

approach, when compared to the single mobile robot localization. 

In the following experiments we use a tool which developed by ourselves. Under 

the help of this tool, we can test our proposed method in a variety of scenarios. We can 

also measure the distance traveled by a robot and elapsed time used by a robot to 

localize itself within the given map of the environment. 

In the real robots experiments, our approach was tested using two Roombas 

(iRobot Discovery and iRobot Create) shown in Figure 4.5. The iRobot Discovery is a 

third generation of Roomba cleaner. The iRobot Create is a hobbyist robot based on 

the Roomba platform (a non-vacuum Roomba). In order to evaluate the benefits of 

multi-robot localization in more complex scenarios, we additionally performed our 

experiments in simulated environments. These experiments are described in Section 

4.2.3. 

Figure 4.5: Two real robots for our experiment: iRobot Create (left) and iRobot 
Discovery (right). 
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4.2.1 Verification of an Assumption 

In section 3.2.1, we made an assumption of our proposed method which is that 

there is a remote chance that more than two robots detect each other simultaneously, 

which happens rarely and will be ignored when it happens. In this section, we will 

verify this assumption through our designed experiments. 

In this simulation experiment we use four robots. The task of these robots is to 

perform random exploration in a rectangular free space shown in Figure 4.6. In order 

to support this assumption, two maps of different sizes are used. During the 

experiment, our designed tool is able to count how many times two robots detect each 

other at the same time, how many times three robots detect each other concurrently, 

and how many times four robots detect each other simultaneously. 

Figure 4.6(a) shows the first run, we use a 488 pixels x 610 pixels map, and the 

radius of each Roomba is 30 pixels. After 15 minutes, the simulation tool shows that 

there are 246 detections between two robots at the same time. The situations where 

three robots detect each other at the same time and four robots detect each other at the 

same time never happen. Figure 4.6(b) shows the second time run, we change the map 

to smaller size, which is 366 pixels x 488 pixels. After the same duration as the 

previous experiment, there are 438 detections between two robots at the same time. 

The detections among three robots and four robots at the same time still never happen. 

The experimental results demonstrate that there is a remote chance that more than two 

robots detect each other simultaneously is a reasonable and practical assumption. 

Since we have this assumption, the following experiments which include real 

robot experiments and simulation robot experiments will focus on the situations where 

only two robots are involved. 
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Figure 4.6: Simulation experiments for verifying one of the assumptions, (a) 
Experiment in a bigger map (488 pixels x 610 pixels), (b) Experiment in a smaller 
map (366 pixels x 488 pixels). 
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4.2.2 Experiments Using Real Robots 

In this section we present experiments conducted with real robots. In the first 

experiment we test the case of single mobile robot localization using MCL in two 

maps with different size. The purpose of this experiment is that we are able to use the 

experimental results to compare with the experimental results of our proposed method. 

As the result, we will see that if the localization process of the system can benefit 

from our proposed approach. In the second experiment we test the case of multi-robot 

localization using our proposed approach in the same maps as used in previous 

experiment of single mobile robot localization. The experimental results and 

evaluations will also be given in this section. 

Figure 4.7: Experimental environment for single mobile robot localization. 

(a) Experiment of Single Mobile Robot Localization 

In this experiment we use an iRobot Create to perform global localization in the 

rectangular free space shown in Figure 4.7. The environment is particularly 

challenging for single robot system since its external environment is symmetry. We 

test this case in two maps with different size. In the first run, we use a 213.5 cm 

x 152.5 cm map. We use 1000 particles to represent the belief of this robot. Initially, 
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all the particles are spread over according to the uniform distribution shown in Figure 

4.8(a). Over a period of time, Figure 4.8(b) shows that due to the symmetric 

environment, most particles are centered on two possible positions to represent the 

(a) (b) 

t • 

(c) 

Figure 4.8: The real robot experiments for single mobile robot localization in 
symmetric environments, (a) Initially, all the particles are spread over according to the 
uniform distribution, (b) Over a period of time, due to the symmetric environment, 
most particles are centered on two possible positions, (c) Finally, all the particles are 
tightly centered on the true position of the robot. 

* 
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current belief of the robot. Finally, Figure 4.8(c) illustrates that all the particles are 

tightly centered on the true position of the robot, which indicates that the robot has 

successfully localized itself. The simulation tool shows that the above process takes 

147.46 seconds, and the robot travels 19.26 meters. In the second run, the map has 

been changed to a smaller size, which is 183 cm x 122 cm. At this time the robot 

takes 123.76 seconds traveled 14.51 meters. The experimental results demonstrate that 

the single mobile robot needs large amounts of time to localize itself in a symmetric 

environment. 

(b) Experiment of Multi-Robot Localization 

In the second experiment iRobot Create and iRobot Discovery are used together 

within the same environment. Figure 4.9 shows our experimental environment. The 

Figure 4.9: Experimental environment for multi-robot localization. 

task of the robots is to perform global localization in the exactly the same maps as 

used in single mobile robot localization. However, a robot is able to exchange its 

belief during the detection with another robot. Our method uses 1000 particles to 

represent the belief for each robot. Figure 4.10(a) shows that the particle set in the left 

rectangular window represent the belief of iRobot Discovery, while the particle set in 

the right rectangular window represent the belief of iRobot Create. Initially, these two 
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Figure 4.10: The real robot experiments for multi-robot localization in symmetric 
environments, (a) Initially, two particle sets are spread over according to the uniform 
distribution, (b) The belief of iRobot Discovery becomes more certain, while the 
belief of iRobot Create is still highly uncertain, (c) The iRobot Discovery uses its 
belief to refine the belief of iRobot Create, (d) Finally, both robots in our system have 
successfully localized themselves. 
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particle sets are spread over according to the uniform distribution, which indicates that 

two robot are global uncertainty to their environment. In Figure 4.10(b), because the 

iRobot Discovery has already obtained some knowledge about its surroundings by 

exploring the environment, most of the particles are centered on the true position of 

this robot to represent its current internal belief. Although iRobot Create has detected 

the wall, its belief is still highly uncertain at this time. According to our proposed 

approach the robot can benefit from the event of detection with another robot. Figure 

4.10(c) shows a typical stage of this experiment where two robots detect each other. 

Both robots use our proposed method in chapter 3 to calculate entropies of their 

beliefs (triangle kernel function used for kernel density estimation), and then use these 

values to make a comparison. In this typical stage, the belief of iRobot Discovery has 

low entropy, which means this robot has more knowledge about its environment 

compared with iRobot Create. After this key event, the iRobot Discovery uses its 

belief to help the iRobot Create to refine its internal belief. Therefore, the localization 

process of the entire system is accelerated. Finally, Figure 4.10(d) shows that both 

robots in our system have successfully localized themselves by using our proposed 

approach. 

Results: The experiment of multi-robot localization has been tested through two 

maps in different size. The maps' sizes are same as the previous experiment of single 

mobile robot localization. In the bigger map, the iRobot Create travels 10.84 meters 

using 102.77 seconds to localize itself, while the iRobot Discovery travels 12.72 

meters using 110.83 seconds. In the smaller map, the iRobot Create travels 9.27 

meters using 84.25 seconds to localize itself, while the iRobot Discovery travels 11.65 

meters using 94.47 seconds. The experimental results demonstrate that compared to 

the experiment of single mobile robot localization, the event of robot detection and 

belief transfer mechanism proposed in our method not only reduces the distance 

traveled by each robot, but also notably reduces the time used for the process of 

localization for each robot. For example, without making use of information exchange, 

the iRobot Create needs 123.76 seconds in the smaller map, and 147.46 seconds in the 
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bigger map to determine its position. Under the help of iRobot Discovery, the 

localization time of iRobot Create in the symmetric environments is reduced by 

30.31% to 102.77 seconds in the bigger map, and by 31.92% to 84.25 seconds in the 

smaller map. We summarize the experimental results for real robots shown in Table 

4.1. 

The experimental results 

for real robots. 

Single-robot Localization 

(iRobot Create) 

Multi-robot 

Localization 

iRobot 

Discovery 

iRobot 

Create 

Localization performance 

of iRobot Create under the 

help of iRobot Discovery 

(The percentage of time 

saving) 

Bigger Map 

(213.5 cm X 152.5 cm) 

Time 

(second) 

147.46 

110.83 

102.77 

Distance 

(m) 

19.26 

12.72 

10.84 

Number of 

detection 

N/A 

4 

30.31% 

Smaller Map 

(183 cm X 122 cm) 

Time 

(second) 

123.76 

94.47 

84.25 

Distance 

(m) 

14.51 

11.65 

9.27 

Number of 

detection 

N/A 

8 

31.92% 

Table 4.1: The experimental results for real robots. 

4.2.3 Simulation Experiments 

In this section, we present our simulation experiments. Robot detections were 

simulated by using the positions of the robots. Noise was added to robot motion 

according to the errors extracted by using our real robots. 

(a) Experiment of Single Robot Localization in Symmetric Environment 

In this simulation experiment we use a single robot. The task of this robot is to 

perform global localization in the rectangular free space shown in Figure 4.11. The 
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Figure 4.11: Simulation experiments of single mobile robot localization in symmetric 

environments, (a) Initially, all the particles are spread over according to the uniform 
distribution, (b) After sometime, due to the symmetric environment, most particles are 
centered on two possible positions, (c) Finally, all the particles are tightly centered on 
the true position of the robot, which indicates that the robot has successfully localized 
itself. 
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environment is particularly challenging for single robot system since its external 

environment is symmetry. We test this case using two maps in different size. In the 

first run, the map size is 366 pixels x 488 pixels. We use 1000 particles to represent 

the belief of each robot. Initially, all the particles are spread over according to the 

uniform distribution shown in Figure 4.11(a). Due to the symmetric environment, 

Figure 4.11(b) shows that most particles are centered on two possible positions to 

represent the current belief of this robot. Finally, Figure 4.11(c) illustrates that all the 

particles are tightly centered on the true position of the robot, which means that the 

robot has successfully localized itself. The simulation tool shows that the above 

process takes 109.45 seconds, and the robot travels 26.16 meters. In the second run, 

we change the map to bigger size 488 pixels x 610 pixels. This time the robot takes 

236.26 seconds to travel 54.19 meters. The experimental results demonstrate that the 

single mobile robot needs a lot of time to localize itself in a symmetric environment 

without information exchange. 

(b) Experiment of Multi-Robot Localization in Symmetric Environment 

In this simulation experiment two robots, color in tint and color in dark, are used 

together shown in Figure 4.12. The task of the robots is to perform global localization 

in the exactly the same maps as used in the simulation experiment of single mobile 

robot localization. However, the robots are capable of exchanging their beliefs in this 

experiment. Our approach uses 1000 particles to represent the belief of each robot. 

The particle set in the left rectangular window represent the belief of the robot in dark, 

while the particle set in the right rectangular window represent the belief of the robot 

in tint. Initially, these two particle sets are spread over according to the uniform 

distribution, which means that two robots are global uncertainty about this 

environment shown in Figure 4.12(a). In Figure 4.12(b), because the robot in dark has 

obtained some knowledge about its surroundings by exploring the environment, most 

of the particles are centered on the true position of this robot to represent its current 

internal belief. Nevertheless, most of the particles for robot in tint are still spread 
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Figure 4.12: Simulation experiments for testing our approach in symmetric 
environments, (a) Initially, two particle sets are spread over according to the uniform 
distribution, (b) The belief of robot in dark becomes more certain, while the belief of 
robot in tint is still highly uncertain, (c) The robot in dark uses its belief to refine the 
belief of robot in tint, (d) Finally, both robots in our system have successfully 
localized themselves. 
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around the whole environment to reflect its weak knowledge about where it is in the 

given map. Figure 4.12(c) shows a typical stage of this simulation experiment where 

two robots detect each other. Both robots use the method proposed in chapter 3 to 

calculate entropies of their beliefs (triangle kernel function used for kernel density 

estimation), and then use these values to make a comparison. In this typical stage, the 

belief of robot in dark has low entropy, which indicates that this robot has more 

knowledge about its environment compared with the robot in tint. After this detection, 

the robot in dark uses its belief to help the robot in tint to refine its internal belief. 

Therefore, the localization process of the robot in tint is accelerated. Finally, Figure 

4.12(d) shows that both robots in our system have successfully localized themselves 

through our proposed method. 

Result: The experiment of multi-robot localization in symmetric environment has 

been tested through two maps in different size. The maps' sizes are same as the maps 

used in previous experiment of single mobile robot localization. In the smaller map, 

the robot in dark travels 6.45 meters using 29.75 seconds to localize itself, while the 

robot in tint travels 11.71 meters using 53.88 seconds. In the bigger map, the robot in 

dark travels 12.61 meters using 60.22 seconds to localize itself, while the robot in tint 

travels 8.38 meters using 30.09 seconds. The experimental results demonstrate that 

comparing to the simulation experiment of single mobile robot localization, the 

detection between robots and the belief transfer mechanism proposed in our approach 

not only reduces the distance traveled by each robot, but also notably reduces the time 

used for the process of localization for each robot. Without making use of detections, 

the robot in dark needs 109.45 seconds in the smaller map, and 236.26 seconds in the 

bigger map to uniquely determine its position. Our approach to multi-robot 

localization in symmetric environment reduces this time by 72.82% to 29.75 seconds 

in the smaller map, and by 74.51% to 60.22 seconds in the bigger map. Table 4.2 

summarizes the simulation experimental results of multi-robot localization in 

symmetric environment. 
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The simulation experimental results 

in symmetric environment. 

Single-robot Localization 

(robot in dark) 

Multi-robot 

Localization 

Robot in 

tint 

Robot in 

dark 

Localization performance 

of robot in dark under the 

help of robot in tint (The 

percentage of time saving) 

Bigger Map 

(488 pixel X 610 pixel) 

Time 

(second) 

236.26 

39.09 

60.22 

Distance 

(m) 

54.19 

8.38 

12.61 

Number of 

detection 

N/A 

3 

74.51% 

Smaller Map 

(366 pixel X 488 pixel) 

Time 

(second) 

109.45 

53.88 

29.75 

Distance 

(m) 

26.16 

11.71 

6.45 

Number of 

detection 

N/A 

5 

72.82% 

Table 4.2: The simulation experimental results in symmetric environment. 

(c) Experiment of Multi-Robot Localization in Asymmetric Environment 

In the experiment (b), we compare the performance of our multi-robot 

localization approach to the performance of single robot localization in the symmetric 

environments. In the following simulation experiment, we test our proposed approach 

in asymmetric environment which includes an obstacle represented by a small black 

rectangular box shown in Figure 4.13. Other than this obstacle, we have exactly the 

same simulation environment as described in the simulation experiment (b). Figure 

4.13(a) shows that initially these two robots are both highly uncertain about their 

environment. Over a period of time, In Figure 4.13(b) robot in dark has obtained some 

knowledge about its surroundings by detecting the landmark. On the other hand, most 

of the particles for robot in tint are still spread around the whole environment. Figure 

4.13(c) shows that after two robots detected each other, they both use our proposed 

method to calculate how much information is contained in their beliefs, and then use 

their entropies to make a comparison. In this typical stage, the robot in dark helps the 

robot in tint to refine its internal belief. Most of the particles for robot in tine are 

quickly centered on the robot's true position. By doing so, the localization process of 
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Figure 4.13: Simulation experiments for testing our approach in asymmetric 
environment, (a) Initially, these two robots are both highly uncertain about their 
environment, (b) The belief of robot in dark becomes more certain, while the belief of 
robot in tint is still highly uncertain, (c) The robot in dark uses its belief to refine the 
belief of robot in tint, (d) Finally, both robots in our system have successfully 
localized themselves. 
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robot in tint is speeded up. Finally, these two robots have successfully localized 

themselves shown in Figure 4.13(d). 

Result: The experiment of multiply robots localization in asymmetric 

environment has been tested through two maps in different size. The maps' sizes are 

same as the previous experiment in (b). In the smaller map, robot in dark travels 5.13 

meters using 23.67 seconds to localize itself, while robot in dark travels 6.73 meters 

using 36.70 seconds. In the bigger map, the robot in dark travels 6.50 meters using 

28.51 seconds to localize itself, while robot in tint travels 7.33 meters using 38.14 

seconds. The experimental results demonstrate that compared to the simulation 

experiment of single mobile robot localization, the robot detection and belief transfer 

mechanism proposed in our approach in the asymmetric environment not only reduces 

the distance traveled by each robot, but also notably reduces the time used for the 

process of localization. Without making use of detections, the robot in dark needs 

109.45 seconds in the smaller map, and 236.26 seconds in the bigger map to uniquely 

determine its position. Our approach to multi-robot localization in asymmetric 

environment reduces this time by 78.37% to 23.67 seconds in the smaller map, and by 

87.93% to 28.51 seconds in the bigger map. Because we have an obstacle in this 

simulation experiment, the symmetry of the environment breaks, which would help 

both robots within the environment to localize them easily and quickly. The 

experimental results also demonstrate that compared to the simulation experiment in 

(b), our approach to multi-robot localization in asymmetric environment reduces the 

localization time for robot in dark by 20.44% from 29.75 seconds to 23.67 seconds in 

the smaller map, and by 52.66% from 60.22 seconds to 28.51 seconds in the bigger 

map. Table 4.3 summarizes the simulation experimental results of multi-robot 

localization in asymmetric environment. 
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The simulation experimental results 

in asymmetric environment. 

Single-robot Localization 

(robot in dark) 

Multi-robot 

Localization 

Robot in 

tint 

Robot in 

dark 

Localization performance 

of robot in dark under the 

help of robot in tint (The 

percentage of time saving) 

Localization performance 

of robot in dark compared 

with experimental results 

in symmetric environment 

(The percentage of time 

saving) 

Bigger Map 

(488 pixel X 610 pixel) 

Time 

(second) 

236.26 

38.14 

28.51 

Distance 

(m) 

54.19 

7.33 

6.50 

Number of 

detection 

N/A 

3 

87.93% 

52.66% 

Smaller Map 

(366 pixel X 488 pixel) 

Time 

(second) 

109.45 

36.70 

23.67 

Distance 

(m) 

26.16 

6.73 

5.13 

Number of 

detection 

N/A 

5 

78.37% 

20.44% 

Table 4.3: The simulation experimental results in asymmetric environment. 

(d) Experiment of Multi-Robot Localization in More Complex Environment 

In this simulation experiment, we test our proposed approach in more complex 

environment which includes two obstacles represented by two small black rectangular 

boxes shown in Figure 4.14. Other than this new obstacle, we have exactly the same 

simulation environment as described in the previous experiment (c). Figure 4.14(a) 

shows that initially both robots are highly uncertain. After some time, Figure 4.14(b) 

shows a typical stage that most of the particles of the robot in dark have already 

centered on the true poison of the robot, in the other hand the belief of the robot in tint 

is still very much uncertain. Figure 4.14(c) illustrates that after two robots perceived 

each other, they both use our proposed method to calculate how much information is 

contained in their beliefs, and then use these entropies to make a comparison. In this 

typical stage, the robot in dark helps the robot in tint to refine its internal belief. Most 
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Figure 4.14: Simulation experiments for testing our approach in more complex 
environment, (a) Initially, these two robots are both highly uncertain about their 
environment, (b) The belief of robot in dark becomes more certain, while the belief of 
robot in tint is still highly uncertain, (c) The robot in dark uses its belief to refine the 
belief of robot in tint, (d) Finally, both robots in our system have successfully 
localized themselves. 
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of the particles for robot in tint are fast centered on the robot's true position. By doing 

so, the localization process of the whole system is accelerated. Finally, these two 

robots have successfully localized themselves shown in Figure 4.14(d). 

Result: The experiment of multi-robot localization in more complex environment 

has been tested through two maps in different size. The maps' sizes are same as the 

previous experiment in (c). In the smaller map, the robot in dark travels 3.08 meters 

using 13.13 seconds to localize itself, while robot in tint travels 4.63 meters using 

22.38 seconds. In the bigger map, the robot in dark travels 4.60 meters using 24.51 

seconds to localize itself, while robot in tint travels 4.09 meters using 23.72 seconds. 

The experimental results demonstrate that compared to the simulation experiment 

single mobile robot localization, our proposed new mechanism of information 

exchange not only reduces the distance traveled by each robot, but also notably 

reduces the time used for the process of localization in the more complex environment. 

Without information exchange, robot in dark needs 109.45 seconds in the smaller map, 

and 236.26 seconds in the bigger map to uniquely determine its position. Our 

approach to multi-robot localization in more complex environment reduces this time 

by 88.00% to 13.13 seconds in the smaller map, and by 89.63% to 24.51 seconds in 

the bigger map. The experimental results also demonstrate that compared to the 

simulation experiment of multi-robot localization in symmetric environment, our 

approach to multi-robot localization in more complex environment reduces the 

localization time of robot in dark by 55.87% from 29.75 seconds to 13.13 seconds in 

the smaller map, and by 59.30% from 60.22 seconds to 24.51 seconds in the bigger 

map. Table 4.4 summarizes the simulation experimental results of multi-robot 

localization in more complex environment. 
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The simulation experimental results 

in more complex environment 

Single-robot Localization 

(robot in dark) 

Multi-robot 

Localization 

Robot in 

tint 

Robot in 

dark 

Localization performance 

of robot in dark under the 

help of robot in tint (The 

percentage of time saving) 

Localization performance 

of robot in dark compared 

with experimental results 

in symmetric environment 

(The percentage of time 

saving) 

Bigger Map 

(488 pixel X 610 pixel) 

Time 

(second) 

236.26 

23.72 

24.51 

Distance 

(m) 

54.19 

4.09 

4.60 

Number of 

detection 

N/A 

3 

89.63% 

59.30% 

Smaller Map 

(366 pixel X 488 pixel) 

Time 

(second) 

109.45 

22.38 

13.13 

Distance 

(m) 

26.16 

4.63 

3.08 

Number of 

detection 

N/A 

4 

88.00% 

55.87% 

Table 4.4: The simulation experimental results in more complex environment. 

4.3 Summary 

As described in section 4.2, experimental results, carried out in real and simulated 

environments, demonstrate that our approach can notably improve the localization 

performance, when compared to conventional single robot localization. Therefore, our 

proposed information exchange mechanism can yield significantly better localization 

results than single robot localization - at lower sensor costs, and relatively small 

communication overhead. 

From the above experimental results one may notice that the simulation 

experimental results (percentage of time saving) are much better than the real robots 

experimental results. The differences between simulation experimental results and real 
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robots experimental results are possibly due to enormous uncertainties exist in our real 

robots experiments, which do not exist in the simulation experiments. There are 

several elements that contribute to these uncertainties. First, our real robots 

experimental environments are highly unpredictable (walls are constructed by 

moveable objects, e.g. tables, tool box, and microwave). Second, sensors are limited 

in what they can perceive. Limitations arise from several factors. The range and 

resolution of sensors of Roomba are subject to physical limitations. Sensors are also 

subject to noise, which disturbs sensor measurements in unpredictable ways and hence 

limits the information that can be extracted. For example, Roomba use its bumper to 

detect the external world, but the bumper sensors are not reliable. Third, robot 

actuation involves motors that are unpredictable (drift and slippage). Uncertainty is 

further created through the communication between the laptop and Roomba. Since the 

communication by using Bluetooth may cause the delay of data transmission, Roomba 

may lose the control command during the communication. Since the above four 

factors do not exist in our simulation experiment, there is no wonder that the 

simulation experimental results are much better than the real robots experimental 

results. Although the real robot experimental results are not good as the simulation 

experimental results, the overall performance of our proposed approach is still very 

good. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

Cooperative multi-robot localization techniques use sensor measurements to 

estimate poses of robots relative to a given map of the environment. Existing 

approaches update a robot's pose instantly whenever it detects another robot. However, 

such instant update may not be always necessary and effective, since both robots' pose 

estimates could be highly uncertain at the time of the detection. In this thesis, we 

develop a new information exchange mechanism to collaborative multi-robot 

localization. We also propose a new scheme to calculate how much information is 

contained in a robot's belief by using entropy. Instead of updating beliefs whenever 

detection occurs, our approach first compares the beliefs of the robots which are 

involved in the detection, and then decide whether the information exchange is 

necessary. Therefore, it avoids unnecessary information exchange whenever one robot 

perceives another robot. On the other hand, this approach does allow information 

exchange between detecting robots and such information exchange always contributes 

positively to the localization process, hence, improving the effectiveness and 

efficiency of multi-robot localization. 

Experimental results, carried out in real and simulated environments, demonstrate 

that our approach can notably improve the localization performance, when compare to 

the previous multi-robot localization at lower sensor costs, less computation costs and 

small communication overhead. 
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5.2 Future Work 

The current approach can further be improved in the following aspects. 

Determination of localization: One problem in our current system is that how to 

determine whether a robot has successfully localized itself. Presently, we consider that 

a robot has successfully localized itself, when all the particles tightly centered on the 

true pose of the robot. Currently we can only make such decision by our experience 

visually, because there is no established benchmark to help a system to determine if 

localization is success. 

Active localization: The cooperative localization described in our approach is 

merely passive. The robots exchange their pose information locally during the 

detection time; however they do not change their actions so as to aid localization. The 

robot in our system is controlled through some random movement methods, and the 

robot's movement is not aimed at speeding up the localization process. Therefore, a 

desirable objective for future research is let the robot actively explores its environment 

based on the information gathered by itself or gathered from other robots so as to best 

localize themselves. 

Identification of robots: Another limitation of the current approach arises from 

the fact that it must be able to identify individual robots. In our experiment, we only 

use two Roomba, and each Roomba equips with virtual wall sensor for perceiving 

another robot. If a robot's virtual wall sensor has reading, it knows exactly which 

robot is close to itself. However, on condition that our system has more than two 

robots, it would be hard for each robot in the system to identify which two robots are 

involving in the event of detection. In other words, if a robot's virtual wall sensor 

possesses reading, it is not possible to distinguish which robot being detected. In the 

future, such hardware limitation can be overcome by attaching the bar-codes to each 
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Roomba, and then use bard-codes reader to identify the robots which are involving the 

event of detection. 

Preset time interval: In our approach, if two robots (Robot A and Robot B) have 

already exchanged their beliefs with each other, both robots' status variables of 

landmark detection will be set to false, which indicates that the robot (either Robot A 

or Robot B) can not exchange its belief with any other robot until the next time it 

detects a landmark. However, in situation in which one of the above robots detects 

another robot (e.g. Robot Q whose belief is highly uncertain after a short time since 

the last detection between Robot A and Robot B. The robot (either Robot A or Robot B) 

supposes to help to refine the belief of Robot C (since the belief of either robot A or 

Robot B is better than Robot Q, but it is not allowed in our approach. If the robot 

(either Robot A or Robot B) is able to exchange information with robot C, the 

localization performance of the whole system may become better. One possible 

solution to the limitation is that we can preset a time interval. For instance, if the robot 

A has exchanged its belief with robot B and detects robot C within the preset time 

interval, robot A will be allowed to exchange information with robot C. Therefore, one 

objective for future research is to find out the appropriate preset time interval. 

Comparison of beliefs: Finally, the robots exchange their belief whenever they 

fall into the third group which both robots have already detected the landmarks. In 

situations in which both robots' entropies of beliefs are almost same at the time of 

detection it might be more appropriate to delay the information exchange between two 

robots. This, however, requires that the method presets a threshold to determine when 

robots should exchange their beliefs. For example, if this threshold is less than the 

difference between the robots' entropies of beliefs, robots ought to exchange their 

beliefs; if the threshold is greater than the difference between the robots' entropies of 

beliefs, it might be more appropriate to delay the information exchange. Hence, a 

desirable objective for future research is to find out the suitable value of the threshold 

and to see of such threshold improves the performance. 
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Despite these limitations, our approach does provide an improved basis for 

information exchange during cooperative localization, and experiment results 

illustrate its effectiveness in practice. These results show that robots acting as a team 

are superior to robot acting individually. 
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Appendix A — iRobot Roomba Open Interface (ROI) Specification 

iRobot® Roomba® Open Interface (ROI) Specification 

Roomba Open Interface Commands Quick Reference 

Command 

S- l i 1 

Baud 

Control 

Safe 

Full 

Power 

Spot 

Clean 

Max 

Drive 

Motors 

Leds 

Song 

Play 

Sensors 

Force-
Seeking-
Dock 

Opcode 

'.Vj 

U'.l 

1W 

1'>1 

H2 

U • 

1M 

f1"-

1.i6 

137 

138 

139 

140 

141 

142 

143 

Data 
Bytel 

Uj.,J 
C'ldi-. 

Data 
Byte 2 

' . t l j U l , 
(-500 - 500) 
Motor 
Bits 
(0- 7) 

Led Bits 
(0 - 63) 

Song 
Number 
(0-151 

Son. 
Nunli-r 
(0 - 15, 

Pack«-
Cote 
(O-'J, 

Power 
Color 
(0-
255) 

Song 
Length 
( 0 -

Data 
Byte 3 

Data 
Byte 4 

:tuduu 

(-2000 - .-'•n».1 

Power 
Intensit, 
(0-255) 

Note 
Number 
1 
•31 ViT: 

Duration 
1 
"•l-23r-

Etc. 

Numb 
er 

Baud data byte 1 : Baud Code (0 - 9) 

Baud code 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Baud rate In bps 
300 
600 
1200 
2400 
4800 
9600 
14400 
19200 
28800 
38400 
57600 
115200 

Motors data bvte 1 : Motor Bits 

0 = off, 1 = on 

Bit 
Motor 

7 
TV« 

6 
JS5i. 

5 
n?a' 

4 
JriS'-

3 
rt'a 

2 
Main 
Brush 

1 
Vacuum 

0 
Side 
Brush 

Led data byte 1: Led Bits (0 - 63) 

Dirt Detect uses a blue LED: 0 = off, 1 = on 

Spot, Clean, and Max use green LEDs: 0 = off, 1 = on 

Status uses a bicolor (red/green) LED: 00 = off, 01 = red, 10 
= green, 11 = amber 

Bit 
LED 

7 
n/a 

6 
n/a 

5 | 4 
Status 
(2 bits) 

3 
Spot 

2 
Clean 

1 
Max 

0 
Dirt 
Detect 

Power uses a bicolor (red/green) LED whose 
intensity and color can be controlled with 8-bit 
resolution. 

Leds data byte 2: Power Color (0 - 255) 

0 = green, 255 = red. Intermediate values are 
intermediate colors. 

Leds data byte 3: Power Intensity (0 - 255) 

0 = off, 255 = full intensity. Intermediate values are 
intermediate intensities. 
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iRobot® Roomba® Open Interface (ROI) Specification 

Roomba Open Interface Sensors Quick Reference 

Packet Code 

0 

1 

2 

3 

Packet Size 

26 bytes. 

10 bytes 

6 bytes 

10 bytes 

Bumps Wheeldrops 

Bit 

Sensor 

7 

rife 

6 

tfa 

5 

rv'a 

4 3 2 

Wheeldrop 
Caster | Left I Right 

1 

Bump 
Left 

0 

Bump 
Right 

Name 

Bumps 
Wheeldrops 

Wall 

Cliff Left 

Cliff Front Left 

Cliff Front 
Right 

Cliff Right 

Virtual Wall 

Motor 
Overcurrents 

Dirt Detector -
Left 

Dirt Detector -
Right 

Remote 
Opcode 

Buttons 

Distance 

Angle 

Charging 
State 

Voltage 

Current 

Temperature 

Charge 

Capacity 

Groups 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

0.2 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

Bytes 

2* 

2* 

1 

2* 

r 

1 

2" 

2* 

Value 

Range 

0-31 

0-1 

0-1 

0-1 

0-1 

0-1 

0-1 

0-31 

0-255 

0-255 

0-255 

0-15 

-32768-
32767 

-32768-
32767 

0-5 

0-65535 

-32768-
32767 

-128-
127 

0-65535 

0 - 65535 

Units 

mm 

mm 

mV 

mA 

degrees 
C 

mAh 

mAh 

Motor Overcurrents 

Bit 

Motor 

7 

n'a 

6 

m 

5 

n/a 

4 
Drive 
Lett 

3 
Drive 
Right 

2 
Main 
Brush 

1 

Vacuum 

0 
Side 
Brush 

Buttons 

Bit 

Button 

7 

m 

6 I 5 I 4 

i * 1 rrts J nh 

3 

Power 

2 

Spot 

1 

Clean 

0 

Max 

Charging State Codes 

Code 

0 

1 

2 

3 

4 

5 

Charging State 

NotCliargira 

Charging Recovery 

Charging 

Trickle Charging 

Waiting 

Charging Error 
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