1,318 research outputs found

    Eliciting New Wikipedia Users' Interests via Automatically Mined Questionnaires: For a Warm Welcome, Not a Cold Start

    Full text link
    Every day, thousands of users sign up as new Wikipedia contributors. Once joined, these users have to decide which articles to contribute to, which users to seek out and learn from or collaborate with, etc. Any such task is a hard and potentially frustrating one given the sheer size of Wikipedia. Supporting newcomers in their first steps by recommending articles they would enjoy editing or editors they would enjoy collaborating with is thus a promising route toward converting them into long-term contributors. Standard recommender systems, however, rely on users' histories of previous interactions with the platform. As such, these systems cannot make high-quality recommendations to newcomers without any previous interactions -- the so-called cold-start problem. The present paper addresses the cold-start problem on Wikipedia by developing a method for automatically building short questionnaires that, when completed by a newly registered Wikipedia user, can be used for a variety of purposes, including article recommendations that can help new editors get started. Our questionnaires are constructed based on the text of Wikipedia articles as well as the history of contributions by the already onboarded Wikipedia editors. We assess the quality of our questionnaire-based recommendations in an offline evaluation using historical data, as well as an online evaluation with hundreds of real Wikipedia newcomers, concluding that our method provides cohesive, human-readable questions that perform well against several baselines. By addressing the cold-start problem, this work can help with the sustainable growth and maintenance of Wikipedia's diverse editor community.Comment: Accepted at the 13th International AAAI Conference on Web and Social Media (ICWSM-2019

    Exploiting past users’ interests and predictions in an active learning method for dealing with cold start in recommender systems

    Get PDF
    This paper focuses on the new users cold-start issue in the context of recommender systems. New users who do not receive pertinent recommendations may abandon the system. In order to cope with this issue, we use active learning techniques. These methods engage the new users to interact with the system by presenting them with a questionnaire that aims to understand their preferences to the related items. In this paper, we propose an active learning technique that exploits past users’ interests and past users’ predictions in order to identify the best questions to ask. Our technique achieves a better performance in terms of precision (RMSE), which leads to learn the users’ preferences in less questions. The experimentations were carried out in a small and public dataset to prove the applicability for handling cold start issues

    A Theoretical Analysis of Two-Stage Recommendation for Cold-Start Collaborative Filtering

    Full text link
    In this paper, we present a theoretical framework for tackling the cold-start collaborative filtering problem, where unknown targets (items or users) keep coming to the system, and there is a limited number of resources (users or items) that can be allocated and related to them. The solution requires a trade-off between exploitation and exploration as with the limited recommendation opportunities, we need to, on one hand, allocate the most relevant resources right away, but, on the other hand, it is also necessary to allocate resources that are useful for learning the target's properties in order to recommend more relevant ones in the future. In this paper, we study a simple two-stage recommendation combining a sequential and a batch solution together. We first model the problem with the partially observable Markov decision process (POMDP) and provide an exact solution. Then, through an in-depth analysis over the POMDP value iteration solution, we identify that an exact solution can be abstracted as selecting resources that are not only highly relevant to the target according to the initial-stage information, but also highly correlated, either positively or negatively, with other potential resources for the next stage. With this finding, we propose an approximate solution to ease the intractability of the exact solution. Our initial results on synthetic data and the Movie Lens 100K dataset confirm the performance gains of our theoretical development and analysis

    Visual BFI: an Exploratory Study for Image-based Personality Test

    Full text link
    This paper positions and explores the topic of image-based personality test. Instead of responding to text-based questions, the subjects will be provided a set of "choose-your-favorite-image" visual questions. With the image options of each question belonging to the same concept, the subjects' personality traits are estimated by observing their preferences of images under several unique concepts. The solution to design such an image-based personality test consists of concept-question identification and image-option selection. We have presented a preliminary framework to regularize these two steps in this exploratory study. A demo version of the designed image-based personality test is available at http://www.visualbfi.org/. Subjective as well as objective evaluations have demonstrated the feasibility of image-based personality test in limited questions

    Accurate and justifiable : new algorithms for explainable recommendations.

    Get PDF
    Websites and online services thrive with large amounts of online information, products, and choices, that are available but exceedingly difficult to find and discover. This has prompted two major paradigms to help sift through information: information retrieval and recommender systems. The broad family of information retrieval techniques has given rise to the modern search engines which return relevant results, following a user\u27s explicit query. The broad family of recommender systems, on the other hand, works in a more subtle manner, and do not require an explicit query to provide relevant results. Collaborative Filtering (CF) recommender systems are based on algorithms that provide suggestions to users, based on what they like and what other similar users like. Their strength lies in their ability to make serendipitous, social recommendations about what books to read, songs to listen to, movies to watch, courses to take, or generally any type of item to consume. Their strength is also that they can recommend items of any type or content because their focus is on modeling the preferences of the users rather than the content of the recommended items. Although recommender systems have made great strides over the last two decades, with significant algorithmic advances that have made them increasingly accurate in their predictions, they suffer from a few notorious weaknesses. These include the cold-start problem when new items or new users enter the system, and lack of interpretability and explainability in the case of powerful black-box predictors, such as the Singular Value Decomposition (SVD) family of recommenders, including, in particular, the popular Matrix Factorization (MF) techniques. Also, the absence of any explanations to justify their predictions can reduce the transparency of recommender systems and thus adversely impact the user\u27s trust in them. In this work, we propose machine learning approaches for multi-domain Matrix Factorization (MF) recommender systems that can overcome the new user cold-start problem. We also propose new algorithms to generate explainable recommendations, using two state of the art models: Matrix Factorization (MF) and Restricted Boltzmann Machines (RBM). Our experiments, which were based on rigorous cross-validation on the MovieLens benchmark data set and on real user tests, confirmed that our proposed methods succeed in generating explainable recommendations without a major sacrifice in accuracy

    EmotIoT: an IoT system to improve users’ wellbeing

    Get PDF
    IoT provides applications and possibilities to improve people’s daily lives and business environments. However, most of these technologies have not been exploited in the field of emotions. With the amount of data that can be collected through IoT, emotions could be detected and anticipated. Since the study of related works indicates a lack of methodological approaches in designing IoT systems from the perspective of emotions and smart adaption rules, we introduce a methodology that can help design IoT systems quickly in this scenario, where the detection of users is valuable. In order to test the methodology presented, we apply the proposed stages to design an IoT smart recommender system named EmotIoT. The system allows anticipating and predicting future users’ emotions using parameters collected from IoT devices. It recommends new activities for the user in order to obtain a final state. Test results validate our recommender system as it has obtained more than 80% accuracy in predicting future user emotions

    Student Behavior Analysis to Predict Learning Styles Based Felder Silverman Model Using Ensemble Tree Method

    Get PDF
    Learning styles are very important to know so that students can learn effectively. By understanding the learning style, students will learn about their needs in the learning process. One of the famous learning management systems is called Moodle. Moodle can catch student experiences and behaviors while learning and store all student activities in the Moodle Log. There is a fundamental issue in e-learning where not all students have the same degree of comprehension. Therefore, in some cases of learning in E-Learning, students tend to leave the classroom and lack activeness in the classroom. In order to solve these problems, we have to know students' preferences in the learning process by understanding each student's learning style. To find out the appropriate student learning style, it is necessary to analyze student behavior based on the frequency of visits when accessing Moodle E-learning and fill out the Index Learning Style (ILS) questionnaire. The Felder Silverman model's learning style classifies it into four dimensions: Input, Processing, Perception, and Understanding. We propose a learning style prediction model using the Ensemble Tree method, namely Bagging and Boosting-Gradient Boosted Tree. Afterwards, we evaluate the classification results using Stratified Cross Validation and measure the performance using accuracy. The results showed that the Ensemble Tree method's classification efficiency has higher accuracy than a single tree classification model

    PERSONALIZED INDEXING OF MUSIC BY EMOTIONS

    Get PDF
    How a person interprets music and what prompts a person to feel certain emotions are two very subjective things. This dissertation presents a method where a system can learn and track a user’s listening habits with the purpose of recommending songs that fit the user’s specific way of interpreting music and emotions. First a literature review is presented which shows an overview of the current state of recommender systems, as well as describing classifiers; then the process of collecting user data is discussed; then the process of training and testing personalized classifiers is described; finally a system combining the personalized classifiers with clustered data into a hierarchy of recommender systems is presented
    • …
    corecore