1,082 research outputs found

    Improved Optimal and Approximate Power Graph Compression for Clearer Visualisation of Dense Graphs

    Full text link
    Drawings of highly connected (dense) graphs can be very difficult to read. Power Graph Analysis offers an alternate way to draw a graph in which sets of nodes with common neighbours are shown grouped into modules. An edge connected to the module then implies a connection to each member of the module. Thus, the entire graph may be represented with much less clutter and without loss of detail. A recent experimental study has shown that such lossless compression of dense graphs makes it easier to follow paths. However, computing optimal power graphs is difficult. In this paper, we show that computing the optimal power-graph with only one module is NP-hard and therefore likely NP-hard in the general case. We give an ILP model for power graph computation and discuss why ILP and CP techniques are poorly suited to the problem. Instead, we are able to find optimal solutions much more quickly using a custom search method. We also show how to restrict this type of search to allow only limited back-tracking to provide a heuristic that has better speed and better results than previously known heuristics.Comment: Extended technical report accompanying the PacificVis 2013 paper of the same nam

    A bitwise clique detection approach for accelerating power graph computation and clustering dense graphs

    Get PDF
    Graphs are at the essence of many data representations. The visual analytics over graphs is usually difficult due to their size, which makes their visual display challenging, and their fundamental algorithms, which are often classified as NP-hard problems. The Power Graph Analysis (PGA) is a method that simplifies networks using reduced representations for complete subgraphs (cliques) and complete bipartite subgraphs (bicliques), in both cases with edge reductions. The benefits of a power graph are the preservation of information and its capacity to show essential information about the original network. However, finding an optimal representation (maximum edges reduction) is also an NPhard problem. In this work, we propose BCD, a greedy algorithm that uses a Bitwise Clique Detection approach to finding power graphs. BCD is faster than competing strategies and allows the analysis of bigger graphs. For the display of larger power graphs, we propose an orthogonal layout to prevent overlapping of edges and vertices. Finally, we describe how the structure induced by the power graph is used for clustering analysis of dense graphs. We demonstrate with several datasets the results obtained by our proposal and compare against competing strategies.Os grafos são essenciais para muitas representações de dados. A análise visual de grafos é usualmente difícil devido ao tamanho, o que representa um desafio para sua visualização. Além de isso, seus algoritmos fundamentais são frequentemente classificados como NP-difícil. Análises dos grafos de potência (PGA em inglês) é um método que simplifica redes usando representações reduzidas para subgrafos completos chamados cliques e subgrafos bipartidos chamados bicliques, em ambos casos com una redução de arestas. Os benefícios da representação de grafo de potência são a preservação de informação e a capacidade de mostrar a informação essencial sobre a rede original. Entretanto, encontrar uma representação ótima (a máxima redução de arestas possível) é também um problema NP-difícil. Neste trabalho, propomos BCD, um algoritmo guloso que usa um abordagem de detecção de bicliques baseado em operações binarias para encontrar representações de grafos de potencia. O BCD é mas rápido que as estratégias atuais da literatura. Finalmente, descrevemos como a estrutura induzida pelo grafo de potência é utilizado para as análises dos grafos densos na detecção de agrupamentos de nodos

    Power graph visualizations for event logs

    Get PDF

    Mining complex trees for hidden fruit : a graph–based computational solution to detect latent criminal networks : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Technology at Massey University, Albany, New Zealand.

    Get PDF
    The detection of crime is a complex and difficult endeavour. Public and private organisations – focusing on law enforcement, intelligence, and compliance – commonly apply the rational isolated actor approach premised on observability and materiality. This is manifested largely as conducting entity-level risk management sourcing ‘leads’ from reactive covert human intelligence sources and/or proactive sources by applying simple rules-based models. Focusing on discrete observable and material actors simply ignores that criminal activity exists within a complex system deriving its fundamental structural fabric from the complex interactions between actors - with those most unobservable likely to be both criminally proficient and influential. The graph-based computational solution developed to detect latent criminal networks is a response to the inadequacy of the rational isolated actor approach that ignores the connectedness and complexity of criminality. The core computational solution, written in the R language, consists of novel entity resolution, link discovery, and knowledge discovery technology. Entity resolution enables the fusion of multiple datasets with high accuracy (mean F-measure of 0.986 versus competitors 0.872), generating a graph-based expressive view of the problem. Link discovery is comprised of link prediction and link inference, enabling the high-performance detection (accuracy of ~0.8 versus relevant published models ~0.45) of unobserved relationships such as identity fraud. Knowledge discovery uses the fused graph generated and applies the “GraphExtract” algorithm to create a set of subgraphs representing latent functional criminal groups, and a mesoscopic graph representing how this set of criminal groups are interconnected. Latent knowledge is generated from a range of metrics including the “Super-broker” metric and attitude prediction. The computational solution has been evaluated on a range of datasets that mimic an applied setting, demonstrating a scalable (tested on ~18 million node graphs) and performant (~33 hours runtime on a non-distributed platform) solution that successfully detects relevant latent functional criminal groups in around 90% of cases sampled and enables the contextual understanding of the broader criminal system through the mesoscopic graph and associated metadata. The augmented data assets generated provide a multi-perspective systems view of criminal activity that enable advanced informed decision making across the microscopic mesoscopic macroscopic spectrum

    Acoustic data optimisation for seabed mapping with visual and computational data mining

    Get PDF
    Oceans cover 70% of Earth’s surface but little is known about their waters. While the echosounders, often used for exploration of our oceans, have developed at a tremendous rate since the WWII, the methods used to analyse and interpret the data still remain the same. These methods are inefficient, time consuming, and often costly in dealing with the large data that modern echosounders produce. This PhD project will examine the complexity of the de facto seabed mapping technique by exploring and analysing acoustic data with a combination of data mining and visual analytic methods. First we test the redundancy issues in multibeam echosounder (MBES) data by using the component plane visualisation of a Self Organising Map (SOM). A total of 16 visual groups were identified among the 132 statistical data descriptors. The optimised MBES dataset had 35 attributes from 16 visual groups and represented a 73% reduction in data dimensionality. A combined Principal Component Analysis (PCA) + k-means was used to cluster both the datasets. The cluster results were visually compared as well as internally validated using four different internal validation methods. Next we tested two novel approaches in singlebeam echosounder (SBES) data processing and clustering – using visual exploration for outlier detection and direct clustering of time series echo returns. Visual exploration identified further outliers the automatic procedure was not able to find. The SBES data were then clustered directly. The internal validation indices suggested the optimal number of clusters to be three. This is consistent with the assumption that the SBES time series represented the subsurface classes of the seabed. Next the SBES data were joined with the corresponding MBES data based on identification of the closest locations between MBES and SBES. Two algorithms, PCA + k-means and fuzzy c-means were tested and results visualised. From visual comparison, the cluster boundary appeared to have better definitions when compared to the clustered MBES data only. The results seem to indicate that adding SBES did in fact improve the boundary definitions. Next the cluster results from the analysis chapters were validated against ground truth data using a confusion matrix and kappa coefficients. For MBES, the classes derived from optimised data yielded better accuracy compared to that of the original data. For SBES, direct clustering was able to provide a relatively reliable overview of the underlying classes in survey area. The combined MBES + SBES data provided by far the best accuracy for mapping with almost a 10% increase in overall accuracy compared to that of the original MBES data. The results proved to be promising in optimising the acoustic data and improving the quality of seabed mapping. Furthermore, these approaches have the potential of significant time and cost saving in the seabed mapping process. Finally some future directions are recommended for the findings of this research project with the consideration that this could contribute to further development of seabed mapping problems at mapping agencies worldwide

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Adaptive vehicular networking with Deep Learning

    Get PDF
    Vehicular networks have been identified as a key enabler for future smart traffic applications aiming to improve on-road safety, increase road traffic efficiency, or provide advanced infotainment services to improve on-board comfort. However, the requirements of smart traffic applications also place demands on vehicular networks’ quality in terms of high data rates, low latency, and reliability, while simultaneously meeting the challenges of sustainability, green network development goals and energy efficiency. The advances in vehicular communication technologies combined with the peculiar characteristics of vehicular networks have brought challenges to traditional networking solutions designed around fixed parameters using complex mathematical optimisation. These challenges necessitate greater intelligence to be embedded in vehicular networks to realise adaptive network optimisation. As such, one promising solution is the use of Machine Learning (ML) algorithms to extract hidden patterns from collected data thus formulating adaptive network optimisation solutions with strong generalisation capabilities. In this thesis, an overview of the underlying technologies, applications, and characteristics of vehicular networks is presented, followed by the motivation of using ML and a general introduction of ML background. Additionally, a literature review of ML applications in vehicular networks is also presented drawing on the state-of-the-art of ML technology adoption. Three key challenging research topics have been identified centred around network optimisation and ML deployment aspects. The first research question and contribution focus on mobile Handover (HO) optimisation as vehicles pass between base stations; a Deep Reinforcement Learning (DRL) handover algorithm is proposed and evaluated against the currently deployed method. Simulation results suggest that the proposed algorithm can guarantee optimal HO decision in a realistic simulation setup. The second contribution explores distributed radio resource management optimisation. Two versions of a Federated Learning (FL) enhanced DRL algorithm are proposed and evaluated against other state-of-the-art ML solutions. Simulation results suggest that the proposed solution outperformed other benchmarks in overall resource utilisation efficiency, especially in generalisation scenarios. The third contribution looks at energy efficiency optimisation on the network side considering a backdrop of sustainability and green networking. A cell switching algorithm was developed based on a Graph Neural Network (GNN) model and the proposed energy efficiency scheme is able to achieve almost 95% of the metric normalised energy efficiency compared against the “ideal” optimal energy efficiency benchmark and is capable of being applied in many more general network configurations compared with the state-of-the-art ML benchmark

    Development of Mining Sector Applications for Emerging Remote Sensing and Deep Learning Technologies

    Get PDF
    This thesis uses neural networks and deep learning to address practical, real-world problems in the mining sector. The main focus is on developing novel applications in the area of object detection from remotely sensed data. This area has many potential mining applications and is an important part of moving towards data driven strategic decision making across the mining sector. The scientific contributions of this research are twofold; firstly, each of the three case studies demonstrate new applications which couple remote sensing and neural network based technologies for improved data driven decision making. Secondly, the thesis presents a framework to guide implementation of these technologies in the mining sector, providing a guide for researchers and professionals undertaking further studies of this type. The first case study builds a fully connected neural network method to locate supporting rock bolts from 3D laser scan data. This method combines input features from the remote sensing and mobile robotics research communities, generating accuracy scores up to 22% higher than those found using either feature set in isolation. The neural network approach also is compared to the widely used random forest classifier and is shown to outperform this classifier on the test datasets. Additionally, the algorithms’ performance is enhanced by adding a confusion class to the training data and by grouping the output predictions using density based spatial clustering. The method is tested on two datasets, gathered using different laser scanners, in different types of underground mines which have different rock bolting patterns. In both cases the method is found to be highly capable of detecting the rock bolts with recall scores of 0.87-0.96. The second case study investigates modern deep learning for LiDAR data. Here, multiple transfer learning strategies and LiDAR data representations are examined for the task of identifying historic mining remains. A transfer learning approach based on a Lunar crater detection model is used, due to the task similarities between both the underlying data structures and the geometries of the objects to be detected. The relationship between dataset resolution and detection accuracy is also examined, with the results showing that the approach is capable of detecting pits and shafts to a high degree of accuracy with precision and recall scores between 0.80-0.92, provided the input data is of sufficient quality and resolution. Alongside resolution, different LiDAR data representations are explored, showing that the precision-recall balance varies depending on the input LiDAR data representation. The third case study creates a deep convolutional neural network model to detect artisanal scale mining from multispectral satellite data. This model is trained from initialisation without transfer learning and demonstrates that accurate multispectral models can be built from a smaller training dataset when appropriate design and data augmentation strategies are adopted. Alongside the deep learning model, novel mosaicing algorithms are developed both to improve cloud cover penetration and to decrease noise in the final prediction maps. When applied to the study area, the results from this model provide valuable information about the expansion, migration and forest encroachment of artisanal scale mining in southwestern Ghana over the last four years. Finally, this thesis presents an implementation framework for these neural network based object detection models, to generalise the findings from this research to new mining sector deep learning tasks. This framework can be used to identify applications which would benefit from neural network approaches; to build the models; and to apply these algorithms in a real world environment. The case study chapters confirm that the neural network models are capable of interpreting remotely sensed data to a high degree of accuracy on real world mining problems, while the framework guides the development of new models to solve a wide range of related challenges
    corecore