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Abstract

This research addresses the problem of efficiently and robustly reconstructing
semantically-rich 3D architectural models from laser-scanned point-clouds. It first
covers the pre-existing literature and industrial developments in active-sensing,
3D reconstruction of the built-environment and procedural modelling. It then doc-
uments a number of novel contributions to the classical problems of change-
detection between temporally varying multi-modal geometric representations and
automatic 3D asset creation from airborne and ground point-clouds of buildings.
Finally this thesis outlines on-going research and avenues for continued investiga-
tion - most notably fully automatic temporal update and revision management for
city-scale CAD models via data-driven procedural modelling from point-clouds. In
short this thesis documents the outcomes of a research project whose primary aim
was to engineer fast, accurate and sparse building reconstruction algorithms.

Formally: this thesis puts forward the hypothesis (and advocates) that architec-
tural reconstruction from actively-sensed point-clouds can be addressed more effi-
ciently and affording greater control (over the geometric results) - via deterministic
procedurally-driven analysis and optimisation than via stochastic sampling.
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List of Abbreviations

This section summarises the mathematical notation and acronyms used in this document.

Mathematical Notation

∪ - union, ∩ - intersection, a − b - difference (a mi-
nus/subtract b), ⊕ - exclusive disjunction (xor),

∑

- summation, ∆ - derivative,
∫

- integral, |a| - cardi-
nality or length, ||a|| - magnitude, ∀ - for all, ∈ - in, !
- negate or not, ≡ - equivalent, 6≡ - not equivalent,
≈ - approximately equal,← - gets,→ - to

Acronyms and Shorthands

LiDAR - Light Detection and Ranging
ToF - Time of Flight
SAR - Synthetic Aperture Ranging
SLAM - Simultaneous Localisation and Mapping
MVS - Multi-View Stereo
SfM - Structure from Motion
IoU - Intersection over Union
DoF - Degrees of Freedom
R2 - Real Valued 2-Dimensions
R3 - Real Valued 3-Dimensions
R4 - Real Valued 4-Dimensions
RN - Real Valued N-Dimensions
DEM - Digital Elevation Model
DSM - Digital Surface Model
DTM - Digital Terrain Model
nDSM - Normalised DSM
DoEM - Difference of Elevation Models
ESRI - Environmental Systems Research Institute
CAD - Computer Aided Design
CSG - Constructive Solid Geometry
CAG - Constructive Area Geometry
BIM - Building Information Modelling
AABB - Axis Aligned Bounding Box
KD - K Dimensional
ND - N Dimensional
PLY - Stanford University Polygon File Format
OFF - Princeton University Object File Format
OBJ - Wavefront Geometry Definition File Format
STL - StereoLithography Format
GML - Generative Modelling Language
RIB - Renderman Bytestream Interface
DXF - AutoCAD Drawing Interchange Format
CSV - Comma Separated Values
PCD - Point-Cloud Data (PCL File Format)

PTS - Unstructured Point-Cloud Format
PTX - Unstructured Point-Cloud Format
XYZ - Unstructured Point-Cloud Format
RMS - Root (of the) Mean Squared
SSD - Sum (of the) Squared Differences
FFT - Fast Fourier Transform
DT - Delaunay Triangulation
CDT - Constrained Delaunay Triangulation
CCDT - Conformal Constrained DT
SLS - Straight Line Skeleton
SIFT - Scale Invariant Feature Transform
MSER - Maximally Stable Extremal Regions
MAT - Medial Axis Transform
SVM - Support Vector Machine
NN - Neural Network
MST - Minimum Spanning Tree
GC - Generalised Cylinder
BSP - Binary Space Partitioning
SDF - Signed Distance Field
DoG - Difference of Guassian
DoN - Difference of Normals
PCA - Principal Component Analysis
SVD - Singular Value Decomposition
LLS - Linear Least Squares
MLS - Moving Least Squares
ICP - Iterative Closest Point
IoP - Intersection of Planes
RANSAC - Random Sampled Consensus
w.r.t. - with respect to
s.t. - such that
IO - Input Output
GL - (Open) Graphics Language
GLSL - OpenGL Shading Language
PG - Procedural Generation
CG - Computer Graphics
CV - Computer Vision
UI - User Interface
GUI - Graphical User Interface
RGB - Red Green Blue
RGBA - Red Green Blue Alpha (Transparency)
ARGB - Alpha (Transparency) Red Green Blue
RGB-D - Red Green Blue Depth
HSV - Hue Saturation Value
HSB - Hue Saturation Brightness
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During the course of this thesis - a number of new acronyms are introduced to
denote concepts and novel algorithmic operators. As a supplement to the pre-
existing abbreviations - this section documents the undefined shorthands that will
be employed - as this document progresses - for reference.

DEV : Detector for Engineering Variance
MAMMAL : Maximal Area 2.5D Mass-Modelling of Airborne LiDAR
ARROW : Accurate Railed Reconstruction of Openings and Walls
CUBE : Complete Unified Building Exteriors
ACCRA : Automatic City-CAD Revision Agent

MARS : Maximal Area Roof-shape Segmentation
QUALM : Quick Unconstrained Approximate L-Shape Method
GRAILS : Graph-Refined Approximate Interior Linear Spine
SLADE : Split-Logic-Axes Detector and Extractor
DRAPES : DEM-Reconstruction for Accelerated

Partitioning of Engineering Surfaces

LBET : Linear Boundary Edge Traversal
LIET : Linear Internal Edge Traversal
MAMP : Maximal-Area→ Minimum-Primitives
PIP : Piecewise Intersection of Planes

The first block of acronyms corresponds to the principal algorithms that are de-
fined and exploited in this research - the second block to auxiliary and supporting
geometric operators and the third to useful ideological concepts.
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Chapter 0

Introduction

This thesis presents a thorough treaty of the state of data-driven procedural mod-

elling for architectural visualisation and simulation and prescribes a number of re-

constructive algorithms to advance the state of the art - which efficiently extract

sparse architectural geometry from airborne and terrestrial laser-scanned point-

clouds - in a manner suited to interactive rendering.

Over the last two decades, the explosion in the use of actively-sensed point-
clouds has been without relent. From industrial applications (in surveying and en-
vironmental analysis) right through to consumer level devices (such as Microsoft’s
Kinect), the use-cases for acquiring 3D depth information of the real-world seem
set to continue to grow. Point-clouds are simply collections of points in space. They
are typically acquired by the use of Light Detection and Ranging (LiDAR) scanners
- which consider the return rate of a laser beam in order to determine the distance
from the sensor to a surface. However there are a multitude of other ways to create
and acquire point cloud data - ranging from photogrammetry (or image-inversion),
magnetic resonance imaging, mesh sampling, and procedural synthesis.

Each point in a point-cloud describes the location of a position on a surface - typ-
ically using a 3D cartesian coordinate system [x,y,z]. However increasingly points
can also embody additional information such as the derivative of the gradient of
change of the surface at the position (the surface-normal) and the colour of the
surface at the position (if the sensor combines depth with an RGB stream). As a
result active-sensing is a highly utilised component of computational systems that
perceive the physical world.

Point clouds have many benefits over other sensing mediums - such as pho-
tographs. Since the energy used to measure distance is actively supplied the
magnitude of the signal-error is typically far smaller than with passive sensors.
Fundamentally though the key difference is the ability to quantify the geometric
error present in models recovered from actively sensed point-clouds, relative to
photogrammetric models. Point clouds provide one of the simplest discrete repre-
sentations of geometric form. As each point is distinct (free of topology) they are
well suited to being efficiently rendered - which enables volumous amounts of data
to be visualised in 3D in real-time.

Unfortunately point-clouds are not perfect and a number of key problems have
plagued their exploitation since the advent of the field of active sensing. The



CHAPTER 0. INTRODUCTION

key challenges in processing laser-scan data are commonly known to be feature-
detection, segmentation and approximation. At a high-level the challenge in each
is a product of the fact they are ill-defined problems.

Though great strides have been made in surface-reconstruction (a dense form
of approximation), there is typically little semantic information embedded in a re-
constructed surface and additional processing is required to turn the reconstructed
geometry into an effective digital asset. This can be a costly-process at scale, and
can negate the benefits of automation if it requires semi-automation or manual hu-
man intervention. Further in this regard, within the domains of architectural mod-
elling, visualisation and simulation there are a number of conventions that preclude
the use of un-refactored dense surface reconstructions. Foremost the demand for
topological control in the construction of geometric assets. However further the re-
quirements for succinct, semantically meaningful models that clearly communicate
the function and form of each architectural component. Although the gap between
manually-constructed and automated models is still quite large a number of vital
contributions have taken great strides in bridging the gulf.

This thesis aims to further close this gap, and presents a set of simple, automatic
algorithms designed to efficiently yield clean, compact, semantically rich architec-
tural models from various types of laser-scanned point-cloud.

The key idea, and the goal of the project is enabling Automatic Temporal Updates
to City-Scale Urban CAD Models driven by Multi-Modal Laser-Scans. In essence
the aim is to be able to automatically maintain up-to-date city-models in rapidly
changing (constantly evolving) urban environments by analysing, segmenting and
modelling high-quality, 3D building models in aerial and ground LiDAR. Additionally
the project seeks to ensure that the generated geometry is both accurate enough
for use in surveying and analytic tasks, and compact enough to be used in real-
time within interactive 3D simulations and environments.

Document Overview

This document is divided into two parts : Research and Development. The first
part (Research) analyses the pre-existing techniques within the domain, consider-
ing the strengths and detailing the recurrent problems. The second part (Develop-
ment) presents and analyses the novel contributions.

In order to progress the current state of the art, this thesis addresses three vi-
tal problems in architectural reconstruction. These vital problems are:

1. Understanding Temporal Geometric Changes

2. Automatically Modelling Architecture in Airborne Laser Scans

3. Automatically Modelling Architecture in Ground Laser Scans

Each development chapter presents an intuitive approach to addressing the corre-
sponding problem. The final development chapter discusses an automatic agent
that amalgamates the key novel algorithms developed in pursuit of an artificially
intelligent architectural CAD technician :-

The Procedural Revision Agent.

Page 10 of 301



CHAPTER 0. INTRODUCTION

Key Dichotomies

Before delving into the meat of this thesis, this section briefly introduces the key di-
chotomies that are often considered within the domain of architectural reconstruc-
tion. These contrasting adjectives represent the key operational and behavioural
trade-offs that exist between representations and techniques within the field.

Note: the formal definitions that accompany each of the following pairs of contrast-

ing terms are drawn from the Oxford Dictionary of English. [29]

Sparse vs Dense (thinly dispersed or scattered versus closely compacted in sub-

stance). Here the term sparse refers to compressed (or lightweight) representa-
tions whilst dense refers to un-compressed (heavy-weight) representations. Sparse
representations are generally better at minimising the computational requirements
for further geometric processing, however dense representations are generally
more accurate (since they are explicit and not simplifications). The important thing,
is that any decision as to which class of algorithm is preferable (those that return
sparse models relative to those that yield dense models) is heavily tied to the con-
text of the resultant use of the outcome models. In essence, whether a sparse
or dense reconstruction is better depends entirely upon what an end-user intends
to do with a reconstruction. In the case of city-scale simulation, sparse meth-
ods are preferable, whilst for analysis of a single building dense methods may be
preferable. However critically although these two attributes contrast, in reality the
classification of an algorithm as being sparse or dense is often not a binary dis-
tinction, but rather a sliding scale between these two extremes.

Discrete vs Continuous (individually separate and distinct versus forming an

unbroken whole; without interruption). The key difference between discrete and
continuous representations is analogous to the difference between fixed resolution
and multi-resolution 2D graphic representations. As an example a photograph or
image is discrete whilst a scalable vector graphic is continuous (since it can be
resampled at arbitrary resolutions without the loss of information). Further one
could consider a point-cloud a discrete representation and a tetrahedra-mesh a
continuous representation. However from another perspective a tetrahedra-mesh
could be considered discrete whilst an algebraically defined signed distance field
could be considered a continuous representation. This simply demonstrates that
the association of a type of representation as either discrete or continuous is often
relative to an alternate representation type. The key however, is that fundamentally
there are only two types of abstract transformation that can be applied to alter the
continuity of a geometric representation. Either moving from a discrete represen-
tation to a continuous one (as is common in active sensing and 3D reconstruction)
or the inverse - moving from a continuous representation to a discrete one (as is
the case in 3D and 2D rendering algorithms).

Explicit vs Implicit (stated clearly and in detail - leaving no room for confusion or

doubt versus suggested but not directly expressed - (of a function) not expressed

directly in terms of independent variables). Geometrically this refers to the manner
of shape representation. An explicit representation such as a point-cloud states
unambiguously the exact position and attributes of each point. However an implicit
representation such as a CSG-tree implies the structure of a solid-object in terms
of a hierarchy of boolean operations without directly specifying the actual position

Page 11 of 301
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of its surface. Implicit representations encode the key attributes of an entity in an
abstracted manner.

Accuracy vs Brevity (the quality of state of being correct or precise versus con-

cise - brief but comprehensive - close to the actual, but not completely accurate

or exact). Although in the strictest sense accuracy and brevity are not antonyms,
in practice there is generally a trade-off between how accurate a geometric repre-
sentation is and the brevity (or level of compression) it exhibits - often the greater
the accuracy the less the compactification, and conversely the greater the con-
ciseness the less the accuracy. However this is not a hard rule, and recently the
academic trend has been investigation of methods that are as sparse as possible
whilst meeting an error tolerance.

Deterministic vs Stochastic (the doctrine that events and operations are ulti-

mately controlled (determined) by explicit causes as opposed to chance versus
having a random probability distribution or pattern that may be analysed statisti-

cally (for example probabilistically) but may not be predicted precisely). The key
distinction here is between operators whose behaviour is governed (controlled) by
logic or reason, against operators that rely upon (exploit) chance. Although one
could argue that stochastic processes can be implemented such that they per-
form deterministically (through the use of seeded/pseudo-random number gener-
ators), the core difference is ideological. Fundamentally random sampling strate-
gies cannot be trivially controlled or profiled and whilst such stochastic methods
are becoming prevalent in Computer Vision (wherein there is generally little or no
intrinsic relationship between pixel colour and an underlying surface’s geometry),
within Computational Geometry the preference is for deterministic methods whose
return values are solely products of the input. Indeed determinism is a funda-
mental building block of Computer-Science without which many integral pursuits
such as formal proof of a program’s correctness would not be possible. Despite
this stochastic methods tend to find use within domains for which deterministic
solutions to problems are either too complex to implement or computationally ex-
pensive - for example in realtime applications.

Procedural vs Manual (defined, operated or controlled algorithmically - or au-

tonomously versus operated or controlled by hand, rather than automatically).
These terms can be applied to both operations and representations. Operationally
good synonyms for these terms are automatic versus interactive. In terms of rep-
resentations, one could use the loose analog implicit versus explicit. Essentially
- whenever the term procedural is used it simply refers to functional, procedure-
driven or algorithmic phenomena.

Structured vs Unstructured (of the relations between parts or elements of some-

thing - arranged according to a plan - possessing a pattern or organisation versus
without (lacking) formal organisation or structure). This relates to the manner in
which points in a point-cloud are arranged. They may possess a consistent uni-
form arrangement (as in gridded structured parallax range-images) or they may
be scattered arbitrarily without consistent inter-point spacing (as in unstructured
fixed-position radial range-scans).

Each of these juxtapositions outlines a key analytic, operational or representa-
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tional contrast. They are referred to through-out this thesis in order to clarify the
behaviour of both the pre-existing and newly-proposed methods. It is important
to understand that ultimately there are no single absolute correct solutions to the
key problems addressed by this research. However these terms aid quantitative
and qualitative discussion and evaluation. They provide a base vocabulary that is
useful in categorising the behaviour of different geometric operators and represen-
tations within the domain.

Notes on Document Presentation

This section outlines the presentational conventions employed by this Thesis.

Use of Colour: is an important component of the visual presentation of this doc-
ument. Throughout the development chapters colour figures are used to clarify
important concepts and results. It is therefore recommended that this document
be viewed in colour. Note: additionally that this document is designed to be viewed
digitally. Whilst some readers may prefer a printed colour version - be aware that
facilities such as the interactive index and internal document links for references in
the bibliography shall be lost when printed.

Novelty Flags: these are short descriptive statements that draw attention to the
novel aspects of each method - and are included to help readers quickly identify
the important benefits and contributions. Each novelty flag is denoted by green
typeface. The primary aim of this form of mark-up is to make it easy to see (at a
glance) statements and ideas that relate to fresh contributions to knowledge and/or
improved algorithmic performance relative to pre-existing techniques.
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0.1 Industrial Context and Motivations

This section provides background on the industrial context of this research and its
underlying motivations. It introduces the industrial sponsor, their requirements and
the core problem that they face which prompted these investigations.

Cityscape Digital is an architectural visualisation firm based in London. Cityscape
produce high-fidelity graphical representations of the built environment - to support
various stages of the development life-cycle within architecture and construction.
From pre-planning, through design, feasibility and build, Cityscape’s still, animated
and interactive visualisations enable exploration, verification, communication and
marketing of both large and small scale urban developments.

Cityscape (as many digital-media firms) rely heavily on 3D CAD models. Indeed
3D geometric representations of the physical world are a fundamental pre-requisite
to many of their industrial activities. However the rising cost of acquiring and main-
taining such assets poses many challenges for the company. In particular - as
the scale and scope of the projects Cityscape engages in grows - so to does the
requirement to reduce the turn-around time for producing and maintaining seman-
tically rich, up-to-date 3D building models.

Note: within this context semantically rich simply means 3D models that carry
(embed) semantic meaning. Essentially the structure of the 3D representation en-
ables manipulations and operations (i.e. editing and rendering) and analysis at
the level of semantic components (such as roof, walls, windows and doors) as op-
posed to at the level of lower-level geometric elements (such as vertex, edge, face).

Presently Cityscape acquires their 3D building models through a combination of
off-the-shelf providers (such as Vertex-Modelling and Z-Mapping) and in-house
modelling. The main benefit of buying pre-made models from such geo-spatial
providers is that it can reduce the production turn-around time - however the cost of
such purchases can be quite high - often in the range of several thousand pounds
per-project. Cityscape have observed that that in some instances this expense
can be prohibitive as it eats into a project’s budget and reduces the resources
available to spend on in-house development. Additionally Cityscape have noted
that there is typically no guarantee of the absolute accuracy of these assets and
as such off-the-shelf models often require further editing prior to being used within
the digital-content produced by the company. These artefacts and anomalies can
be the product of temporal disparity (the fact the purchased models are no longer
up-to-date) and sporadic modelling errors (such as over-simplifications and incor-
rectly modelled photogrammetrically derived components). To make matters worse
- even when the geometric form of these off-the-shelf models is fundamentally cor-
rect - there can be technical issues - such as inconsistently oriented facets that
interfere with processes such as texturing and rendering.

Furthermore (and likely the greatest limitation of relying heavily upon external sup-
pliers is that) there is no guarantee that a geo-spatial data provider will possess
adequate level-of-detail models for a region of interest - which means that the com-
pany cannot always rely solely on buying in baseline models.
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On the other hand - manually producing such pre-requisite assets in-house (though
incurring a lower initial economic investment) - demands a substantial investment
of time - and puts a greater strain on Cityscape’s modelling team as it reduces the
time they have to spend on higher-level modelling tasks - forcing them to focus on
the construction of boiler-plate geometry.

Therefore (from Cityscape’s perspective) the rationale behind this research is sim-
ple. They seek to simultaneously reduce the cost of production in terms of the eco-
nomic expense and the turn-around time for their raw-material - so as to increase
their per-project profit margin and the scale of developments they can support.

Prior to this research Cityscape trialled a number of systems to automate the pro-
cess of urban modelling from various types of sampled data - most notably sets
of photographs and point-clouds. However they are yet to identify an effective so-
lution that meets their needs. Cityscape have noted that the key limitation of the
reconstructive methods they have employed is the quality of the building models
that are generated and the large (exponential growth in) runtimes for the automatic
algorithms that process the data. In particular - in some of their experiments they
found that automated reconstruction was only feasible as an offline task on spe-
cialist hardware. For example they have had to leave algorithms running over-night
on the companies’ cluster in order to generate results. Whilst in principle compute
is cheap relative to human labour - in practice the power required to coordinate
automatic building reconstruction eats into the resources afforded photo-real ren-
dering - which is the companies main source of revenue.

Essentially Cityscape have observed that the reconstructive algorithms that cre-
ate high-quality models scale poorly to city-scale datasets whilst the algorithms
that execute quickly typically yield low-fidelity geometry that is unsuitable for their
use-case. Now whilst this problem is not unique to Cityscape it has become ap-
parent to the company that they have reached somewhat of bottleneck for which
their continued growth and prosperity is tied to their ability to resolve this problem.

0.2 Research Methodology

This section outlines the research methodology that pervades these investigations.
The aim is to provide readers with a deeper appreciation of the underlying ap-
proach to research that is employed - beyond the narrower cyclical process of
analysis, experimentation, implementation and performance optimisation.

The main point is that these investigations call for both high-level ideological ad-
vancements and low-level computational improvements to the way architectural
models are recovered from laser-scanned points clouds. In order to ensure the
material is accessible to readers from various disciplines - this thesis focusses on
exposing both the technical developments and the observations and insights that
enable them. To put it another way - this thesis documents the outcome of an iter-
ative process that involves: first analysing the pre-existing literature to determine
points of weakness and the major limitations - then experimenting with operators
and algorithms that can combat the problems identified - then implementing and
testing the most appropriate options and then (once viability is determined) opti-
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mising performance using software-engineering techniques. Due to the nature of
the problem at hand - i.e. the fact that high-quality building reconstruction could
be considered an ill-defined (or under-constrained) task - this process is in many
ways open ended. In this sense the work presented documents the state of devel-
opment at the point that the funded period of the project drew to an end. As such
it is important to be aware that this work represents the progress to date (so to
speak). This thesis does not claim to have solved all the problems that exist within
the domain. It simply documents improvements developed during the course of
these investigations. Whilst some of these improvements represent significant en-
hancements to the state of the art - others are incremental in nature.

Further more in terms of the critical evaluative measures (that are of most con-
cern) in these investigations - this research focusses on addressing the quanti-
tative attributes of building reconstruction methods more so than their qualitative
attributes. Do not misunderstand - the aesthetic appearance of the CAD models
generated by the prescribed techniques is of vital importance (especially to par-
ties such as Cityscape). However this research takes the view that ultimately - it
is easier (and far more practical) to measure algorithmic gains quantitively than
qualitatively. In other words the focus of the evaluative effort is in determining the
geometric accuracy, growth in execution time and geometric compactification (of
the assets generated) as opposed to subjective measures such as an end-user’s
perception. Interesting though, this work demonstrates that their is an inherent re-
lationship between these quantitative metrics and derived qualitative metrics that
govern how good-looking the reconstructed building models are.

0.3 Outline of Contributions and Impact

Before progressing, this section briefly summarises the key contributions to human
knowledge derived from this research. These ideas and algorithms are covered in
greater detail within the development chapters - however it is quite useful to be
aware of the novelty of this work as a preliminary to analysis of the literature.

The Hypothesis - The Central Idea and The Main Conceptual Argument:

Deterministic (Non-Stochastic) Procedural Optimisation enables Efficient Sparse

Reconstruction of High-Quality Building Models from Laser-Scanned Point-Clouds.

The Algorithms - The Primary Technical Developments:

DEV: Multi-Modal Semantic Change-Detection for Selective Reconstruction

MAMMAL: Fast, Accurate and Sparse, Automatic 2.5D Building Reconstruction

ARROW: Fast, Accurate and Sparse, Automatic 3D Facade Reconstruction

Note: the final chapter provides a fuller enumeration of the novel concepts and
technical advancements developed and prescribed by this research.
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Chapter 1

Literature Review

This thesis addresses the problem of recovering semantically meaningful architec-
tural models from laser-scanned point clouds. As part of this, three key problems
(outlined in the introduction) are tackled. For reference these are:

1. Understanding Temporal Geometric Changes

2. Automatically Modelling Architecture in Airborne Laser Scans

3. Automatically Modelling Architecture in Ground Laser Scans

The driving aim of this project is to determine the feasibility of continuous geomet-
ric update to city-scale CAD models using laser-scanned point-cloud data. Before
delving into the heart of these core problems this part of the thesis covers the pre-
existing literature which informs the developments presented in part two.

This literature review is divided into two sections. The first section revises the key
tasks of active-sensing with a focus on the computational aspects of point-cloud
processing for architectural reconstruction. The second section covers the domain
of procedural modelling, focussing on the algorithmic definition and manipulation
of 3D building models. This literature review then concludes with a summary of the
important contributions and identified recurrent sub-problems.

1.1 Architectural Reconstruction

This section reviews pre-existing architectural reconstruction methods.

It is organised as follows:

• Primer: Categorising Building Reconstruction Methods

• Timeline of Contributions and Developments

• Key Related Work: Case Studies

• Limitations and Recurrent Problems



CHAPTER 1. LITERATURE REVIEW→ 1.1. ARCHITECTURAL RECONSTRUCTION

1.1.1 Primer: Categorising Building Reconstruction Methods

This preliminary section outlines basic concepts in architectural reconstruction
from laser-scanned point-clouds. It considers the characterising attributes of build-
ing reconstruction methods, alongside the heuristics and priors commonly applied
to automatically produce 3D building models from sampled representations.

Automatic vs Interactive

A building reconstruction method can be considered automatic or interactive. Au-
tomatic methods do not require a human in the loop whilst interactive methods do.

LiDAR-based vs Image-based

Further more one can consider the type of input data to a reconstructive method
as a means to categorise them. LiDAR-based (laser-scanning) strategies operate
on actively sensed point-clouds. Image-based (photogrammetric) methods oper-
ate on sets of photographs or sparse MVS points. Note: there are also hybrid
methods that employ both laser-scanned point clouds and image data.

Data-Driven vs Model Driven

Another key attribute that distinguishes building reconstructive methods from one
another is whether they are data-driven or model-driven.

Data-driven methods are predicated on recovering boundary representations based
solely on the data-provided. In this sense they are direct methods.

Whereas model-driven (or library-based) methods rely on a pre-existing knowledge-

base (or model-library) in order to recover boundary representations that conform
to a pre-determined abstract model of what constitutes a building. As such model-
based approaches can be thought of as in-direct.

Shortly this thesis considers key examples of data-driven and model-driven build-
ing reconstruction methods. However at a high-level it is useful to be aware that
data-driven reconstruction methods are generally favourable for their efficiency
and geometric accuracy - whilst model-based reconstructive methods are often
favourable for their ability to mitigate sensing noise and their ability to produce
higher-quality boundary representations.

Analytic Methods vs Stochastic Methods

Further more in terms of dichotomies applicable to building reconstruction meth-
ods one can also consider an algorithm as analytical or stochastic.

Analytic methods (as their name suggests) rely upon analysing input point-clouds
and exploiting geometric predicates and constructions in order to localise upon
and model boundary representations of architectural features.

Stochastic methods however, rely upon randomly sampling subsets of input point-
clouds in order to localise on architectural features by exploiting chance in a man-
ner akin to trial-and-error (or probabilistic modelling).

In essence, analytic methods resolve algorithmic decisions automatically by explic-
itly computing intermediary distinctive attributes and properties of a sampled-set,
whilst stochastic methods resolve algorithmic decisions by sampling (or guessing)
randomly until good approximates are identified. Further more, if an reconstructive
method’s result is solely a product of the supplied input (i.e. it is predetermined),
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one can consider it deterministic.

As mentioned in the introduction - generally within image-based building recon-
struction (photogrammetry) stochastic techniques are employed - since there is
often little intrinsic relationship between pixel-intensity and a desired output model.
However in geometric problems the desire is generally for determinisitic solutions
to problems. Despite this, an alarming number of methods ([1], [67], [142], [73])
for building reconstruction from actively sensed point-clouds have arisen of late
that employ stochastic techniques in order to forgo the difficultly associated with
developing effective efficient analytic algorithms. On one hand, this is somewhat
understandable given the seeming complexity of traversing large unordered sets
of points. However (particularly in architectural reconstruction) the key benefit of
effective general analytic methods is efficiency relative to stochastic methods. The
key challenge though in the formulation of analytic reconstructive methods is gen-
erally the demand for domain specific insight. Indeed the efficacy of an analytic
method rests largely upon the robustness (versatility, generality, flexibility) of the
insights employed. Conversely, stochastic methods are easy to write, yet harder to
optimise in terms of computational efficiency.

Having outlined the types of building reconstruction algorithm that exist, the next
subsection briefly outlines common priors that are employed.

Architectural Priors

Certain geometric structural priors are frequently employed by building reconstruc-
tion algorithms in order to control the nature of boundary-representations that are
constructed. The key aim of embedding such priors in an algorithm is to constrain
the 3D models that are produced and preserve and/or enforce desirable features
and attributes. These features and attributes include: Planarity, Smoothness, Con-
tinuity [107], Parallelism, Orthogonality (Right-Angles) [166], Symmetry - Reflec-
tional, Rotational [166], Principal Directions, Common Angles [166], Manhattan-
Worth Assumption [143][163],[106] and Sharp/Crease Edges/Ridges [165].

Note: the exploitation of geometric priors and constraints represents one of the
key differences between architectural reconstruction algorithms and general pur-
pose surface reconstruction algorithms. The key idea is that the built-environment
exhibits common regularities that are not typically present in scans of arbitrary ob-
jects. Algorithms can reason about building representations in a manner that is not
amenable to general surfaces - due to the fact that 1) architecture is man-made
(which means that the rules that govern it are not empirically derived but rather de-
cisions made by humans), and 2) because the function of buildings (as dwellings
for human-beings) significantly constrains their geometric form. Buildings may
appear high-varied and distinct, however they all share common attributes (en-
trances, apertures, walls, ground-contact...) which are well-known and bound by
the requirement to be structurally sound. However this cannot be generally said
for organic objects or arbitrary man-made objects as examples.

Ultimately embedding one’s pre-existing knowledge and expectations - about the
types of geometric feature prevalent in architecture - enables algorithmic enhance-
ments in terms of computational efficiency and model quality.

However the downside to exploiting priors is the limiting effect they can have on an
algorithm’s versatility in the presence of highly irregular buildings.
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1.1.2 Timeline of Contributions and Developments

This timeline of architectural reconstruction steps through the last two and half
decades reviewing the key academic contributions to the domain. Note: whilst the
focus of this research is architectural reconstruction from LiDAR point-clouds this
timeline also covers photogrammetric and hybrid approaches so as to provide a
fuller account of prior techniques and developments.

Pre Millennium

Debevec’s doctoral thesis [26] documents pioneering research into photo-real ar-
chitectural modelling and rendering - from sets of photographs using a hybrid (geo-
metric and image-based) approach. Debevec’s semi-automated system (Facade)
provides an end-to-end pipeline for the production of high-quality textured 3D build-
ing models that capitalises on the complimentary strengths of interactive 3D mod-
elling and photogrametric stereo correspondence. By combining photographs with
sparse geometry Debevec constructs far more compelling (life-like) 3D architec-
tural representations than would otherwise be possible using manually created
texture maps.

Lin and Nevatia [74] propose a monocular method for extracting rectilinear blocks
to describe buildings from oblique aerial photography that relies on hypothesising
and filtering roof components via a grouping methodology. However due to the
nature of the input data (single-channel/grayscale images) the accuracy is limited
- and they rely on an interactive editing tool to correct any errors.

Gulch, Muller and Labe [48] tend to the problem of multi-view photogrammetric 3D
building modelling and in-particular automating the process of measuring build-
ings dimensions from image data to support creation of simple parametric primi-
tives. Positively this approach supports the recovery of complex polygon shapes
(i.e. that contain holes) and composite structures using CSG trees - however the
accuracy of the approximate masses is contingent on user intervention.

Mayer [85] provides a survey and review of the photogrammetric building extrac-
tion techniques for aerial imagery prior to the turn of the millennium.

Brenner [10] reviews a suite of interactive modeling tools that are applicable to
3D building reconstruction and proposes a variant that uses DSM data and 2D
ground-plans instead of aerial imagery.

Morgan and Tempfli [91] address fully automatic building extraction from DSM data
based on plane-fitting using least-squares adjustment - and evaluation of roof-
shape adjacency. Their key contribution is a morphological filter for distinguishing
terrain points from non-terrain points. However the method does not support non-
linear features and there is no consideration of computational efficiency.

Suveg and Vosselman [132] tend to the problem of automatic top-down building
modeling from aerial images and 2D GIS maps. They note the further requirement
to automate the process of partitioning buildings.

Brenner [11] discusses advancements in automatic generation of city models and
proposes a generalisation of the straight line skeleton to construct roof-shape
topology from 2D building footprints.
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2000 - 2005

Vosselman and Dijkman [144] prescribe a plane-based segmentation and recon-
struction strategy for generating 3D building models from ground-plans (building
footprints) and airborne laser scans. This is a highly influential method and one of
the first to exploit the relationship between a footprint and mass-components to in-
fer the structure of roof-shapes to good effect. They discuss two related modeling
strategies that deal with (resepctively) high and low density scans. Positively their
approach yields clean and compact building representations, however its general-
ity is somewhat limited by the reliance on orthogonality to regularise the roofshape
decomposition induced by each footprint.

Kraus and Pfeifer [62] deal with robust derivation of digital terrain models from sur-
face models. Their approach calibrates the laser scan data to resolve discrepan-
cies between adjacent strips - to facilitate removal of the non-terrain features and
(subsequently) water-flow analysis for interpolation (through break line analysis).
Although this work deals with terrain recovery (as opposed to building extraction)
it lays the foundation for geo-morphologically robust ground approximation which
facilitates the use of normalised DSMs.

Rottensteiner, Briese and Jansa [112][114][113] address airborne building mod-
elling from DSM data through a two stage process: analysis (to separate building
boundaries from terrain) and reconstruction (to create planar models for detected
buildings). Positively this method is quite well generalised due to the bottom-up
curvature-based segmentation techniques employed. However there is no consid-
eration given to computational efficiency and the preliminary results they present
are lacking in terms of structural aesthetic quality. To combat this they introduce
image data in an attempt to improve the geometric quality of the reconstructed
models. However whilst the polymorphic feature extractor they employ certainly
improves some cases it does not resolve all insufficiencies and introduces ambi-
guity (since there are multiple mediums under consideration) that must be resolved
and that increases the complexity of the technique.

Fruh and Zakhor [40][41] propose an automatic method of creating textured 3D
city models from airborne and ground DSMs and images. Positively the method
is flexible (generalised) enough to deal with complex urban scenes and handles
registration and correction of multi-modal data well. The inclusion of texture map-
ping also distinguishes it from the previous techniques. The key aspect of this
technique is the linear algorithmic complexity of its sub-components which means
it scales well. However the quality of the surfaces generated are less satisfactory
and this is evident when they are rendered without textures.

Sithole and Vosselman [126] deal with classification of structures in airborne scans
of urban regions. The key feature that distinguishes their work is that it is designed
to deal with features such as bridges and ramps. However they only address clas-
sification and segmentation and not model generation.

You, Hu, Neumann and Fox [157] are amongst the first to address the extrac-
tion of complex building structures using primitive based fitting strategies. This
includes the use of cuboid, flat-roof, slope-roof, cylinder and sphere primitives as
well as super-quadrics to describe higher-order surfaces. Positively their approach
produces higher quality results than pre-existing techniques - however the compu-
tational efficiency of the fitting strategies employed is not addressed.
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Matikainen, Hyyppa and Kaartinen [84] address change detection between sam-
pled sensory data and pre-existing vector maps [83] using a two stage process:
building detection (based on classifying and segmenting the DSM) and change
detection (using spatially driven membership coverage). Positively the precision
and recall of their detector is strong - however it does not provide descriptors of
the nature of the variance between altered buildings - other than if they are en-
larged or new.

Oda, Takano, Doihara and Shibasaki [98] address 3D building reconstruction from
airborne DSM data using linear-edges extracted from an edge-image using the
Hough-transform. Positively this method produces cleaner building representa-
tions and supports texture mapping for representing facade detail. However it is
constrained to linear edges (i.e. it does not handle curvature).

Rottensteiner, Trinder, Clode and Kubik [111] apply the Dempster-Shafer theory for
data fusion to the problem of airborne building reconstruction from scan and im-
age data. Whilst this improves upon Rottensteiner’s earlier work the multi-modal
approach still exhibits structural inadequacies that are not present in alternative
operators.

Girardeau-Montaut, Roux, Marc and Thibault [45] propose an efficient change de-
tection operator for unstructured ground laser scans for monitoring building sites -
wherein the key operative constraint is time - i.e. it is designed to be a fast point-
to-point method that can be used in realtime. They employ oct-tree data-structures
to accelerate point-processing and provide scope for fast preview or more precise
comparison (via consideration of Hausdorff distances). Note though that their pro-
cess (though largely automated) still relies on a human in the loop.

Syed, Dare and Jones [133] address top-down building modelling from DSM and
image data by mining planar roof patches from the DSM and constructing simple
polyhedral models via bi-linear surface interpolation. The main limitation of this
work is that it does not account for curvature or generalise to complex masses.

2005 - 2010

Wang, Lodha and Helmbold [148][147] tackle the problem of vectorising 2D build-
ing footprints via a probabilistic Bayesian formulation. Their approach is designed
to deal well with sensitivity at the boundary of buildings, but requires pre-classified
LiDAR data. The work yields high quality looking vector-shapes by maximising
posterior probabilities using linear optimisation and simulated annealing - how-
ever (as a result) the absolute accuracy of the footprints suffers relative to non-
probabilistic methods.

Zhang, Yan and Chen [160] address automatic building boundary extraction from
airborne scans based on piece-wise line segments derived by extracting dominant
directions from each dense zig-zag building boundary. Positively this enables the
method to preserve orthogonality in the case of buildings with two principal direc-
tions - however the result is less robust for oblique edges (or buildings with more
than 2 principal directions - i.e. those that do not conform to the Manhattan world
assumption).

Belton and Lichti [7] propose the use of covariance analysis to address classifi-
cation and feature extraction in unstructured ground laser scans based on local
features of points (neighbourhoods) to estimate principal curvature.
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Rabbini, Heuvel and Vosselman [107] propose an intuitive segmentation strategy
for unstructured point-clouds that essentially looks for smoothly connected areas
in point-sets by fitting planes and approximating curvature. Their method operates
locally (i.e. it relies on surface normals and point-connectivity). Positively their
approach prevents over-segmentation (so constrains the number of segments that
are generated - preventing bloat) however it is primarily designed for industrial
point-clouds (rather than architecture) and it is still subject to under-segmentation.

Akbarzadeh, Frahm, Mordohai et al. [3] tend to the difficult problem of reconstruct-
ing geo-referenced 3D urban scenes (building facades, street furniture, vehicles..)
from video sequences in realtime. They rely on external GPS and INS readings
(to geo-reference the results) and a hierarchical KLT tracker (to track correspon-
dences between consecutive video frames). However the dense nature of the sur-
faces generated coupled with inaccuracies that result from the bundle-adjustment
and filtering of the camera-trajectory renders the result unsuitable for architectural
surveying applications that demand precision.

Koch, Heyder and Weinacker [61] propose a tree detection operator for airborne
range scans that (though primarily being designed to facilitate forest management)
can be applied to tree-filtering in urban reconstruction tasks.

Dorninger and Notheggar [31] tend to the problem of roof-shape segmentation
from high-density unstructured airborne scans. Vitally their segmentation algo-
rithm performs initial point clustering in parameter space so as to reduce the overall
time complexity. Further their sequential implementation means that the computa-
tion time is largely independent of the number of input points and grows (rather) as
a product of the number of segments. Unlike alternative roof-segmentation strate-
gies - this does not operate in 2.5D but full 3D. Conceptually this is a strong method
- that produces clean building modelling results - however as many operators it is
restricted to planar components.

Tarsha-Kurdi, Landes and Grussenmeyer [137] address building roof modelling
from airborne scans using RANSAC (i.e. random trial and error). The main prob-
lems with this work are that it provides no guarantee as to the accuracy of the roof
patches it extracts or even that it will reliably extract all roof-shapes - and it can only
deal with planar segments. There is also little consideration given to the computa-
tional performance of their random sampling strategy as point density increases.

Lafarge’s doctoral thesis [64] tends to the problem of top-down building model re-
covery from high-res. satellite images. His approach uses DEM data to extract
quadrilateral 2D footprints which are arranged (under constraints) to form com-
pound structures. The conversion from 2D to 3D is addressed with a library of
roof-type models (les mono-plans, les multi-plans, les non-planaires). As such
whilst the visual appearance of the 3D models is reasonable and the method is
capable of representing curvature - the absolute accuracy of the models gener-
ated by the approach suffers relative to techniques based solely on scan data. In
this sense, Lafarge’s stochastic Bayesian strategy trades off precision for higher-
quality model generation. Note: additionally Lafarge’s method only supports linear
walls - meaning that whilst roof patches can be curved - building footprints can not
directly represent curved facades.

Bosche and Haas [9] propose a fully automated object recognition strategy for
detecting 3D CAD objects in unstructured laser-scans of construction sites. The
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method is notable for its robustness in the presence of occlusion. Their operator is
designed to support construction progress tracking - but its application to reverse-
engineering of as built building models is not dealt with.

Sampath and Shan [117] deal with building footprint extraction from airborne scans
via a point-to-point extremal boundary tracing strategy based on revising the con-
vex hull of a set of points followed by a regularisation step that cleans footprints.
Note: their work relies largely on the assumption of two perpendicular dominant
directions - which limits its utility to complex structures - such as inner yards - and
it can not deal with non-linear boundaries.

Schnabel, Wahl and Klien [120] employ the long-standing RANSAC paradigm to
detect planes, sphere, cylinders, cones and tori from unstructured point clouds.
Their method is designed to scale well (relative to pre-existing RANSAC based
techniques) and perform robustly in the presence of heavy noise and many out-
liers. Positively - although this is a random method, it generalises quite well to
arbitrary man-made objects (beyond architectural representations), and it recov-
ers a CAD representation composed solely of shape proxies - however it is not
capable of representing all classes of surface using its shape proxies - meaning
irregular structures can not be directly extracted.

Müller, Zeng, Wonka and Van Gool [93] address automatic facade modelling from
ortho-rectified images via a semantic sub-division strategy that encodes each fa-
cade model’s descriptor as a shape tree. This is a powerful and heavily influential
approach however it relies on template matching to describe the geometry of win-
dows and doors - which means that although the results have high-visual quality,
the real world accuracy is harder to verify. Additionally the method does not pro-
vide support for non rectilinear window or door shapes - which means it can only
model regular facades.

Berg, Grabler and Malik [8] tend to visual recognition of architectural components
in general images - and in particular the challenging problem of automatically seg-
menting building images into roof, wall, window and door components. Their ap-
proach uses fixed-size patch based features to transition from a generic appear-
ance model to an image specific appearance model. Positively the results are
strong - however the work’s main application is in similarity based semantic image
search rather than geometric reconstruction.

Pollefeys, Nister, Frahm, Akbarzadeh, Mordohai et al. [103] build upon their earlier
work - proposing a system for automatic 3D reconstruction in real-time from video
streams. This is a more complete version of their earlier system.

Tarsha-Kurdi, Landes Grussenmeyer and Koehl [138] compare and analyse model-
driven and data-driven approaches to building modeling from LiDAR data - and
document the primary characteristics of both reconstructive paradigms.

Lafarge, Descombes, Zerubia and Deseillingny [66][67] extend Lafarge’s earlier
work and formalise the aspects of the RJMCMC sampler employed (a Reversible
Jump Monte Carlo Markov Chain sampler).

Sugihara and Hayashi [128] propose a system for creating composite top-down
massing models with varying roof structures from pre-existing 2D maps. Their
main contribution is a building partitioning scheme which is used to decompose
each footprint into massing regions - however it is designed primarily for orthogo-
nal building arrangements (with two principle directions) and there is no consider-
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ation given to curvature (for facades or roof-patches).

Cheng, Gong, Chen and Han [16] deal with edge-detection and extraction for build-
ing analysis from multi-modal airborne data. In particular they focus on improving
the correctness of photogrammetric edge detection techniques via the analysis of
LiDAR scans. Though accurate - this method only extracts straight-line segments
- it cannot detect curvature.

Park and Lim [100] propose a simple method of producing textured top-down mod-
els from airborne image and scan data. However their approach relies on manual
intervention in 2D vectorisation which limits its scalability.

Zhou and Neumann [163] propose a versatile algorithm for creating compact wa-
tertight building models from airborne LiDAR that vitally (unlike many of its prede-
cessors) generalises to an arbitrary number of principal directions by automatically
learning from the data (i.e. it does not make assumptions about angles between
facades). They also employ an analytic (differential geometry based) vegetation
filter which uses an unbalanced SVM. The quality of the results are high and in-
deed the only limitation of this method is that it is only designed to deal with flat-top
planar constructs automatically and they rely on user-interaction to represent non-
flat objects.

Ding, Lyngbaek and Zakhor [30] present an algorithm for merging oblique aerial
images onto 3D surfaces derived from airborne range scans. Note: this method
does not produce the 3D surfaces directly - it focusses on the problem of accurate
registration for texture-mapping.

Sampath and Shan [118] address automatic top-down building modelling by seg-
menting airborne point-clouds using covariance analysis to isolate planes and
breaklines. This is a data-driven method that employs a roof-shape adjacency
matrix to intersect neighbouring planes (i.e. the piecewise intersection of planes).
The approach produces clean looking results but is limited to planarity only - there
is also little consideration given to efficiency and algorithmic scalability.

Matei, Sawhney et al. [81] propose a segmentation method for extracting building
footprints and basic structures on roofs directly from lower-resolution sparse air-
borne scans. Their building orientation estimation algorithm largely resembles a
modified version of the Hough-transform.

Zebedin, Bauer et al. [159] tend to top-down building modelling from sets of aerial
photographs by fusing sparse line features (to delineate height discontinuities) with
dense roof surface data - under the banner of a graph cuts global optimisation.
Their work provides basic support for representing roof curvature (with surfaces of
revolution) but uses linear arrangements for walls and facades.

Dorninger and Pfeifer [32] discuss an approach to 3D building extraction based
on plane segmentation and regularisation. Positively the quality of the generated
models is high, however it is another plane-only approach - (i.e. it assumes all
buildings can be modelled solely by planes).

Xiao, Fang, Tan et al. [153] address facade model creation from sets of street-
side images using a semi-automatic SfM pipeline. They consider the facade as a
developable surface and use the composited images to decompose its structure
into a DAG (directed acyclic graph) via a top-down then bottom-up recursive sub-
division. In terms of priors they rely on bilateral symmetry and repeated patterns.
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Positively their approach yields higher quality sparse facade models that typical
MVS methods - however the reliance on user interaction to correct segmentation
errors presents an issue in terms of the drive towards fully automated methods.

Zhou and Neumann [164] devise an out-of-core streaming approach to recon-
structing top-down building models from very large airborne scans that extends
their earlier work - enabling city-scale data sets to be processed using lower
amounts of memory via a state propagation technique that prevents seams (that
otherwise commonly result from tile based padded streaming techniques).

Poullis and You [104] tackle city-scale reconstruction from airborne scans via a
data-driven statistical segmentation method (that does not make assumptions about
the input and as such bears no data dependencies) and a generalised model cre-
ation step that relies on three (generally fixed) parameters. The key limitation of
their approach is that it only handles flat roof arrangements and footprints com-
posed of staight lines (i.e. it cannot represent curvature). Additionally the bound-
ary vectors produced a more susceptible to perturbations (caused by noise) than
data-driven strategies such as Zhou’s.

Hohmann, Krispel, Havemann and Fellner [51] address the tricky problem of fitting
shape grammars to point-clouds and images of building facades. They suggest
an end to end workflow for converting street-level architectural data into compact
rewriting expressions in order to encode a semantically rich representation of fa-
cades using GML’s stack based grammar. Although the early results are promising
the generality of the technique is its main limitation in the sense that it relies on
template grammars for each type of supported facade (i.e. it cannot automatically
adapt to new classes of facade).

Chen and Zakhor [15] deal with tree-detection in large urban scenes by a two-step
process of segmenting (by edge and height continuity) and classifying airborne
scans (with a random forest classifier). Unlike their earlier work this method does
not rely on RGB imagery and achieves precision recall rates upwards of 95% for
large American and European test datasets.

Wang and Neumann [146] tend to the ill-defined problem of aligning aerial images
and range-scans. They devise the 3CS (3-Connected-Segments) feature detec-
tor as a means to extract more robust (distinctive) correspondences and employ
a two-stage RANSAC strategy to reduce registration error. There approach is de-
signed to work well whenever the proportion of inliers in the data is low.

Jochem, Hofle, Rutzinger and Pfeifer [54] deal with segmentation of building roof-
shapes in airborne scans so as to facilitate solar-gain calculation. There method
takes into account the effect of shadowing (occlusion) caused by nearby objects
(derived from the scan) - however it is only suited to roof-configurations composed
of planar elements.

Pu and Vosselman [105] combine ground based laser scans and images to extract
building facade models that consist primarily of planar arrangments. They use the
scan to resolve the general structure of each facade and the imagery for edge de-
tection and texturing. Note although the results are sparse - their system relies on
user-intervention (i.e. it is semi-automated).

Barazzetti, Remondino and Scaioni [6] apply multi-view stereo reconstruction tech-
niques to the recovery of dense surfaces representing architectural and heritage
objects. Their approach follows the typical structure-from-motion work-flow (esti-

Page 27 of 301



CHAPTER 1. LITERATURE REVIEW→ 1.1. ARCHITECTURAL RECONSTRUCTION

mating orientation parameters, progressive feature matching, least-squares min-
imisation and bundle-adjustment). The results are qualitatively strong but (though
accurate for photogrammetry) the precision of the results is typically inferior to
those derived from actively sensed 3D scans.

Wang and Shan [145] tend to the problem of segmentation of unstructured airborne
scans for building extraction - in order to combat the loss-of-information induced
by discretisation. Positively the method adapts to curved roof-patches however its
preservation of multi-scale roof details is lacking.

Golovinskiy, Kim and Funkhouser [46] discuss the design of a system for recog-
nising arbitrary objects in unstructured point-clouds of urban scenes - via a four
step process that roughly involves (localisation, segmentation, characterisation
and classification). Their approach achieves recall and precision rates of around
65% and 58% respectively.

Calberg, Andrews, Gao and Zakhor [12] present general methods for surface re-
construction from ground-based and airborne laser-scans. This includes a surface
mesh merging approach for airborne and ground that exploits the locality of the
ground mesh. Positively the surface to surface registration works well and their
data-driven approach is versatile enough to adapt to different scanning hardware
and variable density inputs - however the dense surface mesh that are gener-
ated contain many redundancies (such as planar elements being represented as
a multitude of triangles) and possess visible holes at ground level (that result from
occlusions).

Kada and McKinley [58] present a flexible and generalised 2D partitioning algo-
rithm to split building footprints into roof-shapes to support construction of LOD2
models from airborne scans. Conceptually this is a strong approach in that it
makes few assumptions about the nature of roof-shapes and the iterative decom-
position can represent irregular form using simple (typically quadrilateral) shapes.
However they do not derive the building footprints (that are decomposed) directly
from the LiDAR - instead they rely on pre-existing ground-plans. Nonetheless this
a favourable method primarily for the quality of the building models it generates
(clean and compact) and the generality of the partitioning approach (as it adapts
to simple, concave and complex polygons). Note: this is another method that
makes use of parametric primitives to represent 3D masses - however it only in-
cludes linear/planar parametrics.

Furukawa, Curless, Seitz and Szeliski [42] propose a fully automated multi-view
stereo driven approach to creating navigable building interiors from sets of images.
They employ a SfM algorithm designed specifically for Manhattan-world environ-
ments in order to recover depth information and exploit the same assumption in the
construction of 3D models. Positively their approach enables image-based walk-
through of indoor environments - however the axis-aligned nature of the underlying
3D representations it yields limits its overall utility (in terms of it ability to generalise
to non-orthogonal scenes).

Chauve, Labatut and Pons [14] address generalised polygonal modelling from un-
structured point-clouds (recovered from passive stereo) via an adaptive division of
3D space using planes (i.e. a polyhedral cell complex). The method can produce
mesh that are self-intersection free at variable (user-defined) scales. However it
makes restrictive assumptions about the nature of architectural scenes (most no-
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tably orthogonal priors) - and can deviate from the input as a result of its hole-filling
strategy.

Zhou and Neumann [165] return with a robust generalised approach to top-down
building modeling that extends the classic dual contouring method (for crease-
preserving iso-surface extraction). 2.5D Dual Contouring is designed to handle ar-
bitrarily shaped roofs by employing a generalised QEF based edge detector on an
adaptive grid. Their approach also supports topology-safe simplification but relies
on snapping to principal directions to improve surface quality. This is a strong ap-
proach in terms of accuracy and robustness (and very much a pioneering method
for defining the 2.5D nature of airborne masses clearly) - however little considera-
tion is given to the increased computational expense of evaluating the (volumetric)
Hermite data relative to their earlier operators. Nonetheless the algorithm is gen-
eralised, purely data-driven and capable of producing high-quality massing without
intervention.

Kabolizade, Ebadi and Ahmadi [57] tend to building footprint extraction from air-
borne imagery using a GVF snake model. Although they demonstrate improved
performance relative to previous image snake-models they note that their method
does not adapt to multiple building blocks (i.e. it cannot handle roof-shapes only
extremal boundary extraction).

Ioannou’s thesis [53] deals with low-level computer vision methods applicable to
processing unstructured ground-based laser-scanned point-clouds. In particular
he proposes the scale-space interest point operator - the Difference-of-Normals
and employs local potential well space embedding to address object recognition.
Though the DoN is strong from a conceptual perspective, practically the selection
of suitable small and large support radii is an ill-defined problem for an arbitrary
scan with variable density regions. Note: the LPWSE algorithm employed relies
on RANSAC for verification.

Vanegas, Aliaga and Benes [143] use a set of calibrated (oblique) aerial images to
automatically construct sparse top-down building masses based on the assump-
tion of three mutually orthogonal directions (x,y,z - i.e. rectilinear axis-aligned
blocks). Positively their work employs self-rewriting grammars to good effect -
relying one a single generalised re-writing rule (that iteratively refines a cuboid in
a coarse to fine manner). However the Manhattan-World assumption limits the
scope of buildings that it can correctly represent.

Lafarge, Descombes, Zerubia and Deseillingny [68] extend their earlier DSM re-
construction operators with the notion of a structural approach based on a Gibbs
model to control fitting and block assembly. However they note the requirement for
improvements to the precision of the parametric primitives that are fitted and the
need to reduce computation time.

Sampath and Shan [119] deal specifically with building roof-shape segmentation
and polygonisation from airborne scans. Note: the main limitation of this work is
that it does not support curvature at the level of building footprints or roof-patches.

Teboul, Simon, Koutsourakis and Paragior [139] employ shape-grammars, super-
vised classifiers and random walks to extract facade segment descriptors from
ortho-rectified images. However they rely heavily on restrictive cartesian priors.

Haala and Kada [49] review automatic building reconstruction methods pre-2010 -
with a focus on the approaches applied to create polyhedral building representa-
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tions from laser-scanned point clouds as well as from sets of images.

Tang, Huber, Akinci, Lipman and Lytle [136] provide a survey of the state of the
art in automatic reconstruction of as-built building information models (BIM) from
laser-scanned point clouds. Their review covers methods from computer science
and civil engineering, considering the problem in terms of three main types of
task: geometric modeling, object recognition and object relationship modeling.
They conclude that as-built BIM creation is still a heavily manual process - and
document areas where they believe research should be focussed. In particular:
the automatic modeling of more complex structures than simple planes and the
development of methods that are easily extensible (to new environments).

2010 - 2015

Rusu and Cousins outline the open source Point Cloud Library (PCL)[115] - a col-
lection of point processing algorithms written in C++ with support for multi-core
parallelization (using OpenMP or Intel TBB). PCL represents a cross-platform util-
ity toolkit for tasks such as feature-detection, surface-reconstruction, model-fitting
and segmentation that is extremely modular (i.e. individual components can be
used in isolation) and that integrates into ROS (the Robot Operating System). This
development signalled the growing exploitation of 3D scan data for computer per-
ception in the robotics community - and though not directly designed for architec-
tural reconstruction lends itself well to tasks such as door and wall detection (via
constrained planar segmentation).

Cheng, Gong, Li and Liu [17] address the problem of multi-modal top-down build-
ing modelling from airborne scan and image data. The main limitation of the work
is the reliance on orthogonal massing blocks (i.e. the assumption of two perpen-
dicular principal directions).

Zhou and Neumann [166] discuss extensions to the 2.5D paradigm that actively
control the topology of polyhedral masses generated by the strategy by consider-
ing the associations between roof, wall and point features - enabling topologically
safe simplification. Note: their formulation is robust but lacks generality in terms of
its suitability to curved components.

Yu, Xu, Liu et al. [158] address segmentation of unstructured urban point clouds
via a three stage process of isolating ground points, super-pixelising the remaining
salient points and manifold embedded mode seeking.

Lafarge and Mallet [71][72] team up to automatically reconstruct large urban en-
vironments from unstructured airborne point-clouds. Their approach (unlike La-
farge’s earlier work) does not make use of photographs and as such the accuracy
improves - however relative to his earlier parametric and structural approaches
model quality suffers (in particular walls are subject to more significant perturba-
tions). The main contribution of their work is integrating automatic terrain meshing
and tree approximation methods into the urban reconstruction pipeline so as to
yield more complete descriptors of an environment. This is a strong method in
terms of its ability to generalise to arbitrary building structures however the non-
linear energy minimisation process is quite expensive relative to alternative gen-
eralised strategies (in particular they quote processing times in the range of hours
for millions of points - which is quite high relative to Zhou’s methods for example).

Mathias, Martinovic, Weissenberg and Van Gool [82] document an approach to
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inverse procedural modelling of buildings based on determining the correct param-
eters for pre-defined template grammars. This work can be seen as a complement
to structure-from-motion image analysis - in that the input points (used by the de-
tectors) are derived from multi-view stereo reconstruction. The positive aspect of
the work is that it yields CGA shape scripts - however the representational scope
of the template grammars used is limited.

Kulkarni, Nagesh and Wu [63] address window detection in frontal ground-view
images of building facades using projection profiles, mutual information and the
snake algorithm (to extract features). The main limitation of the work is that it
largely applies to regular facades and is sensitive to imaging artefacts (such as
glare) that result from the reflective nature of a window’s glass pane.

Martinez, Soria-Medina, Arias and Buffara-Antunes [77] tend to automatic seg-
mentation and feature detection in unstructured ground laser-scans of building fa-
cades. Their main idea is to exploit knowledge from the scanner’s inclination sen-
sors to orient the point cloud and reduce it to a profile distribution function. This en-
ables facade contours to be extracted (by considering peaks and valleys/troughs)
- which in turn facilitates layer based segmentation and planar feature extraction.
This is a strong piece of work in terms of the accuracy and level of generalisation of
the segmentation - however they note that the precision of the contours is heavily
dependent on the resolution (density) of the points.

Pylvanainen, Berclaz, Korah et al. [106] address the challenging problem of tex-
tured city model reconstruction from ground based laser-scans and panoramic
images specifically for use in augmented reality applications on mobile devices.
They employ IMU and GPS readings to register the datasets into a globally con-
sistent coordinate system, alongside structure from motion and skyline detection
to tackle the limited range of the LiDAR. This method produces sparse textured
facade models with a high degree of visual quality in a matter of days. Though
their approach enables accurate street level navigation - (due to the nature of the
input data) building roof structures are either flat-tops or omitted.

Zhou and Neumann [167] propose another powerful extension to the 2.5D build-
ing reconstruction paradigm in the form of automatically detecting and enforcing
global regularities to improve roof model quality for masses recovered from air-
borne range scans. Their approach dramatically improves the regularisation of
models and corrects local fitting errors that may result from noise in a scan. How-
ever it is designed to align planar elements only. Curved and irregular roof struc-
tures cannot be treated with this strategy.

Alkan and Karsidag [4] analyse the accuracy of TLS sensors by scanning a known
set of objects, physically measuring them with callipers and comparing the dimen-
sions represented by the scans to the physical measures. They conclude that the
measuring differences are inversely proportional to scanning intensity and directly
proportional to scanning distance. They also note the impact of auxiliary features
of a surface (reflectivity, colour) on scan accuracy.

Zhou’s doctoral thesis [162] provides extended exposition of the 2.5D Dual Con-
touring strategy including building topology control and automatic discovery of
global regularities. This includes the efficient streaming framework for process-
ing large-scale airborne scan datasets.

Ioannou, Taati, Harrap and Greenspan [52] discuss the scale-space DoN opera-
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tor, documenting more clearly its applicability to scale-salient cluster extraction in
unstructured urban point clouds. Positively their work can be used within pipelines
for object recognition and the precision of the clusters isolated (relative to human
labelled ground truth data) is shown to be reasonably high.

Riemenschneider, Krispel, Thaller et al. [110] address facade structure parsing
from ortho-rectified images using irregular lattices to combat the restrictive nature
of orthogonal split-grammars - so as to represent complex arrangements whilst
supporting symmetry and repetition.

Dai, Prassad, Schmitt and Van Gool [24] aim to improve the quality of image based
facade segmentation operators by learning architectural principles that improve
precision at the pixel and structural level. Their work deals mostly with the seman-
tic labelling problem rather than geometric modelling.

Martinovic, Mathias, Weissenberg and Van Gool [79] propose a three-layered fa-
cade parsing strategy to recover semantized segmentations from street level im-
ages. The key aspects of the approach are a bottom-up RNN to produce semantic
segments which are augmented with object detectors (Markov Random Fields de-
fined over the image) and then refactored to enforce architectural principles (such
as symmetry and co-occurrence of elements). The method produces reasonable
results from imagery however they note that the procedural split grammars they de-
rive from their semantic decomposition are non-parametric (i.e. building instance
specific rather than generalised).

Miljanovic, Eiter and Egly [89] tend to the problem of detecting windows in street-
level images of building facades. Positively the method is robust to different shaped
windows (beyond rectangular) however it will only yield a bounding-box for each
window meaning further processing is required to accurately reflect the apertures
of irregular windows.

Wu, Agarwal, Curless and Seitz [151] employ swept surfaces to reconstruct clean
architectural geometry from unstructured point clouds resulting from multi-view
stereo (structure from motion). Their approach accumulates transport and pro-
file curves into floor plans that are converted to surface polygons via the 3D sweep
operation. Positively the approach is able to deal well with occluded elements
and holes in a cloud and supports detailed surface modelling using displacement
maps. However their use of a regular voxel grid (for 3D binning - spatial query ac-
celeration) limits the processing of regions with a sparse number of points. Note:
this is a common problem in SfM point-clouds as regions without texture informa-
tion and at oblique angles to the camera yield fewer points.

Lafarge and Mallet [73] provide a fuller account of their generalised strategy to
modelling large-scale city environments from airborne scans - including the hybrid
representation employed to handle the versatility present in real scenes.

Martinovic and Van Gool [80] address facade grammar recovery from sets of im-
ages using a Bayesian model merging technique extended to the case of 2D
languages. Essentially their technique automatically learns attributed stochastic
context-free grammars from labelled building facade images.

Dai, Riemenschneider, Schmitt and Van Gool [25] employ a genetic algorithm to
synthesise images of facades that bear a high resemblance to an input (seed)
facade image (i.e. in a by-example fashion). Like many image based facade oper-
ators they rely on a tile based representation (an irregular rectangular lattice).
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Van Kerveld, Van Lankveld and Veltkamp [142] produce watertight scenes from
urban laser scans and pre-extracted planar surfaces. They use visibility based vol-
umetric analysis through a constrained DT (with graph-cuts) to fill in holes (where
there are no polygons) with free-form mesh. Although it can guarantee a water-
tight return - it cannot represent curvature and the planar detection they employ
relies on random sampling. The quality of the resulting models is also inferior to
many earlier methods that can also guarantee a watertight return (such as Zhou
et al. and Lafarge et al.). In particular walls are poorly represented with visible
perturbations.

Lafarge, Keriven, Bredif and Vu [69][70] propose a multi-view stereo reconstruction
algorithm for modelling urban scenes from sets of ground-level photographs. The
method combines primitives (planes, spheres, cylinders...) with surface mesh to
represent regular and irregular features using a multi-label Markov Random Field
model. It employs a jump diffusion process to sample primitives and measures
quality with a heuristic energy model. Note: this photogrammetric approach re-
lies on iterative refinement to incrementally improve the accuracy of the generated
scene representation.

Sun and Salvaggio [129] address top-down building modelling from airborne point-
clouds using a hierarchical (divide and conquer) Euclidean clustering strategy.
Like pre-existing works they employ region-growing (for segmentation) based on a
smoothness constraint and employ Zhou’s 2.5D dual contouring method to gener-
ate mesh. The results are reasonably effective but oddly only represents flat-roofs.

Hao, Wang, Ning et al. [50] tend to building segmentation from unstructured
ground-based laser-scans by mining planes to describe regions with homogenous
clusters of points. Their three step process involves segmentation, plane recogni-
tion based on properties of the Gaussian image and building identification. Note:
although they describe their work as a complete building extraction strategy - it
does not actually model surface geometry - it only segments planes.

Truong-Hong, Laefer, Hinks and Carr [141] deal with the challenging problem of ex-
tracting accurate facade geometry from unstructured laser-scanned point clouds
specifically for computational analysis (i.e. FEM analysis - rather than visualisation
as is more common). Their strategy combines an angle criterion with voxelisation
- using a kNN search algorithm. Positively the accuracy of the facades recovered
by their approach is high relative to manually created CAD drawings and pho-
togrammetric strategies - however they rely on a pre-determined number of kNN
points - and the approach does not preserve the true polygonal boundaries of non-
rectilinear windows - using bounding boxes instead a proxies.

Raumonen, Casella, Disney et al. [109] propose a tree-model reconstruction op-
erator for unstructured ground-level TLS data - that produces accurate results by
representing the global structure of each tree. Positively the results also have high
aesthetic quality - however it typically takes a few minutes to process a tree which
limits its scalability to large scale urban reconstruction problems.

Weissenberg, Riemenschneider, Prasad and Van Gool [149] investigate the recov-
ery of facade grammars from sets of images so as to construct tailored descriptors
that are more concise - rather than trying use a single (one-solution-fits-all) gram-
mar. There approach mixes a binary-split procedure (to create initial parse-trees)
with a minimal-rule-length driven virtual synthesis step - and ranks the resulting
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procedural rule sets in a bag-of-words fashion. The advantage of their succinct tai-
lored grammars are improved compression and accuracy in retrieval tasks - how-
ever they rely upon pre-labelled image data.

Susaki [131] documents a multi-modal approach to producing top-down building
models from airborne images and LiDAR data. Positively the method handles seg-
mentation effectively in the presence of building point-clusters that are not disjoint.
The key limitation of the work is the restricted nature of the buildings descrip-
tors generated - it only deals with planarity (and in particular relies on a prior-
assumption of only four types of quadrilateral component: gable, hipped, flat and
slanted roofs) - i.e. it lacks the ability to generalise to complex structures.

Lin, Gao, Zhou, Lu et al. [75] propose a complete system for semantic decomposi-
tion and reconstruction of buildings in residential scenes from unstructured LiDAR
data. This method produces high-quality results that incorporate non-parallax fea-
tures (i.e. it yields full 3D models as apposed to top-down 2.5D models) by ex-
tracting planes based on the RANSAC paradigm and enforcing structural domain-
specific priors (most notably block-wise symmetry and convexity). The powerful
thing about this approach is that it is significantly more efficient than pre-existing
strategies for unstructured building reconstruction (i.e. piecewise planar surface-
reconstruction) - and yields models with strong aesthetic qualities. However their
technique is not perfect. Most notably - it is constrained to linear components
(no curvature), is designed primarily for residential scenes (optimised for low-rise
buildings), does not represent windows and can yield gross inaccuracies due to
hole filling (in particular they demonstrate that enforcing block-wise symmetry can
have detrimental effects by miss-representing partial data). There is also the is-
sue of the random-sampling taking proportionally half of the pre-processing time
of their pipeline. Nonetheless (despite these shortcomings) this represents one of
the stronger more recent approaches in that it yields higher quality building assets
than previous techniques (for unstructured scans), and embeds rich semantic in-
formation.

Musialski, Wonka, Aliaga et at. [95] provide an updated survey and review of
LiDAR-based and photogrammetric urban reconstruction methods - including air-
borne roof modeling operators and ground facade modeling operators.

Wu, Yan, Dong, Zhang and Wonka [152] employ a dynamic programming frame-
work to minimise the description length of facade layout grammars in inverse pro-
cedural modelling from images. Essentially their cost function derives more mean-
ingful split grammars than pre-existing solutions based on quadratic programming
with linear constraints so as to improve overall alignment and regularise terminals.

Sajadian and Arefi [116] propose a data driven approach to recovering top-down
building models from airborne scan data. Their method considers height values,
normals, the number of returned pulses, triangle lengths and areas to segment the
data - alongside a grid-erosion strategy and RANSAC to detect and extract lines.
Due to the manner in which they regularise the results this method is limited to
modelling linear orthogonal arrangements - which constrains it generality.

Siddiqui, Teng, Lu and Awrangjeb [125] address building segmentation in aerial im-
ages so as to improve the detection of low-lying building features (near the ground
terrain, or below a minimum height threshold) in photogrammetric methods. They
rely on comparing height differences between neighbouring planes derived from
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airborne scans - and use the connectivity information to correct building boundary
estimation errors near the terrain.

Tooke’s doctoral thesis [140] presents an approach to estimating building energy
usage across large areas by exploiting airborne LiDAR to augment conventional
simulation driven building energy models. Note: in the strictest sense his research
does not deal with building model reconstruction - however it demonstrates some
of the wider analytic and policy driving opportunities that result from the use of
LiDAR to understand the built environment (beyond the typical as-built model re-
covery use-cases in construction and asset management).

Xiong, Elberink and Vosselman [154] propose a multi-view stereo approach to
recovering compact top-down building models from noisy photogrammetric point
clouds (i.e SfM derived). The key aspect of their fully automatic (and parameter-
free) approach is favourable extraction of roof-shape graphs (relative to LiDAR
based methods) by considering structure points and boundaries. Positively this is
a data-driven approach for which the topology of the resulting models is clean (they
are regularised) - however this is another plane only method (less generalised than
LiDAR based methods) - and its response on curved components of a building’s
footprint is not addressed.

Diaz-Vilarino, Martinez-Sanchez Laguela et al. [27] tend to the automatic detection
of doors in building interiors using photographic images and laser-scan data. Note:
they use the point-cloud for detection of each room’s envelope upon which they su-
perimpose the images to estimate the location of doors. The point-clouds are also
used to confirm and disaffirm the validity of each door candidate (i.e. distinguish
doors from similarly sized objects such as book-shelves and other furniture). Pos-
itively their approach can detect both open and closed doors - however they note
the further requirement to also detect windows.

Mongus, Lukac and Zalik [90] tackle the problem of automatically isolating (seg-
menting/classifying) terrain and buildings points from airborne laser scans. Their
key idea is a multi-scale decomposition by forming a top-hat, scale space using
DMPs (differential morphological profiles) on point residuals (which result from ap-
proximating a surface using an algorithm they term LoFS - local fitting surfaces -
in order to extract planar points). The method yields results comparable to multi-
modal detection techniques (image + LiDAR) but only requires points as input.

Fan, Yao and Fu [35] present an approach to building roof-shape segmentation
from airborne point-clouds by a hierarchical ridge-based decomposition. However
their work is predicated on the invalid assumption of the fact that every roof can

be composed of a set of gabled roofs and single facets which are separated by

the gabled roofs. This massively limits the generality (and hence utility) of the ap-
proach. They also rely on RANSAC to mine roof-ridges.

Lafarge’s habilitation thesis [65] collates many of his contributions to the field of ur-
ban reconstruction. He discusses the various acquisition and reconstructive meth-
ods for building modeling from MVS and LiDAR data, the problems that pervade
the field and concludes with insights into the future direction of the domain. In par-
ticular he cites evaluative tools and measures as largely under developed (due to
the challenges in creating ground-truth data, the requirement to share non-public
datasets and the lack of effective quantitative criteria that combine both geometric
and semantic measures) - and as such as a missing link in terms of bench-marking
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operators within the field. He also discusses the manner in which the specialised
nature of urban modelling algorithms has tended to result in systems that are highly
sensitive to the the input data and less commutable across sensing mediums (i.e.
MVS methods do not adapt to LiDAR scans and vice versa). Alongside these
recurrent challenges - he points to a key future avenue for investigation - the cre-

ation of a new generic geometric language for modelling urban environments -
as a means to provide a common geometric vocabulary suitable for different data
sources and to support inference of 3D models in inverse procedural modelling.

Verdie, Lafarge and Alliez [156] tackle the problem of generating LOD (level of de-
tail) models from 3D surfaces derived from multi-view stereo reconstruction - with a
three-step process that involves: classification (into four semantic types of object:
ground, tree, facade and roof), abstraction (to regularise planar structures) and
reconstruction (to construct mesh at various grains of detail, ranging from LOD0-
LOD3). Their classification step relies on horizontality, elevation and planarity to
generate a set of super-facets which are labelled using a Markov Random Field.
Given the nature of the input data (MVS point-cloud) there results are strong -
however they note that LiDAR is more suited to accurate recovery of roof super-
structures and facade elements than photogrammetric data.

Abdullah, Bajwa, Gilani et al. [1] propose a method of modelling architecture in un-
structured scans of heritage based on dimension reduction (3D to 2D projection),
b-spline profile estimation (in 2D) and model construction with surfaces of revo-
lution. Positively their approach employs a more versatile approach to primitive
extraction (i.e. n-gonal prisms and data-driven revolutions - over simple spheres,
cylinders, cones...) - however it is stochastic in nature (i.e. it randomly-samples)
and relies on a user to supply the ground plane to simplify processing. Its applica-
bility to large urban scenes is also unverified.

Yan, Zhang and Zhang [155] construct top-down building models from airborne
range scans by extending the conventional 2D snake algorithm to deal specifically
with building boundaries by minimising a set of derived energy functions (so as to
adjust/regularise each building’s representation). The main contribution is a graph
reduction technique to simplify each snake to isolated vertices whilst retaining the
minimal graph energy. The main limitation is that it only applies to planar roof com-
ponents.

Choi, Zhou and Koltun [18] present an approach to high-fidelity indoor scene re-
construction using noisy RGB-D video streams from commodity sensing equip-
ment. Their approach relies on improving the registration process for sequential
scans by actively suppressing erroneous geometric alignments - even when they
outnumber the correct alignments - using robust line processes. In this manner
they produce smooth, clean, continuous surfaces whose accuracy surpasses that
of pre-existing RGB-D methods. The only limitation of the approach is the density
of the surfaces it generates. They are too heavy-weight to represent the interiors
of buildings at city (or even site) scale for example. Additionally the surfaces do
not embed any semantic associations (i.e. triangle-soup) - and they note that their
pipeline relies heavily on global loop closures (in a sensor trajectory/path) to indi-
cate global relations - and the accumulation of drift can distort the reconstruction
process. Nonetheless - this is a strong contribution in terms of its accuracy, level
of generalisation and registration performance.
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2015 - present

Mura, Mattausch, Villanueva et al. [94] propose a robust approach to reconstruct-
ing the structure of architectural interior environments from unstructured range
scans. Their method relies on extracting planar patches (wall candidates) by con-
sidering occlusion - in order to isolate individual rooms (whilst mitigating clutter
and missing data. Their main contribution is the application of a diffusion process
(inspired by heat propagation) to combat artefacts and imperfections in the input
scans. The method yields good results in terms of accuracy and compactness -
however they note that it cannot handle slanted walls (i.e. all walls must be ver-
tical), variable ceiling heights (for example duplexes), and it demands all rooms
be fully covered by the input scans to ensure completeness. In spite of this, the
approach is fast and the planimetric iterative cellular clustering decomposition is a
rather imaginative means to address data-driven regularisation.

Cohen, Schwing and Pollefeys [21] address the problem of parsing and semanti-
cally labelling images of facades - using a sequential optimisation technique. Un-
like prior works that treat the problem as a classification task or that of grammar
parsing - they use dynamic programming to boost efficiency by an order of mag-
nitude. The only limitation with this work is its heavy reliance on regularity in a
facade. In particular (in the tests they document) the error for low-rise semi-regular
residential facades increase significantly relative to the regularised high-rise inner
city facades (from ≈4%-7% to ≈10%-15%).

Martinovic, Knopp, Riemenschneider and Van Gool [78] deal with automatic fa-
cade segmentation from SfM point clouds - specifically without dependence on 2D
(ortho-rectified) image labelling techniques. Their method operates in 3D all the

way. The key benefit is the gain in computational efficiency that results (relative
to 2D projective schemes) however their 3D facade labelling component (though
yielding effective results) applies largely to regularly arranged facades and uses
bounding boxes to represent all windows and doors.

Diaz-Vilarino, Khoshelham, Martinez-Sanchez and Arias [28] propose a pipeline
for door detection and room-envelope recovery from images and point-clouds of
building interiors. The strength of this method is that it generates ortho-aligned im-
ages (via ray-based visibility analysis) which are used to texture the walls. However
it is subject to more false negatives and positives in door detection than methods
based solely on points.

Gimenez, Robert, Suard and Zreik [44] tend to the problem of generating an in-
dustry compliant 3D model by scanning and analysing 2D floor-plans. The main
limitation of this work (in this context) is its reliance on a pre-existing floor-plan. It
does not directly serve the task of building reconstruction even though its input is
image data.

Ochmann, Vock, Wessel and Klein [97] address automatic reconstruction of para-
metric building models from indoor point clouds - so as to yield component based
interior room geometry (rather than merely surface-representations which are more
common for indoor scenes). They automatically segment the point cloud into
rooms in order to remove the outside areas and filter outliers. This is followed
by a global optimisation process that resolves wall-to-wall relationships and regu-
larises the results. Essentially they cast the task as a labelling problem - and solve
it via energy minimisation. The main strength of this method is its ability to mine
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clean compact interior models with door and window representations. However it
is worth noting that it involves random sampling processes (such as the stochastic
ray-casting used to compute mutual visibility). Nonetheless their results are both
quantitively and qualitatively strong.

Daftry, Hoppe and Bischof [23] present an interactive multi-view stereo reconstruc-
tion system for creating accurate 3D facade surface models from images captured
by micro-aerial-vehicles (MAVs) - by providing real-time feedback that instructs a
surveyor as to the quality of the data as it is acquired. They also present a multi-
scale camera network method (which limits drift that can result from the incremen-
tal model construction) to further increase SfM accuracy. In terms of geometric
accuracy - this is a strong photogrammetric method - however in terms of model
quality - the dense surfaces that are generated are too verbose (for city-scale re-
construction) and lack semantic information (triangle-soup). The interactive com-
ponent also has negative implications from the perspective of scalability.

Shahzad and Zhu [122] propose a robust approach to extracting building facade
locations for large urban areas using space-borne TomoSAR point-clouds. Note:
although this work refers to facade reconstruction - in reality it tends to the prob-
lem of wall reconstruction - i.e. detection and polygonisation of vertical features. It
does not (for example) actually interrogate or represent the structure of a facade -
only the location of vertical walls. Nonetheless this is quite a progressive develop-
ment in that the ability to robustly extract wall vectors from space-borne scan data
enables much wider reconstructive coverage.

Patraucean, Armeni, Nahangi et al. [101] review the state of automatic as-built
building information model recovery with a focus on the geometric tasks that un-
derlie such systems (data acquisition and data modelling). They cover computer
vision, geometry processing and civil engineering works that play a role in the
process, comparing the strengths and limitations of each. They note that the key
requirements in the field are new methods for object recognition and the consoli-
dation and integration of existing techniques.

Sun’s thesis [130] proposes an innovative solution to large scale building recon-
struction from space-borne SAR tomographic scans (at roughly 1ppm resolution).
Although he employs some common pre-existing methods (nDSMs, watershed
segmentation, hough-line extraction) - the main strength of the contribution is its
mitigation of sensing artefacts that present in representations derived from satel-
lites. This in particular opens the door to much wider scale automatic top-down
building modelling. However it is worth bearing in mind that the level of detail at-
tainable is reduced relative to methods that employ airborne scans.

Edum-Fotwe, Shepherd and Brown [123] propose a 2D vector shape detection
strategy for automatic building modelling from low resolution airborne range scans.
The method employs the Hough-transform in concert with an eat-away step to vec-
torise L, T and S shaped building footprints. Whilst the method yields accurate and
sparse results - it is specialised for a particular class of building (those that exhibit
orthogonality) - and as such lacks the ability to generalise.

Edum-Fotwe, Shepherd and Brown [34] introduce an automatic facade segmenta-
tion and reconstruction method for unstructured ground-based laser-scans - that
seeks to marry the benefits of data-driven approaches (efficiency and accuracy)
with the benefits of model-driven techniques (higher model-quality and semantized
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components). Though their method can model the boundaries of irregular (non-
rectilinear) apertures, they note that its window and door sash modeling requires
refinement.

Zheng, Weng and Zheng [161] address top-down building model reconstruction
from medium resolution airborne LiDAR - by employing a hybrid strategy that aims
to be efficient and robust at low resolutions. Their key contribution is a novel
ridge detection method - which deals well with the limited information provided
by the lower-res. nDSM (≈ 0.9m point spacing). However relative to earlier hybrid

schemes, their approach does not support free-form mesh.

McClune’s doctoral thesis [86] tends to the problem of automatic 3D reconstruc-
tion of buildings models from dense image-matching datasets. His key idea is
to focus on extracting corners in order to combat the problems inherent to plane
fitting. Whilst he demonstrates good corner detection results for top-down archi-
tectural images - his approach suffers from limited response in terms of accurate
roof-shape projection. Essentially there is not enough information provided by his
corner-connectivity techniques to accurately convert the 2D vector-arrangements
extracted to 2.5D building masses - and hence the precision of the results (relative
to LiDAR based strategies) is lacking. Additionally there are also problems related
to assuming ubiquitous linearity (i.e. poor generalisation to buildings exhibiting
curvature).

Bacharidis, Sarri, Paravolidakis et al. [5] address 3D facade model reconstruction
from image data - through a multi-modal fusing of stereoscopic and tachometry
data. Their work aims to deliver more realistic reconstructions than prior pho-
togrammetric approaches. The approach relies on extracting a 2D skeleton of a
building by active contouring and Hough line extraction. They then infer the struc-
tural details of facades using a depth derived stereoscopic layout. Note: their work
relies on merging the structural data derived from the images with geo-referenced
points. They also employ co-linearity and parallelism conditions to improve line
extraction. Positively this method can produce sparser facade geometry - however
there is little semantic information embedded in the representations it generates
(in particular there is no differentiation between walls/windows/doors or types of
objects upon facades - the result is a surface rather than component-based).

***

In closing: the domain of architectural reconstruction has come along way over
the last three decades - and whilst there remain certain recurrent problems - as a
collective we are gradually closing the gap between the capabilities of human CAD
technicians (who create architectural models manually) and automated modeling
algorithms (that reconstruct sampled data). Whilst many technical challenges still
lay ahead - the future looks bright for parties who rely upon accurate geomet-
ric representations of the built-environment. As scanning hardware and sensor
technologies advance the scope of that which can be accurately measured has
grown from simple block masses to highly detailed architectural representations -
capturing not only roof-geometry - but increasingly street-level facade and building
interior geometry. However in order to keep-up with such development (and indeed
to exploit laser-scanning to its fullest) the software patterns employed to construct
meaningful geometric models from architectural point-clouds must also advance.

Next we’ll focus on a subset of these methods - delving deeper into their oper-
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ation, considering the domain-specific observations and insights they exploit and
the practical trade-offs that pervade the use of each.

1.1.3 Key Related Work: Case Studies

This portion of the literature review, details key case-study reconstruction methods.
The algorithms discussed represent archetypal and highly relevant pre-existing ap-
proaches to addressing reconstructive problems related to architectural modelling.
Some of the algorithms operate on point clouds, others on sets of photographs.
For each case-study, a brief synopsis is provided. This is supplemented by an
outline of the contribution and the key insights drawn from the research.

The strengths and limitations of each method are also outlined in each of the suc-
ceeding discussions. Note: these are the key reconstructive approaches that in-
spired the developments presented in the second part of this thesis.

CS1: Zhou and Neumann - 2.5D Dual Contouring + Extensions
Data-Driven and Analytic : [167], [164], [165], [163], [166]

The first case study reviews one of the most influential airborne building recon-
struction methodologies to have been proposed in recent years.

Zhou observed that one of the key distinguishing features of manually constructed
models - relative to reconstructed surfaces - is the presence of sharp (crisp) edges
- and that the pre-existing Dual-Contouring algorithm of (Tau et al. [56]) could be
refactored in order to preserve such features in top-down point-clouds. Zhou also
proposed several key efficiency optimisations - such as the streaming strategy for
large-scale reconstruction - that ensured that the resultant building reconstruction
algorithm could be executed on commodity hardware within a reasonable amount
of time. This (along with its extensions) represents the dominant analytic strategy
for automatic top-down building model reconstruction from laser-scans.

CS2: Lafarge, Mallet et al. - Hybrid Airborne Scene Reconstruction
Data-Driven + Model-Driven and Stochastic : [71], [72], [73], [156], [67], [68]

The second case study reviews a generalised strategy for the construction large
urban environments from airborne laser-scanned and MVS point-clouds.

Lafarge et al. determined that a conglomerate reconstruction operator was one of
the only stable means to mitigate unsatisfactory results for highly irregular archi-
tectural models. They realised a hybrid approach to building reconstruction was
required to deal with the diversity present in the real-world. They observed that a
mix of stochastic sampling, analytic solving and template fitting provided a robust
balance - especially in the presence of low-resolution input. In terms of top-down
building reconstruction from airborne laser-scans - this body of research repre-
sents the dominant stochastic strategy. The key aspect to take away from this is
the versatility of a generalised cobglomerate strategy. However it is worth noting
the relative expense (from a computational perspective) of the strategy relative to
more efficient approaches such as that of Zhou and Neumann.

CS3: Calberg et al. - Airborne and Ground Surface Reconstruction
Data-Driven and Analytic : [12]

This case study reviews a multi-modal photogrammetric building reconstruction
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method for the construction of dense textured building surface geometry.

Calberg et al. were amongst the first to propose a fully automatic merging strat-
egy that could operate over multi-modal urban data. Now although the geometric
quality of the results produced are inferior to more recent multi-modal merging op-
erators - the great strength of their method is its fast execution time. In particular
their algorithm is designed to scale to large datasets effectively. Additionally unlike
more recent techniques this a purely data-driven method which makes it incredibly
versatile from the perspective of creating accurate assets.

CS4: Müller et al. - Image-based Procedural Modeling of Facades

Model-Driven and Analytic : [93]

This case study reviews a highly influential facade construction approach that cre-
ates textured sparse 3D models from ortho-aligned images of building facades.

The main insight drawn from this research is that the layer of abstraction injected
by a suitable high-level facade representation (which in this case is a rectilinear
tree-based split-grammar) facilitates the recovery of higher quality facade models
than would otherwise be feasible from a single image. However the caveat to this is
the reduction in accuracy relative to data-driven methods that operate on actively
sensed point-clouds. The major point is that this archetypal approach (which has
sired numerous derivative approaches) yields facade models that look good and
are suitable for interactive visualisation tasks, but that can not necessarily be relied
upon for analysis of the built environment. In particular representation of irregular
facade-layouts (i.e. those that do not obey the rectilinear constraint) and irregular
apertures (i.e. non-orthogonal window and door frame boundaries) is missing.

Nonetheless the notion of mining a high-level generative descriptor of a facade
(rather than merely a set of edges or bounding boxes) is one that has had a large
influence on the ground-scan reconstruction research presented in this thesis.

CS5: Martinez et al. - Automatic Facade Segmentation from Ground Scans
Data-Driven and Analytic : [77]

This case study reviews a specialised data-driven facade segmentation operator
for unstructured ground-level laser-scanned point-cloud data.

The main observation is the accuracy and versatility of the facade segmentation
method employed. Their method is based on statistical analysis of the depth data
rather than priors related to common facade layouts. As such it is able to isolate
high fidelity facade layers. The results are not only visually compelling, they are
precise in terms window and door detection and localisation. This enables the
dimensions of facade features to be extracted from the segments to within a toler-
ance of a few centimetres. Essentially their iterative profile-extraction and thresh-
olding strategy enables precise contours to be recovered - most importantly not
only for windows and doors, but also for balconies, buttresses and adornments.

However the main challenge in adapting this work to larger-scale ground-based
scans that contain facades is that it relies on exact knowledge of the scanner’s
position and inclination properties relative to the facade. It is hard to determine
how well this strategy adapts to scans for which such information is not present.
Additionally their results consider high-density facade scans for a single facade
which (though exhibiting irregularity) calls into question the stability of the method
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for lower-density scans (such as from larger distances or SLAM based capture).

Despite this, beyond the conceptual strength of the layered analysis, the approach
actually works - and in many regards sets the standard in terms of the precision
and level of detail attainable for decomposition of unstructured facade points.

CS5: Lin et al. - Semantic Reconstruction of Residential Scenes
Data-Driven + Model-Driven and Analytic + Stochastic : [75]

This case study reviews an important more recent approach to high-quality recon-
struction using ground laser-scans that employs multiple paradigms.

The vital point is that despite the fact the execution times are quite high (at roughly
2 minutes per building - which though an improvement on previous approaches
which take 15-20 minutes per-building - is still inadequate for large-scale recon-
struction) - the key positive feature of this method is the higher quality models it
generates - through its enforcement of structural priors (in particular block-wise
symmetry). It can represent non-parallax features where purely top-down strate-
gies can not - however it is not as generalised as the dominant 2.5D approaches
in that it is designed primarily for low-rise residential buildings without curvature.
Additionally despite the fact ground data is used as input the technique’s focus
is mass-reconstruction and the level of detail upon each facade is minimal - (i.e.
subtle details such as stairways, window-frames, hand-rails are not represented).
Nonetheless this is a strong approach from the perspective of improving building
model quality. Note: however though that Lin et al. discuss the fact the process of
RANSAC (to extract planes) consumes a large portion of the overall runtime.

CS6: Wu et al. - Schematic Reconstruction
Data-Driven and Analytic : [151]

This case study reviews a particularly interesting schematic reconstruction ap-
proach for building reconstruction from photogrammetric point-clouds.

This method is particularly noteworthy for its ability to preserve subtle parallax
displacements whilst still yielding largely regularised swept profiles. However the
main observation and insight drawn from it is the versatility of the 3D sweep (i.e.
the generalised cylinder) in the representation of architecture from sampled data
- even lower-quality photogrammetric point-clouds. Wu demonstrates that a large
portion of architectural surfaces can be approximated by sweeping polygonal pro-
files about rails - and that further more - the descriptors for each such components
can be very concise - (i.e. two polyline paths). The other benefit of accumulating
profiles to feed into a GC generator is the inherent mitigation of missing data. How-
ever few building reconstruction operators support the extraction of 3D sweeps.

Note: Wu’s research has (like all these case-studies) influenced the airborne and
ground reconstruction operators documented in this thesis. In particular the top-
down mass-model reconstruction operator (in chapter 3) uses data-driven sweeps
to represent terraces, whilst the facade reconstruction operator (in chapter 4) ex-
ploits them to represent and generate irregular window and door models.

***

This portion of the literature review revised the key pre-existing methods for 3D
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building model reconstruction from sampled representations. Whilst the focus of
this particular research is reconstruction from laser-scanned point-clouds this sec-
tion also discussed photogrammetric approaches (i.e. MVS and SfM based) so as
to provide a fuller account of the various ways in which previous researchers have
tackled the general problem of 3D architectural reconstruction.

1.1.4 Limitations and Recurrent Problems

This part of the literature review revised the prior computational approaches in
active-sensing - as they relate to 3D reconstruction of the built-environment.

This closing portion summarises the key limitations and recurrent problems - iden-
tified as a product of traversing the pre-existing literature - that relate to the core
problem of efficiently reconstructing semantically-rich compact architectural geom-
etry from structured and unstructured laser-scanned point-clouds.

• Sensitivity to Sensing-Noise - relative to general surface-reconstruction.

• Low Tractability of Results - particularly for obfuscated operators.

• Preservation of Multi-Scale Features - i.e. at variable spatial scales - this
is a particular problem for plane-based methods.

• Computational Efficiency - large execution times for city-scale datasets -
specifically non-linear growth in execution time.

• Un-Intuitive Control Parameters - which ties in to intractability.

• Non-Deterministic Geometric-Results - as a product of random sampling
strategies such as RANSAC - which limits repeatability.

• Limited-Ability-to-Generalise - to irregular architectural forms.

• Robustness/Versatility of Priors and Heuristics - the heavy use of orthog-
onal and linearity constraints that do not generalise to irregular buildings.

In essence, one could sum up the current state of the domain of architectural
reconstruction by saying that: many low-level problems have been addressed well

- whilst several higher-level problems are yet to be definitively resolved.
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1.2 Procedural Modeling of Architecture

Procedural modeling is a vast sub-discipline of procedural content generation - that
focusses on the algorithmic definition of geometric models. Procedural modeling
spans the application of: self-rewriting shape grammars, fractals and L-systems,
constructive modeling, parametric modeling, noise sythesis, by-example modeling
and similar generative abstractions that enable the concise definition of organic
and man-made geometric structures.

As such it is beyond the scope of this review to cover all aspects of, contributions
to, and developments within the domain. Instead the aim is to highlight the key
strategies to procedural modeling of architecture that informed this research.

1.2.1 Outline of Contributions and Developments

Early influential work that addresses procedural methods for creating cities in-
cludes Parish and Müller’s [99] automatic system (that addresses layout and sub-
division of lots and road networks), and the introduction of parametric set gram-
mars by Wonka, Wimmer et al. [150] (in particular the definition of split-grammars
as a tool for facade representation).

Later on Müller, Wonka, Haegler, Ulmer and Van Gool [92] introduce CGA shape
a novel shape grammar for the generative definition and construction of proce-
dural building models. This work extends the concept and applications of split-
grammars. Slightly later Kelly and McCabe [59] present an interactive city model-
ing tool that employs parametric modeling strategies.

Other researchers such as Lin, Cohen-Or Zhang et al. [76] have dealt with the
problem of retargeting irregular architectural models (i.e. procedural style-transfer).

More recently Schwarz and Müller [121] propose an advanced variant of CGA-
Shape (the dominant architectural shape grammar), whilst Fan and Wonka [36]
devise a probabilistic model for modeling the exteriors of residential buildings.

The current research trends in procedural modeling of architecture include sketch-
based interactive generation of urban models (such as [96]) and automatic grammar-
refactoring (i.e. operations such as rule-length optimisation).

1.2.2 Automatic Building and City Model Generation

In terms of procedurally generating entire city-models, the irrefutable leader in the
domain is Pascal Müller and his revolutionary approach to describing complete
building exteriors using self-rewriting Chomsky grammars. Prior to his seminal
works [99], and [92], the applications of shape grammars where often limited to
the production of models to represent organic assets (such as L-Systems for mod-
eling plant growth). However Müller demonstrated that due to the repetition and
self-similarity present in architecture one could re-appropriate the self-rewriting
nature of a formal shape grammar in order to define and generate coherent high-
quality rule-based man-made assets. Further more, one of the key differences
between Müller’s approach and pre-existing building generation methods was the
application of split-grammars for defining structured sub-divisions in facade mod-
elling. This distinctive feature (combined with the underlying Chomsky grammar)
enabled highly-varied facade models to be constructed as the product of rectilinear
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(cell-based) recursive assignments. Put simply Müller not only devises a suitable
(flexible and generalised) building representation, but he also exposed the intrin-
sics of the representation through a AEC specific programmable shape grammar.
In this manner Müller’s research laid the foundation for rule-based city-model gen-
eration. Müller’s lasting contributions to the domain have included:

• Applying Self-Re-Writting Chomsky Grammars to the definition of hierarchi-
cal architectural component arrangements. Note: that although other re-
search has employed similar approaches - much of it dealt with the 2D-case
of generating a plan algorithmically - whereas Müller’s work addressed the
much harder case of their extension to 3D.

• Devising Parametric Lot-Division routines which included support for gener-
ating Manhattan (gridded), radial and organic city-blocks. Note: the thing
that distinguishes City-Engine from the related research is the ability to use
user-supplied geo-spatial data to guide the process.

• Applying Planimetric Split-Grammars to modelling structured architectural fa-
cades and the associated functions for representing phenomena such as
axis-aligned repetition and symmetry.

• General-purpose AEC shape-grammar (CGA-Shape) that acted as a basis
for the stand-alone City-Model generation system - City-Engine.

For these reasons, Müller is (quite rightly) held as somewhat of a hero within the
domain and his research stands as a shining example of how powerful procedural
model generation can be when applied at scale. One of the most powerful aspects
of Müller’s facade split-grammar is its suitability to backward-chaining generative
modelling tasks. In particular he demonstrated that one could also use the same
rectilinear split representation to facilitate procedural modelling of facades from
sampled representations such as ortho-aligned facade photographs. [93] This
trend still continues today, and numerous researchers (including [80], [25], [110]
and [152]) have applied the semantics of his facade split-grammar to the problem
of inverse-procedural modelling of architectural facade geometry.

Since its inception City-Engine’s feature-set has grown to include: profiling and re-
porting rules, automatic dimensioning, semi-automatic modelling, integration with
the Arc-GIS framework, support for a wide array of model export formats (including
FBX, OBJ and RIB to name but a few). City-Engine is now considered the de-facto
standard procedural city-model generator within AEC, GIS, Energy-Markets and
Digital-Media. Most recently [121] an updated version of the underlying shape-
grammar (CGA-Shape) added support for boolean logic operations which enables
constructive solid mass modelling directly within City-Engine.

Now - although it is an incredibly powerful tool - research and experimentation
unveiled a number of minor problems with CGA-Shape and City-Engine’s imple-
mentation that (despite being non-critical) have the potential to limit its utility.

• As the complexity of architectural arrangements being defined increases the
brevity of CGA-shape diminished.

• Reliance on external (manually-modelled) assets to represent features such
as windows, door and adornments.
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• Limited support for realtime procedural modelling within interactive simula-
tion environments such as game-engines.

• Suitable for modelling architectural exteriors (outside buildings) - but lacks
support for modelling architectural interiors (inside buildings).

Despite these minor short-comings Müller’s research and subsequent industrial
developments remain the most comprehensive solution to producing high quality
city-models algorithmically. The important observation is that although Müller was
not the first, or the last researcher to address the problem (refer to [59] for an ex-
ample of a simpler parametric alternative), it is his approach that has stuck and
that continues to stand the test of time. This is because he recognised not only
the requirement to describe hierarchical arrangements algorithmically but further
directly exposed a means for others to add new procedural objects by defining
rules. This meant that City-Engine could be programmed to fit a technicians de-
sire rather than being constrained to a finite set of built-in types. I cannot stress
enough how powerful this ideology is and indeed how inspiring it has been to this
work. Müller’s research dealt with a long standing-problem in procedural content
generation - that of expandability. City-Engine makes it easy for a technician to de-
fine new dynamic generative architectural functions without having to worry about
the nitty-gritty of managing computational resources or coordinating boiler-plate
geometric and spatial tasks. Whilst City-Engine remains (to date) the most com-
prehensive solution for procedural modelling of architecture - alternatives exist.

Note: whilst procedural building generation is a research topic that has received
substantial attention over the last two decades (and one that plays an important
role in this research) it is not (in the strictest sense) the focus of this research.
Nonetheless an awareness/appreciation of the forward-chaining generative pat-
terns that pervade the domain is useful from the perspective of understanding the
types of modelling abstraction that one might wield to combat backward-chaining
(reserve-engineering) problems. The main consideration to bear in mind is that
high-compression, generative building modelling techniques are typically not de-
signed to facilitate direct specification of an object’s representation in a data-driven
manner, which means that (often) the task of identifying a grammar to precisely
represent a concrete instance of an object could be considered that of coercing a
less suitable implicit representation when a direct explicit representation would be
more suitable. Essentially forward chaining patterns enable exploration of design
space - but are harder to apply to reverse-engineering problems.

This is one of the key aspects that distinguishes Müller’s research from pre-existing
(and many recent) approaches - i.e. its un-common applicability to backward
chaining tasks. From this one might draw the high-level conclusion that within
procedural modelling the strongest abstractions are those that are flexible and
generalised enough to serve both generative and reconstructive pursuits.

1.2.3 Limitations and Recurrent Problems

Due to the fact that the domain of procedural modelling draws heavily upon (and as
such can be largely rationalised in terms of) the fields of Computational-Geometry,
the study of Algorithms and Data-Structures, Language-Theory and Computer-
Graphics - the large majority of low-level problems have already been solved or
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addressed within each specific domain. What this means is that whilst problems
such as maximising the scope for data-amplification, enabling artistic control, en-
suring generality, flexibility and usability still play a large role, in practice the promi-
nent problems within procedural modelling relate more to exploring concrete ap-
plications of the patterns defined within the domain. Essentially the most pertinent
problems identified by this literature review relate not to forward-chaining procedu-
ral modelling, but rather to backward-chaining procedural reconstruction.

However in-spite of this general observation there is one common underlying prob-
lem that prevails amongst procedural modelling strategies and abstractions that
are in-direct or declarative (as opposed to imperative) in nature. This is the abil-
ity to exercise fine-grain control of an algorithm - and is sometimes referred to in
the context of making local edits. The critical observation is that higher-level ab-
stractions make it harder to specify unique and irregular features than lower-level
(direct) techniques - because often manipulation of a high-level grammar can have
un-intentional global effects beyond the local revision sought. Although this is well
documented in the literature - and many pre-existing researchers have addressed
it within particular contexts (i.e. for organic modelling or modelling furniture) - there
remains a lack of a generalised solution for the case of arbitrary man-made objects.
Ultimately - in procedural modelling there is often a fundamental trade off between
the precision of control afforded by an abstraction and the brevity of its represen-
tation. The more concise the representation the less artistic control - the greater
the scope for explicit control the less succint the representation is.
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1.3 Research Summary

Having reviewed the pre-existing literature in architectural reconstruction and pro-
cedural modelling, this section summarises the vital pre-existing academic contri-
butions to both fields that relate to the core-aims of this thesis. This section then
summarises the key problems within the domains of point-cloud processing and
architectural-reconstruction that were identified by traversing the literature.

Key Research in Architectural Reconstruction

In terms of the vital contributions to architectural reconstruction the following re-
vises the research most relevant to achieving the aims of this project.

• 2.5D Dual Contouring, Tile Streaming, Topology-Control, Global Regularities
- Zhou and Neumann [167], [164], [165], [163], [166]

• Building Large Urban Environments from Unstructured Point-Data, Hybrid
Method - Lafarge, Mallet et al. [71], [72], [73], [156], [67], [68]

• Automatic Processing of Terrestrial Laser Scanning Data of Building Facades
- Martinez et al. [77]

• Semantic Decomposition and Reconstruction of Residential Scenes from
Unstructured Laser-Scans - Lin et al. [75]

• Image-Based Modelling of Facades - Mueller, Wonka et al. [93]

Key Research in Procedural Modelling of Architecture

In terms of the crucial contribution to procedural modelling of architecture, the most
advanced development is the result of research by Müller and Wonka [92], [99],
[93], [121] in devising and continuing to develop City-Engine and the CGA-Shape
grammar. Note: that whilst procedural modelling of architecture is still a highly-
active field of research - it is fair to say that there already exists stable solutions
that address it effectively. Beyond City-Engine a myriad of simpler parametric build-
ing generators exist that integrate into frameworks and content-authoring solutions
such as Unity-3D, Unreal-Engine, Rhinoceros, Modo and Blender (to name but a
few). Further in industrial management of the entire life-cycle of buildings - BIM
solutions such as AutoDesk’s Revit expose a plethora of generative components
for constructing 3D building assets procedurally - as well as defining relationships
between assets and simulating their physical behaviour.

In short - forward chaining (generative) modelling of architecture can largely be
considered a solved problem. However backward chaining (inverse/reverse engi-
neering) modelling of architecture from sampled data still poses many challenges.

Open-Problems in Point-Cloud Processing

This section summarises the open-problems in point-cloud processing.
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• Automatic Segmentation: in particular the heavy use of plane-only segmen-
tation methods (many of which rely on random sampling for plane estimation)
and the use of interactive processes to combat over and under segmentation.

• Sparse Reconstruction: most notably the lack of generalised structure-preserving
simplification and approximation methods for dense surface representations
derived from laser-scanned point-clouds of arbitrary objects.

• Computational Efficiency: the growth in execution time as a product of the
number of input points. Specifically the typically non-linear computational
complexity of point-processing methods. This remains a notable issue espe-
cially for systems that operate on unstructured relative to structured scans.

Open-Problems in Architectural Reconstruction

This section summarises the open-problems in architectural reconstruction.

• Improving Automatic Model Quality: this is particularly notable for photogram-
metric building reconstruction methods - however LiDAR based methods are
also plagued by similar (though typically distinct) model quality issues.

• Balancing Accuracy and Brevity: model-driven techniques typically yield sparse
approximations of buildings with a greater amount of error - however more
accurate data-driven methods tend to bloat the size of build representations.

• Recovering Semantized Models: i.e. the gap in the manipulation and editing
facilities that exist between manually and automatically generated building
models. For example manually created models typically allow high-level revi-
sion and manipulation - whilst auto-generated models do not and (irrespec-
tive of the internal semantics they apply and enforce) yield sets of triangles.

• Reliance on Intermediary Interactive Editing: represents a major problem
from the perspective of scalability - in the sense that for as long as a human is
required (in-the-loop) to supervise the execution of an algorithm - it is difficult
(if not impossible) to scale the scope of a region processed efficiently.

• Algorithmic Scalability: from the perspective of computational efficiency (i.e.
irrespective of user interaction) - and in particular the non-linear growth in
runtime typically associated with the methods that employ random-sampling.
As previously noted this problem is not specific to building reconstruction -
however specifically within this context it manifests as systems taking hours
or days to process city-scale assets that could be handled by general surface-
reconstruction and mesh-approximation methods within minutes.

• Algorithmic Evaluation - Limited Access to Implementations and Bench Mark-
ing Datasets: is still a major problem in building reconstruction form laser-
scanned point-clouds - despite the last three decades of technical progress.
This manifests as fewer standardised testing and profiling datasets relative
to photogrammetric techniques - and makes the process of comparing oper-
ators harder (if not impossible) within the domain. Few techniques undergo
the same level of rigour in evaluation relative to less specialised tasks in
computational geometry, computer graphics and computer vision.
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Chapter 2

Semantic Change Detection

What is it?

A multi-modal semantic change-detector for city-scale urban models.

Why does it exist?

To reduce the execution time associated with reconstruction of large-city-models
by enabling ’reconstructive-culling’ (also referred to as ’selective-reconstruction’),
and detect and categorise geometric modelling inaccuracies.

How does it work?

By detecting and classifying mutually-exclusive instances of architectural variance
using tractable shape predicates. Each predicate helps to identify extensions,
reductions, re-positions, constructions, removals and replacements in out-dated
CAD models, using newly-acquired up-to-date laser scans.

beyond point-to-plane...

Figure 2.1 : An overview of the role of the semantic change detector - from left to right:

(red) an out-dated CAD model, (blue) an up-to-date aerial-laser scan, (grid) determining the

class of variance between the two geometries and (red and blue) the result of merging the

detected extension with the out-dated mass.
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2.1 Overview

The aim of this chapter is to define and analyse an operator capable of providing
high-level (actionable) descriptions of geometric variance that could be used to
guide a CAD technician in manually updating a city model or an automatic algo-
rithm in architectural modelling from laser-scan data. One may wonder - why begin
by addressing an analytic problem that does not inherently yield geometry? Recall
that the literature review drew attention to one of the greatest issues present when
automatically processing mid to large sized point-sets - namely scalability. The
analytic operator defined in this chapter is targeted specifically at addressing this.

It achieves this by enabling selective-reconstruction (or reconstructive-culling). Se-
lective reconstruction is simply a term the author has dubbed to refer to optimising
the runtime of a geometry recovery algorithm by analysing and only re-modelling
buildings that exhibit significant temporal variations. In layman’s terms the aim is to
ensure that a reconstruction algorithm only spends compute time updating build-
ings that actually require updating (because their geometric form has changed).
As an optimisation it relies upon the observation that often only specific buildings
or sites in a city need to be altered to bring an out-dated city-scale CAD model
up-to date. The optimisation is analogous to view-frustum culling (in object-order
rendering algorithms), and in the same manner ensures redundant work isn’t un-
dertaken during the task of temporally updating city models.

One could argue that this optimisation bears little relevance to procedural mod-
elling from point-sets and is simply a generic culling strategy. Though this would
be true for most domains, in the case of architectural modelling this is not the case.
This is because selectively culling the reconstructive process allows an algorithm
to combine pre-existing geometry with newly-recovered geometry. Such a process
could not be trivially automated without a means to compare and understand the
geometric variance between an old dataset and a new dataset. In essence with-
out a change-detector, an algorithm has no choice but to reconstruct everything in
the input. The presence of a semantic change-detector allows an algorithm to be
selective about what it tries to model and as such trivialises the integration of high-
quality manually constructed models with accurate sparse procedural-models.

This is a key feature of this optimisation. Beyond merely the efficiency, it allows
an operator to take advantage of pre-existing CAD models. This means it need
not waste previous man-made building models that may already have been opti-
mised for rendering. It can exploit the uncountable man-hours of labour previously
undertaken (to manually construct a city model) and incorporate newly-recovered
geometry only when it is required.

Additionally there is general worth (both to geometers and architects) in the ability
to automatically identify physical areas that have changed.

To help clarify examples of concrete potential use cases for such a multi-modal
semantic geometric change detector, one could conceive using it:

1. As a pre-processing optimisation and segmentation stage in an automatic
modelling algorithm (such as that proposed in this thesis)

2. As an interactive variance visualisation program for CAD technicians, Archi-
tects and 3D Modellers, used to guide manual city updates
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3. As a revision-agent (a tracker and classifier) in a BIM style city planning or
development documentation framework

For reference the key objectives, requirements and behavioural desires of the op-
erator are stated (remember this is the method of understanding the changes be-
tween different types of geometry - in this case CAD and LiDAR).

• Efficacy - in distinguishing the classes of deviance that are of interest to a
practitioner working with temporal building assets.

• Efficiency - for obvious reasons. This only works as an optimisation if it re-
duces the time associated with city-scale reconstruction. Although one could
argue it still has benefits since it enables pre-existing models to be included
(and composited alongside newly recovered geometry), fundamentally the
desire for this pre-process is to execute in proportionally less time than the
procedural modelling stages.

• Robustness - to the presence of noise in the sampled dataset and geometric
degeneracy in the CAD model. Since there are few guarantees about the
nature of the input datasets (such as the resolution, distortions, or the pres-
ence of non-manifold entities), the classifier should be capable of performing
analysis in the presence of such artefacts.

• Intuitive - to understand and implement. Though this does not change the
result - it will inadvertently have an impact on the accessibility and overall
utilisation of the operator. The easier the operator is to conceptualise and
implement, the greater the likelihood it will actually be implemented by other
researchers and hence expanded upon.

• Tractability - of the result. Given the potential for subjectivity in the outcome -
it is imperative that the class associated with each out-dated building be un-
ambiguously traceable from the implicit and derived properties of the building
and its pairwise match in the LiDAR.

The remainder of this chapter is structured as follows:

• The methodology section defines the contribution in terms of the key stages
employed to classify actionable geometric variances between old-CAD mod-
els and new-point-clouds. It covers the 6 classes of variance recognised
(construct, remove, replace, position, extend and reduce), detailing for each
the underlying rationale and formalism.

• The experimental results section enumerates the outcomes of profiling the
performance and behaviour of the change detector using an out-dated CAD
model and manually labelled ground truth data for the city of Bath. It also
discusses the operator’s performance on synthetic datasets - which clarifies
abstractly where the method fails - i.e. the limitations of the approach.

• The analysis and evaluation details high-level analysis of the change-detection
operator. The section considers and expands upon the results and presents
insights drawn from the experiments.

• The discussions and summary section provides a synopsis of this chapter -
reiterating the aims and outcomes and commenting on the implications going
forward. It seeks to be a succinct - with bullet-points used to revise the key-
points, ideas and concepts introduced.
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2.2 Background and Context

This section details the theory pertinent to semantic change detection.

2.2.1 Key Related Work

This subsection discusses the key related work in more detail. The focus is char-
acterising the behavioural properties of the methods that inspired and informed
development of the semantic-change-detector. It considers the strengths and limi-
tations and how they relate to the problem addressed in this chapter.

Segmenting Aerial Datasets

Recall that segmentation algorithms can vary greatly based on the nature of the
data they operate on. Prominent pre-existing techniques that involve segmenting
aerial LiDAR (with a focus on building extraction) includes Sampath et al. [118]
Matei et al. [81] and Wang et al. [145] In the case of structured range images
such as aerial DEMs and RGB-depth scans, the greatest benefit is the processing
efficiency derived from implicit knowledge of each points neighbourhood. Their
vital flaw however lies is the loss of information. In the case of unstructured range
images (such as radial fixed-position and vehicle-mounted scans) the key advan-
tage is the level of detail that can be recovered for each object - as well as the
lack of topological constraints. However the downside of segmenting unstructured
point-sets is correspondingly large runtimes. Notable approaches include the work
of Dorninger et al. [31], Carlberg et al. [12] and Rabbani et al. [107]. We make
special mention of the difference-of-normals - which is a multi-scale operator for
analysing and segmenting unstructured scans (the result of research by Ioannou
et al. [52]). Inspired by the Difference-of-Gaussians (from image processing) it
provides a means of identifying clusters of points at equivalent feature-scales, by
considering the variation in the unit normal when each point’s normal is computed
with two different support-radii for neighbourhood determination. In the field of
Computer Vision, a commonly used approach is graph-based segmentation[134].
Graph-cutting (and its variants) form the basis of numerous image segmentation
approaches. The work of Felzenszwalb et al. [38] focuses on maximising the
efficiency of such methods. Another widely adopted methodology is MSER (Max-
imally Stable Extremal Regions) heavily used in video segmentation. However
when applied to the range data both approaches failed to yield suitable levels of
object recall. In particular MSER proved temperamental and frequently omitted
smaller building masses. The Difference of Elevation Models (DoEM) is an infor-
mal approach to extracting objects in urban range data based on the removal of
the ground and clustering of remaining disjoint homogeneous collections of points.
Though no single work claims credit for its definition, the principal is evident in the
work of Lin et al. [75] (as an component of their method of semantically decompos-
ing residential LiDAR scans) and Carlberg et al. [12] (in their method of segment-
ing and reconstructing complete surface descriptors from aerial and ground based
range data). The key requirement of the DoEM paradigm is a corresponding terrain
model for the surface model being segmented. Acquiring terrain models (via ap-
proximation or surveying) has a well established history within the photogrammetry
and remote sensing communities and the work of Kraus et al. [62] provides mod-
ern advanced methods of automatic terrain model generation from digital surface
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models. However be aware that - because terrain models are generally approxi-
mated from surface models - they are subject to higher error-bounds. Essentially
the scope for error is typically larger in a terrain model than an surface model.

Change Detection

Recall that determining regions of conflict between similar (but distinct) geometric
data sets pervades a number of modelling and analytic problems. For example,
variance detection is a fundamental requirement for higher level problems such
as the generation of varying levels of detail within Computer Graphics and calcu-
lating the approximation error within Computer Vision - where measures such as
the Hausdorff distance (a measure of the maximum point-to-edge/face distance
between two geometries) may be used to compare template data to real data. At
a high level the key attributes are the topology and modality of the input operands,
the distance-metric employed and the grain-of-comparison. To illustrate this - one
can consider the work of:

• Memoli et al. [88] as a point-to-point (mono-modal) isometry invariant object-
level operator for comparing and analysing the differences between point-
clouds representing manifolds.

• Chang et al. [13] as a plane-to-plane (mono-modal) deformable object-
level operator for comparing the differences between topologically equiva-
lent meshes in different poses recovered from laser scans. Their approach
registers the surface geometry based on volumetric analysis.

• Girardeau-Montaut et al. [45] as a point-to-point (mono-modal) rigid body
operator for low-level computationally efficient point variancing - specifically
designed to operate on unstructured-ground-laser-scans.

• the proposed Semantic-Change-Detector as a point-to-plane (multi-modal)
rigid-body object-level operator for comparing and classifying the differences
between polygonal-meshes and discretised displacement-fields.

The positive thing about the problem of differencing is that is has a well-established
history (for images, point-sets and polyhedra-mesh), from which to draw inspira-
tion. Jones et al. [55] also provide a comprehensive survey of the dominant meth-
ods of processing point-sets as distance-fields. Fundamentally variancing (equiv-
alent to differencing) is a well-defined problem (the aim is clear). The difficultly lies
in the open-nature of the classification that follows this lower-level process (which
is discussed in the next section).

Classifying Aerial Datasets

There are two key types of classification that are used during semantic change
detection. Firstly the classification of the type of a cluster of points. Secondly
the classification of the type of variance present between two distinct clusters of
points. I refer to them as type classification and variance classification respectively.
In type classification the goal is to distinguish salient objects from clutter objects.
Here that means identifying architectural objects and omitting organic and all other
non-salient objects. In the case of variance classification the requirement is to
identify and localise instances of pair-wise variance using a finite set of high-level
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classes of change. Type-classification methods are reasonably well established
and with the exception of considerations for input-data-type and sensing-noise,
rely on calculating characteristic properties of an object-representation including:

• Disparity, Regularity is a measure of how disparate a point is relative to
its neighbours or how regular a point is relative to its neighbours. In [166]
this means considering f1 = ‖p − p̄‖ to measure the distance between a
point and the centroid of its neighbours. Regularity terms typically results in
values close to zero for points on architectural surfaces. In [73] they consider
instead a scatter term (fs), defined as a local measure of height dispersion
amongst neighbouring points.

• Planarity is a measure of the extent to which a point belongs to a planar (flat)
surface. In [71, 73] this corresponds to a local-non-planarity term fp which
is derived from the quadratic distance to the optimal plane formed by a point
and its neighbours. However in approaches such as [166, 164], they refer to
it as a flatness term (or surface-variation)

f3 =
λ0

λ0 + λ1 + λ2

and calculate it via covariance analysis - where λi is the ith eigenvalue of
a point neighbourhood’s covariance matrix (sorted in ascending order) such
that λ0 ≤ λ1 ≤ λ2. In both cases the smaller the response the greater the
likelihood that the point represents a planar roof point.

• Stability is a ratio of the balance of disparity to regularity for a cluster of
points. The return value is often a scalar in the interval [0:1].

• Elevation is a measure of a point’s height above the ground terrain. Given
the physical nature or urban environments, it is common for classifiers to
consider how far a point is from the terrain and consider greater elevations
as indicators of buildings. In the case of [72] this maps to their elevation-
term fe which uses a planimetric projected normalisation to estimate a points
distance to the ground.

• Curvature measures seek to indicate whether a point belongs to a continu-
ously varying curved surface. There are a handful of well-known curvature
measures (some intrinsic - independent of embedding, others extrinsic - de-
pending on embedding). For example the general Riemann curvature tensor
[127] characterises curvature in n-dimensional spaces. In the case of sur-
faces in R3 the Gaussian curvature is also applicable [127]. For point-sets
another strategy ([107],[88]) is to consider the rate-of change of a point neigh-
bourhood’s unit-normals on a Gaussian sphere. Although (as in our case) the
return value is often a scalar, some measures return curvature vectors [127].

• Directionality is a measure based on the principal-axis or the normals of a
set of points. In particular for aerial lidar the expectation is for points that
correspond to roof surfaces to feature ’upward’ pointing normals. In [167]
they define this as a ’horizontality term’ stated as:

f2 = 1− |np · ez|

where ez = (0, 0, 1) is the vertical direction and np is the point’s normal (which
they obtain via covariance analysis). They use the convention that the z-axes
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maps to the vertical up-direction. To derive point normals - their equation for
solving the eigenvector problem is: [167]

Cp =
1

|Np|

∑

q∈Np

(q − p̄)(q − p̄)T

The notion of directionality can also be used to filter points corresponding
to walls for example if f(n) = nz − |n

2
x + n2

y| yields a measure of the an-
gle between the points normal and the ground-terrain. Then the expression
f(n) < 0 can be used to classify wall points by determining points on sur-
faces with greater vertical variance than horizontal.

• Smoothness a measure of the smoothness of a locale of points - consider-
ing the scope of perturbations in higher-order derivatives. Both planar and
curved points respond to this discriminant feature. For example in [107] a
smoothness term defined as ‖np · ns‖ > cos(θth) is not only used to classify
point-types but also supports the subsequent segmentation. It computes the
variance between neighbouring points ns and np, as the magnitude of their
dot-product, thresholding the result with a user-supplied maximum variant
angle θth.

• Extents are measures of the span of the cluster of points under considera-
tion (an axis-aligned bounding box - AABB or minimal-volume bounding box
- Hough-transform). Extents apply to a set of points and are typically used
to filter points by local neighbourhood or at the level of segmented objects.
For architectural classification the intuitive logic is that greater volume corre-
sponds to rigid man-made structures.

• Variance, Spread, Distribution are statistical measures of the scope of
the ’scatter’ present in a cluster of points using implicit geometric proper-
ties (elevation) or derived attributes such as surface normals. In particular
a normal-distribution term plays a key role in classifying vegetation points
in [162] [167]. They consider the solution to the eigenvector problem with
a larger neighbourhood support radius in constructing a normal covariance
matrix: Nn

p = q|q ∈ P, ‖p− q‖ < η :

Cn
p =

1

|Nη
p |

∑

q∈Nη
p

nT
q · nq

where eigenvalues λη
0 ≤ λη

1 ≤ λη
2 have corresponding eigenvectors vη0 , v

η
1 , v

η
2 .

As Garland[43] and Pauly[102] pointed out, one can consider λn
1 as a mea-

sure of normal variation - predicated on the fact it measures the maximum
variation of normals about the Gaussian sphere. Hence the use of the feature
f4 = λn

1 in Zhou’s 5-dimensional linear-classifier. Covariance analysis in-
particular lends itself to other domain-specific feature detectors and another
that Zhou exploits is the notion that a regular band on the Gaussian sphere
corresponds to sharp features at the intersections of planar roof-patches.
This heuristic feature enables their classification of roof-edge points (analo-
gous to edge-detection).

• Density is a measure based on the scope and spacing of each point’s neigh-
bourhood. As an example in the point-cloud library [115], the density of a
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point (coupled with other statistical measures) is exploited to identify and
remove outliers from unstructured range-scans.

In terms of variance-classification in airborne scan datasets - (to the author’s
knowledge) there is not a direct analog to the classification of types of change
represented by a cluster of deviant points in the pre-existing literature. As such
this aspect of the semantic change detector constitutes a novel extension to con-
ventional change-detection strategies in this domain.

In the course of presenting the approach the chapter refers back to the discrimi-
native attributes and classification approaches in order to define the type-classifier
and variance-classifier used to characterise the temporal changes between the in-
put (out-dated) CAD model and (up-to-date) LiDAR scan.

The thing to remain aware of is that in the case of variance-detection binary-
classification yields little semantic information. For example a binary change de-
tector might have class labels : equivalent, non-equivalent - which although accu-
rate (to some extent) fail to express the nature of the variance present between the
input geometries. Basically although the formulation of type-classifiers is reason-
ably intuitive (determine the class of a single object), for variance classifiers (that
determine the relationships between pairs of objects) it is critical that the return
bear meaning within the domain.

This section briefly revised the relevant research in segmentation, change-detection
and the classification of aerial point-sets. The discussion now progresses to the
details of the approach taken to enable semantic change detection.
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2.3 Methodology

The approach taken is designed to robustly classify multiple-modes of actionable
temporal urban variation between CAD models and LiDAR scans.

Figure 2.5: the chain of processes in semantic change detection

Figure 2.5 provides a visual indication of the four key stages which involve:

1. Registering the out-dated CAD model to the newly acquired laser scan.

2. Segmenting the CAD model and laser-scan to identify salient objects.

3. Classifying the type of each segmented object and the class of variance
present between its corresponding match in the alternate dataset.

4. Visualising and documenting the results of classification such that a human-
operator can act upon them and an automatic algorithm can selectively re-
construct only a subset of an up-to-date laser scan.

This portion of the chapter discusses each of the stages, detailing for each, the
considerations and algorithmic steps undertaken. It begins with a complete overview
of the change-detector, which is succeeded by the discussions of the registration,
segmentation, classification and visualisation stages.

2.3.1 Outline

This section provides a brief outline of the body of the approach. It outlines the
input and output data and provides high-level pseudo-code to clarify the change-
detector’s behaviour. For reference, figure 2.6 illustrates the semantic classes of
(actionable) architectural variance that shall be introduced.

Inputs-Outputs

The semantic-change-detector takes as input: a DSM .asc file - a recent Digital-
Surface-Model scan of the region, a DTM .asc file of the corresponding Digital-
Terrain-Model, and a CAD file containing an out-dated representation of the re-
gion. It uses the following control-parameters (supplied as input arguments, by
an end-user): a scalar value representing the minimum building height in meters,
a scalar value for the minimum footprint surface-area in meters squared, a vector
of unit-less scalar weights to control vegetation filtering, a scalar - the maximum
mean point-to-plane variance distance between equivalent objects in the DSM and
CAD inputs in meters, a scalar - the maximum normalised deviance ratio (zero to
one), and a scalar - the normalised noise contribution tolerance (zero to one). It
computes and returns the following outputs: a text-file containing the properties
of buildings identified in the out-of-date CAD model - a sequential set of comma-
separated values, a text-file containing the properties of buildings identified in the
up-to-date LiDAR scan - a sequential set of comma-separated values, a text-file
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containing identifiers for each pair-wise match (as integer tuples) and correspond-
ing variance classifications labels, a colour-coded 2D vector map of the variation
between the two registered inputs - with an optional rasterised variance image,
and a colour-coded 3D mesh of the variation between the two registered inputs.
Figure 2.6 illustrates the classes of variance.

Figure 2.6: the set of variance classes recognised by the semantic change detector - red

elements represent the out-dated model, whilst blue elements represent the

newly-acquired model.

Each class corresponds to a distinct type of variation that the change detector
should be capable of identifying. The first two (construct and remove) represent
singletons (pairs of objects for which one of the pair is null), whilst the remaining
four (position, extend, reduce and replace) require the out-dated object (red) be
manipulated to match the up-to-date object (blue).

Although figure 2.6 illustrates both the old and new geometries using wireline ren-
dered models, in practice the newly-acquired geometry is actually represented as
a point-cloud, and a continuous representation must be derived from a set of sam-
pled positions. The figure aims more to clarify the nature of each class of variance
in a manner that is intuitive to understand.
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Pseudo-Code

Figure 2.7 provides a clearer outline of the procedural steps employed to char-
acterise the temporal changes between the out-of-date CAD model and the up-
to-date laser scan. Each line represents an operation on the input data and they
are grouped by the processing stage they belong to. Note the duality of the dif-
ferencing, thresholding and connected-component operations that exists between
the CAD and LiDAR during segmentation.

Figure 2.7: high-level pseudo-code of the semantic change detector

The pseudo-code aims to be abstract enough to work effectively on both structured
and unstructured aerial laser scans. Although predominantly structured DEMs are
used in the experiments, one should be aware that the same fundamental steps
can also be applied to other classes of dataset. By omitting references to types,
the pseudo-code provides a generic recipe for semantic change detection between
multi-modal architectural assets.

Finally, before progressing to the body of the approach - the following figures depict
the input data (the outdated CAD and newly-acquired laser-scan) that are used by
the change-detector defined in this chapter.
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Figure 2.8: CAD model (top), discrete CAD (mid) and 1m DSM (base)
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2.3.2 Registration

As discussed in part-I, there are a number of competing strategies, most notably
for rigid geometries, ICP and Sliding-Window derivatives (with the latter being used
heavily within image-processing [134]). In this case the aim is to align the out-dated
CAD model to the newly-acquired laser scan. In order to achieve this one could
perform multi-modal alignment by iteratively reducing the point-to-plane distance
between the polygonal-faces of the CAD model and the scan points. However this
form of registration relies upon the Euclidean distance metric - which is the most
computationally expensive due to the square-roots involved. To limit this a sliding-
window approach is proposed, which is akin to the techniques used in video track-
ing. The first step discretises the CAD model at the same resolution as the LiDAR
points. Based on the parallax assumption (i.e. a 2.5D displacement field) [162],
the method uses the Chebyshev distance metric since the expectation is that the
deviation between corresponding points will occur along the y-axes (the vertical-
difference). This resolves to the difference of the two range images (LiDAR and
CAD) which can be computed in linear-time. The benefit of this is that it reduces
the topology of the CAD to an equivalent representation as the LiDAR and one
can also exploit the discretisation to support segmentation. The limitation of this
approach is that the registration occurs over discrete data which introduces loss
of information (which must be addressed). To combat this a sub-pixel registration
refinement technique is employed, in order to limit the registration error to within
a fraction of the discretising cell-size. The sub-pixel refinement routine is simply
the same class of sliding-window error-minimising routine, but refactored to handle
fractional offsets. In this manner the method first identifies an approximate register-
ing transform and then refines the transform to achieve sub-pixel accuracy. Finally
the registration method re-discretises the CAD model using the refactored trans-
formation. The result of this process is a global rigid-body transformation which
aligns the two input representations (CAD to LiDAR). Having outlined the method
of registering the input geometries, the next topics detail the explicit stages and
considerations. There are a handful of observations exploited to enable the sliding
window routine to function as intended. They are stated below for reference.

• North Coherency of geographic and engineering representations. The north
direction should be consistent between the CAD and the LiDAR - this en-
ables the operator to omit the estimation of rotation during the process of
registration. This principle was observed in the Bath dataset (CAD model
and range-scans). Although there is no theoretical basis for it - generally
speaking one can expect this to hold true - since the nature of the archi-
tectural and engineering domains typically requires that geometric assets of
physical-sites can be geographically referenced, for which the convention is
to have the north point upwards (+Y/+Z).

• Scale Equivalence of the discretised CAD relative to the input aerial LiDAR.
The method exploits a uniform sample-step in order to negate the need to
recover scale during registration. This is a product of the fact that both rep-
resentations characterise the same physical region, simply in different medi-
ums. Since physical-scale is a critical attribute of the both actively-sampled
scans and manually-constructed models, the method expects 1 unit in the
CAD to mirror 1 unit in the LiDAR. Again this principle was drawn from obser-
vation of the Bath dataset. Unlike north-coherency, this requirement is more
likely to not be upheld by input data. In instances of geometric represen-

Page 63 of 301



CHAPTER 2. CHANGE DETECTION→ 2.3. METHODOLOGY

tations of the same object at different spatial scales, a registration function
must also recover the scale component of the aligning transform. However in
this instance, the principle holds and enables what is effectively a one-to-one
mapping between points in the input laser scan and the discretised version
of the CAD. In principle this principle need not hold true. All that is really
required is that the algorithms be aware of the scale of both CAD and LiDAR
- i.e. the mapping between world space and model space is known. This is
because - by discretising the CAD model one can control the cell-spacing of
the gridded CAD representation to ensure it matches the LiDAR.

• Partial Correspondence between the two input representations. The func-
tion expects that both LiDAR and CAD should represent the same physical
region. This is critical - since without the existence of an equivalent region
between the inputs the error-minimising transform returned by the sliding
window routine will have little meaning relative to the human notion of align-
ment. In essence, part of the out-dated CAD and up-to-date LiDAR should
be the roughly the same (subject to tolerance for noise). The size and loca-
tion of the search window used during registration controls this - enabling the
specification of a congruent-region. The key expectation of this constraint
is that the scope of the registration error is small relative to the size of the
input scans. Without this assumption there is no guarantee that the error-
minimising transform will actually represent a coherent alignment.

These factors act as pre-conditions to the registration stage, and help ensure the
correct execution of the alignment routine. One could exclude one or more of these
constraints at the expense of having to use a more generic registration method,
however due to the nature of the input data (used in this particular work) it seemed
reasonable to take advantage of them to simplify the process as much as possible.
The early-experiments with this approach determined that the only critical factor
(that may affect the quality of the registration) is the level of sensing-noise present
in the range-scan. However as long as the bounds of the stable window are large
enough to enclose a set of (more than one) buildings, then the problem is largely
mitigated since the larger the coverage the less likely a conflicting region (incorrect
error-minimiser) will arise. The rest of this subsection provides a formal definition
of the registration process in terms of its defining characteristics (the similarity
measure, the transformation model and the optimisation method).

Formally the method seeks to find the transformation T that minimises the sum
of the error squared between samples in the moving transformed object (CAD) -
relative to the static reference object (LiDAR).

error(m, r, T ) =

N
∑

i=0

distance(T ×mi, r(T ×mi))
2 (2.1)

where m is a reference to a set of sample points from the moving object and r is
a function that returns the distance to the closest position on the reference object
(given an input position). distance(a,b) calculates the magnitude of the difference
between input vertex positions a and b. The expression T × mi transforms the
vertex mi by matrix T , and could be equivalently expressed as T (mi). The trans-
formation model is a rigid body translation - which is based on the aforementioned
observations about the nature of the input data. The similarity measure used is
the sum of the squared differences between the two dense matrices of surface
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positions - which is stated as:

SSD(P,Q) =

N
∑

i=0

(|~pi − ~qi|)
2 (2.2)

where: P and Q are the input geometries to compare (equivalent scale scalar
elevation matrices), N is the cardinality of the input sets (the number of points), ~pi
and ~qi are the ith elements of P and Q respectively.

The optimisation strategy is an exhaustive sliding window. At each optimisation
step the SSD similarity measure is applied to a subset of the CAD and LiDAR to
determine the suitability of the transformations T[1−N ]. The disparity minimising
window that optimally aligns the discrete sets is:

argmin(SSD(T1 × P,Q), . . . , SSD(TN × P,Q)) (2.3)

where: P is the point-set of the up-to-date laser-scan, Q is the quantized CAD
model (a discretised elevation model), and the function argmin() (argument mini-
mum) returns the identifier of the transform with the least SSD error.

One particular point to note is the use of a squared error term in the similarity
measure. One could conceive using simply the sum of absolute errors however
the benefit of the squared error is the implicit penalisation to highly deviant vertex-
positions. For example a single point with a variance of three units would contribute
3/n to the error term using the absolute sum and 9/n with the square distance. Fur-
ther a point with variance result 0.5 units contributes 0.5/n to the error term using
the absolute sum and 0.25/n with the squared distance. Essentially you can see
the squared error term weights points with deviance distances less than one unit
with less error and points with deviance greater than one unit with exponentially
greater error. This observation can be used to normalise the scale of the inputs so
as to further control the similarity measure. Although this is an interesting topic,
it is somewhat tangential to our primary aims, so we conclude our discussion of
registration here and move on to the task of identifying and isolating salient objects
in the our newly-aligned CAD and LiDAR datasets.

To wrap up registration and to help clarify (before progressing to the discussion
of segmentation) figure 2.9 illustrates the resulting aligning registration for the in-
put CAD and LiDAR that composes the city of Bath dataset. The vital thing to
remember is that registration using a sliding window (unlike ICP) is a deterministic
(repeatable) process.

This determinism is key. Since all the subsequent processes are based on the ini-
tial alignment, ensuring that the operator can faithfully repeat the error minimising
transformation, removes the potential for variability in performance that would be
introduced at this early stage if a stochastic registration technique was used.
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Figure 2.9: registration of the discretised CAD and LiDAR DSM - CAD indicated by pale

red and the DSM by pale blue - the top row illustrates the registered datasets separately

With registration complete, the next section discusses the independent segmenta-
tion of the registered range-images.

2.3.3 Segmentation

The goal of segmentation is to divide something into its constituent parts [145].
Here the desired result is the extraction of individual building objects (descriptors
of salient regions) from the registered CAD and LiDAR datasets.
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Figure 2.10: the chain of processes applied to segment the input datasets

The semantic change detector segments buildings from a digital surface and ter-
rain model using a 4-stage process. Abstractly (at a high-level) it:

1. Slices the surface model data into two sections (one containing salient clus-
ters of points and the other containing terrain and clutter) - using the difference-
of-elevation models principle (which is discussed next) and thresholding the
result using a minimum-building height

2. Dices the stable set of clusters into individual building object descriptors
by extracting connected components, after thresholding the difference-of-
elevation models with a minimum building height

3. Analyses the isolated (segmented) building object descriptors, and for each
computes characterising geometric properties (such as surface-normals, sta-
bility, disparity and variance) in a deterministic fashion

4. Filters the analysed building object descriptors - in order to remove any re-
maining organic, clutter and ambiguous objects - using an empirically con-
structed linear classifier - returning the remaining subset

Now that you have a high-level overview of the approach taken this section shall
discuss each stage in the segmentation process in more detail.

Slice→ Difference of Elevation Models

The approach discussed is based upon the difference of elevation models principle
[12], [75]. Essentially the ground terrain acts as a coherent global reference be-
tween the datasets. Removing the terrain model from the surface model yields the
difference of the elevation models. It is predicated on the assumption that the al-
though architectural objects and organic elements change frequently, the evolution
of the terrain occurs at a slower rate.

Figure 2.11: the Difference of Elevation Models

The method is conceptually simply and represents the slicing stage of the seg-
mentation. Formally we can express it using the following expression:

DoEM = DSM −DTM (2.4)
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where DoEM , DSM and DTM are two dimensional scalar matrices of equivalent
size - such that for each element DoEMi = DSMi −DTMi.
An important consideration for the semantic-change-detector is the equivalence of
the terrain model between the CAD and LiDAR inputs. The expectation is that the
terrain acts as a constant that can be used for reference. As a result it is important
that the CAD dataset models the variation in height due to terrain. However if the
input CAD uses a uniform terrain model then the differencing should be skipped
for the discretised CAD and registration should be performed with the DoEM as
opposed to the DSM. For the datasets analysed in later sections, the difference
of elevations is applied to the CAD and DSM models independently such that the
result is two new elevation models. The final part of the slice operation is to thresh-
old the result. For this simply exclude the points from each DoEM with elevation
less than the minimum building height. This has the effect of removing many of the
vehicles, small-trees and pieces of street-furniture that may be present as well as
cleanly delineating connected components.

Another important consideration is the automatic derivation of digital terrain mod-
els (DTMs). Unlike the digital surface-models (DSMs) which are directly scanned
samples of the physical surface, terrain models are generally derived from approxi-
mating the ground using a surface model and then physically surveying a selection
of locations to confirm correctness. Essentially the algorithm anticipates the fact
that the DTM (supplied as input) may be subject to greater geometric error than
the DSM. Essentially DTMs are back-calculated from DSMs (generally by the scan
provider) and as such there are no special hardware facilities exploited in acquir-
ing them. Anybody with access to a DSM can also implement an equivalent DTM
approximation method based solely on the DSM. This is key to ensuring that even
in the case of a missing terrain model the operator is still be utilised.

The minimum-building height threshold aims to manage the error present in the
DTM and essentially ensures that even in the presence of terrain estimation er-
rors the operator can still identify salient objects. In the experiments discussed
the minimum building height was set to 3.75 meters. Although this value can be
altered, generally speaking it is best to use the minimum (smallest possible) height
threshold (that omits the bulk of low-lying clutter objects), since a threshold that
is too high will run the risk of failing to detect smaller one-storey buildings such
as bungalows. Additionally since different minimum-building height thresholds will
yield different slicing results, this value can be used to alter the behaviour of the
segmentation stage. The useful aspect of this approach is that the threshold value
is an intuitive physical measure (as opposed to a unit-less scalar). As such any
sensible value will yield robust slicing results. As a guiding rule of thumb - values
ranging from 1m to 10m provide a good starting point, from which you can refine
the value to alter object recall and to better suit your particular dataset.

Dice→ Connected Component Extraction

The next stage is to dice up each DoEM into sets of distinct buildings - each repre-
sented by a cluster of contiguous points. This stage is analogous to blob extraction
in image processing and as such is treated in a similar manner. Figure 2.12 illus-
trates the logic employed to extract disjoint connected regions from the difference
of elevation model masks constructed previously.
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Figure 2.12: scanline connected-component routine illustrated

As connected-component extraction has a well established research history [134]
full details of the routine are omitted. Rather the key aspects of the function are
discussed. Formally the function takes as input a regularly spaced cartesian grid
of boolean states and results in a integer label grid of equivalent size, such that
each element in the result represents the identifier of the group that the element
belongs to. It uses the convention that group zero corresponds to background and
all other groups (with identifiers greater than or equal to one) represent the distinct
components in the input binary mask. There are three common strategies typically
used to achieve the result. These are seeded-flood-filling, scan-line-conversion
and graph-traversal. For all, the labelling result should be consistent, however
each approach bears difference computational performance characteristics. The
approach taken by this work is scan line conversion, since it is significantly more
efficient than flood-filling, whilst using less memory than graph traversal. The key
steps in the scan-line connected-component routine are:

• Label Scan Rows - by trivially iterating over grid rows

• Label Spans in Scan Rows - based on linear disjointness

• Connect Adjacent Spans - (from top down) based on linear overlap

The method is conceptually simple and positively handles arbitrary shapes based
solely on connectivity. The reason it works well for aerial laser scans of urban re-
gions, is that the expectation is for buildings to be disjoint.

Readers familiar with the Mathematical environment MatLab should already be
aware of the bwlabel() and bwconncomp() functions which provide results analo-
gous to the outcome of the function described above. One slight difference be-
tween this implementation is that by default this employs 4-way connectivity logic
in 2D as opposed 8-way logic. This alteration seeks to prevent diagonal weak-
connections that may appear between distinct buildings (which are sampled at
low resolutions) being propagated through to the subsequent processing stages.
Although this is generally not necessary at point-spacings greater than 4ppm it
proved helpful in limiting over-clustering (or under-segmentation) at 1ppm spac-
ings and below.

Finally (having labelled each difference of elevation models threshold mask) the
operator extracts groups of points by simply iterating over the grids and collating
individual elements based on whether they share the same group identifier. This
results in two sets of sets of points. Each set of points (in each set of sets) corre-
sponds to the grid-locations of a connected component.

Having diced up the difference of elevation grids into sets of distinct connected
components, the next processing stage is the analysis of each component - to
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determine salient object properties. The next section discusses the discriminative
attributes that are computed for each segmented object.

Analyse→ Implicit and Derived Properties

This stage corresponds to the analysis portion of the segment approach.

Recall from the related work the attributes used to describe segmented objects
by Lafarge et al. [73] and Zhou et al.[162] In a similar manner a set of implicit
and derived properties are used to support the automatic categorisation of each
connected cluster of segmented points (as salient or clutter).

The implicit properties of a segmented object include the extents of the object
(a 2D bounding-box and 3D bounding-cuboid) the surface-area of its footprint, the
volume of its mass and centroidal points. By considering the relationships between
neighbouring points, a number of additional attributes are derived, that describe
both characteristics of individual points and an object as a whole. These are an
object’s disparity, planarity and stability.

The disparity of an object is defined abstractly as a cumulative measure of the
extent to which neighbouring sample positions on the segmented object’s surface
deviate from one another and formally is computed by:

disparity(vert) =
1

N

N
∑

i=1

(∥

∥

∥

∥

∥

8
∑

n=1

(verti − neighbourn)

∥

∥

∥

∥

∥

)

(2.5)

where: vert is the set of clustered points, N is the total number of points in the
cluster and neighbours refers to each point’s neighbourhood. The return is a pos-
itive, unit-less scalar. Note that an object’s derived disparity measure should not
be confused with the measure of disparity between two geometric objects or point-
sets that is used during registration.

The key insight in this approach is the fact that the method exploits the regularly
spaced cartesian grid representation to compute 8 neighbouring ’cells’ for each
point in constant-time. Unlike the operator’s predecessors the calculation of each
range-point’s neighbourhood relies upon image-based ’pixel-connectivity’. This
means there are only really two direct options: 4-way or 8-way neighbourhoods.
Alternatively a ’pixel-window’ could be used to extract larger point-neighbourhoods,
however larger neighbourhoods also have the effect of ’smoothing’ implicit proper-
ties across point locales.

The planarity measure determines if a neighbourhood of points represent a set
of planar faces by considering the variance between the mean unit normal and
the K-combination set of unit normals formed for each vertex and its neighbours.
Samples that are locally planar return values close to zero.

planarity(vert) =
1

N

N
∑

i=1







(93)
∑

n=1

DNormal(µ∆,∆n)






(2.6)

This measure was loosely inspired by the difference-of-normals operator but rather
than considering a points response with different support radii, it considers the
magnitude of the variance of the space of all potential normals formed from se-
lecting 3 points at a time from each points neighbour set. In the above expression
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the combinatorial binomial expansion
(

9
3

)

implies that for each set of 9 points in
a point’s neighbourhood (8-neighbours and the point itself) the set of all unique
combinations of three points are evaluated.

The stability measure denotes the ratio of stable sample positions to unstable sam-
ple positions on a segmented object’s surface by thresholding the sum of local
absolute height deviations for each point’s neighbourhood.

stability(vert, ǫ) =
1

N

N
∑

i=1
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8
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(verti − neighn)

8
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≤ ǫ



 (2.7)

Unlike the previous two attributes (which return scalars) the stability measure rep-
resents a binary response - denoting stable or non-stable. The binary response
aims to address the requirement for tractability in the result.

You’ll notice the similarity of the attribute names used across this work and its pre-
decessors. Effectively it is attempting to characterise the same features of clusters
of points, but in a manner better suited to structured range images. Notice though
the omission of attributes that consider the density of a point since the discretisa-
tion step regularises the inputs to a grid with uniform density. Having computed
these descriptive attributes, they can be used to automatically isolate clusters of
segmented points that do not correspond to buildings, discussed next.

Filter→ Filtering Non-Building Objects

Before progressing to the variance classification stage, it is useful to remove seg-
mented objects that do not correspond to buildings in order to ensure that clut-
ter elements such as vegetation, vehicles and street-furniture do not impact the
subsequent analysis. The aim of filtering non-building objects is to ensure as
much as possible that only coherent building masses are analysed and that er-
roneous responses are not triggered by organic and dynamic objects. Without this
post-segmentation filtering-stage large clusters of trees would need to be manu-
ally omitted from an updated model after reconstruction. The critical thing to be
aware of is that this form of classification isn’t really open to a closed form analytic
solution. The problem is that even at high resolutions, artefacts such as vegetation-
overlapping-buildings and discontinuities due to sensing noise can cause clusters
of points (assertable as architecture to a human) to be treated as vegetation and
vice-versa. In this sense computer aren’t as effective as human beings at this type
of qualitative differentiation - and as such tree-detection algorithms by and large
rely on heuristics supplied directly or through training as opposed to concrete ab-
stract predicates. Hence the use of an empirically constructed linear-classifier to
distinguish organic objects from architectural objects:

f(A,man, ~w) =
(w1AD + w2AP )× (1−AS)

w3AA + w4AV
< 1 (2.8)

where: AD is the object’s disparity, AP is the object’s planarity, AS is the object’s
stability, and AA and AV refer to the object’s footprint area and volume respectively.
The influence of each component is controlled by the weights w1−4 of the vector ~w.
Intuitively this means the greater the mass of an object the greater the likelihood
it is manmade, whilst ensuring that as disparity increases and non-planarity dom-
inates, the likelihood of an organic element rises. Inverting the stability measure
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ensures that complex manmade objects that are curved or appear non-planar, yet
exhibit overwhelming continuity, are not mistakenly treated as organic.

For the experiments discussed later on, suitable weights were derived by a pro-
cess of iterative refinement. Note though that for resolutions of less than 1ppm
such as 2m resolution DEMs the disparity weighting had to be factored to mitigate
the increased proportion of noise. Positively though this method is largely indepen-
dent of resolution. Since it exploits the scale of the models to compute integrals,
the weights associated with the surface-areas help ensure analytic equivalence.
For example one can increase the weights associated with the surface area and
volume to force smaller objects to be treated as buildings safe in the knowledge
that the alteration will yield the same classifier behaviour consistently as the res-
olution of the datasets increases and decreases. The negative side of the linear
filter is it assumes a clear division between the organic and architectural class. As
already discussed this may not alway be true. It also assumes uniformly distributed
sampling noise - which also may not always be valid for some building instances.
To address this, one must identify object’s that are ambiguous (based on the ob-
ject’s properties and distance to the separating hyper-plane that distinguishes the
two classes) and treat such cases as requiring human validation. This is like an
epsilon check when computing whether a point lies on a plane. In essence this
considers clusters of points that possess the both organic and architectural quali-
ties as requiring manual consideration.

This section discussed the process of isolating individual building objects in the
CAD and LiDAR, and you should have good idea of the key steps in pretty much
any segmentation algorithm (slice, dice, analyse, filter). However we still lack
knowledge of how the two datasets interrelate. The next stage is to analyse the
building point-clusters to gleam this information.

Before progressing to classification of pairs of objects the final portion of this sub-
section seeks to clarify the key concepts and the inputs and outputs of the segmen-
tation process visually. Figures 2.14 and 2.15 illustrate the outcome of applying the
steps outlined to the city of Bath dataset.
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Figure 2.14: The difference of elevation models segmentation (for a subset of the LiDAR

scan) - from top left to base right: surface heights, terrain heights, threshold difference of

elevation (≥3.5m), labelled connected components filtered by area (≥40m2) and finally the

normalised object point clusters.

Figure 2.15: Aerial-view of the ground-truth result (left) versus the classifier result (right)

post manmade-organic classification for a subset of the LiDAR. Man-made elements are

blue whilst organic elements are green.
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In summary, segmentation involves slicing each dataset into two distinct sets us-
ing the difference of elevation models, then dicing each salient set into individual
connected components using a scan-line conversion routine, then analysing each
remaining object to determine characteristic attributes and finally filtering vegeta-
tion and clutter objects using a linear classifier.

2.3.4 Classification

The result of segmentation is two sets of salient object clusters, one set derived
from the out-dated CAD and the other from the newly-acquired LiDAR. Each object
in each set caries implicit and derived properties computed post-instantiation. The
next stage is to determine what needs to happen to bring each out-dated object
into correspondence with its overlapping up-to-date object. So for every object in
set A, one must first determine which object in B it interacts with and then cat-
egorise the type of variance between the two objects (in A and B). In order to
achieve the first the requirement is a method of determining if two objects interact.
For the second an ontology of the classes of variation of concern is needed.

The structure of the classification portion of this chapter is outlined as follows. First
pairwise analysis is discussed, as a means to address the first requirement. Sec-
ondly variance-classification is considered as a means to categorise each instance
of building-to-building variation present in the out-dated CAD model and up-to-date
laser scan. During pairwise analysis the key objective is to efficiently match over-
lapping buildings and further to abstractly quantify the nature and scope of the
interaction between them. In variance classification the aim is to label each pair-
wise match as corresponding to one of a finite set of potential types-of-variance.

For reference the types of variance are briefly described in the following enumera-
tion. Additionally figure 2.16 illustrates 2D examples from the city of Bath dataset
(at 1ppm) to clarify the appearance associated with each.

• Congruent - occurs whenever the variance between a building in the out-
dated CAD and the newly-acquired LiDAR is negligible.

• Construct - operations correct instances of newly-erected buildings.

• Remove - operations correct instances of demolished buildings.

• Position - operations are needed to correct instances of building pairs that
are geometrically equivalent but mis-aligned or out of position.

• Extend - operations are required to correct instances where a building rep-
resentation has been extended - for example with a conservatory.

• Reduce - operations are equivalently required to correct instances where
only a portion (or subset) of a building has been demolished.

• Replace - operations correct instances of highly varied buildings that cannot
be effectively corrected with an alternative single operation.

Later discussions formalise these types, however it is important (useful) to be
aware of them when considering the predicates exploited during pairwise-analysis
- since it better contextualises the practical use of each predicate.
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Figure 2.16: examples of each class of geometric variation (for corresponding subsets of

the CAD model and the LiDAR scan) - CAD in red, LiDAR in blue and regions resulting from

pairwise object intersections overlaid in green

Before detailing how each type of variance is detected the next sub-sections covers
pairwise-analysis (which occurs prior to variance-classification).

Pairwise Analysis

An important precursor to execution of the detectors is pairwise analysis of the
object-descriptors segmented from the CAD model and LiDAR points. Pairwise
analysis involves two stages. The first is matching objects between the two mod-
els. The second is the deterministic instantiation of a set of constructive area and
solid geometric regions. These derived geometries help to identify which class of
variance is present for each pairwise match.

In order to match a segmented object in the CAD to its corresponding object in the
LiDAR the operator exploits the notion of overlap. Basically objects are deemed
corresponding matches if their geometries intersect. This applies to both two and
three dimensional geometric representations. Hence the following predicate is
used to test whether two building objects (one from the CAD and one from the
LiDAR) are a pairwise match.

pairMatch(A,B) =

{

true if (
∫

(A ∩B) > 0)

false otherwise
(2.9)

This states that two objects A and B are to be considered pairwise matches if
the integral (the surface area in 2D and the volume in 3D) of their intersection
is greater than zero. This relies on the property of two non-interacting objects in
space yielded null as their intersection. The only potential problem is the case
where an object from either of the datasets, has more than one corresponding
match in the alternate dataset. This can occur when a single building is removed
and replaced by multiple smaller buildings or the inverse (many to one). An exten-
sion of this case is the presence of a many to many relationship between objects
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in either one of the datasets.

Both of these edge cases represent instances of potential ambiguity that result
from multiplicitous matches in either dataset. The issue is that the predicates dis-
cussed subsequently rely on a one-to-one mapping and as such both the one-to-
many and many-to-many cases must be resolved. The operator exploits a simple
strategy to address problems such as this.

Note though, that generally (in practice and in the experiments discussed later)
the many-to-many relationship is rare, whilst the one-to-many (or the many-to-one)
case is more common - as illustrated by the replacement in figure 2.16. However
the resolution of both types of multiplicitous edge-case is handled using the same
function - which implements the following rules:

1. If the number of overlapping matches for an object in the out-dated-CAD is
greater than 1 : → then automatically remove the object in the CAD and
replace it with the overlapping objects in the LiDAR

2. If the number of overlapping matches for an object in the newly-acquired-
LiDAR is greater than 1 : → then automatically replace all the overlapping
objects in the CAD with the single object from the LiDAR

These simple tests, enable the operator to filter out instances of buildings that
would otherwise lead to erroneous classification results, and treat them consis-
tently without the need for user intervention. However they represent the simplest
solution to the problem and as such limit the scope of useful information that can
be derived from corresponding problem case buildings.

With the ability to detect object-to-object interaction in hand, the next task is to
compute derived geometries for each pairwise object match (CAD object and cor-
responding LiDAR object) - so to understand their interaction. This involves con-
sidering the derived set operator geometries in order to calculate a number of
attributes of each match. They are used to characterise the scope and nature of
the variation between the overlapping objects.

The positive and negative mass ratios indicate the distribution of change types
over the non-congruent portions of the matched objects A and B. The result lies in
the range zero to one inclusive, and simply measures the ratio of mass increasing
change to mass decreasing change over the exclusive disjunction of A and B. The
following expressions formalise this:

posMassRatio(A,B) =

∫

(B −A)
∫

(A⊕B)
(2.10)

negMassRatio(A,B) = 1− posMassRatio(A,B) (2.11)

These measures provide a means to quantify how much of the variance between
two objects can be associated with an increase or decrease in mass. For example
a high positive mass ratio (close to one) indicates that the bulk of the variation
between objects A and B is the result of object B adding to the scope of object A.
Inversely a high negative mass ratio (again close to one) between objects A and
B means the majority of the variance between A and B can be attributed to the
subtraction of geometry in B from A.

Further the following measure of deviance to congruence returns a normalised
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scalar denoting what proportion of the union of A and B is outside of their inter-
section. This gives us a measure of congruency to change. The greater the return
value the greater the proportion which is distinct. The lesser the return value the
greater the similarity between the two objects.

devRatio(A,B) =

∫

(A⊕B)
∫

(A ∩B)
(2.12)

Note though that, unlike the previous two measures (whose return value lies in the
range 0 to 1), the deviance ratio can yield positive values greater than one. For
example if the scope (surface-area in 2D and volume in 3D) of the exclusive dis-
junction of objects A and B is greater than the scope of the intersection of objects
A and B then devRatio(A,B) > 1. This is the basis for quantifying the portion of a
pair-match that requires correcting.

Although this test is useful it does not indicate which class of deviation best de-
scribes the variance. It only indicates whether equality or variance dominates. For
this reason the following test is introduced to determine the extent to which the
deviation between the matched objects A and B can be characterised by a sin-
gle type of change (namely as either purely mass increase or mass decrease). It
considers the maximum of their mass ratio derivatives divided by their exclusive
disjunction. For purely monotype changes (solely increase or solely decrease) the
return value is 1, for perfectly balanced (half increase, half decrease) changes the
return value is 0.5. Formally the monotype measure is given by the expression:

monotype(A,B) =
max(

∫

(A−B),
∫

(B −A))
∫

(A⊕B)
(2.13)

This construction yields values in the range [0.5,1.0]. To normalise it to the range
[0,1]: the expression 2(m− 0.5) is applied to the result (m).

This is the key measure that enables the operator to distinguish between exten-
sions, reductions and replacements. At its heart it indicates whether the variation
between two objects can be corrected using one class of manipulation. In other
words, it measures the balance between the addition of geometry and removal of
geometry. If a variance is mono-modal then this implies that the bulk of the vari-
ation is attributable to one of either addition or subtraction. Intuitively this could
also be inverted (1-result) to give a measure of how multi-modal each variance is -
which would denote the requirement for multiple classes of alteration (addition and
subtraction).

To reiterate the key concepts - pairwise-analysis involves matching corresponding
segmented objects between the input CAD and LiDAR (based on whether their
geometries overlap one another) and then constructing set operation geometries
from the successfully paired matches. The derived geometries are used to deter-
mine what needs to happen to correct each out-dated object. However before we
start classifying types of variations it is sensible to identify the congruent buildings
in the input datasets. This requires a test for object equivalency, which is discussed
in the next section.

Object Equivalency Testing

In order to determine if two corresponding pairwise-overlapping object matches
are equivalent (which is an important aspect of differentiating congruent and de-
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viant buildings) the following predicates are evaluated. The first is a normalised
measure of similarity as a product of their overlap - the ratio of the integral of the
intersection over the integral of the union. The second is a maximum average dis-
tance between corresponding sample positions on the two objects. In essence a
continuous measure of geometric fit coupled with a discrete measure of the mean
distance between their extremal boundaries.

equivalent(A,B, t, ǫ)C =

(
∫

((A× t) ∩B)
∫

((A× t) ∪B)

)

≥ ǫ (2.14)

equivalent(A,B, t, d)D = meanerr((A× t), B) < d (2.15)

where A is the old CAD object, B is the new LiDAR object, t is an aligning trans-
form, ǫ is the maximum normalised pairwise error and d is the maximum discrete
deviant distance (the acceptable point-to-plane error).

The continuous equivalency test takes unit-less values for emax in the range zero
to one, whilst the explicit equivalency test accepts any unsigned real value to rep-
resent the magnitude of the dmax distance in meters. For the continuous test, ob-
jects that are in perfect correspondence yield normalised pairwise-error values of
one, whilst deviant objects return values less than one, and non-interacting objects
return zero. In the case of the explicit mean point-to-plane error, the tolerance de-
pends upon the vertical accuracy of the point-set supplied as input. However sen-
sible values typically fall in the range starting from the vertical accuracy distance
through to two-or-three times the point-spacing across the lateral and longitudinal
axes. The closer to zero the discrete limit is the fewer objects will be deemed
equivalent in the presence of noise, the greater the limit the more forgiving the
change detector will be of anomalous scan points and terrain estimation errors.

By combining the continuous and discrete predicate (using a bitwise AND) one
can create a more robust equivalency test equivalent(A,B, t, ǫ, d) which considers
both the interior interaction between objects and their extremal boundaries in or-
der to determine congruency. This is applied to the pairwise matches to identify
instances of buildings that can be included directly from the CAD. However for all
the building-pairs that fail the equivalency test, one must iterate and determine the
class of variation present for each. The next section discusses the classification of
conflicting building pairs.

Detecting Types of Deviance

This sub-section deals with the detection of distinct types of variation. The input is
a pair of overlapping building objects (one from the out-dated CAD, and the other
from the newly-acquired laser-scan). The result is a class-label, that describes the
nature of the variance present between the two objects.

Intelligent selection of deformation types is critical to an effective update scheme.
The deformation types discussed were selected for their clarity and their intuitive
mapping to the physical changes in urban environments. They aim to be succinct
and complete whilst still yielding salient actionable descriptions of architectural
change (that most importantly can actually be detected in the presence of sens-
ing noise). One of the key requirements is knowledge of pairwise object matches
discussed previously. Another is that the definition of each class of deviance is
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mutually exclusive of the alternate classes. These constraints derive from the re-
quired behavioural characteristics set out in the overview section of this chapter.
The driving desire is for each class of variance to bear semantic meaning from the
perspective of a human CAD technician, such that the manipulations required to
correct each out-dated building are evident in the results. The six classes of vari-
ance, detected by the operator (construct, remove, position, extend, reduce and
replace) are not implicit and as such the operator must impose some formal logic
in order to classify each. Simply put, the notion of an extension (as an example)
is not a direct product of the geometry but rather a semantic label that only really
bears meaning from the perspective of a human. It is a high-level descriptor used
to characterise a particular type of alteration. Note though, that whilst the approach
taken aims to formalise the abstract characteristics of each class, fundamentally
the resulting logic is imposed explicitly and not derived empirically. This is impor-
tant because it points to the fact that there are a myriad of other ways of imposing
similar or distinct ontological expressions to sets of variance types. However you
should also note the particular use of language. Linguistically each type of vari-
ance (detected by this operator) maps to a verb (a doing-word), that describes
the operation required to correct the variance. This is not an accident, but rather
an explicit attempt to maximise the utility of the information recovered by variance
classification. The critical aspect of this is that surprisingly, both qualitative and
quantitative variance types actually provide very little utility, when compared to
discrete enumerations. To illustrate, consider the quantitative ontology of {error
≤ max error | error > max error}, and the qualitative ontology of { excellent-fit |
good-fit | ok-fit | bad-fit | terrible-fit }. Neither of them actually describe anything
of greater significance than a measure such as the RMS. In essence they fail to
enable further manipulation based on the analysis, but rather represent a linear
distinction. The point of all of this is that irrespective of the exact variance-classes
you opt for, it is vital they correspond to actions as opposed to measures. This is
because in order to use such a semantic change detector in a fully automated up-
date mechanism, it is vital that the change-classifier inform a modelling algorithm
as to what must be done, not how much needs to done.

Two parameters are used to control the operators tolerance of sensing noise, the
maximum deviant distance dmax and the maximum normalised pairwise error emax.
They are analogous to those used during equivalency testing (part of pairwise
analysis). In the equations and figures that are presented subsequently, the fol-
lowing conventions are observed. The symbol A refers to the CAD object and B
refers to the LiDAR object. The symbol ∅ is used to refer to nullity (the null object),
whilst the symbol ⊕ (as in A ⊕ B) corresponds to the exclusive disjunction of A
and B (which is analogous to the bitwise exclusive-or operation). The symbols
∩ and ∪ refer to the boolean intersection and union operations respectively. The
integral symbol

∫

denotes the surface-area (in 2D) and the volume (in 3D) or a
geometric representation. The symbol t represents an error minimising aligning
transformation, such that A × t corresponds to transforming object A by t. This
could equivalently be expressed as t(A) however the latter notation gives the im-
pression that t is a function, whilst in reality it is actually a matrix.

Two additional figures are included to help contextualise each of the types of vari-
ance detected. The first (figure 2.17) depicts the logical hierarchy of the classes.
Whilst the second (figure 2.18) provides concrete illustrations of the relationship
between the derived set operator geometries and the characteristics of each class
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of variance. Figure 2.18 is intended to be read from left-to-right so as to mirror the
change detector’s order of evaluation.

Figure 2.17: the hierarchy of the detected variances classes

One slight caveat. Even though logically the congruent class bears the highest
discriminative level (since it distinguishes deviance from equivalence), in practice
it makes more sense to evaluate singletons before searching for congruence. The
reason behind this is discussed in greater depth shortly, however as a spoiler it
basically boils down to the fact that the mere process of pairwise matching actually
distinguishes (identifies) singleton variations simply by virtue of the presence of (or
rather lack thereof) a match.

Figure 2.18: diagram of the constructive set geometries for each class of deviance detected

by the semantic change detector - the top row displays the input (out-dated in red, and up-

to-date in blue) pairwise-overlapping shapes, the second the manner in which they interact

(their common ground) and the third the type of variations present.

Figure 2.18 indicates the core logic of this change detector. The key aspects
to take note of are the variance characteristics of each of the classes. It illus-
trates noise-free, manually constructed geometries, for which the following high-
level principles are observable in the table.

In instances of pure congruence, the geometries will be equivalent and hence the
variations will be null. In instances of pure constructions and removals, one of the
objects will be null and the variations will correspond (be equivalent) to the non-null
entity. In instances of pure positionable variance, the geometries will be equivalent
however the variations will be balanced (of equal scope) - half increase and half
decrease. In instances of pure extensions, the geometries will be distinct, but only
geometric addition will be present in the variations. In instances of pure reductions,
the geometries will be distinct, but only geometric subtraction will be present in the
variations. In instances of pure replacements, the geometries will be distinct, and
the presence of geometric addition and subtraction will be arbitrarily distributed.
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Critically the principles above use the term pure to refer to the absence of sensing
noise and mis-alignments. Not the quality of the geometric representations.

These observations should be reasonably obvious. They are simply the product of
considering the pairwise interactions between 2D and 3D geometries and isolating
the characteristic (discriminative) features of each type of variance. The challenge
however, lies not in the definition of these differences, but in enabling their ro-
bust identification in the presence of sensing noise. If the inputs were perfectly
clean shapes and models, then this process would be trivial. In reality though the
input CAD and LiDAR range images, are sampled from completely different medi-
ums (one polygonal mesh, the other laser-scan), and possess very different noise
properties. This means the change-detector has to be able to ignore insignificant
deviances that may occur as a result of low and high-frequency noise, or the pres-
ence (or omission) of clutter found in the CAD or scanned in the LiDAR.

The next sections discuss the means of mapping these high-level observations to
concrete predicates that can be efficiently implemented in a computer program. It
details the formalism for detecting each type of variance.

Detecting Constructions

Construct - With the set of pairwise overlapping objects in hand, classifying an
instance of deviance as requiring fresh construction is simple. If the result of pair-
wise matching for a point-cluster object (in the newly acquired LiDAR) is null (i.e.
there is no corresponding object in the CAD model) then the algorithm has no
choice but to construct a new object based solely on the LiDAR. Constructions
are the result of partial coverage of the region within the CAD model and the re-
sult of newly erected buildings. The predicate following tests for the presence of a
construction variation.

construct, if (A = ∅) & (B 6= ∅) (2.16)

At a high-level this states that if the pre-existing object (A) is equal to null and
the newly-acquired object (B) is not null then construct afresh a building from the
newly-acquired object. You’ll notice how simple this predicate is. This simplicity
results from the fact that this class of variance doesn’t have to consider the inter-
actions between two geometries - it only has to determine whether or not their is a
mapping between the datasets. Once one can guarantee that the newly-sampled
building is completely omitted from the original CAD model then one can state
unambiguously that the a fresh construction is required - without the need to inter-
rogate further.

Detecting Removals

Remove - In a similar manner, remove operations are needed whenever an object
cluster from the out-of-date CAD lacks a corresponding (partially overlapping) ob-
ject cluster in the LiDAR model. The inverse of the construct operator - the need for
this class of alteration is determined just as easily. If there is a CAD object with a
null pairwise match in the LiDAR then the CAD object must be removed - since it is
not present in the LiDAR. The key consideration is the potential for missing data in
the LiDAR scan. However a simple means to constrain removal is to demand that
there be points present in the LiDAR scan at the location even if they are below the
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minimum building height used in segmentation. In this manner buildings are only
omitted from the updated model if the algorithm can guarantee that the building
no longer actually exists and isn’t simply occluded or absent from the scan. The
following predicate is used to identify removals.

remove, if (A 6= ∅) & (B = ∅) (2.17)

This states that if the pre-existing object (A) is not null (i.e. there was a building
present), and the newly-acquired object (B) is equal to null then remove the pre-
existing building object. This predicate shares similarities with the construct class
in that it can be detected unambiguously based on the presence of a sampled
object and a null entity as its pairwise match. Next the detection of entities that
require re-positioning is discussed.

Detecting Re-Positions

Position - The key identifying attribute of a position operation is that the topology of
the objects under consideration should be almost identical (subject to tolerance for
sensing noise). Hence to recognise an instance of a position (given two partially-
overlapping object) one needs only to determine if by aligning the objects they
become congruent. The transformation that registers the objects is also the input
to the (subsequent automatic) re-position operation. This is stated formally with
the following predicate.











position, if (A 6= ∅) & (B 6= ∅) &

equivalent(A,B, t, emax)
C &

equivalent(A,B, t, dmax)
D

(2.18)

This is simultaneously the first of the variance classes that has to deal with noise
and that operates on a valid pairwise match, since both constructs and removes
can be detected irrespective of sensing-noise and represent singletons. The object
equivalency routine discussed earlier is exploited in this instance to perform the
same congruency test with a transformed geometry using a rigid body translation.
To compute the translation, the operator simply reuses the same sliding-window
registration routine defined in the earlier portion of this chapter, over the CAD and
LiDAR object. This has vital implications since it means the operator is generally
not invariant to rotations. Although minor rotational differences can be handled,
significant mis-orientations between the CAD and LiDAR objects will generally limit
the routines ability to identify a translation that yields congruence.

The thing to be aware of is that whilst this operator uses a simplified transformation
model for detecting positionable variances, this is a result of the requirements for
speed and determinism, and not because of a lack of alternatives. The reason that
the input transform t is a matrix and not simply a vector describing an offset, is to
allow alternative transformation models to be incorporated. How such transforms
are computed is not for the classifier to say. For example 3-point registration could
also be used as could ICP. The only problem with the latter is the introduction of
stochastic iteration.

At this point the only remaining types of variance are extensions, reductions and
replacements, and the operator can say definitively, that 1) neither of the objects is
equal to null and 2) the geometries of the objects are distinct.
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Detecting Extensions

Extend - The extension class aims to handle occasions when it is more efficient
to append new geometric primitives directly onto a CAD object than it is to com-
pletely reconstruct the object using only LiDAR data. The characteristic difference
between an extension (such as a conservatory) and a reconstruction (a demolition
followed by fresh construction) is equivalent to the difference between appending
and replacing. Namely the extension grows the original mass whilst ensuring that
the intersection is equivalent to the original object. It is a mono-modal operation
(the addition of geometry only) whilst replacing indicates that a mono-modal op-
eration is insufficient to rectify the difference between the objects. The following
predicate provides a formal definition of the logic exploited for extension detection.



















extend, if

(
∫

(A−B)
∫

(A⊕B
< emax

)

&

(
∫

(B ⊕A)
∫

(A ∩B)
< 1

) (2.19)

≡ (negMassRatio(A,B) < emax) : (devRatio(A,B) < 1)

Intuitively you’ll notice that this ensures that the normalised mass decreasing con-
tribution to change is below emax, whilst also ensuring that the ratio of deviance
to congruence is less than one. The impact of combining these two predicates is
most apparent in the presence of noise - since it means that even with subtle vari-
ances (corresponding to reduced portions) the dominance of geometric addition
controls the response of this class. Enforcing the deviance ratio also means that
the operator will only treat a variance as an extension if the scope of the differ-
ences between the two objects is less than the scope of their congruent portions.
In other words - it ensures that the amount of work associated with the geometric
alteration maps to a fraction (and not a factor) of the overall out-dated geometry.

Detecting Reductions

Reduce - This operator is the opposite of extend. It encompasses the same chal-
lenges but yields the inverse result - the reduction of mass and a pairwise intersec-
tion that is equivalent to the new instance. The reduce operation manifests as the
decimation of a subset of one of the out-of-date CAD objects. As such identifying
a reduction requires a valid pairwise match (which is guaranteed after position-
ables are evaluated) and a decrease in the mass of an object as well as being a
mono- modal instance of change (the removal of geometry only). The following
expression formalised this.



















reduce, if

(
∫

(B −A)
∫

(A⊕B
< emax

)

&

(
∫

(B ⊕A)
∫

(A ∩B)
< 1

) (2.20)

≡ (posMassRatio(A,B) < emax) : (devRatio(A,B) < 1)

This test is almost identical to the previous test for extensions, the only difference
being the ordering of the input to the numerator in the first statement. It ensures
that the mass increasing contribution to change is below emax (the normalised
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continuous error threshold), and enforces the deviance to congruence check (de-
scribed in the previous discussion of extensions).

By this point, five of the six type of variance can be detected, and the only remain-
ing type is replacements. For this one could arguably use:

replace if !(congruent|construct|remove|position|extend|reduce)

which, (although semantically correct), is needlessly inefficient from a computa-
tional perspective, since it demands each previous class be evaluated to identify
replacements. The problem with this is that it will effectively double the execution
time of the change-detector. It also means that if an end-user wanted to detect
only replacements, they would basically have to wait for the full set of classes to
be evaluated - even though only one is of concern. This is unacceptable, and so
the final portion of this section defines the class of replacements independently of
the previously defined classes.

Note that in the case of detecting all of the variance classes, the expression above
could also be constructed by simply caching the result of testing each preceding
class. However (although this removes the extra compute time associated with
replace detection) it still frames the replacement type in terms of the other types,
which will prevent further optimisations - such as culling the classification stage
early when it becomes apparent an object must be replaced. For a practical ex-
ample of this, refer to the implementation of the DEV algorithm (line 36), found in
the appendix of this chapter.

Detecting Replacements

Replace - The replace operations are simultaneously the most powerful (in terms
of raw error minimisation) and potentially the most expensive (in terms of com-
putational workload). In principle every valid pairwise-match that fails the object
equivalency test, is a candidate for the replace operator. Whilst this is might be
acceptable for noise-free synthetic scenes, in practice this is undesirable, because
sensing noise may distort the appearance of building objects that (to a human) are
correctable using a simple change operator without resorting to a complete recon-
struction. Hence determining the right tolerance for the object equivalency testing
is critical in order to prevent overuse of the replace operator. If the object compara-
tor is too strict the operator will favour replacing whenever it encounters deviation,
however if the tolerance for error is too loose it will treat instances that actually
require replacing as other classes of deformation (or worse fail to categorise them
as varying). With this in mind, the following predicate is applied to determine the
need to completely replace an out-dated building.



















replace if

(
∫

(A⊕B)
∫

(A ∩B)
≥ 1

)

||

(

max(
∫

(A−B),
∫

(B −A))
∫

(A⊕B)
≤
(

1−
emax

2

)

) (2.21)

≡ (devRatio(A,B) ≥ 1)|(monotype(A,B) ≤ (1− emax/2))

Intuitively this uses the deviance to congruence measure and the monotype mea-
sure to define the class of replacements. If there is greater deviance than congru-
ence (XOR over inter- section) then the object must be replaced - as is the case
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if the variation exhibits as multiple modes of change (beyond the acceptable noise
induced normalised deviances for extend and reduce).

To summarise the variance classification stage, this section discussed pairwise
analysis as a means of matching and differencing overlapping objects. It covered
the considerations of each recognised class of architectural change. It detailed the
functions responsible for identifying buildings that need constructing, removing, re-
positioning, extending, reducing and replacing. Remember each detector function
relies upon the boolean operations (encountered earlier) and simply applies them
to the task of characterising variance in a robust (topologically-independent) way.
It discussed the methods of mitigating noise and controlling the sensitivity of the
replacement detector. It outlined how to resolve multiplicities in the initial object-
matching stage and explained in detail the links between the variance classes
defined and the properties of the semantic change detector sought. The result of
all of this is a method of analysing temporally variant CAD and LiDAR datasets and
finding the differences between then at the level of individual objects.

At this point one can automate the quantitative analysis of the change detector (by
manually identifying exemplar variances in a test dataset and seeing if the detector
correctly labels them with the associated class). However the ability to undertake
qualitative evaluation is still limited. To address this a means to display and inspect
the results of the classifier is required.

2.3.5 Visualisation

The aim of visualisation is to present the classified variation data in a manner
that is intuitive for a human to understand and act upon. In the case of a fully-
automated algorithm visualisation of variance between the CAD and LiDAR would
be replaced by the correction of each variation. For a manual update the visualisa-
tion and documentation of the deviances represents the terminating return of the
semantic change detector. There are a handful of key considerations which are
enumerated visually for reference (in figure 2.19).

Figure 2.19: table of the options for visualising classified variance data

Having considered the available options for visualising the results of variance clas-
sification the proposed approach can now be outlined. This thesis exploits a stand-
alone 2D engineering-document styled user-interface to display the classifier data.
Figure 2.20 illustrates this. The program is simple and serves as an auxiliary refer-
ence for a human CAD technician that can be used alongside their preferred CAD
environment. Additionally for debugging and command-line environments, 2D and
3D geometric data is written to disc such that an alternate viewer may also be
used. A benefit of the proposed system is that it also provides a intuitive interac-
tive dialog for the manual creation of ground-truth label data (figure 2.25) - which
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is utilised later on to help quantify the operators performance.

These figures demonstrate aspects of the visualisation strategy employed. For
each, the comments draw attention to the vital features depicted.

Figure 2.20: result of classifying the update operations required to minimise geometric error

for the City of Bath dataset - displayed in a simple UI - the maximum mean deviant distant

between pair-wise object matches is 2 meters and the maximum normalised multi-modal

error threshold is set at 0.1.

Figure 2.21: visualising segmented objects in the 2D viewer program - out-dated CAD

model objects are indicated by red boundaries, whilst newly-acquired objects from the Li-

DAR DSM are indicated by blue boundaries - pairwise intersections are indicated by the

overlain green boundaries.
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Figure 2.22: visualising type-classification for the DSM of the city of Bath - left: the input

segmented objects - right: automatic classification labels - with blue mapping to man-made

elements and green to organic elements.

Figure 2.25: Auxiliary dialog that enables end-users to create labelled ground truth datasets

for quantifying the performance of the automatic classifier relative to a human. Users simply

click on an object (to select and again to deselect) and then press (click) the corresponding

variance class from the title-bar to assign the class of variance to the selected object(s).

Users can also select multiple objects simultaneously using a drag box (rectangular region)

selection. The program creates a list of labels for each object (right-pane) which the user

can write to disk for use in quantitative analysis relative to the automatic classifier. Users

can also load in previously saved sets of labels to make modifications. The title-bar buttons

control the display of the input-data as points, objects or variances and holds a timer such

that users can monitor the amount of time spent creating ground truth data.
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Figure 2.23: visualising deviant regions between pairwise overlapping objects in the CAD

and LiDAR of the city of Bath - left: segmented deviant regions with green mapping to

geometric addition and red to geometric removal - right: automatically labelling each deviant

region as either - induced by translation (blue), anomalous (gray) or significant (white).

Figure 2.24: Testing the classifier’s logic in an abstract 2D program. Users plot (as input)

two simple shapes using basic polygonal primitives and the boolean composition operators

(CAG). Users can transform the shapes, apply pseudo-random-noise and vary the discrete

and continuous error tolerance. The program analyses the input shapes, determines the

type of variance present and highlights the corresponding class indicator (base-bar). The

top row illustrates (from left to right) a new empty scene, a position-operation being detected

and, a reduce operation being detected. The second row illustrates the auxiliary data that

an end-user can inspect for the classification of an extend operation. It depicts (from left to

right) the two input plotted shapes, their union (in goldenrod) with their exclusive disjunction

(in purple) and, the scope-increasing contribution to change (in green).
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2.4 Experimental Results

This section presents quantitative and qualitative results of applying the variance
classifier to different types of pairwise deviant geometry.

The goal of this section is to provide a clearer understanding of the physical
performance of the semantic change detector on both concrete and synthesised
datasets. The commentary in this section is minimal since the bulk of the high-level
insights are discussed in the following analysis and evaluation section.

The key evaluataive attributes are (in terms of accuracy) the precision and recall
(of the operator’s class-labelling relative to human labelled data), and (in terms of
efficiency) the growth in execution-time for each processing stage.

(Notes about terminology) In the tables that accompany the City of Bath results:-
the ground-truth count refers to the number of human labelled instances of each
class in the labelled datasets. The classifier total count refers to the total number
of times the classifier fires for each class across the unlabelled data-set. The recall

correct count and recall correct rate refer to the ratio of correctly identified classifier
instances relative to the ground-truth data. The true positive count and rate refer
to the ratio of correctly labelled classifier instances relative to the total number of
times the classifier fires for each type. The false positive count and rate refer to
the inverse metric - the proportion of incorrectly labelled classifier instances for
each class. In the precision recall graphs the y-axes refers to the precision of each
classifier whilst the x-axes refers to the recall.

2.4.1 Synthetic Datasets

This subsection briefly discusses the outcomes of performance analysis of the
semantic change detector in controlled tests on synthetic data - for which the ex-
pected outcome was known ahead of time. These experiments enabled more
thorough examination of the detector’s behaviour than the real-world experiments
allowed. In particular they allowed the dimension and continuity/discreteness of
the representations used during analysis to be varied. The primary aim of these
experiments was to determine the extent to which the processing stages employed
by DEV generalise (adapt) to various types of building representation.
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Figure 2.34: the two types of 2.5D (top-down/parallax) synthetic test-case used during ex-

amination of the behaviour of the the semantic change detector - illustrating (left) polyhedral

change-detection, and (right) discretised height-map change-detection

Figure 2.35: the two types of 3D synthetic test-case for the semantic change detector - illus-

trating (left) polyhedral change-detection and (right) discretised volumetric change-detection

The key observation in these controlled tests was the suitability of the change de-
tection to various types of building representation. Indeed an unexpected outcome
was the generality of the logic (its ability to adapt to 2.5D and 3D datasets) and
in-particular the cleanliness of the variance regions when applied to mesh vs mesh
change detection. This suggests that the proposed logic is also suited to mono-
modal change-detection tasks on manually constructed CAD models. However as
this is somewhat tangential to the primary use-case of DEV we shall leave the out-
line of the controlled experiments there and move on to the concrete results.

Note: the experiments on synthetic datasets do not form part of the concrete re-
sults for DEV. They simply helped to understand the limits of the approach during
development and debugging. They are referred to here mainly for completeness.
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2.4.2 City of Bath : 2D, 2.5D

This sections presents the results of performance analysis of the semantic-change-
detector using the City-of-Bath dataset. The City-of-Bath dataset is composed of
an out-dated CAD model, and up-to-date DSM and DTM range images. The out-
dated CAD model was provided by the department of Architecture and Civil En-
gineering at the University of Bath and models the buildings, terrain and auxiliary
features of the city center. Figure 2.8 illustrates the level of detail present in the
out-dated CAD model and its discretisation as a 1m airborne DEM. The airborne
DSM and DTM - which cover a 2.5km x 2km region of the city centre at 1m res-
olution (1ppm) - are composite DEMs produced by the Geomatics[47] group and
provided as free to use research assets by the Environment’s Agency [47]. Both
the CAD model and the DSM and DTM scans use the OSGB36 coordinate system
and are reasonably well sampled. In particular (with the exception of missing data
where there are rivers and waterways) the scans exhibit good coverage of the City
of Bath. To quantify the performance of the classifier, manually labelled versions of
the data were also created to represent the ground-truth (or human-desired result)
for the tasks of type classification and variance classification.

Three key aspects are considered, firstly the geometric correctness of the change-
detector as a product of the reduction in geometric error that is achieved by cor-
recting each building using the variance class labels. The second aspect is the
performance of the type classifier that filters buildings from vegetation and clut-
ter based on its detection precision and recall relative to human labels. Thirdly
the performance of the variance labels, relative to human labelled ground-truth
change-class labels. The first test considers how varying the pairwise error toler-
ance affects the resultant accuracy of an updated CAD model. The second and
the third tests quantify the correctness and effectiveness of the open (ill-defined)
classification stages.

Reduction in Geometric Error

The overall resulting reduction in geometric error is characterised below. It is a
plot of the mean discrete point error (y-axis) for varying input values of maximum
normalised continuous pairwise error tolerance (emax, x-axis). The graph illus-
trates the global reduction in error as a result of correcting all classes of variance
detected by the operator. To achieve this regular gridded chunks were removed
and added to the CAD model automatically based on the detected errors. The
individual point positions and elevations of each alteration were derived from the
classified deviant regions. This provided an error minimising method of prototyping
the actual update operations for each class of variance. Note however the geome-
try used represents the discretised differences and not continuous building model
meshes. In essence this displays the new error between the CAD and the LiDAR if
for each building variation, the deviant points are added or removed using a primi-
tive dense mesh. The approach removes additional error that would be introduced
by approximation and forecasts the idealised enhancement if unaltered versions of
the detected deviant regions are used to drive the correction process.
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Figure 2.26: graph of the resultant mean discrete geometric error in meters (y-axis) against

max normalised continuous pairwise error (x-axis)

The blue line is the original error between the CAD model and the LiDAR. The
graph shows clearly that as the input allowable pairwise-shape deviance tolerance
rises, the reduction in geometric error decreases. This makes sense since if two
objects are allowed to deviate more (whilst still being treated as equivalent) then
their contribution to the error reduction will be less. Note though, that even with a
high normalised error tolerance of 0.25, the operator still stably reduces the mean
error across all buildings by more than a meter. This can be largely attributed to the
correction of newly erected buildings (constructions) and demolished buildings (re-
movals) - since each singleton case will implicitly contribute more to the geometric
variance between the datasets than an alternate class of change with objects of
similar scope (size/span). Further the graph also illustrates that at a normalised
pairwise error tolerance of 0.0, the operator replaces all geometry resulting in build-
ing models with a near perfect (<0.01m) correspondence to the LiDAR. Such an
update is tantamount (equivalent) to pure vectorisation of the LiDAR without ref-
erence to the CAD. At normalised pairwise error tolerances of greater than 0.25
the operator returns the minimal number of replacements as necessary to improve
the CAD’s accuracy however it is still bound by the requirement to ensure that the
mean deviant distance is less than dmax (2m in these experiments), ensuring an
error reducing response.

The graph below shows the individual contribution of each geometric operator to
the global reduction in geometric error. In order to calculate an individual change
operation’s contribution to error, at each iteration only the results for objects edited
by the operation are considered.
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Figure 2.27: graph of geometric error in meters (y-axis) against max normalised continuous

pairwise error (x-axis) for individual update operators

The blue line represents the original error between the CAD model and LiDAR
points (prior to execution). This graph shows the dominance of the construct and
replace operations in terms of raw accuracy improvement. Further (somewhat sur-
prisingly) it demonstrates that the extend and reduce operations far out-performed
the position operation in terms of their typical enhancement of deviant objects. In-
deed the position response is temperamental which points towards a limitation of
the discretised representations.

The results indicate that the reduction in geometric error is bound by the discreti-
sation step - which is constrained by the resolution of the LiDAR. In particular
considering the contribution of the individual operators to the building-to-building
error reduction suggests that the only means to guarantee near-zero error is to
base the updated model solely on LiDAR data. Ultimately the proportion of the
original CAD model that is retained in the updated model is controlled by the max-
imum normalised pairwise deviation. For strict tolerances (such as less than 0.02)
the operator is equivalent to a dense interpolation of the LiDAR points. As the
tolerance is relaxed more and more of the CAD model is deemed acceptable and
thus included in the updated model. Whilst this acts as an intuitive way to control
the level of acceptable deviation, the operator profiling points to the fact that the
inclusion of original CAD objects contributes least to optimising the physical accu-
racy. Although computationally expensive, vectorising pointsets directly does the
most work in terms of ensuring a scene is accurate. Note however that the quality
(or visual detail) of the vectorised models is bound by the resolution of the LiDAR
scans used. So whilst a strict pairwise deviance tolerance ensures a near-perfect
correspondence to the discrete LiDAR points, it is not guaranteed to return models
of equal detail to the original CAD.
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Type Classifier Results

The results of applying the object-type classifier to the segmented object clusters
are presented in the following table and precision-recall graph.

Man-made Organic Unknown

Ground-Truth Count 1404 1098 160

Classifier Total Count 1655 1007 0

Recall Correct Count 1316/1404 871/1098 0/160

Recall Correct Rate 93.7% 79.3% 0%

True Positive Count 1316/1655 871/1007 0/0

False Positive Count 339/1655 136/1007 0/0

True Positive Rate 79.5% 86.4% 0%

False Positive Rate 20.5% 13.6% 0%

Figure 2.28: test result - object type classifier

The table above summarises the accuracy of the object type detector based on
a single execution - relative to the ground truth labelled object-types. The graph
below illustrates the precision and recall of this classifier. Note that the unknown
(or ambiguous class) is also included for completeness.

Figure 2.29: precision recall graph for the individual object type classifier: man-made,

organic, unknown.
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Figure 2.30: results of type-classifier: with objects coloured by type for the 1m Bath

dataset (blue: manmade, green: organic).

The result of the object type classifier points to a promising architectural object
filter, but the requirement for further refinement. At its current performance it
achieves 93.7% building object recall rate across the human labelled objects in
the City of Bath, with a detection precision of 79.5%. This means for 1000 build-
ings, approximately 937, would be correctly detected however the classifier would
also return up to 200 odd additional objects (that are not buildings) that would need
discarding. Though it may be easier for a human operator to discard rather than
recall objects, at the current performance the object type classifier would be insuf-
ficient for a fully automated update operator that omitted a post-update validation
stage. Figure 2.29 also indicates the type-classifiers sweet-spot as lying at around
85% detection precision with a corresponding recall rate of 85%. It shows that to
achieve a building recall rate of 95% and upwards the detection precision would
fall to below 70% which would mean clutter objects and vegetation would be more
likely to slip through the filtering stage.

Variance Classifier Results

The results of applying the variance classifier to the pairwise object matches are
presented in the following table. This test aimed to assess the stability (distin-
guishability) of the full set of deviance types defined by our scheme.

Remember that this is based upon comparing the classifier’s response to a hu-
man’s desire and not an explicit binary (true/false) distinction. Unlike the type
classifier, for which the entire dataset was labelled, this section deals with the re-
sponse for a subset of the dataset. The subset used was selected based on the
clarity of the alteration. This is to determine how the operator responds relative to
pairwise variances that can be unambiguously classified by a human. In essence
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only clearly defined object variances were considered. The aim of this to to see
how close the formal logic comes to describing a human’s perception of change.

Congruent Construct Position Extend Reduce Replace

Ground-Truth Count 54 542 20 14 11 30

Classifier Total Count 51 542 14 19 10 35

Recall Correct Count 46/54 542/542 12/20 13/14 10/11 27/30

Recall Correct Rate 85.2% 100.0% 60% 92.8% 90.9% 90.0%

True Positive Count 46/51 542/542 12/14 13/19 10/10 27/35

False Positive Count 5/51 0/542 2/14 6/19 0/10 8/35

True Positive Rate 90.2% 100.0% 85.7% 68.4% 100.0% 77.1%

False Positive Rate 9.8% 0.0% 14.3% 31.6% 0.0% 22.9%

Figure 2.31: test result for the update operation classifier

In keeping with the previous format, the preceding table demonstrates the re-
sponse for a single iteration, whilst the graph following illustrates the precision
and recall as the normalised and discrete error tolerances were varied.

Figure 2.32: precision recall graph for the pairwise variance classifier

From this it is clear that the position deformation is the hardest for the pairwise
deviance classifier to stably detect. Somewhat surprisingly the extend and reduce
deformations were consistently well-behaved, despite the potential ambiguity with
which a human may label each when each could equivalently be replaced. The
overall performance of the pairwise deformation classifier indicates the feasibility
of detecting multi-modal architectural change at city-scale using a formal geomet-
ric logic. The key feature is that it is based solely on the product of geometric

Page 96 of 301



CHAPTER 2. CHANGE DETECTION→ 2.5. ANALYSIS AND EVALUATION

evaluation and is not biased by potential training strategies. The only concern is
that a human’s desire for a specific operation may not map to the class of defor-
mation actually represented by the object. This is a challenge and whilst machine
learning provides a plethora of methods for framing classifiers based on a set of
examples, the prevalent problem is that the resultant classifier could potentially
over-fit the training data. The advantage of the closed form approach is that the
operator is independent of the dataset used during development.

2.5 Analysis and Evaluation

Having profiled the resulting performance of the semantic change detector - anal-
ysis of its behaviour follows, in order to draw insights from the approach taken.
This section evaluates the operator both theoretically and in terms of the physical
implementation. It provides a high-level examination of the operator that clarifies
its strengths, limitations and potential improvements.

2.5.1 Type Classification

The results of the object type classifier points to a promising architectural ob-
ject filter, but the requirement for further refinement. At its current performance
it achieves 93.7% building object recall rate across the human labelled objects in
the City of Bath, with a detection precision of 79.5%.

It is important to note that (as discussed in the previous sections) the function used
to identify buildings could just as easily be replaced with an alternative method of
performing linear discriminant analysis. In this respect the type-classification is not
reliant on the formulation presented. It is simply a filtering stage and could be han-
dled with a support vector machine or neural network (as examples). The critical
aspect of the stage (from an engineering perspective) is maximising the recall and
precision without the loss of generality. In essence the type classifier’s decision
logic should be generic enough to effectively handle different types of urban envi-
ronment (town, inner-city, industrial, residential...), scanned at arbitrary resolutions
and with (potentially) non-uniform sensing noise. The requirement to be able to
generalise, coupled with the open-nature of this problem means that it is unlikely
a classifier can achieve 100% recall and precision - however anything above 90-
95% can be considered effective - since such performance will handle the majority
of the task without sacrificing the ability to generalise. This represents a trade-off
made in order to prevent the classifier being overly learnt on the data used during
development - particularly because the aim is to be able to generalise to different
classes of aerial laser scan, beyond simply structured DEMs. Further by consider-
ing the requirement for tractability in the detector the utility of the heuristic function
proposed is evident. Unlike fuzzy-logic, a Bayesian formation or a decision tree,
the interaction of each term in the linear-classifier maps to a high-level semantic
directive that is not bound to a single training dataset.

Abstractly the type-classifier enforces the following observations:

• greater object volume or surface-area implies a building

• the dominance of planarity across an object implies a building

• the dominance of continuity across an object implies a building
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• disparate clusters of points imply an organic or ambiguous object

The balance of these high-level rules are controlled by the input type-classifier
weights - a four component vector. Sensible weights were arrived at empirically
- and as such the performance could be improved by adaptively learning the
weights using an unsupervised algorithm. Although earlier tests tried this (in
order to enhance the precision-recall balance from the mid-80s to mid-90s %)
the outcome was that the level of generalisation dropped significantly and the
weights learnt (although performing better on the training dataset) failed to gen-
eralise and produced inferior results when applied to validation sets (with different
scan-resolutions). This represents a compromise made to enhance the robust-
ness of the type-classifier. For small-to-mid sized datasets (1-10 million points),
the function handles the majority of the filtering leaving between roughly 5-15%
of the segmented object descriptors to be manually verified by a human-operator.
For smaller datasets this can be considered reasonable since the time required to
manually filter a fraction of a number of buildings (tens to thousands) is small (typi-
cally minutes) relative to setup, training and validation of an unsupervised learning
algorithm. However in the case of large city-scale datasets (containing tens or
hundreds of thousands of buildings) the requirement for manual intervention must
be limited - and as such the use of a unsupervised-weight refinement technique is
appropriate. Whilst this breaks the generality of the classifier it is not unreasonable
to store a set of distinct weight vectors inline for each geographic region or locale
processed by an architectural or surveying firm.

2.5.2 Variance Classification

The performance of the variance classification points towards an effective means
to identify actionable differences between out-dated CAD models and up-to-date
LiDAR scans. The response of the construct and remove classes is practically
infallible. The extend, reduce and replace operators respond well (with precision
recall in the 90+% area. However the congruent and position classes seem par-
ticularly sensitive to noise (at roughly 85% and 60% precision-recall). Determining
the right discrete and normalised error bounds can be an iterative process. How-
ever once determined they generalise well to different datasets at different reso-
lutions. The key factor in the limited response of the position class is the method
of determining the aligning transform. Since we rely on a one-to-one mapping
between CAD elevation points and aerial LiDAR points (for efficient differencing),
the method of registering two pairwise building clusters does not exploit the sub-
pixel registration routine and as such limits the precision that can be attained. This
problem is compounded by the presence of sensing noise which introduces un-
determined deviance between the two representations. The underlying problem is
that in the presence of noise, geometries that are visually semantically equivalent
to a human, may deviate so as to fail an error-driven equivalency test irrespective
of their alignment. To combat this you could increase the point-to-point tolerance to
a large number of meters (10+) and reduce the minimum required normalised inter-
section over union to a small number (such as 0.05 - 1/20th of the pair must over-
lap), however this invariably alters the behaviour of the other mutually exclusive
classes and generally degrades performance. In this sense changing the toler-
ances does not address the problem but rather incorrectly causes other classes of
deviance to converge on the position operation. During development we tried ICP
and the sub-pixel sliding window registration (using the Euclidean distance metric
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to combat the invalidation of the one-to-one mapping between the registrees), but
observed little change to the response of the position-class whilst incurring much
larger runtimes that exceeded that of the segmentation stage). Unfortunately we
failed to arrive at a simple solution to ensuring each and every position-able build-
ing would not be treated as a replacement, that did not negatively impact the over-
all performance of the operator. One thing we noticed was that although the nor-
malised measure worked well for smaller buildings for larger buildings it tended to
treat roughly equivalent buildings as deviant. This was primarily a result of features
present in the LiDAR that may not have been modelled explicitly. Such as points
corresponding to architectural adornments and temporal objects on roofs. In par-
ticular we realised that there was a non-linear relationship between our perceptual
tolerance of error and the extents (size, volume, surface-area) of the geometric en-
tity - which we failed to characterise in the semantic change detector. In hindsight
taking the scale of an object into-account would provide a means to adaptively al-
ter the equivalency tolerances so as to ensure scale-appropriate behaviour - i.e. it
would be more forgiving of small deviant features on larger objects.

The key challenge with such an approach however is the derivation of the means
of varying the weights. At a high level, the desire is quite intuitive - i.e. the operator
should relax the discrete error tolerance as the size of a building increases. The
critical problem with this is the introduction of variable error characteristics across
individual buildings. Whereas at present a uniform normalised and discrete error
is used for all buildings, such a strategy would treat buildings of different scales
as having different quantitative requirements for each variance class. As such one
would no longer be able to say that the class labels represent the operations re-
quired to correct the entire scene to within a uniform error-tolerance, but rather to
correct each building to within a unique (somewhat arbitrary) tolerance that is more
relaxed for large buildings and stricter for smaller buildings. Though this would pro-
vide greater benefit the logic becomes convoluted because in order to determine
how to alter error-tolerances in line with scale changes, manually-constructed hu-
man labelled data would need to be analysed ahead of time (offline) or at runtime.
This breaks the independence of the change-detector and would mean the logic
becomes quantitively tied to the domain. This trade-off represents a decision made
in the favour the generality of the technique. However it stands as a key area for
further investigation.

Another key limitation of this approach is the manner of resolving multiplicities.
The operator identifies multiplicitous objects and treats them as replacements. At
an object level this is not a problem. However at the component level it would
sometimes be desirable to be able to chain a set of classes rather than yield a
replacement. For example a building may exhibit a reduction coupled with two ex-
tensions. In such an instance, if the scope of the deviant regions is small relative
to the congruent regions then a CAD-technician may prefer a sequence of extends
and reduces rather than a single replace - so as to maximise the inclusion of the
original CAD model.

This is not only a limitation in the case of multiplicitous mappings, but also in the
case of multiple alterations applied to an object. To address this the obvious solu-
tion is to cluster deviant regions at the level of individual building components and
yield a sequence of variance classes each corresponding to a component-level
change. However this introduces the requirement to further segment each de-
viance which (though trivial for simple cases) quickly becomes ill-defined in more
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complex instances such as curvature and non-planarity. Hence the decision was
taken to omit multiple-level classification, in order to conform to the behavioural
requirement for tractability and efficiency. Although the simplified strategy works
well, this particular limitation stands as a clear area for further investigation.

2.5.3 Computational Efficiency

The computational efficiency of each of the components implemented in this work
is summarised in the following table. It contains the mean run-times (in seconds)
for processing varying sized subsets of the City of Bath dataset over a series of ten
executions. The operator was profiled on a quad-core i7, with 16GB of RAM, using
multi-threading. The column headings denote the square-area of the test region
and resolution used (the sample step).

Process 1km2 (2m) 1km2 (1m) 5km2 (1m)

Registration 1.24 3.85 9.77

Variance-Detection 0.56 1.73 6.04

Segmentation 3.04 12.39 72.25

Classification 0.39 1.20 4.23

Visualise-Document 19.55 86.21 352.94

Total-Runtime 24.78 105.38 445.23

Figure 2.33: Average process run-times (in seconds) for a series of 10 executions of the

complete semantic-change-detector

The results indicate a roughly linear growth in run-time relative to the size of the in-
put discrete point-sets. For the largest datasets used (5km2) the entire multi-modal
semantic change detection process takes just under 8 minutes - with the bulk of
the time being spent in the visualisation and documentation stage. The operator
handles large models surprisingly quickly - however it returns dense models for
visualisation. Further research could focus on methods of decimating the models
without the loss of accuracy and without incurring prohibitive run-times. By ex-
ploiting lower dimension representations the variancing is almost instantaneous.
However in considering the results in synthetic dataset experiments (particularly
between 3D geometric pairs) it became clear that the efficiency of the variancing
is a product of the Chebyshev distance measure. When the operator is applied
to unstructured data (with the Euclidean distance metric), the associated execu-
tion time grows exponentially inline with the radius used to compute each point’s
neighbourhood and the density of the input point-sets. However with the structured
parallax geometries, computing point-neighbourhoods is not required (since they
are implicit in the representation), and this enables the differencing of CAD and
LiDAR to run in roughly linear-time.

2.5.4 Qualitative Evaluation

This final portion of the evaluation section considers the high-level qualitative strengths
and limitations of the semantic change detector.
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Strengths

Efficiently Identifies Object-Level Modelling Errors - the operator quickly la-
bels all significant sources of geometric error between out-dated CAD and new-
acquired LiDAR in an abstract yet robust manner. Unlike the pre-existing strategies
to change detection, this operator considers variance at the level of objects as op-
posed to individual points and thus classifies meaningful (actionable, semantically
rich) descriptions of temporal alteration between airborne architectural datasets.

Enables Selective Reconstruction - culling the reconstructive process based on
whether or not a building has actually changed since it was last modelled.

Generalised Boolean Logic applicable in 2D and 3D - the variance classifier
operates equivalently on discrete and continuous pairwise geometries.

Limitations

Low-Resolution Laser-Scan Data vs High Resolution CAD Data - one of the
key problems with the experimental tests on the city of Bath dataset, is the limited
resolution of the input DSM points. This has a significant impact on the accuracy of
the analysis. Although it demonstrates that the operator works well even with low
resolution (1m point-spacing) point-sets, in a ideal world higher resolution point-
data would have also been used (to test the limits of the change-detector at higher
levels of detail). This is a vital issue with the use of off-the-shelf scan datasets.
In particular you’ll notice that in the qualitative figures the level of detail present
in the original CAD model isn’t preserved in the labelled deviant regions - each
region acts merely as a positional indicator and fails to capture subtle roof-details
in visualisation.

Uniform Discrete and Continuous Error Tolerances - results in the operator
treating all buildings with fixed error tolerances, irrespective of their size. As dis-
cussed, this could be viewed as undesirable. The challenging aspect of addressing
this lies in determining a generic method of varying the error tolerance in line with
the spatial scale of each pair of overlapping buildings.

Rotational Invariance - is not explicitly supported by the variance classifier. At
present the expectation is that the transformation model used during registration is
only responsible for determining a translational offset. By exploiting an alternative
registration method (that estimates orientation), the utility of the operator could be
further enhanced. The future investigative track in this regard is the implemen-
tation and evaluation of deterministic rigid-body registration functions designed to
operate efficiently on 2.5D (parallax) elevation models. Note: given the nature of
the data, the inclusion of rotational-invariance can be considered an optional fea-
ture due to the expectation of north-coherency between the CAD and LiDAR.

Dense Boundary Visualisation Strategies - are desirable for the efficiency with
which they can be constructed from sets of sampled points, however they lack
the topological clarity associated with manually constructed models - making the
deviant regions inappropriate for direct use in a fully automatic temporal update
modelling function. Whilst they serve their purpose as a means to denote the crit-
ical geometric errors - they do not yet provide a suitable representation for further
updating the geometry because the quality of the building representations present
in the updated CAD would deteriorate - and subtle details would be lost.
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Limited Testing Data restricted the scope of the evaluation on real-world datasets
to the city of Bath. The problem is access to out-dated CAD models and newly-
acquired laser-scans. Thankfully the department of Architecture and Civil Engi-
neering at the University of Bath were able to provide access to the city of Bath
model, and the Environment Agency the airborne range scan of the city. Whilst
this chapter demonstrates the validity of the idea, it failed to provide more rigorous
analysis using different cities scanned and modelled at different resolutions and
levels of detail (respectively). This is an on going problem that is being addressed.

2.6 Discussion and Summary

In conclusion, this chapter presented a simple yet effective semantic change de-
tector - designed to provide actionable descriptions of architectural variance be-
tween old CAD models and new point-clouds. It delved into how we arrived at the
6 classes of deviance detected and analysed the performance of the operator with
synthesised data and on the City of Bath dataset.

Whilst the results are promising they naturally lead to the realisation that without
robust automatic modelling strategies the utility of this operator is limited. Es-
sentially in order to bring automatic temporal updates into being it is clear that
reliance on dense reconstructions is insufficient. Though we now have a stable
means of quickly identifying and classifying geometric errors, we still lack effec-
tive methods of dealing with the requirements to construct, extend and replace
building-geometry. Though it is feasible to use dense surfaces for still rendering,
for interactive scenes they become prohibitive to maintaining a steady framerate.
We conclude this chapter noting that although the overall idea is sound, the critical
bottleneck to effective application, lies in the ability to take in arbitrary point-clusters
and return clean and accurate, sparse boundary-representation models.

For reference, the key concepts covered in this chapter are revised below:

• Sliding-Window Sub-Pixel Registration as a deterministic method of align-
ing the out-dated CAD model and up-to-date LiDAR scan

• Difference-of-Elevation Models as a means of slicing a terrain-normalised
digital elevation model into two models - salient and terrain

• Scan-Conversion Segmentation in order to cluster disjoint connected com-
ponents (neighbouring sets of points) in linear time

• Linear Type-Classifier + Ambiguity Check to filter vegetation, vehicles,
street-furniture and similar clutter from subsequent analysis

• Pairwise Analysis as a method of abstractly characterising the difference
between two rigid geometric representations - boolean operations imple-
ment the predicates and constructions: PairMatch, CongruentDeviantRa-
tio, PostiveMassRatio, NegativeMassRatio, MonoModalMeasure, DiscreteE-
quivalencyTest, ContinuousEquivalencyTest

• Resolving Multiplicities + Handling Sensing Noise to deal with the two
edge-cases (a one-to-many or many-to-many mapping) in pairwise analysis
and ensure robust analysis in the presence of undesirable artefacts through
the use of continuous and discrete measures
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• Variance Classes - semantically-rich descriptions of geometric change :
Congruent, Construct, Remove, Position, Extend, Reduce, Replace

• Visualisation + Documentation of the variance present between CAD and
LiDAR to support manual geometric updates by CAD technicians

Finally the complete semantic change detector defined in this chapter is restated.
The classifier acts as the temporal analysis module of the urban update mecha-
nism sought by this research. It enables selective-reconstruction.

This represents the key contribution to knowledge presented in this chapter - it is
a closed-form semantic classifier for determining the differences between arbitrary
geometric representations - as a product of boolean predicates. This generalised
logic applies equivalently to both two dimensional and three dimensional geomet-
ric comparisons and is applicable to both continuous object representations and
discretized object representations.

Multi-Modal Architectural Deviance Detector

classify update operation with noise(A,B, t, dmax, emax) = (2.22)























































































construct, if (A = ∅) & (B 6= ∅)

remove, if (A 6= ∅) & (B = ∅)

position, if (A 6= ∅) & (B 6= ∅) & (meanerr(A× t, B) < dmax)

extend, if

(
∫

(A−B)
∫
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)

&

(
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replace, if
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||
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max(
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(A−B),
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(B −A))
∫

(A ∩B)
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)

where the input arguments A,B, t, dmax and emax correspond to:

A→ the out-dated (old) geometric representation
B → the up-to-date (newly-acquired) geometric representation
t→ the error minimising aligning transformation
dmax → the discrete (point-to-point) maximum deviant distance
emax → the normalised (intersect-over-union) maximum non-overlap ratio
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Chapter 3

Aerial Mass Reconstruction

What is it?

A data-driven algorithm for direct vectorization of aerial LiDAR and an extension to
support efficient parametric primitive based model optimisation.

Why does it exist?

In order to enable robust, efficient, accurate, unconstrained sparse reconstruction
of top-down architectural models from airborne lasers-scans.

How does it work?

By efficiently segmenting the range-images using the difference-of-elevations and
area-maximising region detection - followed by sparse vectorization and graph-
based constrained shape refinement and non-linear optimisation.

parallax building blocks...

Figure 3.1: an overview of the key stages in aerial mass reconstruction - from left to right:

an input aerial point-cloud, detected 2D footprint, segmented and refined 2.5D roofshapes,

the resultant projection model.
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3.1 Overview

This chapter addresses the problem of efficiently reconstructing sparse building
models from airborne point-clouds. It introduces an advanced variant of the seg-
mentation technique discussed in the previous chapter, which seeks to address the
limitations of using dense-surface representations to characterise newly acquired
building geometry. This aim of this chapter is to define and analyse reconstructive
operators capable of yielding sparse (compact), semantically-rich massing-models
given parallax (2.5D) LiDAR scans. The context of the chapter is in 3D mapping
and surveying with a particular focus on the suitability of generated geometry for
architectural visualisation.

The techniques presented build upon those covered in the previous chapter - how-
ever now the focus is geometry recovery as opposed to analysis.

An additional key desire is to recover geometric models that are analogous to mod-
els constructed manually by a human CAD technician. In order to enable this a
useful shape approximation paradigm is employed. The maximal-area : minimal-

primitives principle. At a high level the principle aims to ensure that in creating
sparse building mass models, the operator uses as few geometric primitives as
required to meet a user supplied error tolerance. This a vastly different from the
pre-existing techniques that frame the reconstructive process as a product of opti-
mising against high-level imposed topological features - such as regularity [167] or
smoothness [107].

Figure 3.2: a real world example to help clarify the maximal-area, minimum-primitives prin-

ciple - (left) an aerial scan of the Manchester public library, (center) the result of automatic

reconstruction with 2.5 dual-contouring [165] and (right) a manually constructed CAD model

- this figure illustrates the significance of the difference in the visual quality of geometric

representations resulting from automatic techniques relative to manual human creation -

the MAMP principle acts as a means of formally describing this difference and guiding algo-

rithms towards models similar to the manually created geometry - in-particular note how the

libraries’ quadrilateral entrance is represented as a single object in the manual model whilst

the automatic model uses a multitude of components which results in noticeable shading

artefacts - note additionally that this figure also illustrates a key limitation of most data-driven

strategies - i.e. their ability to handle (effectively represent) curvature.

The maximal-area : minimal-primitives (MAMP) principle is an incredibly simple
yet highly effective paradigm for airborne building reconstruction, and as such a
significant amount of attention is given to its exposition.

In this chapter the computational performance of the algorithm presented is evalu-
ated in terms of the following three critical attributes.
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• Geometric Model Accuracy

• Execution Time - Algorithm Runtime

• Brevity - Level-of-Compression - Compactness

To be clear, geometric model accuracy refers to how similar a reconstructed model
is to its source scan points - i.e. the geometric error between input and output, ex-
ecution time deals with the growth in algorithm runtime as a product of the size of
the input (i.e. its scalability), and model brevity is based on the ratio of the number
of vertices in an output model to the number of points in an input scan.

Recall from the literature review and background that these are the performance
properties that are ubiquitously shared by all building reconstruction methods (and
indeed all shape approximation methods).

To help clarify examples of concrete use-cases for the airborne reconstruction al-
gorithm defined in this chapter - one could conceive exploiting it:

1. As a method of automatically creating accurate 2D building footprints and
roof-shapes for digital maps of large urban districts.

2. As a means of supporting the process of automatically analysing the types
of architectural geometry present in a city-scale urban region.

3. As an automatic reconstruction operator for recovering aerial massing mod-
els of planar and non-planar architecture geometry from LiDAR - in order to
enable data-driven 3D simulation of the physical world.

For reference the key objectives, requirements and behavioural desires of the op-
erator are stated following. Remember this is the method of turning aerial point-
clouds into sparse parallax building mass-models.

• Geometric Accuracy (correctness/precise/error-bounded results) - such that
the reconstructed geometry can be used for surveying tasks, for which it is
imperative that the magnitude of each model’s error is quantified (and min-
imal). The volume of each reconstructed mass should mirror the volume of
the building’s mass in the physical scene.

• Maximising of the mean polygonal face surface area - such that the recon-
structed geometry embodies the topological structure typically associated
with manually constructed models. This is equivalent to saying the operator
should use the fewest (as few-as-is-possible-given-the-nature-of-the-input-
laser-scan) geometric primitives required to model each point-set whilst con-
forming to a user supplied error tolerance.

• Computationally Efficient - in the sense it exhibits roughly linear growth in
runtime as a product of the number of input-points, and not the exponen-
tial decay in execution time that is commonly associated with the prevalent
sparse reconstruction operators.

• Robust to Geometric Degeneracy and Sensing Noise - such that anomalies
(like ghost/shadow points, non-uniform sampling, and low and high frequency
scanner noise) do not prevent the recovery of accurate models - or detrimen-
tally influence the reconstructed geometry.
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• Independent of Point-Spacing (Density/Resolution) - in order to ensure sparse
architectural masses can be recovered for different (/irrespective of the) types
(classes) of airborne laser-scan supplied as input.

• Independent of Constraining Priors - such as the manhattan assumption or
the enforcement of pre-determined principal angles - in order to ensure true
data-driven polygonisation, that is capable of modelling virtually any class of
building without limitations on geometric form.

• Suitable for structured and un-structured airborne range-data - in order to
enable its ubiquitous exploitation on both scans from fixed-wing aircraft and
scans from unmanned drones such as quadracopters.

• Deterministic (Non-Stochastic) - such that the operator is capable of produc-
ing the same (an identical) result, given the same inputs repeatedly (time and
time again). In essence the output geometry should be a direct product of
the input laser-scans and the control parameters - nothing more. Reliance on
random-sampling strategies (such as RANSAC) should be completely omit-
ted in order to enhance stability.

• Controllable via Continuous Scale-Space Level-of-Detail - such that an end-
user of the operator can intuitively vary the scale of features present in the
reconstructed geometry - in order to include or omit smaller elements like
chimneys and air-conditioning units.

• Capable of Implicitly and Explicitly Modelling Curvature - in the sense that
it can automatically characterise non-linear roof-surfaces using both data-
driven and model-based reconstructive paradigms.

• Capable of Extension via User-Plugins - such that its reconstructive mod-
elling capabilities can be added to, post-compilation. In essence, the desire
is to be able to plug-in new geometry detectors later down the line, without
having to alter the operators underlying architecture.

Whilst some of the properties are obvious (for example computational efficiency,
geometric accuracy and robustness to sensing noise), others are less apparent
and largely the result of insights drawn from considering the limitations of the pre-
existing approaches. For example the requirement to maximise the mean polygon
face surface area and the independence from constraining shape-priors are key to
addressing the bloat associated with the reconstructive process and the limitations
of using fixed-form heuristic shape-approximation methods. The chapter shall re-
fer back to these properties during the discussion of the key algorithmic stages.
The vital thing to remain aware of throughout, is the result of demanding these be-
haviour characteristics of the technique proposed. There are critical benefits and
advantages that derive from conforming to these properties. Ultimately the rea-
son for demanding these behaviour characteristics is to ensure the reconstructive
method is capable of fast, accurate and sparse top-down building model recovery.

The remainder of this chapter is structured as follows:

• The background and context section recaps the key pre-existing approaches
to airborne building reconstruction from laser-scanned point-clouds. This in-
cludes considering the strengths and limitations of these dominant methods.
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The aim is to elucidate the research that inspired and informed the develop-
ment of the proposed automatic mass-modelling operator MAMMAL.

• The methodology section presents the approach taken to automatically re-
constructing sparse building models from aerial LiDAR. It begins with a com-
plete overview of the algorithm and then progresses to each of the process-
ing stages: segmentation, vectorisation, projection and optimisation.

• The experimental results section enumerates the outcomes of profiling the
performance and behaviour of MAMMAL using multiple aerial scans of the
cities of Bath, London and Manchester (UK) (at various point-spacings).
The section presents quantitative and qualitative measures of the algorithms
competence. A handful of smaller synthetic datasets are also considered to
help clarify abstractly where the approach fails in controlled experiments.

• The analysis and evaluation section contains high-level analysis of the air-
borne reconstruction operator. It considers and expands upon the results in
order to draw deeper insight from the experiments. Although the primary fo-
cus is quantitative analysis (determining the geometric-accuracy, geometric-
quality and level-of-compression of the reconstructive routines), it also out-
lines the key qualitative strengths and limitations of the proposed approach.

• The newly-added improvements and enhancements section details the po-
tential alterations that stand as future research to develop the operator fur-
ther. Each of the investigative tracks discussed aims to address one of the
three key evaluative factors - efficiency, accuracy or structural quality.

• The discussions and summary section provides a synopsis of this chapter -
revising the aims and outcomes and commenting on the implications moving
forward. It seeks to be concise and uses bullet-points to reiterate the key-
points, ideas and concepts introduced in this chapter.

Note: one of the key differences between this chapter and the previous chapter
is the manner of evaluation. In the case of semantic change detection the effi-
cacy of the operator can only be determined as a product of human input (desired)
variance labels. However in the case of aerial mass reconstruction the key perfor-
mance properties are purely a product of the variance between the input and out-
put. Essentially evaluation is simpler because it only requires the characteristics of
the output models and their deviance to the input point-cloud be evaluated. This is
vitally important - since it both greatly simplifies performance analysis (by removing
the need for human input) and (as a result) ensures that evaluation (in particular
quantifying algorithmic error) can be fully automated. This win represents one of
the key differences between classification problems and approximation problems.

Note: through-out this chapter, various buildings from the City of Bath, London
and Manchester datasets are used to illustrate the key-principles and stages. In
each instance the dataset is cited but as a high-level synopsis simply be aware that
the Bath dataset is the same airborne range-scan used in the previous chapter’s
semantic change detector - sampled at 1m point-spacing. The London dataset
covers a 10x10km2 region of the UK capitol - sampled at 50cm point spacing (and
represents an area of interest to one of the parties that funded this research).
Whilst the Manchester dataset is composed of scans at 25cm point-spacing. The
Bath dataset (although low-resolution) is useful because of the corresponding CAD

Page 108 of 301



CHAPTER 3. MASS RECONSTRUCTION→ 3.2. BACKGROUND AND CONTEXT

model which enabled qualitative comparisons to be made easily. The London
dataset is useful because it covers a reasonably large area that is also extremely
indicative of the architecture present in highly populated urban centers (i.e. it rep-
resents a vital real-world example of a city suitable for temporal revisions - that hap-
pens to also be of industrial interest). The Manchester dataset is useful because it
represents the higher resolution end of the currently available off-the-shelf (open-
access) data : and as such enables evaluation of the algorithms behaviour as the
point-spacing varies. It is also another good example of a city suitable for tem-
poral revision (since it changes frequently). Additionally the Manchester dataset
contains a number of highly irregular buildings that help determine how well gen-
eralised and applicable to real architecture the algorithm is. Although higher reso-
lution airborne scans can be achieved (50ppm+) such datasets are often commi-
sioned. In essence each dataset embodies key characteristics that enhance the
evaluation and analysis of the algorithm and its physical performance. Together
they help ensure the techniques proposed adapt well to different city-scale laser-
scans, and are not simply optimised for a specific geographic region.

3.2 Background and Context

3.2.1 Key Related Work

This section briefly recaps the most relevant related work.

It provides a synopsis of the most relevant pieces of research that have inspired
and informed the approach to aerial reconstruction proposed in this chapter. Al-
though (in the strictest sense) the newly proposed method is actually nothing like
them (in terms of its operation and performance traits), these two contributions
represent the current leading strategies. One is data-driven and one is stochastic.

Note: that due to the fact that both have already been examined in the case-studies
presented in the literature review - the aim here is simply to ensure the key aspects
of each are fresh in the readers mind.

Zhou & Neumann (2008-2013)

Qianyi Zhou’s and Ulrich Neumann’s 2.5D Dual Contouring collection [167], [164],
[165], [163], [166] - represents the dominant data-driven strategy that is referred
to in this chapter and the wider academic community. It has developed greatly
over time - yet has reached a point of stability and prevails in industrial contexts.
From an intuitive plane based mass-modelling method - it has gradually grown and
been extended to include heuristic data-driven logics for enhancing model quality
and dealing with irregularity. Note that although these extensions have increased
its execution time (from seconds to minutes) is it still far more efficient (and di-
rect a method) than Florent’s and Mallet’s approach. The key issue is that at low
resolutions model quality can suffer relative to the hybrid method discussed next.
Further more, their key topological enhancement (enforcing global regularities) is
designed primarily to address roofs composed of planar pieces - which means its
performance in the presence of curvature is not always satisfactory. However one
thing in particular that sets Zhou’s operators apart from other data-driven meth-
ods is the publicly accessible implementation - which makes performance analysis
and evaluative comparisons possible. As a result, it is the most academically cited
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approach within the field and acts as a basis for numerous other contributions
in the domain. One thing in particular (that this author really admires about this
approach) is the ideology underlying the proposed solution. Each sub-problem
is addressed analytically rather than through trial and error. Zhou relies on in-
sights regarding the built environment, alongside knowledge about the medium
and frames the solution in terms of closed-form geometric predicates and con-
structions. For example he exploits Eigen-vector analysis during classification and
a constraint based formulation to refine model topology. The result is a stable set
of operators that can be relied upon to deliver robust results repeatedly.

Florent & Mallet (2008-Date)

Lafarge Florent’s and Clement Mallet’s generalised collection [71], [72], [73], [156],
[67], [68] - represents the dominant hybrid strategy - and has also developed and
advanced over time. However there has also been the gradual inclusion of more
and stochastic techniques. On the one hand this is understandable (to an extent)
- since their research group also investigates photogrammetric solutions (MVS) -
alongside the reconstruction of actively sensed point-clouds. However this reliance
on random sampling has had the negatory effect of dramatically increasing the ex-
ecution time of their operators and they are currently orders of magnitude slower
than Zhou’s operators - taking hours to reconstruct city-scale scenes. Positively
though this helps to mitigate sensing artefacts and ensures that higher-quality
models can be produced even in the presence of lower resolution point clouds
(at less that 1m point spacing for example). One vital aspect (that this author in-
particular really admires about their approach) is that Florent, Mallet et. al were
amongst the first to recognise the need for a conglomerate strategy that could
freely mix distinct modelling paradigms in the construction of large urban scenes
from airborne point-clouds. However somewhat detrimentally (to their own aca-
demic proliferation - depending upon one’s viewpoint) they have patented aspects
of their operators - which has resulted in far less formal evaluation of their strategy
relative to Zhou’s and Neumann’s research.

***

In considering these archetypal contributions - one could say that Zhou and Neu-
mann lean towards geometric operators, whilst Florent and Mallet tend towards
computer vision strategies. This is the key distinction between them - and though
both have their merits - ultimately the methodology proposed in this chapter aims
more to follow in the footsteps of Zhou and Neumann. Note: that this does not
mean that the MAMMAL algorithm replicates Zhou’s approach - rather it points to
the fact that from an ideological perspective MAMMAL also tends towards analytic
geometric strategies in-place of traditional stochastic or probabilistic methods.

Before moving on to MAMMAL’s methodology - it is important to reiterate that the
novelty of MAMMAL is not a product of it solving a brand-new problem. Indeed
automatic building modelling is one of the oldest applications of active-sensing.
Rather the novelty is a product of the manner in which MAMMAL tackles a long-
standing (yet challenging) problem - and (in particular) the computational perfor-
mance of MAMMAL relative to these established methods. Essentially automatic
top-down building modelling from point-clouds is not in and of itself a new phe-
nomena. However fast, accurate AND sparse automatic building modelling from
airborne point-clouds is both new and highly advantageous.
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3.3 Methodology

The algorithm defined in this section is designed to robustly and efficiently extract
clean, compact, parallax architectural massing models from airborne laser scans
of urban regions - that are simultaneously accurate relative to the input and sparse
enough to be rendered interactively at city-scale.

Figure 3.3: Key Stages of the prescribed MAMMAL Algorithm

→ Maximal-Area 2.5D Mass Modelling of Airborne LiDAR

Figure 3.3 provides a visual indication of the four key stages which involve:

1. Segmenting the input laser-scan to identify buildings and roof-shapes.

2. Vectorising the segmented roof-shapes to create 2D polygons.

3. Projecting the vectorised 2D polygons into 3D space by minimising the point
to plane error - in order to generate parallax mass models.

4. Optimising the projected mass-models by non-linear procedurally-driven para-
metric shape refinement - based on an efficient error measure.

This part of the chapter discusses each of these stages, detailing for each the con-
siderations and algorithmic steps undertaken. It begins with a complete overview
of the airborne reconstruction operator, which is followed by the discussions of the
segmentation, vectorisation, projection and optimisation.

3.3.1 Outline

This section provides a brief outline of the structure of the newly-proposed MAM-
MAL algorithm. It covers the input and output data and provides pseudo-code to
clarify the lower-level behaviour details. For reference figures 3.4, 3.5 and 3.6 also
illustrate the key concepts and stages employed.

Inputs-Outputs

The MAMMAL algorithm takes as input: a DSM .asc file - a digital surface model
scan of the region to be reconstructed and a DTM .asc file - a corresponding digital
terrain model of the same region - (which is generally derived from the DSM).

The algorithm also exploits the following control-parameters (supplied as input-
arguments by an end-user): a scalar maximum point-to-edge footprint error (in
meters), a scalar maximum mean point-to-plane roof-shape error (in meters), a
scalar minimum intersection over union measure (a unit-less value in the range
[0:1]), a scalar minimum building height (in meters), two scalars denoting the min-
imum and maximum area of building footprints (in meters2), two scalars denot-
ing the desired minimum and maximum surface area of building roof-shapes (in
meters2), a scalar maximum local variance to control segmentation (unit-less and
positive), a flag specifying the model selection criteria to use for optimisation (a
string corresponding to the name of an instance in the enumerated type selector ),
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a boolean denoting whether or not is should apply procedural model optimisation
to the projected mass-models, and a boolean denoting whether or not watertight
roof-shapes are required (which determines if the output models must be manifold
or can be non-manifold).

MAMMAL returns the following outputs: a set of parallax 2.5D building mass-
models (each composed of two sets of triangulated facets - the first set models
each building’s roof-shapes and the second, each building’s walls), a set of ap-
proximate vegetation models (constructed by positioning simple tree icon models
at the loci of the maximally inscribed discs of non-architectural segmented point-
sets) and debugging data (in the form of colour-coded point-clouds for the segmen-
tation stage, 2D master-plan shape files for the vectorisation stages and 3D error
visualisation point-clouds and volumes for the projection and optimisation stages).

Note: the terms optimisation and parameterisation are used interchangeably in
this chapter to refer to the process of procedural geometry enhancement.

Additionally (to aid exposition) figures 3.4 and 3.5 provide alternative pictographic
representations of the inputs and outputs of the algorithm. Figure 3.4 details the
inputs and outputs of the four key stages whilst figure 3.5 provides a flow-chart
styled schematic of the complete method.

Figure 3.4: an outline of the key stages in aerial LiDAR vectorisation presented in tabular

form - each column summarises the details of a particular stage such that the order of read-

ing is top-to-bottom, left-to-right.

Figure 3.4 aims to communicate the relationships between the output data pro-
duced by each stage and the input data of each subsequent stage. For example
you’ll notice that the output of segmentation feeds directly into the vectorisation
stage and the vector shapes derived from vectorisation feed the projection stage.

Figure 3.5 clarifies how the input, algorithmic control arguments and outputs fit
together to form a coherent stand alone reconstructive unit. The structure of the
MAMMAL algorithm is best described as a sequential pipeline which results in a
composite scene-graph formed of a set of different types of polygon-mesh.
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Figure 3.5: schematic high-level overview of the proposed technique - the top row indi-

cates the input data (dsm and dtm), the central block outlines the body of the method, and

the last row the nature of the output scene-graph.

Note: (regarding the use of regularly spaced gridded DEMs). The operator ac-
cepts structured digital elevation models as input. This decision was made for a
number of reasons. Firstly for their availability. DEMs are readily accessible by
many researchers and practitioners in the architectural and geometric communi-
ties - whilst access to city-scale unstructured scans is still somewhat exclusive.
Secondly structured DEMs offer an incredibly efficient point storage mechanism,
since for each point a single decimal value is required (the elevation) - whilst for
unstructured scans, for each point, a minimum of 3 decimal values are required
(the x, y, and z coordinates) with the potential for more (if surface-normal, point-
intensity and RGB measures are also incorporated). Thirdly ESRI’s digital ele-
vation standard is well integrated with the existing GIS systems. Fourthly DEMs
are increasingly becoming cheaper to acquire relative to the cost of unstructured
airborne scans - with many providers (such as the Environments Agency) offer-
ing nationwide coverage freely for both academic and industrial use. Fifth, due to
their regular gridded nature (a 2D matrix), structured DEMs are highly amenable
to many of the pre-existing image-processing algorithms.

Pseudo-Code

Figure 3.6 provides a clearer outline of the procedural steps employed in order to
turn the input airborne range scans into compact 3D building models. The follow-
ing is a slightly more involved representation than the equivalent overview code
provided in the previous chapter. This is simply because the algorithm is slightly
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more involved than its predecessor. However the use of human-readable variable
and function names aims to make the logic as readily digestible as is possible
(given the complex nature of the problem). The main for loop is applied to each
segmented building object in turn, in order to perform the vectorisation, projection
and optimisation stages. The output (return value) scene-graph is composed incre-
mentally as each segmented building is polygonised. The important aspect of this
pseudo-code is the flow of information between the individual processes. It states
which features of the input point-cloud are exploited to address each sub-task.

Figure 3.6: high-level pseudo-code of the airborne mass reconstructor

Once again type statements are omitted so as to ensure the code is generic and
flexible. Interestingly, although this appears to be quite a high-level representation,
it is actually a direct copy of the function MAMMAL, which was implemented in
C++, C# and Java. Having read this you should have a clear idea of algorithm.
The only thing that may be ambiguous is the precise nature of the sub-routines that
are invoked (such as graph refine(), optimise() and maximal area segment()).
The explanations presented in the methodology section resolve these ambiguities.
In truth an experienced engineer could easily reproduce a working variant of the
algorithm, just from this description, however there are a number of critical factors,
which (if overlooked) have the potential to degrade its performance. One of the key
aims of this chapter is to demonstrate the manner in which a reasonably standard
processing pipeline (segment, ..., polygonise) can be refactored using simple data-
driven logics in order to both maximise the computational efficiency and to actively
control the topology of output building models.

Finally before progressing to the body of the approach - the following figures depict
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both the input data and the types of derived data that are exploited by the airborne
mass-reconstruction algorithm defined in this chapter.

Figure 3.7: a digital surface model (left) and digital terrain model (right) of a portion of the

City of Manchester dataset - at 25cm point spacing - this illustrates one the datasets used

during exposition of the MAMMAL algorithm, its analysis and its evaluation - it is rendered

with the elevation at each point mapped to pixel intensity such that lighter areas correspond

to higher altitudes and missing data is indicated with fully transparent pixels.

Figure 3.7 illustrates the key pieces of input used by the aerial (top-down, 2.5D)
building vectoriser. Figure 3.8 on the other hand illustrates a photograph of the
region for qualitative comparison and a surface-normal map, computed by applying
the Sobel operator to the digital surface model.

Figure 3.8: an aerial photograph (left) and Sobel derivatives (right) for the region of the

City of Manchester dataset indicated in figure 3.7 - the Sobel derivatives provide estimates

of point-normals for the algorithm based on a pixel neighbour image-processing operation,

whilst the aerial image (courtesy of Google maps) which is not used in geometry recovery,

provides a visual representation that a human can use to perform qualitative comparisons.
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3.3.2 Segmentation

The first step in the MAMMAL algorithm is to break down the input point-cloud
into salient clusters of points. To achieve this a two-stage segmentation method
is applied to the input point-cloud. The first stage isolates individual buildings.
The second stage identifies individual roof-shapes within each building. In or-
der to segment each building, the difference of elevation models (exploited in the
previous chapter) is first applied. In order to segment each building’s constituent
roof-shapes, a novel segmentation algorithm (named MARS) is exploited. The
core idea of the MARS algorithm (Maximal-Area Roof-shape Segmentation), is to
ensure that as-large-as-is-possible (given an error tolerance) segments are gener-
ated, by actively suppressing non-conformal clusters of points. The reasoning (as
previously stated) is that larger output per-face surface-areas are both indicative
of manually constructed CAD models and more efficient to polygonise. This initial
segmentation stage is critical to enabling this in the sense that it is responsible
for ensuring that the subsequent reconstructive stages are fed, clean semantically
meaningful structural divisions of each building.

To support the explanation of the segmentation stage, a number of critical aspects
are first considered, before the detailing of the two sub-tasks.

Foremost the input is a surface and terrain airborne range scan. The output is a set
of integer identifier labels that map each point in the input surface scan to a distinct
building, and a set of integer identifier labels that map each point in each building’s
point-cluster to a distinct roof-shape. In essence S(dsm, dtm)→ {B,R}: where S
denotes the segmentation function, dsm and dtm (respectively) denote the surface
and terrain DEMs, B maps to the output building labels (a 2D matrix of integers)
and R to the output roof-shape labels (again a 2D matrix of integers). Where
|dsm| ≡ |dtm| ≡ |B| ≡ |R|. Note: the convention used is to assign ground (terrain)
or clutter points to group zero (0), such that values in the output segmentations
greater than zero each map to a point in a salient region.

The next subsection provides a brief recap of the difference of elevation models
building segmentation method defined in the previous chapter.

Difference of Elevation Models Building Segmentation

To segment building footprints the difference-of-elevation-models is calculated by
subtracting the input terrain-model from the input surface-model. This yields a
matrix of normalised scalar elevation values. The matrix is passed to a threshold
function which omits elements with value less than the user-supplied minimum
building height (in meters). This in turn yields a set of disjoint clusters of points,
which are extracted using a connected-component routine. At a high-level this has
the effect of removing all points close to the ground terrain, leaving behind points
corresponding to architecture. Clusters are then filtered in order to remove any
remaining vegetation, vehicles, street-furniture and clutter, using a linear classifier.

Recall (from the previous chapter) that the classification features were inspired
by the tree-detection constructs of Chen et al. [15] and the covariance-analysis
derived discriminant features of Zhou et al. [162]. The weight associated with
each feature was initially learnt using a support-vector-machine and then manually
refined by hand to enhance performance at varying resolutions. As pointed out by
Zhou, this type of problem can be addressed with many other linear-discriminant
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algorithms.

Figure 3.9: a linear type classifier automatically filters manmade architectural elements

from vegetation and clutter : (left) input points, (middle) intermediary derivatives and (right)

class labels (blue=manmade)

Figure 3.9 revises the result of the type-classifiers application to the city of Bath
dataset. The right-hand image illustrates the segmented and classified objects,
with blue regions denoting the building point-clusters and green the vegetation -
the black points correspond to terrain and clutter.

Another point to recall is a subtlety of the classifier’s behaviour. A key difference
between the algorithm and its predecessors it that, although it computes point-level
features, it actually classifies types at an object-level. In revision, the formula for
the linear point-cluster type-classifier is:

f(A,man, ~w) =
(w1AD + w2AP )× (1−AS)

w3AA + w4AV
< 1 (3.1)

where: AD, AP , AS are scalars measuring the object’s disparity, planarity and
stability respectively. AA and AV refer to the objects footprint area and volume
respectively. The influence of each component is controlled by the weights w1−4

of the vector ~w. Intuitively (recall that) this means the greater the mass of an
object the greater the likelihood it is manmade, whilst ensuring that as disparity
increases and non-planarity dominates, the likelihood of an organic element rises.
Inverting the stability measure ensures that complex or curved manmade objects,
that exhibit significant continuity, are not mistakenly treated as organic.

Figure 3.10: DoEM clusters (left) with normalised building-clusters (right)
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Since the difference of elevation models building segmentation has already been
detailed in the previous chapter, this recap is brief and does not repeat each of
the implementation considerations. Readers that require a deeper outline should
refer back to the previous chapter. Figure 3.10 illustrates the outcome of the dif-
ference of elevation models applied the subset of the city of Manchester dataset
depicted in this section’s overview. The image on the left displays the output build-
ing label matrix with each integer value mapped to a pseudo random colour. The
right image displays the elevation of the original range points with the elevation-to-
intensity colour mapping handled on a per-building-cluster basis (as a product of
the segmentation). In particular you can already see the benefit of isolating indi-
vidual objects before attempting to segment roof-shapes. In the image on the right
the structure of each roof surface is represented more clearly than in the original
digital surface model rendering (figure 3.7 - which has elevation values normalised
globally for the whole dataset). This is another product of identifying salient re-
gions in the input with connected-component extraction.

Based on the result of object segmentation and classification (depicted in figure
3.9), the MAMMAL algorithm then sub-segments each cluster of building points in
order to localise on individual roof-shapes. This is handled by the newly-proposed
MARS algorithm, which is discussed in detail next.

Maximal-Area Roof-Shape Segmentation

The aim of the MARS algorithm is to break down each disjoint cluster of building
points into sets of roof-shape point clusters. For each cluster of building points P
the goal is to label each of its points pi ∈ P as belonging to a single group: g. Such
that the result of roof-shape segmentation is a mapping function, M(P, pi) → g,
which describes the relationship between each point in a segmented building and
the roof-shape it belongs to. This method computes the second segmentation
mask R referred to earlier.

This subsection explains the three main components of the algorithm - which are
graph-labelling, the application of connectivity constraints and non-conformal sup-
pression of clusters that invalidate the maximal-area property.

Note that although the disjoint nature of building point-clusters makes it easy to
extract connected-components during the difference-of-elevation-models stage, in
order to effectively segment roof-shapes, a more involved technique is required,
since neighbouring points (that are adjacent) may not belong to same roof-shape.
Hence a graph-labelling strategy is employed. The benefits of the graph labelling
over similar techniques (such as region-growing and quantization) are its efficiency
(in terms of compute time and memory use) and the guarantee of a commutative
return (since a bi-directional graph and connectivity predicates are used, the order
of evaluation will not impact the formation of roof-shapes). The method is concep-
tually incredibly simple. The first step is to iterate over all the points in the input and
for each individual point’s neighbours determine whether a connective graph edge
exists between the two. This results in the aforementioned bi-directional graph.
Then connected graph components are extracted by taking the minimal spanning
tree of each disjoint graph region. For structured data (such as the rasterised
DEMs) there will be many minimal spanning trees for each region (since the dis-
tance between neighbouring points is constant) whilst for unstructured data there
will be one or more. However in both cases the nature of the MST will not matter,
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since it is only used to group contiguous sets of points. This is because the edges
of the MST are not required for any further processing.

The positive aspect of this is that it will not matter which initial point is selected in
the first round of grouping points since for any two points a simple predicate tests
whether they belong to the same region. Simply put using the bi-directional graph
of local point connections, two points belong to the same roof-shape if a path or
edges exists between them. The simplicity of the strategy is not the only benefit.
When an image-based DEM representation is used, each of these stages can be
computed in linear time relative to the size of the input. This is because for each
point a constant number of evaluations is necessary (which is controlled by the
neighbourhood size - 4-way or 8-way). In the case of unstructured data however,
although the logic is the same, the local connectivity tests will vary (in their exe-
cution time) proportionally to the number of points in each neighbourhood. This is
controlled by the neighbour radius or count used for the lower level point-location
queries. As many have pointed out [87], [52], [60] there is generally an exponential
growth associated with larger support-radii in nearest-neighbour construction for
3D point-sets. This should explain the predominant use of discretized DEMs, since
instead of having to traverse an oct-tree or volume (to speed up spatial queries),
the algorithm can simply index into a regularly spaced grid representation. This a
product of the parallax nature of airborne scans and generally is not applicable to
arbitrary point-clouds.

Having outlined the graph labelling, the next detail is the connectivity predicates
that are applied to individual pairs of points to test if they are contiguous. Three
attributes of the input points are exploited to achieve this. These are the variance
in: the elevation of points, the derivative of points (surface-normal) and the conti-
nuity of each neighbourhood (as a measure of curvature change). The following
expressions formalise these predicates:

• Elevation: f(p, q) = ||py − py|| < α

• Surface-Normal: f(~ni, ~nj) = (||~ni − ~nj || × 0.5) < β

• Curvature: f(ci, cj) = ||ci − cj || < ω

The elevation term considers the difference in height between points p and q using
the height-change threshold α. The surface-normal term evaluates the magnitude
of the difference vector between two unit normals ni and nj derived from a pair
of point neighbourhoods with values less than β denoting region continuity. Note
there is a non-linear relationship between the magnitude of the difference of the
unit normals and their angular variance. One could alternatively use the distance
between them on the Gaussian sphere. This simpler formulation presented relies
on the fact that the greatest variance vector between two unit normals centred at
the origin has magnitude two. The primary reason for this expression is compute
speed relative to the spherical angular distance. The curvature term determines
the difference between two points as a product of measuring the curvature and
thresholding with ω as the largest acceptable deviance in curvature between two
adjacent points that belong to the same region.

The application of these measures of connectedness in conjunction with the graph
labelling routine results in a data-driven subdivision of each building’s point-cluster,
based solely on the local properties of points.
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However, due to the nature of the input data (riddled with low and high frequency
sensing noise) this stage generally results in an over-segmentation, since points
that may actually belong to the same roof-patch may be treated as distinct as a re-
sult of the sampling artefacts. However this is not a problem and is actually key to
the algorithm’s efficacy. By over-segmenting in this low-level manner the operator
ensures that each building point-cluster is broken down into stable but potentially
verbose sets of regions. This enables the maximisation stage discussed subse-
quently. Note: the scope of the over-segmentation is controlled by the thresholds
used during evaluation of the connectivity-predicates - which are specified by an
end user.

The last stage in the MARS algorithm is to suppress roof-shape clusters that do
not conform to the user supplied minimum roof-shape surface area. This key pro-
cess ensures that less verbose segmentation masks are returned. It is vital to
the notion of maximising the mean surface-area of roof-shapes. One can think
of this as analogous to non-maximal-suppression in signals processing. Although
here it is implemented in a geometric sense. In essence the aim is to refactor
small, noisy roof-shapes that typically correspond to chimneys, aerials and air-
conditioning units so as to yield cleaner, more compact segmentations. Further in
an ideal world the refactoring routine should also minimise its impact on an output
segmentation’s structural accuracy - such that it acts simply as a scale-space fea-
ture suppressing filter.

Two iterative non-conformal suppression routines are exploited by the MARS al-
gorithm. The first operates by incrementally merging small non-conformal clusters
with their dominant conformal neighbouring roof-shapes. The second operates
by merging small non-conformal clusters with other non-conformal neighbouring
clusters in an attempt to ensure conformal clusters.
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Figure 3.11: MARS’ suppression of non-conformal point-clusters significantly reduces the

cardinality of the segmented set, whilst retaining the structure of each division - (top-row)

vertex-lit, (bottom-row) unlit (for clarity)

Figure 3.11 seeks to clarify the outcome of the non-conformal suppression stage of
the MARS algorithm using the example of the Manchester public library. It depicts
(on the left and center) the raw roof-shape segments (generated by applying the
local-connectivity constraints and graph-labelling) and (on the right) the refactored
roof-shape segments (generated by applying the iterative suppression methods
described above). The top row displays the same result as the second with the
difference in appearance resulting from toggling lighting. The factor that should
be noted (in particular) is the removal of small noisy segments, such as those
present in the middle of the central dome. If you zoom in you’ll notice numerous
roof-shapes have been refactored into a single representative roof-shape. The
unlit row aims to make this more apparent. Although the change is subtle (when
viewed at a distance), it has important implications for the polygonisation stages.

The core idea is that whilst the visual appearance of the refactored segmenta-
tions are equivalent from a human perspective, from a computational perspective,
the cardinality of the set of roof-shape segments has been dramatically reduced,
from thousands down to tens. The reason this is important is because the greater
the number of roof-shapes, the increase in the latency of the vectoriser applied
subsequently. Essentially an excess of small un-important clusters degrades the
performance of the transition from points to vectors, both in terms of execution
time and topological quality. The refactoring applied by the MARS algorithm not
only enhances efficiency, but supports the key reconstructive principle exploited in
this chapter, that of maximising the mean surface-area of roof-shape faces whilst
conforming to a user-supplied error tolerance. Combining DoEM segmentation
with MARS results in fully automatic building and roof-shape segmentation (figure
3.12).
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Figure 3.12: roofshape segmentation identifies sub-components

Figure 3.12 illustrates the outcome of the MAMMAL algorithm’s segmentation on
a subset of the Manchester dataset (depicted in this section’s overview) in order
to help clarify the behaviour described. The left-hand image depicts segmented
building point-set clusters rendered with pseudo-random group colours. The right-
hand image depicts each building’s constituent roof-shapes again rendered with
pseudo-random group colours. In both images the ground terrain and filtered clut-
ter are indicated by gray points. The minimum footprint area for the left-hand result
is set at 40m2 whilst the minimum roof-shape area for the right result is set at
10m2.

One other important aspect of this approach is the scope for an end user to vary
the level of detail present in each building’s roof-shape mask.

Continuous Scale-Space Level-of-Detail

A vital feature of the algorithm (relative to the pre-existing methods) is the ability to
continuously vary the level of detail of the output projected models, by varying the
input (user-supplied) roof-shape area range. Figure 3.13 illustrates this. The core
idea is to do away with discrete level-of-detail strategies (as in [156]) in favour of a
means to smoothly alter the LOD.

Figure 3.13: continuous-level-of-detail segmentation enables the MARS segmentation

algorithm to characterise each building at different scale-spaces

The benefit of the approach is that it enables the grain-of-features present in re-
constructed buildings to be controlled intuitively using a real-valued scale slider
(in meter2). This means an end-user can exploit the algorithm to recover both
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accurate models (that capture precise roof-structures) and compact models (that
mask insignificant objects on roofs), as well as a wide variety of options in between
both extremes. The powerful thing about this approach is that it enables an end-
user to control a key property that would otherwise have been pre-determined.
This feature is driven by the non-conformal suppression stages of the MARS algo-
rithm. Though it is important to note that although the method strives to resolve
roof-shape segments so as to conform to the supplied minimum-roof-shape-area,
the refactoring routine does not guarantee this. However practically (for all the
experiments discussed in §3.4) the presence of non-conformal (small) roof-shape
clusters did not impact the mean surface area of the resultant roof-shape faces
detrimentally. In all cases the mean area still exceeded the user supplied min-
imum. Essentially the algorithm refactors as much as is feasible, based on the
geometry of each building’s roof and the stability, disparity and variance of the
resultant merged roof-shapes. As further explanation of this the underlying rea-
son is that in some instances, suppressing a small cluster of points can have a
significant effect on the geometric accuracy of the output model, since for archi-
tectural elements such as spires (tapering conical or pyramidical structures), their
omission can significantly alter the result. Ultimately there are particular types of
roof-feature that (though small in area) cannot be suppressed without butchering
the output building.

In summary, segmentation in the MAMMAL algorithm is a two-stage process that
first identifies buildings (using the difference-of-elevation models method) and then
identifies individual roof-shapes in each building (via a novel maximal-area roof-
shape segmentation algorithm). The output of segmentation is fed directly to the
vectorisation stage which is why it is important to ensure clean, structured divisions
are generated. The key advantage of the proposed strategy over the pre-existing
algorithms (such as [142], [163] and [31]) is the ability to handle both planarity
and curvature in a data-driven manner. Additionally the method is computationally
efficient (in terms of execution time) and supports continuous scale-space level of
detail (as a means for end-users to control the grain of features present).

So having isolated salient clusters of points, the next stage in the MAMMAL al-
gorithm is to polygonise each set of segmented points in order to yield 2D vector
shapes for each detected building. Although one may wonder - why not simply
generate 3D models once segmentation is complete? The answer is a result of
a preference for computing in as low a dimension as is possible. Since dimen-
sion reduction is generally beneficial in terms of improving efficiency by reducing
problem complexity. Additionally the recovery of 2D shapes (prior to 3D models)
enhances the applicability of the MAMMAL algorithm to both 2D map-updating and
3D model-reconstruction.

3.3.3 Vectorisation

Vectorisation is the process that turns clusters of segmented points into vector
shape data. MAMMAL achieves this via scan-conversion (that yields accurate
dense vector-shapes from clusters of points) and polygon-simplification (which
sparsely approximates each dense vector-shape). The method exploits a regular
cartesian grid to extract extremal (footprint) boundaries and interior (roof-shape)
boundaries from segmented point-clusters. Predicated on the 2.5D assumption
this is achieved efficiently in two dimensions. The underlying insight is that the
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structure of the parallax geometry can be characterised in a lower dimension and
projected into R3 with minimal loss of information. The regular grid representation
enables constant time point-location and neighbourhood queries which ensures
the extraction of dense vector shapes executes in roughly linear time relative to
the number of input points. Three key features are discussed next. The means
of verifying accuracy in 2D, the approach to efficiently refining sets of co-related
shapes and the algorithm’s functional approach to 2D shape approximation.

Measuring Geometric Error in 2D

One of the key components of any vectorisation strategy is the method of cal-
culating geometric error. The aim is to quantify the fit of an approximate shape
relative to a target shape. The MAMMAL algorithm uses the discrete point-to-
edge distance between a dense vector and a sparse approximate, coupled with
the continuous intersection-over-union shape-matching test. They act as the basis
for validating each sparse approximate vector shape. The point-to-edge distance
(Hausdorff distance) is useful because it prevents points deviating from the target
shapes boundary, whilst the shape overlap test ensures that the interior region of
a shape is preserved.

Formally the aim of 2D polygonisation is to simultaneously minimise the Hausdorff
distance between a point-clusters dense boundary and an approximating polygon,
whilst maximising the intersection over the union of the region bounded by the
polygon and the area represented by the point-cluster in 2D space. This can be
stated algebraically with the following expressions:

minx ∈ R (x = f(A,B)) s.t. (A ∩B)/(A ∪B) ≥ α (3.2)

f(A,B) = max(||Ai − (Bj , Bj+1)||) ∀i ∈ A : ∀j ∈ B

where A and B are (respectively) the approximate and target shapes, (A∩B)/(A∪
B) is the intersection over the union of A and B, α is the minimum ratio (a scalar
in the range [0:1]) and ||Ai − (Bj , Bj+1)|| is the geodesic distance between vertex
i of A and edge j → j + 1 of B. You’ll notice there is the trivial solution when A=B
which is an undesirable outcome. Hence rather than seeking to find the globally
optimum solution (which would mean returning the input unrefined) - the algorithm
instead seeks to minimise the number of vertices in the approximate vector-shape
under the constraint that (A ∩B)/(A ∪B) ≥ α and hausdorff(A,B) ≤ errmax.

The Hausdorff distance yields positive scalar values whilst the intersection over
union test returns unit-less values in the range [0:1]. By combining the two expres-
sions with the logical AND operation the effectiveness of the error measure is en-
hanced relative to exploiting only one of the measures in isolation. In essence the
MAMMAL algorithm considers both the boundary and interior of a pair of shapes
when determining the error between them. The primary reason is to improve the
error measure’s robustness. It also enables the introduction of heuristic approxi-
mation strategies whose return may deviate from the target shape since there is
a stable means to determine how well the approximate fits. However before dis-
cussing the simplification strategies employed, the next block covers the process of
scan-converting the segmented point-clusters in order to generate dense bound-
ary representations of each building’s ground-aligned footprint and constituent
roof-shapes.
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Scan-Converting Cartesian Grids for Efficient Boundary-Extraction

Before simplifying each 2D boundary representation, the MAMMAL algorithm must
first determine an accurate (although verbose) boundary, that can be used as a
target shape during simplification. As stated this is achieved by linearly travers-
ing boundary edges in a discrete cartesian grid of region labels. Although there
are a number of competing methods for 2D boundary extraction, the method of
scan-conversion proposed is advantageous for a number of reasons. Figure 3.14
summarises the behavioural properties of the boundary extraction methods con-
sidered during development.

Figure 3.14: comparison of 2D hull construction algorithms

In figure 3.14, the properties in the header of the table indicate: whether the algo-
rithm can deal with co-linear points in the input, whether the algorithm can repre-
sent concave shapes, whether the algorithm recovers interior (non-simplectic) hole
boundaries, whether the algorithm returns an extremal hull that uses the minimal
area required to represent the input, whether the algorithm can be exploited in a
fully automated pipeline, and the complexity of the algorithm in terms of the growth
in execution time as a product of the number of input points (n) and the number of
output vertices (h).

In particular, note that although the α − shape supports the extraction of interior
holes, one must first determine an effective α value (which is the radius of the cir-
cumscribed circle used to test for edges between points). This α value controls
the extent of the simplification, however although it is intuitive to understand, it is
non-trivial to estimate for arbitrary point-sets. The linear boundary edge traversal
(LBET) approach on the other hand, meets each of the requirements set out in
the table whilst also being highly efficient. One key difference between LBET and
the alternatives (that must be noted) is that it relies on a discrete cartesian grid
- since it is effectively an image processing operator. Further unlike the alterna-
tives (that treat input points as entities with infinitesimal area) the LBET method
explicitly exploits an area based representation in order to counter issues such as
co-linearities and the potential for degenerate vector output.

Figure 3.15 seeks to clarify this subtlety by stepping through the processes of pixel-
traversal and edge-traversal in order to illustrates the limitation of the former. The
thing to take note of is that the pixel based method (top-row) eventually reaches a
point for which there is no succeeding immediate neighbour (top-right-cell), whilst
for the edge based method this does not occur. This is the key difference - even
given a single point as input the edge-based method will return a non-degenerate
boundary whilst all methods based on zero-area points will return a degenerate or
null boundary.
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Figure 3.15: Boundary Pixel Traversal against Boundary Edge Traversal of a cluster of

points. Note the problems that can occur when the sample-points are treated as if they

have infinitesimal area : (top-right-cell) traversal breaks due to the lack of a succeeding

neighbour point

One other vital feature of the dense LBET hulls is that they provide vector repre-
sentations that can be used to perfectly reconstruct the 2D boundaries of each of
the clusters of segmented points (without the loss of information) using a discrete
grid. This property, coupled with the non-iterative nature of the algorithm make it
ideal for fast and accurate vectorisation. However the issue is that they are heavy-
weight descriptors and not immediately suited to visualisation. The next processes
in vectorisation seek to transform the dense LBET hulls into edge-length maximis-
ing compact vector shapes.

To revise, the MAMMAL algorithm extracts dense boundary representations for
clusters of segmented points prior to 2D shape simplification, using the linear
boundary edge traversal method. The heavy-weight vector descriptors that result
act as the target-shapes during the approximation process.

Graph-Based Topology Refinement in 2D

Graph-based topology refinement deterministically optimises the dense vectorised
roof-shapes. The key difference between the algorithm’s approach to refinement
is that unlike shape-approximation, the result of graph refinement is a strict subset
of the input dense points. This aspect is vital. In essence each graph refinement
is a direct product of the input roof-shapes. Figure 3.16 illustrates this. You’ll no-
tice that the approximate footprint (in red) includes vertices that are not present in
the dense footprint, whilst the graph refinement roof-shapes are constructed using
only the points present.

The core aim of the graph-based topology refinement is to provide an error-bounded
simplified version of the dense LBET hulls recovered during boundary extraction.
The reason simplification is necessary is that it significantly reduces the number of
vertices used to represent each hull, which not only minimises subsequent com-
putation time but also enhances the visual appearance of the 2D vector shapes
used to characterise each building on plan.

The input to the graph-refinement is a set of co-related dense-vector shapes (re-
covered by LBET) and the output is a set of co-related sparse-vector shapes. The
underlying idea is to rely on the association of dense paths between the bound-
aries of neighbouring roof-shapes. The MAMMAL algorithm effectively anchors

the simplification process at the ends of these shared-paths such that each roof-
shape can be simplified by simplifying a sequence of paths, whilst maintaining the
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manifold nature of the dense input. In essence the goal is to refactor each set of
roof-shapes whilst ensuring that each transformed ’net’ of roof-shapes is consis-
tent and free of gaps and cracks. This approach relies upon the observation that
for discrete integer masks one only needs to ensure that shared edges between
neighbouring shapes are simplified in a commutative manner in order to ensure
a watertight return. The commutative constraint is required because there is no
guarantee that the ordering of the vertices in shared paths between neighbouring
shapes will be the same. The implementation of this rather simple. First compute
keypoints (as pixel intersections that make contact with three or more distinct roof-
shape hulls - based on a regular cartesian grid). Then for each dense roof-shape,
split it into a set of open paths, about the vertices that correspond to the anchoring
keypoints. For each open path (in each roof-shape) apply a commutative (indepen-
dent of order) simplification function to reduce the number of vertices. Finally (for
each roof-shape) merge the set of simplified open-paths to yield the graph-refined
hull.

The approach has 3 key benefits over existing methods of approximation:

• Direct and Unconstrained - in the sense that this function represents the data
present without resort to fitting or sampling or constraint-based strategies.
The output is purely a product of the input dense-hulls and the maximum
(user-supplied) roof-shape error-tolerance.

• Embodiment of Topology - in the sense that shape neighbourhoods (in par-
ticular shared edges/paths that exist between neighbouring shapes) are pre-
served (remain consistent) during simplification. This means if a manifold
shape-net is supplied as input then a manifold shape-net will be returned as
output by the function. This is a useful benefit.

• Computational Efficiency - since this represents a non-parametric function -
it is also non iterative to compute - in the sense it is invoked once for each
building’s vectorised dense roof-shape net. Furthermore the sub-process
of identifying (and splitting about) anchoring keypoints actually has the un-
intentional benefit of speeding up each roof-shape’s simplification, by simply
breaking each down into smaller more efficiently processed dense-paths.
Additionally it is possible to improve further by only simplifying the first in-
stance of a pair of shared paths and simply propagating the first unto the
second. However for this one must be careful to preserve the correct wind-
ing order of the duplicate.
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Figure 3.16: the process of 2D graph refinement vs heuristic shape approximation at 25cm

point-spacing illustrating (from left to right, top to base) input-points, normals, segmentation

labels, footprint (dense in gray, approximate in red) and finally roofshapes (dense in gray,

shape-graph in blue)

Fundamentally, the graph-based topology refinement is a data-driven approach to
simplifying sets of co-related shapes in two dimensions that guarantees to pre-
serve the manifold nature of the input dense shapes. However because it is data-
driven it does not suppress undesirable artefacts that may result such as spikes
and significant perturbations in boundaries. This makes the previously discussed
segmentation stage vital. Since this can only simplify that which it is given, if
dense-hulls for un-refactored segmentations are supplied as input, they are pre-
served in the output. Although one could add a post processing step that sup-
presses such features, the result would be reducing the accuracy of the simplifica-
tion and potentially invalidating the manifold property of the returned sparse-hulls.
In some instances this may not be a problem, and so rather than force an end-user
to use manifold shape-nets, the MAMMAL algorithm provides a switching flag that
controls whether or not the output should be watertight. If watertight vectors are re-
quested by an end user, then the graph-refinement occurs precisely as described.
However if the user does not require watertight models, a further shape suppres-
sion stage is applied (similar to the non-conformal suppression used by the MARS
algorithm), which further enhances the visual appearance of each sparse-hull but
may invalidate the manifoldness of the return.

Figure 3.16 illustrates this process using a building from the Manchester dataset.
Again the vital thing to note, is the difference between the approximate hull (base-
left), and the graph-refined hulls (base-right). The graph-refined hulls are a strict
subset of the input dense-hulls (in gray) whilst the approximate introduces new
vertices that are not present in the input.

Note though, that graph-refinement does not enforce any topological or geomet-
ric priors. This allows effective data-driven characterisation of a set of shapes,
however it also means that there is no enforcement of right-angles, edge-length
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regularity or shape-symmetry. Fundamentally the graph-refinement aims only to
efficiently characterise the data-present. In some instances however, it is desirable
for an algorithm to introduce new vertices in order to enforce constraints on the ge-
ometry returned. Rather than fit lines (as [129] and [73]) the operator exploits 2D
shape approximation functions.

One such approximation function (the hough-eat-away-hull) is illustrated in figure
3.16. The next subsection outlines these functions in greater detail.

Shape Approximation in 2D

The MAMMAL algorithm exploits 2D shape approximation functions to further en-
hance the visual and structural quality of each building’s sparse 2D vector shapes.
The core aim is to enable constraints and heuristic priors about shape arrange-
ments to be enforced. In essence these functions allow highly specialised shape
detectors and common shape detectors to be embedded within the algorithm’s re-
constructive logic. The primary reason is suitability for interactive simulation and
visualisation - where compact (edge-length maximising) regularised shapes often
appear to embody greater semantic meaning than jagged or perturbed precise
sparse shapes.

The challenge here lies in striking a balance between how aggressively the algo-
rithm approximates and the reduction in geometric accuracy that will result. Since
any alteration to the sparse vector shapes will invariably alter the error properties,
it is vital that such alterations are rigidly controlled. To achieve this the dual error
measure introduced in §3.3.3 is exploited. It ensures that as the algorithm attempts
to identify a high-quality approximate for each space vector shape, the associated
error remains within globally set (user-supplied) tolerances. For reference (by de-
fault) MAMMAL uses a maximum point-to-edge distance of 1.5m and a minimum
intersection-over-union ratio of 0.8 (80%). The remainder of this subsection, ex-
plains the behavioural attributes that are common to each of the 2D approximation
functions and details two novel detectors developed during this project.

The key feature of each shape approximating function is a deterministic return. Un-
like [142], [145], [73] and [1], the approach taken omits stochastic search, in favour
of simple domain-specific 2D polygonisers. The rationale behind this is that is it
preferable to extend and refactor pre-existing feature detectors to suit the purpose
than it is to propose difficult to analytically characterise random sampling strate-
gies. Although this is not the prevailing norm in architectural reconstruction (where
derivatives of the RANSAC paradigm are bountiful), in this project the decision was
made to favour deterministic methods over stochastic ones. This was largely a re-
sult of earlier experiments with multi-view stereo reconstruction algorithms (prior
to dealing with actively sensed point-clouds). The key limitation of the MVS meth-
ods experimented with, lay in an inability to guarantee the same result given the
same input. Although the differences were often subtle, it often proved necessary
to repeat the reconstructive process multiple times and select the best result. This
(as one can imagine) can be quite frustrating and (worse) wastes both time and
computing power. Although one may accept such short-comings from techniques
that derive geometry from images (for which there is no direct relationship between
pixel intensity and the underlying object’s surface), in the case of actively sensed
point-clouds, this behaviour could be considered needlessly costly, since the diffi-
cult problem associated with photogrammetry (depth recovery) has already been
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addressed. As a result - the notion of exploiting principled logics instead of random
sampling is one that runs through the heart of this thesis. The 2D shape approxi-
mation functions developed stand as evidence of this.

There are two basic flavours of function exploited. Fixed form functions (alterna-
tively referred to as common-shape-detectors) and open functions (also referred
to as specialised-shape-detectors). Note: this distinction between two key types of
approximation function is also relevant to the 3D parametric optimisation applied
by the algorithm (discussed later). To help clarify, two simple shape detectors are
introduced. The first is QUALM (for Quick Unconstrained Approximate L-Shape
Method). The second is GRAILS (for Graph Refined Approximate Interior Linear
Spine).

QUALM

This shape detector is an extension to the hough-transform and extracts rectilin-
ear L, T and S shapes by first computing a minimal-area bounding box (MABB)
and then eats-away at the corners of the MABB in order to characterise common
architectural shapes. Figure 3.17 depicts the stages employed by the quick uncon-
strained approximate l-shape method. Note that the input can be either a struc-
tured or unstructured set of 2D points. The first stage computes the MABB, whilst
the second stage refactors corners based on the distance from each MABB vertex
to the input points. The aspect that makes this detector unique (amongst heuristic
architectural footprint detectors) is its simplicity. It is conceptually incredibly intu-
itive and whilst it is heuristic in nature, it degrades gracefully at low resolutions.
Beyond simplicity, there are additional benefits relative to pre-existing methods.

Figure 3.17: Overview of the simple 2D shape approximation function - QUALM illustrating:

(from left to right) the input points, the minimal area bounding box, then reducing error by

’eating-away’ corners, and finally the output polygon (with alternative eat-away corner types

illustrated below).

Typically [134], fitting T and L shapes is achieved via analysis of a skeletal descrip-
tor. The prevalent problem with these approaches is sensitivity to noise (perturba-
tions) along shape boundaries [33]. One of the key benefits of the hough-eataway-

hull is robustness to such noise. In particular you’ll notice that in figures 3.18 and
3.19 the approximate hull is guaranteed to be composed of twelve or fewer ver-
tices, irrespective of the undulations present at a shape’s boundary. Whilst this
makes it suitable for L,T and S shape detection, it also limits its utility as a general
purpose shape approximation method. In this sense, the enhancement it provides
for a subset of specialised cases comes at the cost of generality. However, given
the frequency with which such common forms occur in urban environments, the
utility of the heuristic is significant. Figures 3.18 and 3.19 depict the outcome of
extracting eat-aways hulls for a handful of buildings sampled at 1m point-spacing
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and 25cm point-spacing. Although the compact nature of the output hulls render
them ideal for 2D map updating, before accepting an approximating eat-away hull,
the MAMMAL algorithm first checks that it meets the user supplied error tolerance
(using the Hausdorff and intersect-over-union measure outlined in §3.3.3). This
ensures that the only 2D vector shapes that are optimised with this method are
valid L, T or S shapes.

Figure 3.18: building footprints automatically recovered from 1m point-spacing airborne

range scans of the city of Bath, UK

Figure 3.19: Building footprints automatically recovered from 25cm point-spacing airborne

range scans of the city of Manchester, UK

One important note is that fixed-form functions such as QUALM can only be effec-
tively applied to very particular classes of shape. This is essentially the key lim-
itation of fixed-form functions such as QUALM. They deal very well with the type
of data they were designed for, but fail to generalise to arbitrary input. The MAM-
MAL algorithm also exploits a handful of pre-existing 2D shape detectors to rep-
resent common shapes. These include a much simpler oval (circular-arc) detec-
tor, a quadrilateral detector and a regular-polygon detector. The addition of these
common shape detectors enables the approximation of large portions of urban
datasets efficiently. However as noted the fixed-form shape-detection functions
generally fail to characterise architectural elements such as terraces, complexes,
irregular and non-euclidean masses. The reason is that the fixed form functions
are largely predetermined, and though they derive some of their properties from
an input point-cluster, they only aim to represent one class of shape. For example
a quadrilateral detector will not suddenly alter its return value in order to better
deal with a concave footprint. It will always return a quadrilateral. In essence while
fixed form functions are good at dealing with frequently occurring types of shape
(that can be described formally ahead-of-time), in and of themselves they do not
provide enough flexibility to yield high-quality (accurate and sparse) vector repre-
sentations of arbitrary set of points.
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For this reason a number of data-driven 2D shape detectors are used to address
the limitations of fixed-form shape approximations. In particular, a medial-axis
based railed terrace-detector (GRAILS) is discussed next.

GRAILS

GRAILS (graph-refined approximate interior linear spine) is a low level feature de-
tector for 2D geometry whose purpose is to support the extraction of architectural
features such as terraces and railed buildings. In essence this function computes
as piece-wise linear spine given a dense shape boundary. The algorithm dis-
cussed is loosely related to (but distinct from) conventional shape skeletonisation

methods such as the straight-line-skeleton [135], [2].

Although many algorithms tend to the problems of skeletonisation and (its counter-
part) boundary-extraction, by comparison fewer formalisms exist for spine detec-
tion. This may in part be a result of the difficulty in defining the goal of such
methods. The dominant strategy however is to erode or dilate an internal skeletal
representation. The critical issue with such strategies is the requirement to iter-
atively refactor a dense representation. This can be computationally expensive,
and worse can fail to effectively characterise a spine in the presence of noise at a
shape’s boundary. [134]

Recall from the preceding discussion of QUALM, that one of the tricky problems
with refactoring the medial-axis of a shape (for skeletal template fitting) is sensitiv-
ity to sensing noise. The aim of GRAILS is to define a spine-extraction operator
that is robust to sensing noise, computationally efficient and that generalises well
to different types of geometric data. In this sense it should not be constrained to
monotonic polygons for example.

The key idea is to treat the problem of spine-detection as the task of identifying the
longest-length non-cyclical path of a skeletal bi-directional graph. In essence the
algorithm takes (as input) a polygonal simplex (in 2D) or volumetric representation
(in 3D) and generates an open sequence of interior vertices which represent the
longest non-self-intersecting path amongst the medial-axis keypoints (which are
the loci of the maximally inscribed discs) of the input geometry. The main appli-
cation of the algorithm is in data-driven procedural reconstruction of architectural
geometry from laser-scanned point-clouds. However due to its generality GRAILS
has potential to be exploited within other areas of active sensing and computer
vision.

The steps taken by the GRAILS function are incredibly simple to understand. For
each building first compute the medial-axis (a tree-like structure composed of
straight-line-segments and parabolic arcs). Based on the medial axis construct
a graph in which the loci of a building’s maximally inscribed discs are treated
as nodes and the interior shared-edges of the Voronoi diagram of the building’s
boundary are graph-edges. Then compute the minimum spanning tree of this
graph and use Dijkstra’s algorithm to identify the maximal length path between
any two nodes in the graph. Use the start and end nodes of the maximal length
graph-path as the start and end positions of the GRAILS spine. Finally (in order
to turn the simplified spine into a closed shape) compute the mean distance to
the dense boundary and use this as the rail projection distance (the ’radius’ of the
rail). Essentially: compute the medial axis of the input, then compute the maximal-
length, non-cyclical path of the graph of medial axis locus points and the resulting
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sequence of vertices is a graph refined approximate interior linear spine.

Figure 3.20: computing sparse medial-axis derived ’rails’ from 1m point-spacing terraced

buildings in the city-of-Bath dataset

To help clarify what is meant by a graph-refined interior linear spine, figure 3.20
illustrates the outcome of the 2D terrace detector exploited by the MAMMAL al-
gorithm. Figure 3.20 depicts dense input shape boundaries in green, the medial
axis paths in black, and the simplified rails (derived from the medial axis paths) in
blue - for a set of irregular terraced buildings from the city of Bath dataset at 1m
point-spacing. The thing to note about the outcome is that it freely adapts to the
input data, unlike the fixed-form functions which attempt to mould a pre-defined
template to the data. This is vital since it allows GRAILS to simultaneously ap-
proximate shapes made of straight line segments and curvature in a non-iterative
manner.

Readers interested in implementing GRAILS (as a general purpose geometric fea-
ture detector) should refer to this chapters appendix for the full implementation.
Special attention is given to it here because (to the author’s knowledge) it is a
novel algorithm whose properties make it highly suited to procedural reconstruc-
tion of architecture. Additionally from a geometric perspective it is quite an inter-
esting approach since it is not bound to two dimensions, but can be extended to 3D
spine detection. Note: GRAILS also plays an important role in the 3D optimisation
discussed later.

In total three data-driven specialised shape detectors are exploited by the MAM-
MAL algorithm. Alongside GRAILS, a variant of the hough-eataway hull (designed
for arbitrary simple polygons) and a greedy edge-length maximising simplification
routine are vital to being able to tackle the problem of general purpose shape ap-
proximation in two dimensions. The thing to remember through-out is that the con-
struction of the specialised (or data-driven) hulls is controlled by the input, whilst
the common (or fixed-form) hulls are more akin to template-based approximation
strategies.

To summarise, the vectorisation stage employed by the MAMMAL algorithm trans-
forms clusters of segmented points into sparse 2D vector shapes. This is achieved
by first scan-converting discrete cartesian grids, then simplification using the data-
driven manifold preserving operator GROVE (graph refinement operator for vector
extraction) and finally approximation using two types of deterministic shape de-
tection function (template-driven such as QUALM, and data-driven as in GRAILS).
MAMMAL exploits the dual error measure explained in section 3.3.3 to ensure that
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during approximation any alterations to each building’s boundary descriptors are
error-bounded.

Once vector extraction, sparsification and approximation are complete the MAM-
MAL algorithm then creates 3D surface geometry from the 2D shapes so as to
match the input laser-scan points for each segmented building. The next section
discusses this stage - the projection from R2 to R3.

3.3.4 Projection

Projection is the means via which the 2D polygonal shapes (which are recovered
during vectorisation) are positioned in 3D space so that they accurately match the
original segmented laser scan points. Formally the aim of the projection stage is
to minimise the RMS error between each projected vector shape and the original
cluster of 3D points used in its construction (as demonstrated by figure 3.21). The
projection routines exploited by the MAMMAL algorithm all take advantage of the
parallax nature of the input airborne LiDAR which ensures that the geometric vari-
ance can be modelled as a product of simply altering the elevation of roof-shapes.
A good analogy for this stage is popping-up a 2D cut-out. In essence MAMMAL
pushes the 2D shapes up into 3D based on the position of the segmented points.

More formally the algorithm determines a mapping from R2 to R3 such that the
RMS error between each resultant 3D surface and its constituent input points, is
minimal. Once again it is vital to understand that this is only applicable because
of the 2.5D nature of the input. In the case of generic unstructured point-clouds
(such as ground-based laser scans), this approach will generally lead to the loss
of information.

There are only really two options for this sort of projection - linear or non-linear.
Linear projections are composed entirely of planar roof-shapes, whilst non-linear
projections are the result of irregularities and curvature. The remainder of this
section covers both of these options.

Projecting Roof-Shapes from 2D into 3D

Before detailing the linear and non-linear projections, a quick primer on the meth-
ods of calculating roof-shape elevations from sets of sampled points is provided.
During experimentation, various low-level routines for calculating a vertex’s offset
position were considered (and are outlined below).

• Direct-Point-Elevation: which simply indexes into the original structured DEM
array using the longitude and latitude of a vertex and returns the elevation at
that position. The key limitation is a quantizing effect which is noticeable as
discontinuities and the lack of a filtering strategy to omit elevations resulting
in invalid elevations. The benefit of this point-level method is compute speed.

• Bilinearly-Interpolated Elevation: which extends the direct-point elevation
method by bilinearly interpolating between neighbouring points in the DEM
in order to limit the discontinuities (that result from the quantized indexing)
whilst maintaining efficiency. However this still does not prevent invalid ele-
vations, and can also (as the direct point elevation) lead to roof-shapes that
should be planar, being modelled as non-planar polygons.
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• Distinct Plane Estimate Elevation: which calculates the projected height of
each roof-shape vertex by estimating a single plane for each roof-shape and
offsetting each of its vertex based on the elevation of the plane at the lon-
gitude and latitude of the vertex. Although this is a more robust approach
(relative to the point-based projections) the downside is that although discon-
tinuities will no longer occur within a single roof-shape, across neighbouring
roof-shapes, discontinuities can still occur in the elevation of shared edges.

• Quadratic-Error-Minimiser Elevation: which extends the plane-estimate ele-
vation by considering all roof-shapes adjacent to a vertex in order to prevent
variances in elevation at shared roof-shape boundaries by computing planes
for each adjacent roof-shape and calculating a vertex’s offset by minimis-
ing the quadratic error between each neighbour. Although this prevents dis-
continuities, the topological control comes at the expense of computational
efficiency, since for each vertex, the error minimiser elevation must be esti-
mated, that takes into account all of the shapes that are neighbours of the
vertex. This is somewhat similar to Zhou’s method of calculating vertex posi-
tions during 2.5D dual contouring however his underlying data-structure is a
hermite grid, whilst here a graph of co-related polygon shapes is exploited.

Each of these low-level routines has its own advantages and disadvantages. In
particular the Direct-Point Elevation provides a (computationally) cheap and effi-
cient estimate and although the Bilinearly-Interpolated Elevation is slightly better
both are still only point level projection methods. The Distinct Plane Estimate Ele-
vation is better still, but it is not perfect because it does not consider neighbouring
roof-shapes. Yet although the Quadratic-Error-Minimiser Elevation works quite well
for certain classes of building roof (pitched, sloping, SLS-style), in many cases it
performs worse than the Distinct Plane Estimate, since it assumes that all shared
edges must be continuous, which yields erroneous results for stepped roof-edges.

Fundamentally it is worth noting that there is no single optimal parallax projec-
tion method for roof-shapes. The good thing about the point-level routines, is that
for well sampled and cleanly segmented pointsets, there resultant accuracy will
generally surpass the region level methods since they are derived directly from
the points. However as the proportion contributed by noise increases the bene-
fits of the region based projection routines starts to outweigh the directness of the
point-level methods, because they effectively mitigate the presence of anomalous
points.

Planar Projections

In the case of projecting linear roof-shape components - the problem is equivalent
to finding the best approximating plane passing through a set of points - for which
one can simply take the the least-squares plane or the smallest eigen-vector re-
sulting from principle component analysis (PCA). The MAMMAL algorithm opts for
the latter since it is less sensitive to outliers and sensing noise. However typically
both approaches yield stable results since the segmentation stage isolates groups
of points whose inter-group disparity is low and stability high. Figure 3.21 illus-
trates the outcome of a linear roof-shape projection applied to a building from the
25cm point spacing city of Manchester dataset to clarify. The left hand-side depicts
the input points rendered with each point’s normal mapped to a colour. The central
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image shows the mean height-extrusions, whilst the right hand image depicts the
building model attained by applying the PCA plane projection.

Figure 3.21: an example of an unrefined linear projection from the Manchester dataset

at 25cm point spacing - illustrating (from left to right): the input-points, the mean-height-

extrusions and the projected-roof-shape-model

Figure 3.22: a building characterised using flat roof-shape extrusions - illustrating (from left

to right): normal rendered points, segmentation mask, extruded model, signed error matrix

and model overlain with input-points

As an interesting side note, during experimentation a special simple case of pla-
nar projections was identified. Flat (constant-height) roof-shapes occur quite often
in urban environments, and although they are not applicable to all building roofs,
they provide a fast initial projection method that ensures flat roof-shapes are not
mistakenly modelled by slanted faces as a result of the presence of sensing noise.
Essentially some building instances are best characterised as combinations of reg-
ular extrusions. Figure 3.22 clarifies this using another example building from the
Manchester dataset.

Non-Planar Projections

Non-linear shape projections are required to explicitly represent curved and irreg-
ular building components. In such cases the algorithm computes structured polyg-
onal shape divisions in order to control the distribution of vertices across each
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roof-shape. The method then projects the sub-divided 2D shape set into 3D by
minimising the quadratic error between each vertex and the set of planes derived
from faces with edges adjacent to the vertex.

Figure 3.23: structured polygon sub-division functions are exploited to control the distribu-

tion of vertices across roof-shapes during non-linear projection

The core underlying aim of the sub-division functions is to address the problem of
modelling non-linearity, without resorting to conformal-constrained [142] or general
Delaunay triangulation (as in [12] and [71]). One of the key benefits is reducing the
time to construct irregular roof-surface-meshes.

Figure 3.23 aims to clarify what is meant, by a structured sub-division, using the
example of the Manchester library from §3.1. From left to right, top to base, it
illustrates the grid-split, radial-split, straight-line-skeleton-split, convergence-split

and hexagonal-split sub-division functions. Then the result of projecting the error-
minimising radial split division and its topology. The last row illustrates the effect of
varying the roof error tolerance.

As polygonal clipping is generally a real-time process [124], the sub-division pro-
jection executes orders of magnitude faster than an equivalent triangulation. How-
ever beyond simply the computational efficiency of the approach the critical benefit
(and advantage relative to the use of a DT or CCDT) is explicit control of the topol-
ogy of irregular roof-surfaces.
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These explicit projection methods (linear and non-linear) provide a robust (accu-
rate) means to position each 2D shape in 3D space. However one of the problems
you’ll notice (especially in the planar projection illustrated in figure 3.21) is that
discontinuities can occur in the elevation at shared edges between neighbouring
roof-shapes. This is because although the set of 2D vector shapes is non-self-
intersecting (free of cracks and overlap) in 2D, the resultant projected 3D vector
shapes may still be subject to height discontinuities as a result of non-uniform
sensing noise. [134]. The problem is apparent in the linear-projections and is also
characteristic of the models typically returned by data-driven plane based recon-
structive methods. [95]. The MAMMAL algorithm resolves these issues by exploit-
ing the shape-graph computed during vectorisation in order to optimise height-
discontinuities between neighbouring roof-shapes.

Graph-Based Topology Refinement in 3D

The aim of graph-based topology refinement in 3D is to enhance the visual quality
of the linear (planar) projected building models by refactoring roof-patch surface
meshes in order to remove discontinuities in elevation between neighbouring roof-
shapes. Although this stage is not strictly necessary in the case of surveying and
exploiting the projected models for analytic tasks, it is incredibly useful in instances
where the projected models are to be exploited for visualisation and simulation. Es-
sentially this will not improve the geometric error associated with each result, but
rather seeks to improve the aesthetic attributes of each reconstructed model.

Using the graph of roof-shapes, refining each projected model is handled by the
MAMMAL algorithm with two simple graph-transformations:

• 1) Clustering Adjacent Graph Nodes (Vertices) based on deviance in ele-
vation - such that multiple nodes that are close to one another converge into
single nodes. This is analogous to a vertex snapping procedure in the sense
that multiple vertices produce single vertices.

• 2) Collapsing Redundant Graph Loops (Faces) based on whether they
become degenerate as a result of the preceding clustering - such that the
undesirable roof-shape elements are removed. This relies on the observation
that generally roof-shapes that collapse to lines, points or self-intersecting
polygons, are generally insignificant. However for this loop-collapse to work
effectively it is imperative that the input roof-shape-net does not contain any
degeneracies to begin with.

Figure 3.24 illustrates the graph-refinement in 3D using a building from the 25cm
point-spacing city of Manchester dataset. Interestingly although the primary rea-
son for this post-process is to enhance the visual appearance of the models, an
un-expected by-product is an overall reduction in the number of geometric primi-
tives required to characterise each building - supporting the maximal-area minimal-
primitives reconstructive principle.
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Figure 3.24: graph-refinement turns a planar model with height-discontinuities into a higher-

quality continuous model, illustrating (left) the unrefactored linear-projection using distinct,

PCA plane components, and (right) the graph-refined result with a node-merging elevation

threshold of 50cm

The underlying insight is that by exploiting a graph representation of each building’s
roof-shapes, point-location and topological queries can be determined more effi-
ciently than with an set of disjoint planar pieces. Beyond its efficiency the shape-
graph provides a generic abstraction that can be traversed and transformed using
a myriad of different operators. Whilst in this research two simple data-driven
graph-transformations are used, future investigation might consider, higher-level
graph transformations such as treating the problem as a generalised energy min-
imisation.

Further the reason that this is preferable to the quadratic error-minimiser projection
(in the case of linear projections) is that it does not force continuity - i.e. it allows
step-edges to be combined with continuous edges.

To revise - the projection process employed by the MAMMAL algorithm, computes
a mapping between 2D roof-shape-nets and 3D surface-meshes, via a parallax-

pop-up. Note though that whilst graph based topology refinement in 3D enhances
model quality, the key to efficient projection lies in the calculation of geometric er-
ror. Basically in order for the MAMMAL algorithm to quickly traverse the space of
possible projections a fast means of evaluating the geometric fit of each projected
model is required. Vitally the rate at which MAMMAL can measure geometric er-
ror is also critical to the performance of the final stage - model optimisation. For
this reason, (before discussing optimisation), this section details the efficient error
measure exploited to compare a polygon-mesh to a target cluster of range-points.

Measuring Geometric Error in 3D

The MAMMAL algorithm exploits depth-buffer rasterisation in order to create regu-
larly spaced displacements maps with equivalent point-spacing to the input range-
scan during the evaluation of each procedurally generated model. During exper-
imentation point-to-plane [156], and ray-casting [124], error functions were also
tested as alternative methods of creating the elevation grids necessary for quan-
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titative analysis. As a spoiler - the core reason for exploiting a rasterized depth-
buffer over point-to-plane or ray-casting is computational efficiency. Although this
is discussed in more detail shortly, for now simply appreciate that rasterisation
executes 2-3 orders of magnitude faster that than an analogous depth-buffer con-
struction using ray-casting or point-to-plane distances - yet returns a result with
negligible variance relative to the other two methods. Which means the same
comparative operation can be performed in less time. There are a couple of down-
sides (/potential limitations) of this approach which are also discussed.

Formally calculation of each model’s RMS error in three-dimensions is:

rms(P,C)←

√

√

√

√µ(
N
∑

i=0

(DChebyshev(Pi, Ci))2) (3.3)

where: P is the cluster of range points, C is the discretised candidate model,
|P | = |C| = N and ∀p ∈ P : ∃ c ∈ C s.t.|p − c| =

√
∑

(pi − ci)2 = max(|p0 −
c0|, |p1 − c1|, |p2 − c2|) =

∑

|pi − ci|. This expressions states that the error be-
tween a target elevation grid (P ) and a discretised models elevation grid (C) is
the square-root of the mean of each corresponding point’s elevation difference
squared. In essence at each position, the magnitude of the variance between the
model’s surface and the input range scan is considered. Furthermore, because the
target and candidate elevation maps are aligned to the same coordinate system,
this resolves to the Chebyshev distance. Another way to think about this is the
RMS of a difference matrix (D) that results from P − C. The key insight is not this
error formulation in and of itself, but the observation that due to the 2.5D (parallax)
nature of the input, an object order (as opposed to a pixel/point-order) algorithm
can be used to construct the matrix C. Since the matrix P is constant (the target
range points) by minimising the time taken to construct C, significant performance
enhancements are achieved. Whilst it is incredibly simple, this is key to fast 2D to
3D projection and the parametric optimisation.

Figure 3.25: profiling the growth in runtime for point-to-plane, ray-intersection and raster-

isation depth-buffer construction for the parallax-error-functions: the left graph plots the

variance in runtime as the size of the constructed depth buffer increases (NxN) - using a

single primitive, whilst the right graph plots the runtime using a constant depth-buffer size
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(128x128) and a variable number of primitives: the results were generated with compiler

optimisations turned off and spatial-optimisations (KD-tree, oct-tree, bucketing) disabled

Figure 3.25 plots the key factor in the algorithms efficiency. It demonstrates the sig-
nificance of the variance in execution time for depth-buffer construction using the
methods described. In particular, computing geometric error between a sparse
model and a cluster of range-points is such a vital component of an automatic
technique - that minimising the time it takes, can (and is shown to) significantly
enhance performance. Fast calculation of parallax error, drives the MAMMAL al-
gorithm. Essentially without the rasterised depth-buffer error, execution time de-
grades significantly. The key logic is that by discretising candidate building mod-
els using rasterisation, the MAMMAL algorithm can difference range-points and
polygonal-meshes by taking the difference of two scalar matrices (and omitting
square-roots).

As stated, both point-to-plane and ray-intersection error measures could also be
used to create equivalent discretisations. However the thing to understand is that
rasterisation is a real-time process. Millions of triangles can be rasterised in mil-
liseconds, where as ray-intersection exhibits exponential run-time growth. This is
because by rasterising, for each point in the depth-buffer the algorithm can cal-
culate displacement without explicitly determining which triangle is closest to the
point. This is also the key difference between object-order and image-order ren-
dering algorithms. This is evidenced by the steep growth in execution time for ray-
casting (in-particular) in figure 3.25 as the number of primitives increases, whilst
the runtime associated with rasterisation grows very-slowly and remains negligible
relative to the other two methods. Further this is only possible because of the 2.5D
nature of aerial-laser scans. Ultimately fast calculation of geometric-error is also
vital to the performance of the parametric optimisation.

Note: although this is not the first algorithm to exploit a rasterised depth buffer in
calculating error, it is (to the authors’ knowledge) the first instance of its use to drive
non-linear functionally-based geometric optimisation of 2.5D architectural models.
In this sense, the exploitation of a rasterised depth buffer, places the MAMMAL
algorithm in line with image based optimisation operators, because rather than
performing multi-modal optimisation (points relative to triangulated surfaces which
is most common in geometric algorithms such as [129], [118], [157], [143] and
[75]), MAMMAL’s strategy is driven by image-like discrete rectilinear grids.

Before progressing to the final stage (optimisation) this section briefly considers
the down-sides of the prescribed error-measure. There are two limitations of using
this depth-buffer error measure. The first is shared by all the parallax functions,
the second is specific to the rasterisation process.

• Unsuitable for unstructured ground based scans - since this relies on
perpendicular displacement, the depth-buffer error will fail in the case of
point-clouds that do not obey the 2.5D principle. This additionally applies
to airborne scans that capture subtle non-parallax facade details (such as
those resulting from low-altitude UAV scanning systems). Essentially this
method of fast error calculation is designed for parallax geometric represen-
tations only - the downside of this being that the efficiency gained comes at
the cost of generalisation.

• Difficulty discretising skinny (sliver or near degenerate) triangles - as a
product of the manner in which input triangular facets are mapped to discrete
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grid locations. This is a prevalent problem for rasterisation algorithms in gen-
eral. The most common solution is to super-sample the elevation grid and/or
employ floating-point-arithmetic over integer-arithmetic. However more ro-
bust strategies also consider the adjacency of triangular edges in the original
mesh in order to prevent any such gaps that may otherwise still result.

This section has explained the process of generating 2.5D projected surface mod-
els from sets of vectorised 2D shapes. It covered the two types of projection (sup-
ported by the MAMMAL algorithm) linear and non-linear, as well as the 3D-version
of the graph-refinement routine (exploited to resolve discontinuities in elevation be-
tween neighbouring roof-shape edges). Additionally it introduced a fast rasterised
depth buffer error-measure which is crucial to minimising runtime and outlined the
limitations that an implementer should be aware of. At this stage the MAMMAL
algorithm has recovered accurate sparse geometric models of the buildings in the
input airborne range scan. Up to this point, the algorithmic modelling logic has
been entirely data-driven, in the sense that the output of each sub-stage is con-
trolled by the input points or vector shapes. Whilst this behaviour is advantageous
in many respects (refer to this chapters overview for revision), it also means that
MAMMAL is sensitive to low quality input point-sets. This includes point-clouds of
low-resolution (high-point-spacing), point-clouds with partial or missing data and
regions affected by non-uniform sensing noise and low-quality pre-processory fil-
tering. The good thing is that this flip-side largely only affects the process of roof-
shape projection (which turns the 2D shapes into 3D models). Generally speaking,
the segmentation and vectorisation stages are less prone to this (due in part to the
stability of the difference of elevations models and the maximal area roof-shape
segmentation). However one of the key problems identified in examination of the
pre-existing methods is/was the rate at which the integrity of the resultant geomet-
ric models degrades with low-quality point-input. In an ideal world, a technician
would simply resolve to ensure beautifully sampled point-clouds were supplied
as input. However often this is not always possible, since the economic cost of
re-scanning may be prohibitive. The problem is compounded by the fact that fre-
quently the artefacts that degrade a generated model’s quality, occur sporadically
in datasets - which makes their uniform estimation and resolution harder. The sim-
ple fact is that, some classes of material cannot always be scanned perfectly. Typ-
ically this is a result of the irregularity of their reflectance properties (as is the case
for glass), but further the spatial scale of the features present upon a surface can
also have an undesirable impact (such as in the case of undulating or corrugated
surfaces). For this reason, model-optimisation strategies are employed. They may
be data-driven or model-driven, however the unifying goal is to improve the struc-
tural quality of building models recovered from low quality clusters of points.
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3.3.5 Optimisation

The driving aim of model optimisation is to enhance the visual and structural quality
of projected building masses recovered from low-resolution scans, such as the 1m
point-spacing Bath dataset. Optimisation also enhances models recovered from
higher resolution scans, by mitigating additional sensing artefacts. Geometric opti-
misation is a highly active field of study, with many pre-existing works focussed on
generalised energy minimisation (since many geometric problems such as mesh
parameterisation and deformation can be reformulated as either minimisation or
maximisation tasks).

Whilst such strategies are excellent in terms of their generality (and their ability to
be reused) the key limitation is the high convergence times that result as the com-
plexity of the optimisation problem grows. Often such algorithms can take minutes
to converge for a single geometric representation. Although this may be acceptable
for processing individual hero-models, in general such performance is insufficient
for large urban scenes consisting of a multitude of objects. In essence such meth-
ods are good for abstract problems because they allow one to define the objective
in terms of an energy function f(x) and a set of (typically linear) constraints, such
as: s.t. x ≥ 0. However this level of generality degrades their execution time.

Alternatively some researchers [1], [39], [108] exploit random sampling strate-
gies, with methods based on the RANSAC paradigm dominating. The goal of the
stochastic optimisation techniques is to iteratively localise on accurate compact
approximations in an efficient manner, by generating candidates randomly (so as
to more efficiently traverse the solution space).

Unfortunately early experiments demonstrated that neither approach is perfect for
this class of optimisation problem. The numerical approaches (such as Newton’s
method, gradient-descent and accelerated/boosted gradient-descent) are quite-
heavy weight, and require a convex solution space since non-convex problems
can result in convergence on a local minima. The stochastic methods on the other
hand offer few guarantees of convergence and require more involved evaluative
measures since (even with seeded random generators) their performance is con-
sidered probabilistically. Ultimately however the ideal scenario is a model opti-
misation approach that amalgamates the positive features of the numerical and
stochastic approaches whilst negating their undesirable aspects. Essentially we
seek a numerically robust deterministic optimisation method that converges effi-
ciently.

This portion of the chapter introduces a novel procedurally based optimisation
strategy designed specifically for 2.5D parallax building mass-models. The ap-
proach relies upon a number of observations about the nature of the domain, in
order to enable clean, compact, semantically rich geometric models to be extracted
efficiently. The key concepts introduced are:

• Geometric Model Selection Criteria - as an abstract means to control the
algorithms decision-making in ranking optimisation candidates.

• Fixed-Form Parametric Model Detectors - as a means to define and search
common and regular generative modelling functions.

• Open Parametric Model Detectors - as a means to define and search spe-
cialised and irregular generative modelling functions.
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• Constructive Solid Remassing - as the method of unifying a set of distinct
parametric masses to yield a watertight building shell.

• Automatic Interface Generation - as an advantageous feature of the pro-
posed procedural optimisation strategy and in-particular the dual nature of
the implicit representations that are exploited.

• General-Purpose Procedural (Programmable) Optimisation Kernel - as
a generalisation of this approach to parallax model optimisation and the fac-
tors necessary to enable additional user-written functions to be supplied post
compilation - (support for expansion).

At a high-level the optimisation stage behaves in the following manner. For each
building, it constructs a set of candidate mass-models by varying the input argu-
ments to a finite number of generative modelling functions. It then ranks the can-
didates models using an abstract selection criteria and returns the highest ranked
candidate mass-model. Of the functions used to generate candidate models, there
are two basic types: fixed-form and open parametric modelling functions. The dif-
ferences between these two types of shape detector are discussed in greater de-
tail shortly. The key aspect is that they provide complementary mechanisms for
framing model-based and data-driven approximation functions. The next sections
cover the key conceptual components of the proposed non-linear building optimi-
sation routine.

Parametric Optimisation of Low Quality Models

The approach described, aims most of all to conform to two key desires. It should
converge quickly and yield consistent (repeatable) results. Given that no single
optimisation strategy can be considered optimal for all classes of building, the ap-
proach instead exploits a number of different parametric modelling functions. Al-
though this ideology shares similarities with the generalised approach of Lafarge,
Mallet et al. [72], [73] - the underlying reasoning is distinct. This strategy exploits
the observation that human CAD technicians typically have a number of distinct
modelling strategies in their arsenal, and opt for one over another based on the
requirements to model a specific instance of an object. In a similar manner, the
MAMMAL algorithm’s approach embodies a variety of distinct common building
modelling approaches. The critical difference is that whilst a human can efficiently
alter a mass-model directly (by moving vertices and faces to better represent the
target object), the same approach applied algorithmically exhibits poor runtime
performance since the number of elements (vertices, faces) in a mesh can grow
quickly. Hence parametric modelling functions are exploited instead because they
embody semantic meaning, and they dramatically reduce the complexity (order)
of the optimisation task down to 1-N arguments - as a product of the additional
layer of abstraction. The core idea, is to exploit dynamic descriptors that may be
efficiently manipulated in order to identify characteristic approximations of a target
object - rather than lower level primitive (vertex, edge, faces) refactoring strategies.

Another critical difference, is that unlike a human CAD technician - the MAMMAL
algorithm cannot say ahead-of-time which approach (parametric function) is best
suited to a cluster of points. Although one could try to frame pre-processory filter-
ing functions that aim to embody a humans perception of the mapping between a
cluster of points and an appropriate class of parametric model, in practice this is a
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cumbersome process. Rather the MAMMAL algorithm must consider all possible
modelling functions.

Basically a human CAD technician, can look at a picture or point-set of a roof and
determine instantly whether it represents a Gable or Mansard building (for exam-
ple). However the MAMMAL algorithm possesses no such perceptual prowess -
and as such can only state the class of function suitable for approximating a cluster
of points after it has considered all possible classes. This is both good and bad.
Good in the sense that it is exhaustive (and so will never skip or miss out on good
parameterisations), but bad because it means additional compute-power is used.
Later on a number of optimisations (to the optimisation process) are discussed
that seek to provide early get-out clauses in order to reduce the overall optimisa-
tion time.

Essentially optimisation iterates over a finite number of fixed-form and open gen-
erative modelling functions, and adds instances to a candidate set. Then it sorts
(ranks) the candidate set using a selection criteria that specifies the objective func-
tion and returns the highest ranked optimisation candidate.

The final (optional) water-tighting stage exploits a simple optimised version of the
binary space partitioning algorithm for constructive boolean operation on polyhe-
dral mesh. However before covering each of these optimisation stages, the pro
and cons of this procedural approach are explained.

The advantages of this approach include:

• Separation of Geometric Descriptor from Numerical Optimisation : for which
the key benefits are Generality, Simplicity and Expandability.

• Support for Non-Convex Optimisation : such that a Local Minima of a Non-
Linear Solution Space can be deterministically resolved.

• Support for Embedding Conditional Statements : algorithmic flow-control
logic, such as branching if and switch statements in order to define heuristic
constraints on the geometric candidates generated.

• Dynamic Functional Descriptors : enable a multitude of distinct model in-
stances to be encoded in a single generative modelling routine.

• Duality of the Geometric Representation : which means the same descriptor
is both suitable for Forward (User-Centric) Parametric Modelling and con-
versely Backward (Data-Driven) Model Reconstruction

• Negation of associated IO overhead: since each model is defined implicitly
there is no IO associated with their construction or evaluation : this addition-
ally reduces memory limitations because candidates can be destroyed and
recreated as necessary to control resource allocation.

These benefits should provide some insight into the rationale underlying this in-
vestigative path. Nonetheless there are a number of limitations that should also be
noted. The disadvantages of this approach include:

• Requires Highly-Efficient Error Measure : this method of model optimisation
is only feasible if the time taken to generate and evaluate a procedural model
(relative to a target cluster of points) is negligible.
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• Non-Trivial to Generalise to Unstructured 3D Scans : because although can-
didate model generation performs similarly in 3D to in 2.5D, the evaluation
stage exhibits far greater computational expense. Fundamentally an error-
measure of equivalent efficiency to the rasterised-depth-buffer is required in
3D. Whilst an approximate (projection-based) error measure could be used,
one must note that the efficacy of the optimisation drops significantly. The
step from 2.5D to 3D requires a point-to-plane error-routine which cannot
easily be replaced for a faster error-measure without the loss of accuracy or
generality.

The next subsections explain the concepts outlined in greater detail.

Geometric-Selection-Criteria

The process of parameterising a cluster of points produces a set of candidate
polyhedra mesh from which the algorithm must decide which is most suitable. For
this the notion of selection criteria is used. Each selection criteria specifies the key
property of the candidate mesh that the algorithm should return given a finite set of
options for approximating a point-cluster. For example if the minimum-vertex-count
selector is supplied as input, the algorithm determines all candidate parametric
meshes with geometric error under the user supplied tolerance, and returns (from
this subset) the model with the smallest number of vertices. Formally these criteria
are defined as:

• minimum mean point error → the candidate that is the global point error
minimiser - induces the least point-to-plane elevation error

min :
∑

abs(pi − ci)/|P |

• minimum volumetric error→ the candidate that is the global volumetric er-
ror minimiser - induces the least volumetric variance

min : abs(ν(P )− ν(C))

• minimum surface error → the candidate that is the global surface error
minimiser - induces the least change in the boundary meshes surface area -
relative to an interpolation of the original (target) points

min : abs(

∫∫

S

(P )−

∫∫

S

(C))

• minimum vertex count → the candidate that uses the fewest vertices to
meet the user-supplied error tolerance - induces the sparsest under error -
with a preference for polyhedra with shared vertices

min : |Cvertices| ∀ C ∈ CS s.t. error(C,P ) < α

• minimum face count → the candidate that uses the fewest polygon faces
to meet the user-supplied error tolerance - induces the sparsest under error
- taking into account the topology of the mesh that will be written to disk :
without punishing the presence of duplicate vertices

min : |Cindices| ∀ C ∈ CS s.t. error(C,P ) < α
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• maximum quality→ the candidate with the highest mesh quality that meets
the user-supplied error tolerance - derived from a weighted sum of the ratios
of each faces internal angles and surface-area

max : Q(Cvertices, Cindices)

The first three criteria address the requirement for geometric-accuracy, whilst the
remaining three deal specifically with the quality and sparsity (level of compres-
sion) of the optimised models. Vitally these criteria provide a means to automati-
cally resolve different classes of parametric model, that is both controllable by an
end-user and abstracted from the domain. They enable the MAMMAL algorithm
to reason about the idealised return without the manual specification of discrete
levels-of-detail (as in [156]).

Essentially the selection criteria allow an end-user to specify at a high-level the
types of model they desire in a uniform and transparent way. The MAMMAL algo-
rithm then does the grunt work creating potential optimised models and determines
and returns the best one, based on the supplied criteria. Good analogies for the
selection criteria include as a reconstructive-goal and as ranking or objective func-
tions. However readers familiar with CGAL and similar APIs should recognise this
as the simple use of predicates to define a geometric goal and guide the traversal
of an abstract space.

These intuitive selection criteria allow the MAMMAL algorithm to automatically de-
cide how best to approximate a building during optimisation - given a number of
candidates. Based on this, the next sections discuss the generative functions that
return candidate models for each cluster of points.

Candidate Generation and Verification

The key to the MAMMAL algorithm’s efficiency is the manner of generating and
differencing parametric models with the original range points.

As stated the MAMMAL algorithm considers two-types of generative function. Fixed-
form (templated) and open (data-driven) modelling functions.

Fixed-form-functions behave as typical parametric models - taking in a finite num-
ber of arguments that control the geometry they return. They are effectively dy-
namic ’model-library’ [124] functions. The MAMMAL algorithm traverses each
fixed-form function’s parameter space using discrete steps - in order to identify
values for the input arguments that minimise the geometric error of the resulting
model relative to each target cluster of points. Open-functions on the other hand,
implement data-driven modelling strategies - whose return value is directly con-
trolled by the input building cluster.

The open-functions provide greater flexibility in characterising irregular classes
of building. However the flexibility to define non-linear data-driven geometric-
detectors, comes at the cost of efficiency. The vital difference between the two
types of function is that fixed-form functions are un-aware of the input scan data,
whilst open functions derive their geometric return directly from a cluster of seg-
mented points. This distinction is very similar to the fixed-form vs open 2D shape
detectors exploited during vectorisation. The core idea is that MAMMAL has two
complementary types of optimisation function - that are suited to prior based fitting
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and data-driven approximation.

Note: that these two approaches to candidate generation, enable the MAMMAL al-
gorithm to more efficiently traverse the solution space relative to rigid-body, affine
and even deformable transformation models. Interestingly though, they both con-
form to the same verification process. To evaluate a candidate model, a discretised
version is created using the rasterised depth-buffer explained in $3.3.3, and com-
pared to the original (target) DEM points. This reuse of the fast parallax error
measure, results in the verification of parametric models being semantically no
different to that of the previously recovered projected models. Later discussions
present enhancements to the optimisation stage. Next, the fixed-form and open
detectors are explained.

Fixed-Form Shape Detectors

The MAMMAL algorithm exploits a set of simple generative functions to charac-
terise common-architectural forms. An intuitive example is the TaperBox function.
Figure 3.26 illustrates a sub-set of the space of potential models that the Taper-
Box function can represent. You’ll notice hipped, Gable, Mansard, Gambrel, shed,
pyramid-hipped and flat roof-types.

Figure 3.26: examples of instances of 2.5D mass-models from the space of potential

returns for the parametric fixed-form function - TaperBox

The key insight is that each of the instances illustrated in figure 3.26 is simply the
product of varying four scalar parameters (input arguments) to the TaperBox func-
tion - scale x, scale z, offset x and offset z.

This example (in-particular) relies on the topological symmetry present in the Ta-
perBox - but further it also demonstrates that highly expressive distinct roof-types
can be expressed as the product of a very small (typically less than 8) number of
non-linear transformations. Whilst the resulting function is intuitive to understand,
in practice writing an analytic error-measure for such a parametric function quickly
becomes intractable as the irregularity of the representation grows. Additionally
it has the tendency to constrain (and/or impede) the definition of the architectural
representation. As such the fast parallax error measure is vital - since it dissas-
ociates the functional descriptor from the evaluation (error/energy minimisation)
process.

Further, the dynamic nature of the representation (a model-generating paramet-
ric function) signifies a major benefit over pre-existing model-template based re-
constructive methods [1], [71], [75], in that whilst a number of object descriptors
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would be required to accomadate each distinct roof-type (illustrated in figure 3.26),
the MAMMAL algorithm requires a single object descriptor to embody the same
meaning. The implication of this lies in enabling interactive user-centric parametric
manipulation and modification of the reconstructed buildings - which is discussed
in greater depth shortly.

In order to better explain these ideas, two additional fixed-form functions are cov-
ered. The RadialRail and the TaperBoxGroup functions.

The RadialRail function (depicted in figure 3.27) is a simple circular footprint mass
detector that exploits a set of distinct revolved profiles to approximate circle based
building roof components. Each input profile can also be scaled non-uniformly to
alter the dimensions of the mass returned, yet they are all a product of the same
generative modelling function.

By this point, an astute reader should have begun to notice the similarities present
in the fixed-form functions. Generally speaking they are all derived from simplexes
and mapped to 3D using a low-level modelling procedure (a non-linear extrusion in
the case of the TaperBox and a generalised cylinder in the case of the RadialRail).
The reasoning behind classifying them as fixed-form is that ultimately each is fixed

in the forms it can represent. This label does not mean the fixed-form functions are
rigid or necessarily linear (in reality most are not), rather it states that the scope of
the dynamism achievable is fixed ahead of time - by the author of the function.

Figure 3.27: models returned by the function - RadialRail

One of the key benefits of library-based reconstructive methods is that they en-
able priors and constraints to be imposed so as to preserve parallelism, symme-
try and other desirable geometric features. Beyond embedding heuristics about
roof-shape arrangements, an additional benefit is that these functions are also ex-
ploited internally by the MAMMAL algorithm in the detection of repeated structures
and common patterns prevalent on roofs.

For example by trivially adding an additional two parameters - repeat x and re-
peat z (that both represent integer instance counts) - to the TaperBox function,
one enables repeated rectilinear structures to be characterised - such as the M-
shaped and corrugated roofs illustrated in figure 3.28.

Figure 3.28: models returned by function - TaperBoxGroup
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To revise, this subsection covered the fundamentals of the fixed-form parametric
detectors - including the aims and advantages and provided a handful of clarifying
examples. The next-section covers the parameterisation of more complex topolo-
gies, using the example of the terrace-detector to help clarify.

Open Shape Detectors

Due (in large) to the efficiency of the depth-buffer error detector (and the fact the
IO overhead for parameterisation is nil) the optimisation method employed by the
MAMMAL algorithm can generate and evaluate hundreds of thousands of vary-
ing candidate models in a surprisingly efficient manner - without any heuristic
guidance. However for certain classes of building (especially those with high-
dimension corresponding parametric functions), such an exhaustive approach can
significantly degrade performance.

The heart of the problem is that the operator is effectively trying to traverse the
infinite space of potential geometries. Even with discrete steps, as the number of
parameters grows the complexity of identifying an appropriate model also grows.
To address this the MAMMAL algorithm generates candidates for open (complex)
functions differently. Each open-function is responsible for instantiating candidate
models for an input building cluster.

In this manner each open-function acts as a self-contained detector - in the sense
that MAMMAL no longer controls the traversal of the solution space defined by the
function, rather the function itself encompasses the required logic. So whilst each
fixed-form function accepts a finite (though variable) number of input arguments
and returns a single mass-model:

MassModel FunctionName(type1 arg1, type2 arg2,... typeN argN) { ... }

each open function accepts a single input object descriptor and returns a set of
candidates based on its internalised data-driven modelling logic:

MassModel[] FunctionName(BuildingDescriptor descriptor) { ... }

MAMMAL then adds each element in the set of candidates to the global candidate-
set exactly as it would for the return of a fixed-form function.

This subtle difference aims to both speed up the evaluation of highly-specialised
detectors and enable a generative function to directly access the target cluster of
points and associated vectorisation data during model creation.

Although this may be hard to imagine, what it means is that each open-shape de-
tector can directly interrogate a target building object (segmented points, vector
shapes and projected mass) in order to alter the nature of its return value so as to
better characterise the object during optimisation.

One particularly intuitive open function is the terrace-detector. It is responsible for
parameterising, snake-like [155] residential buildings.

The underlying ideology is similar to the method of extracting and refining trans-
port profiles to describe radially symmetric architecture in facade scans by Wu et
al. [151]. We drew further inspiration from the 2D-snake algorithm of Yan [155] et
al., however unlike our predecessors the operator favours a direct geometric tech-
nique over energy minimisation.
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To derive compact terrace models the TerraceRail function exploits the graph-

refined approximate interior linear spine algorithm (GRAILS) introduced in §3.3.3,
to first localise on an interior polyline representation of each cluster of points. The
TerraceRail function then exploits this spine to sweep 2D slice profiles about the
extents of the building to yield 2.5D mass-models.

Figure 3.29: terraced buildings at 1m resolution in the city of Bath dataset - the top row

is the unrefined result whilst the second row shows the result using the data-driven terrace

detection function TerraceRail

Vitally the terrace extractor is not constrained to monotonic polygons (see middle
column of figure 3.20). Despite its heuristic nature it yields stable results even at
low point-spacings. Figure 3.29 illustrates further.

This example open function seeks to demonstrate the benefit of having self-contained
mass detectors capable of optimising irregular architectural forms. Ultimately though
the true power of the fixed-form and open-functions is most apparent when ap-
plied not only to each individual building but to each segmented roof-shape in turn.
Essentially if the MAMMAL algorithm only optimised point-clusters at the level of
individual buildings, then a plethora of open-functions would be required to handle
the diversity present in architectural roof-shape arrangements. However because
MAMMAL has already isolated salient components of each building’s roof (during
segmentation), the optimisation stage can also be applied to each roof-shape in
turn in exactly the same manner as for each individual building. This means that
rather than having to evaluate a large number of parametric functions (to optimise
complex roofs), a comparatively small number of simple functions can be compos-
ited to yield a constructive building representation.
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Figure 3.30: an example of the parameterisation of a simple compound building from the

25cm point-spacing Manchester dataset: depicting (from left to right, top to base), the input

building points coloured by normal, the point-to-model elevation error (black maps to zero,

green to positive error, red to negative error), the normal variance between normals of the

input points and parametric model (using a HSB colour scheme such that hue 0.5 maps to

0), output parameterisation overlain with input points, output parameterisation rendered in

isolation and output rendered with normal-to-colour shader.

Figure 3.30 evinces this point using the simplest type of compound mass - a two
component building. The MAMMAL algorithm relies on the ability to compose
simple masses in a data-driven manner in order to form seemingly complex archi-
tectural mass-models as the product of a surprisingly small set of incredibly simple
parametric functions. The final stage of the optimisation routine merges sets of
parametric masses and is discussed next.

Constructive Solid Re-Massing

The final stage of parameterisation aims to unify the parametric masses recovered
via optimisation in order to ensure the result for each building is a single mani-
fold polyhedra mesh. Although this stage is optional the benefit of merging each
parametric component is apparent when each building is used to guide the seg-
mentation and reconstruction of unstructured ground scans. In such instances, the
presence of non-manifold internal faces can degrade performance by introducing
erroneous facades. Essentially this stage results in a single building shell from a
set of manifold parametric masses.

An extended binary-space-partitioning algorithm is used to implement the con-
structive operations, from which the union is used to merge the parametric ge-
ometries. This stage effectively acts as a retopology operator in the sense that it
preserves the extents of the object’s geometric form, whilst altering the arrange-
ment of polygonal faces used to characterise the extremal surface. Figure 3.31
illustrates this using a simple 3-component mass.
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Figure 3.31: a spatially aware variant of the binary-space partitioning (BSP) algorithm en-

sures a watertight-shell is returned for sets of parametric masses

The left image illustrates the set of input parametric primitives (168 vertices, 332
faces), in the middle the result of the union operation for the set using the BSP
algorithm (913 vertices, 1655 faces), and on the right the refactored return as a re-
sult of detecting and maintaining non-interacting planar pieces (500 vertices, 722
faces). The basic idea is incredibly simple.

The key insight is that in performing the boolean union operation on two polyhedra
(A and B) only polygons that interact with the alternative operand actually need to
be altered. This underlying idea was derived from observation of the limitations of
half-plane clipping based methods. This is quite clear in figure 3.31. You’ll notice
that the vertical faces of the base cuboid are spatially distinct from the dome or
round cone. Essentially if a polygon in representation A is unambiguously disjoint
from the faces in representation B, then logically there is no reason to alter (split/-
clip) the polygon in the output representation. As such the implementation boils
down to determining the faces in a A that do not interact with B, the faces in B that
do not interact with A, and clipping the remaining parts of A and B in the output.

Whilst this idea is incredibly simple to understand, in practice a naive implementa-
tion will generally lead to parity problems especially when coplanar primitives exist
in the inputs A and B. The half-plane based boolean methods generally deal quite
well with this by double-clipping (regularisation).

The limitation of this basic variant is that it relies on disjointness - which means that
only faces that do not interact in any way with the other operand will be preserved.
However often there are instances where most (or all - in the case of a co-linear
edge) of a face lies outside of the other operand and should be preserved in the
output. To support this desirable behaviour triangle and quadrilateral sub-division
routines are exploited in order to break down each such face into sub faces so as
to isolate as great an area of independent components as possible. The core con-
cept is that by actively controlling the division of polygon faces prior to the boolean
operation the variant not only manages the topology, but minimises the area of the
clipped faces in the output mesh. This behaviour is evident in the top horizontal
face of the cuboid in figure 3.31. Note that the corners of the refactored face (right)
are composed of higher quality (larger surface area and smaller variance in inter-
nal angles) triangular facets than in the raw BSP result (middle). In particular this
sub-divide enhancement is tantamount to a strategy for maximising the surface-
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area of non-interacting polyhedra components between the input operands A and
B prior to executing the boolean union.

In summary, the final (optional) process of the MAMMAL’s algorithm’s optimisation
strategy is constructive solid re-massing, and involves merging and refactoring
sets of parametric polyhedral mass-models in order to yield a watertight shell for
each optimised reconstructed building-model.

3.3.6 Summary

The MAMMAL algorithm automatically recovers compact, 2.5D geometric models
of buildings in airborne laser-scans using a four stage process. MAMMAL first seg-
ments the input data, using the difference of elevation models and maximal area
roof-shape segmentation, in order to identify salient clusters of points. MAMMAL
then vectorises the segmented points in 2D in order to yield 2D vector shapes
representing the extremal boundaries of the segmented points. MAMMAL then
projects the vectorised shapes into 3D by minimising the RMS error between each
cluster of points and the polygonal faces of each projected model. MAMMAL then
optimises each building parametrically in order to enhance the visual appearance
and structural quality of models reconstructed from low-quality clusters of points.

Having explained the methodology, the next portion of this chapter presents the
results of laboratory experiments in which the MAMMAL algorithm is exploited in
order to reconstruct various city-scale datasets.
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3.4 Experimental Results

This section of the chapter explains the evaluative measures that are used to quan-
tify MAMMAL’s performance and documents the results of executing MAMMAL on
testing datasets. The primary aim is to clarify the physical performance of the
MAMMAL algorithm when applied to real-world data.

Throughout this section the three primary attributes profiled are: geometric accu-
racy, level of compression and computational efficiency.

The aim is to provide a comprehensive account of MAMMAL’s performance.

For each of the datasets, the additional discussions outline the pertinent aspects
of the results and draw a readers attention to the key behavioural factors. However
deeper explanations and the bulk of the critical examination is considered in the
following portion of this chapter. As in the preceding chapter, here the focus is to
enumerate the results and explain their meaning. The section that follows (analysis
and evaluation) deals with exposition of their significance.

3.4.1 Synthetic Datasets

This section briefly outlines the results of controlled tests of the MAMMAL algo-
rithm on synthetic data. The primary of aim of these experiments was to deter-
mine the behaviour of MAMMAL in controlled situations for which the expected
reconstruction result was unambiguously known ahead of time. In terms of the
methodology employed: the synthetic datasets were procedurally generated from
manually modelled top-down building mass-models. This simply involved discretis-
ing polygon mesh at various sample spacings and introducing synthetic sensing
noise (to varying extents) by jittering the elevation of points in the generated depth
maps. To simulate the presence of missing data - a variable subset (a fraction) of
the gridded points were removed (i.e. values set to the null-data indicator -9999).

The main findings from the controlled experiments are summarised following.

• Accuracy is bound by and tightly coupled to cell-size (resolution). This in
particular applies to the data-driven projections. Essentially the greater the
number of points per building cluster the tighter the fit of the generated mod-
els. However as scan resolution increases - so to does the relative cost of
conforming to the MAMP principle (i.e. more post-processing is applied by
the MARS algorithm to form maximal-area clusters).

• Synthetic results are less indicative of performance on real-data. Notably the
performance on synthesised scans can mislead one as to the performance
of an algorithm on actual scans exhibiting real sensing artefacts. This goes
beyond simply high and low frequency noise. For example with the artifi-
cial tests problems such as terrain-estimation errors are non-existent and as
such result in better segmentation results than occur in practice. Further
real scans possess multi-scale features that perturb roof points and hinder
segmentation whilst the synthetic scans capture fewer such features.

So whilst profiling on validatory synthetic data is useful from the perspective of
understanding the limits of the MAMMAL algorithm (and indeed in development
and debugging) it is not necessarily indicative of performance on real scan data.
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3.4.2 City of Bath - 1ppm (1m)

The results of reconstructing the City of Bath are structured as followed. First a
preliminary explanation of the experimental setup is provided. Following this, the
results of segmentation, vectorisation, projection and optimisation are presented in
turn. For each stage quantitative measures are provided in the tables and graphs
whilst qualitative figures accompany the numeric results for further clarification.

Experimental Setup

The city of Bath experiments exploit the same airborne digital surface and terrain
elevations models employed in the previous chapter’s Semantic Change Detector.
The DSM and DTM cover a 2km x 2.5km region of the south-west UK city, with a
point-spacing of 1m. It represents the lower-resolution end of currently available
off-the-shelf airborne scan data. Although in practice, the Bath dataset’s point-
spacing is too low for the reconstructed models to be exploited in the production of
verified views or AVR’s (accurate visual representations), they are still suitable for
large scale rendering and visualisation. An additional benefit is the existence of a
corresponding manually-constructed CAD model for qualitative inspection.

Segmentation Results

These results document the performance of MAMMAL’s building detection (using
the DoEM method described in the previous chapter) and individual roof-shape de-
tection (using MARS). The key attributes profiled are the growth in execution time
as a product of varied input arguments and the geometric characteristics of the set
of salient regions identified by the stage. These results expose how effective the
Maximal-Area Minimal Primitives principle is as a high-level segmentation strategy
when low resolution point-data is supplied as input. They also demonstrate in-
stances where the concept breaks down and the general limitations of the method.

DoEM: The following figures illustrate the outcome of DoEM segmentation.

Figure 3.32: buildings automatically identified in the city of Bath dataset

Figure 3.32 illustrates the whole of the Bath dataset whilst figure 3.33 illustrates a
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close-up view of a central subset of buildings. In both figures each building (con-
nected component) is assigned a psuedo-random colour whilst the terrain and
clutter is denoted by grey regions.

Figure 3.33: close-up results of the difference of elevation models segmentation applied in

order to identify buildings in the city of Bath dataset

The qualitative results figures 3.32 and 3.33 indicate that despite the heuristic na-
ture of the difference of elevation models, it results in stable identification of the
individual buildings in the low resolution 1m Bath dataset.

MARS: The following figures illustrate the outcome of MARS on the city of Bath.

Figure 3.34: roof-shapes automatically identified in the city of Bath dataset

As in the DoEM figures, the ground terrain and clutter is indicated by gray regions
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whilst each roofshape is assigned a psuedo-random colour.

Figure 3.35: close-up results of the maximal area roofshape segmentation applied in order

to identify roofshapes in the city of Bath dataset

Figures 3.34 and 3.35 provide qualitative indications of the performance of MARS.
The close-up figure 3.35 (in particular) illustrates the separation of distinct roof-
shapes for arbitrary building forms. However note that it also demonstrates that
the segmentation is not perfect since there are still instances of over and under
segmentation present. Nonetheless the majority of significant roof-shapes seem
to be correctly isolated.
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Distribution of Building Attributes: The following graphs record the distributions
of building attributes in the city of Bath - calculated as a product of the segmenta-
tion method. The first depicts the spread of building sizes in the 1m point-spacing
dataset, whilst the subsequent two depict the spread of roof-shape counts (cardi-
nality) for buildings in the dataset and the distribution of roof-shape surface-area
resulting from the area-maximisation step employed during MARS.

Figure 3.36: bar-graph of the distribution of building footprint surface-areas in the city of

Bath dataset - illustrating the non-linear relationship between the frequency of buildings and

the footprint area

Figure 3.36 indicates a non-linear (inverse exponent) relationship between fre-
quency and building size. The interesting thing about this auxiliary analytic mea-
sure is that it provides a high-level city signature that could feasibly be used to com-
pare and contrast distinct geographic regions based on the distribution of types of
architecture present in each.

Figure 3.37 on the other hand considers the spread of roofshape attributes over the
Bath dataset, and suggests that there is a propensity for buildings with four domi-
nant roofshapes (right). Additionally note that although the user supplied minimum
roofshape area is set to 10m2 there are still a handful of roofshapes that fail to meet
this tolerance (left). Positively though it indicates that the proportion of roofshapes
that could not be refactored by non-maximal suppression is negligable at 1m point-
spacing, depsite the fact that there are still some non-conformals present.
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Figure 3.37: bar-graphs indicating the distributions of (left) roofshape surface-areas and

(right) the number of roofshapes per building, for the city of Bath dataset - illustrating (left)

the proportion of non conformal segments (with the user supplied minimum roofshape area

set to 10m2) and (right) the most common roofshape frequencies as four and two.

Growth in Execution Time: The following graph documents the growth in execu-
tion time of the segmentation stage over subsets of the city of Bath dataset. Each
point in the line graphs represents the mean of 10 executions. This graph also
documents the effect that the noise cancellation has on the segmentation runtime.

Figure 3.38: growth in runtime for segmenting different sized subsets of the city of Bath

dataset with varying noise-cancelling iterations applied

Figure 3.38 constitutes a key result as it documents the almost perfectly linear
growth in segmentation runtime relative to the number of points in the airborne
scan for MAMMAL at 1m point spacing. Note: that the cost of noise-cancellation
at this resolution is negligible even when the maximum number of iterations is high.
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Vectorisation Results

The city of Bath vectorisation results document the performance of MAMMAL’s 2D
building footprint and roofshape detection. The key quantitative attributes profiled
are the growth in execution time as a product of the size of the input pointset,
the geometric accuracy of the resulting vector-shapes - in terms of the union over
intersection and Hausdorff measures - as a product of varying the maximum er-
ror tolerances and the level of compression of the sparse vector shapes relative to
their corresponding scan-converted dense vector shapes. These measures enable
one to determine the extent to which MAMMAL is effective at producing accurate
2D vector shapes for automatic map updating.

Geometric Error : Hausdorf Distances, Intersect over Union Ratios: The re-
sponse of the vectorisation stage in terms of the geometric error present in the
output on-plan shape-nets is documented in figure 3.40.

Figure 3.40: scatter graphs of the error response for vectorisation of the city of Bath - doc-

umenting (left) per-building-footprint, and (right) per-roofshape error measures

The scatter graphs in figure 3.40 document per-building (left) and per-roofshape
(right) approximation error for the 1m Bath dataset - against each point-cluster’s
dense scan converted boundaries - relative to the surface-area of the shape using
the Intersection-Over-Union Error Measure.

Level of Compression : Dense to Sparse vs Surface Area: The level of com-
pression is documented in figure 3.41. The graphs plot the compression ratios for
individual buildings (left) and roofshapes (right) for the city of Bath dataset.

Figure 3.41: graphs of the level of compression of the sparse building footprints and roof-

shapes constructed by MAMMAL’s vectorisation for the 1m city of Bath dataset
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Growth in Execution Time: The rate at which the execution time of the vectori-
sation stage grows as a product of the number of input points is profiled in figure
3.42. It indicates the effect that the user supplied maximum error tolerance has on
the time taken to vectorise the city of Bath dataset.

Figure 3.42: growth in execution time for vectorisation of the city of Bath: indicating a linear

relationship between the number of input points and the total execution time of the process

- also denotes the relative increase in runtime incurred by stricter error tolerances.

This key results demonstrates the linear growth in runtime of MAMMAL’s vectori-
sation stage at 1m point-spacing. It also indicates the relative cost of demanding
a stricter error tolerance at lower-resolutions. Note: that even at an impractically
strict error-tolerance (± 0.5m) the contribution to the growth in complexity is still
linear - which indicates that the cost of the data-driven parametric approximation in
2D (as a product of error-tolerance) is a fraction of the overall vectorisation runtime.

Projection Results

These results document the performance of the roofshape projection stage - which
maps the 2D shape-nets to 3D surface models. Again the important attributes are
the geometric error of the output models the growth in execution time and the level
of compression between the input range points and the output models.

Geometric Error : Root-Mean-Squared (RMS) Errors: The RMS error for pro-
jected buildings in the city of Bath dataset are documented in figure 3.43. The RMS
error represents the average point-to-plane vertical distance between each sam-
ple point in the input point-cluster and a discretisation of the set of mass-models
generated by the projection.
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Figure 3.43: scatter-graphs of the RMS error for projection of the city of Bath using (left)

disjoint and (right) watertight roofshape-nets.

The result indicates that there is a loose relationship between the resulting RMS
error and the size of the building, which suggests that more points tend to make
for more stable projections. However the nature of the result makes it difficult to
draw a precise relationship between building size and expected RMS error. Addi-
tionally one should bear in mind that with the 1m point-data the proportion of noisy,
boundary or anomalous points is greatest (relative to the 50cm and 25cm datasets
documented subsequently) - which means that the scope for compromises to how
robust the projection is at 1m is also greatest. Essentially there are fewer sam-
ple points per building at 1m point-spacing and as such one would expect any
detrimental effect to be most significant. However (as stated) this is actually quite
useful because it helps determine performance in the worst case scenario. Fur-
ther there is a slight reduction in RMS error for the watertight (right) projected
models, relative to the disjoint (left) projected models. This could be attributed
to the fact that the disjoint models have the potential to introduce gaps between
neighbouring roofshapes which add to the overall error because such points end
up without corresponding surfaces which means there variance will be equivalent
to their elevation. Due to the fact that such points occur primarily at the boundaries
of roofshapes the overall detriment is limited and the reduction in error subtle. This
indicates that any points not represented by the projected models will contribute
the greatest amount to overall geometric error of the output.

Level of Compression : Input Point Count vs Output Vertex Count: The level
of compression of the output projected models relative to the number of input
points is reported in figure 3.46. The values are simply scalar ratios that repre-
sent the factor of input scan points to output model vertex.

Note in particular in figure 3.46 that at 1m point-spacing the output projected mod-
els may actually contain more vertices that the input points.

This indicates that for lower resolution scans MAMMAL cannot necessarily guar-
antee a sparser model than raw interpolation of the points. This can largely be
attributed to the fact that in such instances any form of simplification has a greater
impact on the accuracy of the result than at higher resolutions - and the fact that
when there is little data - the representation of walls (vertical features) in the pro-
jections (which are not explicitly represented by the point-clusters) bears a higher
relative cost - and can lead to a duplicative effect on vertex-count.
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Figure 3.46: the compression ratios of input points to output vertex plotted as a product of

the extents (size) of buildings in the Bath dataset.

Level of Compression : Graph of LOC vs RMS/Volumetric Error: These graphs
document the manner in which the level of compression of each model influences/is-
influenced-by the building’s point-elevation error and volumetric error.

Figure 3.47: scatter graphs of compression-level versus error for (left) RMS measures and

(right) volumetric measures - for the Bath dataset.

The spread of the measures in figure 3.47 is somewhat arbitrary and as such does
not provide enough information to draw a precise relationship between a build-
ing’s discrete (point to plane) and continuous (integral/volumetric) error at 1m point
spacing and its typical level of compression. This suggests that for low-resolution
scans the level of compression and geometric accuracy of masses produced by
MAMMAL are not directly related to the sparseness of the representations gener-
ated.

Page 164 of 301



CHAPTER 3. MASS RECONSTRUCTION→ 3.4. EXPERIMENTAL RESULTS

Growth in Execution Time Graph: The rate at which the execution time of the
projection stage increases as a product of the number of points in an input scan at
1m point-spacing is profiled in the graph in figure 3.48.

Figure 3.48: plot of the growth in execution time as a product of the number of input points

for the projection stage given 1m spacing point-data.

This key result indicates that at 1m point-spacing the projection stage executes
in roughly linear time, relative to the number of input points or using big-Oh nota-
tion: O(n) - where n is the number of input points. The reason this is important is
because the computational complexity of an algorithm (in particular its growth in
runtime relative to the size of the input) largely controls an algorithm’s scalability.

Positively the cumulative results for the city of Bath indicate that for lower resolution
scans MAMMAL’s exhibits linear runtime growth - which is an important result in
terms of its scalability. However they also indicate that at 1m resolution MAMMAL
is more suited to producing LOD0 or LOD1 models and cannot produce physically
accurate and highly detailed LOD2 models from such lower resolution data.
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3.4.3 City of London - 4ppm (50cm)

Experimental Setup

The city of London experiments exploit digital surface and terrain elevation models
of a region of the UK capital, covering roughly 10km x 10km. This set of experi-
ments in particular represents vital test-cases since London is actually the city for
which the idea of Automatic Temporal Updates was devised. Vitally though the
London dataset is subject to greater sensing noise and partial and missing data
than the city of Bath, and as such (despite the larger number of samples) provides
a greater challenge for the MAMMAL algorithm in terms of the mitigation of unde-
sirable sensing artefacts. The London dataset (as the Bath dataset) was acquired
from the Geomatics group [47] and is in the form of a composite DEM.

Note: in order to keep the exposition of the results flowing - and (to an extent) to
help minimise repetition - this subsection provides a summary of the pertinent as-
pects of the City of London results. This synopsis is largely to enable us to devote
greater attention to the examination of the higher-resolution City of Manchester
experimental results which follow.

Summary of City of London Results

The key observations of the City of London experiments are noted below.

• The performance of the segmentation improves as a product of the 50cm
data. In particular the effects of non-conformal suppression are more dis-
tinctive - however the maximisation step also takes proportionally longer.

• The vectorisation performance improves massively with the 50cm data - how-
ever there remain subtle artefacts in the co-related shape refinement nets
that still require addressing. Observation reveals that these result largely
from irregular building complexes.

• The projection stage yields more coherent geometries given 50cm data than
at 1m - but it still yields some models that look like automated geometry.

• The proportion of roof-shape components modelled by the non-linear optimi-
sation increases with the higher resolution London data relative to the Bath
data. Essentially the take-up of the parametrics over roof-shapes improves -
however this comes at the cost of increased execution time.
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3.4.4 City of Manchester - 16ppm (25cm)

Experimental Setup

The Manchester experiments exploit digital surface and terrain elevation models
covering roughly 2km x 2km. The dataset is well sampled and exhibits fewer
anomalies than the London dataset. However even at 25cm point-spacing there
remain numerous unavoidable artefacts that have the potential to degrade the geo-
metric performance of MAMMAL. These experiments delve deeper into MAMMAL’s
performance than with the preceding Bath and London datasets. In particular a
number of additional tests are introduced that profile the resulting reconstructed
models relative to open-access building shape data and alternative reconstruction
methods. The key benefit of the higher resolution DEMs is that they enable con-
sideration of MAMMAL’s computational complexity as a product of the growth in
execution time incurred as the density of input points increases. Additionally in
practice a firm that produces Architectural and Engineering Visualisations will tend
to opt for the highest resolution scan data that is available in order to minimise the
introduction of approximation error. Fundamentally the Manchester dataset helps
determine how well MAMMAL scales with point sampling density.

Segmentation Results

Growth in Execution Time: Figure 3.49 documents the rate at which the execu-
tion time of MAMMAL’s segmentation grows relative to the number of points in the
input scan at 25cm point-spacing. In particular note the increased runtime of the
noise-cancellation stage for this higher resolution data relative to the Bath dataset.

Figure 3.49: growth in runtime for segmentation of buildings at 25cm point-spacing as a

product of varying the maximum number of noise cancellation iterations employed by MARS

Page 167 of 301



CHAPTER 3. MASS RECONSTRUCTION→ 3.4. EXPERIMENTAL RESULTS

The key observation in figure 3.49 is that at higher-resolutions noise-cancellation
(non-maximal-suppression) contributes to a larger proportion of the overall seg-
ment runtime than at lower resolutions. In particular - the number of noise cancel-
lation iterations required to resolve the roof-shape arrangement (so as to conform
to the MAMP objective) is significantly more. However (despite this) the runtime
still grows in a quasi-linear (or sub-linear) fashion (e.g. at max 500 iterations).

Figure 3.50 documents the result of processing an irregular building to provide a
qualitative sense of MARS’ segmentation performance at 25cm point-spacing.

Figure 3.50: result of segmentation of a particularly challenging building instance (exhibit-

ing curvature) at 25cm point-spacing - illustrating (left) the input points coloured by normal

and (right) the isolated clusters coloured by segment group

The positive aspect of this is it demonstrates MAMMAL’s ability to decompose
regular (planar) and irregular (non-planar) components. In particular observe the
manner in which the semi-cylindrical component is handled. Even with the ribbed
edges along its surface, MARS is able to correctly isolate this component.

Vectorisation Results

The city of Manchester vectorisation results document the performance of MAM-
MAL’s 2D building footprint and roofshape detection. These results follow the same
experimental conventions as the city of Bath and city of London datasets.

Geometric Error : Hausdorf Distances, Intersect over Union Ratios: The re-
sponse of the vectorisation stage at 25cm point-spacing (in terms of the geometric
error present in the output on-plan shape-nets is documented in figure 3.51.

The result demonstrates a clear relationship between the continuous error and
the surface-area of vectorised components - with smaller components contributing
greater error. In essence one can state that the larger the roofshapes (typically)
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the greater the integral fit relative to the dense scan converted boundaries.

Figure 3.51: graph of error response for vectorisation of the city of Manchester - document-

ing (left) per-building-footprint, and (right) per-roofshape error measures

This result confirms one’s intuition in that the larger each roof-shape the less sig-
nificant the contribution of error around its boundary. However note also that roof-
shape error typically exceeds footprint error.

Level of Compression : Dense to Sparse vs Building Area: The relationship
between the sparseness and accuracy of vector-shapes generated by MAMMAL
at 25cm point-spacing is documented in the plots in figure 3.52.

Figure 3.52: graph of compression response (sparseness) for vectorisation of 25cm air-

borne scans - documenting (left) the effect of varying the max-footprint-error tolerance and

(right) the per-roofshape measures

Observe in figure 3.52 that the behaviour of the vectorisation stage (in terms of its
sparseness whilst conforming to an error tolerance) improves vastly for the 25cm
data relative to the 1m and 50cm data. This is reasonably obvious as it confirms
the intuition that the higher the resolution of the input the greater the scope for
compression. Essentially more points equate to greater scope for simplification.

Projection Results

The Manchester projection results document the performance of MAMMAL’s data-
driven 2D to 3D parallax pop-up stage for 25cm resolution scans. These results
follow the same experimental conventions as the Bath and London datasets.

Geometric Error : Root-Mean-Squared (RMS) Error: The RMS error for the pro-
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jected buildings in the Manchester dataset are documented in figure 3.53.

Figure 3.53: RMS errors for buildings in the 25cm city of manchester dataset when (left)

disjoint, and (right) watertight roof-shape-nets are used

Note in figure 3.53 that whilst most buildings yield a tight discrete fit - the presence
of erroneous clusters (i.e. vegetation points that are mis-classified) offsets the dis-
tribution of errors in the scene. This indicates that a handful of the objects can
possess mis-represented regions that (as such) yield greater error.

Beyond mis-represented objects - the increased resolution of the points means a
greater number of boundary positions can influence the overall error of a building.

Geometric Error : Volumetric Mass Error: The volumetric error for projected
buildings in the Manchester dataset are documented in figure 3.54.

Figure 3.54: the volumetric error for the projections in the 25cm Manchester dataset - indi-

cating (left) disjoint and (right) watertight measures for projected building masses

The key observation in figure 3.54 is the decrease in volumetric error for the higher
resolution 25cm data relative to the lower 1m and 50cm resolution datasets. This
suggests the volumetric fit of each building improves significantly as the density
of the input increases. There is far less variation in the result. Interestingly this
also indicates that though the point-to-plane error for misrepresented objects can
exceed the error-tolerance - generally there is less of an effect on the volume of a
representation which more accurately characterise the extents of each mass.

Level of Compression : Input Point Count vs Output Vertex Count: The rela-
tionship between sparseness and building extent for the projected masses in the
25cm resolution Manchester dataset is documented in figure 3.55.
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Figure 3.55: level of compression for data-driven projected masses at 25cm resolution

Figure 3.55 indicates a more uniform relationship between building size and sparse-
ness at 25cm than at 1m and 50cm. However observe that for very small buildings
(i.e those near the minimum area tolerance) - such as small residential masses
- MAMMAL may still use more vertices to represent a building than are present
in the input point-cluster, even for 25cm data. Fortunately though figure 3.55 indi-
cates that such instances are relatively rare - and that generally the compatification
of the resulting masses is reasonable (typically less than 10% of the input).

Level of Compression : Graph of LOC vs RMS/Volumetric Error: The relation-
ship between the accuracy and brevity of MAMMAL’s projected masses for 25cm
resolution airborne scans is documented in figure 3.56.

Figure 3.56: scatter graphs of compression-level versus error for (left) RMS measures and

(right) volumetric measures - for the Manchester dataset.

Figure 3.56 indicates a more stable correspondence between error and compat-
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ification for the projected masses produced by MAMMAL given 25cm resolution
scan data. The spread of errors is less diverse than at lower resolutions. However
the relationship is looser than that between compatification and building size.

To complement the projection results for the Manchester dataset figures 3.57 and
3.69 provide a qualitative view of the outcome of the process.

Figure 3.57: city-scale massing models automatically generated by MAMMAL’s linear roof

projection routines for the 25cm Manchester dataset - with the camera positioned on a build-

ing’s roof to simulate a first-person view-point of the city - from a specific location

Figures 3.57 and 3.69 document the appearance of the linear and non-linear data-
driven projections constructed by MAMMAL as a signpost to the level of detail that
is attainable. The main observation is that these assets are relatively close to man-
ually created models in terms of how clean and compact they are.

Figure 3.69: non-linear roof projection using MAMMAL’s structured sub-divisions - illustrat-

ing (top-row) a close-up of the roof-mesh for the building in figure 3.50 - and (bottom-row)

the building at ground-view level - note: the terrain is a sub-sampled DTM interpolation
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Optimisation Results

The optimisation results document the computational performance of the non-
linear parameterisation of building point-clusters in the Manchester dataset.

Growth in Execution Time: Figure 3.70 documents the growth in runtime for
MAMMAL’s optimisation stage on the 25cm Manchester scan data relative to the
growth of the segmentation and vectorisation stages.

Figure 3.70: growth in runtime for MAMMAL’s procedural optimisation stage (at 25cm point-

spacing) - relative to its segmentation and vectorisation stages

Figure 3.70 documents the growth in execution time for the key stages in MAM-
MAL relative to one another. The main observations are that parameterisation is
the most expensive sub-process - however (vitally) it still exhibits roughly linear
runtime growth as a product of the number of points in the input.

Figure 3.71 illustrates close-up views of some of the optimised building compo-
nents in the Manchester dataset to provide some qualitative context.

Figure 3.71: close-ups screenshots illustrating the results of MAMMAL’s automatic non-

linear procedural optimisation of the 25cm Manchester dataset (zoom-in to-inspect)
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Post-Reconstruction Model Validation: Parametric Building Editor

MAMMAL’s post-reconstruction interactive editor is an extension to the fully auto-
mated implementation that supports component level parametric alterations to the
buildings in a reconstructed scene. The primary purpose is to enable a technician
to refine the results of optimisation by changing the parameter values for individual
building roofshapes in realtime. A technician selects part of a building (by clicking
upon it) in order to display and manipulate a 2D parametric widget that instantly
re-models the building component using the updated parameter values.

Figure 3.72: post-reconstruction parametric model validator with optimised masses from

the city of Manchester loaded and a ’round-box’ instance selected for editing.

Although this was written as an extension to the core MAMMAL implementation,
what it demonstrates is a simple prototype of procedurally generated mass-models
being parametrically (interactively) controlled in realtime automatically from recon-
structed point-cloud data. Yes - you read correctly! For the surprising (and to some
extent revolutionary) hidden benefit of MAMMAL is that it implicitly lends itself to the
problem of recovering semantically-rich parametric descriptors automatically from
airborne laser-scans. The parametric editor exploited as a post-reconstruction val-
idator stands as evidence of this. Whilst this initial version leaves much to be
desired - (especially in terms of the tiny set of functions exploited), it still repre-
sents far greater semantic richness than any reconstructive pipeline present today.

Essentially the truly novel aspect of the MAMMAL algorithm’s procedural optimisa-
tion is that it automatically generates interactive parametric representations of city
scale airborne laser scans. that allow high-level manipulation of the structure of
components in each building with the use of semantic parametric handles.

The vital insight in this is the duality of the functional descriptors extracted by
MAMMAL’s non-linear procedural optimisation - i.e. the fact that the same un-
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derlying representation is used to serve backward-chaining (reverse engineering)
and forward-chaining (user-centric) model construction and manipulation.

Figure 3.73: post-reconstruction user-centric alterations made (via interactive parametric

manipulation) to the optimised component depicted in figure 3.72 - coordinated in realtime

For example figure 3.73 illustrates an end user altering the arguments to the auto-
matically optimised round-box mass-model instance (depicted in figure 3.72) - in
order to change the grain of the piecewise approximation of curvature encoded by
the function. All of this occurs in realtime. This ability is simply a product of the
fact that for each optimised component both an explicit and implicit representation
exists. The explicit representation takes the form of a polygon-mesh, whilst the
implicit representation is simply the name of a function and a list of the input ar-
guments. Whilst most technicians will be interested in the explicit representation,
those with procedural plans will lean towards the implicit representation. This pref-
erence is manifested in the parametric editor which simply instantiates and binds
geometric model generator widgets using the parameter values of the optimised
components in the reconstructed dataset. This is a key result in that it documents
an advantage of MAMMAL that is currently unmatched by pre-existing methods.

In particular - even the highly regarded (dominant pre-existing) methods of Zhou
and Neumann [165][166][167] and Lafarge, Mallet et al. [71][72][73][68] do not
facilitate this level of semantic alteration to a reconstructed airborne scan dataset.

Note on Interactive Post-Processing: The vital property of the interactive valida-
tory extensions to MAMMAL is that they are post-processing tools. They do not
actually alter the reconstructive requirements. Instead they simply enable an end-
user to select (switch between) alternative-mass-models instances or dynamically
revise the parametric representations. The benefit of this is that they do not man-
date any alterations to the automatic implementation. Rather they present the out-
put in a manner that enables intuitive revision. That is all. In principle, if the quality
of the automatic result is sufficiently high, then these extensions can be considered
surplus to requirements. However in practice there are often trouble-case buildings
that must be treated in isolation because their error-minimisers (best according to
selection-criteria) are lacking aesthetically. These post-processing tools facilitate
such alterations without having to re-process an entire site. Nonetheless the better
the automatic result, the less the need for intervention.
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Supplementary City of Manchester Results

Throughout this chapter you’ll have undoubtedly noticed a propensity to use build-
ings from the city of Manchester as examples in the explanation of certain key
concepts. This is largely down to the fact that it represents the highest resolu-
tion off-the-shelf data currently available. It provides the clearest indication of the
structure of the underlying scene and is therefore closest to the sort of dataset that
would be used in an industrial setting. As a product of this, during the course of
development and experimentation, a number of additional tests were executed on
the city of Manchester, the results of which are included in this auxiliary subsection.

Preliminary Comparisons with Pre-Existing Algorithms

To analyse MAMMAL’s performance relative to pre-existing reconstruction algo-
rithms, corresponding models were reconstructed using a variety of common general-
surface and domain-specific reconstruction algorithms including: Marching Cubes,
RANSAC, 2.5D Dual-Contouring, Poisson Reconstruction and direct height-map
interpolation (as a baseline). The tables in figures 3.58, 3.59 and 3.60 document
the results of the comparative evaluation. Figure 3.59 quantifies the attributes of
each evaluated method for a single invocation of each - enabling one to compare
measure for measure the performance of each. Figure 3.60 illustrates the qualita-
tive differences between the pre-existing methods and MAMMAL’s projection (ALV
raw) and optimisation (ALV parametrics) methods.

Algorithm 1ppm 4ppm 16ppm

Interpolate (Baseline) 0.5048613 0.4762369 0.4476920

Marching-Cubes 4.5756348 4.0543478 3.6088912

2.5D Dual-Contouring 0.4321292 0.1309045 0.0304963

RANSAC 0.3248714 0.2454567 0.0397031

Poisson-Reconstruct 0.6841128 0.4565430 0.3457325

ALV-Raw 0.1804222 0.1086362 0.0108867

ALV-Parametrics 0.1460385 0.0759824 0.0304236

Figure 3.58: table of the level-of-compression (LOC) values at different resolutions (point-

spacings) for the algorithms evaluated in the comparisons with pre-existing techniques -

each value specifies the ratio of the number of input points to the number of vertices in the

output model : |out|/|in|.

Note: interpolation refers to simply stitching together a gridded height-map and
acts as a dense baseline. Both marching-cubes and poisson-reconstruct refer
to meshlab’s[19][20] implementations and signal the performance of general sur-
face reconstruction methods. The method 2.5D dual-contouring refers to Zhou’s
hermite-grid based strategy[165] - and in particular the open-source implementa-
tion provided on his homepage [168]. For researchers looking to reproduce the
behaviour the parameters used were: GridLength: 1.0, AcceptNumber: 4, Rel-
ativeDistance: 100.0, RelativeZ: 1.0, Weight: 1.0, ErrorTolerance: 1.0, Singular-
Tolerance: 0.15, WallRectangle: 0, AntiNonManifold: 1, SnappingErrorTolerance:
1.2, SnappingMinimumLength: 7.0. Together 2.5D dual-contouring and ransac
represent examples of commonly employed domain specific building reconstruc-
tion techniques.
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Figure 3.59: quantitative results of reconstructing a 0.5 km2 subset of the City of Manchester at 25cm

resolution - comparing existing methods and MAMMAL. All models were derived from 2000x2000 Esri

DEMs and stored in the Wavefront OBJ format.

Figure 3.60: qualitative results: comparison with pre-existing methods for figure 3.59.

*→decimated-for-rendering
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Comparisons with Open-Street-Map Vectors

Evaluation relative to openly available datasets such as OSM building footprints
provides further insight into the accuracy of the building segmentation and vec-
torisation. Figure 3.61 illustrates the deviance between Open-Street Map (OSM)
building footprints and footprints recovered by the MAMMAL algorithm. The cor-
responding quantitative error measures are provided in figure 3.63. Further figure
3.62 illustrates close-ups of the deviances for a selection of irregular buildings -
comparing the number of vertices used by MAMMAL (with a user-supplied maxi-
mum footprint error tolerance of 2m) to the number present in the OSM footprint.

Figure 3.61: comparison with open-street-map building-footprints (with vector data recov-

ered by the MAMMAL algorithm in blue, and OSM in red), the input surface-model range-

scan is shown above for reference

In particular note in these figures the similar use of maximal-length edges in the
characterisation of planar facade walls (edge-length maximisation).
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Within these figures the OSM data is indicated by red vectors whilst the outcomes
of airborne LiDAR vectorisation are denoted by blue vectors. ∩/∪ refers to the
union over intersect error-measure whilst | → | symbolises the maximum-point-to-
boundary-distance Hausdorf error-measure.

Critically there are two unavoidable sources of error in the evaluation with OSM.
Firstly temporal variations between the datasets. Secondly the presence (or lack
thereof) of features at varying scale spaces (left figure 3.62).

Figure 3.62: comparison with OSM building-footprints for irregular instances - illustrating

the number of vertices used to model each footprint and the associated error values be-

tween the automatic vectors and the OSM vectors

Observe that the presence of two additional corners represented by the scan-data
but omitted from the OSM (in figure 3.62 for the left-hand footprint of the Manch-
ester public-library referenced throughout this chapter) significantly increases the
Hausdorff error. This is a manifestation of the secondary cause of unavoidable
error between the automatic vectors and the OSM vectors. However even in the
presence of variance caused by featural differences the interior fit (measured as
∩/∪) still represents a stable correspondence between ALV and OSM. The cru-
cial aspect is that the quality of the fit of each shape relative to previously unseen
manually constructed vector shapes is surprisingly high. This demonstrates that
MAMMAL can be used to produce 2D-mapping building boundaries with a high-
degree of accuracy whilst preserving features at variable spatial scales.

Hausdorff Error (m) Intersect/Union Compression Level

2.88613750 0.868114671 0.79233930

Figure 3.63: mean error values for building footprint vectors in figure 3.62 with an input

max-footprint-error of 2m - relative to the open-street-map footprints, for the 25cm point-

spacing Manchester dataset

Figure 3.63 quantifies the accuracy of the automatic footprint vectors relative to
the OSM vectors. Note that whilst the maximum simplification error for the recon-
struction is set at 2m - this tolerance only controls the deviation between each
dense scan-converted boundary and its corresponding approximate sparse vec-
tor. Nonetheless the typical boundary error between the unrelated OSM dataset
and the automatic vectors is just under ±3m. When one considers the additional
sources of error between the representations (in particular the presence or omis-
sion of features that can offset the mean of the boundary error measure), this is
more easily understood. The positive aspect is the interior (∩/∪) measure which
indicates that the mean per-building pairwise-overlap of the sparse vector shapes
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produced by MAMMAL relative to vectors from an alternative medium is over 85%.

Realtime Interactive Visualisation

Finally, to wrap up the auxiliary city of Manchester results, the outcomes of visual-
isation are documented. Figures 3.64 and 3.65 illustrate aspects of the visualisa-
tion of the building models recovered by MAMMAL.

Recall one of the key design goals of MAMMAL is to produce building geometry
that is suited to interactive rendering and simulation.

Figure 3.64: the city of Manchester rendered interactively in the Unity game-engine - illus-

trating an advantageous property of the proposed reconstruction operator - automatic con-

struction of accurate real-time-ready architectural mass-models

At a high-level this demands two things. First that the building models are compact
enough to be rendered at scale on modern hardware and secondly they are aes-
thetically viable as building representations. In essence they must be light-weight
enough to render in realtime at interactive frame rates of anywhere between 24-
120fps - and they must look like structured representations of the built environment.
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Figure 3.65: close-up of models recovered using the sparsest (minimum-vertices) under

error tolerance selection-criteria, with the corresponding input surface points rendered (for

reference) with a normal-to-colour shader

Figure 3.64 depicts the reconstructed Manchester model with a first-person per-
spective camera - as a signpost to the visual quality of the geometry produced by
MAMMAL. Due to the sparseness of the resulting models interactive rendering is
a breeze. Additionally each mass-model is consistently oriented (no flipped faces)
and ready to be textured and shaded. Figure 3.65 illustrates the fit of the output
mass-models to the input airborne points to demonstrate how close the output is
to accurately representing the input.

3.4.5 Processing Unstructured Terrestrial Datasets

Interestingly, although the MMAMAL algorithm was primarily designed to operate
on aerial range-scans, initial speculative experiments demonstrate its surprising
suitability for processing unstructured ground scans. Figure 3.66 demonstrates
the result of applying the maximal area roof-shape segmentation (MARS) to a
high-resolution unstructured terrestrial scan dataset. The total execution time for
the scan shown in figure 3.66 was 152.585 seconds (just under three minutes) on
a quad-core i7 with 16GB of RAM. Of this 1.737 seconds was spent on algorithmic
processing, 3.313 seconds spent writing the output data to disk and the bulk of
the time (147.535 seconds) was spent discretising the original input point-cloud
(115,694,669 points totalling 6.4GB). Note: that the important aspect of this result
is not so much the execution time - but rather the applicability to an arbitrary scan
outside the scope of its intended/designated operational remit. In other words this
demonstrates that even without explicit support for ground-based scans - MAM-
MAL is both generalised and versatile enough to adapt to such data.
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Figure 3.66: the input (top) and output (down) of maximum-area roof-shape segmentation

of a high-resolution unstructured ground-based laser scan

The scan in figure 3.66 covers buildings in the Roslyn Mews area, that vitally also
include partial roof points. This is not always the case and depending on the rel-
ative location of a scanner during a ground survey roof points may be omitted. In
spite of this the response of MARS on this example dataset is promising. Not just
because it isolates roof components well, but also in the manner that points corre-
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sponding to trees and vegetation are treated (figure 3.66 - scattered tree points as-
signed to the same regions). This demonstrates some of the behavioural benefits
of the object level classifiers and the flexibility of the MAMP principle in its (some-
what surprisingly effective) application to high-density unstructured scan datasets.

Crucially this indicates that the spatial-domain oriented MAMP principle may be
applicable to alternative types of scan beyond architectural. As such, from this
another interesting area (and a topic for future investigation) is the application of
the MAMMAL algorithm’s approach to scans from time-of-flight and patterned light
sensors. The critical aspect in this regard is replacing the difference-of-elevation
models (employed by MARS) with an alternative depth based splitting operator.

***

In revision this section documented the results of experimental tests and perfor-
mance profiling of the airborne building reconstruction algorithm MAMMAL. It in-
cluded quantitive and qualitative outcomes for city-scale airborne datasets at var-
ious resolutions. The next section covers the analysis of these results in order to
draw deeper insight into the meaning and significance of these outcomes.

3.5 Analysis and Evaluation

This section deals with analysis and evaluation of MAMMAL’s performance. It dis-
cusses observations related to the efficacy of each algorithmic stage.

3.5.1 Point-Set Segmentation

The results indicate that MAMMAL’s point set segmentation results in efficient
data-driven isolation of architectural objects in top-down (airborne) range-scans.
The results point to the fact that the MARS strategy is reasonably robust to sens-
ing noise, and that (in particular) the maximisation of the mean roof-shape area
- yields higher quality planimetric divisions - which support the subsequent vec-
torisation process. Interestingly - the segmentation results also indicate that the
quality of the roof-shape segmentation masks produced by the algorithm improves
as the resolution of the airborne scan increases - which suggests that MARS ben-
efits greatly from denser input scans. However point-spacing has less of an impact
on the stability of the DoEM method. This suggests that the most cost effective
type of data (from a segmentation perspective) depends upon whether one de-
sires basic contextual models or highly detailed models.

Another important observation from the segmentation results is the fact that non-
conformal suppression does not necessarily guarantee that each roof-shape will
meet the user supplied minimum area tolerance. Despite this however, the num-
ber of non-conformal roof-shapes is shown to be negligible irrespective of the point
spacing - which basically ensures that the mean surface areas still exceed the user
supplied minimum desired for areas greater than 5m2. The results demonstrate
that this holds true for scans of upto 25cm point-spacing - though it is important to
note as denser airborne scans become available this has the potential to change.

Crucially noise-cancellation and non-conformal suppression of smaller clusters are

Page 183 of 301



CHAPTER 3. MASS RECONSTRUCTION→ 3.5. ANALYSIS AND EVALUATION

vital to reducing the cardinality of each building’s set of roof-shapes, and maintain-
ing the desirable maximal-area property. Indeed without them the subsequent pro-
cessing stages are subject to far greater latency. However it is fair to say that based
on the results more research and development is required to improve MARS’ cur-
rent maximisation strategy. In particular - though the performance is quantitatively
satisfactory, qualitatively there is still room for improvement.

3.5.2 Point-Set Vectorisation

In evaluating the results of vectorisation, it is clear that scan conversion is a highly
useful sub-component of the transition from point-clusters to vector shapes - since
it is not only a long-standing technique, but further it is shown to produce effective
results efficiently. Essentially rather than invent a new approach to address dense
boundary extraction, MAMMAL builds upon a bread and butter computer graphics
strategy that can reliably deal with concave and complex polygonal forms.

However the real juice in MAMMAL’s vectorisation turned out to be (rather sur-
prisingly) the effectiveness (and indeed the overall take-up/recall) of the freshly
proposed shape approximation methods. QUALM and GRAILS represent novel
contributions to the problem of 2D boundary extraction that not only perform well
in the presence of lower-quality input point-clusters but directly support the goal
of producing high-quality compact geometric representations. Indeed based on
the results (particularly in the city of Bath) it is fair to say that these approximation
functions enable coherent geometry to be recovered even in the presence of im-
perfect segmentations. In evaluating these aspects of MAMMAL it is quite clear,
that the addition of more advanced domain specific shape detectors has possibly
the greatest potential to enhance the cleanliness of the results.

However the results also point to the fact that better strategies are required for deal-
ing with vector shapes exhibiting partial curvature. So whilst the oval detector (that
feeds the conic-section generator) is useful, in and of itself it is not enough. This
is most apparent in evaluating the ALV versus OSM results in the city of Manch-
ester dataset. Note that although the geometric accuracy of the vectorisation of
the public library example is satisfactory, ideally it would be quite desirable (from
an aesthetic perspective) for MAMMAL to be able to freely mix piecewise planarity
with circular arcs at the level of entire buildings and not only individual roof-shapes.

3.5.3 Vector-Shape Projection

Evaluation of the results indicates that MAMMAL’s data-driven parallax projection
strategy performs poorly on 1m point-spacing airborne scans. This seems to be
a product of the fact that there simply are not enough points present to produce
coherent projections (in a purely data-driven manner) at that resolution.

On the flip side, the results demonstrate that the linear, and sub-division projec-
tions grow more stable as the density of the points increases. What this means
is that practically at less than 50cm point spacing, one cannot necessarily rely on
the data-driven projections to produce good looking models, and though the re-
sulting building masses may meet the user supplied error tolerance, the geometry
returned can only safely be used for analysis and not visually oriented tasks. This
also seems to apply to the graph-based roof-shape refinement process (that miti-
gates height discontinuities between neighbouring projected roof-shapes) - which
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also performs better as the resolution of the input point-set increases. However
it is important to note that this may also be indicative of the fact that the snap-
nodes-and-collapse heuristic used may be insufficient to deal with lower density
scans, where the distance between neighbouring nodes (vertices) is correspond-
ingly greater. Further more, the results noted the roughly linear growth in execution
time (relative to the number of input points) that is associated with the projection
process. Positively this quasi-linear growth in runtime complexity is constant inde-
pendent of resolution and suggests that in driving the transition from 2D to 2.5D
without stochastic sampling significant performance gains can be achieved relative
to pre-existing methods such as [73] and [142].

3.5.4 Non-Linear Procedural Optimisation

In considering the results of MAMMAL’s procedural optimisation it is evident that
the functionally driven strategy is generally more efficient than traditional library-
based model optimisation approaches that rely upon analytic solvers and stochas-
tic sampling. A vital difference is that MAMMAL’s optimisation kernel amalgamates
the desirable features of both model-based and data-driven techniques (through
the use of open and fixed-form generative parametric functions) and further more
reformulates the problem of high-quality model recovery such that the process of
iterative sampling is addressed in a non-stochastic manner.

Ultimately the procedurally optimised building models produced by MAMMAL typ-
ically exhibit higher geometric and topological quality than the purely data-driven
projections, however generally the projected models will surpass the parameterisa-
tions in terms of geometric accuracy. Interestingly the results indicate that the use
of sequential parameter variation mitigates the massive combinatorial (exponen-
tial) explosion in execution time that would otherwise be witnessed as a product of
an increasing number of arguments to the fixed-form functions without overly detri-
mental restrictions. This means that although (in the strictest sense) the traversal
strategy is not truly exhaustive - this does not constrain the versatility of the kernel.

Positively the results demonstrate the benefit of exploiting the CSG boolean union
operation - since it trivialises the process of transitioning from sets of the parame-
terically optimised masses to single watertight building shells. However practically
it proved necessary to employ a sub-optimal BSP re-massing operator over an op-
timal (topology-preserving) variant in order not to bloat the execution time of the
final stage. This aspect could be improved. By considering the results it is clear
that the crucial attribute of MAMMAL’s optimisation kernel (and indeed its utility) is
the succinctness and semantic richness of the building representations produced.

One thing that is apparent is that this entire ideology rests upon the fast parallax
rasterised depth buffer error - without which this functional approach simply would
not be feasible or practical. This is problematic because ideally - one would like
the ability to extend this approach to full blown 3D datasets - however at present
this is not immediately possible whilst maintaining the same performance traits.

Another evaluative observation drawn from the results relates to the tiny set of ex-
perimental functions that are currently employed by MAMMAL. Essentially there
is further scope for extending the versatility of the method by adding generative
functions. Nonetheless the optimisation strategy employed represents probably
the most significant contribution that MAMMAL embodies - because it opens the
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doors (lays the foundation) for the recovery of smart building model components.

3.5.5 Computational Efficiency

The results demonstrate that the approach is surprisingly fast relative to the pre-
existing sparse reconstruction methods. This is particularly evident when one com-
pares the runtimes of MAMMAL to that of the current state of the art in high-quality
airborne massing model recovery [73], [167], [75].

Without overstating how important this is - MAMMAL effectively does in seconds
that which it takes existing algorithms minutes to achieve - and in minutes that
which currently takes hours to do. This signifies a massive leap forwards in-terms
of reducing the turnaround time for high-quality architectural reconstruction from
airborne laser-scans. MAMMAL is in effect an order of magnitude more efficient
than many highly regarded methods. However beyond this the real power lies in
the fact that the current implementation does not even represent an optimal solu-
tion. Indeed the improvements and enhancements section discusses numerous
mechanisms and strategies for further reducing MAMMAL’s computation times.

To put this into practical terms (that may be of use to a technician) - at 1m point
spacing MAMMAL reconstructs 1km2 (1,000,000 points) in less than 5 seconds. At
50cm point spacing MAMMAL reconstructs 1km2 (4,000,000 points) in less than 30
seconds. At 25cm point spacing MAMMAL reconstructs 1km2 (16,000,000 points)
in less than 100 seconds. What this means in that given an urban region cover-
ing 10km2 (the area of an OSGB36 tile sub-cell) MAMMAL is capable of extracting
building models in less than 10,000 seconds (100 seconds x 10km x 10km≈ 166.6
minutes ≈ 2 hours and 45 minutes). Based on this (conservative) over-estimate
- the whole of the United Kingdom - which (again as an over-estimate) covers
roughly 50 100km by 100km OSGB36 tiles - could be reconstructed in less than
50,000,000 seconds (or 50 x 100km x 100km x 100 seconds) which is just under
14,000 hours (or 580 days) on a single commodity machine using 25cm point-
spacing airborne LiDAR. Now if one reduces the resolution to 50cm point-spacing
the entirety of the UK could be reconstructed in just under 175 days (on a sin-
gle machine) - and at 1m point-spacing this becomes just under 45 days. Note
that all of these figures aggressively over-estimate the time it takes MAMMAL to
reconstruct airborne massing models in order to determine the maximum upper-
bound on the total execution time. However in practice large parts of the UK will
be sub-urban and rural and hence the building reconstruction times for such areas
will be considerably less. Further more the really interesting aspect of this forecast
is that it assumes a single commodity machine is employed - i.e. an independent
researcher/engineer churning out architectural models on their laptop or desktop
computer. Practically however things really heat up when a suitable parallelism
strategy is employed alongside hardware for distributed computing. For example
by employing a homogenous cluster of (as an example) 16 such commodity ma-
chines one can reduce the overall reconstruction time of the UK to 1/16th of the
values quoted. With 50 such commodity machines - 1/50th of the time quoted
would be required - and so on and so forth. Essentially it should be quite obvious
that the linear growth in runtime of the MAMMAL algorithm, alongside the data in-
dependance effectively supports the simultaneous reconstruction of country scale
airborne laser scans. In this sense it is fair to conclude that MAMMAL meets the
efficiency and scalability objectives set out at the beginning of this chapter.
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3.5.6 Qualitative Analysis

The building models produced by the MAMMAL algorithm are qualitatively satisfac-
tory. At this stage that is all that can be said. In relation to the objectives set out in
this chapters overview - the models produced are sparse enough to be rendered
interactively and reasonably close in appearance to the sort of massing models
that would be produced by a human CAD technician. However it is important to
be aware that this is a subjective judgement based on the goals of this project’s
industrial sponsor. It is not a definitive statement regarding the absolute quality of
the geometry produced. Ultimately the more important attributes are MAMMAL’s
efficiency, accuracy and sparsity - because they can be clearly quantified. Nev-
ertheless - given that low-quality building models were cited as one of the key
limitations of the pre-existing airborne reconstruction methods - it is important to
give some consideration to the visual quality of the geometry produced.

So at a high-level, it is fair to say that the models look good (they are aestheti-
cally pleasing to an extent and immediately recognisable as buildings). However
this does not mean they could not look even better. Interestingly it seems that the
visual-quality of the results are tightly coupled to the scale of features that are rep-
resented - and balancing the preservation of roof-components with the desire for
clean looking geometry can be quite difficult. However to give the reader a clearer
sense of how this manifests, figures 3.67 and 3.68 illustrate instances of LOD1 and
LOD2 automatic massing models in order to complement this discussion.

One key thing to note in these figures is the visual appearance of the example city
of Manchester public library (top-left for LOD1 and top-row, second from the left for
LOD2). Note that although the LOD1 model is clearly less accurate than the LOD2
model - in many respects one could argue that it is qualitatively a better represen-
tation since it looks slightly more regularised as a product of the symmetry of the
oval and quad mass components. These figures epitomise the current qualitative
state of the building models generated by MAMMAL.
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Figure 3.67: architectural mass-models reconstructed from the city of Manchester (25cm

point-spacing) and city of London (50cm point-spacing) datasets - illustrating results of the

data-driven projection and parametric optimisation applied by MAMMAL.

Figure 3.68: further mass-models reconstructed from the city of Manchester dataset (at

25cm point-spacing) - illustrating results for a selection of distinctive buildings approximating

LOD2 representations and simple tree models produced automatically by mining maximally

inscribed discs from point-clusters classified as corresponding to organic vegetation.
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3.6 Enhancements and Improvements

This chapter presented MAMMAL (that is Maximal Area 2.5D Mass Modelling of
Airborne LiDAR) which is a fresh approach to tackling a long-stand reconstruction
problem. MAMMAL aims to maximise the mean surface area of polygonal faces
in output 2.5D building mass-models so as to ensure sparse, high-quality architec-
tural geometry is generated. Furthermore MAMMAL employs a generalised and
expandable procedural approach to model optimisation based on efficiently identi-
fying best fitting arguments for user supplied generative modelling functions - and
a fast rasterised depth-buffer error measure. These features make the MAMMAL
algorithm highly adept at constructing interaction ready compact building models
in a manner that is resolution independent and scalable.

However the current implementation of MAMMAL is not perfect, and (given more
time) there are a number of aspects that the author would refactor and/or improve
so as to enhance MAMMAL’s performance. This newly introduced section outlines
these future investigative tracks. The improvements are organised according to
the attribute that each seeks to address - with the fundamental categories being,
geometric accuracy, computational efficiency, geometric quality and robustness.

The underlying aim of this section is to clearly document the aspects of the cur-
rent implementation of MAMMAL that still require additional work so as to help and
guide future researchers charged with generating sparse architectural geometry
from airborne laser scans. This is in essence a road map of the remaining prob-
lems that still require addressing further - that one might choose to focus upon.

3.6.1 Geometric Accuracy

The following enhancements and improvements seek to reduce the geometric er-
ror of the 2.5D mass models generated by the MAMMAL algorithm.

• Constrained Vertex-Edge-Face Offsetting - Post Reconstruction Registration.
This involves changing the position of vertices in each output mass model by
sampling (jittering) new potential positions (in the locale of each vertex) and
considering whether each offset vertex position reduces the model’s overall
error. This would effectively decrease the associated error for each model,
however it would also alter any regularity or uniformity embedded in the opti-
mised masses. This would mean for example that although the mass models
are more closely aligned to each segmented point-set, practically features
such as right-angles and parallelism between faces could be lost.

• Super-Sampled Representations. The use of multi-resolution representa-
tions in order to increase (and decrease) the density of each airborne scan
so as to enhance the stability of the projection from 2D to 3D. This could
be as simple as exploiting range-image-pyramids. However more complex
(non-linear filtering) strategies could aim to prioritise the up-sampling of roof-
shape points over near vertical wall points.

• Recursive Application of Sub-Division Projection Routines. Instead of apply-
ing one level of subdivision to each footprint or roof-shape, the idea here is
to consider the error of each subdivision and (rather than simply decreasing
the desired surface area of sub-clips to increase the level of detail) identify
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sub-clips that fail to meet the error tolerance and re-apply the polygonal-sub-
divide in order to construct nested subdivisions which exploit two or more
distinct splitting functions.

Whilst there are a myriad of ways to reduce the geometric error associated with
each mass-model, practically these three enhancements represent the prominent
generalised approaches. Since geometric error is one of the principal evaluative
measures these also represent high-priority changes.

3.6.2 Computational Efficiency

The following enhancements and improvements seek to reduce the execution time
and memory requirements for the generation of 2.5D mass models.

• Parametric Optimisation Boosting Methods. In particular the approaches to
improving the runtime response of the generative modelling functions em-
ployed during non-linear optimisation. These largely boil down to two ideas.
First: reducing the number of functions that are traversed for each building
and, secondly: reducing the time taken to evaluate a function.

• Parallelism and Distributed Processing. As a means to spread the execution
of MAMMAL over simultaneous architectures. The nature of the algorithm
means that each segmented building can be reconstructed in isolation. This
can be coordinated in a number of ways - with the simplest being multi-core
(CPU-bound parallelism). A faster approach would be to GPU parallelism.

• Hardware Based Rasterised Depth Buffer. Transitioning to a lower-level
depth buffer instead of the software based variant that is currently used. The
key benefit of this is significantly reducing the time it takes to evaluate can-
didate mass-models. However the key downside is that MAMMAL would no
longer be platform-independent - because different builds would be required
for each architecture supported.

Although reducing execution time and memory use is important in terms of MAM-
MAL’s scalability, it should be noted that even without these proposed further ad-
vancements MAMMAL still executes substantially faster than the current state of
the art high-quality mass-model reconstruction algorithms. The critical point is
that whilst speed is crucial, the pursuit of it should be secondary to the pursuit of
model accuracy and quality. The difficultly is that oddly speed (i.e. an algorithm
that executes quickly) will generally be easier to improve since a greater number
of development (refactor, test) cycles can be coordinated within a fixed period.

3.6.3 Geometric Quality

The following enhancements and improvements seek to further improve the se-
mantic and structural quality of the 2.5D mass models recovered by the MAMMAL
algorithm. Note that unlike the alterations targeted at enhancing computational
efficiency and reducing geometric error, these alterations represent qualitative im-
provements which (though to an extent subjective) aim to change the aesthetic
properties of the geometric models. In effect these alterations will help the archi-
tectural models look better, but will not necessarily reduce the associated error
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or the time taken to converge. This is an important distinction and as such the
benefits of these changes should be carefully considered relative to their expense.

• Topology-Aware Segmentation. In terms of optimising the arrangement of
roof-shapes earlier on in the reconstructive process as part of the area max-
imisation (non-conformal suppression) stage. This involves embedding addi-
tional constraints on the formation of regions into MARS. Positively the use of
additional priors could help deal with low quality segmentations. Negatively
this could (to an extent - depending on how it is implemented) negate the
data-driven nature of the segmentation - and introduce greater error.

• Explicit Component-Level Curvature Detection. As opposed to the error-
based sub-division and parametric approaches to representing curved roof-
shapes currently employed. The core idea is to determine (before polygo-
nisation) which parts of a building map to curved and irregular features and
use this information to alter the strategy employed for these parts. The crit-
ical benefit is that knowledge of parts that correspond to conic sections (for
example) would enable MAMMAL to effectively force higher quality approx-
imations for such parts using functions such as the radial rail. The crucial
pre-requisite to this however is robust curvature detection, which represents
a long-standing (but addressable) scale space problem.

• Piecewise Intersection of Planes. As an alternative linear projection refine-
ment technique, specifically for primarily planar roofs.

• Enforcing Regularity Constraints. This involves altering the layout of the vec-
torised shapes, without butchering (mis-characterising) the resultant geome-
try. The challenge lies in this being an ill-defined problem. Though strategies
such as edge-length maximisation work well at the component level, the thing
that is lacking is strategies based on inter-component relationships. Further
while regularity can improve the visual quality of a model, its enforcement
invariably comes at the cost of the fidelity of the approximation. Commonly
researchers have addressed this with the use of snap-line techniques [166]
and considering principal directions [148] - however there remains a lack of
a definitive formalism. Still this is an alteration with massive potential to in-
crease the quality of the building models MAMMAL generates.

• Alternative Graph-Theoretic Refinement Routines. In order to complement
the cluster→collapse method currently used to simplify roof-shape nets.

• Dealing with Partial-Scans. In particular the inclusion of hole filling methods
that can be effectively applied to range-scans to address regions of missing-
data within the boundaries of buildings.

3.6.4 Robustness and Stability

The following enhancements and improvements seek to make the MAMMAL al-
gorithm more robust to geometric degeneracy and undesirable sensing artefacts.
Note: these alterations will generally not impact the large majority of building in-
stances, however they will ensure that the minority of edge cases, that may some-
times result in erroneous results are correctly handled.
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• Arbitrary-Precision Arithmetic. At present fixed precision arithmetic is used
in the implementation. By and large (for the image-based operations such
as segmentation, scan-conversion and graph-refinement) this is not an is-
sue. However for operations such as the polygonal sub-division routines and
the variant of the BSP algorithm (used in CSG re-massing), fixed-precision
arithmetic can be critical - since it can lead to degeneracy or a non-manifold
return. The obvious choice to combat this is CGAL - however it is quite
heavy-weight, adding a significant dependancy to MAMMAL. There are also
implications in terms of licensing for industrial use of CGAL. The simple al-
ternative is to implement one’s own arbitrary precision versions of each of
the algorithms riddled by numerical precision issues.

There are in effect a number of advancements that can be made to MAMMAL. The
critical challenge is to balance the speed and accuracy of the revised reconstruc-
tion methods with the mandate for compact, high-quality returns. The next section
concludes the airborne reconstruction research.
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3.7 Discussion and Summary

In conclusion, this chapter presented a simple yet effective algorithm for recon-
structing compact 2.5D building mass models from airborne laser-scans in a highly
efficient manner. The behavioural properties of the algorithm make it quite use-
ful when compared to the currently employed techniques. It is simultaneously
fast, accurate and sparse! The chapter detailed the four key processing stages
(segmentation, vectorisation, projection and optimisation) and considered the vi-
tal factors that must be controlled in order to maintain efficient performance. The
chapter also presented and analysed experimental results of performance profiling
with three different city-scale aerial laser scan datasets (at varying point-spacings),
documenting for each the quantitative and qualitative response of MAMMAL - and
for the City-of-Manchester - comparative results relative to pre-existing algorithms.

Whilst the results are promising (and indeed one could argue superior to existing
sparse reconstructive methods in many regards), there remain many things that
could be even better. The newly introduced enhancements and improvements sec-
tion outlined these key areas for further investigation. Each future research track
aims to enhance one of the performance attributes: geometric accuracy, computa-
tional efficiency, geometric quality and robustness.

Further an important observation drawn from these experiments is the necessity
for equivalently sparse facade models. In essence although MAMMAL serves its
purpose well, it leads naturally to the requirement for accurate window and door
models to reside on the walls of reconstructed massing models. Although in certain
situations (such as sky-line rendering and the production of distance still-images)
one could argue that surface-element models are simply overkill, for most inter-
active simulation purposes, their omission limits the scope of that which may be
simulated. Given that buildings are characterised as being the union of mass and
surface [22], in recovering massing models, it also becomes necessary to recover
surface-element models as without them a building’s representation is incomplete.

Finally, for reference, the key ideological concepts covered in this chapter, as well
as the novel technical developments and the auxiliary factors critical to ensuring
efficient algorithmic performance are revised below:

• Maximal-Area : Minimal Primitives (under an error tolerance) Principle
as a fundamental logical paradigm for fast, accurate and sparse geometric
reconstruction - since in minimising the number of objects to be polygonised
each result can be computed more efficiently (given that there are fewer ob-
jects to evaluate) whilst also enhancing the compression properties (since
the algorithm will yield the lightest representation it can find that conforms to
a given error threshold).

• Determinism (Our Salvation, Our Joy) as a fundamental pre-requisite to
procedurally controlling the reconstruction of airborne massing models.

• Maximal-Area Roof-Shape Segmentation in order to produce clean higher-
quality segmentation masks than conventional data-driven roof segmentation
methods - as a product of actively re-arranging the result so as to (anal-
ogously) minimise the number of salient regions and further more remove
sources of latency in subsequent processing stages.
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• Continuous Scale-Space Level of Detail controlled by the user-supplied
input minimum desired roof-shape area (in meters2) - which enables the dy-
namic masking (suppression) of features at variable spatial scales.

• Graph Refinement Operator for Vector Extraction a 2D raster to vector
converter that preserves the topology of boundaries between neighbouring
regions by anchoring vector simplification about convergence points (which
are defined as being adjacent to 3 or more regions).

• Quick-Unconstrained Approximate L-Shape Method an intuitive domain
specific 2D building footprint boundary extraction algorithm for data-driven
recovery of high-quality eat-away L, T and S shapes.

• Graph Refined Approximate Interior Linear Spine a spine detection op-
erator (a specialised form of skeletonisation) that was designed to support
automatic terrace model reconstruction by extracting maximal length non-
cyclical piece-wise linear paths from bidirectional graphs. Each intermediary
graph is constructed discretely from the loci of the maximally inscribed discs
of input 2D polygonal boundaries.

• Structured Sub-Divisions for Non-Linear Roof-Surface Projection in or-
der to control the distribution of vertices over roofs in a data-driven manner
that vitally, can approximate curvature and planarity directly without the re-
quirement to first resolve semantic structure.

• Data-Driven and Model-Based Procedural Optimisation Kernel to marry
the benefits of exploiting both fixed-form and open generative modelling func-
tions for automatic enhancement of 2.5D massing models recovered from air-
borne laser-scans - in a manner that is direct, generalised and extendable.
A by product of this strategy is the resolution of compact implicit parametric
representations that can be interactively edited with semantic controls.

• Rasterised Depth-Buffer Error-Measure for Parallax Optimisation crucial
to enabling efficient functionally based optimisation of 2.5D building masses.
Without a rapid means of measuring the geometric error between airborne
points and candidate mass-models the strategy proposed for procedural re-
construction would not be feasible.

• Spatially Aware BSP Algorithm for Constructive Solid Re-Massing a
simple extension to a long-standing CSG algorithm that seeks to preserve
as much of the original topology of parametric masses as possible during
the union operation by effectively un-doing unnecessary clips.

• Algorithmic Decision Making via Model Selection Criteria as a gener-
alised means of objective-driven traversal of (and ranking of instances in)
the space of potential mass-models suited to reconstructing a building. The
model-selection criteria enable an end user to specify a high-level guiding
desire that controls the manner in which a scene is recovered, that vitally is
abstracted from the particulars of the domain.

The next chapter progresses this research - tackling the problem of automatic fa-
cade model reconstruction from unstructured ground based laser-scans.
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Chapter 4

Ground Facade Reconstruction

What is it?

An operator for segmenting and modelling windows, doors and other rail-able
(sweep-able) objects in unstructured ground laser-scans of building facades.

Why does it exist?

To enhance the accuracy, efficiency and quality of data-driven facade modelling
from unstructured point-sets - enabling analytic tasks such as automatic building
energy analysis and greater physical precision in simulated scenes.

How does it work?

By a two-stage segmentation that isolates salient clusters of points on a facade,
followed by skeletonization using a constrained transport-rail detector.

surface detail...

Figure 4.1: an overview of the key stages in ground facade reconstruction - from left to right:

(blue) an input ground point-cloud, (blue, gray, goldenrod) signed distance field split, (hsb)

segmented and refined disjoint connected-components, the resultant facade model.
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4.1 Overview

This chapter addresses the problem of recovering sparse building facade models
from unstructured ground laser-scans. The chapter proposes a simple data-driven
method of modelling facades that is based on the use of sets of generalised cylin-
ders and a quad-dominant meshing strategy. The aim of the operator is to recon-
struct semantically-rich architectural surface geometry in an efficient manner. The
context of the chapter is 3D architectural simulation and visualisation of the phys-
ical world, in which accurate facade geometry is required to create first-person
interactive virtual environments.

One of the key limitations of the pre-existing methodologies is the reliance on
dense surface reconstruction. Further more computational efficiency represents
a key bottle-neck in the pre-existing facade reconstruction methods - with many
operators requiring hours to process high-resolution laser-scans. Additionally -
note that whilst researchers have integrated image-based (photogrammetric) tech-
niques to negate some of the limitations of facade reconstruction from laser-scans,
the critical problem with such approaches is the reduction in geometric accuracy
[70]. Typically in techniques that exploit image data, the objective is to produce
aesthetically pleasing facade models [93] - which although suitable for rendering
and visualisation, cannot necessarily be relied upon for building analysis [77].

Ultimately the desire is for an automatic facade-reconstruction method that is si-
multaneously fast, accurate and capable of producing sparse geometry.

The techniques presented build upon those covered in the previous chapter - how-
ever now the focus is recovering geometry from unstructured laser-scans as op-
posed to structured range-images. This represents the step from 2.5D into full 3D
and as such the methods defined are also responsible for efficiently imposing the
necessary structure upon un-ordered sets of points.

This chapter also introduces a generative modelling primitive for the definition and
data-driven construction of high-quality window and door geometry. The Surface-

Element (as it is termed) provides a layer of abstraction between the processes
of analysing facade scans and instantiating geometry - that is well suited to the
both automatic reconstruction and user-centric interactive modelling. The Surface-

Element is an integral intermediary representation that plays a vital role in the prin-
cipal algorithm defined in this chapter - ARROW (Accurate Railed Reconstruction
of Openings and Walls).

As such a considerable amount of attention is devoted to its exposition.

To further clarify examples of concrete use-cases for the facade-reconstruction
algorithm defined in this chapter, one could conceive using it:

1. As a window detection operator in order to support automatic building energy
analysis in urban environments - for example by computing the solar-gain
properties or estimating energy-loss for buildings - by considering the count
and surface area of windows and doors.

2. As a sparse reconstruction method for unstructured laser-scans of building
facades - capable of yielding semantically rich, component-based models for
which multiple material shaders can be applied automatically - whilst also
being simultaneously compact enough to be rendered interactively at city-
scale within 3D virtual environments.
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3. As a generic formulism for the construction of geometry of architectural surface-
elements during generative and procedural modelling.

For reference the key objectives, requirements and desired behavioural character-
istics of the operator are stated following. Remember this is the means of turning
unstructured ground point clouds into clean architectural facade models suitable
for interactive simulation and building analysis.

• Geometric Accuracy (correctness/precise/error-bounded results) such that
each reconstructed facade model can be used for analytic tasks and to ad-
dress surveying problems. It is essential that the deviance between the phys-
ical position of each wall and the geometry of the corresponding generated
models be quantified (and minimal).

• Computational Efficiency - in order to limit the exponential growth in runtime
(as a product of the number of input points) and ensure large unstructured
sets can be reconstructed on commodity hardware (without the requirement
for distributed architectures). Unlike aerial reconstruction - the key challenge
here is not simply limiting the growth in execution time, but additionally rigidly
controlling memory allocation.

• Deterministic (Non-Stochastic) - such that equivalent facade models can be
repeatedly constructed from equivalent inputs (data + control arguments)
and to simplify the process of performance analysis. The key idea (and de-
sire) is that the operator should be a reliable (dependable) solution, that sim-
ply works out of the box - without the need for iterative stochastic refinement.
This property aims to ensure that the technique can be easily integrated (as
a stand-alone closed-form plug-in solution) within CAD packages and 3D
modelling environments such as AutoCAD, Modo and Rhino. Additionally it
eases enhancement.

• Data-Driven - such that irregular surface-elements can be effectively recon-
structed directly - without the requirement to template fit - and to ensure
the semantic correctness of each facade model. In essence the operator
should not look for an approximate. It should model the data-present. This
behavioural property is vital, not only for scalability, but to ensure that on
close-up inspection each model is visually correct.

• Robust to Geometric Degeneracy and Sensing Noise - especially since this
algorithm operates on unstructured point-cloud data, it must be capable of
performing effective facade-reconstruction in the presence of variable sam-
pling density data, partial or missing data and even unfiltered input data. This
also includes handling artefacts resulting from scanning transparent and re-
flective surfaces (such as glass windows).

• Efficacy - Competence : in window and door detection - high precision and
recall relative to ground-truth data from human operators - which simply
means that the position and extents of each detected surface-element should
be roughly the same as a manually constructed facade model that a human
would create given the same input.

• Sparse with High Visual Quality - in order to enable the generated models to
be exploited within city-scale 3D virtual environments
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• Semantically-Rich : Component-Driven - such that each reconstructed fa-
cade models embodies the structural composition of the actual facade. This
enables an end-user to manipulate the result at the level of individual surface
elements rather that as an un-ordered mesh.

• Intuitive (to understand and implement) - since (like the semantic change
detector presented in the chapter two) this represents a novel (unknown)
strategy that serves a niche in geometry processing. Unlike aerial massing
reconstruction (which is a particularly high-profile problem), fewer organisa-
tions and researchers explore facade-reconstruction. Hence if the method
proposed is so complex that few can actually implement it - it is far less likely
to be exploited in other domains outside of architecture - and would be limited
to practitioners with significant need of automatic window and door geome-
try. Although algorithmic performance will (largely) be the deciding factor in
terms of the algorithms industrial use, the expectation is that a simple, read-
ily understood method is more likely to be integrated into environments such
as game-engines, GIS frameworks and 3D mapping solutions. Further such
a method will be easier to extend and build-upon in the future.

• Tractable - such that the intermediary data and algorithmic decision making
can be trivially intuited by a human technician upon inspection. This is crit-
ical, because unlike aerial reconstruction which is reasonably well-defined,
there is a lot of scope for ambiguity in the window and door detection process.
As such strategies that mask the process of segmentation or overtly obscure
the polygonisation stage should be omitted. This characteristic seeks to sim-
plify debugging.

• Capable of Modelling Curved and Irregular Surface-Elements - in order that
the data-driven aspects of the window and door element routines are not
constrained to rectilinear shape arrangements. This aims to ensure unique
ecclesial surface elements (such as the Gothic architecture of the Cologne
Cathedral) can be effectively reconstructed. This is the vital behavioural
property that distinguishes this method from template-based strategies - and
indeed provides the greatest leap forwards towards true data-driven auto-
matic facade model recovery.

Whilst this list of objectives may seem extreme, these are the key attributes re-
quired to combat the limitations of the existing methods and represent the be-
havioural characteristics necessary to ensure the method proposed is both gener-
alised enough to deal with the architectural diversity present in the real-world and
efficient enough to be exploited at city scale. Ultimately the key benefit of pursuing
an operator that possesses these attributes (and to a large extent the novelty of
this approach) is the ability to produce accurate, high-quality facade geometry in
an efficient non-stochastic manner.

The remainder of this chapter is structured as follows:

• The background and context section details the vital pre-existing techniques
to automatic facade reconstruction. It covers the common methods used to
address the problems of segmentation, polygonisation and surface-element
recovery, enumerating for each the benefits and limitations. It seeks to pro-
vide a concise synopsis of the strategies that informed and inspired the pro-
posed ARROW algorithm.
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• The methodology section defines the ARROW algorithm in terms of the key
processing stages exploited (which are slicing, dicing, railing and clipping). It
provides a complete overview of the method (to begin with) and then delves
into the meat of the method - in a similar manner to the previous two chapters.

• The results section documents outcomes of performance analysis using sev-
eral unstructured laser-scans of urban facades. The section considers both
quantitative and qualitative measures of the techniques behaviour, and dis-
cusses the results of window detection (in terms of precision and recall) rel-
ative to results created by 28 human operators.

• The analysis and evaluation section details the high-level analysis of the
ground facade reconstruction operator. The section examines and expands
upon the results in order to draw additional insights from the experiments.
The aim is to present a structured break-down of the reasons why (and as-
pects for which) ARROW is successful and expose the critical limitations that
can degrade its performance.

• The improvements and enhancements section follows the pattern of the pre-
vious chapter and discusses the topics and areas for further investigation.
As before this section is structured according to the performance attributes
that each future optimisation addresses.

• The discussions and summary section provides a synopsis of this chapter -
revising the aims and outcomes and commenting on the implications moving
forward. It seeks to be concise and uses bullet-point notation to reiterate the
key ideologies, formal-abstractions and technical developments presented in
the body of the chapter.

4.2 Background and Context

Before discussing ARROW’s methodology - the relevant prior research is briefly
recapped. The aim is to revise the alternative approaches to facade reconstruction.

4.2.1 Key Related Work

The section categorises the facade reconstruction methods discussed based on
the type of data they operate on. It covers LiDAR-based (laser-scanning) methods,
image-based (photogrammetric) methods and hybrid methods.

LiDAR-Based Facade Reconstruction

There are four key prior contributions to this area that inform aspects of this re-
search. Firstly the automatic facade segmentation method of Martinez, Soria-
Medina, Arias and Buffara-Antunes [77] - which produces accurate facade decom-
positions in a data-driven manner based on statistical layered analysis. Secondly
the automatic segmentation strategy of Hao, Wang, Ning et al. [50] who rely on
segmenting planes and evaluating Gaussian images. Although both have their
merits they primarily address the segmentation problem rather than modeling.

The third approach by Lin, Gao, Zhou, Lu et al. [75] does address modelling (as
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well as segmentation) however it does not represent windows and doors. Despite
the input being terrestrial scans their primary aim is mass reconstruction taking into
account non-parallax features (i.e. things that are occluded in airborne scans).

The fourth strategy (of Truong-Hong, Laefer, Hinks and Carr [141] ) does produce
models that represent apertures accurately - however it is intended to support
building-energy efficiency simulations (i.e. FEM analysis) rather than city scale re-
construction. The angle-criterion and voxelisation work well but the heavy-weight
conformal mesh that are generated do not support component-level revision.

Image-Based Facade Reconstruction

Conversely - many of the image-based facade modeling operators do support con-
struction of compact component based representations - for example the early in-
fluential work of Müller, Zeng, Wonka and Van Gool [93] and Xiao, Fang, Tan et al.
[153]. However both rely on rectilinear (axis-aligned) arrangements.

This is a common theme in image-based operators - and though more recent tech-
niques support more general arrangements [110] they typically still represent de-
tected features with bounding-boxes. This includes the work of Teboul, Simon,
Koutsourakis and Paragior [139], Kulkarni, Nagesh and Wu [63], Martinovic, Math-
ias, Weissenberg and Van Gool [79] and Miljanovic, Eiter and Egly [89]

More recently Martinovic and Van Gool [80] use Bayesian methods to learn facade
grammars. Wu, Yan, Dong, Zhang and Wonka [152] also tend to inverse proce-
dural modeling of facade layouts, whilst Cohen, Schwing and Pollefeys [21] use
dynamic programming to improve facade grammar parsing efficiency.

Despite the compact descriptors that image-based operators typically yield - the
key limitation of these approaches is the reduction in accuracy/fidelity - relative
to LiDAR-based methods. They are great for visually oriented tasks but cannot
necessarily be relied upon for surveying and analytic tasks.

Hybrid Facade Reconstruction

The hybrid approaches operate on both 2D and 3D representations. Some use
MVS and SfM derived depth data - for example: Wu, Agarwal, Curless and Seitz
[151] Lafarge, Keriven, Bredif and Vu [69][70] and Martinovic, Knopp, Riemen-
schneider and Van Gool [78]. Others rely on sparse geo-referenced point samples
- such as Bacharidis, Sarri, Paravolidakis et al. [5]. Others - such as Hohmann,
Krispel, Havemann and Fellner [51] and Pu and Vosselman [105] have also pro-
posed hybrid systems that operate on actively sensed point clouds and images.

Though they aim to captilise on the complementary strengths of images and points
- they are all subject to the same additional reconstructive challenges: multi-modal
registration and non-commutative inference between distinct sensing mediums.

To recap - there are comparatively few LiDAR-based facade reconstruction op-
erators relative to the prevalence of image-based and hybrid methods. This can
largely be attributed to ease of access to data and the technical challenges inher-
ent to processing unstructured point-sets relative to 2D representations.

To advance the state of the art (in this area) the key objective is to produce facade
representations that are faithful to the data yet compact and component-based.
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4.3 Methodology

The algorithm defined in this chapter is designed to efficiently and accurately re-
construct sparse, light-weight architectural facade-models from unstructured ground
based laser scans of buildings. The ARROW algorithm is a data-driven modelling
strategy that seeks to marry the benefits of explicit methods (computational ef-
ficiency) with the topological quality associated with template-based (or library-
driven) methods, without compromising the integrity (fidelity/precision/correctness)
of the resultant 3D models.

Like the developments of the last two chapters the key algorithmic steps can be
broken down into a number of independent processing stages.

Figure 4.2: Key processing stages of the ARROW algorithm:

→ Accurate Railed Reconstruction of Openings and Walls

Figure 4.2 provides an indication of the algorithmic steps which involve:

1. Slicing the input facade-scan points in order to yield a binary division com-
posed of one set for wall-points and one for salient interest-points.

2. Dicing the set of salient interest-points into distinct connected components
by considering the disjointness of clusters of points.

3. Railing each segmented connected-component using swept profiles in order
to create 3D window and door models from clusters of points.

4. Clipping a polygonised version of the set of wall-points using the boundaries
of each connected component in order to create a cut-out wall mesh with
holes in place for each corresponding window model.

This portion of the chapter delves into the logic of each of these stages, outlining
for each the vital considerations and the algorithmic steps that implement them.
A complete overview of the approach is also included, which is followed by the
discussions of the slice, dice, rail and clip in order.

4.3.1 Outline

This section provides a provides a brief outline of the structure of the ARROW
algorithm. It explains the input and output data as well as providing pseudo-code
to clarify the lower-level behaviour details. There are a number of extra figures
included in order to drive home the algorithm’s behaviour.

Inputs-Outputs

The facade-reconstruction algorithm takes as input: an unstructured .pts or .xyz
point cloud file - a collection of points scanned from the surface of a building (typi-
cally using a fixed-position radial scanning setup).

The ARROW algorithm makes use of the following control-parameters (which are
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supplied as input-arguments by an end-user): an iso-distance (a signed scalar
value), a point neighbourhood radius (an unsigned scalar value) and a quadrilat-
eral edge-length (an unsigned scalar value in centimetres).

The output is a 3D facade model which is composed of a quad-dominant wall mesh
and a set of surface-element meshes each representing a window or door. Each
surface-element model is composed of a set of 3D sweeps which are generated as
the product of a 2D split-logic descriptor derived from the window’s/door’s interior
sash and pane arrangement.

Figure 4.3: Schematic high-level overview of ARROW- the top row indicates the input data

(unstructured facade point-cloud), the central block outlines the body of the algorithm, and

the last row the output facade-model.

Figure 4.3 outlines the structure of the proposed operator using an input-operator-
output schematic diagram - similar in vein to that used in the previous chapter. It
provides a reference of the basic structure of ARROW.

Figure 4.4 summarises the four key stages in the ARROW algorithm in terms of
the input, output and algorithmic steps undertaken for each.
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Figure 4.4: key stages in automatic facade reconstruction from unstructured ground laser-

scans in tabular form - each column summarises the details of a particular stage and the

order of reading is top-to-bottom, left-to-right.

Note the manner in which the outcome of each of ARROW’s algorithmic stages
feeds each subsequent stage. This is in many ways reminiscent of the behaviour
of the MAMMAL algorithm defined in the previous chapter.

Pseudo-Code

High level pseudo-code is provided in figure 4.5 in order to summarise the logic
of the algorithmic steps that transform a set of unstructured points into a sparse
3D facade model. Note that relative to the MAMMAL algorithm, this pseudo-code
is much simpler to understand, due largely to the fact that the scope of the prob-
lem is constrained to reconstructing a single facade. Essentially unlike MAMMAL
(which is responsible for segmenting, filtering and modelling a city-scale dataset
composed of multiple buildings), the expectation here is that ARROW is executed
on a single facade scan.

Figure 4.5: High-level pseudo-code of the facade reconstructor

In figure 4.5 type statements are omitted for clarity. The pseudo code clarifies
the algorithmic steps that will transform the input point-cloud into a facade-model.
Lines 1-3 correspond to the slicing step, line 4 to the dicing step, lines 5-6 to the
railing step and line 7 to the clipping step.

Figure 4.6 depicts an example of the input data to the ARROW algorithm - an un-
structured facade point-cloud a subset of the Roslyn Mews dataset.
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Figure 4.6: input facade points (left) and points rendered with normal shader (right) for a

subset of the unstructured Rosslyn Mews ground-scan dataset

Essentially this is an algorithm to turn facade-points into facade-models. It is not a
general purpose reconstruction method. It serves a niche within the architectural
and geometric communities for which accurate automatic detection of window and
door apertures and corresponding model generation is highly advantageous. How-
ever this also means that if the input does not correspond to a facade scan then
the output will fail to characterise the input effectively. The facade-scan in figure
4.6 indicates the class of point-cloud that should be supplied as input. Yes there
is still sensing noise present (especially around the edges of the set), and par-
tial/missing data (the occluded region beneath the central window), however the
points corresponding to vegetation or street furniture are negligible. In this sense
it is a relatively clean representation of the facade. Figure 4.6 is a visual guide as
to the coverage and density of scans that should be supplied as input.

Having outlined the ARROW algorithm, the next sections detail the internal logis-
tics of the four key stages - the slice, the dice, the rail and the clip. The aim is
to provide a comprehensive account of how each stage in ARROW supports the
goal or recovering clean, compact, accurate facade models from ground-based 3D
laser scans. For each of these key stages the discussions seek to explain what
the stage entails, why it is necessary and how it is actually works. In addition the
input and output, key-factors, context, relevance and limitations of each processing
stage are detailed.
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4.3.2 Slice

The initial slicing stage of ARROW is a binary point-set division function that aims
to divide the unstructured input facade points into two subsets - with one subset
containing points corresponding to walls and the other containing points corre-
sponding to salient features of the facade.

The slicing stage operates by localising on the position of the wall by computing
the linear-least-squares wall estimate using a subset of the input points (which are
filtered by their verticality). Then it considers the signed distance between each
point and the wall estimate in order to isolate points whose distance to the wall is
greater than the user-supplied iso-distance.

The context of the slicing stage is in the segmentation of unstructured point-sets.
In particular it is a low-level operator for facade division. In a sense, it is analogous
to the difference of elevation models stage employed in the aerial change-detection
and reconstruction operators, because it results in a binary division such that the
points corresponding to salient features are separated from the point correspond-
ing to background/terrain/wall.

The underlying insight is that architectural surface-elements (windows and doors)
rarely lie completely flush with a wall. Typically there is depth variance around the
geometry of the frames, sashes and sills that results in an inset or outset. As such
one can exploit this physical characteristic to frame the problem of salient point
detection (given unstructured points representing a planar facade). At a high level
the key is that where there are points deviating from the wall, there are points of
potential interest.

As such there are two sub-steps employed to slice the input facade scan:

1. Localise on the wall - by computing the LLS error minimising plane using
a subset of the inputs points - which are filtered by the verticality of their
surface-normal (I ′) such that ∀e ∈ I ′ : ∆ey < θ.

2. Label each point as salient or wall - by calculating the distance of each point
in the input (e ∈ I) to the wall position estimate (W): ‖W − e‖.

One may query: why is this relevant or necessary? The relevance of the slicing
stage lies in the fact that it is responsible for determining two classes of subset -
one that feeds the later railing stage and the other that feeds the clipping stage.
The vital aspect is that this process breaks down an initially complex task into
two distinct and (as a result) more manageable sub-tasks. The slice essentially
enables ARROW to reform the problem of facade reconstruction as that of wall
modelling and feature modelling.

Key-Note: Regarding the use of a signed-distance-field split as opposed to the
simpler plane-side split. During the course of the methodology a plane based
wall representation is used. However it is important to be aware that this is an
implementation detail. In principle the underlying theoretical representation of a
wall should be based on a 2D or 3D signed distance field such that the sign of
the distance for points on one side of the representation is negative and on the
other side positive. It happens to be that in practice a large proportion of walls can
be defined with a single linear edge. However in order for the slicing stage to be
flexible enough to handle irregular walls, it must based on the notion of querying
a general 2D or 3D scalar field representation. This is discussed in greater depth
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later in this section.

Formally the input to the slicing stage is an unstructured point-set of a facade I.
The intermediary verticality filter subset is I ′. The output of the slice operation
(O) is two unstructured point-sets - each a subset of the input such that each
point in the input is returned as either a wall point or a salient point. Essentially:
∀pi ∈ P : pi 6∈ Q and vice-versa ∀qi ∈ Q : qi /∈ P where: P and Q correspond to
the wall subset and salient subset (respectively) and P ∪ Q ≡ I. The convention
used in this thesis is to map O0 to the wall subset and O1 to the salient feature
subset.

A number of key factors play a large role in controlling the response of the slice.
They are briefly discussed in the following outline:

• Iso-Distance: which is the threshold used to determine each point’s devia-
tion from the wall. If the value is too small it will result in noisy wall points
appearing in the salient subset. However if it is too large then window and
doors that are nearly flush with the facade’s wall are likely to be missed. As
a guiding rule-of-thumb it is recommended to start with an iso-distance that
is roughly equivalent to ± 3-12cm - this is based on the physical dimensions
of surface-elements, and the assumption of a laser-scan with depth-error of
less than ±2cm.

• Wall representation’s support for curvature: which determines the slicing
stage’s robustness to different facade wall types. As a result of the verti-
cality constraint there are a number of representational types suited to this.
For example a wall could be defined as an on-plan line - which would cor-
respond to a vertical plane. From this a wall could also be defined as an
on-plan polyline path - which would correspond to a sequence of vertical
planes. Alternatively an implicit curve representation could be defined using
an arc or bezier curve. The most generic (flexible) representation would then
logically be a general purpose path (composed of polylines and curves). In
the case line/plane representations are used, then the wall-descriptor will be
composed of piecewise-linear approximations in the case curved and irreg-
ular facades - which can degrade the geometric performance of the slice.
The way to combat this is to employ the generalised path representation.
However the computational expense associated with the slicing operation in-
creases dramatically since the distance to wall function (which is invoked for
every point in the input) requires evaluation of a more involved iso-field rep-
resentation - relative to the simpler (and more efficient) point-to-line/point-to-
plane distance measure that is employed by the line/plane sub-case. Figure
4.7 seeks to clarify the notion of the different underlying representations for
a wall. The critical point is that each wall representation type is subject to a
trade-off between the efficiency with which it can be queried and manipulated
algorithmically and its flexibility as a geometric representation.
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Figure 4.7: the options for wall representation depicted in 3D (top) and in planimetric 2D

(base): illustrating (from left to right): a line representation, a polyline representation, an arc

representation and a general path representation - blue points denote the keypoints used to

define each wall.

‖(w0 : w1)− pi‖

min(
‖(w0 : w1)− pi‖
‖(w1 : w2)− pi‖
...
‖(w4 : w5)− pi‖
)

‖(wdistance(pi)‖

min(
‖(w0 : w1)− pi‖
‖(w1 : w2)− pi‖
‖(w2 : w3)− pi‖
‖(w3distance

(pi)‖
‖(w4 : w5)− pi‖
)

Figure 4.8: (from left to right) examples of the corresponding distance calculations required

for each type of 2D wall descriptor in figure 4.7 - where (wn : wn+1) − pi measures the

distance between a 2D line and point - and wndistance
(pi) determines the distance between

an arc and a point.

It is clear in considering figures 4.7 and 4.8 that as the generality of wall-descriptor
increases so to does the expense of its distance measure.

These factors play a large role in controlling the effectiveness of the division that
results from the slicing stage. For example a poorly selected iso-distance value
will result in a mis-assignment of points.

Beyond these factors there are a number of limitations to the slicing operator which
are important to note. They are discussed following:

• The expectation of a reasonably well sampled input facade scan since poorly
sampled scans (possessing high point spacing) will degrade the geometric
performance of wall-localisation and hence the result of the slice. For exam-
ple difficulties arise with sparse scans captured from large distances. The
underlying limitation is that ARROW requires a dense input point-cloud with
high fidelity relative to the physical facade. Execution on sparse scans tends
to perform badly.

• The requirement for verticality in order to efficiently filter the input points.
The limitation being that ARROW could be more effective using an alterna-
tive (3D) wall-localisation routine (instead of the planimetric 2D approach)
- which would be especially useful for non-euclidean architectural masses.
The core limitation is that the constraint enhances the robustness of the wall-
localisation phase at the expense of the scope of the types of walls that
can be handled. Non-vertical (sloped or angled) walls require an alternative
means of filtering (i.e. using a scale space operator such as the DoN[52]).
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• The expectation that the majority of the input points correspond to an archi-
tectural facade. The slicing operation will not remove clutter in and of itself.
It simply divides the point-set into two sets. As such if there are anoma-
lous (non-architectural) components represented in the input they will be
preserved in the wall subset and salient subset.

Despite the constraints on the quality of the input scan points thats results from
the direct geometric nature of the slice, the advantages relative to stochastic or
pattern-recognition based methods are determinism, efficiency and independence
from training strategies or datasets.

The following pseudo-code provides an algorithmic perspective of the inner-workings
of the initial binary division operation that breaks the problem of facade reconstruc-
tion down into two simpler distinct sub-tasks.

1: filtered← filter by verticality(input)
2: wall← estimate wall position(filtered)
3: wall pts← {}
4: salient pts← {}
5: for each point ∈ input do
6: d← signed distance between(point, wall)
7: if abs(d) < iso distance then
8: add(point, wall pts)
9: else

10: add(point, salient pts)
11: end if
12: end for
13: return {wall pts, salient pts}

Or: for each point in the input determine the magnitude of its distance to a linear-
least squares wall representation (computed from the subset of input points whose
normal indicates verticality) and add points with magnitude ≤ iso-distance to the
wall subset and > iso-distance to the salient subset.

Figure 4.9: filtered wall points (left) detected using the verticality predicate and the binary

division (right) resulting from the signed distance field split - illustrating the outcome of the

slicing stage of ARROW: a wall-point subset (in gray) and a salient-point subset (rendered

with normal-shader)
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At its heart, this slicing stage is a simple, fast, data-driven, geometric, non-stochastic
equivalent of the Difference of Elevation Models’ slice operation refactored for un-
structured facades point-sets. Figure 4.9 depicts the result of its application to the
example input from the Roslyn Mews dataset.

In figure 4.9 note that the verticality filtered subset (left) which is used as intermedi-
ary data in order to localise on the wall representation - contains points belonging
to both the wall and the salient features. Yet this does not break the subsequent
SDF-split’s result (right) which clearly separates the salient parts of the scan (the
surface elements) based solely on the deviation from the estimated wall with an
iso-distance threshold of ±5cm.

The following enumerates (for reference) the key slicing concepts discussed.

Wall Localisation

• Local Point Level Operation - yields efficiency relative to region or neighbour-
hood level operators (such as the Difference of Normals [52]).

• Verticality Filtering - does not rely on consistently oriented normals - enables
use of the linear least square plane by omitting outliers which could perturb
the position of the wall - a product of the observation that the large majority
of architectural walls are vertical.

Signed Distance Field Segmentation

• Automatic Point Assignment: decides which points should belong to the wall
subset and which to the salient subset.

• Efficient ways to implement the point-to-wall distance-function for the wall
descriptors supporting curved and irregular arrangements.

Once the wall and salient subsets have been assigned, the next step in the AR-
ROW algorithm is to segment the salient subset in order to isolate individual sur-
face elements. The dicing operation is discussed next.

4.3.3 Dice

The next stage of ARROW is the detection and segmentation of individual windows
and doors point-clusters from the salient subset identified by the previous slice op-
eration. The aim is to isolate groups of points that correspond to surface-elements
such that each can be processed independently.

In essence the dicing step is similar in vien to the connected-component extrac-
tion used in the aerial operator’s segmentation. The key difference being that here
we are extracting these components from an unstructured scan. Nonetheless, the
core concept is much the same. The dicing step first determines local (point-level)
neighbourhood connectivity. Then breadth-first traversal of the graph constructed
from the salient subset’s neighbourhoods.

The critical problem with this stage is that point-location and spatial queries are
proportionally a lot more expensive with unstructured scans relative to performing
equivalent operations on the structured aerial range images.
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To address this the dicing stage exploits a KD-tree (in order to chunk the salient
subset), AABB spatial optimisations (in order to quickly dismiss groups of points
that are not connected), and a bottom-up graph-labelling routine (in order efficiently
traverse and resolve components).

Remember the context is of this sub-problem is object segmentation from un-
structured point-clouds, and in particular automatically identifying and isolating the
structural surface components of a building facade.

In terms of the relevance of the dicing: it is the key to breaking down the salient
parts of the input facade-scan into manageable contiguous clusters which can be
fed directly into an automatic window reconstruction routine. Interestingly (as a re-
sult) this stage could also be considered as analogous/equivalent to the maximal-
area roof-shape segmentation employed during airborne reconstruction - in the
sense that it breaks each facade’s un-ordered point descriptor into sub-objects (in-
dividual components). The only semantic difference (which makes the comparison
with the DoEM connected component extraction more adequate) is that the MARS
algorithm cannot rely upon the disjointness of roof-shapes in order to find a divi-
sion - whereas this dicing stage can (exploit the disjointness of surface-elements).
This is a product of the axis-aligned-disjointness principal/heuristic that frequently
pervades groups of windows and doors upon architectural surfaces.

The high-level algorithmic steps that implement the dice operation are:

1. Construct KD-tree

2. Label neighbouring chunks in KD-tree

3. Extract connected components using neighbour chunks

4. Filter anomalous and insignificant components

Formally the input to the dicing stage is the salient feature points derived from
the signed distance field split (a subset of the input) - denoted P . The output
of dicing is a set of point-clusters Q, each a subset of the salient set (such that
∀qi ∈ Q : qs ⊂ P and ∀qis ∈ qi : qis 6∈ qj, ∀j ← [0 : n] : j 6= i.

Essentially the input salient feature points are broken down into a set of disjoint
connected components within which each point in the input is assigned to a single
connected component. Each connected component maps to a cluster of points
representing a window or door (surface-element) and the connected-components
are each non-overlapping regions in the input.

The key factors that control the efficacy of the dicing stage are:

• Point-Location: or rather the computational performance properties of the
point-location strategy used - most vitally whether it results in constant-time
or variable-time (data-dependant) point queries and whether it produces ex-
act or approximate responses to queries.

• Spatial-Optimisation: which is used to reduce the number of queries re-
quired in order to perform operations such as finding a point’s nearest neigh-
bour(s), by using a structure (oct/K-d tree - an additional layer of abstraction
in the point-cloud’s representation) that recursively divides the input spatially
in order to access points or regions more efficiently as a tree. There are
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also non-recursive spatial optimisations which include hashing and bucket-
ing strategies - they are generally faster to construct and interrogate, but less
spatially adaptive to the data.

• Point-Set Intersection Test: which is the connectivity constraint (or rather
the predicate) used to determine whether two clusters of points are con-
nected - i.e. the function used to answer the question: are these two clusters
of points part of the same surface element? (Are point-sets A and B, con-
nected, contiguous, colliding?)

• Filtering and Post-Processing: which determines whether there is any
scope for refactoring the result post-execution to address anomalies (over
and under segmentation) in the extracted clusters.

• Quantifying Detection Recall and Precision: in particular this relates to
the manner in which ones measures how effective each segmentation result
is in terms of accurately representing the structural decomposition of each
facade - which calls for ground-truth data.

Ultimately the path taken in this research is towards purely data-driven window
and door detection from unstructured point-sets. As such the benefits of the dic-
ing strategy proposed include deterministic (non-stochastic) region results and re-
peatable computational performance. Further the localisation of window and door
point-clusters executes more efficiently than the current state of the art [77][78][21].
The critical point is that the KD-tree and AABB spatial optimisations yield segmen-
tation results analogous to using the prevalent facade segmentation methods but
in a fraction of the time.

Figure 4.10: the KD-tree chunks (right) constructed from the salient subset of points (left),

for the example facade used throughout this chapter

The underlying insight is that KD-trees exhibit lower recursive growth (n2, relative
to oct-trees: n8), yet yield effective chunking results due to the largely planar nature
of facade-scans. This means far fewer chunks are generated to dice-up the salient
points - which greatly enhances efficiency without sacrificing segmentation qual-
ity. This also relies on the disjointness of architectural surface-elements discussed
earlier. Further the addition of the axis-aligned bounding boxes (AABBs) allows
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the routine to quickly dismiss chunks that cannot possibly belong to the same ob-
ject (without the greater expense of comparing the distance between clusters point
for point). This has the effect of reducing the number of distance calculations re-
quired.

Figure 4.11 illustrates the outcome of the dice on the example facade-scan.

Figure 4.11: the connected components extracted from the salient subset rendered in iso-

lation (left) and alongside the wall-subset (right) - rendered using a pseudo-stochastic map-

ping between component-id and point colour

Another positive feature resulting from the data-driven nature of the slice is that it
is capable of returning irregularly shaped surface-element point-sets. Commonly
box heuristics are used [93][8][153][139][63][110][152], which although suitable for
the large majority of windows and doors, perform poorly on irregular features (such
as the central window in figure 4.11). The fundamental advantage of a data-driven
(over a templated or heuristic) dicing method is that it represents the data that is
actually present in the salient subset, however varied.

Despite these positive operational properties, the ideology is not perfect and the
performance of the dicing stage is subject to the following limitations:

• Expectation of a reasonably high-resolution scan (as in the slice).

• Dependant on the efficacy of preceding slice stage’s binary split.

• The data-driven nature means that it does not fill in holes where there is
missing or partial data - i.e. a partially scanned window that appears as two
distinct clusters of points will yield two distinct components.

• Resolving over and under-clusters components - (in particular over-clustered
regions) adds another level in the hierarchy of the facade’s segmentation that
cannot rely solely on disjointness.

Most of these limitations result from the data-driven nature of the operation. How-
ever there are also aspects that require further research in order to be adequately
addressed. In particular improvements to the post-processing of the diced up ele-
ment point-clusters would help to deal with under and over clustering. Further the
use of additional spatial measures could constrain the segmentation result - and
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help in dealing with broken point-sets - which are geometrically distinct (disjoint)
but semantically belong to the same object. Such occurrences are generally the
product of partial data and are manifestations of under-clustering. On the other
hand, to limit over clustering, one could pre-filter any wall points that may have
slipped through the preceding SDF split into the salient set. This would help mit-
igate over-clustering by preventing disjoint element-clusters appearing to be con-
tiguous because wall points join them together. There are in essence a myriad of
operations that could be applied to improve the division resulting from the dicing
stage. The key point is that each such operation will either seek (whether heuristi-
cally or analytically) to prevent the problem of over or under clustering.

Having provided an overview of the dicing stage: the following covers the inter-
nals of the specialised connected-component routine used to efficiently traverse
the unstructured data and isolate windows and doors.

Efficiently Clustering Connected Components

The last relevant detail of the dicing stage is how to efficiently traverse the KD-
chunks to produce connected-components such as those illustrated in figure 4.11.
The core idea is that one treats the problem as a graph traversal task - within
which the aim is to isolate the minimum spanning trees of the connectivity graph
of the chunked components. The efficiency of this strategy is a product of the
layer of abstraction introduced between the input salient subset and the connected-
component routine. By stitching together groups of related chunks as opposed to
points the expense of isolating connected-regions in the unstructured input is sig-
nificantly reduced.

Note: though that this efficiency comes at the slight cost of precision since - in
principle more precise connected components could be recovered using an exact
point-for-point approach. However in practice the difference in accuracy is typically
negligible given the nature of architectural facades, and for this particular applica-
tion at least (fast, accurate and sparse reconstruction), generally not worth the
dramatic increase and execution time.

To revise: the dicing stage of the ARROW algorithm automatically divides the set
of salient feature points into individual surface-element point-clusters, such that
each may be analysed and processed independently. The next stage is the rail

which involves iterating over each surface-element point-cluster and constructing
a 3D window or door model to represent the geometric form of the element. This
is discussed next.
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4.3.4 Rail

The rail stage of the ARROW algorithm transforms each cluster of segmented
surface-element points into a sparse 3D model. It is in essence an automatic mod-
elling stage for window and door point-sets. The key aim is to create accurate and
compact 3D models from a cluster of points - assumed to belong to an architec-
tural opening, surface feature or adornment.

To address this problem a novel procedural representation of the an architectural
surface element is proposed and exploited experimentally in order to produce data-
driven 3D models from segmented point-clusters. The Surface-Element is simply a
formal representation of the structure of an architectural opening that exploits sets
of generalised cylinders (3D sweeps) in order to model depth variance around
frames, sashes and sills in tandem with 2D procedural split-logics - that provide
an abstracted means of defining the division of space that characterises each
surface-element. The key benefit of the representation is that it provides a vital
layer of abstraction between the specification of the semantic structure of an ele-
ment and its realisation as a 3D model. This layer of abstraction, coupled with the
Surface-Element’s generality makes it suitable for forward-chaining (user-centric)
and backward-chaining (reconstructive) modelling tasks. The underlying idea is to
encode the process of modelling a window or door in a data-driven function - such
that a wide array of varying window and doors can be dynamically generated from
sparse semantic descriptors.

Theoretically the Surface-Element is a mapping between a set of 2D vectors and
a 3D polyhedral mesh. Implementation-wise: it is simply a function that takes 2D
shapes as input and constructs and returns a 3D model.

The primary reason it exists is to help combat the problems inherent to template-
based and pattern-matching methods of window and door reconstruction - which
provide approximate results. This is the key limitation of the pre-existing model
based strategies [93][152]. The issue is that irregular windows and doors (for
which effective approximates do not exist in the scheme’s knowledge-base) can-
not be correctly reconstructed with model based strategies. One way to combat
this is to increase the scope of the scheme’s knowledge-base (add more tem-
plates or patterns to the library) [95]. However the unavoidable disadvantage of
this is greater computational load. Furthermore even with a large knowledge-base
(library of common models) to search, ultimately there are still no guarantees of a
correct result.

The logical way to combat this is to either faithfully reconstruct the data without ref-
erence to a library of common models, or alternatively devise a means of altering
items in the library dynamically to better fit the input.

On the other hand (at the other end of the ideological scale) purely data-driven
methods of window and door reconstruction tend to result in dense, lower-quality
models, that are often not suitable for texturing, rendering or animating. Although
for analytic tasks geometric accuracy is the deciding factor, practically the lack of
semantic structure limits the use of dense surface-element models for tasks such
as realtime interactive display.

Fundamentally data-driven methods are commonly plagued by the lower quality of
the resultant models, whilst template-driven methods are most often limited by the
scope of the features they can accurately represent. Ultimately though the desire
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is for the computational efficiency and accuracy of data-driven methods with the
model quality characteristics of a template-driven method. Hence this research
devised the Surface Element - a procedural representation designed to support
the pursuit of these desires.

The body of this section is structured as follows. It first introduces the Surface-
Element as a general purpose window and door representation, with clarifying
examples. It then provides a formal definition of the abstraction. It then consid-
ers the problem of automatically constructing surface elements descriptors from
each cluster of segmented points in the broken down salient subset and proposes
a simple algorithm (SLADE - Split-Logic-Axes Detector and Extractor) to address
the problem of split-logic resolution.

Architectural Surface Elements: An Overview with Examples

Put simply: a surface-element is an object (element) that resides upon a surface.
Hence an architectural surface-element is an object that resides on an architec-
tural surface. In layman’s terms here elements refers to windows and doors whilst
surface refers to a building facade.

Note: throughout this chapter, the term Surface-Element is used to refer specifi-

cally (and exclusively) to architectural surface-elements.

The idea is that although individual windows and doors can vary greatly in their ap-
pearance and structure, they all belong to the same class of entity. As such there
are common features of the class which are useful in characterising the class at
a high-level. To put it another way, there are fundamental similarities that pervade
windows and doors - due largely to their function as openings. One can exploit
these similarities in order to describe and manipulate the notion of a window or
door abstractly.

As an example windows and doors typically possess a boundary (or frame) shape.
They also possess a character-giving division of space (in the form of sashes and
panes). They can also be bordered by sills or ledges (or steps in the case doors).
They may optionally possess behavioural attributes such as the nature of the open-
ing transform (translational or rotational).

This initial example break-down sets the tone for the rest of this discussion. Note
that structurally each surface-element is a composite of different types of sub-
component (frame, sashes, panes, sills...).

Note: in the following portions of this section a distinction is made between regu-

lar and irregular surface-elements. It is imperative that the reader is aware that

this distinction exists solely to aid in the exposition of the representation and oper-

ations employed by the railing stage. In principle there is no such dichotomy. The

formal definition and the function implemented to realise the abstraction recog-

nise no such distinction. However in practice it is quite useful to be able to treat

elements as either regular (easy cases) or irregular (complex cases) - because it

enables the resolution of the large majority of elements to be optimised to deal with

axis-aligned structural edges. This explanatory distinction is discussed in greater

detail shortly.
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Rectilinear/Regular Surface-Elements

Regular surface-elements are composed of axis-aligned vector edges. The es-
sential attribute is that the semantic structure of a regular surface-element can
be defined accurately using purely rectilinear components or horizontal and verti-
cal edges. Regular surface-elements are the most common form of architectural
opening. Figure 4.12 illustrates regular surface elements.

Figure 4.12: examples of regular, rectilinear procedural surface-element models: depicting

(from left to right) a window, a door and a balcony.

Note that in figure 4.12 the bounding box of each element is equivalent to the ele-
ment’s frame shape and the internal sash arrangement possesses only horizontal
or vertical edges. Regular surface-elements are useful because of the simplic-
ity with which they can be defined and the frequency with which they occur in
real environments. However they are limited to describing box-structured windows
and doors. As such in order to handle the diversity present in architecture, non-
rectilinear descriptors are also required.

Non-Rectilinear/Irregular Surface-Elements

Irregular surface-elements are composed of non-rectilinear vector shapes. The
essential attribute of an irregular surface element is that the semantic structure
cannot be accurately defined using purely rectilinear components. One requires
polygonal descriptors to effectively model an irregular surface-element. Irregular
surface-elements occur less frequently upon facades however they are common
in ecclesiastic architecture. Although the prevalence of irregular surface elements
varies from region to region, the fact that they exist mandates their inclusion in this
scheme. Figure 4.13 illustrates examples of irregular surface element models to
clarify.
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Figure 4.13: examples of irregular, non-rectilinear procedural surface-element models: de-

picting (from left to right, top to bottom), a circular window with polygonal sash-division, a

braced window with rectilinear sash-division, a round-rectangle braced window with tiled

(repeated) sash-division, a bevel-corner door with nested sash and detail divisions, a round

arch window with nested sash and detail divisions and an opaque door.

Note that in figure 4.13 each element possesses either a non-rectilinear boundary,
internal division or both. Essentially one could not represent the structure of such
surface elements using only vertical and horizontal edges. These irregular surface
elements also indicate different types of depth variance.

Vitally though, despite this distinction, the thing that is common to all is that they
are characterised by a boundary shape and an interior division (splits). Secondary
characteristics include profile shapes and the scale of each component. The key
is that in order to define and manipulate each of the examples there are only two
types of objects that require support. This representation relies on two basic prim-
itives: shapes and split-logics.

Page 217 of 301



CHAPTER 4. FACADE RECONSTRUCTION→ 4.3. METHODOLOGY

Shapes

In this scheme shapes are 2D vertex-lists that describe polygonal forms.

Figure 4.14: Examples of different shapes supplied as input frames to generate single-sash

window models. Each shape (a 2D planar simple polygon) can be used to represent both

the object-boundary and the object’s set of defining profile vectors. The key consideration

in deciding upon a shape representation is whether it is explicit (i.e. a static set of vertices)

or dynamic (as in a function generating a set of vertices). Alongside split-logics, shapes

are one of the fundamental geometric primitives exploited by the proposed scheme - and

by procedurally combining them with split-logics, generate 3D models.

Split-Logics

In this scheme split-logics are functions that encode a division of 2D space. They
can be applied recursively, selectively and/or conditionally.

Figure 4.15: Examples of different 2D split-logics applied by the method in order to gen-

erate regular rectilinear and irregular sub-divided sash layouts. Each split-logic defines the

manner in which sub-regions should be created from an input parent region (which in these

examples is a square of unit length). Each is a function that encodes a characteristic division

of space which defines the internal structure of a generated surface-element.
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Formal Definition of a Surface-Element

E ← {(FS ∧ FP ) ∪ ((SP ∧ SL()) : ∀c[i] ∈ SL(FS))}

where:

• E : denotes the resultant surface-element a set of generalised cylinders

• FS : is the polygonal frame shape - a cyclic 2D vertex-list (the outer hull of
the generated surface-element: its defining boundary)

• FP : is the frame’s profile shape - a cyclic 2D vertex-list (the depth)

• SP : is the shared internal sash profile - a cyclic 2D vertex-list

• SL : is the split-logic function that defines a division of 2D space - normalised
to the lie in the range [0:1] along the principle axes (X, Y)

• c[0−n] : is the set of sub-regions derived from applying the split-logic function
(SL) to the input frame shape (FS) - the result of sub-division

• The ′∧′ operators is used abstractly to represent a multiplicative operation in
the geometric sense. It computes the pseudo product of two input shapes
in R2 and yields a polyhedral mesh in R3. Here it effectively symbolises the
’sweep’ (generalised-cylinder) function.

for example:
E ← {(fs ∧ fp) ∪ (sp ∧ sl(fs))}

where:

• fs← {[−0.5, 0], [−0.5, 1], [0.5, 1], [0.5, 0]} × [width, height]

• fp← ({[−0.45,−0.5], [−0.5,−0.45], [−0.5, 0.45], [−0.45, 0.5],

[0.45, 0.5], [0.5, 0.45], [0.5,−0.45], [0.45,−0.45]} − [0.5, 0])× ~fpscale

• sp← ({[−0.45,−0.5], [−0.5,−0.45], [−0.5, 0.45], [−0.45, 0.5],
[0.45, 0.5], [0.5, 0.45], [0.5,−0.45], [0.45,−0.45]}+ [0.5, 0])× ~spscale

• sl← {{[−0.5, 0], [−0.5, 1], [0, 1], [0, 0]}, {[0, 0], [0, 1], [0.5, 1], [0.5, 0]}}

yields the 3D model depicted in figure 4.16:

Figure 4.16: window model generated from the simple example surface-element (left) with

its constituent components: frame, sashes, panes (to the right)
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From this additional components can be instantiated by altering the simple defini-
tion to include supplementary shape and split-logic operations. Three such exten-
sions are outlined. First the recursive application of detail split logics, secondly a
frame-brace and thirdly north-west-east-south (NWES) sill rails. They aim to en-
hance the representation’s ability to characterise the diversity present in real-life
surface-elements by mapping the most common features to manipulatable com-
ponents. They simply extend the representation with data-driven 3D sweeps.

The detail split-function is applied to each sash sub-division pane in order to cre-
ate nested divisions of space. This component enables seemingly complex 2D
patterns to be constructed through the combination of simple split-logic functions.
Just like the sash component the detail component is defined by a profile shape
(DP ) and a split function (DL()). Note that whilst the structure of each surface-
element’s planimetric division is probably best represented using a tree structure,
in-practice only 2 or 3 levels or recursion are typically required to describe the large
majority of surface elements. This extension adds a single recursive layer to the
sash division layer. This limitation seeks to simplify the definition and enhance its
clarity: and though it is trivial to add additional layers, ultimately one must balance
the representation’s scope for characterisation relative to flexibility of manipulat-
ing it (both manually and procedurally). Nonetheless the underlying concept is
easy to grasp: essentially rather than introducing increasingly complex split logics
(in order to model irregular features), one can simply combine simpler (somewhat
axiomatic) split logics dynamically. Again the key idea is to encode self-similar pat-
terns using simple split-logics. As such if the set of sub-divided sash shapes (SS)
is given by the expression:

((SP ∧ SL()) : ∀c[i] ∈ SL(FS))

then the corresponding detail mesh is constructed as a product of:

∀ si ∈ SS : E ← E ∪ {(DP ∧DL()) : ∀c[j] ∈ DL(si)}

which yields nested sash divisions such as those depicted in figure 4.17.

Figure 4.17: examples of tiled detail split-logics applied to the example surface elements

two component sash split-logic to represent various window’s panes
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Note: in these examples that the nested (recursive) split function employed is not
the only variable - but that we can also apply instancing logic (repetition) and non
uniform scaling to alter the characteristics of each window.

Figure 4.18: example surface element with brace, detail and sill components: illustrating

(left) the merged model and (right) the individual components.

Figures 4.18 and 4.19 demonstrate additional aspects of the abstraction.

Figure 4.19: An explanatory two-dimensional slice representation of a surface-element’s

defining profiles vectors - depicting the structural composition of a generated window model’s

geometric form in terms of a set of 2D planar profile-shapes that are ’swept’ along input ’rail’

shapes to create depth. This figure also clarifies the axis conventions utilised - with the

positive X direction mapping to moving ’inwards’ towards the centroid of the input shape.

Note: that the conventions in figure 4.19 are by no means the only valid means of
specifying the relative position of sub-components. Indeed one could just as easily
invert the X or Y axis order to yield alternative specifications. The critical point
is that irrespective of the conventions employed - one should be consistent in the
manner of offsetting components within both forward-chaining (user-centric inter-
active surface element creation) and backward chaining (reconstructive) contexts.
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Having explained what a surface element is - and the key features of the abstrac-
tion - the next section deals with how to extract simple surface-element descriptors
from the segmented window and door point-clusters.

Automatically Recovering Surface-Elements

This section discusses the means of turning each cluster of window and door
points into a structured (component based) 3D model. It proposes a 3-stage oper-
ator dubbed SLADE (the Split-Logic-Axis Detector & Extractor).

To address this problem - the SLADE operator first extracts extremal shape bound-
aries for each point-cluster (to determine frame shapes) and then resolves each
under a planimetric arrangement (to derive interior split-logic axes). Split-logic
functions are then constructed and applied to the frame boundaries to produce
sash components which (along with the frame) are modelled as swept profiles
(3D-sweeps, generalised cylinders).

Formally the input to the rail is a cluster of 3D points of a segmented surface-
element (SE). The output is a sparse 3D model (represented as a polygon-mesh)
and a 2D planimetric vector descriptor of the element - both representations of the
semantic structure of the input point-cluster.

Figure 4.20: schematic overview of the basic operation of SLADE - illustrating the three

surface-element component types sought - alongside the characteristics of the 2D descrip-

tors that are employed for each component type.

Although figure 4.20 illustrates some of the potential 2D geometries that could be
returned - in practice SLADE operates in a data-driven manner. Essentially - whilst
one could construct surface-elements in a templated manner - the most accurate
results are the product of mining the descriptive vector shapes directly from the
point-sets. The following outlines how.

• Detecting Primary Frame - by extracting a planimetric 2D hull of a cluster
of points via a normalising (flattening) projection - which is then reverted to
return to the hull to the 3D coordinate system.

• Detecting Interior Panes - by extracting interior edges, extending them out-
wards to intersect with the frame-shape and clipping the frame shape about
the interior edges to yield sub-divided panes.

• Detecting Auxiliary Components - (such as window-sills) as edges.

Once surface-element descriptors have been extracted - ARROW generates 3D
swept profiles and feeds the 2D vector descriptors to the dicing stage to produce
aperture (cut-out) facade wall models - discussed next.
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4.3.5 Clip

The last stage of the ARROW algorithm is the clip. At its heart, it is a method of cre-
ating sparse cut-out wall meshes with holes in position for each surface-element.
The clipping stage exists in order to transform the subset of wall points (from the
initial slicing stage) into a quad-dominant 3D model that is light-weight enough
to be suitable for interactive simulation and that accurately reflects the apertures
upon the facade in order to facilitate analytic tasks such as solar-gain calculation.

This stage is essentially a sparse wall meshing operator. It first extracts a vector
boundary shape from the wall-point subset. It then sub-divides the polygonal wall
representation into quadrilateral pieces. Then (for each quad-piece) it clips-away

window and door holes using the vector boundaries (the frame shape) of each
overlapping reconstructed surface-element.

Formally the input to the rail is the subset of wall-points (produced by the SDF-
split) and the frame shapes (extremal planimetric 2D boundaries) of each surface
element. The output of the clip is a 3D quad-dominant wall-mesh with holes in
place for each surface element’s aperture.

The context of this sub-problem is in architectural surface-reconstruction - and it
represents a special case of a point-set meshing routine that exploits the primarily
planar nature of building facades to support the conventional (industrial) desire for
quadrilateral meshes over tetrahedral meshes.

The clipping stage is responsible for completing each facade’s geometric model. It
is relevant because it enables the resulting geometry to be used in interactive first-
person architectural simulations wherein it is necessary to be able to see-through

(into and out of) surface-elements. Vitally it is a data-driven strategy that seeks
to produce sparse (higher-quality) wall reconstruction results than the prevalent
RANSAC based strategies.

Although this stage is incredibly simple the novelty lies in its ability to efficiently
produce cut-out wall meshes - which are not generally supported by the preva-
lent facade reconstruction or approximation operators. Furthermore few forward
(user-centric) systems automatically generate cut-out facades meshes. Generally
existing sparse algorithms tend to use a single quad, or a triangulated polygon to
represent each facade wall, and simply append window and door models on top
without altering the wall mesh’s topology. The key problem with such approaches
is that they limit the utility of the model that results since there is no trivial means
to create transparent features in place for simulating views through windows. This
limits the level of realism that can be attained without additional user intervention.
Manually editing each wall to introduce apertures is a laborious task that can be
better handled automatically. Another benefit of this clipping strategy is that be-
cause the geometry is derived from laser-scans (as opposed to photographs), the
ability to accurately represent the input makes the wall meshes suitable for physi-
cal simulation and building energy analysis.

At a high level the clipping stage performs the following operations:

• Polygonises the input wall-point subset (boundary extraction).

• Sub-divides the wall polygon into axis-aligned quadrilaterals.

• For each sub-divided quadrilateral - clips it relative to each (if there are any)
overlapping surface-elements’ frame shape(s).
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Based on these operations the response (computational and geometric perfor-
mance) of the slice is largely controlled by the following key factors:

• Size of quadrilateral chunks: used to sub-divide the polygonised wall. If
they are too large, then a lot more clipping is subsequently required. However
if each piece is too small then the size of the output wall mesh (in terms of
the number of vertices and faces) will be bloated.

• Unwrapping of non-linear facades: which involves projecting the curved
and/or piecewise linear wall descriptor and points onto an arbitrary (but con-
sistent) 2D plane so as to enable efficient clipping relative to the 2D plani-
metric surface-element vector boundaries.

• Polygon clipping algorithm: used to handle chunk splitting.

• Clipping constraints: that are applied for unwrapped non-linear facade de-
scriptors in order to preserve key-points such as corners.

Ultimately the clipping stage re-frames a common architectural surface-reconstruction
problem (that of wall-modelling) as the product of bread-and-butter computer graph-
ics techniques. This is the simplest stage of the ground-reconstruction process. It
is intuitive to grasp and incredibly easy to implement. Indeed there is very little that
can go wrong and the only potential breaking-point is boundary extraction. How-
ever as long as the polygonisation routine used can handle concave shapes, this is
generally not a problem. The insight is that by sub-dividing the wall polygon before
clipping one can (to a large extent) control the valence of vertices in the result.

So bear in mind that although the quadrilateral sub-division could be considered
optional (given that one could also clip the polygonised boundary directly) it ac-
tually has a key topological benefit - since it allows the algorithm to control the
meshing of parts of walls without surface elements in a manner that is analogous
to a human CAD technician.

Additionally there are a number of different ways of implementing an extended ver-
sion (with an un-wrapper) for non-linear facades. The key is that the each such
method reduces the 3D problem down into a more efficiently addressed 2D prob-
lem. In essence (irrespective of the type of wall-representation used, single-edge,
poly-line, curve or general-path), the underlying idea is to reduce the dimension of
the problem to improve efficiency.

Despite the positive aspects of the clipping stage, there are also some down-sides.
In terms of its limitations, the biggest issue it that the clip does not automatically
decide upon a good quad-piece size. Rather this is left up to an end-user to supply
as an input argument. There are two possible conventions for specifying the quad-
piece size. One can specify them explicitly (in the form of a width and height - for
which the default is 20cm x 20cm), or implicitly (in terms of a maximum number of
quad-cells along the x and y axis - which defaults to 24x24). The explicit method
allows for strict control of the size (dimensions) of each quad. The implicit method
enables one to control the maximum number of quads that will be generated per-
facade.

As such one major enhancement would be to automatically determine an effective
quad-piece size - possibly by minimising the number of polygonal-faces in the re-
sult or considering the quality of the output mesh.
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Figure 4.21 illustrates the outcome of of the clipping stage for the example facade
used throughout this chapter. The quad-dominant wall-model (right) is produced
from the wall-point subset (on the left).

Figure 4.21: the clipping stage of the ARROW algorithm turns the subset of wall-points

(left) into a quad-dominant wall model (right) - the example shown was generated with a

quad-piece size derived from a 32x32 grid

Figure 4.22 summarises the logic used to produce the result in figure 4.21.

- =

Figure 4.22: logic of the clipping stage summarised: wall boundary (left) minus surface-

element boundaries (middle) equals aperture wall model (right)

Now that you understand what the clip is, why it exists and roughly how it works,
the next blocks delve into how to implement it efficiently.

***
Based on the distinction between regular and irregular surface-elements outlined in
the previous rail stage, the structural arrangement of a facade can be categorised
as either being composed of regular, irregular or a mixture of surface-element
types. This categorisation is useful because it enables the types of shape used
during the clip to be restricted to enhance efficiency.
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Facades Composed of Regular Surface-Elements

Figure 4.23: Examples of manually constructed facades composed entirely of regular rec-

tilinear surface-elements from four different buildings in the City of Bath CAD model - ren-

dered with lines to display mesh topology.

In this scheme a facade descriptor is considered regular, if it is composed entirely
of regular surface-elements. Essentially the wall’s of regular facades can be ac-
curately clipped by removing only quadrilateral surface-elements. This means that
the underlying clipping-algorithm only has to support axis-aligned (horizontal and
vertical) splitting operations. The benefit of this is that determining which side of an
edge a point/vertex is on (which is a integral task in constructive area operations)
can be quickly determined using a conditional expression on a single component
of the point/vertex. Based on this the large majority of architectural facades could
be considered regular within this scheme. Figure 4.23 illustrates examples of 3D
models of regular facades, from the City of Bath CAD model to clarify.

The important aspect is that such facades can be treated with a simplified clipping
routine that trades off generality for efficiency. Furthermore since the only aper-
ture shapes that need to be removed for such facades are rectangles, a number of
topological enhancements are also applicable.
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Note though that the categorisation of regularly composed facades does not re-
strict the form of the facade. It only applies to the objects that possess apertures
which require cutting-out. For example in figure 4.24 note that under this scheme,
the pillared structured (left) and the curved wall-descriptor (right) do not affect
the classification of their respective facades (as composed of regular surface-
elements), since they do not impact the requirements for aperture clipping. In
essence, adornments and rail-able features (such as beams and columns) do not
have to be transparent.

Figure 4.24: Examples of facades composed entirely of rectilinear surface-elements with

irregular facade features (from the City of Bath CAD model). Illustrating (left) a facade with

additional surface features - the pillared structure, and (right) a curved facade modelled as

set of planar pieces.

Shortly this section discusses the enhancements suited to facades composed of
regular surface-elements. For now (to keep the discussion flowing) facades com-
posed of irregular and mixed type surface-elements are outlined.
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Facades Composed of Irregular Surface-Elements

In this scheme, a facade descriptor is considered irregular, if it is composed en-
tirely of irregular surface-elements. This means that the walls of irregular facades
can only be accurately clipped by removing polygonal aperture shapes. Intuitively
the quadrilateral sub-division of such walls (exploited by this scheme) helps to con-
trol the quality of the output mesh. However the critical point is that beyond this,
there are few short-cuts that can be employed to speed up execution. Figure 4.25
provides an example.

Figure 4.25: an example of a facade

composed entirely of irregular surface el-

ements from the City of Bath CAD model:

vitally the key difference between this

particular example (and the previous fa-

cades which were defined as being reg-

ular in figure 4.23) is that each of its con-

stituent surface-elements (that induce

the requirement for a cut-out aperture)

possesses an irregular (polygonal) as op-

posed to rectangular extremal boundary.

Note that whilst the prevalence of facades composed of irregular surface-elements
will vary from geographic region to region, in general the frequency with which they
occur is less than that of regular-facades. Far more common, are facades com-
posed of a mixture of regular and irregular surface-elements.

Facades Composed of Mixed Surface-Elements

Figure 4.26: facades composed of a mix of surface-element types for two manually con-

structed building models in the City of Bath CAD dataset.

In this scheme mixed-type facades are those composed of both regular and irreg-
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ular surface-elements. Essentially if a facade contains rectangular and polygonal
(such as arched or oval) apertures it is considered a mixed-type facade. Figures
4.26 and 4.27 illustrate examples of mixed-type facades.

Note that whilst the shapes of apertures vary in these examples they still obey the
axis-aligned disjointness principle that was employed in the earlier dicing stage.
The important aspect of mixed-type facades is that additional logic is required in
order to determine how best to clip away each surface-element. This additional
logic is simple and relies solely upon each surface-element’s boundary. However
mixing types in the clipping stage can restrict the enhancements applicable to the
cut-out representation.

Figure 4.27: further examples of mixed-type facades (which are composed of regular and

irregular surface-elements) to complement those in figure 4.26: depicting (left) a supple-

mentary pillared structure and (right) a curved wall whose descriptor is approximated with

planar pieces.

Practically the clipping method described so far will operate correctly for any type
of facade in this scheme. However in principle (and indeed practice) it is quite de-
sirable to take advantage of the restricted nature of the regular surface-elements in
order to enhance the aperture wall model by reducing the number of vertices and
faces in the output. The underlying idea in such cases is to reduce the amount
of sub-dividing employed by adapting the clipping stage based on the surface-
elements that are actually recovered.

Hence if a facade is composed entirely of regular elements, it does not make sense
to treat it with a generalised polygonal difference operator, when a more efficient
axis-aligned splitting routine will do. Figures 4.28, 4.29 and 4.30 seek to illustrate
this notion. The key difference is that now (rather than sub-divide the wall without
reference to the surface-elements present), the outcome will be directly controlled
by the edges of each surface element.

In particular note that in figure 4.28 the outcome mesh contains far more vertices
and faces than is desirable (given the regularity of the facade). This is because it
does not take into account the position and extents of each aperture. Although
the approach is appropriate for irregular surface-elements, for regular surface-
elements, such behaviour could be considered wasteful.
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Figure 4.28: an example of aperture clipping using the prescribed quadrilateral sub-division

routine with fixed size pieces of 50cm x 50cm - the left-hand image depicts the wall bound-

ary, the central image the surface-element boundaries and the right-hand image the quad-

dominant wall mesh

The enhanced aperture clipping method illustrated in figure 4.29 seeks to combat
this. Note that (in the left-hand image) the edges of the facade’s grid-cells coincide
with the edges of the aperture boundaries. The simplification (right-hand image)
simply merges the remaining neighbouring grid-cells first horizontally and then ver-
tically to reduce vertex-count.

Figure 4.29: an enhanced aperture clipping routine (for regular facades) applied to the ex-

ample in figure 4.28: illustrating (left) the outcome wall-mesh by deriving clipping edges

from the horizontal and vertical edges of each surface-element, and (right) the outcome of

using a grid representation of the clipped facade to perform a cell-merging simplification

technique.

Remember the reason for the enhanced aperture clipping routine (specifically for
regular facades) is to reduce the number of primitives used in wall meshing. To
quantify this reduction: in the example the original aperture model (figure 4.28,
right) possesses 2,632 vertices and 1,376 triangles. The surface-element guided
clip (figure 4.29, left) possesses 440 vertices, 110 quads (220 triangles) and the
cell-merged simplification (figure 4.29, right) possesses 136 vertices, 34 quads
(68 triangles). This means the cell-merged edge-guided clipping used roughly 5%
(68/2,632 ≈ 0.049 ≈ 1/20th) of the number of primitives relative to the raw quadri-
lateral clips. Obviously this ratio can vary greatly, depending on the quadding
parameters used, however generally speaking, taking into account the edges of
regular surface-elements during aperture clipping will significantly reduce the size
of the output wall-mesh. Figure 4.30 illustrates a close-up of this difference.
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Figure 4.30: close-up of the topology of the enhanced aperture clipping routine targeted at

regular facades - illustrating (from left to right) the quad sub-division clips, the edge-guided

clips and the cell-merged edge-guided clips.

One critical point that should be noted relates to the application of this aperture
clipping enhancement on irregular and mixed-type facades.

The key idea of the enhanced aperture clipper is to use the boundary edges of
rectilinear surface-elements in order to automatically determine the optimal posi-
tions to clip the wall representation so as to minimise the number of faces in the
resultant wall-mesh. Although we have discussed facades composed of regular
surface-elements - in practice this clipping optimisation is also partially applicable
to all facades that contain irregular surface-elements as long as they still obey the
axis aligned disjointness principle.

You should now possess a clear understanding of what the ARROW algorithm is,
why it exists and how it works. Before progressing to the results and analysis
of ARROW the next section briefly outlines supplementary prior driven alterations
that can be applied to the data-driven facade descriptors in order to enhance the
semantic quality of the result. These enhancements represent extensions to the
core method (slice, dice, rail and clip).
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4.3.6 Snap (Optional)

ARROW (Accurate Railed Reconstruction of Openings and Walls) is a data-driven
algorithm for facade reconstruction from unstructured laser-scans. The fact that
it is data-driven leads to many positive behavioural features. However it also in-
troduces some undesirable down-sides. This section discusses the priors and
heuristics that may be employed to combat these.

In essence, the snap is an additional post-processing stage that optimises the
arrangement of each facade according to architectural conventions and desires.
In terms of why: the snap exists in order to support template and split-grammar
based methods (that are used to address the problem of facade reconstruction)
without impacting the core data-driven strategy.

This (optional) snap stage operates by identifying certain key patterns of regu-
larity. These patterns include axis-aligned snap-lines, repeated surface-elements,
groups of repeated surface-elements, reflectional symmetries and template match-
ing common surface-elements split-logics.

Formally the input to the snap is an abstract descriptor of a facade: F ← {w, S}
- where F is the facade representation which is the tuple of w (the wall descrip-
tor) and S the surface-element descriptors. The output of the snap is a modified
version of the input facade-descriptor - that enhances the regularity of the rep-
resentation: F ′ - such that given a unary regularity measure r(a) that returns un-
signed scalar values (with larger values corresponding to greater regularity) - then:
r(F ) < r(F ′). Essentially this stage modifies the abstract descriptor of a facade
(prior to mesh construction) in order to improve the visual properties of the output
model - by maximising the return of a regularity measuring function. The regularity
measure r(a) can take many forms, but as an example - a simple measure that
supports axis-aligned snapping is a weighted sum of the surface-element bound-
ing edges that are coincident (colinear) with one another.

Remember the context of this is procedural reconstruction of architectural facades
- and in particular shape arrangement and structural priors, symmetry and pattern
detection. In terms of the relevance, this is an optional post-processing step that
aims to behave in a similar manner to the non-linear model optimisation stage em-
ployed in airborne reconstruction. The key difference is that there is generally less
call for this since one of the key expectations is a high-fidelity input scan.

4.3.7 Summary

The ARROW algorithm efficiently reconstructs sparse facade models from unstruc-
tured ground laser-scans. ARROW first slices the input facade into two subsets
containing wall points and salient interest points. ARROW then dices the salient
subset into disjoint connected components in order to isolate individual surface
elements. ARROW then rails window and door aperture models in order to repre-
sent the salient facade features. Finally ARROW clips a polygonised wall using the
boundaries of each surface-element in order to accurately represent apertures.
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Figure 4.31: illustrating ARROW → Accurate Railed Reconstruction of Open-ings and

Walls: (left) input unstructured points, (middle) signed-distance-field split with segmented

elements, (right) the output polygon-mesh (composed of a quad-dominant wall and railed

surface-elements).

The resulting facade model is composed of a quad-dominant wall mesh and indi-
vidual window and door models (each constructed as a set of generalised cylin-
ders). The key insights employed by ARROW are the use of verticality filtering to
localise on the wall descriptor, planimetric projection as a means of dimension
reduction, fast connected-component extraction based on axis-aligned disjoint-
ness and a formalism for data-driven modelling of arbitrary windows and doors
(the surface-element). The advantages of the ARROW algorithm (relative to pre-
existing facade reconstruction operators) include efficiency and the ability to con-
struct high-quality semantically-meaningful data-driven facade geometry. Figure
4.32 summarises these stages visually with the example irregular facade used
throughout this chapter.

Figure 4.32: summary of the intermediary data employed by the stages of the ARROW

algorithm to transform unstructured facade scans into sparse (compact) facade models -

illustrating (from left to right, top to bottom) the input facade scan shaded according to

point-normals, the verticality filtered points used for wall localisation, the binary SDF-split,

the subset of salient feature points, the KD-tree regions used to chunk the salient subset,

the connected-components extracted from the salient subset’s KD-tree, the railed surface-

elements and the quad-dominant aperture wall model

The next portion of this chapter documents the results of experimental tests and
profiling of the ARROW algorithm on unstructured facade scans.
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4.4 Experimental Results

This section documents the results of experiments that profiled the performance of
the ARROW algorithm on unstructured facade point-clouds.

The results are structured in the following manner. First quantitative and qualita-
tive results of reconstructing a set of test facades are documented. This stage
by stage examination is followed by discussion of the comparative analysis of AR-
ROW’s surface element detection precision relative to human operators. Note that
(unlike airborne reconstruction) certain parts of the ARROW algorithm cannot be
evaluated independently of human supplied data. For example in order to mea-
sure the response of the window and door segmentation one first requires some
form of ground truth facade representation that can be used to mark the results of
ARROW’s SDF-split and KD+AABB-connected component extraction. Essentially
whilst one can measure the geometric error of each reconstructed facade model,
(relative to the input point-cloud), in principle - in order to effectively measure the
semantic accuracy - human labelled expected results are also required.

Once again the three key attributes that are profiled in these tests are the ge-
ometric accuracy of the facade models, their level of compression and the total
execution time. Alongside these principal factors, the comparative analysis deals
with the precision and recall of surface-element detection.

4.4.1 Synthetic Datasets

Prior to the concrete results - details of (and outcomes derived from) the synthetic
datasets (used in controlled tests) are briefly outlined.

The synthetic facade scans were generated by sampling the surface of manually
constructed facade models to simulate the behaviour of a fixed position radial scan.
Simulated noise is applied in much the same way as for the synthetic airborne
scans (discussed in the last chapter), i.e. the distance of each point to the virtual
sensor was perturbed (to emulate sensor error) and a variable subset of the points
are removed (to denote missing data and anomalous sensor readings). By running
the ARROW algorithm on this data the following outcomes were observed:

• This implementation of ARROW only supports near-vertical planar facades -
does not adapt to curvature or slanted walls without explicit support provided
by a facade un-wrapping (linearisation/3D-to-2D-projection) operator.

• Slicing stage is stable when depth variance is present - but is less stable
when nearly flush surface elements pervade. In particular the minimum
depth variance required for robust surface-element segmentation (isolating
windows and doors) was approximately ± 3-5 cm.

• Performance of chunk-based graph traversal (i.e. point-cluster grouping over
point-level grouping) yields satisfactory (coherent) results efficiently when-
ever axis-aligned disjointness pervades a facade’s surface-elements.

• Current implementation of SLADE handles window frame extraction (railing)
reasonably well even as the amount of noise (signal error) increases. How-
ever its resolution of interior sash and pane divisions is fragile. In particular
(even in noise-free tests) SLADE seems to perform better as the density of
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the facade scan increases - and conversely degrades when the density (av-
erage inter-point spacing) of a facade scan decreases.

Note: the synthetic datasets were primarily used to support development and de-
bugging of the conceptual stages employed by ARROW. In this sense they do not
form part of the performance analysis on real-data - however they enabled the im-
plementation of ARROW to be incrementally improved and refactored. Essentially
the synthetic datasets allowed the conceptual limitations of ARROW to be anal-
ysed and addressed within controlled contexts - for which the expected outcome
was known ahead of time. They are referred to here simply for completeness.

4.4.2 Roslyn Mews : Unstructured Facade Scans

The results of applying ARROW to unstructured facade scans are documented
next. These results step through each of the processing stages employed (slice,
dice, rail and clip) noting for each the outcome of ARROW’s automatic processing.

Slice Results

Preliminary qualitative results of the initial slicing stage for a set of facade scans
in the Roslyn Mews dataset are documented below. These results indicate the
response of the data-driven signed-distance-field (SDF) heuristic that is used to
divide each input facade scan into two subsets containing salient and wall-points.

Figure 4.33: SDF-sliced unstructured facade point-clouds - illustrating the result of applying

the initial automatic binary division strategy employed by the ARROW algorithm to real-world

laser scans : the blue points correspond to the wall subset whilst the goldenrod points cor-

respond to the salient subset - note: all facade scans are from the roslyn mews dataset.
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Figure 4.34: continuation of qualitative results of SDF-sliced facade scans

The qualitative outcomes of the slicing stage (in figures 4.33 and 4.44) indicate that
the heuristic employed by the ARROW algorithm is relatively stable. Note that the
slice behaves analogously for both regular and irregular facade types. However
this is not to say that the implementation is perfect. Indeed the current slice relies
heavily upon depth variance - which means that in instances of facade scans for
which the variance in depth is insignificant then the slice has the potential to fail.
The critical thing to note in these results is that it is not so much the presence of
noise that controls the efficacy of this initial stage but specifically the geometric
distance between salient points (corresponding to surface elements) and the wall-
points. In other words the slice adapts well to noise, but requires depth variance.

Dice Results

Qualitative results of the outcome of the dicing stage are documented below.
These results elucidate the performance of surface-element segmentation for the
salient subsets of SDF sliced facade scans (generated by the preceding slice) - in
order to clarify the performance of the detection strategy.
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Figure 4.35: surface-element segmentation results for the salient subsets of the SDF-sliced

facade scans (constructed automatically based on clustering disjoint connected compo-

nents from a KD-tree space partitioning) - illustrating the isolation of individual window point-

clusters as a product of the axis-aligned disjointness principle employed by ARROW

Figure 4.36: continuation of segmentation results for the test facade scans

The results of the dicing stage indicate that the key problem with ARROW’s au-
tomatic surface-element segmentation strategy is under and over segmentation.
Note in particular that the right hand facade (in figure 4.35) over-segments the top-

Page 237 of 301



CHAPTER 4. FACADE RECONSTRUCTION→ 4.4. EXPERIMENTAL RESULTS

left window - resulting in two surface-element clusters instead of the desired one.
One can see clearly that this result is largely due to the reliance on connectivity
which (in this case) is not sufficient to group the cluster of points perfectly. How-
ever the remaining three windows for the facade are clustered correctly. Further
more (in figure 4.36) note (in particular) the under-segmentation of the top set of
surface-elements, which (despite being distinct) are clustered together as a single
surface-element because they are not wholly disjoint. These results indicate the
predominant problem with the data-driven nature of ARROW’s dicing stage and
are discussed in greater detail in the evaluation portion of this chapter.

Rail Results

Early stage results of the outcome of the railing stage are discussed below. These
results are primarily preliminary in nature since the performance of the integral
SLADE algorithm still requires refinement in order to better deal with irregular
surface-element point-clusters. These results also document some of the key is-
sues that prevent stable extraction of split-logic axes in the presence of irregular
surface-elements.

Figures 4.37 and 4.38 document qualitative results of the rail stage. Each window
frame is the result of SLADE’s boundary extraction process. Note though the omis-
sion of sash components to represent the structural division of panes. In essence
the current version of SLADE can only robustly extract frame components. From
a practical perspective the frame shapes are useful for analytic tasks (for example
building energy efficiency simulation). However without the interior sash-divisions
they are less suitable for photo-real visualisation.

Essentially this research observed that although (in principle) the extraction of split
logic axes is feasible and indeed quite practical for regular (rectilinear) surface ele-
ments - the formulation currently used is not sufficient for the recovery of irregular
split-logic descriptors. In particular the approximation of split-logic axes containing
curved components cannot be adequately handled using piecewise linear approx-
imations - and (based on the experiments) seems to mandate the use of circular
arcs and bezier curves in order to facilitate a correct representation.
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Clip Results

Qualitative results of the final clipping stage are documented below for the test fa-
cade scans used throughout this section.

Figure 4.37: results of ARROW’s quad-dominant aperture clipped wall meshing stage for

the test facades examined in this section - illustrating planar cut-out wall models and the

railed surface element boundaries - generated automatically by the algorithm

Figure 4.38: continuation of aperture clipping wall modelling results
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These results indicate that the clip represents an (almost entirely) infallible com-
ponent of the ARROW algorithm in the sense that it will generally never alter the
error attributes of the resulting facade models. Ultimately the attributes of the clip
only impact the typical surface area of faces in the quad dominant wall mesh. In
this sense the clip can be considered the most stable stage of ARROW. Indeed the
power of the clipping strategy employed is most apparent when applied generically
to forward chaining facade modelling problems - wherein one will notice that the
clipper optimised for regular surface-elements, not only minimises the number of
vertices and faces used but is also often suited to irregular and mixed-type facades
that obey the axis aligned disjointness principle.

However these results also indicate how crucial surface-element extraction is to
the process of facade modelling. In particular note that in the right-hand facade
(illustrated in figure 4.37) and the larger regular facade (in figure 4.38) errors with
surface-element boundary resolution lead to window apertures that deviate from
one’s expectations. In figure 4.37 this is a result of the previous over-segmentation,
whilst in figure 4.38 the problem stems from both under-segmentation and issues
in the boundary extraction sub-process of the preceding railing stage. So whilst
the logic of producing high-quality aperture wall meshes automatically is reason-
ably robust - in practice, any errors from the previous modelling stages will have
an impact on the correctness of the final facade model. Vitally be aware that these
automatic aperture clipped results were produced without the imposition of the
snap-logic priors and heuristics discussed in section 4.3.6 - and effectively docu-
ment the purely data-driven result of the ARROW algorithm.

Quantitative Measures

Quantitative results from these experimental tests of ARROW on real-world un-
structured facade laser-scans are outlined in the table in figure 4.40.

Facade Input Points Runtime Output Vertices Output Triangles

church face 129,897 3.768 s 6,828 3,518
house 25,436 0.744 s 3,283 2,637
multi storey 119,906 5.912 s 2,765 2,082

Figure 4.40: quantitative measures of ARROW’s performance on the unstructured scans of

facades in the Roslyn Mews dataset to complement the qualitative results

4.4.3 Comparison with Human Operators

This portion of the results discusses ARROW’s performance compared to human
operators. The aim is to clarify the precision and recall of the window detection
process based on the proposed methodology. As eluded to earlier - comparison
with manually produced ground-truth data plays a vital role in understanding how
well suited the ARROW algorithm is to addressing the task of automatic facade re-
construction from unstructured laser-scans, because ultimately there is no intrinsic
relationship between the geometric results and that which one could consider as
the semantic correctness of each facade model. Essentially - although each out-
come may look adequate, it is impossible to tell whether the results model coherent
representations of each facade without some pre-existing notion of what consti-
tutes a coherent representation. This aspect of the performance analysis renders
the problem of facade reconstruction akin to that of classification (addressed in
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chapter two) and distinct from airborne reconstruction (chapter three).

In this research determination of surface-element recall and precision is measured
in two dimensions using planimetric projections of each facade scan - i.e. image
projections with corresponding 2D vector shapes. An important alternative is full-
blown three dimensional comparison relative to manually constructed facade mod-
els. As such there are inherent limitations to the comparative strategy employed
- which are discussed in greater detail in the analysis and evaluation portions of
this chapter. However the key benefits of this restricted form of comparison include
efficiency, simplicity and (as a result) the ability for non-technical users (those lack-
ing professional 3D modelling experience) to produce ground-truth data that can
be used to determine if ARROW correctly detects all windows and doors.

During the experiments 28 individuals (employees of the company that funded this
research) were asked to manually label window apertures on ortho-aligned projec-
tion images derived from the testing facade point-clouds used in this chapter.

From this the overall recall rate for surface-elements in the testing facade scans
was calculated as product of testing for intersection between the manually plotted
and automatically generated surface element bounding boxes - and roughly fell in
the range of 60%-70% (relative to the participant’s labels). Although the precision
of the detected surface elements was slightly higher at approximately 70%-80%
- it is clear that the current implementation does not yield industrially satisfactory
results (from the perspective of surpassing a humans perceptual performance) -
for which the expectation is precision and recall rates upwards of 95%. Essen-
tially although the results are promising - they are not yet at an industrial standard
which would enable fully automatic exploitation of ARROW - and hence a techni-
cian would likely still be required to vet, validate and correct ARROW’s operation.

Note: though that despite the requirement to improve ARROW’s precision and
recall - profiling revealed a tight geometric fit for the correctly isolated surface-
elements - relative to the human-data. This suggests that by improving the dicing

stage’s performance - one can increase the surface-element detection accuracy of
the ARROW - yielding a more robust operator - without necessarily having to alter
the subsequent railing and clipping stages.

4.5 Analysis and Evaluation

This section evaluates ARROW’s performance by comparing the results and out-
comes to the behavioural objectives set out in this chapter’s introduction. It pro-
vides high-level analysis of the extent to which ARROW is effective.

Facade Segmentation

The results indicate that ARROW’s slicing stage responds reasonably well in the
presence of sensing noise. However the underlying ideology relies upon depth
variance - which means practically that scans captured from large distances (es-
pecially those that fail to capture significant depth-variance) are less suited to being
treated with the signed-distance-field split.

ARROW’s dicing also responds reasonably well - again even in the presence of
significant sensing noise and missing (or partial) data. However the critical issue

Page 241 of 301



CHAPTER 4. FACADE RECONSTRUCTION→ 4.5. ANALYSIS AND EVALUATION

with the dicing stage is over and under segmentation - which results from the data-
driven nature of the connected-component extraction.

There is currently no additional facility built into ARROW to mitigate this (save
altering the connected component distance and maximum KD-tree depth). The
problem is that as one increases the maximum tree depth (or reduces the CC-
distance) over-segmentation typically increases whilst the inverse action tends to
result in under-segmentation. Striking a good balance can be a tricky process, and
so one viable solution may be to address this balancing act in a similar manner to
MAMMAL’s MARS algorithm - i.e. an initial over segmentation followed by a sub-
sequent non-conformal suppression. However the challenge lies in the fact that
one cannot use surface-area to determine conformance (as in MARS) and would
require an alternative method of determining clusters that require merging.

Surface-Element Recovery

Boundary extraction is shown to be stable for both regular and irregular surface-
elements. However full-blown three-dimensional comparative analysis with human
produced facade models would be useful in terms of yielding greater insight into
the precise error associated with aperture localisation.

Split-logic resolution on the other hand still exhibits significant problems - espe-
cially in the presence of irregular interior sash divisions. Although regular (rectilin-
early based) split-logic axes can be extracted robustly, practically the performance
of SLADE on irregular ecclesiastic windows (such as the church face) is unsatis-
factory. This is particular true for the case of split-logic axes exhibiting curvature -
for which a possible solution is to refactor the piece-wise linear approximations in
order to take into account circular arcs and bezier curves. This is a key area for
continued investigation.

Computational Efficiency

Positively the execution time of ARROW places it at the faster end of the architec-
tural reconstructive spectrum. In particular the results of reconstructing the test fa-
cades demonstrate ARROW’s ability to produce sparse geometric representations
within seconds - a feat that is currently unmatched by the existing methodologies
(be they point-cloud driven or image-based).

Whilst speedy execution is important (since it will affect the number of algorithmic
iterations one can make given a fixed period of time), once again it can be con-
sidered secondary to the crucial unresolved geometric problem of recovering sash
descriptors for irregular surface-elements.

Qualitative Analysis

Finally in considering the qualitative properties of the facade models recovered by
ARROW - it is clear that the exploitation of an explicit (albeit heuristic) modelling
strategy (as opposed to an indirect sampling approach or dense surface recon-
structive approach) results in the ability to produce architectural models with far
greater semantic meaning than otherwise. Although the results are not perfect -
it is clear (at a glance) that each result models a structured facade. Due to the
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fact that ARROW isolates wall-points from salient points in a manner that respects
arbitrarily sized windows and doors, there are fewer restrictions on the extents of
surface elements, which has the added benefit of ensuring that details at varying
spatial scales are preserved. Figure 4.39 illustrates this with a close-up of the
aperture clipped wall-mesh of the church facade used in this chapter.

Figure 4.39: comparing the topology of volumetric reconstruction using the regular arrange-

ment of planes (left) to the ARROW algorithm (right)

Note that even without the enhanced clipping or symmetry based revision, the
aperture model clearly delineates the extremal boundary of the surface-element in
question. Essentially although ARROW executes in a similar time-frame to data-
driven facade reconstruction methods, it yields higher quality facade models.

In evaluating the results it is clear, that although the current implementation has
certain limitations, the underlying ideology possesses crucial benefits relative to
pre-existing approaches to automatic facade reconstruction. In particular is serves
the driving aim of marrying the computational efficiency and geometric precision of
data-driven reconstruction methods with the higher-geometric quality of templated
(or library-based) strategies. In this sense it is fair to say that ARROW partially
meets the objectives set out in this chapter’s introduction.

Now (as briefly mentioned), although the idea may be sound, the implementations
require improvement. The next portion of this chapter discusses these critical ar-
eas requiring continued development as a sign-post for future researchers charged
with coordinating fast, accurate and sparse automatic facade reconstruction from
unstructured point-clouds.
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4.6 Enhancements and Improvements

This part of the chapter deals with the future investigative areas and potential ad-
vancements to the ARROW algorithm. The key concern is documenting the re-
maining theoretical problems and the aspects of the implementation that could be
revised to enhance ARROW’s performance. These changes and further research
topics are arranged into groups which each group corresponding to a specific eval-
uative attribute. These attributes correspond to: geometric accuracy, reconstruc-
tive robustness, computationally efficiency and performance analysis.

Geometric Accuracy

In order to improve the geometric accuracy of the facade models produced by
ARROW, two main areas of investigation are proposed. Loosely speaking they aim
to 1) improve the accuracy of each surface-element’s model and 2) add support
for additional facade features and adornments that are also amenable to modelling
with generalised cylinders such as plumbing pipes, and beams and columns.

• Accumulated Sweep Profiles - the basic idea is to actively mine the profile

shapes that are swept about each surface-elements frame and pane poly-
gons, by accumulating flattened slices of points along the boundary of each
polygon - in a similar manner to [151] only applied at the level of individual
windows and doors rather than entire facades. This has the potential to im-
prove the fit of each surface-element model relative to using default box and
bevel-box profiles that merely approximate the thickness of each sweep.

• Adornments and Surface Features - here the aim is to ensure that features
of a facade that may be omitted by segmentation (due to the fact that they
do not represent significant or aperture-like clusters) are modelling using ap-
propriate generative functions. As mentioned the key examples are pipes,
beams, columns, in addition to electrical fittings and aesthetic decorations.
Although these features add to the physical accuracy of a facade model,
the key issue becomes modelling arbitrary adornments without resorting to
dense surface reconstruction. For pipes, columns and beams, this problem
is addressable - since their regularity allows for generalised-cylinder based
approximation, however in the case of irregular features (such as gargoyles
and similar non-structural aesthetic adornments), the task is less simple.

Reconstructive Robustness

These alterations seek to improve the response of ARROW in the presence of low-
density input scans and in terms of its ability to recover irregular surface-element
split-logic descriptors. In other words these improvements are intended to make
ARROW more robust and versatile.

• Split-Logic Resolution - foremost the SLADE algorithm needs to be refac-
tored to take into account circular arcs and bezier curves as opposed to sim-
ply piecewise linear edges - however addressing this (even in two-dimensions)
without randomly sampling has proven itself a wholly non-trivial task. Further

Page 244 of 301



CHAPTER 4. FACADE RECONSTRUCTION→ 4.6. ENHANCEMENTS

though the method of localising on individual split-edges prior to arrange-
ment should (ideally) perform non-maximal suppression in concert with re-
flectional symmetry detection and hyper-graph based edge-connectivity re-
finement (similar in-vein to [37] - only without the random traversal strategy).
The non-maximal suppression would address the need to filter anomalous
data-driven edges, whilst the symmetry detection could be safely applied lo-
cally without altering the overall arrangement of the facade (and hence the
error profile). The hyper-graph edge-snap would provide a parametric means
to control the scope for alteration to the filtered split-edges during the refine-
ment process.

• Reconstructing Curvature - this is to add facade-unwrapping support to ad-
dress curved facades (beyond surface-elements exhibiting curvature). This
calls for three key components. Firstly one requires a function that extracts
non-linear planimetric facade-descriptors from unstructured facade-scans.
Secondly one requires a function the performs a non-linear projection of a
set of three-dimensional points onto an arbitrary but consistent plane such
that the curved facade descriptor is represented as a 2D planimetric set.
Thirdly one requires a function to perform the inverse projection to a set of
model vertices in order to restore the ARROW facade mesh from planimet-
ric to world-space. The critical aspect of this alteration is coordinating the
curved facade descriptor - because one also has to detect and maintain the
set of key-points (corner-positions) during the non-linear projection.

• Low-Quality Scans - this alteration seeks to address the fact that ARROW
demands reasonably high-density scans - because it relies largely on depth
variance. Two changes are suggested to combat this and improve ARROW’s
efficacy. Firstly to the segmentation method and secondly to the SLADE al-
gorithm. In terms of the segmentation the obvious change is to deviate from
a purely geometric strategy and introduce heuristics. For example exploiting
prior knowledge about the fact that the reflectivity of glass surfaces perturbs
the return of a scanner could be used to guide ARROW to hole regions within
facade scans in the case of data surveyed from larger distances. In terms of
SLADE the useful alteration for lower-quality scans would be non-stochastic
template fitting instead of data-driven extraction. This would certainly im-
prove the recall - however the precision has the potential to suffer since the
templates recovered would be at best loose approximates.

• Missing Data and Partial Scans - although this aspect could certainly be
improved - the simple reality is that there is no logical way to fill in significant
holes and regions of missing data without synthesising data. This means that
in order to hole-fill one has to make up data in one manner or another. Whilst
in image-processing and computer vision this is less of a problem because
often the result is judged qualitatively - in active sensing this can have unde-
sirable repercussions. Foremost hole-filling gives a sense of completeness
to a reconstructed result that is actually false - and introduces greater geo-
metric error relative to the input point-cloud given that faces in the output are
not actually represented in the input - reducing the overall correspondence.
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Computational Efficiency

In order to improve the computational efficiency of ARROW, one type of alteration
is discussed - parallel execution paths or simultaneous multi-processing.

• Parallel Reconstruction - involves distributing ARROW’s work-load across
multiple simultaneous execution paths. This change relies on the fact that
once top-level facade isolation is complete, each facade and its surface-
elements can be modelled independently. This research has experimented
with basic CPU-bound parallelism, however further investigation should also
profile the performance of GPU-bound multi-processing.

Performance Analysis

These changes address the limitations of ARROW’s current (predominantly 2D)
performance analysis methods - with the aim of improving the accuracy of the
error-measures used to determine recall and precision.

• 3D Human Ground-Truth Data - this requires deviating from the planimetric
plotting strategy (currently employed to enable non-technical users to pro-
duce ground-truth facade-descriptors) in favour of a simple drag-and-drop
3D facade editor that would allow technicians to produce ground-truth fa-
cade models from each point-set. Note: the high-level trade-off in this revi-
sion is increase evaluative accuracy - relative to greater time requirements
for ground-truth production.

• Greater Range of Test Scans - so as to enable rigorous evaluation of AR-
ROW’s performance across a greater variety of facades. This calls for a wider
selection of unstructured architectural facade scans - ideally captured from a
range of varying distances and with varying density and error profiles.

• Comparative Analysis Relative to State-of-the-Art - this investigative track
seeks to combat the primary expositional short-coming of the ARROW al-
gorithm to date - by profiling its performance directly against pre-existing
facade-scan reconstruction methods - both dense and sparse. This is an
important improvement from the perspective of gaining academic credibility
by quantifying ARROW’s performance relative to prior methods - however it
is important to note that such exposition should be considered a secondary
concern relative to the resolution of the technical problems that remain.

4.7 Discussion and Summary

This chapter presented a simple yet reasonably effective algorithm for reconstruct-
ing sparse facade models from unstructured laser scanned building point-clouds.
As part of this the chapter introduced a novel abstract representation for win-
dows and doors, named the surface-element. The surface-element is a versatile
procedural-primitive for algorithmic window and door modelling. It is essentially a
function that generates 3D geometry from 2D shape input. The power of the rep-
resentation is the layer of abstraction it injects between the structural definition of a
window or door and its realisation as a concrete 3D geometric model. The abstrac-
tion enables the ARROW algorithm to automatically construct accurate high-quality
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data-driven aperture models that reflect the semantics of each cluster of window
and door points. This chapter also documented the results of experimental tests
of ARROW using a number of unstructured ground facade laser scans - for each
considering the quantitative and qualitative performance alongside comparative
measures relative to human CAD technicians.

Whilst these preliminary results are promising in terms of ARROW’s computational
efficiency and the compactness of the facade models it produced, this chapter
identified the resolution of surface-element split-logic axes as the vital area re-
quiring further research and development. Though ARROW’s SLADE algorithm
deals well with facades composed of regular surface-elements, its performance
on irregular surface elements demands more attention. In particular although the
boundary extraction and frame railing is stable - resolution of the characterising
division of space is still lacking in terms of robustness given ecclesiastic windows
(such as the church-face referenced throughout this chapter).

Despite this early-stage qualitative comparisons to sparse reconstruction algo-
rthms demonstrate the benefits of ARROW in terms of structural accuracy, com-
pactification, and the semantic richness of the aperture-clipped models.

So whilst the ideas underlying ARROW are sound in principle and are shown to
be viable (feasible), in practice more work is required to handle irregular surface-
elements and deal with robustness issues that may present as the product of low-
quality and/or low-density input facade point-clouds.

Finally, in order to wrap up this chapter’s discussion of fast, accurate and sparse
facade reconstruction, the key principles, technical-developments and evaluative
outcomes are revised in the enumeration following:

• Signed-Distance-Field Binary Point-Set Segmentation as an intuitive data-
driven method of quickly isolating salient clusters of point in unstructured
laser scans of architectural facades - that vitally can isolate both regular and
irregular window and door apertures.

• KD-Tree + AABB Spatial Optimisation for Efficient Connected Component
Extraction from SDF-sliced facade scans. This is predicated on the obser-
vation of axis-aligned disjointness that typically pervades the arrangement of
surface-elements upon facades.

• The ’Surface-Element’ - a Procedural Primitive for Automatically Generating
High-Quality, Data-Driven 3D Window and Door Models.

• Split Logic Axes Detection and Extraction as the integral component of
ARROW - that, given a cluster of points (that correspond to a surface-element)
extracts the principal axes which encode the structural division of the interior
sash geometry of the window or door.

• Polygon-Clipping Quad-Dominant Aperture Wall Meshing - and associ-
ated extensions for minimising vertex count in regular facades by deriving
split edges directly from the extracted surface-element boundaries.

• Extendable with Pattern-Detection Techniques such as axis-aligned regu-
larisation, repeated-element detection, symmetry detection, group-detection
and template-driven (model-based) methodologies.
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Chapter 5

Further Research and Development:

Merging Airborne and Ground for

Automatic Temporal Updates and Future

Investigations

This penultimate chapter discusses the work in progress and future topics of in-
vestigation related to data-driven procedural modelling of the built environment.

The preceding three chapters documented fresh approaches to tackling funda-
mental problems in architectural reconstruction from point-clouds. The develop-
ments represent stand-alone algorithms for semantic error-detection, 2.5D mass
reconstruction and 3D facade reconstruction.

The driving aim of this thesis is enabling automatic continuous temporal updates
driven by the concept of selective-reconstruction (i.e. reconstructive culling, lazy
reconstruction or change-aware reconstruction). Hence this final chapter consid-
ers the amalgamation of these algorithms in the pursuit of this aim.

This chapter also discusses the key remaining open problems that require ad-
dressing through continued research - and outlines directions for future investiga-
tion related to automatic AEC asset creation from laser-scan data.

This chapter’s content is structured as follows:

• The Merging Airborne and Ground section outlines the structure of a multi-
modal reconstruction algorithm CUBE (complete, unified building exteriors).

• The Automatic Temporal Updates section discusses the process of effecting
automatic continuous temporal update to city-scale architectural CAD mod-
els driven by airborne and ground laser scanned point clouds.

• The Remaining Open Problems section documents the issues and limitations
that must be resolved to improve the performance of the reconstructive tech-
niques proposed by this research in support of automatic temporal updates.

• The Further Investigations section outlines future topics for investigation.
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5.1 Merging Airborne and Ground

unifying mass & surface...

Figure 5.1: an overview of the key stages in multi-modal reconstruction - illustrating from

left to right: (blue) input airborne point-cloud, (gray) input ground point-cloud, components

reconstructed from the input, and (blue and gray) the resultant building exterior model.

5.1.1 Overview

This section tends to the problem of automatically reconstructing complete building
exterior models using airborne and ground based laser-scanned point clouds. The
core idea is to merge the massing models recovered form the airborne scans with
the facade models recovered from the ground based scans. This section outlines
a multi-modal merging operator called CUBE (complete unified building exteriors),
which seeks to address this problem. The aim of the CUBE operator is to provide
a fully automatic means for amalgamating different types of laser scan into coher-
ent building models. The context of the chapter is again automatic architectural
model reconstruction from laser-scanned point clouds. However now the focus
is merging different types of scan data in order to yield complete building exteri-
ors. Fundamentally this is not a new problem, however pre-existing approaches
to addressing it are plagued by a number of key limitations. The most detrimental
being poor computational performance, limited geometric accuracy (especially in
the case of exploiting image-data) and inadequate geometric model quality.

The core idea here is to efficiently guide the segmentation of large unstructured
ground scans using wall positions recovered from aerial massing models. In essence
rather than rely on exhaustive traversal of the ground scan - the CUBE operator
uses MAMMAL’s reconstructed airborne models to quickly determine the salient re-
gions of the unstructured scan, isolates individual facade point-clusters and feeds
them into ARROW. For reference the key objectives, requirements and desired
behavioural characteristics of the operator are itemised following.

• Geometric Accuracy in the sense each merged building model is correct rel-
ative to the input points and effectively characterises the building.

• Computational Efficiency such that city scale sites can be robustly merged in
a reasonable amount of time on commodity hardware.

• Out-of-Core Execution in order to ensure that mid-large unstructured point-
clouds can be processed without memory based restrictions.
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• Compact, Semantized Exterior Models that largely obey the MAMP principle
and are suitable for interactive rendering and simulation.

• Suitability for City-Scale Virtual Environments especially utility for realtime
planning and visualisation tasks coordinated with HMDs.

• Robust to Sensing Noise and Geometric Degeneracy such that artefacts and
anomalies (such as ghost/shadow points or speckle noise) do not degrade
the quality of the building models that are produced.

• Robust to Missing and Partial Data - in particular the expectation of graceful
degradation in the presence of low or null density regions in the unstructured
ground scan - and the (fallback) ability to mine facades directly from the input
ground scans when regions with little or no data encumber the recovery of
massing models from airborne scans.

The outline following is a breakdown of the organisation of this section.

• The background and context section discusses the key related research.

• The methodology portion outlines the CUBE algorithm in terms of its con-
stituent processing stages (which are: registration, mass-reconstruction, facade-
reconstruction and then model-unification).

• The preliminary results portion outlines qualitative outcomes from CUBE’s
development to date. Note: these represent work in progress.

• The discussions and summary portion concludes this outline of CUBE.

5.1.2 Background and Context

Before outlining the methodology employed by CUBE - the relevant prior research
is briefly recapped. The aim is to revise alternative methods of addressing the
multi-modal reconstruction problem from airborne and ground point-clouds.

Key Related Work

Recall that Calberg et al. [12] propose an efficient multi-modal surface reconstruc-
tion operator - for airborne and ground point-clouds. Their system scales well -
however it yields dense surfaces - making it less suitable for building reconstruc-
tion. This is an example of a data-driven analytic method. Its strength is its effi-
ciency and its support for texturing the surfaces - however its limitation is its lower
model quality relative to sparse operators. It also yields little semantic information
about each architectural component - i.e. it does not isolate windows and doors.
Still the key aspect is that it demonstrates that it is feasible to merge high-resolution
unstructured ground scans with low-resolution airborne scans at scale.

Note: whilst many pre-existing works deal with the constituent problems (registra-
tion [40][30][146], airborne reconstruction [163][165][73] and ground reconstruc-
tion [70][5][23]) in isolation, comparatively few tend to the multi-modal merging of
top-down and street-level models. For example whilst Lin et al. [75] construct mod-
els with roof and facade detail - the inputs to their system are ground-scans.

Indeed (to the author’s knowledge) there are currently no multi-modal building re-
construction operators that are able to construct sparse semantized models from
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airborne and ground laser-scans automatically.

To recap: whilst methods for dense textured surface reconstruction from airborne
and ground scans are reasonably well established, approaches for data-driven
sparse reconstruction are still lacking in terms of their computational efficiency,
and the semantic and structural quality of the models they generate.

5.1.3 Methodology

Figure 5.2: Key Stages of the CUBE Algorithm

→ Complete, Unified Building Exteriors

Figure 5.2 outlines the key processing stages in CUBE which roughly involve:

1. Registration of the structured aerial and unstructured ground laser-scans in
order to determine a transformation that aligns them.

2. Aerial Reconstruction by exploiting the MAMMAL algorithm in order to con-
struct sparse roof massing-models from the airborne scan data.

3. Ground Reconstruction based on guided segmentation of the ground scan
and the exploitation of the ARROW algorithm in order to construct sparse
facade models for each building model recovered.

4. Unification of the aerial geometry with the ground geometry in order to pro-
duce complete building shells (roof + facade details) by merging and refac-
toring the two distinct types of architectural geometry recovered by the MAM-
MAL and ARROW algorithms.

Register: Airborne and Ground Scan

CUBE’s registration stage is an image-based top-down (planimetric) method of
aligning the input unstructured ground scan with the corresponding input struc-
tured aerial scans. It provides an intiial aligning transformation that maps the
ground scan data to the airborne scan data. It exploits a density based repre-
sentation of the ground data in order to estimate facade regions that are aligned to
wall positions from the airborne scan data.

The input is a structured airborne scan and a corresponding unstructured ground
scan of the urban region being reconstructed. The output is a rigid-body transfor-
mation that maps the ground scan to the aerial scan.

The context is feature-based point-cloud registration. In particular the alignment of
partially corresponding multi-modal architectural point-sets. This is a special case
of point-to-point registration since the inputs actually represent completely different
perspectives of the same underlying object. This means that the correspondence
between the point-clouds is actually quite low - because the important features
captured by each representation are typically not present in the alternate. As such
one requires a method that takes into account the fact that the airborne scans only
represent roof details while the ground scans largely represent facade detail. This
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means that a point-level error-minimising registration routine such as ICP will not
work directly. The challenge instead is to automatically identify an effective char-
acterising feature-descriptor for the input scans that mitigates this.

The relevance of this initial alignment is a product of it being the inaugural compe-
nent of CUBE. It is responsible for ensuring that efficient guided segmentation of
the ground scan is feasible. Without stable registration, there is no way to relate
the two datasets and each would have to be treated independantly, which would
significantly increase the execution time of the ground reconstruction. In essence
registration enables the subsequent fast association of on-plan facade walls and
clusters of unstructured points. The utility of this is its efficiency via its means of
dimension reduction and its stability given the weak correspondence between the
two datasets. The core idea is that walls are the only constant between the two
types of input scan. They can be efficiently extracted from both representations (by
verticality) and are easier to align than organic features or roof-ridges or facade-
elements (which will be partially or completely omitted).

The biggest limitation of this is the expectation that wall positions in the ground
scan correspond to wall positions in the aerial scan. Given that they act as the
shared frame of reference between the two types of input, one requires that the
accuracy of the airborne walls is sufficiently high else the alignment can fail. Two
examples of when this may not be the case are when temporally varying scans
are supplied as input, and when non-parallax features such as tunnels and under-
passes are not captured in the airborne scan. Another limitation is that the density
mapping feature extraction strategy is not a perfect solution, and in particular the
transition from the structured 2D density map to wall edges is somewhat of an ill
defined problem. This meant that an amount of trial and error was required to
identify a reliable edge filtering strategy. Fortunately the previously defined algo-
rithm GRAILS comes in very handy for this. However further work is still required
to improve the recall of walls recovered directly from the unstructured ground scan
based on the density heuristic.

Fundamentally this proved quite a tricky problem because point-to-point methods
that rely on there being a high correspondance between the registrees tend to
yield nonsense for airborne and ground registration. The method that proved quite
robust was to supply an initial rough alignment and then minimise wall-point-to-
wall-point error between the two. However this is only feasible if user-guided reg-
istration is allowable and detection of wall points is stable. Attempts to compute
a good initial alignment (even stochastically) were dissapointing especially in in-
stances where the deviance between the inputs involved a rotary component in
the transformation model. This is still an on going problem and at present the best
option in terms of stability is to perform the feature based registration.

A key enhancement would be to propose a multi-modal scan correspondance op-
erator that understands the difference between airborne and ground based scans,
such that missing roof or facade data in one representation or the other does not
prevent the measurement of similarity. However the logic of such a comparator is
by no means trivial. The likely future investigative track is to improve the perfor-
mance of the feature based registration. The reason that this is a difficult problem
is that although it looks quite simple from the perspective of a human, in practice
there is simply very little numerical relationship between what we perceive as an
aligning transform and the transformed position of the registree points. The feature
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based registration proved the only feasible means since although the sampling will
vary greatly one can expect walls to be present in both types of scan. Beyond this
there is little to go on in terms of minimising point-level registration error.

This difficultly also manifests as invalid alignments when exploiting mutual infor-
mation. The critical point is that this is not simply a multi-modal problem. It is a
weak correspondence multi-modal problem.

To revise, CUBE’s initial registration aligns the input airborne and ground-based
laser-scans, based on minimising the error between derived wall-location feature
descriptor maps. Once registration is complete, CUBE then proceeds to recon-
struct airborne massing models - this is discussed next.

Massing: Reconstruct Airborne Models

CUBE’s airborne stage is an automatic 2.5D mass model reconstruction stage that
is driven by the previously defined MAMMAL algorithm. CUBE exploits MAMMAL
in order to turn the airborne scan data into clean, compact and accurate building
masses that form the basis of the urban scene being reconstructed. To achieve
this, CUBE simply invokes MAMMAL on the input aerial scans, which segments,
vectorises, projects and optimises 2.5D mass-models that are then added to the
return scene-graph. The inputs to this stage are the structured airborne scans
(digital surface and terrain models) and the set of algorithmic control arguments
used by MAMMAL. The output is a set of objects of type MassModel - with each
mass model being composed of a wall mesh and a roof mesh.

This is a vital component of CUBE, because it provides the basis for complete
building reconstruction. Abstractly one can think of the mass-models recovered by
MAMMAL as analogous to a pizza-base, upon which the character giving facade
surface detail models (recovered by ARROW) are sprinkled as the toppings. Fur-
ther the geometry returned by MAMMAL is crucial to accelerated reconstruction of
the ground scans, because it acts as a means to quickly isolate regions with high
probability of containing salient facade points. Without CUBE’s use of MAMMAL,
there is no efficient means to filter out clutter and non architectural points - which
means an exhaustive traversal of the ground scan would be required.

CUBE’s use of MAMMAL is predicated on the notion that if CUBE has a good
idea where buildings are in a dataset, then it can greatly speed up the efficiency
of the reconstruction of ground scan data by using the knowledge to selectively
model only salient regions. Hence by first reconstructing the airborne laser-scans,
CUBE produces guiding massing models which significantly reduce the workload
in recovering building facade detail. Essentially MAMMAL provides a base-scene-
graph to which detail is appended using ARROW. The key insight is that knowing
where walls occur improves CUBE’s efficiency. Moreover since MAMMAL implic-
itly yields such information - its execution prior to ground reconstruction serves to
optimise the subsequent processes. The advantage of this is that CUBE ends up
killing two birds with one stone. It simultaneously addresses the problem of auto-
matically modelling roof details and it provides feature information that is used to
optimise the traversal of the ground scan.

Despite this the greatest limitation of CUBE’s use of MAMMAL is the 2.5D parallax
nature of the result which means that underpasses such as tunnels and bridges
cannot be fully accounted for using the airborne scan alone. This is also prob-
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lematic for balconies and similar overhanging features that occlude features be-
neath them and manifests as unstructured facade edge points that deviate from
the airborne mass representation. As such the primary improvement (necessary
to produce a more robust operator) is dealing with the parallax limitation. One
strategy to would be considering the unstructured scan data and refactoring the
airborne mass-models in order to take into account areas that were occluded due
to the top-down perspective. This would involve considering the density based
wall map (constructed during registration) and isolating interior walls in the ground
scan (verticality filtered wall points that are enclosed by a building footprint but lack
a corresponding edge in the airborne massing).

To revise, CUBE invokes MAMMAL in order to produce sparse 2.5D mass mod-
els from the input airborne scan data. These massing models form the basis of
the reconstructed scene. Once this process is complete CUBE then proceeds to
reconstruct the ground based scan data. This is covered next.

Facades: Reconstruct Ground Models

With airborne mass-model recovery complete, CUBE preceeds to recover ground-
based surface-elements models to append to the facades of each building. This
is a 3D facade-model reconstruction stage that is driven by the previously defined
ARROW algorithm. It exists to order to recover semantically rich facade geometry
from each cluster of points that lie within range of each mass-model’s constituent
walls. One key problem is that ARROW expects clusters of points corresponding
to single facades, whilst the ground scan contains numerous facades, vegetation
and clutter which must be removed before ARROW invocation. As such this stage
is achieved through a precursory guided segmentation of the unstructured scan
and then feeding each cluster of segmented facade points into ARROW.

The inputs to this stage are the unstructured ground-based scan and the recon-
structed airborne mass models. The output is a set of semantized 3D facade
descriptors - with each descriptor composed of set of surface elements.

The proposed process boils down to two intuitive steps. First for each mass-model
CUBE grabs clusters of points that are within a user-supplied distance from its
constituent walls. Then for each segmented cluster of facade points CUBE passes
the cluster to ARROW and associates the resultant facade descriptor with the cor-
responding mass-model.

The pseudo code following outlines the implementation of this stage:

1: ret← {}
2: for each mass model (M) in scene graph do
3: for each wall (w) in M do
4: fp← grab points XZ(w, grab radius, pts)
5: if dense cluster(fp) then
6: facade← ARROW (fp, arrowargs)
7: ret→ add(facade)
8: end if
9: end for

10: end for
11: return ret
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The advantages of this strategy largely boil down to ARROW automatically recov-
ering clean, compact semantically-rich facade models from the unstructured scan.
This is in itself a challenging problem. However more over in terms of efficiency,
this method offers several benefits over existing methods. Firstly it is selective
about what it reconstructs. Secondly it is trivial to parallelise since each facade
descriptor can be processed independently of the others. The only time they must
be considered together is in the final unification step. For example when using a
library such as OpenMP - one can simply add #pragma omp parallel for directives
to the two nested for-loops (see pseudo-code) - to execute over multiple cores.

The limitation of CUBE’s ground reconstruction strategy is that it requires reason-
ably high-quality input pointsets. Missing data can be detrimental and generally
results in missing surface-elements. Essentially because this is data-driven it does
not make-up or synthesise geometry where there is none in the input. As such if a
region of a facade is omited in the scan, then any windows and doors in the region
will be omitted in the output model. Another limitation (related to this) is that low
resolution scans (captured from too great a distance) may not provide enough de-
tail for the stable extraction of connected components and surface-element split-
logics. Since ARROW relies largely on depth variance, it is important that the
ground-scan captures such. However the flip-side of this is that the technique for
segmenting ground scans using the airborne massing models (dubbed DRAPES -
DEM Reconstruction for Accelerated Partitioning of Engineering Surfaces) is sta-
ble in the presence of missing data on a particular facade. Meaning the surface
points can still be isolated even with partial data.

To revise, CUBE’s ground reconstruction stage is designed to produce compact
facade detail models from the unstructured ground scan by efficiently segmenting
the data using the airborne massing models and feeding individual facades into
ARROW. Given that each complete exterior model is characterised as mass and
surface - the final stage of CUBE is to unify the two types of geometry in order to
produce a single merged model for each building.

Unify: Airborne and Ground Models

The last stage of CUBE is to merge the airborne massing models with the ground
based facade models to produce complete building shell models.

The shell-models are the result of appending the surface elements from the pre-
viously reconstructed facade-models to their corresponding walls in the airborne
mass-models and re-invoking ARROW’s clip routine to revise each massing model’s
walls with the appropriate apertures. The process is applied iteratively for each fa-
cade model recovered by the previous stage.

The input to unification is a set of mass-models (and associated descriptors) and
a set (of sets) of facade-models (and associated descriptors). The output is a set
of building shell models - each represented as a polygon mesh.

This represents the simplest stage of CUBE and is responsible for composing the
two types of architectural model recovered by MAMMAL and ARROW in order to
yield complete building exteriors. This is essentially an associative task coupled
with a re-clip. It involves snapping each surface-element to its guiding wall in its
airborne mass model and then replacing each single face facade wall in the mass
model with apperture clipped versions.
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One positive feature of this is that it degrades gracefully, in the sense that the worst
case outcome for a building is the airborne massing model. This can occur as a
result of missing data in the unstructured ground scan.

The underlying idea in CUBE’s unification is that by maintaining a high-level (and
hierarchical) representation of the reconstructed data the process of appending
the windows and doors to walls is simpler to coordinate than when applied to un-
semantized 3D surface reconstructions. This effectively enables CUBE to copy-

and-paste the surface-detail models onto associated mass models directly. Mean-
ing there is no need for surface to surface registration [12] or additional watertight-
ing methods since merging is handled at the level of objects rather than primitives.
Another desirable aspect is the re-use of ARROW’s aperture-clipper. Since all the
logic of producing high-quality cut-out models is already embedded in ARROW,
no additional routines are required to coordinate the mass-model refactoring that
creates window and door apertures for the airborne models.

Despite this the biggest limitation is that the parallax nature of the massing-models
means certain types of facade present in the ground scan (those that are occluded
aerially) will be omitted from the result. Currently CUBE uses un-refactored mass-
ing models from MAMMAL as the basis of the scene graph. A crucial improvement
to this would be to consider the density-feature-map used during registration post
airborne reconstruction in order to determine (first) facades that are not repre-
sented by the mass models and (secondly) inject appropriate wall representations.
This would have a two-fold effect. Firstly it would combat parallax occlusion -
secondly it acts as a fall-back for temporally varying datasets, for which facades
present in the ground scan may be missing in the airborne scan.

Summary

This section outlined an intuitive approach to multi-modal merging of airborne and
ground building models derived automatically from laser-scans. It considered the
practical requirements of each stage (registration, airborne reconstruction, ground
reconstruction and merging) and detailed the potential sources of error and the
fundamental limitations of the acceleration strategies employed. It considered ex-
tensions that seek to improve CUBE’s performance - both in terms of completeness
and robustness to lower-quality input point-sets. This chapter also discussed the
inherent issues in attempting to merge temporally varying airborne and ground rep-
resentations - from which one can deduce that minimising the temporal difference
(delay) between the acquisition of airborne and ground representations is useful in
limiting potential sources of ambiguity in subsequent reconstruction tasks.

Note: vitally that CUBE is still under active development - and as such these early-
stage discussions do not necessarily represent the polished results sought by this
research but rather the state of work in progress.

5.1.4 Preliminary Results: Tower-Bridge

Early stage results from CUBE’s development are outlined next - and are supple-
mented by the high-level findings of this investigative track to date.

The dataset used to develop and debug CUBE represents the area surrounding
Tower-Bridge in London. It contains structured airborne DEM points (at 50cm/4ppm
resolution) acquired from the Environments Agency [47] and an unstructured com-
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posite ground scan (registered from three seperate scans that have Tower-Bridge
as the common focal point) - with RGB-D colour information - provided by this
project’s industrial sponsor. The ground scan exhibits partial building point clus-
ters of variable density - however critically there are few roof points present.

Figure 5.3: registration of the structured airborne and unstructured ground laser-scans of

the Tower-Bridge area employed in CUBE’s development - illustrating (left) the unaligned

inputs and (right) the outcome of CUBE’s feature-based alignment

Figure 5.3 illustrates the outcome of CUBE’s registration whilst figure 5.4 illustrates
the result of DRAPES (the guided facade segmentation technique).

Figure 5.4: automatic segmentation of unstructured ground scan guided by airborne mass-

ing models (DRAPES) - illustrating (from top-left to bottom-right) the input ground-scan

points (with RGB scan colours), the ground scan alongside airborne mass model volumes

(coloured by building mass), the ground scan points (coloured by mass-group - the result of

DRAPES’ point-grabbing operation), and (finally) a close up of a challenging curved partial

facade cluster that is automatically segmented from the ground-scan by this technique.
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These early stage results demonstrate the validity of the first two and half stages
in CUBE. However they also reveal the limitations of the current implementation.
In particular the fact that only facades that have corresponding masses are isolated
- (see figure 5.4) whenever there is temporal disparity between the scans.

Figure 5.5: further facades automatically extracted by DRAPES for the Tower-Bridge

dataset - note in particular the lower density and regions of missing data in these repre-

sentations relative to the Roslyn-Mews dataset employed in the previous chapter

There are three main observations drawn from the development of CUBE to date.

• DRAPES: yields strong facade segmentation results for both dense and sparse
building point clusters in the presence of planarity and curvature. This com-
ponent of CUBE responds surprisingly well to arbitrary facades in the Tower-
Bridge dataset irrespective of density and sampling artefacts (figures 5.4 and
5.5). However DRAPES’ ability to isolate more than regular planar facades
leads naturally to the requirement for CUBE’s ground reconstruction stage to
be able to polygonise such elements. In particular this means that the (cur-
rently plane-based) SDF-split employed by ARROW must be augmented to
take into account non-linear facades via a projective unwrapping routine.

• Temporal Disparity: between airborne and ground introduces ambiguity in
the problem specification and hinders detection and recall of elements in the
ground scan. In this sense the completeness of the scene representations
extracted by CUBE relies on there being a strict temporal correspondence
between the airborne and ground scans. What this means is that the accel-
erations applied will only work robustly for airborne and ground scans cap-
tured at roughly the same time. The greater the delay period between their
acquisition the greater the likeihood of there being disparity between them
which interferes with CUBE’s ability to efficiently produce a complete model.

• Surface-Element Recovery: represents the key bottleneck to large-scale multi-
modal reconstruction because as the scope of a sampled region increases
(typically) the level of detail captured by a scan for each surface-element de-
creases. Essentially the greater the distance from a facade the scanner is
the fewer points correspond to window and door frames - which means less
depth information is available to segment and model each element.
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5.1.5 Discussion and Summary

This section outlined CUBE (that is: Complete Unified Building Exteriors) - a practi-
cal technique for efficient automatic building reconstruction from multi-modal laser-
scans. The underlying idea in CUBE is to exploit MAMMAL in concert with ARROW
in order to address the two key sub-problems - reconstructing building masses
(roofs) and reconstructing building surfaces (facades).

By guiding processing of the unstructured ground scan with knowledge derived
from the reconstructed airborne scan CUBE aims to minimise the complexity of
the task. However this increased efficiency comes at the potential cost of the com-
pleteness of a scene’s descriptor relative to an exhaustive traversal of the ground
scan. In particular this means that temporal disparity between the two represen-
tations can result in facades that are not present in the ground scan being omit-
ted from reconstruction. Logically the simplest means to combat this is to use
airborne and ground scans of a region for which the delay in their acquisition is
minimal. However in practise this may not always be possible - especially in the
case of scans acquired from open-access repositories. As such alongside dealing
with the parallax-occlusion problem (refactoring 2.5D masses to take into account
underpasses and overhanging features such as balconies), a key requirement for
CUBE’s further development is an efficient non-stochastic wall-extraction operator
for unstructured points that responds well both to planarity and curvature.

Critically - although this final unifying component of the proposed automatic tempo-
ral update scheme (sought by this research) demonstrates some potential - there
remain many answered questions and unaddressed problems that currently limit
its overall utility. These stand as areas for continued investigation.

Finally the key ideas underlying CUBE are revised below for reference:

• Feature-Based Registration of Airborne and Ground Laser-Scans - to
combat the multi-modal weak-correspondence nature of the input scans.

• DEM Reconstruction for Accelerated Partitioning of Engineering Sur-
faces (DRAPES) - an intuitive facade segmentation method that guides the
partitioning of facades with airborne massing models.

• Hierarchical Semantized IR to enable ’copy-and-paste’ Unification - based
on preserving an object level representation of the structure of each facade
(a set of surface-element descriptors) and associative re-clipping of walls.

• Re-Cycling of MAMMAL, MARS, QUALM, GRAILS, ARROW, SLADE
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5.2 Automatic Temporal Updates

and all together...

Figure 5.6: overview of the key components in automatic temporal updates

5.2.1 Overview

This section discusses how to chain together the four key techniques for semantic
change detection, airborne reconstruction, ground reconstruction and multi-modal
merging, to form a stand-alone artificially intelligent CAD technician, that not only
understands how to create sparse geometry from point-cloud data but further em-
bodies the logic necessary to be selective about that which it reconstructs. In
essence the Automatic City-CAD Reconstruction Agent is a minimalist, whose
awareness of the nature of urban scenes enables it to apply lazy-evaluation strate-
gies to the task of automatic content generation and maintenance.

At a high level, one can think of ACCRA (Automatic-City-CAD-Revision-Agent) as
a script that automatically chains the inputs and outputs of each of the previously
defined algorithmic components. This temporal update pipeline enables continu-
ous architectural CAD revision by analysing changes between an out-dated CAD
model and newly acquired point-clouds (using DEV), and creating new building ge-
ometry for detected extensions, constructions and replacements (using MAMMAL,
ARROW and CUBE). Figure 5.6 illustrates these key components.

To help clarify examples of concrete use-cases for the automatic temporal revision
agent described in this section - one could conceive using it:

1. As a data-driven automatic urban CAD model updater - which is the primary
use-case of ACCRA and the driving aim of this research.

2. As part of a geometric version-control system for temporal 3D city-models
- within which the present-day model is maintained alongside a per-building
change-log that enables a technician to step through instances of the model
at various points in time. This supports analysis of the development (evolu-
tion) of an urban region over time.

The rest of this section specifies the main requirements of the solution, the method-
ology underlying its operation and discusses the current state of development.

5.2.2 Key Requirements

For reference the key objectives, requirements and desired behavioural character-
istics of the outlined reconstruction agent are outlined following.
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• Geometric Accuracy : such that revisions made to the out-dated CAD model
accurately reflect the geometry represented by the up-to-date point-clouds.
This means error-bounded reconstruction results.

• Computational Efficiency : in particular the desire for linear growth in runtime
as a product of the size of the inputs and low-memory-use.

• Scalability : in terms of the ability to process both large airborne regions
100km2+ and large unstructured scans 100,000,000pts+ whilst maintaining
quasi-linear performance. This means removing latency such that additional
(coordinatory) processing time isn’t introduced as the size of the input repre-
sentations grows extremely large.

• Tractable : change-detection results and corresponding revisions. In other
words ACCRA should not obfuscate the process of finding modelling errors
or creating updated building geometry. A technician should be able to trivially
map the analytic outcome of change-detection to the alterations made to the
out-dated CAD model.

• Robust : to both high and low frequency sensing noise, low model quality,
partial and missing data and geometric degeneracy.

• Support for Parallel Processing : such that the processes of airborne mass
reconstruction and ground facade reconstruction may be coordinated ac-
cross multiple cores. As a further requirement - suitability to execution on
the GPU and using distributed architectures.

The steps necessary to address these requirements are outlined next.

5.2.3 Methodology

The key stages in ACCRA can be broken down into the following five steps:

1. Load, Pre-Process and Register Input CAD and Scan Data

2. Isolate and Classify Significant Temporal Changes

3. For Each Temporal Change - Reconstruct Associated Point Clusters

4. For Each Temporal Change - Integrate Reconstructed Models

5. Validate the Updated CAD Model and Return

Another way to rationalise the key stages in ACCRA is in terms of the three-step
strategy: analyse, reconstruct, compose - outlined following:

1. Analyse: the input data to isolate and classify temporal errors.

2. Reconstruct: up-to-date geometry for each identified error.

3. Compose: the CAD model with the the reconstructed models.

Both of these decompositions describe the intended operation of ACCRA ab-
stractly. The first maps loosely to the logical algorithmic flow of ACCRA, whilst
the second denotes a generalised ideological break-down.

Page 261 of 301



CHAPTER 5. FURTHER R&D→ 5.2. AUTOMATIC TEMPORAL UPDATES

Figure 5.7: structure of the automatic city-cad revision agent (ACCRA) - in terms of its

inputs (green), processing stages (dark) and outputs (blue) - for each of its constituent sub-

components (top) and as a stand-alone reconstructive unit (bottom).

To help further clarify the behaviour of ACCRA figure 5.7 outlines its structure.

5.2.4 Discussion

Foremost the performance of ACCRA is largely controlled by the efficacy of each
of its constituent components (DEV, MAMMAL, ARROW and CUBE). For exam-
ple the application of selective reconstruction and the ability to efficiently track
modelling errors is contingent on the performance of DEV. Whilst the quality and
compactification of the up-dated models rests upon the shoulders of MAMMAL,
ARROW and CUBE. Although in principle MAMMAL and ARROW can be used in
isolation, CUBE depends on both of them and as such efficient complete building
(mass+surface) revision is only feasible as a product of their joint exploitation.

In this regard the key point is that whilst each operator works reasonably well in
isolation, the process of amalgamating them under the banner of an efficient intel-
ligent revision agent remains a problem under active investigation.

Further regarding the present state of ACCRA, another key missing piece is a
suitable testing dataset. As stated ACCRA calls for three types of input: an
out-dated CAD model, an up-to-date airborne laser-scan and and an up-to-date
ground-based laser-scan. Although synthetic data-sets could be used, in princi-
ple one requires several real-world examples in order to accurately quantify the
performance of the approach. This means that a key pre-requisite to meaningful
academic evaluation is acquiring suitable multi-modal input data.

Nonetheless - the ideas and observations underlying ACCRA’s development should
be quite clear. The core aim is to automatically maintain high-quality 3D building
models of rapidly changing urban environments and the operators presented cor-
respond to the principal sub-components of a potentially viable solution.
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5.3 The Remaining Open Problems

This section discusses the remaining open problems that pervade each of the
operators proposed by this research. It aims to provide a synopsis of the key
aspects of each component in ACCRA that requires further investigation.

5.3.1 Semantic Change Detection

In relation to semantic change detection - the key issue with the current approach
is that the change detector operates at the level of buildings rather than compo-
nents. As discussed in chapter two, the utility of the change detector could be sig-
nificantly enhanced if deviant regions were decomposed into individual variances
prior to classification. The reason this remains an open problem is that determining
a decomposition strategy is a non-trivial task given that it requires multiple variance
classifications to be made for each building which in turn increases the complexity
of any subsequent revision process. Additionally it means that the evaluation or-
der of each deviant component of a building becomes critical. One potential way to
address this would be to sort each deviance by its scope or significance. Nonethe-
less this remains an unsolved problem requiring further experimentation.

The other key remaining problem in the change detector is determining how to
automatically alter the weights associated with the thresholds to the boolean pred-
icates that distinguish each class of variance. In particular, chapter two identified
the need for the change-detector to relax the tolerance for variance as a product of
the size (extents) of a building. Now although the idea is quite simple - in reality the
implementation is less trivial - and would require a linear or non-linear function de-
rived empirically through the consideration of a representative set of old and new
urban representations. In other words, determining the relationship between the
size of a building and the classifiers tolerance for deviations cannot be addressed
solely as a product of the input - and may mandate off-line strategies such as (but
not strictly limited to) machine learning using NNs or convolutional NNs.

Further the mutually exclusive nature of the change detector also has implicit lim-
itations - in particular chapter two discussed some of the problems of forcing the
classification of the position operator by increasing the tolerance for variance be-
tween the out-dated and newly-acquired representations - and noted that such acts
typically decrease the overall response of the classifier’s other deviance classes
relative to human-labelled variance data.

5.3.2 Airborne Reconstruction

In terms of the airborne reconstruction - two key on-going problems underlie the
performance of the MAMMAL algorithm. These are segmentation and vectori-
sation. Given that the results of vectorisation are largely a product of the seg-
mentation process - the key area that requires further refinement is the automatic
segmentation of airborne point-clouds. Despite this - the vectorisation stage (con-
sidered in isolation) could still be improved in order to produce higher-quality 2D
vector shape arrangements. The critical concern with both stages (and the reason
they remain open problems) is the fact that neither is amenable to a closed-form
analytic solution. Although the segmentation and vectorisation performance of the
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current implementation yields reasonably satisfactory results - identifying methods
of further mitigating the effects of sensing noise remains a high priority.

5.3.3 Ground Reconstruction

To dominant problem with the automatic facade reconstruction is the stable res-
olution of each surface-element’s interior split-axes. The SLADE algorithm is the
component responsible for addressing this problem, however its performance on
irregular sash divisions is still unsatisfactory. Ultimately the difficulty lies in the
fact that there is not always a direct relationship between a window’s segmented
point-cluster and the desired 2D division of space. Generally researchers have
combatted such issues with the use of template fitting, priors and heuristic con-
straints. Now although chapter four discussed examples of such methods and
their applicability to the overall arrangement of a facade - there remains a lack of
a definitive solution to the problem at the level of individual surface-elements. Es-
sentially - in the case of sashes composed of rectilinear edges the response of
SLADE is reasonable, however mining higher-order features such as circular arcs
and bezier curves without the use of stochastic sampling is still to be addressed.

The other key unsolved problem is refactoring the ARROW algorithm such that it
can deal with lower-quality input scans. The critical point is that ARROW relies
upon depth variance in order to facilitate stable data-driven segmentation - which
means it requires high-fidelity input scans. However (as discussed in chapters
four and five) this requirement will not always be possible especially in the case
of facade scans surveyed from large distances. As such it would be desirable for
ARROW to possess an alternative (fall-back) strategy for isolating windows and
doors even in the presence of lower density scan-data. The problem is that the
identification of such a strategy has (up to this point) proven itself elusive.

5.3.4 Multi-Modal Merging

Two key problems remain unsolved in multi-modal reconstruction. The first is iden-
tifying and addressing temporal differences that may be present between the air-
borne and ground laser-scan due to the fact that they may have been surveyed at
slightly different points in time. The second is automatically refactoring the recon-
structed airborne models in order to account for non-parallax features that are not
represented in the aerial scan but are present in the ground scan. The first prob-
lem is a product of the ambiguity inherent to distinguishing temporal differences
from partial and missing data. The second problem results from the invalidation
of the parallax (top-down) assumption that is employed to constrain and enhance
the efficiency of the reconstruction process. Now the reason the first problem is
tricky to address is because (unlike semantic change-detection) the correspon-
dence between the airborne and ground scans is weak - due to the multi-modal
nature of the inputs. Hence one must account for the fact that the airborne scan
may be missing parts present in the ground scan, and the ground-scan may be
missing parts present in the airborne scan - without a definitive means of deter-
mining which type of scan is correct. Now the key challenge presented by the
second problem is largely a product of the increase in processing requirements
necessary to transform the top-down massing into a full-blown 3D mass. This not
only calls for a more generalised (and hence expensive) error-measure, but it also
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demands a free-form abstract representation of a building which in turn limits the
parametric extensions and revisions that can be efficiently made - requiring instead
traditional polygon-mesh manipulations. Essentially - whilst it is feasible to cut-out
non-parallax features from the airborne massing models - guided by the ground-
scan data - in practice doing so whilst maintaining the performance characteristics
of the current methods is a non-trivial task.

5.3.5 Summary of Unresolved Problems

In summary the following list revises the vital remaining problems discussed in this
section that require addressing through continued investigation.

• Scale-Dependant Variance Tolerances for Change-Detection.

• Identifying Multiple Modes of Change per Building.

• Enhancing Airborne Segmentation and Vectorisation.

• Recovery of Sash Divisions for Irregular Surface-Elements.

• Facade Segmentation and Reconstruction from Lower Quality Scans.

• Distinguishing Temporal Multi-Modal Variances from Partial-Data.

• Efficient Airborne Mass Refactoring for Non-Parallax Features.
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5.4 Further Investigations

The final part of this chapter discusses some of the auxiliary investigations related
to (but distinct from) the task of automatic building reconstruction and temporal
maintenance using point-clouds. These areas relate the to production of interac-
tive simulations of the physical world - and in particular the recovery of the supple-
mentary assets that enrich visualisations.

For each of these future investigative topics a synopsis of the core aims and con-
stituent problems is provided in the form of a high-level abstract.

Recovering Material-Shaders

This investigative track seeks to recover procedural material shaders from RGB-D
scans in order to enhance the rendering of building geometry.

Note: that many existing operators (such as [12]) already support the recovery of
textured models using the colour data from photographs or laser-scans. However
the critical problem with these approaches is that they require high-density texture-
representations in order to accurately reflect the shading of an object. The key idea
of this investigation is to transform automatically recovered texture-mapped mate-
rials into procedurally defined materials - which are similar in vein to Alegorithmic’s
substances - in the sense that they define a surfaces material properties function-
ally as opposed to explicitly with raster images.

The benefit of this strategy is dramatically reducing the memory requirements for
the storage and rendering of reconstructed building models. This is predicated on
the underlying insight that - at city-scale, texture memory represents the critical
bottleneck for real-time rendering - yet by characterising material properties pro-
cedurally this issue can be largely resolved.

At a high-level there are two basic strategies for addressing this problem and they
can be loosely thought of as being data-driven or model-driven.

The data-driven approach involves analysing clusters of XYZ-RGB points (where
each cluster is assumed to be belonging to a single un-obscured region of a sur-
face in the scene) and automatically constructing a unique shader for each distinct
material identified in a scene. This is quite a challenging problem given that it ef-
fectively requires one to teach the computer how to write shaders in very much
a by-example manner. The model-driven (library-based) strategy (on the other
hand) is similar to template fitting, in the sense that one begins with a set of pa-
rameterised shaders for the prominent types of material in architectural scenes
(wood, glass, stone, brick, metal, plastic and so on) and frames the task as identi-
fying the class of, and inputs parameters for, each material in a scene.

The critical challenge inherent to both approaches (and likely the reason that re-
searchers have avoided this problem) is that one cannot rely upon a geometric
similarity measure in order to determine the aesthetic error between the input RGB
data and the output material shader. This problem not only calls for BDRF analysis
- it is also subject to the limitation that the resulting shader would be less visually
accurate than a texture-map pasted directly onto a surface. However from the
perspective of visual quality, this is not a critical problem, because a procedural
material is implicitly resolution independent which tends to result in higher fidelity
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close-up visualisations. Further more, by exploiting RGB-D scans to mine mate-
rial properties as opposed to images a greater amount of spatial information is
present which has the potential to enhance the recovery of semi-regular structures
and patterns (such as brick and stone-work).

Reconstructing Street-Furniture

This area for further investigation aims to recover 3D street-furniture models of
objects such as lamp-posts, park-benches, monuments and statues from unstruc-
tured ground scans - in order to enrich the physical realism of scenes.

Note that whilst street-furniture models are typically not critical for the simulation
of viewing corridors or spatial analysis - they play a major role in the production of
photo-real still images and animated sequences.

The critical challenge is that although the key types of object may be known ahead-
of-time, the geometric form of each instance can vary dramatically across an urban
region, meaning that template-driven strategies are less amenable to this problem.
In order to produce accurate street furniture models, data-driven reconstruction
strategies are required. Furthermore unlike buildings - which can be easily dis-
tinguished from clutter and vegetation based on spatial scale and their regularity
- lamp-posts and similar objects as less easily distinguishable - mandating more
involved filtering and fault-tolerance strategies.

Reconstructing Building-Interiors

The recovery of building interior geometry is predicated on the desire to be able
to simulate and render interior architectural scenes. This research has focussed
on the recovery of exterior architectural geometry - however building-shell models
alone are insufficient in simulating virtual environments for which an end user is
required to be able to navigate the rooms inside of a building.

At a high level one could decompose this problem into the recovery of three ab-
stract types. The reconstruction of (i) internal structural and storage vertical fea-
tures (such as walls, doors and shelving units), (ii) the reconstruction of floor-
aligned features (such as tables, desks, cabinets, wardrobes, bedding and chairs)
and (iii) the reconstruction of overhanging ceiling-aligned features (such as light-
fixtures, air-conditioning units, smoke-detectors and cooker hoods). By treating
the task in terms of these three object-classes (verticals, floor-aligned and ceiling-
aligned) the process of instantiating geometry for a building interior (given unstruc-
tured point-cloud data) becomes amenable to constraint-based shape arrange-
ment. However the critical challenge (that would still remain) is dealing with the
clutter and disorganisation that often pervades building interiors. Furthermore -
whilst such an ontology would be useful for dealing with individual rooms, there
would still be the problem of coordinating the recovery of auxiliary features such
as stairways, complex entrances (such as revolving doors) and elevators.

The underlying geometric problems that make sparse interior reconstruction such
a juicy academic problem are dealing with occlusions and irregularity. However
it is worth noting that knowledge regarding a building’s exterior structure has the
potential to aid such processes - for example by resolving ambiguities that could
arise as a product of features such as duplexes.
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Chapter 6

Conclusions

Finally this chapter concludes this thesis. It summarises the technical and theoret-
ical contributions, the key take-home insights and acknowledges the parties that
supported this research. It includes two peer-reviewed research posters presented
at SIGGRAPH 2016, and is followed by the bibliography.

6.1 Contributions

This section revises the key contributions to knowledge proposed by this research.
They address key problems in the domain of architectural reconstruction from
laser-scanned point-clouds. These are semantic-change-detection, airborne mass
reconstruction and ground facade reconstruction. They are divided into two cat-
egories - algorithmic and ideological. The algorithmic contributions are arranged
according to the problem they address - followed by the ideological contributions.

6.1.1 Algorithms

The following represent the key technical developments resulting from this re-
search. They are self contained algorithms for addressing problems such as auto-
matic segmentation, boundary-extraction and model-optimisation within architec-
tural reconstruction from laser-scanned point-clouds.

Semantic Change Detection

• DEV - this thesis introduced DEV (Detector for Engineering Variance) - a
novel classifier for semantic change detection between multi-modal architec-
tural datasets. DEV provides a closed-form analytic method of identifying
instances of new-constructions, demolitions (removals), extensions, reduc-

tions, re-positions and replacements in out-dated CAD models given up-to-
date airborne laser-scans. The performance of DEV as an error-detector has
been evaluated using the City of Bath CAD and LiDAR dataset and the re-
sults demonstrate stable automatic temporal error identification. The critical
benefit over existing architectural change detectors is that DEV can associate
point-level deviances with high-level actionable corrections. This enables an
optimisation to data-driven city modelling termed selective-reconstruction.
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Airborne Reconstruction

• MAMMAL - this thesis introduced MAMMAL (Maximal Area 2.5D Mass Mod-
elling of Airborne LiDAR) - an algorithm for fast, accurate and sparse auto-
matic city-reconstruction from digital elevation models. MAMMAL efficiently
segments, vectorises, projects and optimises data-driven massing models
using the maximal-area : minimum-primitives principle. The vital benefit
over the dominant 2.5D methods, is that MAMMAL’s optimisation automat-
ically produces parametric building geometry that can be manipulated inter-
actively. MAMMAL’s performance has been analysed using airborne scans
of the cities of Manchester (at 25cm point-spacing), London (at 50cm point-
spacing) and Bath (at 1m point-spacing). The results demonstrate robust
recovery of compact parallax massing models that capture roof structures
and details at various spatial scales, in quasi-linear time. This represents
a significant speed-up in the time taken to produce 3D building assets from
airborne scans. The true power of MAMMAL results from the amalgamation
of data-driven projections with dynamic model-driven procedural geometry.

• MARS - this thesis introduced MARS (Maximal Area Roof-Shape Segmenta-
tion) - a low-level image-based segmentation operator for identifying building
roof-shapes in aerial scans, based on the difference of elevation models and
scale-driven explicit suppression of undesirable roof-features that would oth-
erwise bloat the result and introduce latency in polygonisation. MARS com-
bines local connectivity measures with a generalised graph region traversal in
order to efficiently isolate the salient architectural features of airborne scans
whilst directly supporting the maximal-area : minimum primitives principle.
The key advantage of MARS (relative to pre-existing maximal-area segmen-
tation methods) is its significantly reduced execution time.

• GROVE - this thesis introduced GROVE (Graph-Refinement Operator for
Vector Extraction) - a raster-to-vector converter that preserves the topol-
ogy of neighbouring roof-shapes by detecting critical-points which are an-
chors used to constrain the boundary extraction process and ensure water-
tight shape-nets are constructed. Unlike the prevalent architectural edge-
detectors, GROVE does not stochastically fit lines. Rather each shape-net is
a repeatable product of the input raster segmentation and user-supplied er-
ror tolerance. GROVE automatically produces vector shapes for 2D mapping
with greater architectural detail than is present in off-the-shelf maps such as
OSM. In this sense the output of GROVE is closer to a 2D master-plan.

• GRAILS - this thesis introduced GRAILS (Graph-Railed Approximate Inte-
rior Linear Spine) - a geometric feature-detector that extracts sparse medial
shape spines from point-sets for the purpose of automatic terrace modelling.
Each GRAIL spine is the product of computing the maximal length non-
cyclical path of an interior graph of medial axis convergence points. GRAILS
produces higher quality vectors from low resolution scans than data-driven or
stochastic line-fitting strategies. In particular it can handle non-monotonicity
and approximate curvature robustly using piecewise linear arrangements.

• QUALM - this thesis introduced QUALM (Quick Unconstrained Approximate
L-Shape Method) - a domain-specific boundary-extraction and polygon sim-
plification function for efficiently extracting common rectilinear architectural
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footprints from aerial scans. QUALM produces sparse L, T and S shaped
building boundaries (with a guarantee on the maximum number of vertices:
≤ 12). Its primary purpose is to support automatic 2D and 3D map updating.
Despite its simple heuristic nature QUALM is surprisingly robust at various
resolutions, producing master-plan quality building boundaries in linear-time.

Ground Reconstruction

• ARROW - this thesis introduced ARROW (Accurate Railed Reconstruction of
Openings and Walls) - a data-driven algorithm for fast, accurate and sparse
automatic 3D facade model reconstruction from unstructured ground laser-
scans. ARROW produces compact semantized facade models which are
suitable for physical simulation and building-energy analysis. The power of
ARROW is a result of marrying the accuracy and efficiency of a data-driven
method with the topological quality of a model-driven method. ARROW ex-
ploits a novel procedural representation - the surface-element in order to
efficiently recover both regular and irregular 3D window and door models.

• SLADE - this thesis introduced SLADE (Split-Logic Axes Detector and Ex-
tractor) - an algorithm for transforming clusters of points corresponding to
a window or door into 2D polygonal split-structure shapes. SLADE is the
key component in ensuring the structural accuracy of each window and door
model generated by the ARROW algorithm.

Alongside these procedural operators, this research introduced and exploited a
number of high-level ideological concepts which are summarised next.

6.1.2 Theoretical Abstractions, Principles and Paradigms

To facilitate fast, accurate and sparse architectural model reconstruction from air-
borne and ground laser-scans, this research exploited a number of insights and
axiomatic principles regarding the nature of architectural representations in differ-
ent modalities. These observations and abstractions enhanced the efficiency and
efficacy of the methods presented.

Boolean Logic for Semantic Change Detection

The thesis proposed the use of boolean logic for detecting semantic errors in city-
CAD datasets, that (unlike pre-existing change detectors) operates at the level of
objects (rather than points). Boolean logic is not only a fundamental component of
geometric algebra, but further largely negates the need for data-dependant training
strategies. This closed form approach is distinct from alternative methods due to
its purely geometric nature. Further enhancements to this strategy include scale-
based adaptivity and the detection of multiple modes of change per building.

Maximal-Area, Minimum-Primitives : Under an Error Tolerance

This thesis exploited a simple paradigm for 2.5D mass modelling that seeks to
formalise the key aspect of manually constructed building models. The maximal-
area minimum-primitives principle is analogous to the sparsest-under-an-error-

tolerance and captures the notion that human CAD technicians seek to represent
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geometric form minimalistically. Compared to Zhou et al’s principle regarding the
presence of sharp edges characterising architecture - this principle is far more gen-
eralised (as it also handles curvature) and as a result is also applicable to other
reconstructive tasks. The critical point is that there is no constraint placed on the
types of features represented - rather the principle addresses the manner in which
an algorithm uses geometric primitives - sparingly.

Depth-Buffer Error-Measure for Parallax Displacement Fields

This thesis employed a fast parallax error-measure for non-linear optimisation of
2.5D mass-models based on object-order rasterisation. This error-function is or-
ders of magnitude faster than the prevalent point-to-plane and ray-casting equiv-
alents - which enables the procedural optimisation kernel employed in airborne
reconstruction. In essence, without this, efficient traversal of dynamic functional
mass descriptors would be infeasible. The insight to draw from this is that: fast
geometric-error measures facilitate data-driven fitting of non-linear generative mod-
elling functions. In other words - by reducing the time it takes to measure error -
one no longer has to guess randomly to efficiently traverse the solution space.

The Surface-Element

This thesis introduced a novel procedural primitive for the definition and automatic
construction of 3D window and door models. The surface element is a data-driven
function that formalises the notion of an aperture model using 2D vector-shapes
and generalised polygonal split-logics in order to define and generate 3D gener-
alised cylinders (3D sweeps). The utility of the abstraction results from its suitability
to forward-chaining and backward-chaining modelling tasks.

Selective (Lazy) Reconstruction : Reconstructive Culling

This thesis proposed an analytically driven reconstruction optimisation informally
dubbed selective reconstruction - wherein only buildings that exhibit significant al-
terations require re-modelling. This is driven by the detection of modelling errors
between an out-dated CAD model and a newly acquired laser-scan. In a similar
manner to view-frustum culling in rendering algorithms, reconstructive culling re-
duces the computational requirements for continuous temporal update to city-scale
architectural datasets - by ensuring that automatic algorithms need only spend
compute time modelling buildings that exhibit significant temporal variations.
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6.2 Research Impact

This section discusses the impact of this research - both in terms of the industrial
and academic effect it has had to date - and the anticipated continued impact.

6.2.1 Industrial Advancements

In relation to the industrial benefit of this research to this project’s industrial sponsor
to date - Cityscape Digital have already employed key aspects of the airborne re-
construction work on live projects to serve the purpose of cost-effective geo-spatial
asset production. For example QUALM and GRAILS have been used in vectoris-
ing large portions of the City of London for which Cityscape lacked coverage and
the cost of purchasing off-the-shelf models was prohibitive. The accompanying
short paper: Efficiently Extraction Extrusions from Airborne Range Scans for
Animation and Visualisation of Urban Environments provides a fuller account
of the outcomes of one such instance where additional components of MAMMAL
were used to produce 3D assets that were subsequently used in animated se-
quences produced by the company for a proposed development. The powerfully
advantageous aspect of this particular example is that the input data used to cre-
ate the assets (structured airborne point-clouds) cost Cityscape nothing!

Yes - the simple ideas relating to the formulation of fast, accurate and sparse de-
terministic building reconstruction methods - presented in this thesis - are already
delivering a measurable gain to Cityscape both in terms of time and money saved.

In this sense it is fair to say that this research has had a positive impact upon its
industrial sponsor and served Cityscape’s progression. It has imbued the com-
pany with the know-how necessary to create some of their raw materials (compact
building massing models) quickly and scalably from freely accessible point-clouds.

Note: however though that not all aspects of this research have reached the state
of being used in production. In particular the facade reconstruction is still under-
going development as is the multi-modal merging of airborne and ground.

6.2.2 Academic Publications

In terms of the concrete academic deliverables of this research to date - this sub-
section documents two peer-reviewed short articles derived from this research -
which were presented at SIGGRAPH ’16. One tends to vectorisation in airborne
mass reconstruction whilst the other deals with ground facade reconstruction.

Fast, Accurate and Sparse Automatic Facade Reconstruction from Unstruc-
tured Ground Laser-Scans
K. Edum-Fotwe, P. Shepherd, M. Brown, D. Harper, R. Dinnis

SIGGRAPH 16, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4371-8/16/07 | DOI: http://dx.doi.org/10.1145/2945078.2945123

QUALM: Quick, Unconstrained, Approximate L-Shape Method
K. Edum-Fotwe, P. Shepherd, M. Brown, D. Harper, R. Dinnis

SIGGRAPH 16, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4371-8/16/07 | DOI: http://dx.doi.org/10.1145/2945078.2945163
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6.2.3 Looking Ahead - Potential Applications

Although it may take some time for some of the ideological contributions pre-
scribed by this research to take root academically - industrially there are many
immediate practical gains inherent to the data-driven strategies developed. From
the application of the vectorisation routines (in 2D-map updating) through to the
use of the semantic change detector (in temporal analytic tasks) and the mass-
parameterisation logic (for top-down building modelling) - the utility of this research
is not constrained to architectural visualisation, and has the potential to support the
energy, transportation and infrastructural industries. Indeed any industrial pursuit
that relies upon accurate geo-spatial assets is within the scope of the beneficiaries
of this work. However in relation to Architecture, Engineering and Construction
(AEC) specifically - the anticipated applications of this research include:

• Use of meta-data provided by MAMMAL’s parametrics to perform semantic
queries on CAD assets (for example: find all buildings in a particular region
that possess curved roof components).

• Use of MAMMAL-styled functional descriptors to reduce storage and trans-
mission requirements for city-models (LOD-ing and model compression).

• Use of DEV’s logic to visualise temporal variations at city-scale (time-lapse
animations of the structural evolution of an urban region).

• Use of DEV’s logic to enable temporal geo-spatial queries (for example: find
all buildings in an area that have been extended in the last two-years).

• Use of facades generated by ARROW’s logic to perform solar-gain studies
on buildings (which relies upon the accurate data-driven aperture locations).

• Use of ARROW’s output to perform energy-efficiency simulations on build-
ings (again as a product of the accuracy of the window and door locations).

• Use of SLADE’s split-axis-logic for reconstructing component-based window
and door models for historically significant buildings - within preservation and
heritage (for example irregular and/or unique ecclesiastic openings).

• Use of CUBE’s building shell’s within physically based interactive simula-
tions and experiences - particularly for training, documentation and asset-
management, analysis, planning and emergency response activities.

These are just a handful of the potential applications within architecture, engineer-
ing and construction. There are also (alongside these) all the pre-existing uses for
3D building models found in geo-spatial science and digital-media production.
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6.3 Key Insights

Finally the key take-home insights and conclusions are summarised.

• Geometric Logic over Stochastic Sampling - this is Computational Geom-
etry, rather than Computer Vision. There is still the requirement to mitigate
sensing-noise, however fundamentally the vital problem associated with pho-
togrammetry (recovering depth) has already been addressed. By operating
directly on actively-sensed point-clouds the key requirement is not to guess
where objects are but rather to effectively stitch together a sparse subset of
the input. Despite the fact random-sampling is exploited in most of the current
operators - this research points towards the fact that by omitting stochastic
processes - equivalent sparse geometric results can be produced in a frac-
tion of the time. This naturally leads to the next related insight.

• Determinism as a means to enable control of geometric topology and ensure
computational efficiency and algorithmic dependability and to ease both the
processes of development and performance-analysis. This thesis advocates
that within the domain of architectural reconstruction - principled determinism
is always preferable to stochastic guess-work. This is because principles can
be improved, implementations can be optimised, however random-strategies
fundamentally cannot be trivially controlled. This is the critical difference be-
tween this research and pre-existing sparse techniques. Every calculation,
every algorithmic decision, every construct and predicate is computed deter-
ministically. The proposed approaches are governed by logic. The imple-
mentations may be far from perfect, but the sheer fact that the methods CAN
be (and currently are being) enhanced demonstrates the versatility that is
still possible deterministically. The author is of the strong opinion that any re-
liance on random-sampling for architectural reconstruction from laser-scans,
is a step backwards. As a species we previously relied upon RANSAC based
paradigms due to the seeming complexity of the task. However with the con-
tinual advances in hardware and software patterns, the time has come to
alleviate ourselves from the burden of trying to enhance random strategies
- and focus on intuiting the fundamental logics that can be exploited to ad-
dress problems in architectural reconstruction. Beyond topological control -
another key benefit is limiting the exponential growth in execution time that is
commonly witnessed as a product of the size of (the number of points in) the
input laser scan. Determinism brings us closer to quasi-linear techniques -
which are becoming increasingly important as the scope of the applications
of active-sensing grow. Granted they may not be as simple to devise, how-
ever their behavioural benefits drastically out-weigh the burden/effort/load/-
cost of their development.

• Segmentation is the most critical stage (in terms of semantic correctness and
representational quality) for an automatic architectural reconstruction opera-
tor. This is because it feeds down to all subsequent processes and effectively
controls the arrangement of geometries in polygonisation. Excellent seg-
mentations yield excellent models. Poor segmentations yield poor models.
Although this may seem obvious when stated - it is not always immediately
apparent. The key challenge is that it is an ill-defined problem. Further still,
fundamentally one does not require a good segmentation to minimise geo-
metric error. For example dense-surface reconstruction yields accurate ge-
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ometries without even considering the input at a component level. Hence it is
not sufficient to simply consider the error associated with each segmentation
to quantify it’s quality. Whilst the maximal-area, minimum-primitives principle
(exploited for the airborne reconstruction) addresses this to an extent, there
is still the requirement for better performing high-level segmentation strate-
gies and quality measures. As such (alongside vectorisation) this stands as
one of the key areas of continued investigation.

• Exploitation of Dynamic Procedural Primitives (Data-Driven Generative Mod-
elling Functions) as a means to dramatically expand the expressive scope
of Library and Model based sparse building reconstruction paradigms. The
caveat being that this relies heavily upon fast error-functions.

• Automatic building modelling is not the same as surface-reconstruction. High-
quality models generally embody semantic meaning, reconstructed surfaces
generally do not. This calls for more novel generalised data-driven mod-
elling strategies, rather than refactored instances of the already well under-
stood approaches to implicit and explicit surface reconstruction. In other
words, within architectural modelling for visualisation and simulation one
should seek to limit the use of dense surface representations - opting rather
for error-bounded sparse, semantized representations.

• Input scan-quality (in terms of completeness, noise and mis-alignments) rep-
resents the key limiting factor in data-driven algorithms.

• Implementation in Hardware → in order to minimise time (turn-around) be-
tween scanning and geometric model generation - by enabling sparse 3D
preview in realtime (on-site) during scan acquisition process. This represents
the ultimate aim underlying the development of fast, accurate and sparse
data-driven methods. Currently, the process of producing architectural as-
sets from laser-scans is dominated by the time it takes to acquire the data
and the time taken to transform the points into high-quality 3D models. The
idea here is that if the time taken to reconstruct the points is negligible (near
real-time) it becomes feasible to run the reconstruction at the same time the
data is acquired. Essentially this would enable a surveying technician to in-
spect the reconstructed geometry generated from a laser-scan whilst they
are still on-site and (if necessary) to re-scan immediately in order to com-
bat issues such as occlusion - which would have the effect of minimising the
delay between the scanning process and the creation of digital CAD assets.

• Limit use of Constraining Domain-Specific Modelling Priors - such as com-
mon snapping angles, the manhattan assumption, ubiquitous planarity, fixed-
form regularity → in favour of loose/fuzzy/flexible data-driven logics. This
naturally leads to the last related insight.

• Requirement for Effective/Imaginative Data-Driven Reconstructive Methods
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Closing Thoughts / Concluding Remarks

The key aim of this research has been enabling automatic temporal updates to
city-scale architectural models driven by fast, accurate and sparse building model
reconstruction from airborne and ground laser-scans. In this regard, the develop-
ments presented move us closer to this aim. However, much still remains to be
addressed. These final statements consider the vital open problems that must be
resolved and the author’s views on the future direction of this research.

The greatest continued challenge is extending the ARROW algorithm to handle
partial and low-density ground scans. At present ARROW struggles to deal with
scans captured from large distances and its integral sub-component (SLADE)
could use significant improvement in terms of recovering irregular surface-elements.
Realistically the time frame for bringing the performance of ARROW up to a pro-
fessional standard may be several years. Nonetheless data-driven recovery of
compact, semantically rich facade models cannot be ignored - given that it is a
vital component of ACCRA - the automatic temporal update agent.

In terms of the immediate future - the key check-point for the airborne massing re-
construction is matching the geometric performance of human CAD technicians in
terms of model-quality and compactness. In this sense, this research has certainly
moved us closer to this goal and to an extent identified the constituent compo-
nents that are required. Although one could argue that the data-driven procedural
approach has certain vital benefits over the existing approaches, there are still as-
pects that limit its performance. This thesis documented the further investigations
that seek to address this. Essentially, although this research has demonstrated
the feasibility of efficient, accurate high-quality architectural asset creation driven
procedurally rather than via stochastic methods, practically the implementations
discussed represent a very early stage of development - and further research is
required to iron out the kinks in the currently employed ideologies.

Nonetheless, the key take-home message of this thesis is that fast, accurate and
sparse architectural reconstruction methods are not only possible, but in fact highly
practical. Ultimately it does not make sense to randomly guess, when by simply ap-
plying stable intuited insights about the nature of the built-environment, analogous
compact 3D building assets can be constructed in a fraction of the time. However,
more over (than the inherent limitations of sampling), procedurally driven strate-
gies (that construct semantically-rich representations) provide one crucial advan-
tage that is currently unmatched by the existing algorithms - they act as a basis for
the future of architectural reconstruction - the recovery of smart BIM models.

...

So ends this foray into the realm of architectural reconstruction.

All that remains is to acknowledge the supporting parties.
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Quick, Unconstrained, Approximate L-Shape Method
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Figure 1: Overview of the simple 2D shape approximation function - QUALM : (from left to right) the input points, the minimal area bounding
box, then reducing error by ’eating-away’ corners, and finally the output polygon (with alternative eat-away corner types illustrated below).

Abstract

This simple paper describes an intuitive data-driven approach to
reconstructing architectural building-footprints from structured or
unstructured 2D pointsets. The function is fast, accurate and un-
constrained. Further unlike the prevalent L-Shape detectors predi-
cated on a shape’s skeletal descriptor [Szeliski 2010], the method is
robust to sensing noise at the boundary of a 2D pointset.

Keywords: Shape Detection, Hough Transform, Eat-Away Hull

Concepts: •Computing methodologies→ Shape modeling;

1 Introduction and Motivation

The context of this work is the automatic recovery of clean (sparse)
architectural geometry from various types of laser scan. In particu-
lar this operator aims to recover compact building footprints - that
can be used for updating 2D-maps and for 3D urban modelling.

The method applies a simple observation about the nature of com-
mon rectilinear forms, in order to ’eat-away’ at a minimal-area
bounding box of a cluster of 2D points. One of the key benefits is
determinism. Each ’eat-away’ hull represents a repeatable product
of the input-points. Another key benefit is resolution independence,
since the method does not constrain the point-spacing of the input.

The approach executes in two stages (illustrated in fig.1). First it
computes the minimal area bounding box (MABB) of the input 2D
points. It then refactors each corner of the MABB by approximat-
ing the maximal inset edge-lengths, and injecting a corresponding
’eaten-away’ right-angled corner in place of the MABB vertex. The
appendix contains the implementation of the technique.

Measuring Geometric Error - Since this is a heuristic shape ap-
proximation method, it is vital to be able to measure the accuracy
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of each generated polygon relative to the input-points. For this
two measures are considered. A discrete maximum point-to-edge
distance and a continuous normalised shape-to-shape-overlap ratio.
They enable an automatic algorithm to quantify the geometric fit.

The Discrete Hausdorff-Distance Error Measure

f(A,B) = max(||Ai − (Bj , Bj+1)||) ∀i ∈ A : ∀j ∈ B

The Continuous Intersect-over-Union Error Measure

(A ∩B)/(A ∪B) > ω : ω ∈ [0 : 1]

2 Results

Figure 2: an example from the 50cm point-spacing London dataset
illustrating (from left to right) input-range-points, normals, dif-
ference of elevation building segment, resulting automatic l-shape
footprint (scan-converted boundary in gray, eat-away hull in blue)

Figure 3: Building footprints automatically recovered from 1m
point-spacing airborne range scans of the city of Bath, UK

Figure 4: Building footprints automatically recovered from 25cm
point-spacing airborne range scans of the city of Manchester, UK
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Appendix

This page presents the implemented ’eat-away’ function - used to automatically recover the building footprints illustrated in the results section.

function QUALM ( points, hull, min dist )→ Quick Unconstrained Approximate L-Shape Method

points - a set of unstructured or structured 2D points
hull - an optional dense extremal boundary hull for the input pointset (to speed up the hough-transform)
min dist - the minimum length of an edge in an eat-away-corner (a positive scalar to control the minimum inset size)
return value - a 2D polygon : a sequence of vertices representing the detected L-Shape, T-Shape or S-Shape (0-4 refactored corners)

ret← {}
quad← hough transform minimal area quad(hull ? hull : points)

for i← 0 : i < 4 do
min distance← minimum distance between point and polygon(quad[i], hull ? hull : points)
if min distance > min dist then

prev ← quad[i > 0 ? i− 1 : 3]
pos← quad[i]
next← quad[i < 3 ? i+ 1 : 0]

prev dx← posx − prevx
prev dy ← posy − prevy
next dx← nextx − posx
next dy ← nexty − posy
prev len← sqrt(prev dx× prev dx+ prev dy × prev dy)
next len← sqrt(next dx× next dx+ next dy × next dy)
prev ext← (prev len−min distance)/prev len
next ext← min distance/next len

prev half quad← {
prev,
pos,
vec2D(posx + next dx× next ext× 0.5, posy + next dy × next ext× 0.5),
vec2D(prevx + next dx× next ext× 0.5, prevy + next dy × next ext× 0.5)

}
next half quad← {

pos,
next,
vec2D(nextx − prev dx× (1− prev ext)× 0.5, nexty − prev dy × (1− prev ext)× 0.5),
vec2D(posx − prev dx× (1− prev ext)× 0.5, posy − prev dy × (1− prev ext)× 0.5)

}

prev points in half ← points inside polygon(points, prev half quad)
next points in half ← points inside polygon(points, next half quad)

prev min distance← distance to closest neighbour(pos, prev points in half)
next min distance← distance to closest neighbour(pos, next points in half)

if prev min distance > next min distance then
prev ext← (prev len− prev min distance)/prev len

else next ext← next min distance/next len
end if

new prev ← vec2D(prevx + prev dx× prev ext, prevy + prev dy × prev ext)
add(new prev, ret) ⊲ new prev
add(vec2D(new prevx + next dx× next ext, new prevy + next dy × next ext), ret) ⊲ new pos
add(vec2D(posx + next dx× next ext, posy + next dy × next ext), ret) ⊲ new next

else add(quad[i], ret)
end if
i++

end for

return ret
end function
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Figure 1: ARROW→ Accurate Railed Reconstruction of Openings and Walls : (left) input unstructured points, (middle) signed-distance-
field-split with segmented elements, (right) the output polygon-mesh (composed of a quad-dominant wall and railed surface-elements).

Abstract

This simple paper describes an intuitive data-driven approach to re-
constructing architectural facade models from unstructured point-
clouds. The algorithm presented yields sparse semantically-rich
models that are better suited to interactive simulation than the
equivalent dense-reconstructions, yet executes significantly faster
than the prevalent sparse-operators. The key advantages include
accuracy, efficiency and the ability to model irregular windows.

Keywords: laser scanning, LiDAR, architectural reconstruction,
procedural modelling, window detection, pointset segmentation

Concepts: •Computing methodologies→ Shape modeling; Ob-
ject detection; Reconstruction; Point-based models;

1 Introduction and Motivation

The aim this method is to recover compact 3D geometric mod-
els of facades that can be used within interactive visualisations
and simulations of the real-world. The key limitations of current
data-driven facade reconstruction methods are the quality of the
generated geometry, and the associated execution times [Musialski
et al. 2013]. However methods that exploit model-based templat-
ing strategies (although yielding cleaner meshes) are subject to the
loss of geometric accuracy and further are constrained by the prim-
itives present in the ’model-library’ or ’knowledge-base’ [Szeliski
2010]. In such cases it is common to exploit a 2D-split-logic repre-
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sentation of a facade and regularise windows and doors using ’snap-
line’ techniques [Müller et al. 2007]. Although this often works for
Manhattan-style facades, irregular facades (such as the church-face
in fig. 1), require data-driven algorithms. The key challenges in
facade-reconstruction are segmentation and polygonisation.

2 The Algorithm

The section presents the algorithm used to reconstruct the facade in
figure 1 and those illustrated in the results. The steps are simple:

Figure 2: Key stages in ground facade reconstruction - (left to
right): input unstructured point-cloud, signed-distance-field split,
segmented surface-element rails, and the resultant facade model.

Figure 3: Intermediary data exploited by the ARROW algorithm
to produce the result displayed in figure 1 - illustrating (from left
to right, top to base) quantized wall-point filter response, binary
division resulting from the SDF-split (wall-points in gray, deviant-
points in blue), KD-tree used to ’chunk’ sets of deviant points, con-
nected component clusters extracted from KD-tree chunks, railed
surface-element models, and finally quad-dominant wall model.

The key idea is to efficiently slice each facade into two sets of points
(one containing facade points the other containing salient feature
points). Then to cluster each locale of salient points based on con-
nectivity (disjointness). To ensure efficient point-location queries



the operator exploits a simple AABB spatial optimisation and a KD
tree space partitioning. Figures 2 and 3 illustrate the key stages and
the intermediary data used by the operator. The following pseudo-
code seeks to clarify the lower-level behavioural characteristics.

ARROW→ Accurate Railed Reconstruction of Openings & W alls

function RECONSTRUCT(pointset, sdf offset)

p← pointset
d← sdf offset
if (p ≡ null|p.points ≡ null|p.points.length = 0) then

return null;
end if
sdf split← signed distance field split(p, d)
wall points← sdf split[0]
deviant points← sdf split[1]
elem clusters← connected comps(deviant points)
elems← {}
for ptset : elem clusters do

se← railed surface element(ptset)
if se 6= null then

elems.add(se);
end if

end for
wall mesh← sparse cutout wall(wall points, elems)
merged elems← surface elements to mesh(elems)
facade← {wall mesh,merged elems}
return facade

end function

Two key insights enable the efficient recovery of sparse-geometry.
Foremost the operator uses polygon clipping and 3D-sweeps in or-
der to control the topology of facade models. Further by localising
on each facade’s wall, the operator can project the 3D points onto a
2D plane to speed up the process of extracting vector profiles.

3 Results

This section presents early qualitative results of the algorithm.

Figure 4: Facades segmented and reconstructed by the algorithm

Figure 5: Comparing the topology of volumetric reconstruction us-
ing the regular arrangement of planes (left) to the algorithm (right)

3.1 Further Research

In terms of the future, there are still vital problems to address to
enhance the performance and utility of this reconstruction operator.
This final section outlines some of the key further challenges.

Surface-Element Reconstruction - boils down to automatically
resolving procedural split logics in order to enable data-driven mod-
elling of segmented window clusters using sets of generalised cylin-
ders. Figure 6 illustrates a formal representation suitable for this.

Figure 6: an abstract formal representation of a window - suitable
for data-driven reconstruction and model-based template fitting

Non-Planar and Curved-Facades present tricky cases for the op-
erator. This is largely due to the sensitivity of the binary-split. This
is because it requires a precise wall-representation which is more
expensive to recover and manipulate in the case of curved facades.

Multi-Modal Reconstruction: Merging Aerial & Ground Scans

would enable the automatic reconstruction (and temporal-update)
of complete (mass and surface-detail) sparse city-scale models.
This is the current focus of continued research - figure 7 illustrates.

Figure 7: further investigations - automatically merging multiple
sources of laser scan for complete building reconstruction
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Input: 5Km2 at 1ppm = 25,000,000 points.
Process: segment → vectorise → extrude.
Geometric Error Tolerance: ±2.0m.
Runtime: 23.956 seconds (on 2.3GHz i7).
Output: 506,435 vertices, 394,964 triangles.
Compression-Factor: 0.0202574 (≈ 2%).
Input Size on Disk: 294.7MB (.asc dsm+dtm).
Output Size on Disk: 11.2MB (as binary .ply).
Throughput: ≈ 1.04 million points per second.

Figure 1: input (left) and output (right) of the technique discussed - depicting (left) DSM range-scan and (right) results and 3D models.
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Keywords: Architectural Reconstruction, Active Sensing, Point
Cloud Processing, Laser-Scanning, Geometry Processing, Image
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Abstract

This short article discusses an internal research project under-
taken at Cityscape-Digital in February of 2017 to determine the
feasibility of automatically constructing compact 3D building
models from airborne laser-scans for use in rendering and anima-
tion projects. Essentially this article outlines an efficient method
of reconstructing architectural contextual massing models from
off-the-shelf open-access digital elevation models (DEMs), and
documents the outcomes of the investigation, noting both the
advantages and limitations of the approach.

1 Introduction

This section outlines the aims and objectives of the work.

• Accuracy - Geometric Precision

• Efficiency - Speedy Execution

• Compact - Sparse (Lightweight) Models

• Scalable - Linear-Runtime-Growth

• Reliable - Deterministic (Repeatability)

2 Background and Context

Within AEC (architecture, engineering and construction) 3D
point-clouds provide a basis for comparing as built environ-
ments to design plans. Further they can be used to create

virtual 3D city-models of physical regions. Such point clouds
can be acquired through photogrammetry (image-inversion) or
laser-scanning (active-depth-sensing). This work relates to ac-
tive depth sensing. Now although photographic data is more
widely available - it is often difficult to quantify the geomet-
ric accuracy of photogrammetrically derived models relative to
the real-world. On the other hand, whilst laser-scans provide
greater accuracy - they can be more computationally expensive
to process. For more information see [1] and [2].

3 Implementation

The implementation of the automatic extrusion extractor is in-
credibly simple and involves the following three operations:

• Segment - Difference-of-Elevation-Models.

• Vectorise - Scan-Conversion and Polygon Simplification.

• Extrude - Linear-Search to determine elevated heights.

4 Discussion

The automatic method is fast, accurate and reasonably sparse.
However model quality could be improved. One way to address
this is with post-execution human validation (see figure 2).

Figure 2: Improving model quality with
efficient post-execution human validation.
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Chapter 8

Appendix

• DEV : Detector for Engineering Variance

• MAMMAL : Maximal-Area Mass Modeling of Airborne LiDAR

• GRAILS : Graph-Railed Aproximate Interior Linear Spine

• QUALM : Quick Unconstrained Approximate L-Shape Method

• MARS : Maximal Area Roofshape Segmentation

• ARROW : Accurate Railed Reconstruction of Openings and Walls

DEV Algorithm

Detector for Engineering Variance

This section presents the implementation of the semantic change detector’s vari-
ance classifier in an abstract programming language akin to Java.

1: function CLASSIFYUPDATEOPERATOR(
Geometry a, Geometry b,
double[] t, double dmax, double emax)

2:

3: /* check input and non-parametric operations */

4: if (a == null && b == null) return − 1;
5: if (a == null) return 0; // construct

6: if (b == null) return 1; // remove

7:

8: /* volumetric object representations constructed

9: from each object’s original cluster pointset */

10: V olume old vol = new V olume(a.pts);
11: V olume new vol = new V olume(b.pts);
12:

13: /* set operator geometries used by

14: the pairwise deviance predicates */

15:

16: /* the exclusive disjunction of the old and new */
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17: V olume xor = new V olume(old vol);
18: xor.exclusiveOr(new vol);
19: /* the intersection of the old and new */

20: V olume its = new V olume(old vol);
21: its.intersect(new vol);
22: /* the union of the old and new */

23: V olume uni = new V olume(old vol);
24: uni.add(new vol);
25:

26: /* check if the objects are already congruent */

27: double er = meanError(a.pts, b.pts);
28: double nm = its.mass()/uni.mass();
29: boolean equiv = (er < dmax && nm < 1− emax);
30: if (equiv) return 2; // congruent

31:

32: /* determine error for the transform operation */

33: double err = meanError(transform(a.pts, t), b.pts);
34: if (err < dmax && err < er) return 3; // position

35:

36: /* check the ratio of congruence to deviance -

37: if deviance dominates automatically replace */

38: double xa = xor.mass();
39: double ia = its.mass();
40: if (xa/ia ≥ 1) return 6; // replace

41:

42: /* exclusive disjunction is less than the intersection -

43: check extent to which the change is characterised

44: by either increase or decrease (monotype measure) */

45:

46: /* the reduction regions: old - new */

47: V olume neg = new V olume(old vol);
48: neg.subtract(new vol);
49: /* the extension regions: new - old */

50: V olume pos = new V olume(new vol);
51: pos.subtract(old vol);
52:

53: /* if the mass decreasing contribution to deviance

54: is less than emax - then extend the old object */

55: double na = neg.mass();
56: if (na/xa ≤ emax) return 4; // extend

57:

58: /* if the mass increasing contribution to deviance

59: is less than emax - then reduce the old object */

60: double pa = pos.mass();
61: if (pa/xa ≤ emax) return 5; // reduce

62:

63: /* unclassifiyable deviances must be replaced */

64: return 6; // replace

65: end function
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MAMMAL Algorithm

Maximal Area Mass Model Airborne LiDAR

1: function RECONSTRUCT(
dsm, dtm,maxfoot err,maxroof err,min iou,min bh, foot ar, roof ar,max var, sc)

dsm - a digital elevation model range image of the surface of the region to be reconstructed
dtm - a digital elevation model range image of the terrain of the region to be reconstructed
maxfoot err - max footprint simplification error tolerance between dense and sparse vectors in meters
maxroof err - max roofshape simplification error tolerance between dense and sparse vectors in meters
min iou - the minimum intersection over union ratio for the interior shape overlap measure in the range [0:1]
min bh - the minimum height of building in meters : for DoEM segmentation
foot ar - the minimum footprint surface-area of a building in meters2 : for DoEM segmentation
roof ar - the minimum desired roofshape surface-area in meters2 : used by MARS
max var - the maximum local variance between points belonging to the same region : used by MARS
sc - the model selection criteria to use in ranking of candidate masses : an unsigned scalar
return value - a set of mass-models representing the set of buildings extracted from the input dsm

2: /* segment the buildings in the input dsm using the difference of elevations */
3: doem← dsm− dtm
4: sliced← threshold(doem,min bh)
5: cc← connected components(sliced, dsmw, dsmh)
6: cc← filter(cc, foot ar,max var)
7: /* for each segmented building - maximal area segment and model it’s mass */
8: models← {}
9: for all c : cc do

10: densefoot← linear boundary edge traverse(c)
11: sparsefoot← simplify(densefoot,maxfoot err)
12: segments← max area segment(c, roof ar,max var)
13: denseroofs← linear internal edge traverse(segments)
14: sparseroofs← {}
15: if ensure watertight then
16: sparseroofs← graph refine(denseroofs,maxroof err)
17: else
18: for all p : denseroofs do
19: rs← simplify(p,maxroof err)
20: add(rs, sparseroofs)
21: end for
22: end if
23: project = project 2D 3D(sparseroofs, c,maxroof err)
24: errors = depth buffer XZ(project, c)
25: if allow parametrics then /* deterministically optimise the building’s mass-model */
26: param← optimise(c, sparsefoot, sparseroofs,maxfoot err,maxroof err,min iou)
27: paramerror ← depth buffer XZ(param, c)
28: if abs err(paramerror) ≤ maxroof err then
29: add(param,models)
30: else add(project,models)
31: end if
32: else add(project,models)
33: end if
34: end for
35: return models
36: end function
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GRAILS Algorithm

Graph Refined(/Railed) Approximate Interior Linear Spine

1: function SPINE ( polygon, resolution step )

polygon - an input 2D vertex-list of a simple polygon
resolution step - the discretisation step for the MAT
return value - a 2D vertex-list of an open polyline spine

2: keypoints← medial axis critical points(
polygon, resolution step)

3: path← maximum length graph path(keypoints)
4: return path
5: end function

1: function MEDIAL AXIS CRITICAL POINTS (
polygon, resolution step )

polygon - an input 2D vertex-list of a simple polygon
resolution step - the discretisation step for the MAT
return value - a set of objects of type CritcalPoint

2: shape← polygon
3: step← resolution step
4: bounds← bounding box(shape)
5: bx← boundsx, by ← boundsy
6: bw ← boundswidth, bh← boundsheight

7: icells← int(bw/step) + 2
8: jcells← int(bh/step) + 2
9: grid← int[icells× jcells]
10: jj ← 0
11: for j ← by : j < by + bh do
12: ii← 0
13: for i← bx : i < bx + bw do
14: p← vec2D(i, j)
15: if polygon contains(px, py, shape) then
16: closest edge id← index of polygon ...

...edge closest to point(shape, p)
17: grid[ii + jj × icells]← (closest edge id + 1)
18: end if
19: i← (i + step)
20: ii + +
21: end for
22: j ← (j + step)
23: jj + +
24: end for
25: keypoints← vector < CriticalPoint > {}
26: for j ← 0 : j < jcells do
27: nj ← (j + 1 < jcells)
28: for i← 0 : i < icells do
29: ni← (i + 1 < icells)
30: v ← grid[i + j × icells]
31: ids← {
32: grid[i + j × icells],
33: ni ? grid[i + 1 + j × icells] : −1,
34: nj ? grid[i + (j + 1)× icells] : −1,
35: (ni : nj) ? grid[i + 1 + (j + 1)× icells] : −1
36: }
37: if count unique over zero(ids) ≥ 3 then
38: point← vec2D(bx + (i + 1)×

step, by + (j + 1)× step)
39: edge distance← minimum distance ...

...between point and polygon(point, shape)
40: cp← CriticalPoint(point, ids, edge distance)
41: add(cp, keypoints)
42: end if
43: i + +
44: end for
45: j + +
46: end for
47: keys← keypoints
48: /* compute sibling relationships for all CriticalPoints */
49: for e← 0 : e < |keys| do
50: for c← 0 : c < |keys| do
51: if e 6= c : keys[e]→ is sibling(keys[c]) then
52: /* print sibling detected debug message */
53: end if
54: c + +

55: end for
56: e + +
57: end for
58: return keypoints
59: end function

1: function MAXIMUM LENGTH GRAPH PATH ( keypoints )

keypoints - a set of objects of type CriticalPoint
return value - a 2D vertex-list of an open polyline spine

2: max length← 0
3: max ids← null
4: temp← 0
5: for i← 0 : i < |keypoints| do
6: keypoints[i].id← i
7: keypoints[i]→ compute sibling distances()
8: i + +
9: end for
10: for i← 0 : i < |keypoints| do
11: for c← 0 : c < |keypoints| do
12: if i 6= c then
13: path ids = shortest graph path between(

i, c, keypoints)
14: temp← length of graph path(

path ids, keypoints)
15: if temp > max length then
16: max length← temp
17: max ids← path ids
18: end if
19: end if
20: c + +
21: end for
22: i + +
23: end for
24: if max ids 6= null then
25: ret← vec2D[|max ids|]
26: for i← 0 : i < |ret| do
27: ret[i]← keypoints[max ids[i]].point
28: i + +
29: end for
30: return ret
31: end if
32: return null
33: end function

1: function LENGTH OF GRAPH PATH ( path ids, keypoints )

path ids - a set of integer indexes into the keypoints set
keypoints - a set containing objects of type CriticalPoint
return value -

2: sum← 0
3: for i← 0 : i < |path ids| − 1 do
4: p← keypoints[path ids[i]]
5: n← keypoints[path ids[i + 1]]
6: d← (p→ distance to sibling with ID(n.id))
7: sum← (sum + d)
8: i + +
9: end for
10: return sum
11: end function

1: function SHORTEST GRAPH PATH BETWEEN (
aid, bid, keypoints )

aid - an integer index of the starting CriticalPoint
bid - an integer index of the end CritialPoint
keypoints - a set containing objects of type CriticalPoint
return value - a sequence of integer indexes into keypoints

2: if |keypoints| ≥ 3 then
3: len← |keypoints|



4: for i← 0 : i < len do
5: keypoints[i].id← i
6: i + +
7: end for
8: to visit← vector < Node > {}
9: ret← vector < int > {}
10: for i← 0 : i < len do
11: add(nodes[i], to visit)
12: end for
13: node← nodes[aid]
14: node.distance to source← 0
15: node.parent← aid
16: while ! is empty(to visit) do
17: u← closest to source(to visit)
18: remove(u, to visit)
19: for i← 0 : i < |u.neighbours| do
20: v ← nodes[u.neighbours[i]]
21: d← u.distance to source +

(u→ distance to neighbour with ID(v.id))
22: if d < v.distance to source then
23: v.distance to source← d
24: v.parent← u.id
25: end if
26: i + +
27: end for
28: end while
29: node← nodes[bid]
30: while node.id 6= aid : node.parent ≥ 0 do
31: add(node.id, ret)
32: node = nodes[node.parent]
33: end while
34: add(aid, ret)
35: return reverse(ret)
36: else if |keypoints| == 2) then return int[] {0, 1}
37: else if |keypoints| == 1) then return int[] {0}
38: else return int[] {}
39: end if
40: end function

1: function CLOSEST TO SOURCE ( nodes )

nodes - a set of objects of type Node
return value - a reference to an object of type Node

2: closest distance←∞
3: closest id← −1
4: temp← 0
5: for i← 0 : i < |nodes| do
6: temp← nodes[i].distance to source
7: if temp ≤ closest distance then
8: closest id← i
9: closest distance← temp
10: end if
11: i + +
12: end for
13: return nodes[closest id]
14: end function

1: function COUNT UNIQUE OVER ZERO ( vals )

vals - a set of integer values
return value - count of unique values greater than zero

2: temp← vector < int > {}
3: for i← 0 : i < |vals| do
4: if vals[i] > 0 : !contains(temp, vals[i]) then
5: add(vals[i], temp)
6: end if
7: i + +
8: end for
9: return |temp|
10: end function

1: function INDEX OF POLYGON EDGE CLOSEST TO POINT (
polygon, point )

polygon - a 2D vertex-list of a simple polygon
point - a 2D vertex
return value -

2: min distance←∞
3: min id← −1
4: len← |polygon|
5: for i← 0 : i < len do
6: p1← polygon[i]
7: p2← polygon[(i + 1)%len]
8: d← distance between line and point(

p1x, p1y, p2x, p2y, pointx, pointy)
9: if d ≤ min distance then
10: min id← i
11: min distance← d
12: end if
13: i + +
14: end for
15: end function

1: function MIN DISTANCE BETWEEN POINT AND POLYGON (
point, polygon )

point - a 2D vertex
polygon - a 2D vertex-list of a simple polygon
return value - an positive scalar distance

2: p← point
3: len← |polygon|
4: min distance←∞
5: pos, next, distance
6: for i← 0 : i < len do
7: pos← polygon[i]
8: next← polygon[(i + 1)%len]
9: distance← distance between line and point(

posx, posy, nextx, nexty, px, py)
10: if distance < min distance then
11: min distance← distance
12: end if
13: i + +
14: end for
15: return min distance
16: end function

1: function DISTANCE BETWEEN LINE AND POINT (
vx, vy, wx,wy, px, py )

vx, vy - line start x, line start y
wx,wy - line end x, line end y
px, py - point x, point y
return value -

2: len1← sqrt((vx−wx)×(vx−wx)+(vy−wy)×(vy−wy))
3: l2← len1× len1
4: if l2 == 0 then return
5: sqrt((px− vx)× (px− vx) + (py − vy)× (py − vy))
6: end if
7: t← ((px− vx)× (wx− vx) + (py − vy)× (wy − vy))/l2
8: if t < 0.0 then return
9: sqrt((px− vx)× (px− vx) + (py − vy)× (py − vy))
10: else if t > 1.0 then return
11: sqrt((px−wx)× (px−wx) + (py−wy)× (py−wy))
12: end if
13: rx← vx + t× (wx− vx) /* extent position x */
14: ry ← vy + t× (wy − vy) /* extent position y */
15: return sqrt((px− rx)× (px− rx)+ (py− ry)× (py− ry))
16: end function

1: CriticalPoint

state - /* the variables declared in each CriticalPoint */

2: point : vec2D
3: ids : int[]
4: distance : double
5: id← −1 : int
6: siblings← {} : vector < CriticalPoint >
7: sibling distances : double[]

operations - /* the set of functions defined for each instantiated Crit-
icalPoint - each is an instance function (such that it operates on the
object reference on which it is invoked) */



8: CriticalPoint() {} ⊲ default-constructor
9: CriticalPoint(p, i, d) { ⊲ key-constructor

point← p, ids← i, distance← d
}

10: is sibling(b) { ⊲ returns boolean
if siblings→ contains(b) then return true end if

count← 0, encountered← vector < int > {}
for i← 0 : i < |ids| do for c← 0 : c < |b.ids| do

if ids[i] == b.ids[c] : !encountered.contains(ids[i])
then count + +, add(ids[i], encountered) end if

c + + end for i + + end for

if count ≥ 2 then

if !(siblings→ contains(b)) then

add(b, siblings) end if

if !(b.siblings→ contains(this)) then

add(this, b.siblings) end if

return true
end if

return false
}

11: compute sibling distances() { ⊲ returns void
sibling distances← double[|siblings|]
for i← 0 : i < |siblings| do

sibling distances[i]← ||(point− siblings[i].point)||
i + + end for

}
12: distance to sibling width ID(sid) { ⊲ returns double

for i← 0 : i < |sibling distances| do
if sid == siblings[i].id then

return sibling distances[i] end if

i + + end for

return − 1 /* it is not a sibling */
}

1: Node

state - /* the set of variables declared within each Node */

2: id← −1 : int
3: parent← −1 : int
4: distance to source← −1 : double
5: visited← false : boolean
6: neighbours← {} : vector < int >
7: neighbour distances : double[]

operations - /* the set of functions defined for each instantiated Node
- each is an instance function (such that it operates on the object
reference from which it is invoked) */

8: Node() {} ⊲ default-constructor
9: Node(id in, source) { ⊲ key-constructor

id← id in
for i← 0 : i < |source.siblings| do

add(source.siblings[i].id, neighbours)
i + + end for

neighbour distances← source.sibling distances
}

10: distance to neighbour with ID(nid) { ⊲ returns double
for i← 0 : i < |neighbours| do

if nid == neighbours[i] then
return neighbour distances[i] end if

i + + end for

return − 1 /* it is not a neighbour */
}



APPENDIX

QUALM Function

Quick Unconstrained Approximate L-Shape Method

1: function APPROXIMATE ( points, hull, min dist )

points - a set of unstructured or structured 2D points
hull - an optional dense extremal boundary hull for the input pointset (to speed up the hough-transform)
min dist - minimum length of an edge in an eat-away-corner (a positive scalar to control the min inset size)
return value - a 2D polygon : a sequence of vertices representing the detected L-Shape, T-Shape or S-Shape

2: ret← {}
3: quad← hough transform minimal area quad(hull ? hull : points)
4:
5: for i← 0 : i < 4 do
6: min distance← min distance between point and polygon(quad[i], hull ? hull : points)
7: if min distance > min dist then
8: prev ← quad[i > 0 ? i− 1 : 3]
9: pos← quad[i]
10: next← quad[i < 3 ? i + 1 : 0]
11:
12: prev dx← posx − prevx
13: prev dy ← posy − prevy
14: next dx← nextx − posx
15: next dy ← nexty − posy
16: prev len← sqrt(prev dx× prev dx + prev dy × prev dy)
17: next len← sqrt(next dx× next dx + next dy × next dy)
18: prev ext← (prev len−min distance)/prev len
19: next ext← (next len−min distance)/next len
20:
21: prev half quad← {
22: prev,
23: pos,
24: vec2D(posx + next dx× next ext× 0.5, posy + next dy × next ext× 0.5),
25: vec2D(prevx + next dx× next ext× 0.5, prevy + next dy × next ext× 0.5)
26: }
27: next half quad← {
28: pos,
29: next,
30: vec2D(nextx − prev dx× (1− prev ext)× 0.5, nexty − prev dy× (1− prev ext)× 0.5),
31: vec2D(posx − prev dx× (1− prev ext)× 0.5, posy − prev dy × (1− prev ext)× 0.5)
32: }
33:
34: prev points in half = points inside polygon(points, prev half quad)
35: next points in half = points inside polygon(points, next half quad)
36:
37: prev min distance = distance to closest neighbour(pos, prev points in half)
38: next min distance = distance to closest neighbour(pos, next points in half)
39:
40: if prev min distance > next min distance then
41: prev ext← (prev len− prev min distance)/prev len
42: else next ext← next min distance/next len
43: end if
44:
45: new prev ← vec2D(prevx + prev dx× prev ext, prevy + prev dy × prev ext)
46: /* add new-prev, new-pos and new-next */
47: add(new prev, ret)
48: add(vec2D(new prevx + next dx× next ext, new prevy + next dy × next ext), ret)
49: add(vec2D(posx + next dx× next ext, posy + next dy × next ext), ret)
50:
51: else add(quad[i], ret)
52: end if
53: i + +
54: end for
55:
56: return ret
57: end function



APPENDIX

MARS Function

Maximal Area Roofshape Segmentation

1: function MAXIMAL AREA ROOFSHAPE SEGMENT (

dsm, a digital-surface-model airborne range scan
dtm, a digital-terrain-model airborne range scan
min bh, the minimum height of a building in meters
min fa, the minimum footprint area in m2

min ra, the minimum mean roofshape area in m2

max dist, the maximum mean point-to-plane
distance for a stable roofshape component

max local var, the max local variance between
neighbouring points within a roofshape

nc iter the maximum number of iterations for
which the algorithm will ’cancel-noise’ by
suppressing small non-conformal roofshapes

return value: an integer grid with the same dimensions as the input DEMs - containing labelled IDs for the
roofshapes in each building - such that IDs greater than zero map (sequentially) to individual roofshapes

2: doem← dsm− dtm
3: mask ← threshold(doem,min bh)
4: cc← connected component(mask, dsmW , dsmH)
5: cc← filter gt(cc,min fa)
6: elems← clusters(cc, dsm, dtm, doem)
7: ret← {}
8: print(′connected components : ′ + str(|elems|))
9: for i← 0 : i < |elems| do
10: rs← label graph regions(

elemsi,
max dist,max local var,

)
11: rmax← maximise areas(rs,min ra)
12: rmean← mean area(rs)
13: s← 0
14: while rmean < min ra : s < nc iter do
15: rmax← suppress non conformals(

rmax,min ra, elemsi
)

16: rmean← mean area(rmax)
17: s + +
18: end while
19: add(rmax, ret)
20: end for
21: return mask from segments(dsmW , dsmH , ret)
22: end function
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APPENDIX

ARROW Algorithm

Accurate Railed Reconstruction of Openings & Walls

1: function RECONSTRUCT(pointset, sdf offset)

2: p← pointset
3: d← sdf offset
4: if (p ≡ null|p.points ≡ null|p.points.length = 0) then
5: return null;
6: end if
7: sdf split← signed distance field split(p, d)
8: wall points← sdf split[0]
9: deviant points← sdf split[1]

10: elem clusters← connected comps(deviant points)
11: elems← {}
12: for ptset : elem clusters do
13: se← railed surface element(ptset)
14: if se 6= null then
15: elems.add(se);
16: end if
17: end for
18: wall mesh← sparse cutout wall(wall points, elems)
19: merged elems← surface elements to mesh(elems)
20: facade← {wall mesh,merged elems}
21: return facade
22: end function
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