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Abstract

Vehicular networks have been identified as a key enabler for future smart traffic ap-
plications aiming to improve on-road safety, increase road traffic efficiency, or provide
advanced infotainment services to improve on-board comfort. However, the require-
ments of smart traffic applications also place demands on vehicular networks’ quality
in terms of high data rates, low latency, and reliability, while simultaneously meeting
the challenges of sustainability, green network development goals and energy efficiency.
The advances in vehicular communication technologies combined with the peculiar
characteristics of vehicular networks have brought challenges to traditional networking
solutions designed around fixed parameters using complex mathematical optimisation.
These challenges necessitate greater intelligence to be embedded in vehicular networks
to realise adaptive network optimisation. As such, one promising solution is the use
of Machine Learning (ML) algorithms to extract hidden patterns from collected data
thus formulating adaptive network optimisation solutions with strong generalisation
capabilities

In this thesis, an overview of the underlying technologies, applications, and charac-
teristics of vehicular networks is presented, followed by the motivation of using ML
and a general introduction of ML background. Additionally, a literature review of ML
applications in vehicular networks is also presented drawing on the state-of-the-art of
ML technology adoption. Three key challenging research topics have been identified
centred around network optimisation and ML deployment aspects.

The first research question and contribution focus on mobile Handover (HO) optimisation
as vehicles pass between base stations; a Deep Reinforcement Learning (DRL) handover
algorithm is proposed and evaluated against the currently deployed method. Simulation
results suggest that the proposed algorithm can guarantee optimal HO decision in a
realistic simulation setup.

The second contribution explores distributed radio resource management optimisation.
Two versions of a Federated Learning (FL) enhanced DRL algorithm are proposed and
evaluated against other state-of-the-art ML solutions. Simulation results suggest that
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the proposed solution outperformed other benchmarks in overall resource utilisation
efficiency, especially in generalisation scenarios.

The third contribution looks at energy efficiency optimisation on the network side
considering a backdrop of sustainability and green networking. A cell switching algorithm
was developed based on a Graph Neural Network (GNN) model and the proposed energy
efficiency scheme is able to achieve almost 95% of the metric normalised energy efficiency
compared against the “ideal” optimal energy efficiency benchmark and is capable of being
applied in many more general network configurations compared with the state-of-the-art
ML benchmark.
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Chapter 1

Introduction

Road transportation is part of the indispensable foundation of modern human activities.
It accounts for up to 12% of the Gross Domestic Product (GDP) and 15% of average
household expenditures in many developed countries, with people spending about 8% or
approximately two hours of their workday, commuting to and from work [1]. However,
with the rapid growth in the number of vehicles over the last half a century and 60
million car sales annually (2005 to 2020) [2]. This has led to the saturation of road
infrastructures especially in urban areas, causing traffic congestion, delays, and road
accidents that now raise serious socioeconomic issues. Traffic congestion and delays
cause work efficiency reduction and an increase in air pollution, while road accidents
lead to injuries and even death [3, 4].

The World Health Organisation statistics show that road traffic crashes cause 1.35
million lives lost every year, with another 20 to 50 million people suffering non-fatal
injuries and disabilities because of these accidents [5]. Road traffic accidents are now
the 8th largest cause of death for people of all ages and the number one cause of death
for children and young adults [6]. Moreover, the overall economic impact of road crashes
was estimated to be $518 billion globally, accounting for up to 5% of the GDP in some
countries [7].

In addition to traffic accidents, the congestion aspect of road traffic is also giving rise
to concerns as the median annual time loss in over 400 cities worldwide was found to
be 48 hours, with the most congested cities such as Istanbul losing up to 142 working
hours annually due to road congestion[8]. This congestion not only affects the mental
health of the road traffic commuters but also brings an unquantified economical loss
due to its impact on the overall work efficiency of the society [9, 10].

From a global climatic standpoint, road transport is a major contributor to climate

1
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change accounting for up to two thirds (65%) of the Carbon Dioxide (CO2) emissions for
the whole transportation sector in the first decade of 21th century [11]. Such statistics
are worsened when the average travelling speed is reduced by traffic congestion, further
exacerbated by the stop-and-go pattern of road vehicles thus increasing vehicles’ energy
consumption and hence the emission of CO2 and contributing to climate change [12].

All these challenges have motivated governments and motor manufacturers to explore
smart transportation systems to increase road traffic safety, improve efficiency, and
reduce the impact of the above statistics on their economies using intelligent traffic
management applications such as adaptive traffic-signal control, traffic route planning,
and driving automation [1]. Furthermore, the development of road traffic systems also
introduces the opportunity for new service requirements to boost onboard comfort
and infotainment experiences leading to new applications such as real-time navigation
updates, high-resolution video streaming, online gaming, etc [13]. To support these
applications, it becomes essential to utilise use case-dependent information distributed in
the transportation system combined with transport-centric cloud servers, necessitating
the sharing of information from various data sources such as vehicles, road traffic control
infrastructure, and street-side furniture [14].

1.1 Context

As onboard sensors and sensing equipment become more comprehensive, vehicles now
have improved awareness of the surrounding environment and thus become an important
information source. As a result, vehicular networks are now critical to future smart
transportation by integrating road vehicles with other communication entities such
as traffic lights and mobile phones for useful information exchange [7]. Note that
vehicular networks refer to networks among vehicles and between vehicles and external
devices in this thesis, excluding intra-vehicle networks. Vehicular networks consist of
various communication types such as V2V, Vehicle-to-infrastructure (V2I), V2N, or
Vehicle-to-pedestrian (V2P) communications, based on the target entity to communicate.
Together, these communication types are referred to as Vehicle-to-everything (V2X)
communications exemplified in Figure 1.1.

The figure shows exemplar applications enabled by different V2X communication
links, such as the safety-related applications of collision avoidance messaging among
vehicles via V2V and safety alerts from vehicles to pedestrians through V2P. Non-safety
applications can be classified as traffic utility or infotainment applications, consisting of
real-time road traffic monitoring and smart traffic light control enabled by V2I between
vehicles and road infrastructure such as traffic lights, and on-board access to cloud-based
services (e.g. video streaming) from a BS or access point via V2N, respectively [15, 16].
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Vehicle-to-network (V2N):
e.g. accessing cloud services

Vehicle-to-pedestrian (V2P):
e.g. safety alerts to pedestrians, cyclists, etc. 

Vehicle-to-vehicle (V2V): 
e.g. collision avoidance messaging

Vehicle-to-infrastructure (V2I):
e.g. smart traffic signal control

Vehicle-to-network (V2N):
e.g. accessing cloud services

Vehicle-to-pedestrian (V2P):
e.g. safety alerts to pedestrians, cyclists, etc. 

Vehicle-to-vehicle (V2V): 
e.g. collision avoidance messaging

Vehicle-to-infrastructure (V2I):
e.g. smart traffic signal control

Figure 1.1: A demonstrative V2X scenario with different communication types. Other
communication types that do not contain vehicles are omitted, e.g., infrastructure-to-
pedestrian and pedestrian-to-network.

These connections predominantly rely on wireless technology which is managed by the
underlying physical connection method termed Radio Access Technologys (RATs). For
vehicular networks, the Dedicated Short-range Communication (DSRC) protocol has
been considered the predominant RAT protocol since 2010 providing highly reliable
and secure communication links focusing on safety applications [17]. However, DSRC
has some major drawbacks such as its short transmission distance of 300 m, the
requirement for dedicated roadside units, and limited radio bandwidth of 75 MHz [18].
With the evolution of cellular network standardisation, Cellular Vehicle-to-everything
(C-V2X) was introduced in the cellular Long-term Evolution (LTE) standards with
major advantages over DSRC such as providing wider coverage and higher capacity, and
utilisation of existing cellular infrastructure [18, 19]. Despite these advantages, C-V2X
also has some drawbacks compared with DSRC, such as higher costs for consumers
and the already heavy traffic loads that may affect V2X service delivery. As the Fifth
Generation (5G) of cellular networks roll out globally, the better designed 5G C-V2X
has gained increased attention from both academia and industry, 5G will probably
be the mainstay technology to implement V2X communication networks [20–23]. An
example of improvement by 5G can be shown by a recent research’s evaluation that 5G
C-V2X can improve the reliability by 20% for resource allocation over its predecessor
with other improvements [24]. As a result, C-V2X is selected as the underlying protocol
for the research work of this thesis.

In contrast to existing mobile phone connections, a defining characteristic of vehicular
networks is the vehicles’ fast-moving speed and thus continuous position changes. This
leads to short connection time between the vehicle node and its paired connection link
(such as a static-positioned BS and another vehicle node), requiring frequent yet reliable
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establishment and termination of these communication links. Additionally, vehicular
network environments also contain multiple environmental scenarios such as motorways
and urban street blocks that contain specific radio environment characteristics (e.g.
losses, reflections, and fading) and vehicular mobility patterns. These environments
may also encounter radio path loss uncertainty due to temporary obstacles appearing
and blocking possible routing paths, e.g., a dense metal truck passing between two
civilian cars who are communicating via V2V, further complicating the communication
link management in vehicular networks.

V2X communication networks, with their corresponding applications, have stringent
and differentiated Quality of Service (QoS) requirements. For instance, the essential
safety messaging utilising V2V demands ultra-reliability and very low latency, while
infotainment services that access the Internet via V2N require high data rates and large
bandwidths [25]. With the development of vehicular networks, the number of vehicles
with built-in connectivity in operation reached 237 million in 2021 and it is estimated
that connected vehicles will take up 96% of the newly shipped vehicles in 2030 [26]. This
huge increase in the number of connected vehicles and the heterogeneous application
requirements will bring new challenges to the management of vehicular networks to
efficiently utilise the limited radio spectrum resources and network infrastructure.

In addition to network performance, it is also important for vehicular networks to be
developed in an environmentally and ecologically friendly manner while still being cost-
effective from an economic standpoint. Presently, the Information and Communications
Technology (ICT) sector is a major contributor to climate change and is estimated to
share 2.1% to 3.9% of global greenhouse gas emissions due to its energy consumption
[27]. As a result, the sector must reduce its CO2 emissions by 42% by 2030 and
72% by 2040 in line with other sectors to stay within the 1.5°C global goal [27].
Meanwhile, the economic burden of energy cost constitutes between 10%-15% and 50%
of the total cellular network Operational Expenses (OpEx) in mature and developing
markets respectively [28]; developing markets have a much higher energy cost due
to the proliferation of off-grid sites [29]. As part of the “5G and beyond” cellular
network strategy, it is important for C-V2X networks to be energy efficient to meet
the sustainability requirement as 5G is designed with the goal of being 10 times more
energy efficient than Fourth Generation (4G), its predecessor, while even more stringent
requirement is envisioned for beyond 5G [30].

1.2 Motivation and Objectives

To achieve the goal of road safety and road traffic efficiency, vehicular networks will be
pivotal in supporting and deploying essential safety applications as described in Figure
1.1 and utility-oriented non-safety applications such as autonomous driving, remote
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driving, and intelligent traffic management [31]. Moreover, the goal of improved onboard
entertainment for comfort requires vehicular networks to also support futuristic onboard
infotainment services such as 4K video streaming and 3D augmented reality. Together,
these applications require very high throughput, scalability, and reliability with ultra-low
latency [32]. Combining these emerging applications onto the requirements for C-V2X
use cases, they can be summarised as stringent Key Performance Indicators (KPIs)
include the reliability of 99.999%, a maximum end-to-end latency of 3 ms, and a peak
data rate of 1000 Mb/s [33], with an estimated tenfold performance increase envisioned
for technologies beyond 5G [30], all demanding seamless connectivity and high spectrum
efficiency.

To boost network performance, several new technologies have been proposed in 5G
and C-V2X systems to meet the QoS requirements and address near-future challenges.
For example, as the current cellular network capacity reaches its bottleneck, network
densification (i.e. more base stations per km2) becomes a solution to enhance cellular
network capacity for V2N that also subsequently improves the spectral utilisation [34].
The principle of network densification is to deploy compact, low-power BSs, known
as Small Cell (SC), within the coverage area of a conventional Macro Cell (MC) thus
bringing the BSs closer to the users and hence able to provide higher data rate. The
coverage areas (footprints) of SCs are much smaller when compared with a conventional
MC because of their low transmit power, which permits frequency reuse for a group of
SCs and hence improving spectrum utilisation efficiency [35]. The concept of network
densification is shown in Figure 1.2 with a demonstrative frequency reuse scheme.

Available Spectrum

Figure 1.2: Concept of network densification with an exemplar frequency reuse scheme.

Due to vehicular networks’ highly mobile and dynamic nature, complex environments,
and the heterogeneous QoS requirements for different V2X applications have introduced
new challenges to achieve successful vehicular networking. These demands must be
combined with the significant drive towards OpEx and greenhouse gas emission reduction
against a global backdrop of energy efficiency [36]. This thesis has identified the following
key challenging research topics for the development of effective and efficient cellular
vehicular networks:
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• Handover decision optimisation

• Radio resource management optimisation

• Energy efficiency optimisation at the network side

Besides these chosen topics, there are also other essential and challenging research topics
identified by the research community that require much attention for V2X networks,
such as channel modelling, routing, data dissemination, security issues [19, 36–38], to
name a few. Nevertheless, the three research topics were chosen as they are considered
to be directly linked to the aforementioned seamless connectivity, high performance
and reliability, and energy efficiency requirements for future V2X development from the
networking perspective, which is the main standpoint of this thesis.

1.2.1 Motivation of Research Topics

The first research question explores handover decision optimisation. Vehicular networks’
characteristics due to high mobility lead to much more frequent HO (when a vehicle
changes from its serving BS (BS1) to a new BS (BS2) during an active connection) for
V2N links compared to conventional cellular networks. When these events are combined
with the complex environmental scenarios found around vehicular communications it
adds to the complexity of vehicular networks’ HO management. This becomes even
more obvious with increased network densification despite its capacity enhancement
benefits. As SCs are low power, are deployed in bulk, and have limited range coverage,
network densification further exacerbates the frequency of V2N HO while simultaneously
increasing the possible target BSs for HO. This now complicates the search space for
HO decision-making. Therefore, efficient HO management mitigating all these is crucial
to ensure smooth connection transitions while supporting uninterrupted high data rates
for various applications [17].

The second research topic is radio resource management which is the system-level
management of interference, radio frequency bands, and other radio transmission
properties of wireless communication systems [39]. For vehicular networks, the stringent
QoS requirement of V2X applications necessitates meticulous spectrum and transmit
power management for improved spectrum efficiency and interference management.
The significant increase in connected vehicles further contributes to this challenge by
introducing more users to the already congested radio frequency bands. Moreover,
the highly dynamic nature of vehicular networks also adds to this challenge of radio
resource management by introducing rapid temporal variation in vehicular wireless
channels [40], making tasks such as radio channel estimation and signal detection for
resource allocation in vehicular networks much more challenging than traditional cellular
networks [41]. Therefore, it is essential for vehicular networks to have adaptive and



CHAPTER 1. INTRODUCTION 7

optimal spectrum and power allocation to improve resource efficiency and guarantee
QoS delivery for various V2X applications.

The third research topic is energy efficiency optimisation. C-V2X has the goal of
efficient use of energy in line with that of “5G and beyond" strategy [17, 32]. From a
network perspective, energy saving for BSs is an essential aspect of energy efficiency
improvement as BSs are the major consumers of electrical power in both conventional
cellular networks and the emerging 5GV2N communications, accounting for 60% to
80% of the network’s total power consumption [42]. With the deployment of 5G, the
total energy consumption of 5G BSs will increase by almost 70% compared to the
present generation [43, 44], further raising the energy cost and overall OpEx for network
operators. In addition, while individual SCs have much smaller power consumption
due to their reduced transmission power and numbers of antenna sectors compared
to a traditional MC [45], the power consumption accumulation by the ultra-dense
deployment of SCs leads to significant energy usage. As a result, network densification
also leads to an increase in energy consumption. Due to these issues in conjunction
with the CO2 emission goal of the ICT sector, greater attention should be paid to the
energy efficiency of both vehicular networks and general cellular networks to reduce
OpEx cost-effectively and become environmentally friendly.

These three research topics are selected for this thesis to carry out the research work.
The choice of these topics follows the rationale that these challenges will become more
important to deliver the underlying requirements and emerging demands with the devel-
opment of vehicular networks. In addition, the 3 themes have strong interconnections
by the overarching goal of network optimisation, while focusing on distinct aspects of
network performance and sustainable networks.

1.2.2 Motivation of Machine Learning for Vehicular Networks

A defining property of the challenges of vehicular networks is the complex and dynamic
network environment, making traditional solutions with a rigorously parameterised
general-purpose design highly complicated and underperforming in vehicular networks
[18], motivating the investigation of contemporary solutions using Machine Learning
(ML). ML is the study of methodologies that automatically improve computer algorithms
through experience [46] and is considered as part of Artificial Intelligence (AI); a broad
research field that focuses on the synthesis and analysis of intelligent computational
agents [47].

ML methods exploit values in data to improve performance on a defined set of tasks.
These methods identify / extract patterns and learning from data samples to make
predictions or decisions without being explicitly programmed [37] and have been
successfully applied to other research fields such as computer vision and automatic
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control in the last thirty years [48]. The major advantages of ML over traditionally
implemented analytical methods for vehicular networks are:

• ML is capable of efficiently analysing and processing a large amount of data
and learning from it, making it suitable to the everchanging vehicular networks’
environmental uncertainties, exploiting values from the datasets generated in
vehicular networks and enabling adaptive network optimisation [49, 50].

• ML algorithms can be utilised when a priori knowledge of the network and param-
eters is unavailable [51], which is true for most cases in vehicular networks. This
makes ML algorithm design more flexible compared to conventional mathematical
optimisations built upon fixed parameterised models requiring such knowledge.
ML techniques initialise generalised models whose parameters can be updated
corresponding to the specific data collected in the environment, making ML able
to generalise to vehicular networks’ dynamic environment and ideal to deal with
complex tasks [52].

• With sufficient data collected locally, it is possible to train localised ML algo-
rithms, making ML more suitable to develop decentralised solutions compared to
conventional methods [52]. This is a key feature to enable vehicular networks since
sending too much data to a central controller for processing and decision-making
is more time-consuming and costly in bandwidth for a centralised control scheme
in some use cases.

• With the development of techniques, ML and specifically Deep Learning (DL) tech-
niques (a subset of ML techniques utilising artificial neural networks), these can
reach near-optimal performance in many use cases while also being more computa-
tionally efficient than conventional algorithms which are usually computationally
expensive to get optimal results [37].

As a result, ML applications to wireless and vehicular networking have grown as a
research topic with increased research attention at the start of this project, with
various learning-based algorithms proposed to address complicated networking problems
[49]. However, despite the significant progress in algorithmic design for performance
optimisation, the application of ML to vehicular networking is still in its infancy with
many research gaps; the real-world deployment aspects such as scalability and impact on
implementation cost are largely untouched. This thesis tries to address this shortcoming
in the case of V2X networks.
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1.2.3 Objectives

This thesis will provide adaptive, intelligent and scalable solutions to vehicular network-
ing, with ML being identified as one of the key methodologies and toolsets to tackle the
network optimisation challenges. The main focus of this research’s ML application is
to improve vehicular networking performance which can be expanded in a hierarchical
manner. Firstly, the new research has focused on the novel algorithmic design in
vehicular networking utilising the latest ML techniques and architectures to provide
high-performing solutions to the identified research topics. Secondly, by considering the
deployment aspects such as input parameters, scalability, communication costs, etc. to
increase the practicality of the proposed algorithms for potential real-world deployment
and reduce the implementation impact on the vehicular network systems. In summary,
the research work objective of this thesis is structured as follows:

1. Explore the realm of cellular vehicular networks to identify key challenges for
future vehicular network development and provide a literature review on the
state-of-the-art ML applications to vehicular networking, centred around the
identified research topics.

2. Develop a ML-based HO decision-making solution for V2N in the current cellular
architecture to avoid unnecessary HOs and select the best performing target BS.

3. Develop a decentralised resource allocation solution to improve spectrum efficiency
and interference management for V2V and V2N and investigate the effect of the
enabling decentralised ML architecture on deployment costs.

4. Utilise the latest ML technique to adaptively switch BSs into sleep mode to
improve energy efficiency without compromising on QoS requirements or network
throughput that can be applied to both V2N and general cellular networks.

5. Provide discussions on the future trends on each identified research topic and ML
applications to vehicular networks in general.

Since vehicular networks include a broad domain of research, the first objective of this
project is to explore this area of research and identify key research topics of challenge,
and thus provide a literature review of ML algorithms applied in this field to identify the
current state of the art. This is followed by the objectives of each identified research topic.
In addition, it was recognised that existing research predominately utilised custom-
built simulations or datasets that were not publicly available for numerical evaluations
of proposed solutions. While it is essential for ML methods to be evaluated using
standardised datasets and simulation environments to help researchers focus on learning
algorithm design and to simplify performance comparison, an important auxiliary



CHAPTER 1. INTRODUCTION 10

objective to this work on performance evaluation is the utilisation of standardised
real-world datasets or realistic simulation environments.

1.3 Contributions

From the literature review undertaken, three specific research questions are developed
for objectives 2 to 4, inspired by and extending the work of Yajnanarayana et al. [53],
Liang et al. [25], Ozturk et al. [54], etc. This research addresses these research questions
forming three distinct areas of contribution:

1. If deployed within the current cellular architecture, does an ML-based HO decision-
making scheme improve HO performances for seamless V2N communications?

2. Can the latest decentralised learning architecture be utilised to improve the
decentralised radio resource allocation and reduce communication overheads for
V2N and general cellular communication networks?

3. Can the latest ML techniques be leveraged to improve cell switching decision-
making performance for energy efficiency optimisation for V2N and general cellular
communication networks?

An overview of the contributions produced by this project is presented in Figure 1.3.
Three main contributions have been made to the selected research topics in parallel with
the innovation of utilising the latest ML techniques for adaptive network optimisation
schemes focusing on the deployment perspectives. Specifically, the contributions include
DL algorithms for current network architectures utilising established techniques for
performance improvement, the exploration of distributed learning architecture and
new ML techniques for future vehicular network development, and the consideration
of deployment aspects assessed using realistic simulations and a real-world generated
dataset.

The research work follows the evolving research interest of ML application to vehicular
networking and focuses on three specifically identified key use cases. Detailed information
regarding the scope is presented in Chapter 2 and 3 for the background and literature
review, which correspond to the publication of [36, 55, 56]. Based on the literature,
this research answers the three research questions in this rapidly developing field of
research as introduced above. In each case, the contributions made encompass mainly
software development including algorithmic design and simulation-based experiments
for performance evaluation. Specifically, the undertaken research work for each research
question is summarised as follows:
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Figure 1.3: Overview of research contributions provided in this thesis.

1. If deployed within the current cellular architecture, does an ML-based
HO decision-making scheme improve HO performances for seamless
V2N communications?

A HO algorithm utilising Deep Reinforcement Learning (DRL) has been proposed
for V2N communications to show the effectiveness of ML. This algorithm produces
optimal HO decisions using the same input parameters as the conventional solu-
tions currently deployed in the cellular system, and can be potentially deployed
with only a software patch. A realistic bespoke simulation has also been imple-
mented using an established full-stack simulator that provides a standardised
evaluation platform. This corresponds to the publication of [57].

2. Can the latest decentralised learning architecture be utilised to improve
the decentralised radio resource allocation and reduce communication
overheads for V2V and V2N communications?

A fully decentralised DRL algorithm enhanced by the Federated Learning (FL)
architecture has been designed for joint spectrum sub-band allocation power
control for a spectrum sharing scenario of V2V and V2N communications and
is validated for the optimality of allocation policies. The proposed solution had
close performance compared to the best-performing state-of-the-art benchmark,
while the design of the proposed solution resulted in much lower communication
overheads and enabled much simpler online algorithm updates and redeployment.
A full-length journal article on this topic has been submitted by the submission
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of this thesis.

3. Can the latest ML techniques be leveraged to improve cell switching
decision-making performance for energy efficiency optimisation for V2N
and general cellular communication networks?

A Graph Neural Network (GNN) based cell switching algorithm has been developed
for BSs’ energy efficiency optimisation in V2N and generic cellular networks. A
well-established telecommunication dataset has been utilised to train and evaluate
the algorithm. The proposed GNN solution outperformed the state-of-the-art
benchmark with respect to energy efficiency and has a much stronger generalisation
capability to different scenarios. This corresponds to the publication of [58].

1.3.1 Publications

Articles:
[36] K. Tan et al., “Machine learning in vehicular networking: An overview,” Digital
Communications and Networks, vol. 8, no. 1, pp. 18–24, 2022, issn: 2352-8648. doi:
https://doi.org/10.1016/j.dcan.2021.10.007. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2352864821000870
[57] K. Tan et al., “Intelligent handover algorithm for vehicle-to-network communications
with double-deep q-learning,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 7, pp. 7848–7862, 2022. doi: 10.1109/TVT.2022.3169804
[58] K. Tan et al., “Graph neural network-based cell switching for energy optimization
in ultra-dense heterogeneous networks,” Scientific Reports, vol. 12, no. 1, p. 21 581,
Dec. 2022, issn: 2045-2322. doi: 10.1038/s41598-022-25800-3. [Online]. Available:
https://doi.org/10.1038/s41598-022-25800-3

Conference proceedings:
[55] K. Tan et al., “Clustering algorithm in vehicular ad-hoc networks: A brief
summary,” in 2019 UK/ China Emerging Technologies (UCET), 2019, pp. 1–5. doi:
10.1109/UCET.2019.8881833
[56] K. Tan et al., “Federated machine learning in vehicular networks: A summary
of recent applications,” in 2020 International Conference on UK-China Emerging
Technologies (UCET), 2020, pp. 1–4. doi: 10.1109/UCET51115.2020.9205482

1.4 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2 introduces the essential background of current vehicular networks and the

https://doi.org/https://doi.org/10.1016/j.dcan.2021.10.007
https://www.sciencedirect.com/science/article/pii/S2352864821000870
https://www.sciencedirect.com/science/article/pii/S2352864821000870
https://doi.org/10.1109/TVT.2022.3169804
https://doi.org/10.1038/s41598-022-25800-3
https://doi.org/10.1038/s41598-022-25800-3
https://doi.org/10.1109/UCET.2019.8881833
https://doi.org/10.1109/UCET51115.2020.9205482
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fundamental ML methodologies and architectures used in this field of research.

Chapter 3 presents an overview of the state-of-the-art ML applications in vehicular
networking, consisting of the general introduction and a literature review of the state-
of-the-art research utilising ML for each research question.

Chapter 4 focuses on handover optimisation for V2N communications. After the
introduction of handover optimisation research and problem formulation, this chapter
covers the proposed DRL-based handover algorithm utilising the same input parameters
available in the current cellular system, with performance evaluated against the opera-
tional handover solution based on measurement event A3. Furthermore, this chapter
also provides a qualitative comparison with other state-of-the-art handover solutions
with respect to deployment aspects before concluding with a brief summary.

Chapter 5 elaborates the radio resource management for spectrum sharing V2V and
V2N communications. It presents the system model after a brief background introduction
and a literature review. After that, a fully decentralised DRL algorithm accomplished by
the FL architecture is proposed. The performance of the proposed solution is thoroughly
evaluated against other state-of-the-art algorithms with an analysis of communication
overheads.

Chapter 6 presents the energy consumption optimisation framework for network
operators, where a GNN-based cell switching solution is proposed after a succinct
background introduction and literature review. With an introduction of the system
model, the performance of the proposed solution is evaluated against the theoretical
performance upper bound and a state-of-the-art Reinforcement Learning (RL) solution,
and the Chapter concludes with a brief summary after a result analysis.

Chapter 7 summarises the conclusions from each of the previous chapters and places
these in context with existing challenges, open issues, and future trends for learning-
based adaptive vehicular networking.



Chapter 2

Vehicular Networks and Machine
Learning Background

Vehicular networks are specific wireless mobile networks with distinctive features in
addition to the complex radio environment, while machine learning is a wider set of
methodologies that consist of various algorithmic techniques and architectural designs
for implementation. Therefore, in order to apply ML to the challenges in vehicular
networks, it is crucial to gain fundamental knowledge of vehicular networks and ML
before moving on to the detailed design and implementation of the proposed solutions
to each of the identified research directions, i.e., Handover optimisation, resource
allocation, and energy efficiency. An overview of vehicular networks’ background is
presented, followed by an introduction to the fundamentals of machine learning relevant
to vehicular and general mobile network research.

2.1 Vehicular Network Backgrounds

Vehicular communication networks have attracted interest from different sectors, in-
cluding academia, industry, and governments in the last two decades [59]. The main
goal is to enable information exchange among vehicles (V2V), between vehicles and
road infrastructure (V2I), remote networks (V2N), and other road traffic users such
as pedestrians (V2P) to support a variety of applications. These applications aim to
improve road safety and traffic efficiency and to deliver advanced utility services [36].
With the development of vehicular networks, new technologies have emerged to support
new applications and fulfil the futuristic V2X service requirements. As already discussed
in Chapter 1, this thesis will focus on vehicular networks with C-V2X technology.

14
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2.1.1 Characteristics and Applications of Vehicular Networks

2.1.1.1 Characteristics of Vehicular Networks

Vehicular networks have unique characteristics because of the Vehicular User Equip-
ments (VUEs) in the network and various V2X applications. These characteristics
are summarised as follows and can either be beneficial or challenging to the network
designs:

• Distinctive mobility features:

– High mobility: Road vehicles move at much higher speeds compared with
cyclists and pedestrians. In urban areas, a typical vehicle velocity of 60
km/h means a vehicle can pass a 100 m road segment covered by a static
Roadside Unit (RSU) or a small-cell BS in 6 seconds. In a highway scenario,
two vehicles driving in opposite directions on the same highway segment can
easily have a relative speed of over 300 km/h, covering a 100 m distance
in only 1.2 seconds. As a result, vehicular networks have short connection
times for all V2X communication types, causing frequent switching and
reconnections among V2X terminals (mobile phones, connected traffic lights,
base stations, etc.).

– More predictive driving routes: Vehicles are constrained to move on roads
and motorways in normal circumstances for urban and highway scenarios.
This feature makes it simpler to predict a vehicle’s driving route compared
with that of a pedestrian, especially if information, including the local map
and/or the velocity of the vehicle is available.

• Complex communication environment [18]: The communication environment
of vehicular networks contains many scenarios such as motorways, rural, and urban
street blocks. The motorway scenario is usually considered a one-dimensional
environment as vehicles on motorways only travel in two opposing directions
with a classic restriction that vehicles’ velocities are kept within a predefined
range. In comparison, streets in most urban areas are often divided into many
segments because of intersections with vehicles moving in different road segments,
forming a two-dimensional scenario. Sometimes a direct connection in urban
scenarios does not exist due to obstacles around or on the streets such as buildings,
trees, or a large metal truck between two cars. Furthermore, urban scenarios
have higher vehicle density than motorways in a city centre or congested area,
leading to more communication links within the area hence a more significant
spectrum resource occupation. The radio environment in urban areas (more
specifically city centres with dense building blocks) is more complex as building
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reflection and absorption of radio signals become more significant. Additionally,
it is also possible for vehicular networks to have three-dimensional scenarios
such as viaducts where communication links can be on different layers and
even cross layers, further contributing to the complexity of vehicular networks’
communication environments.

• Stringent application requirements: Some vehicular network applications
have very strict requirements in, e.g. maximum end-to-end delay, reliability,
and/or data rates. This means that data transmissions must be completed within a
certain time and/or achieve minimal required throughput to avoid traffic accidents
or to ensure service quality. Safety applications are an obvious example that
requires millisecond-level delay tolerance and ultra-reliability. Another example is
the remote driving application specified in 3rd Generation Partnership Project
(3GPP)’s enhanced V2X scenarios [33], which has a maximum end-to-end delay
tolerance of 5 ms and an uplink data rate requirement of 25 Mb/s.

• VUEs’ sufficient energy for communication: Unlike energy-constrained
cellular User Equipments (UEs) such as mobile phones, road vehicles have large
batteries and sufficient energy to supply their communication components and
thus VUEs have a weak energy constraint.

2.1.1.2 Safety Applications of Vehicular Network

The basic applications of vehicular networks are safety applications aiming to reduce
traffic accidents to save lives and property. A straightforward safety application
example is event-driven safety warnings which will occur when a vehicle senses or
becomes involved in a dangerous situation [18]. The event-driven safety warning
includes collision avoidance messaging among vehicles via V2V, hazard warning via
V2I links (e.g., a car crash in the coming road section) and early alerts from vehicles
to pedestrians via V2P links (e.g., when a pedestrian crossing an intersection without
noticing an approaching vehicle) [15, 32]. Another type of safety application is for
driving assistance in scenarios such as lane changing and proactive collision avoidance
via periodic sharing (e.g. every 20 ms) of position, velocity, direction, and related
vehicle-status data among vehicles [18, 60]. This type of information is also essential
to more advanced applications such as automated driving. Safety applications are
time critical and rely on highly reliable V2X communications, and failures of safety
applications can result in serious consequences.

2.1.1.3 Non-safety Applications of Vehicular Network

In addition to safety applications, value-added services for drivers and passengers can
be enabled via information sharing among vehicles and between vehicles and other
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communication entities, forming the umbrella term of non-safety applications. Based
on their target use cases, non-safety applications can be classified into the following
application types:

• Smart traffic management: The goal of these applications is to improve road
traffic efficiency and save time for commuters by reducing traffic congestion and
improving traffic flow. An example of this type of application is adaptive traffic
light scheduling, which could dynamically adjust the traffic signal timing at
intersections according to real-time road traffic conditions [61]. Other examples
include pre-trip route planning and live maps based on real-time traffic information
gathering via information shared in vehicular networks [15, 62].

• Infotainment services: These applications are mainly focusing on providing
traveller entertainment and boost onboard comfort. For instance, accessing the
Internet in moving vehicles from traditional web browsing to high-resolution video
streaming [62]. Infotainment services also provide utility information to vehicles,
such as the locations of the nearby petrol stations, parking lots, restaurants, or
other places of interest upon request by drivers or passengers [15, 18]. With the
advancement of driving automation level towards self-driving cars, there will be
greater demands for this kind of services as human drivers getting relieved from
the driving duty and become passengers.

• Advanced driving: This is an umbrella type summarising the information
provided in 3GPP’s Release 15 specifications [33] for advanced scenarios. The
applications for advanced driving include:

– Extended sensors: Meaning that vehicles can share their sensor data
with other vehicular network entities such as another vehicle or a RSU for
environmental awareness enhancement, which is a cornerstone for other
advanced driving applications.

– Automated driving: As its name suggests, this type of application aims to
provide a vehicle with partial-automated driving ability to reduce a human
driver’s driving workload or fully self-driving capability that does not require
a human driver.

– Remote driving: This allows a distant human driver or a cloud server to
control a vehicle remotely. Two examples of use cases of this application are
public transportation (when passengers cannot drive the vehicle themselves)
or driving a vehicle located in hazardous environments such as explosive gas
or dust environments [62].
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– Vehicle Platooning: It enables vehicles to dynamically form a group
to travel together, with group management such as adding or removing a
platoon member. It essentially means to drive a group of vehicles together
by having a leading vehicle that periodically sends commands to member
vehicles. This design allows many vehicles to operate (e.g., accelerate or
brake) at the same time, thus shortening or removing the required reaction
distance and improving the traffic flow.

With both safety and non-safety applications/use cases introduced, Table 2.1 summarises
the performance requirement of related KPIs for the above enhanced V2X scenarios,
according to the corresponding 3GPP’s specifications.

Table 2.1: Performance requirements of a non-exhaustive list of enhanced V2X scenarios
[33]

Scenario Data rate1 End-to-end
latency Reliability Communication

range
Platooning, V2V
(cooperative driving) 65 Mb/s <10-25 ms >90-99.99% >80-150 m

Platooning, V2I
(information sharing) 50 Mb/s <20 ms - >180-350 m

Automated driving, V2V
(information sharing) 53 Mb/s <100 ms - >700 m

Automated driving, V2I
(information sharing) 50 Mb/s <100 ms - >360-700 m

Emergency trajectory
alignment, V2V 30 Mb/s <3 ms - -

Intersection safety
information, V2I

UL: 25 Mb/s
DL: 50 Mb/s - - -

Video sharing, V2N UL: 10 Mb/s - - -
Video sharing, V2V 10-700 Mb/s <10-50ms >90-99.999% 100-400m
Remote driving, V2N
(information sharing)

UL: 25 Mb/s
DL: 1 Mb/s <5 ms >99.999% -

Extended sensor
(information sharing) 10-1000 Mb/s <3-100ms >95%-99.999% 50-1000m

1 UL: Uplink; DL: Downlink.

2.1.2 5G and Beyond for C-V2X

C-V2X has seen enhancement with the development of 5G standardisation. New enabling
technology has been defined in the 5G building block to better serve the emerging
sophisticated applications and use cases that have more stringent requirements [36]. As
technologies advance, legacy network designs are increasingly challenged to meet the
new service requirements, leading to a paradigm shift for future vehicular networks.
This includes the inclusion of new enabling technologies, the shift from relatively sparse
to ultra-dense deployment, the inclusion of higher frequency bands, and the shift from
reactive networking solutions to proactive ones.

Cellular V2X applications specify strict requirements in low latency enabling Mobile
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Edge Computing (MEC) to become a fundamental building block for “5G and beyond”
vehicular networks [21]. MEC is an enabling technology that brings core network
services closer to users by moving the related computation tasks from traditional cloud
servers towards the network edge, i.e., BSs and VUEs [63]. By increasing the localised
computation capability, this reduces the need of a remote server and hence reduce the
overall round-trip communication delay. On the other hand, this leads to additional
challenges as computing resources, including computing power and memory, must be
properly managed at the network edge.

Another important enabling technology for cellular networks and C-V2X is the concept
of Network Function Virtualisation (NFV), which decouples network functions from
specific hardware components. This is achieved by performing these functions on
cloud servers then sending the results back to the edge hardware [50]. By decoupling
functions from specific hardware, more adaptive solutions can be developed that are less
dependent on specialist hardware. This also enables centralised solutions or solutions
demanding computational power and data storage to be implemented more flexibly.

In addition to the enabling technologies, there is also a paradigm shift in the network
design to satisfy future network requirements. Network densification is a critical
component of cellular networks and V2N communications to cope with the anticipated
increase in traffic and capacity. However, network densification leads to a more complex
radio environment in the cellular network and will increase the burden on operators
due to the increased network complexity. Nevertheless, more data can be generated
by configuring densely deployed BSs and future network solutions that can process
and exploit value in such data can be highly advantageous. The utilisation of higher
frequency spectrum bands is another approach to boost throughput and network capacity
for cellular systems such as the inclusion of the Millimetre Wave (mmWave) band from
30 GHz to 300 GHz [21, 64]. This allows network operators to move away from the
already saturated microwave bands while also being able to allocate larger bandwidth
for applications demanding high network throughput. However, mmWave also brings
additional challenges to network solution due to its physical characteristics, specifically
high propagation path loss and low signal penetration (e.g. into buildings) [64], which
reduces coverage and increases its sensitivity to signal blockage [65].

The current networking solutions in the cellular system are reactive [36, 50], which means
that the system produces a response after receiving and processing specific sensory
inputs (similar to the event-driven warning of vehicular networks’ safety applications).
Such approaches are deemed mostly suboptimal in networking research since they may
cause extensive waiting periods and thus a reduced QoS. Consequently, it is expected
that future vehicular networks will employ proactive solutions that operate in a more
adaptive and informed manner for optimised network performance.
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2.2 Machine Learning: The Fundamentals

Traditional network optimisations employ analytical heuristics or mathematical mod-
elling that have high computational complexity, lack generalisation capability, and
need re-execution upon network condition changes. This motivates the exploration of
applying ML techniques to vehicular networks.

ML is a subset of AI methodologies that automatically improve computer algorithms
through experiences [46]. The key properties of ML methodologies are that ML programs
utilise collected data instead of explicit human instructions and can adapt to new data
automatically. Therefore, instead of constructing a complete and complex analytic
model of a system by a human programmer as in conventional algorithmic development,
ML aims to find intrinsic patterns and produce a model that relates the input to the
output of the system through analysing collected datasets [50]. As a result, ML is
applied to scenarios that are too complex for analytic algorithms, with specific tasks
such as identifying handwritten characters (e.g., Chinese characters), predicting stock
prices, and playing video games [66].

ML has also been identified as a promising technique for optimisation problems [67]
which is ideally suited to vehicular networks and network optimisation. Note that
vehicular networks are well suited to the ML approaches as the network is naturally
rich in data collected by VUEs, BSs, and other communication entities. Additionally,
the advancement in computing equipment facilitates ML solutions for network analysis
and management to complete with high accuracy and in a timely manner, overcoming
the run-time limitations of traditional mathematical techniques which usually faced
high computational complexity due to the complicated optimisation formulation [37].

Traditionally, ML approaches are classified into three broad categories or learning
paradigms, i.e. supervised, unsupervised, and reinforcement learning, based on how the
available information is utilised by the learning system. It is important to appreciate the
differences between these three ML subclasses so the approach most suited to network
optimisation can be chosen.

2.2.1 Supervised Learning

Supervised learning algorithms is a subclass ML algorithms learning on a set of data
samples termed “labelled data” that consist of example inputs and their desired outputs
[68]. The dataset is known as a training dataset and is provided externally to the
learning system through human intelligence and labour. Therefore, supervised learning
algorithms can be regarded as learning from a supervisor or a teacher as indicated by
the name.
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The goal of supervised learning algorithms is to develop a mathematical model repre-
senting the relationship between the inputs and outputs in the training dataset, which
the algorithms can utilise to produce correct outputs for additional inputs that were
not part of the training data. An objective function is used as the optimisation goal for
the labelled data when training the algorithm to produce a correct model [69]. Typical
supervised learning methods include regression models such as Linear Regression [70],
Decision Tree learning [71], Support-vector Machine (SVM) [72], and K-nearest Neigh-
bours (KNN) [73]. The quality of labelled data can influence the learning outcome of
supervised learning algorithms significantly due to this learning process and hence it is
vitally important that the training data set is accurately pre-processed.

Supervised learning tasks can be split into two main categories: regression and classifi-
cation tasks. Regression algorithms are used when the outputs are expected to have any
numerical value within a range, while classification algorithms should be chosen when
the outputs are restricted to a limited set of discrete values. An example regression task
is stock price prediction, and a typical classification example is handwritten character
identification (e.g. handwritten alphabet recognition) as mentioned above. When
applied to vehicular networks, supervised learning is often utilised for prediction such
as mobility and traffic load (or congestion) prediction to assist proactive networking
decision-making [50].

2.2.2 Unsupervised Learning

Unsupervised Learning is the second category of ML. In contrast to supervised learning,
unsupervised learning algorithms do not have a supervisor providing labelled data and
must learn directly from datasets containing only inputs. An example of such datasets
may be a photo collection of pets without specific tagging on what kinds of animals
individual pets are (cats, dogs, etc.).

The aim of unsupervised learning algorithms is to find underlying patterns in the
input data [70]. As the production of fully labelled datasets often demand significant
effort and thus is very expensive, unsupervised learning algorithms become more
useful for unlabelled datasets to extract such patterns. Clustering analysis is a typical
unsupervised learning method where input data samples are categorised into different
groups according to their key features, and these groups are distinguished with certain
boundaries. Typical unsupervised learning algorithms include K-Means clustering [74],
hierarchical clustering [75], and self organising feature maps [76], etc.

An example application of unsupervised learning is customer segmentation for business
analysis [77]. When applied to wireless networking applications including vehicular
networks and wireless sensor networks, unsupervised learning is often utilised for signal
overhead reduction [78], network traffic classification [79], and abnormality detection
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[79, 80].

2.2.3 Semi-supervised Learning

Supervised and unsupervised learning are classified based on their supervision level,
i.e., whether have access to fully labelled data or not. Supervised learning requires a
full set of labelled data for training while unsupervised learning works with completely
unlabelled data. Semi-supervised learning sits between these two extremes, working
with training datasets that contain both labelled and unlabelled data samples. Note
that semi-supervised learning is an extension to the above two main ML categories, and
thus not treated as a major ML type.

Using structural assumptions to automatically exploits values in unlabelled data, semi-
supervised learning is useful to improve supervised learning tasks when the labelled data
are scarce or expensive. Additionally, semi-supervised learning also has the potential to
be used as a quantitative tool for reasoning where most of the input is self-evidently
unlabelled for human beings [81]. Although relatively little attention has been paid to
semi-supervised learning in vehicular network research, it is a promising tool to exploit
vehicular networks’ rich unlabelled datasets while also leveraging the existing domain
expertise.

2.2.4 Reinforcement Learning

RL is the third and a distinctive subclass of ML with the inherent property of learning
by interaction. This idea may be the most natural way to think about “learning”
with a lot of examples such as learning to ride a bicycle or to drive a car, and RL is
the computation approach to learning from interaction [82] and focuses on sequential
decision-making problems.

This property distinguishes RL from supervised and unsupervised learning techniques
learning on labelled/unlabelled data, and the learning process in RL is for a goal-directed
software agent to interact with an uncertain environment and achieve its goal [82].

RL problems are often formulated as a Markov Decision Process (MDP). As shown in
Figure 2.1, an agent takes actions based on its observation of the current environmental
state, receives the observation of the following state, and receives a numeric reward
generated by the environment. After many rounds of training through trial and error, the
agent develops an optimal policy it adopts in taking action within the given environment
that maximises the long-term accumulated reward. According to [82], the key elements
of a MDP are defined as follows:

• Agent: The learner and decision maker, corresponding to the term “controller”
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Figure 2.1: The Markov decision process. Figure 3.1, [82].

in the engineering realm.

• Environment: covers everything outside the agent that responds to the agent’s
actions, corresponding to the term “controlled system".

• Action a: A possible output selected by the agent to interact with the environment,
which can be regarded as a “control signal".

• State and observation s: A state contains information that describes the
condition of the environment. The agent takes actions based on the observation of
a state that can be the complete state information or a subset of it for a partially
observed MDP.

• Reward r: A special numerical value the environment sends to the agent after
each interaction. It shows how good an action is in an immediate sense, i.e., rt
for at in st at time step t.

• Policy ⇡(a|s): A mapping from the agent’s state observations to its actions,
which defines the agent’s overall behaviour in the environment. The goal of RL is
for the agent to develop an optimal policy acting in the environment, e.g., learning
to play chess at a competitive level from scratch.

The agent aims to maximise its expected accumulation of reward values over time by
adjusting its actions. This reward accumulation is termed return Gt, whose definition
is:
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Gt ⌘ rt+1 + �rt+2 + �
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rt+3 + ... =

1X

⌧=0

�
k
rt+⌧+1 (2.1)

where � 2 [0, 1] is a parameter termed the discount factor, and �t+⌧�1 specifies a future
reward received ⌧ steps ahead of the current time step t is worth only �⌧�1 times what
it would be if it were received immediately at t. The agent focuses on immediate reward
only when � = 0, while the future rewards are taken into consideration more strongly by
the agent as � approaches 1. When related to playing chess, an immediate move to take
a pawn results in a positive reward but it may cause the player to lose a higher-valued
piece, e.g., a knight, in the next turn, which has a negative reward. In comparison,
losing a bishop this turn results in a negative reward, but it may help the player win the
next few turns, which leads to a very high positive reward. � in training an RL chess
player hence decides how strong the future situations should be taken into consideration
when making an immediate move, i.e., how the agent treats an immediate move in the
long term.

To maximise the accumulated reward, RL algorithms evaluate the value functions
of a state (or a state-action pair) to estimate the expected return when following a
policy. There are two types of value functions: State-value and Action-value (Q-value)
functions. The state-value function V⇡(s) is the expected return when starting in s and
following policy ⇡, while the action-value function Q⇡(s, a) is defined as the expected
return starting from s, taking the action a, and thereafter following policy ⇡ [82]. The
mathematical definition of these two types of value functions, assuming the state and
action, at time step t, is st = s and at = a, defined in (2.2) and (2.3), respectively.

V⇡(s) ⌘ E⇡ [Gt|st = s] = E⇡
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Q⇡(s, a) ⌘ E⇡ [Gt|st = s, st = a] = E⇡
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#
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where E⇡ denotes the expected value of a random variable when following ⇡, rt+⌧+1

stands for the reward at time step t + ⌧ + 1, and S denotes the state space for all
possible states. The optimal policy is achieved when the value functions of all states
(or state-action pairs) following it reach their upper bound, and thus the optimal value
functions are defined as V⇤(s) ⌘ max⇡ V⇡(s), Q⇤(s, a) ⌘ max ⇡Q⇡(s, a), for all s 2 S,
a 2 A.
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RL techniques can be broadly classified as tabular solutions and approximation-based
solutions [82]. Tabular solutions focus on environments where the state spaces can
essentially be represented by tables, while approximation-based solutions extend the
tabular ones for applications to arbitrarily large state spaces that would otherwise be too
large to be described by tables. Modern RL algorithms are difficult to accurately classify
in an all-encompassing manner [83]. However, two important branching criteria are
“whether the agent has access to the model of the environment” and “how the learning is
performed”, which are also relevant when applying RL to vehicular networking research
[37, 82, 83].

• Model-based or Model-free: An RL algorithm is model-based if it is developed
with access to the environment model, i.e. a mathematical function that represents
state transitions and rewards; otherwise, it is model-free.

• On-policy or Off-policy: An off-policy algorithm indirectly updates the policy
being optimised following another behaviour rule. In contrast, on-policy algorithms
aim to directly optimise the policy that guides the agent’s behaviour. As a result,
off-policy algorithms may use data collected at any point during the training
regardless of the agent’s behaviour when exploring the environment and obtaining
experiences, which is more data-efficient; however, this may potentially lead to
unstable solutions in some situations [82]. On the other hand, on-policy algorithms
directly optimise the target policy and tend to have more consistent and stable
training while only data samples generated with the latest version of the policy
can be used in training.

One of the most popular tabular RL algorithms is Q-learning [84], a model-free, off-
policy RL algorithm. Q-learning updates the state-action value function (Q value)
and evaluates the optimal value for action-taking. The definition of Q-learning’s value
update is expressed as:

Q(st, at) +↵[rt+1 + � ·max
a

Q(st+1, a)�Q(st, at)] (2.4)

where 0 < ↵  1 is a step-size parameter (or learning rate).

So far, the fundamental components and essential concepts of RL have been introduced.
These components (environment, agent, reward etc. in the MDP model) play a vital role
in the algorithmic design of Chapters 4 and 5. The concepts such as the value functions
can help in understanding the core of learning in RL. Additionally, a taxonomy of RL
techniques has been introduced to help the reader gain high-level knowledge of RL
algorithms.
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2.2.4.1 Multi-agent Reinforcement Learning

Similar to single-agent RL, Multi-agent Reinforcement Learning (MARL) also aims
to solve sequential decision-making problems. However, multi-agent RL extends the
decision-making scenario to two or more decision-making agents. This is useful for
vehicular network applications, especially for decentralised resource allocation scenarios
without a BS.

A typical model for MARL is the Markov Game which is a repeated game played by
one or more players with state transitions and is a direct generalisation of the MDP
model [85]. Figure 2.2 shows a Markov Game with K agents forming a group that acts
in the environment. All agents take actions at the same time after receiving their state
observations of the environment to form a combined action in the environment and
receive their corresponding rewards.

Agent 1

Environment
Joint 

Action 
at

State Observation st [K]

st+1

rt+1

Reward rt [1]

Agent K
Policy

State Observation st [1]
Action 
at [1]

Action 
at [1]

Reward rt [K]

Policy

Figure 2.2: The Markov Game model for MARL.

Based on the reward design, MARL can be classified in a three-fold manner summarised
below [86]:

• Fully Cooperative: All agents share a common reward function in a fully
cooperative setting, i.e., a single reward r for all K agents such that r1 = r2 =

...rK = r. In this case, the Markov Game model can be regarded as a direct
multi-agent version of the MDP model. A more generalised variant of this setting
is to allow agents to have different reward functions, while the ultimate goal
is to maximise the average reward among all agents, which is a fundamental
assumption of this setting.

• Fully Competitive: Agents in this setting compete with each other to maximise
their own rewards, and the improvement in one agent’s reward will reduce the
reward of another agent. A typical model for this setting is the zero-sum game
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[87] in Game Theory, with a real-world example being the game of Go or a classic
tic-tac-toe where two players play against each other; if one agent wins then the
other agent loses unless the game ends with a draw.

• Mixed setup: This is the most generalised setting that does not restrict the
optimisation goal and the relationship among agents. All agents are defined to be
self-interested, and the reward functions of an agent may conflict or harmonise
with other agents’ rewards. This is also known as the general-sum game [88] in
Game Theory.

MARL can also be categorised based on the information structure that defines the
availability of external information (beyond local state observation) to each agent and
can thus greatly influence the overall analysis and optimisation design. As shown in
Figure 2.3, there are three representative information structures with their features
summarised as follows [86]:

• Centralised: A centralised controller exists in this setup where agents can
communicate and share local information. The controller can aggregate shared
information from all agents and thus has the knowledge of such information,
including joint actions (actions from all agents), rewards, and joint state observa-
tions (aggregated information of the state observation), etc. This is presented in
Figure 2.3a.

• Decentralised with communicating agents: The centralised controller does
not exist for information aggregation in this setup. However, agents can commu-
nicate with each other in a communication network such that local information
exchange is still possible. Note that an agent may only be able to communicate
with its close neighbours due to potential communication channel limitations.
This is presented in Figure 2.3b

• Fully distributed: In addition to the absence of a centralised controller, infor-
mation exchange among the agents is also unavailable in this setting. Agents can
only act according to their observations although it is still possible for agents to
gain some global information through these observations. The extreme case of
this scenario is independent learning [89] which assumes each agent’s observations
contain only local information of the local environment state observation, the
agent’s own actions and received rewards. This is presented in Figure 2.3c and
note that the main difference between “fully distributed” and “decentralised with
communicating agents” above is whether the agents can share information with
each other.
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Figure 2.3: Three distinctive MARL information structures. (a) Centralised setting.
(b) Decentralised setting with communicating agents. (c) Fully distributed setting.

An example to introduce these representative information structures may be a set of
scenarios where a group of robots are exploring the terrain of the planet Mars within
an area:

• Centralised: There is a transmission tower connecting all robots and collecting
information from the robots’ sensors and sending it to a remote human opera-
tor. The operator can also update each robot’s navigation routes through the
transmission tower.

• Decentralised with communicating agents: The above transmission tower
does not exist, but all robots are connected to their geographical neighbours
through a wireless ad-hoc network to share their sensory inputs and collectively
decide each robot’s navigation route and tasks to complete automatically.

• Fully distributed: The transmission tower does not exist and the robots are
not connected through any communication network. Each robot must decide its
following navigation route according to its own sensory inputs only.
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2.3 Deep Learning

With the development of ML techniques and the improvement of computing devices,
many ML approaches have been developed that do not neatly fit into the above three-
fold categorisation. In some cases, an ML system implements more than one type of
technique.

DL is such a subset of ML techniques utilising artificial neural networks as the underlying
algorithmic learning model for all classes of ML tasks. The strong expressiveness of
Artificial Neural Network (ANN)-based DL algorithms have in research directions such
as image recognition, natural language processing, and playing complex games such as
Go [90–92]. As a result, DL is currently the dominant approach for a lot of ongoing
work in the field of ML research and applications [70, 93] and gains much attention
from wireless network research [37].

2.3.1 Artificial Neural Network

Artificial Neural Networks (ANNs) are originally inspired by biological neurons, forming
the foundation of DL. An ANN is composed of one or more layers of interconnected
artificial neurons (processing elements). Each artificial neuron has inputs and produces
an output that is either sent to other neurons or used to form the final output [94]. A
defining advantage of ANN models is their ease of use and higher accuracy for complex
natural systems with large-scale inputs compared to other ML models [95].

2.3.1.1 Feed-forward Neural Networks

The fundamental ANN architecture for DL is the feed-forward ANN [93]. The connec-
tions between artificial neurons in a feed-forward ANN are directed from one layer to its
next layer and do not form any loops, such that information flows only in one direction.
Figure 2.4 demonstrates a typical fully connected, feed-forward ANN consisting of an
input layer, a hidden layer, and an output layer. The input layer is the layer that
receives external data, while the output layer produces the final result. Between these
two layers are the hidden layers that process the intermediate data.

Note that DL algorithms usually utilise ANNs with multiple hidden layers, and the
number of hidden layers can vary depending on the scale of the dataset and the
complexity of the target problem.

For a linear feed-forward layer l, the relationship between its vector input x̄ and output
ȳ is defined as follows:

ȳ = �(W T
l x̄+ bl) (2.5)
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Figure 2.4: A typical fully connected, three-layer feed-forward ANN with one hidden
layer. Each circle represents an artificial neuron, and each arrow stands for the
connection from the output of a neuron to the input of another neuron.

where �(·) is an activation function that provides non-linearity. Wl stands for the
weights of all neurons in l, bl denotes an optional bias of layer l, and T stands for the
matrix transpose operation. As a result, (2.5) essentially stands for a two-step operation
that contains a linear transformation with a subsequent non-linear transformation.

Other ANN architectures also exist with the development of DL techniques, such as a
Recurrent Neural Network (RNN), which allows connections between neurons in the
same or previous layers [96], or a Convolutional Neural Network (CNN) that uses a
mathematical operation called convolution in place of general matrix multiplication
expressed in (2.5) in at least one of their layers [97].

2.3.1.2 Learning and Hyperparameters

The learning process of a DL algorithm is updating and adjusting the underlying ANN’s
learnable parameters, such as the above Wl and bl, by adapting to the input data samples
to better handle a predefined task, e.g., to gain higher accuracy for a prediction task. The
learning process is accomplished by minimising observed errors practically guided by a
defined cost function such as the Mean Squared Error (MSE). The learning is completed
when the error rate reduction becomes stagnant, even with additional data samples
examined. The updates of the ANN’s learnable parameters for error reduction are
typically achieved by the process of backpropagation [98]. Backpropagation calculates
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the gradient of the cost function with respect to a given state of ANN parameters. The
calculated gradient is further utilised by an optimisation algorithm (or an optimiser)
such as stochastic gradient descent [99] to update the ANN’s learnable parameters and
reduce the error calculated by the cost function. Note that other optimisation methods
also exist besides backpropagation-based optimisers [100–102].

In addition to the learnable parameters such as neurons’ weights, another category of
parameters of DL exists, termed hyperparameters. Typical hyperparameters for DL
algorithms include:

• The number of hidden layers and neurons in every hidden layer: Also
known as the depth and width of an ANN model. Deeper ANN and wider layers
stand for more transformation operations with more parameters, e.g., (2.5) and
Wl for a linear layer.

• The activation function: An activation function can provide the non-linearity
to an ANN’s feed-forward process as demonstrated in 2.5. It changes how the
output of a previous layer is perceived by the following layer.

• The cost function (loss): For a defined task, the loss is used to measure the
performance of an ANN model.

• The optimiser: An algorithm used to minimise the loss and update the ANN’s
learnable parameters.

• The learning rate: The corrective step size that the optimiser takes to adjust
ANN parameters for error reduction.

Hyperparameters are a set of constants that control the behaviour of a DL algorithm.
Defined before the learning process, hyperparameters can greatly influence learning
outcomes [97]. The research work in this thesis contains different configurations of
the above hyperparameter alongside algorithmic designs. Therefore, it is important to
understand the concepts of these hyperparameters for DL implementation.

2.3.2 Deep Reinforcement Learning

In Section 2.2.4, traditional RL algorithms were shown to be successful in a tabular
environment, but such approaches become inefficient when faced with a highly complex
environment with very large state space or high-dimensional state inputs such as an
outdoor radio environment. The problem with large state spaces is that it necessitates
very large memory to store large tables, while the time and data required to fill them
accurately also being a major issue [82].
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As a result, approximation-based RL methods were proposed for such scenarios. This
type of RL methods aims to replace the exact RL components such as the value functions,
the policy, or the model of the environment to their corresponding approximations [103].
Typical approximation-based RL algorithms include linear value function approximation
or policy gradient methods, etc. [104]. For instance, linear value function approximation
for Q-learning aims to replace the exact Q-table with a linear function approximation
Q(s, a; W̄q) using a vector of linear weights W̄q, such that Q(s, a) ⇡ Q(s, a; W̄q). The
goal of learning is to minimise the error between the approximated and the true Q
values, defined as minW̄q

[Q(s, a)�Q(s, a; W̄q)]2.

With the development of DL techniques using ANN, DRL algorithms utilising the
strong approximation abilities of an ANN were developed as a promising candidate for
approximation-based RL methods. Straightforwardly, DRL algorithms use ANNs to
approximate the corresponding RL components as mentioned above and are trained in
a DL manner. The representing DRL algorithm now known as Deep Q-network (DQN)
was first proposed by Mnih et al. [105] which also substantially launched the field of
DRL [83]. For two of the three research questions, DRL algorithms are chosen as the
main technique for the design of the proposed solutions. This is because of the following
advantages of DRL, inheriting the advantages of general RL:

• RL is highly suitable to model/solve a sequential decision-making optimisation
problem as a whole without the need of dividing it into sub-problems to solve
analytically.

• RL algorithms learn via interactions between the environment and agent(s) and
thus do not rely on collected datasets or knowledge input from an external
supervisor.

• The learning process is guided by the reward function which is highly flexible to
design and adjust according to different end goals of learning.

• The model-free RL algorithms utilised in this thesis do not require a precise model
or a priori knowledge of the considered environment, which is highly beneficial
for V2X with highly complicated radio environments.

• DRL algorithms utilise ANNs as the underlying approximation model which has
very strong expressiveness. This makes DRL suitable for complex problems while
resolving the aforementioned limitations of traditional tabular RL solutions.

The remainder of this section introduces the core algorithmic design of two (an off-
policy and an on-policy) typical DRL algorithms that are used to develop the proposed
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solutions in Chapter 4 and 5.

2.3.2.1 Deep Q-learning

DQN combines a feed-forward ANN and Q-learning [106], a model-free, off-policy
RL algorithm, to cope with complex environments where traditional RL approaches
encounter difficulty.

Derived from the original Q-learning’s temporal difference calculation [106], the update
of the Q-valve in DQN is shown in (2.6). In this equation, s and a represent the current
state and action taken, respectively, while s

0 and a
0 stand for the resultant state and

the action taken in that state. argmaxa0Q(s0, a0; ✓q) is used to approximate the optimal
Q-value Q

⇤(s0, a0) where ✓q denotes the ANN approximating the Q table, termed as
Q-network. Additionally, r and � 2 [0, 1] represent the received reward and the discount
factor, respectively.

Q(s, a; ✓q) = r + �Q(s0, argmaxa0Q(s0, a0; ✓q); ✓q) (2.6)

To update the Q-network ✓q, the DQN algorithm is trained to minimise the loss function
L(✓) as defined by (2.7) for each iteration i [105]:

Li(✓q,i) = Es,a ⇢(·)
⇥
(yi �Q(s, a; ✓q,i))

2
⇤

(2.7)

where yi = Es0, "[r + �maxa0Q(s0, a0; ✓q,i�1)|s, a] and ✓q,i are the target Q-value and
Q-network for iteration i respectively, and ⇢ (s, a) is the behaviour distribution which
is a probability distribution over the state s and action a. The gradient of this loss
function can be obtained after the differentiation operation [105]:

r✓iLi(✓i) = Es,a ⇢(·);s0 "

h
r + �max

a0
Q(s0, a0; ✓q,i�1)�Q(s, a; ✓i)r✓q,iQ(s, a; ✓q,i)

i
(2.8)

For DQN, the prediction Q value Q(s0, a0) and updated Q value Q(s, a) are calculated
via the same ANN ✓q. While updating the current Q(s, a; ✓q,i) will change the value of
future states (as parameters of ✓q,i are updated), it leads to potential instability during
training that may result in non-convergence. To overcome this problem, a new DRL
algorithm DDQN has been developed [107]. In DDQN, another ANN ✓

0
q is introduced

as the target network for the calculation of the predicted value Q(s0, a0), alongside the
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training network ✓q that calculates the current value Q(s, a). This changes (2.6) to
(2.9) and hence the corresponding Q(s0, a0; ✓q,i�1) to Q(s0, a0; ✓0q,i�1) in (2.7) and (2.8).
Throughout the training process of DDQN, only ✓q will be updated with each training
iteration, while ✓0q only synchronises periodically with ✓q by copying all parameters from
✓q to keep the information updated. This design can greatly stabilise the DRL training
and improves the chances of convergence.

Q(s, a; ✓q) = r + �Q(s0, argmaxa0Q(s0, a0; ✓q); ✓
0
q) (2.9)

During Q-learning (hence DQN and DDQN) training, an experience consisting of the
current state, action taken, reward, and the resultant state observations (s, a, r, s0) is
used once to update the value function parameters and then discarded. This is not
only inefficient but may also cause instability since the algorithm only considers the
latest experience sample for each parameter update. Consequently, DQN adopts the
Experience Replay [108] technique to improve the sample efficiency and reduce the
potential instability by re-utilising all experience samples. This is achieved by having
a replay buffer B to store all previous experience samples formulated as the tuple
(s, a, r, s0) until the maximum capacity of B is reached, and then the oldest experience
will be deleted. To update ANN parameters, experiences in B are uniformly sampled
so that both current and previous experiences are considered during the algorithm’s
training process. Using experience replay can significantly improve the sample utilisation
efficiency and the overall performance of the algorithm [105].

2.3.2.2 Advantage Actor-critic

DQN and DDQN are the representative off-policy DRL algorithms inherited from the
original Q-learning. Instead of achieving an optimal policy directly, these algorithms
aim to optimise the Q-value such that an underlying optimal policy can be inferred.
Although being highly data efficient as previously introduced, these algorithms may
have issues in performance stability. The reason is that the optimised target of DQN
and DDQN is a self-consistent value function instead of a well-formulated policy [109].

In contrast, on-policy RL algorithms known as policy optimisation learn to directly
optimise a policy that guides an agent’s behaviours. Being principled with the optimi-
sation target also being the desired entity, policy optimisation algorithms tend to have
better stability and consistency compared with Q-learning algorithms [83].

The Advantage Actor-critic (A2C) algorithm is a policy optimisation approach in the
DRL algorithm subset known as policy gradient [110]. It encompasses two ANNs: The
Actor-network ✓a and the Critic-network ✓c. ✓a represents the policy ⇡(a, s; ✓a) deciding
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which action within the action space should be taken, while ✓c works as an estimate
of the value function V (st; ✓c) and evaluates how good the action was and how it the
adjustment should be. One of the defining properties is its usage of the Advantage
function A(s, a), defined as follows [111]:

A(s, a) = Q(s, a)� V (s) (2.10)

where Q(s, a) and V (s) are the action-value and state-value functions, respectively, as
defined earlier in Section 2.2.4. The advantage function A(s, a) shows the improvement
when taking action a in state s compared to the average value of that state given by
V (s). An action a in state s leading to positive A means that taking a will result in a
higher reward, and the policy should be pushed in favour of it, while the opposite is
true for actions that lead to negative A. A2C operates in the forward view and uses
the n-step accumulated reward to update both the policy ⇡ and the value function V .
An update happens after every predefined k action execution or when a terminal state
is reached. The advantage function update for the A2C algorithm is defined as follows:

A(s, a; ✓a, ✓c) =
k�1X

i=0

�
i
rt+i + �

k
V (st+k; ✓c)� V (st; ✓c) (2.11)

where k � 1 may vary for different states and is upper bounded by the maximum step
length defined by the environment, with other notations previously introduced.

The major disadvantage of the above definition of A is that both value functions are
required. However, since Q(s, a) can be estimated by V (s) according to the Bellman
optimality equation [112] such that Q(s, a) = r+ �V (s0), Eq. (2.10) can be modified to:

A(s, a) = r + �V (s0)� V (s) (2.12)

where r + �V (s0) is the temporal difference error. The actor-network ✓a and critic-
network ✓c are updated by minimising their corresponding loss functions via the gradient
calculations. The loss for ✓a is the policy gradient [111] combined with the advantage
A, while that for ✓c is calculated in the same manner as (2.7) by calculating the MSE
with the Bellman equation. Their corresponding gradient calculation is expressed as
(2.13) and (2.14), respectively.
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r✓aJ(✓a) = r✓alog⇡(a|s; ✓a)A(s, a; ✓a, ✓c) (2.13)

r✓cJ(✓c) =
@(A(s, a; ✓a, ✓c))2

@✓c
(2.14)

The fundamentals of two different types of DRL algorithms have been introduced in
this section, comprising important concepts, underlying learning mechanisms, and loss
calculations for ANN parameter updates. These are the technical backbones for the
designed algorithms in Chapters 4 and 5 of this thesis for interested readers, and more
detailed information regarding these algorithms can be found in the original publications
[105, 107, 110].

2.3.3 Deep Learning on Graphs

One of the key reasons for the success of deep neural networks is their ability to leverage
the statistical properties of the input data. However, DL research has mostly focused
on data within the 3-dimensional Euclidean space, such as acoustic signals, images,
videos, etc [113]. Consequently, it motivated the extension of DL techniques into the
non-Euclidean space and deep learning on graphs is one of the broad directions that
receives increasing attention [114] and is a promising tool for wireless network research
as such a network can be naturally modelled as a graph.

The model termed GNN was first introduced by [115] for pioneering research that extends
the ANN’s application to data in Euclidean space to the graph domain. With the
message-passing mechanism introduced, GNN updates each node’s state by exchanging
information with other nodes until a stable state is achieved. With the development of
ML techniques on a graph, variants of the GNN model were introduced, with Graph
Convolutional Network (GCN) being a representative of their variants which extends
the convolution operation of the CNN [116] from traditional data (e.g., an image) to
graph data.

2.3.3.1 The Graph Data Structure

A graph is a powerful data structure to model a set of objects and their relationships.
Wireless networks can be naturally modelled with graphs such as the V2V pair shown in
Figure 1.1 where the two VUEs are modelled as “nodes" (the objects with relationships),
with the wireless link between them modelled as an “edge" (the relationship between
nodes). The graph representation of this V2V pair encompasses relationship information
between the two VUEs with underlying network topology that is otherwise difficult to
express using a Euclidean data structure such as a vector.



CHAPTER 2. ESSENTIAL BACKGROUND 37

Formally, a graph g = (Vg, Eg, Xg, Ag) is composed of a set of vertexes/nodes Vg and
a set of edges/arcs Eg connecting pairs of nodes [117]. When the node pairs in g are
unordered, g is referred to as an undirected graph, while ordered node pairs in g make
it a directed graph. Figure 2.5 demonstrates the graph data structure with examples
for both directed and undirected graphs.
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Figure 2.5: The graph data structure. (a) an undirected graph with 4 nodes and 4
edges, (b) a directed graph with 4 nodes and 5 edges.

To enrich the graph g, additional node and edge information can be included in Xg and
Ag respectively. Each node v 2 Vg is associated with a node feature xv 2 Xg, while an
edge (u, v) (or euv) connecting a pair of nodes u, v (u 6= v) holds an edge attribute auv

2 Ag.

2.4 Federated Learning

Originally, ML algorithms were designed for centralised setups (such as a cloud server)
where datasets are well managed, distributed among local machines, and high-speed
communication networks are available for fast data transmission. However, for vehicular
networks, data is collected and stored in different network nodes, such as vehicles and
pedestrians’ mobile devices, leading to incomplete local datasets for these nodes. Since
data-driven learning methods require a rich dataset to fully extract the underlying
patterns, the partially observed data stored locally will cause individual learners to
underperform in vehicular networks. Another scenario is when a learner joins a new
environment where the learner has no knowledge of the environment at all and is
destined to underperform. RL algorithms for vehicular networks also face a similar
challenge in that vehicular decision-making agents can only interact with a part of the
whole environment, leading to suboptimal policies due to partial observation. With the
development of DL, deep ANN models become more complex with datasets of growing
size, which give rise to challenges to the conventional learning architecture.
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To solve such problems, distributed learning methods integrating different learners in
the same environment for an enhanced dataset while also utilising the computing power
of learners thus become a promising approach. The FL [118] methodology is well-suited
to this and was first developed to exploit the values of distributed data among discrete
learners while protecting learners’ data privacy [119].

FL consists of two major components: The FL server and the participants. The
participants are the actual learners that train their own ML models using locally
available information, while the FL server is responsible to collect local models from
each participant and aggregate them to form a global model. This information structure
of FL is similar to the centralised MARL setting in Figure 2.3.

The general FL framework is shown in Figure. 2.6 which contains 3 main steps,
Initialisation, Local Training, and Global Aggregation:

• Initialisation: the FL server determines the training setup, data requirements,
and the participants for FL training.

• Local training: Each participant follows the configuration and trains a local
model using its stored data.

• Global aggregation: All participants upload the parameters of their local models
to the FL server. The FL server then aggregates the models to form a global
model, e.g., averaging the local ANN models’ weights to form a new ANN. The
global model is then distributed back to all participants for a new round of local
training.

Participants

FL	Server

P1 P2 PN-1 PN

Step 3: Global model aggregation

Step 2: Local model training

Step 1: Initialization

Global
Model

Local
Model 1

Local
Model N 

Figure 2.6: General FL training process with N participants

In addition to utilising distributed computing power and exploiting values from dis-
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tributed datasets, the FL training flow also preserves the data privacy of participants as
mentioned above. This is because only the local models are sent from the participants for
global aggregations, while the data used to train the models are kept by the participants,
which helps protect sensitive data from being shared or leaked.

2.5 Summary

This chapter presented an overview of vehicular networks and a tutorial on fundamental
concepts and techniques of machine learning. To be specific, the characteristics and
applications of C-V2X are first introduced, with an overview of use cases and related
service requirements and KPIs. This background introduction set the scene for vehicular
networks for the considered research topics which are further elaborated for each
research question in the following chapters. For the ML tutorial, the core concepts
and methodologies are covered for the three learning paradigms, i.e. supervised,
unsupervised, and reinforcement learning, followed by the introduction of modern ML
techniques including deep learning (and thus DRL and deep learning on graphs) and
federated learning. These fundamentals are crucial to understanding the modelling of
problems and the proposed algorithmic designs in Chapters 4, 5, and 6.



Chapter 3

Machine Learning Applications in
Vehicular Networks

In this chapter, a literature review is presented covering the state-of-the-art solutions
that apply different ML techniques in each of the three identified research topics, with
a summary of the reviewed papers presented in Table 3.1. More specifically, a detailed
background introduction is first presented for each research topic, followed by a review
of the corresponding literature that applied ML techniques. Finally, an overview of
adopted machine-learning techniques is presented for each identified research topic.
Note that the analysis of research gaps is further introduced in Chapters 4, 5, and 6 for
each detailed research question, respectively.

ML techniques have strong capabilities in optimisation problems and can adapt to
dynamic environments, leading to a wide range of ML applications in vehicular net-
works [36, 120–123]. Three research topics were chosen (handover management, radio
resource allocation, and energy efficiency on the network side) following the identified
challenges when considering the underlying characteristics and emerging demands with
the development of vehicular networks. These research topics also share a common
theme of network optimisation, which is suitable for ML solutions combined with the
dynamic vehicular network environment.

Since cellular communication networking is a broad research area even when restricted
to vehicular use cases, an all-encompassing literature review covering every related topic
is beyond the scope of this thesis. For a more detailed and comprehensive review of
ML applications in vehicular and general cellular networking, there are multiple survey
papers available in the field such as [37, 50, 51, 124].

40
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Table 3.1: Summary of the literature review

Application Type Tasks Covered Work Type of utilised
learning models/algorithms

Handover Management
Handover parameter optimisation [125, 126] Q-learning [84]

Predictive handover triggering [127, 128]

Long Short-term Memory (LSTM) [129],
Feed-forward ANNs,
Q-learning,
Hidden Markov Model (HMM) [128]

Handover decision-making [130–132]

Multi-arm bandits,
Dynamic programming,
Deep Q-learning,
Multi-agent deep Q-learning,
HMM

Resource Management Spectrum, power, and
joint radio resource allocation [25, 133–138]

Deep Q-learning,
Deep deterministic policy gradient [139],
Feed-forward ANNs,
GNNs,
Meta-learning [140]

Energy efficiency
via cell switching

RL-based direct decision-making [54, 141–145]

Q-learning,

Multi-agent Q-learning,
Deep Q-learning,
Multi-agent deep Q-learning

Multi-tier solutions [146–148]

K-means clustering [74],
Feed-forward ANN,
LSTM,
CNN [116]

3.1 Learning in V2N Handover Management

In cellular V2X, the V2N links are very similar to those in conventional cellular networks,
although a road vehicle has a much higher mobility compared with conventional cellular
UEs such as a mobile phone used by a pedestrian. When moving across the coverage
of different BSs, the fundamental requirement is that the connection between a VUE
and the network does not break thus ensuring connectivity. This is accomplished by
HO management in C-V2X systems that handle the moving VUE’s network association
from one BS to another BS.

3.1.1 HO Management in Cellular Networks

HO management is part of mobility management in cellular networks. In cellular
networks, the term mobility is defined as “the ability for a user to communicate whilst
moving independent of location”, and the definition of mobility management is “a
relation between the mobile station and the UMTS Terrestrial Radio Access Network
(UTRAN)1 that is used to set-up, maintain, and release the various physical channels.”
These definitions were defined by 3GPP for the vocabulary of cellular networks and
are still valid for 5G [149]. Mobility management is a concept that emphasises the
importance of maintaining connections for moving users and thus plays a crucial role in
cellular networks.

HO management corresponds to the connected state mobility management. In a
connected state, the connection between a UE and the network is established and

1Universal Mobile Telecommunications System (UMTS)
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active with an ongoing data transmission, which is meant to be maintained without
interruption or noticeable degradation while the UE travels within the network. As
the UE’s geographic position changes, it may lead to signal quality decrease from its
serving BS and thus service quality, necessitating the UE to change the connection
(be handed over) to another BS to maintain its QoS. The goal of HO management is
hence to decide the target BS for the UE to switch connection to for the best service
quality. Note that other objectives can also be fulfilled by HO such as re-associating
UEs to balance BS traffic loads and improve spectrum and energy efficiency [150, 151].
However, this thesis will only focus on HO mobility management use case.

HO management is network controlled with UE assistance. The UE continuously mea-
sures the signal quality from its serving BS and neighbouring BS to form measurement
reports that the network controller uses to make HO decisions. A straightforward
metric to measure signal quality is the Received Signal Strength Indication (RSSI)
which characterises the attenuation of radio signals during propagation [152]. This is a
relative number measuring how strong a signal is when it is received by a device. In
cellular networks, the UE measures the signal quality of BSs utilising other metrics
related to RSSI, namely: RSRP, Reference Signal Received Quality (RSRQ), and SINR.
These three metrics are the fundamental metrics in 5G cellular networks to infer signal
strength and quality from a BS to UE for HO decision-making [153]. As defined by
3GPP [154], RSRP is the average power of resource elements that carry BS-specific
reference signals within the measurement frequency bandwidth, while the RSRQ also
includes channel interference and thermal noise. The relationship among RSSI, RSRP
and RSRQ is shown as (3.1).

RSRQ = Nrb ⇥
RSRP

RSSI
(3.1)

where Nrb is the number of resource blocks over the carrier RSSI measurement bandwidth.
Finally, the mathematical definition of SINR is expressed as follows, reflected by its
name:

SINR =
S

I +N
(3.2)

where S, I, and N are the received signal, interference, and noise power at the receiver
side, respectively. Note that these metrics are all used as signal quality identifiers from
the networking standpoint although they show signal quality from different perspectives,
and this thesis will not further expand on the detailed physical definitions for RSRP
and RSRQ.
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The measurement reports are sent to the serving BS for HO decision-making to ensure
the UE connects to the best cell [120, 155, 156]. There are two types of measurement
reporting: periodic and event-based [120]. As these names suggest, the UE performs
and reports its measurement at a defined frequency in a periodic scheme. In contrast,
an event-based measurement report will be sent to the serving BS upon some event-
triggering criteria being met. These criteria defined in the 3GPP specifications are
summarised as follows and note that the opposite of the conditions indicates the leaving
condition of these events [157–159]:

• Event A1: Serving cell becomes better than an absolute threshold.

• Event A2: Serving cell becomes worse than an absolute threshold.

• Event A3: Neighbour cell becomes better than a defined offset relative to the
serving cell. For example, the RSRP of a neighbour cell becomes 3 dB higher
than that of the serving cell for a UE at a given position.

• Event A4: Neighbour cell becomes better than an absolute threshold.

• Event A5: Serving cell becomes worse than one absolute threshold, and the
neighbour cell becomes better than another absolute threshold.

Two standardised HO algorithms are the A3-based or A2A4-based algorithms [160] as
these three measurement events illustrate the situation when a potential HO is required.

A simple HO scenario consisting of two BSs and one VUE is shown in Figure 3.1.
The network-controlled HO process starts after receiving the measurement report that
triggers it. First, the serving BS check the availability of the target BS. After the target
cell confirms that it has enough resources to serve the UE, the HO is executed and
multiple signalling occurs among the UE, the serving BS, the target BS, and the core
network. Finally, after completion, the target BS becomes the new serving BS of the
UE and allocates resources to the UE, and the allocated resources for this UE by the
previous serving BS is released.

The HO procedure among BSs is normally performed with the X2 interface in LTE
[161] and Xn interface in 5G [161]. These two interfaces are similar with respect to HO
workflow, and Figure 3.2 demonstrates the HO procedure using the Xn interface that
the proposed HO algorithm in Chapter 4 is directly based on.
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Figure 3.1: A demonstrative scenario of handover. The UE travels between two BSs
with its direction indicated by the black arrow and measures the signal quality of both
BSs. (a) Before the handover, UE connects to its serving BS. (b) During handover, the
connection between the serving BS and UE is terminated while that between the UE
and target BS is established. (c) After the handover, UE connects to the target BS.

UE Serving BS Target BS AMF

1. Measurement Report

3. HO Request

4. Resource Setup

5. HO Request Ack. 

6. HO Command 

7. Status Transfer

8. HO Complete

9. Path Switch Request

10. Path Switch  
Request Ack.

11. UE Context Release

2. HO Decision

Figure 3.2: The Xn-based handover procedure in a cellular network. Adapted from
Figure 9.2.3.2.1-1 of [162]. AMF: Access and Mobility Management Function.
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Another important concept in HO is the HO parameters configured in conventional
cellular HO algorithms to ensure a UE is handed over to a BS that provides high
communication quality. A direct example of HO parameters is the offset and threshold
in events A1 - A5 that define the borders of HO triggering. The hysteresis and Time-
To-Trigger (TTT) are the other HO parameters that ensure a HO decision is made
for a better target BS [163, 164] such that: the target BS is forced to have hysteresis’
value of higher signal quality than the current serving cell after entering a measurement
event (e.g., A3); the actual HO execution is delayed until the HO triggering condition
is held true by TTT. HO parameters can also reduce ping-pong effects for cellular HO,
meaning subsequent HOs happen between the serving and target BSs and vice versa,
which significantly downgrades network performance [165].

There are various KPIs to evaluate HO’s influence on the overall network performance,
and some outstanding KPIs are presented as follows [166]:

• HO interruption time: The period of time during HO signalling when the UE
cannot transmit the user’s application data with the BS.

• HO cost: The average HO interruption time multiplied by the number of HOs
for a particular UE’s trajectory. This metric is directly related to the network
throughput, with more detail introduced in Chapter 4.

• Signalling overheads: The various data generated during the HO process to
facilitate the operation. Signalling overhead combined with HO interruption
reduces the experienced throughput of a UE.

• HO failure rate: The number of unsuccessful HOs divided by the total number
of HOs throughout a given UE trajectory or for unit time.

• Overall service quality: This can be evaluated using KPIs such as the experi-
enced data rate or signal quality of a UE.

It can be seen from these KPIs that HO management is more challenging in vehicular
networks with much higher mobility compared to UEs in conventional cellular networks,
as the higher mobility naturally leads to a larger number of HOs per unit time. With
ultra-dense deployments, the number of potential targets BSs to handover also signifi-
cantly increases leading to an increased need for HO decision-making. Moreover, the
inclusion of short-range mmWave technology to boost capacity complicates the radio
environment for HO decision-making even more as it deals with the resultant narrower
coverage and sensitivity to blockage.
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3.1.2 Learning-based HO Management: The State of the Art

A variety of research has been conducted for HO performance improvement for different
network setups [17, 166]. ML-based solutions for HO management can be classified into
three main types: ML-based HO parameter optimisation, ML-based prediction assisted
HO, and ML-based HO decision-making.

HO parameter optimisation aims to adaptively update the configured values of HO
parameters as introduced above to achieve HO triggering and decision-making opti-
misation. RL is the major ML methodology used to optimise HO parameters. A
Q-learning-based algorithm was proposed by [125]; by setting the reward function to
consider the number of HOs, HO delays and throughput system-wise, the proposed
algorithm optimised the values of TTT and hysteresis. Similarly, the work of Goyal
and Kaushal [126] also utilised Q-learning to optimise two HO parameters: hysteresis
and TTT. This scheme utilised several metrics of signal quality, the UE’s location and
moving direction, and the load on each BS in combination to rank neighbouring BSs
for the Q-learning algorithm to make effective HO decisions.

In the area of ML-based prediction assisted HO, prediction algorithms that accurately
predict metrics for HOs or the future geographic location of a vehicle are utilised to
proactively trigger a HO and reduce the complexity of HO decision making. The
algorithm proposed in [127] could proactively trigger optimal HOs by matching the
vehicle’s predicted future location with known BS locations using a HMM [128]. More
recent research also implemented a DL-based method using an RNN structure termed
Long Short-time Memory (LSTM) [129] and fully connected feed-forward ANNs to
jointly predict a vehicle’s future trajectory according to personalised driving styles [131].
Besides mobility prediction, there are also methods for HO metrics prediction. An
FL training setup was utilised in [132] to predict future signal quality in a mmWave
vehicular network by utilising both the BS and local UEs. The predicted values were
then fed to a conventional HO algorithm to proactively trigger HOs.

As for ML-based HO decision-making, an ML algorithm is directly utilised for HO
decision-making upon a HO trigger that replaces a conventional HO algorithm. RL is
the dominant ML methodology to develop solutions in this category for its advantages
in sequential decision-making. Note that other ML techniques can also be utilised in
addition to RL. An RL HO algorithm was proposed [167] using non-stochastic bandit
theory [168] with HO cost included in the utility function to reduce frequent HOs and
the overall system energy cost. A unified HO algorithm was developed for Long-term
Evolution Advanced (LTE-A) systems in [169] based on discrete stochastic dynamic
programming [170]. This algorithm considered both the UE’s measurements of signal
quality and BSs overall resource utilisation to produce HO decisions that also balance
loads of BSs. DRL algorithms are also utilised for HO decision-making. For example,



CHAPTER 3. LITERATURE REVIEW 47

Mollel et al. developed a deep Q-learning based HO algorithm to calculate adaptive HO
decisions in a mmWave vehicular network [171]. Their work used event A2 to trigger
HOs as it could indicate a blockage in mmWave networks while also skipping state
observations that are relevant to HO conditions as those observations not satisfying event
A2 will be filtered out thus not used. A K-means clustering algorithm was developed in
[172] to cluster UEs based on the mobility pattern, followed by an asynchronous multi-
agent DRL algorithm for optimal HO decision-making. Furthermore, a joint HO and
power allocation scheme was developed for heterogeneous networks utilising multi-agent
DRL [173]. Using a reward design based on system throughput and introducing a HO
penalty, the algorithm calculated the optimised target BS and transmit power for each
UE.

There are some HO research that combined different ML-based HO optimisation
techniques to form multi-tier learning-based HO solutions. For example, a long short-
term memory-based RNN was trained in [174] to predict future signal strength that
proactively triggers HOs. After triggering, a HMM was used for the HO decision-making.

3.2 Learning in Resource Management

Wireless communication networks have been continuously pursuing higher throughput,
lower latency, higher reliability, and better coverage, while also suffering from a variety of
impairments including pathloss, jamming and/or multi-user interference [121, 175]. To
achieve these goals and deal with the issues, efforts have been paid to aspects including
more efficient modulation and coding design, improved detection and decoding schemes,
with dynamic and effective management of communication resources also identified as a
promising solution [176]. Resources in communication systems are limited such as the
scarce spectrum resource available, making it more important to optimise the allocation
of the limited resources to satisfy the service requirements of the drastically increasing
devices [175].

3.2.1 Spectrum and Power Allocation

According to Shannon’s information capacity theorem [177], power and bandwidth
are the two essential resources which determine the capacity of a wireless channel
indicating the upper bound of information transmission rate with an arbitrarily small
error rate. Therefore, it is critical to allocate frequency bands and/or transmit power
levels according to the channel conditions and users’ QoS requirements in vehicular
networks.

The basic idea of a spectrum allocation problem can be illustrated with a simplified
scenario that considers one user accessing a set of Nsb sub-bands under different
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conditions at time slot t [178]. Each sub-band has a binary condition of “good” (i.e.
small interference and noise) or “bad” (i.e. large interference and noise) that can vary
with time. Therefore, the user’s goal is to select a sub-band under “good” condition for
successful data transmission for each time slot t 2 {1, 2, ..., T} to maximise KPIs such
as throughput. This simplified scenario is shown in Figure 3.3 and can be extended
to more generalised spectrum allocation situations with multiple users and/or more
complicated channel conditions.

Choose sub-band 2 at t

1 2 3 Nsb - 1

( t' )

( t )

Nsb

Success

Choose sub-band Nsb at t'

Failure

Figure 3.3: A simplified spectrum selection scenario for a single VUE with Nsb sub-bands.
A white block indicates a sub-band in “good” condition and a black block indicates a
“bad” sub-band.

Power allocation concerns the transmit power adaption corresponding to the channel
and user conditions to control interference and improve a predefined performance metric
[121]. To formulate this power allocation problem, consider a simplified interfering
channel with M communication links sharing one spectrum sub-band, aiming to optimise
the sum throughput of all links. Denote the transmit power of link m’s transmitter as
Pm (m 2 {1, 2, ...,M}) with fading channel gain gm,n, and the fading channel gain from
the transmitter of link n (n 6= m) to the receiver of link m as gn,m. The received SINR
of link m’s receiver can then be calculated:

SINRm(P̄ ) =
Pmgm,mP

n 6=m Pngn,m + �2
(3.3)

where P̄ = {P1, ..., PM} is the set of transmit power of all links and �2 represents the
noise power. The power allocation optimisation’s goal is for each link m to adjust its
transmission power Pm within the maximum power range (0  P  Pmax) to maximise
the system throughput expressed as:
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max
P̄

MX

m=1

log(1 + SINRm(P̄ )) (3.4)

Note that spectrum and power allocations can be jointly considered to improve spectral
efficiency, reduce interference, and optimise metrics such as system throughput and
transmission latency.

3.2.2 Resource Allocation in C-V2X

In C-V2X, V2N is supported as conventional cellular communications via cellular links,
while direct communication links between UE-type devices such as V2V and V2P are
supported by cellular sidelinks [179, 180]. There are two spectrum access modes for
cellular sidelink: inband and outband modes [181]. Outband sidelink communications
use unlicensed spectrum bands and adopt other wireless technologies such as Bluetooth
[182]. In contrast, the inband setting utilises the licensed cellular spectrum bands for
both sidelink and cellular link communications, which is the selected type for this thesis
for its full control over resource allocation. As shown in Figure 3.4, inband sidelink can
be further categorised into two types, summarised as follows [181, 183]:

• Underlay: Sidelink communications fully reuse the cellular spectrum bands.
The licensed spectrum is not divided for sidelink and cellular communications,
resulting in a higher spectrum efficiency but dedicated resource allocation is
required between sidelink and cellular users to mitigate impairments such as
interference through power control, spectrum allocation, or joint allocation of
spectrum and power [183].

• Overlay: In this design, the cellular spectrum is divided into non-overlapping
parts for sidelink and cellular communications, respectively. As a result, the overall
implementation is simpler compared with underlay sidelink, with interference also
reduced between cellular and sidelink users. However, there is potential spectrum
resource wastage due to the divided spectrum.

In addition to spectrum access modes, C-V2X also has two resource allocation modes
in 5G, supporting both centralised and decentralised resource allocation scenarios for
vehicular networks [184–186]:

• Mode 1: VUEs communicate via sidelink but resource allocation is managed by
a BS in a centralised manner. This mode is only available when a VUE is within
cellular network coverage.
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Figure 3.4: Different spectrum access modes for inband cellular sidelink. (a) Overlay
mode. (b) Underlay mode. Note that the graph is one-dimensional demonstrating how
spectrum frequency bands are utilised, and the presentation of the graph is only to
improve visuals.

• Mode 2: VUEs communicate via sidelink and autonomously select their radio
resources pre-configured by BS/network. As a result, Mode 2 supports both under
and out-of-cellular network coverage.

3.2.3 Learning-base Resource Allocation: The State of the Art

There are several approaches for learning-based resource allocation and can be classified
based on the underlying learning paradigm, i.e., supervised, unsupervised, and RL [121].

Supervised approaches for resource allocation optimisation treat the optimisation
problem as a relationship between the input parameter and the output resource allocation
decision and train an ML model to represent such relationship for optimised decision-
making [121]. As resource allocation optimisation has been previously tackled with
conventional optimisation algorithms, the results of these algorithms can be used as
labelled data to train the ML model. For example, a deep feed-forward ANN was trained
by Sun et al. [133] for power allocation in a basic wireless network with interfering
channels utilising the output of the Weighted Minimum Mean Square Error algorithm
proposed in [187]. Their results suggested the trained ANN can deliver performance
close to the original heuristic algorithm. A GNN model was proposed in [134] for link
scheduling, a special case of power allocation that considers on/off power control of
communication links, for a dense sidelink communication network. The GNN model was
trained using the data generated by a sub-optimal algorithm, FPLinQ [188], and the
results showed satisfactory performances with good generalisation ability to different
network topologies.

Since another algorithm’s results are used to train an ML model in supervised approaches,
the performance of such algorithms is crucial for the learning outcome. Moreover, it is
expensive to generate sufficient high-quality data [121]. These disadvantages motivated
the use of unsupervised approaches to directly optimise the target metric by treating
it as the algorithm’s cost function using unlabelled data. A deep ANN-based power
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control method was proposed in [135] which aimed to solve the non-convex optimisation
of maximising the sum rate of a fading multi-user interference channel. The sum rate
was directly used as the loss function of their proposed algorithm which is similar to
that expressed in (3.4). Similarly, a GNN-based link scheduling solution was proposed
in [136] which also aimed to maximise the sum data rate in an interfering sidelink
network. Their results indicated close performance compared to a supervised learning
counterpart while not requiring expensive labelled data.

Different from supervised and unsupervised approaches, RL for resource allocation
problem models the network controller or UEs as RL agents to learn optimal resource
allocation by interacting with the environment, and most conducted work on ML-based
resource allocation optimisation lies in this category [37]. For example, a game-theoretic
model was proposed in [189] to optimise power allocation in a vehicular network, which
is solved by a Q-learning-based algorithm to minimise VUEs’ energy consumption. A
joint sub-band and transmission power level for V2V links was proposed in [137] for a
spectrum-sharing vehicular network between V2V and V2N links. A centralised deep
Q-learning algorithm was developed for the network controller to decide each V2V link’s
transmitting sub-band and transmit power. Moreover, Liang et al. developed a DRL
algorithm for joint sub-band and V2V transmission power allocation in a spectrum
sharing C-V2X with Mode 2 allocation [25], with a multi-agent deep Q-learning-based
solution developed for each VUE to select its own transmitting sub-band and power.
Similarly, a DRL solution for joint sub-band and V2V transmission power control was
developed by Yuan et al. [138]. However, to further improve the adaptability for
different communication scenarios, a meta reinforcement learning algorithm [140] is
proposed for fast tuning the DRL model for resource allocation scheme.

3.3 Learning in Energy Efficiency

For vehicular and cellular networks in general, energy efficiency is crucial to reduce
energy wastage, Operational Expenses, and greenhouse gas emissions to achieve the
goal of green and sustainable network deployment. Different approaches exist for energy
efficiency in vehicular networks, aiming at two main scenarios: life-span extension for
self-powered devices and power efficiency improvement for power grid-supplied Radio
Access Networks (RAN) [36]. These aspects aim to improve energy efficiency on the
network side. Since VUEs have sufficient energy for communication components, energy
efficiency improvement for vehicles focuses on aspects such as improving road traffic
efficiency by reducing fuel wastage and optimising driving style for motors to operate
more efficiently [36].

The first type of scenario’s aim is to increase the operational time of battery-powered
devices such as RSUs deployed in rural areas that support local road traffic. Two major
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methodologies for life-span extension are energy conservation and energy harvesting
[190]. Energy conservation aims to reduce a device’s power wastage to extend its
battery life as much as possible. In comparison, devices under energy harvesting
schemes are equipped with additional equipment (e.g., wind turbines, solar panels, etc.)
to collect energy from a secondary energy source [191]. ML techniques have also been
applied to this aspect of energy efficiency in vehicular networks [36], with use cases
including switching a self-power RSU into sleep mode when idle [192], energy-efficient
scheduling for computation offloading with energy-constrained RSUs [193], and wind
energy harvesting-based energy trading between RSUs and electric vehicles [194], etc.

Although life-span extension for battery-powered devices is an important scenario to
investigate, this thesis focuses on the other category of scenarios to improve the energy
efficiency of power grid-supplied RAN components (e.g. BSs). As introduced in Chapter
1, BSs are the major energy consumer in cellular networks and take up 60% - 80% of
energy consumption in the network, with 5G BSs consuming more than 1.5 times more
energy compared to their predecessors [43, 44]. As a result, it is vital to improving BSs’
energy efficiency to achieve green communications and sustainable network development.

3.3.1 Base Station Components

A well-known and fundamental power consumption model for cellular BSs was developed
by Auer et al. [45], referred to as the Energy Aware Radio and neTwork tecHnologies
(EARTH) power consumption model. According to this model, the typical components
that contribute to a BS’s power consumption are:

• Antenna interface: The antenna is the component for signal transmission and
reception. The influence of the antenna type on the power efficiency is modelled
by a certain amount of losses caused by the feeder, antenna bandpass filters,
duplexers, and matching components [45].

• Power amplifier: This is used during the transmission and reception of radio
frequency signals to boost the signals’ power level.

• Small-signal radio frequency transceiver: This consists of a transmitter and
receiver for downlink and uplink communications, respectively.

• Baseband unit: Responsible for baseband signal processing, including modula-
tion, conversion, filtering, etc. Carrying out such tasks leads to additional energy
consumption [45].

• Power supply and cooling: This unit contains the mains (Alternating Current
(AC)-to-Direct Current (DC)) supply, DC-DC power supply, and the active cooling
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system of a BS (mainly for the macro-BS type).

Following the introduction of the above main components and assuming the power
consumption of a BS is proportional to the number of transceiver chains NTRX , a BS’
total power consumption Pin is expressed by the following equation according to [45]:

Pin = NTRX ⇥
Pout

⌘PA⇥(1��feed)
+ PRF + PBB

(1� �DC)(1� �MS)(1� �cool)
(3.5)

where ⌘PA denotes the power amplifier’s power efficiency, �feed, �DC , �MS, and �cool

stand for the coupling losses from the feeders, the DC-DC converter, the mains supply,
and the cooling systems, respectively; Pout represents the average transmit power for
each transceiver link of the BS, PRF and PBB are the power consumptions of the
radio frequency and baseband unit, respectively. More detailed BS power consumption
breakdown can be found in the original paper of the EARTH model [45].

According to the analysis of the results in Figure 3 of [45], the relations between Pout

and Pin are nearly linear. Therefore, a linear approximation of (3.5) as a simplified BS
power model is often used for green radio analysis [195]:

Pin =

(
NTRX · (P0 +�pPout), 0 < Pout  Pmax

NTRX · Ps, Pout = 0
(3.6)

where P0, Ps are the static operational and sleeping power consumption, respectively,
�p is the slope of the load-dependent power consumption, and Pmax denotes maximum
transmission power.

3.3.2 Cell Switching-enabled Energy Saving

As BSs are the major power consumers in cellular networks and various techniques have
been developed for BS energy-saving. As summarised in [195], energy-saving techniques
can be grouped into several domains, namely: Spatial domain, time domain, frequency
domain, and engineering domain, corresponding to optimising different variables in
(3.5). The methodologies and representative energy-saving techniques from each of
these domains are presented as follows:

• Spatial domain: This is to minimise the equivalent number of transceiver chains
NTRX , i.e., to switch off transceiver chains or entire cells of a BS as many as
possible or deploy fewer transmitters in the first place. Pin can be proportionally
reduced with the decrease of NTRX , and when all cells of a BS are switched off,
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the BS can also be switch to sleep mode and operates in Ps which is lower than
its active power P0 +�pPout as in (3.6).

• Time domain: This is to extend the time when a transceiver is switched off or a
BS is in sleep mode. Since Ps < P0 +�pPout in (3.6), the longer a BS can stay in
sleep mode, the more energy can be saved. The cell discontinuous transmission
technique [196] is an efficient approach to timely switch off the traffic channels and
the related power amplifier, which can significantly extend the sleeping periods
[195].

• Frequency domain: To reduce the average transmit power requirement Pout of
a BS and increase transmission efficiency. This straightforward aim is achieved
by bandwidth reduction techniques as described in [196]. The reason behind this
technique is that the radiated power scales with the bandwidths requirement,
while smaller bandwidth also requires less reference signalling, which lowers the
power budget. The technique can be accompanied by radio resource management,
such as power allocation to maximise its value [195].

• Engineering domain: Engineering evolution can also help improve BS energy
efficiency by increasing the efficiency of hardware via advanced architectural
design and/or improved components as in [197–199]. The aim is to improve, e.g.,
the power amplifier efficiency ⌘PA and the coupling losses consisting of �feed and
�cool

From the above summary, switching off components in a BS or putting the BS into
sleep mode (referred to as cell switching in this thesis) is a highly effective strategy
for the proportional energy saving according to (3.5) that has a high impact among
all BS energy efficiency techniques. Additionally, the cell switching technique also
stands out for the following reasons: 1) It can be deployed on top of other energy
efficiency techniques such as engineering solutions (e.g. improved power amplifier)
and transmission efficiency schemes; 2) It is more convenient to deploy with software
updates, compared with the engineering solutions requiring component replacement or
even new deployment, or frequency domain solutions that need updated communication
standardisations BS [200]. Finally, cell switching can be adaptively designed and
executed with different levels of sleep mode correlating to the deactivation time for
different scenarios. A deep sleep mode can switch off more components (e.g., from
transceiver pairs to active cooling) and achieve greater energy saving while having a
longer deactivation time which is less flexible. In contrast, shallow sleep mode will result
in less saved energy by switching off fewer components (e.g. only a few transceiver
pairs) but is more responsive with a shorter deactivation/reactivation time [201].
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3.3.3 Learning-base cell switching: The State of the Art

Previously, optimising cell-switching decision-making was developed using mathematical
optimisation-based heuristic algorithms. In recent years, cell switching solutions have
been adapting ML techniques because of the advantages of ML. These solutions can be
classified into two main categories drawing from the state of the art: Direct cell switching
decision-making algorithms that mainly utilise RL, multi-tier solutions combining
different ML techniques or utilising ML and heuristic algorithms jointly. Since cell
switching considers the energy efficiency of BSs which are important components for
cellular networks as a whole, research for both general cellular networks and the more
specific vehicular networks are included here. Note that energy efficiency considering
only vehicular networks also exists such as the aforementioned work of [192–194] which
is not the focus of this topic, with more details covered in [36].

Tabular Q-learning is the frequently utilised RL algorithm for ML-based direct decision-
making for cell switching. For example, Yu, Chen, and Yin proposed a Q-learning-based,
dual-threshold solution to put SC BSs into sleep mode for energy saving while avoiding
the SCs’ frequent transactions between sleep and operation modes [141]. Assaid et al.
also proposed a Q-learning-based method [142], which considered energy consumption
with CO2 emission tracing in a 5G network. Another Q-learning-based solution was
proposed in [143] to dynamically adjust BSs’ load and to switch off redundant SCs
in an ultra-dense cellular network setup. Multi-agent RL was also utilised, such as
the Q-learning algorithm proposed in [144] that modelled each SCs as an RL agent
to jointly learn the best sleep mode option in a multi-sleep-mode setup in order to
maximise the network’s energy efficiency.

In addition to tabular RL techniques, approximation-based RL techniques were also
utilised by recent research. For instance, the linear function approximation technique
was utilised by Ozturk et al. [54] to develop online training and execution in an ultra-
dense network. Another approach is to exploit the strong approximation capability
of ANNs, such as the work of Zhang et al. in which a double deep Q-network-based
solution was developed to determine the optimal sleeping strategy in a heterogeneous
radio access network [145] and real-world traffic data was used trained and tested the
algorithm.

As for multi-tier solutions, some research combined ML methods to boost the perfor-
mance of heuristic algorithms or to reduce the problem search space and hence the
overall problem complexity. Abubakar et al. proposed a two-tier cell switching scheme
[146] based on unsupervised learning and the exhaustive search algorithm [202]. Their
solution first separated an ultra-dense network into different clusters using the K-means
clustering algorithm; after that, the exhaustive algorithm was executed for each cluster
to get optimal local cell-switching decisions. A LSTM model was utilised by Jang et
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al. [147] to predict user traffic for the next few time slots of the network. Based on
the predicted traffic, a Lyapunov optimisation problem [203] was formulated to obtain
the cell-switching decision to balance between the reduced power consumption and the
predicted traffic loads.

Moreover, different learning-based techniques can be jointly utilised for cell-switching
decision-making, such as the work in [148] that first combined CNN and RNN to
predict future traffic. After that, the cell switching problem was modelled as an MDP
and solved by the Deep Deterministic Policy Gradient (DDPG) method [139], a DRL
algorithm.

3.4 ML Techniques Adopted for Implementation

With the research gap identified for each research topic from the literature review,
this thesis adopts different ML techniques for solution proposals. The adopted ML
techniques for the three research questions are centred around Deep Learning and,
more specifically, DRL and GNN-based algorithms that belong to the categories of
reinforcement learning and unsupervised learning. Detailed ML techniques utilised for
implementation are summarised as follows on a per-chapter basis. Note that the Pytorch
learning framework is utilised to implement all the proposed learning algorithms [204].

• Chapter 4: A centralised DRL algorithm of Deep Q-learning is employed for HO
decision-making.

• Chapter 5: A decentralised DRL algorithm utilising FL training is implemented
for joint spectrum and power allocation. This algorithm has two versions, Deep
Q-learning and A2C, to examine the performance of on-policy and off-policy RL
algorithms.

• Chapter 6: A GNN-based DL algorithm is proposed and implemented in an
unsupervised manner for adaptive cell switching.

3.5 Summary

Following the general background introduction in Chapter 2, a more detailed background
regarding the three chosen research topics, handover management, resource allocation,
and energy efficiency, is presented in this Chapter. For each research topic, such
background includes the fundamental concepts (e.g., the definition of handover) and
goals, and the related system architecture/model considered. Following this, a literature
review for each research topic is presented, drawing the state-of-the-art. The background
and literature review will be further elaborated in the following chapters (Chapters 4,
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5, and 6) for each research question, motivating the proposed solutions to the research
questions. Finally, a brief summary of adopted ML techniques implemented for each
research question is covered in a per-chapter manner.



Chapter 4

Intelligent Handover Algorithm with
Deep Reinforcement Learning

4.1 Introduction

Network densification is a key solution to meet the rising demand for data traffic and to
serve the dramatic increase in demand for cellular services. With the development of 5G
and beyond, the substantially increasing numbers of BSs due to ultra-dense deployment
and connections with more HO entities to be considered will lead to highly complex
HO management. In addition, the high mobility of road vehicles will cause a much
shorter connection time between a VUE and a BS, further increasing the frequency
of HO. These characteristics bring new challenges to traditional solutions with fixed
parameters for HO decision-making.

4.1.1 Background: System Model and Problem Formation of
Cellular V2N Handover Optimisation

The considered network architecture of cellular V2N communication in this chapter
consists of VUEs and BSs for HO management optimisation. The scenario can be
illustrated by the simple scenario in Figures 3.1 and 4.1, which consist of only road
vehicles and BSs with V2N as the only communication type. Once the simplified
scenarios are understood, they can be extended to include densely deployed BSs,
multiple VUEs, and other communication entities to formulate a more realistic real-
world scenario. Note that the detailed general background for cellular networks’ HO
management is already covered in Section 3.1 hence will not be repeated in this section.

58
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4.1.1.1 The Current HO Algorithm for Cellular Networks

In current cellular systems, the HO solution is designed using fixed parameters combined
with different measurement events following the introduction of the cellular HO mecha-
nism in Section 3.1 and a standardised HO algorithm implemented in cellular networks
is the A3-based HO algorithm [205]. To recapitulate, event A3 will be triggered if the
signal strength (e.g. RSRP) of a neighbour BS becomes larger than that of the serving
BS by a predefined offset including measurement object specific offset, the event offset,
etc., with the mathematical definition of the entering/leaving conditions defined in the
corresponding 3GPP specification [158]. In this thesis, however, it is assumed that the
offset values are represented by the hysteresis.

Figure 4.1 demonstrates the concept of A3-based HO considering a simple simulated
scenario where a VUE travels along a straight road at a constant speed v between two
BSs deployed. The scenario shown by the bottom part of this figure largely resembles
what is demonstrated in Figure 3.1, while the top part of this figure illustrates the
RSRP records of the two BSs along the trajectory of the VUE. The VUE is initially
connected to BS1 and is handed over to BS2 at around 37 seconds of simulation time
when the RSRP of BS2 is 3 dB larger than that of BS1 according to the decision
calculated using the A3-based HO algorithm. Since this algorithm uses RSRP as the
signal quality indicator (the larger an RSRP is, the better the signal quality), it is
termed the A3 RSRP HO algorithm.

In this figure, t0 represents the ideal HO point in the demonstrative case; i.e., the
RSRP of BS2 exceed that from BS1 after t0. If the HO can be completed at t0, this
will ensure that the VUE experiences the theoretically best signal quality throughout
this simplified scenario. � and TTT represent the two HO parameters, hysteresis and
TTT. As already discussed in Chapter 3, these two HO parameters are set to ensure
that a better BS is selected for HO and to overcome the ping-pong effect [206] by the
following process: In this simplified scenario, BS2 must hold a higher signal quality of
� than BS1 after event A3 is entered (this equals to “after t0” in this example) for at
least a time of TTT before executing the HO. This is process is also the fundamental
process of the A3 RSRP algorithm when measuring RSRP for signal strength indication.
Finally, �t represents the delayed time of this HO with respect to t0. During �t, the
VUE experiences suboptimal signal strength while waiting for the confirmation of HO
by the A3 RSRP algorithm as guarded by the two HO parameters.

4.1.1.2 The Considered Problem of HO Decision-making Optimisation

In cellular networks including LTE and the current 5G implementation, hard HO is
applied such that the connection between the UE and its serving BS is terminated
before the new connection is established [207] as demonstrated in Figure 3.1. As a
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Figure 4.1: Event A3-based HO. In this case, t0 identifies the optimal HO point or the
UE will experience suboptimal signal quality due to HO delay as specified by the grey
area. � and TTT represent the two parameters, hysteresis and TTT, of the A3 RSRP
HO algorithm; �t indicates the delayed time (period of suboptimal signal quality due to
late HO) for this HO with respect to t0.

result, the UE’s application data transmission will be interrupted for a short period
during the hard HO process. This interruption occurs after the HO execution point
(e.g., shown by the circle mark in Figure 4.1 for the simplified scenario), is known as
the HO interruption time td. Note that td is different from the delayed time for HO (�t)
that denotes the time between t0 and the A3 HO trigger.

The accumulation of td will cause a degradation effect on the experienced throughput
of the UE due to hard HO. Note that under an idealised condition, td will be a constant
defined by the system configuration as the time consumption of the HO execution phase
specified by steps 7 to 11 in Figure 3.2 is a constant. The accumulation of td related to
the total number of HO Nho in a given UE trajectory are combined as HO delay cost
DHO, and is defined as follows according to [208]:

DHO = NHO ⇥ td (4.1)
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For a unit time period T (seconds) of a given moving UE, the normalised HO delay
cost �HO can then be derived:

�HO = min(
Dho

T
, 1) (4.2)

�HO is expressed as a factor between 0 and 1, indicating the percentage of total time
consumed on HO operations such as radio link switching between BSs. As �HO tends
towards 1, it indicates that the UE has spent almost the whole period T on HOs such
that the user will experience no effective connections for service data transmission.
Ping-pong effect during HOs that the cellular connection of a UE shifts forwards and
backwards between two or more BSs will greatly increase �HO by increasing NHO thus
transmission interruption and largely degrade the service quality.

The throughput derived from the Shannon capacity formula when considering �HO can
then be expressed as:

Throughput = (1� �ho)⇥
t+TX

t

BW (t)⇥ log2(1 + SINR(t)) (4.3)

where BW (t) and SINR(t) are the instantaneous bandwidth and signal-to-noise ratio
at time t. Therefore, maximising throughput indicates maximising BW (t) and SINR(t)

while minimising �HO for T . If constant BW (t) and td are considered, SINR(t) and
NHO then play a vital role in increasing the average throughput for a defined time
period T along a known UE trajectory, which is the fundamental assumptions of this
work as the focus is on the HO decision-making. The optimisation of HO execution
(beyond step 7 in Figure 3.2) is thus beyond the scope of this chapter. For simplicity,
the rest of this chapter will use SINR and BW instead of BW (t) and SINR(t).

Therefore, given T and a trajectory in a hard HO setup, the optimisation objective
is to maximise average throughput by optimising the HO decision-making to increase
the average SINR by switching to a better-serving BS while also reducing NHO for
a constant BW and td. It is acceptable to have more HOs to further increase SINR

as long as the resultant Throughput also increases following (4.3). Note that the goal
to maximise SINR is essentially to minimise �t following the assumption of constant
BW and td to reduce the time for suboptimal signal quality during a HO period of
interest. Therefore, �t becomes an important KPI in this work as it indicates the period
of service quality downgrade due to late HO execution. When using the A3 RSRP
algorithm in a vehicular network with ultra-dense BS deployment, frequent HOs will
lead to a large accumulation of �t that will significantly downgrade the user experience
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due to packet loss caused by the suboptimal signal strength. Note that for a defined
HO algorithm (e.g., the A3 RSRP algorithm with known � and TTT ), �t will also
be a constant following the above assumption as the decision of a HO would also be
predefined, hence this optimisation problem is dependent on the algorithmic design and
parameter configurations for optimal HO decision-making.

Fixed-parameter-based conventional HO algorithms are hard-coded and fully reactive
that cannot adapt to the dynamic environment of vehicular networks and thus, much
attention has been paid to HO management optimisation. In recent years, ML-based
solutions have been widely explored in various wireless communication research fields,
including resource management, mobility prediction, and HO management for different
system setups [52]. ML techniques can utilise the rich dataset generated by wireless
systems and extract hidden patterns in the dataset that are usually difficult to derive
using analytical optimisation techniques [209]. Consequently, this work proposes a
DRL-based HO algorithm for V2N communications in cellular vehicular networks to
make informed and adaptive HO decisions. By gaining knowledge of the environment
using DRL, the proposed algorithm decides when a HO should be executed in an
informed manner such that the HO can happen near the optimal point t0. Also, because
the HO points are learned through experiences, the proposed algorithm does not rely
on HO parameters (e.g., � and TTT ) to ensure an optimal target BS is selected.

4.1.2 Related Work

To improve HO performance, various research has been conducted using ML techniques
[17, 166] and ML-based solutions for HO optimisation can be classified into three main
types: ML-based HO parameter optimisation, predictive HO enabled by ML, and direct
HO decision making using ML.

For the scenario in Figure 4.1, it is possible for A3 RSRP HO algorithm to reduce �t
and hence the grey area representing suboptimal signal quality. This can be achieved by
dynamically adjusting the values of � and TTT (i.e., reducing � or TTT in Figure 4.1
scenario), the HO parameters of the algorithm. ML-based HO parameter optimisation
still uses parameter-based HO algorithms for HO decision-making, with a learning
algorithm implemented to optimise the value of HO parameters. For example, the
Q-learning-based algorithm proposed by Assem et al. [125] that optimises the values of
TTT and hysteresis for an A3-based HO algorithm by setting the RL reward function
to consider the number of HOs, HO delays and throughput system-wise. Another
Q-learning-based algorithm was proposed by Goyal and Kaushal [126] to optimise �
and TTT . This scheme utilised signal strength indicators (RSRP, RSRQ, and SINR),
the location and moving direction of a UE, and BS traffic loads to support the Q-learning
algorithm to decision optimal values for the two HO parameters.
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For predictive HO enabled by ML, ML algorithms are designed to accurately predict
future measurement metrics or the future location of a vehicle to trigger HOs. When
applied to the scenario in Figure 4.1, this strategy essentially aims to trigger the HO
execution in advance to reduce the signal quality downgrade due to �t, i.e. the grey
area in Figure 4.1 representing it. An example of this approach in the simplified scenario
is that at the 34-second time step in this Figure, the UE sends an accurate prediction
of RSRP for the 37-second time step for the BS to start the HO using the A3 RSRP
algorithm. In this direction, an FL training setup for future Signal-to-Noise Ratio
(SNR) prediction utilising both the macro BS and local UEs was proposed [132]. The
predicted SNR values were sent to a conventional HO algorithm to proactively trigger
HOs in a mmWave vehicular network. In comparison, the algorithm proposed in [127]
could proactively trigger HOs by matching the vehicle’s predicted future location with
known BS locations to reduce the complexity of HO decision-making as being in close
proximity to a BS means better signal quality.

In contrast to the strategy used in ML-based predictive HO, ML-based HO algorithms
aim to directly produce optimised HO decisions using an ML algorithm. When applied
to the scenario in Figure 4.1, this type of approach tries to identify t0 such that �t can
be minimised and hence minimise the signal quality degradation. Various solutions have
been proposed in this category, such as a unified HO algorithm for LTE-A [169], based
on discrete stochastic dynamic programming [167]. The algorithm considered both UE
measurements (RSRP and RSRQ) and overall resource utilisation of BSs to produce
HO decisions that also balanced the traffic loads among BSs. A joint HO and power
allocation scheme was developed for heterogeneous networks utilising multi-agent DRL
[173]. Using a reward design based on system throughput and introducing a penalty
for HO, the algorithm optimises BS and power level selections for each UE. Other
algorithms also considered the new technologies introduced in 5G cellular networks.
For example, a Q-learning-based HO algorithm was proposed in [53] for a mmWave 5G
network, where the RSRP is used to trigger the algorithm for HO making. In a similar
manner, Mollel et al. proposed a deep Q-learning-based HO algorithm for a mmWave
vehicular network [171]. Using SINR as the UE measurement metric, this work adopted
event A2 (the serving BS becomes worse than an absolute threshold) to trigger HOs as
it could indicate a blockage in mmWave networks while also accelerating ANN training
by skipping states that were not points of interest.

Some HO research combined ML HO optimisation techniques to form multi-tier learning-
based HO solutions. For example, an LSTM RNN was trained in [174] to predict future
received signal strength to trigger HO predictively. After triggering, an HMM [128] was
used to optimise the HO decision-making.
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4.1.3 Objectives and Contributions

Extensive research has been conducted into ML applications in HO management from
different optimisation aspects, with some researchers focusing on specific network setups
such as Yajnanarayana et al. and Mollel et al. who focused on the features of mmWave
networks. Most literature considered a scenario of a generic cellular network with slower
moving UEs whilst vehicular UE scenarios with much higher moving speed and strict
QoS requirements were less common. However, relatively little research evaluating
the performance of an ML-based solution with conventional methods using the same
input parameters has been considered. Although it is essential to evaluate and compare
the performance of different ML-based solutions using standardised datasets and/or
test environments [36], little research has considered these aspects of different HO
algorithms with only [169] and [174] implementing their proposed algorithms on a
full-stack simulator such as ns-2 and ns-3.

Consequently, this work focuses on a DRL-based HO algorithm to tackle the HO
optimisation problem in cellular V2N networks based on current cellular network
architecture, aiming to explore how DRL may improve the system’s HO decision-making
performance and evaluate the performance using the well-established network simulator
ns-3. The ns-3 simulator is a standardised platform with full-stack configuration for
realistic simulation configuration and real-world system configuration emulation. A
bespoke simulation is developed with a realistic scenario setup for the Glasgow city
centre area, UK, using BS locations and vehicle trajectories that emulate reality. The
official ns-3 cellular network module was used in accordance with the 3GPP standards
[210]. The proposed algorithm only used the RSRP parameter available in the current
measurement reports for HO as the input parameter, and the dataset used for training
was gathered directly from the corresponding network layer of the cellular protocol
stack via realistic simulations. After offline training, the algorithm was then deployed
in the mobility management entity for online performance analysis directly using the
ns-3 simulator. Performance comparisons showed a 25.73% packet loss reduction and
3.03 dB SINR gain per HO period of interest (defined as the period starting from t0

until the HO is executed for both benchmarks, specified by the grey area in Figure 4.1).
Moreover, a qualitative comparison of the proposed scheme and the state-of-the-art
research utilising ML techniques is provided. The contributions of this work can be
summarised as follows:

• A HO algorithm is developed using DRL utilising the standard input parameters
list as available in cellular network configurations, hence can be deployed via a
software upgrade with small system-level modifications.

• The proposed algorithm is validated on the discrete-event network simulator ns-3
with realistic scenario setups, in contrast to high-level proof-of-concept simulations.
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• Performance evaluation against the A3 RSRP HO baseline demonstrates a sig-
nificant 6.3% improvement in throughput from the proposed algorithm for the
considered simulation scenario, while also reaching near-optimal HO point (around
t0) for all HO cases in the simulation, offering improved performance for 5G ve-
hicular networks.

• Through qualitative comparison among state-of-the-art solutions, the proposed
algorithm can be positioned to be lightweight with less impact on the system
deployment. Combined with the simulation results, this makes the proposed
solution a promising candidate for 5G and beyond V2N.

4.2 Proposed Solution

A Double Deep Q-network (DDQN)-based HO algorithm is developed for the above-
formulated problem and this section focuses on the design detail of the key elements,
including the state space and state observation, action space, and reward design. A
step-by-step summary is also included for both training and execution of the proposed
solution. The Experience Replay is also deployed along with the proposed DDQN HO
algorithm to improve the data efficiency during training while also aiming to improve
the overall performance.

Because of DDQN’s advantage over the original Deep Q-network (DQN), this research
aims to develop a DDQN-based HO algorithm and deploy it in cellular network ar-
chitecture and compare it with the results of the presently implemented A3 RSRP
HO algorithm. A centralised agent is designed that utilises the DDQN HO algorithm,
following the same HO decision-making setup as the existing cellular network. The HO
process derived from the current Xn-based HO [161] can be found in Figure 4.2.

The state observation and reward design must be based on the cellular measurement
report entities from the UE, specifically, the mapped RSRP index values (integer values
between 0 and 97 proportional to the raw RSRP measurement in dB, 0 represents the
weakest connection quality or no signal, while 97 indicates very strong signal strength)
for the serving BS and neighbour BSs and corresponding BS IDs [153, 154]. According to
3GPP, raw RSRP measurement values will first go through layer-3 (the Radio Resource
Control layer of the cellular protocol stack) filtering before being reported to the serving
BS by a UE. The layer-3 filtering is shown in (4.4), where Fn and Fn�1 are the current
and old filtered RSRP values to report, Mn is the latest received measurement result
from the physical layer, and a = 1

2
k
4

where k is the filter coefficient for the corresponding
measurement quantity received by the quantity configuration parameter.
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Figure 4.2: The HO process with a centralised DDQN agent. Derived from steps 1 to 7
of Figure 3.2

.

Fn = (1� a) · Fn�1 + a ·Mn (4.4)

4.2.1 State Space

Mobility-based BS selection strategies have been intensively studied for vehicular
networks, utilising a UE’s location and speed [17]. Measuring the exact location of
a VUE is expensive and time-consuming, whereas RSRP information can be utilised
to estimate a UE’s location [211, 212]. This provides a strong mapping between a
geographical location in a defined area to a set of RSRP values from the BSs within the
area, while more BSs available in the area may further improve the location estimation’s
precision. Therefore, this study considers the combination of the RSRP values measured
by a UE from all surrounding BSs to represent the HO location-of-interest instead of
the precise location of the UE (i.e., geo-coordinates of UE’s location) and vehicle UEs
are assumed to be of the same height to reinforce such representation.

Dependent upon the cellular network’s configuration, converted RSRP indexes will be
reported by a UE to its serving BS for HO inference [160]. However, in contrast to
the configuration deployed in the current network, this study requires that all RSRP
indexes of listed BSs within an area to be reported to form a state observation vector.

For a given local area containing n BSs and for a UE at position p, the RSRP measure-
ments of all BSs RSRP p is given as:



CHAPTER 4. HANDOVER DECISION-MAKING OPTIMISATION 67

RSRP p = {rsrp1p, rsrp2p, . . . , rsrpnp} (4.5)

Note that the above design is based on the assumption that by deploying the proposed
DDQN HO algorithm, the network operator has predefined areas with a known set of
BSs for a particular DDQN model to operate, while the network controller is able to
switch DDQN models corresponding to the adjacent areas at area boundaries.

The state observation vector sp is the combination of RSRP p and the serving BS ID
{RSRP p;BSserving}.

However, instead of using the converted decimal value to represent the serving BS ID
(as it may be confused with a RSRP index value), this information is designed to be
represented via one-hot encoding [213]. For example, if the serving BS of a UE has
a local ID of 2, with a total of 5 BSs in the local area, then the serving BS ID after
one-hot encoding becomes the vector BSserving = {0, 1, 0, 0, 0}. Therefore, sp can then
be formally defined as:

sp = {rsrp1p, rsrp2p, . . . , rsrpnp ;BSserving} (4.6)

and the complete state space S is then defined as the collection of all possible states.
To observe the environment fully, the algorithm assumes that a state observation is
periodically reported by a UE for both training and performance evaluation.

Figure 4.3 demonstrates the environment-state relationship following the state design.
At the top of the figure, a conceptual geographic environment is represented by n BSs
and a single moving vehicle UE between two locations, p and q, at time t and t

0, to show
the formulation of sp. The lower part of the diagram shows the RSRP p formulation in
a graphical example of an RSRP record assuming n = 4.

4.2.2 Action Space

An action a to be taken in each state can be defined as the BS to connect to for the
next state of a UE, i.e. all listed BSs in the local area including the serving BS (if the
decision is not to HO). Therefore, the action space can be defined as a vector consisting
of local BS IDs, A = {BS0, BS1 . . . , BSn}. Note: a HO will only be executed if the
action specifies a neighbouring BS to connect to, while an action for the serving BS ID
indicates no HO required for the UE and to remain on the current the serving BS.
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Figure 4.3: A graphical demonstration of the state space design. (a) A simplified
environment consisting of n = 4 BSs and a VUE; (b) An illustrative scenario with n = 4
BSs showing the RSRP record of a UE trajectory with the x-axis being the elapsed
simulation time.

4.2.3 Reward Design

In line with the design of the state observation space, the reward design should also
utilise only information from the measurement report as the design aims to not influence
the current HO algorithm deployment wherever possible. A straightforward design uses
the RSRP of the new serving BS after the HO (hence state transition) specified by the
action taken. The proposed reward design is to normalise this value with the highest
reported value to emphasise the RSRP difference between the current BS choice and
the local maximum RSRP, following the premise that higher signal strength correlates
with a higher SINR and thus larger throughput.

A constant HO penalty is introduced in the reward design to enable the agent to
consider the negative impact of performing HOs. The simplified approach of maximising
cumulative RSRP-based reward may lead to unwanted HOs resulting in the ping-pong
effect due to noisy measurement reports causing delays in data transmission as occur in
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the current hard HO implementation of LTE and 5G cellular systems.

As shown in (4.7), r(sp, ap; sp+1) is the reward gained after taking action ap in state
sp and observing the next state sp+1. max(RSRP p+1) is the largest RSRP value from
the measurement report in state sp+1. In addition, rsrpap+1 is the RSRP value of the
target cell decided by the action taken, and CHO is the introduced punishment on HO,
a positive number with its specific value configuration depending on the environment.

r(sp, ap; sp+1) =

8
>>>><

>>>>:

max(RSRP p+1)� rsrp
a
p+1 � CHO, if HO is triggered

max(RSRP p+1)� rsrp
a
p+1, otherwise

(4.7)

4.2.4 Algorithm Design

The proposed DDQN algorithm implementation consists of two phases: exploration
(training) and exploitation (execution). During the exploration phase, the algorithm
is trained offline such that the dataset is collected, pre-processed, and used to train
the DDQN without directly interacting with the environment. The dataset is collected
along different UE trajectories and the ✏-greedy strategy [214] is used to explore various
actions in every state to update the ANN that approximates the optimal HO value
function. Algorithm 4.1 summarises the DDQN algorithm’s training process during the
exploration phase.

The training process completes in the exploitation phase, where the ANN update is
terminated, and the trained ANN is used to emulate the optimal HO policy to take
HO actions by setting ✏ = 0 in the ✏-greedy strategy. In order to directly compare with
the A3 RSRP baseline, event A3 is also used in the exploitation phase to trigger the
HO inference. Figure 4.4 demonstrates the algorithm’s workflow in the exploitation
phase. Note that the new data generated during the exploitation phase can also be
stored and processed to update the DDQN algorithm to learn the underlying patterns
in the new datasets. However, the design and implementation of such future updates to
the algorithm are beyond the scope of this work.
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Algorithm 4.1: Training of the proposed DDQN HO algorithm
Initialise : ✓q - Training Q network; ✓0q - Target Q network;

B - The replay Buffer; Nrp - Replay buffer capacity;
Nmb - Mini-batch size; Nf - Target network ✓0q update frequency;
� - The discount factor; ✏ - Probability to take a random action;

1 for episode 1, 2, ..., Nepisode do
2 Set the initial state s1 ;
3 for i 1, 2, ..., end of trajectory do
4 Observe si ;

5 at  
(

a random action, with ✏
argmaxa Q(st, a; ✓q), with 1� ✏

6 Execute ai and observe s
0
i and ri ;

7 Store {si, ai, s0i, ri} in B ;
8 if Nrp is reached for B then
9 Delete the oldest sample in B ;

10 end
11 if B has at least Nmb samples then
12 Sample a mini-batch of (s, a, s0, r) from B ;
13 foreach (s, a, s0, r) sample do
14 Construct target value:

15 y  

8
><

>:

r, if s0 is the terminal state

r + �Q(s0, argmaxa0Q(s0, a0; ✓q); ✓
0
q), else

16 Calculate loss ky �Q(s, a; ✓q)k2 ;
17 end
18 Do gradient descent with the calculated loss array ;
19 Update parameters of ✓q
20 end
21 if mod(i, Nf ) = 0 then

/* Copy ✓q parameters to ✓
0
q */

22 ✓
0
q  ✓q

23 end
24 end
25 end
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Figure 4.4: A flowchart of the proposed DDQN HO algorithm in the execution phase.
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4.3 Performance Evaluation

This section covers the simulation-based performance evaluation and analysis for the
proposed DDQN HO algorithm against the A3 RSRP algorithm currently deployed
in the network. First, the detailed configuration is introduced which includes the
scenario and network setup, as well as the ANN hyperparameter setups, followed by
the performance metric introduction. This is because the choice of performance metrics
has also been adapted to the selected tools. Finally, the performance analysis contains
a case study to demonstrate the evaluation process, and statistical results to show the
overall performance. Note that the proposal focuses on using the same input parameters
available in the cellular system with the proposal able to be deployed in the current
architecture, benchmarking with other existingML solutions is thus beyond the scope
of this chapter due to pragmatic reasons and is regarded a future work.

4.3.1 Scenario and ns-3 Simulation Configurations

Due to the complexity of collecting real-world UE handover data, the dataset for this
research was generated using the ns-3 network simulator [215]. The ns-3 simulator is an
open-source, discrete-event full-stack simulator that allows tracing internal events with
flexible configurations and supports multiple communication technologies. The ns-3
official standard-compliant LTE module LENA [216] was chosen to configure an LTE
cellular network scenario to investigate a cellular V2N communication network. This
approach was adopted as the 5G and LTE network HO mechanisms are very similar and
the 5G-LENA [217] (the 5G version of the LENA module) is still under development at
present. The main rationale for using ns-3 is that with the LTE module, it models every
layer (e.g. physical ) of the cellular protocol stack and is able to provide realistic data,
while it also enables the evaluation of the proposed algorithm emulating the deployment
in the cellular architecture.

The need for realistic simulation data is to train and evaluate the DDQN HO algorithm
in an environment that is a close analogue to a real-world network. The simulation
scenario was a 2 ⇥ 2 km local area in the city centre of Glasgow, UK, which is a
typical European city. For the implementation of a realistic mobility simulation for
vehicles, the routes mobility model [218] was selected, which utilised the Google Maps’
directions Application Programming Interface (API) [219] and the way-point mobility
model provided by ns-3. By specifying the target area and a driving trajectory’s start
and end points, the trajectory waypoints could be generated by the Google Map’s
API with the travelling time calculated according to the road traffic prediction of the
area when generating the trajectory. The default option “best guess” provided in the
API [220] was utilised for trajectory generation and all trajectories were generated
within a short period on the same day to keep the traffic model’s output consistent.
The underlying travel speed of a trajectory is hence dependent on the travel time and
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bounded by the speed limit of the area. The routes mobility model could then transform
the generated trajectory into a useful format by the ns-3 simulation. For BSs, the
location references were taken via the Cell Mapper website [221], which recorded the
real-world BS deployment locations based on measured data from participants. For the
scenario setup, eight BSs from the UK mobile operator Vodafone was chosen.

Figure 4.5 shows the scenario setups including the environment setup, BS locations, and
the network architecture overlaid on a map of the selected area. Each BS is connected to
the core network (i.e., the Mobility Management Entity and Serving Gateway for LTE)
via the S1 interface and to other BSs via the X2 interface. A sample vehicle trajectory
is also included in Figure 4.5, showing the vehicle’s current serving BS is the red BS
and will be handed over to the green BS during the passage along its route. The red
and green circles are simplified indications of the signal strength from the corresponding
BSs is the same, while the yellow dot represents the HO location of interest for HO
between the two BSs. The VUE should be handed over from the red BS to the green
BS after this location for improved signal quality. The VUE’s trajectory is shown in
black.

Core network Internet 

Figure 4.5: Glasgow city centre scenario setup with 8 BSs marked in different colours.
The route marked in black shows 1 illustrative trajectory of a road vehicle used for
the case study in Section 4.3.3, where a potential HO along the trajectory is also
demonstrated (from the red BS to the green BS specified by the yellow dot).

After establishing the scenario, the detailed network configuration is listed in Table 4.1.
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An isotropic antenna model is used at the current stage, demonstrating the same HO
strategy while simplifying the scenario, and hence the state space to be considered by
the DDQN HO algorithm. Other network configurations, such as the carrier frequency
and noise figures of BS and UE, are set according to the 3GPP standards [180, 222].

In addition to the considered 3GPP UMa (urban macro) path loss model, small-scale
fading should also be considered for a realistic simulation as it is recognised that multi-
path fading and Doppler spread can introduce significant variations during propagation,
particularly in vehicular networks of high UE mobility. Therefore, trace-based fading
was generated via the supplemental Matlab script provided in the LENA module [223],
which used the fading model implementation derived from the Jakes’ model [224] for
Rayleigh fading generation used in [225], and loaded into ns-3. This approach has been
chosen by the ns-3 developers to limit the computation complexity of the simulation
[223]. The “Vehicular” mode with nodes’ moving speed of 60 km/h was chosen to
generate the Rayleigh fading traces and hence introduce small-scale fading to the
simulation scenario. As the speed limit of the considered area is 30 mph (or 48.28
km/h) with a large 20 mph (or 32.19 km/h) zone [226], the chosen 60 km/h speed for
fading generation thus leads to the worst possible case for fading (maximum small-scale
fading) for the area. Note that 60 km/h speed is not the actual vehicle moving speed,
which was already defined by the Google Map’s direction API when generating the
trajectories. For the configured simulation, a higher vehicle moving speed will increase
the fading effect by introducing the higher Doppler frequency shift besides the more
frequent change in signal strength (e.g. RSRP) caused by the more rapid position
change of a UE for a known trajectory. The opposite hold true for a lower vehicle
moving speed.

To train the performance of the proposed DDQN HO algorithm, 18 trajectories covering
the major routes across the selected area of Glasgow city centre were generated via the
routes mobility model [218] for the ns-3 simulation, to form a training dataset for the
exploration phase of the DDQN algorithm. The maximum simulation time is set to
800 seconds (13.3 minutes) so that all vehicles have sufficient time to complete their
trajectories. The User Datagram Protocol (UDP) packet size is set to 4096 bits to
guarantee that the system can transmit all packets when not in a HO period-of-interest
to help analyse the impact of HO on packet loss, which is a selected performance metric.

For performance evaluation, overall the same trajectories were used for the exploitation
phase of the algorithm, while slight modifications were applied to the detailed way-points
representing the trajectories to test the algorithm’s generalisation ability. Performance
evaluation was implemented online using the ns-3 simulator directly and the connection
between a UE-BS pair was terminated shortly after the UE reached its endpoint to
avoid redundant data collection.
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Table 4.1: Simulation configuration
Setup properties Parameters and values
Scenario A 2⇥2 km2 street blocks of Glasgow city centre
Cellular network 8 BS sites, UK operator Vodafone [221]

Vehicle mobility model
Waypoint mobility model generated
by Routes mobility model [218],
speed controlled by Google Maps’ Direction API.

Number of vehicle trajectories 8
Antenna model Isotropic antenna model
Antenna height UE: 1.5 m; BS: 25 m
Pathloss model 3GPP UMa (urban macro)
Fading model Rayleigh fading
Scheduling algorithm Proportional Fair
BS transmission power 40 dBm
Carrier frequency 2115 MHz, downlink only
Noise figure BS: 5 dB; UE: 9 dB

HO algorithm

A3 RSRP (baseline):
hysteresis: 3 dB, TTT: 320 ms;
DDQN (proposed):
HO penalty: 3 (equivalent to dB)

Application setup
UDP, downlink only
packet interval: 20 ms (50 packets / sec)
individual packet size: 1024 bits

Maximum simulation time 800 seconds

For the DDQN setup, a fully connected feed-forward ANN with 3 hidden layers was
used, and the detailed hyperparameter configurations are summarised in Table 4.2. The
Gaussian Error Linear Units (GELU) were used as the activation function of hidden
layers [227], while the optimisation algorithm was set to the Adam with Decoupled
Weight Decay (AdamW) optimiser [228] for their better performances in general in
ANN training compared with their predecessors (other linear unit activation functions
and the original Adam optimiser). The initial learning rate was set to 0.001, and an
exponential learning rate decay was configured with the decay ratio set to 0.98 to
stabilise the ANN training convergence. The replay buffer was set to have a maximum
capacity of 100,000 observation samples, and a mini-batch sampling size of 1024 was
configured for ANN training. After completing the exploration phase, the trained ANN
was then turned into the exploitation phase and deployed to directly interact with the
ns-3 simulator using the ns3-ai module [229] for direct online performance evaluation.

4.3.2 Data Collection and Evaluation Metrics

To train and evaluate the DDQN HO algorithm, RSRP data of all BSs need to be
collected, following the design in Section 4.2. The data is collected directly from the
ns-3 LENA module’s Radio Resource Control (RRC) layer of the VUE where Evolved
UMTS Terrestrial Radio Access Network (E-UTRAN) measurements are performed
and reported [155]. An RSRP index record of all 8 BSs is generated for each trajectory
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Table 4.2: ANN configuration
Hyperparameters Values

Hidden layers, Neuron size 3, 256⇥ 128⇥ 64
Hidden layer activation function GELU [227]
Output layer activation function Linear
Target network update frequency Every 100 episodes

Optimiser AdamW [228]
Learning rate 0.001

Learning rate decay ratio 0.98
Replay buffer size 100,000
Mini batch size 1,024

to form a dataset to train the algorithm.

To evaluate the performance of the proposed HO algorithm, several metrics are chosen
to compare performances between the proposed algorithm and the A3 baseline:

• The SINR gain GSINR: According to (4.3), in order to maximise throughput, it
is essential to maximise the SINR by switching to a better-performing neighbour
BS where applicable while minimising the NHO given a constant td in (4.1).
Therefore, the SINR traces of serving BSs are collected for signal quality (hence
indirect throughput comparison) comparison between the proposed DDQN HO
algorithm and the A3 RSRP baseline during the HO period of interest, while
the number of HOs NHO is also recorded for each trajectory. The SINR traces
are recorded by the ns-3 LENA module and presented as raw linear-scale values
[230], and then converted to decibels for performance comparisons. This metric
is defined as The normalised SINR value using the DDQN HO algorithm with
respect to the A3 RSRP baseline during a HO period of interest, calculated as
GSINR =

P
HOPeriod SINRDDQN � SINRA3. The sum operation is used because

a discrete-time simulator is used hence discrete data. The baseline result for this
metric is 0 since

P
HOPeriod SINRA3 � SINRA3 = 0.

• The Packet Data Convergence Protocol (PDCP) packet loss: The PDCP
layer in the LTE protocol stack is responsible for the transfer of data on the
control/user planes [231] hence is the best metric to directly evaluate throughput
performance. A smaller packet loss during a HO period of interest suggests
higher throughput during that period. The PDCP packet loss is calculated by
the ns-3 simulator with the statistics recorded by the LENA module [216] while
the calculation of packet loss follows ns-3’s data plane error model utilising the
link-to-system technique and block error rate mapping [232].

• The throughput gain Gpacket: Corresponding to the PDCP packet loss, this
metric indicates the improvement in throughput during a HO period of interest
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using the proposed algorithm with respect to the A3 baseline. For a given
HO, this metric is calculated as Gpacket =

packetDDQN�packetA3

packettransmit

, where packetDDQN

and packetA3 stand for the received PDCP packets using the proposed DDQN
algorithm and the A3 baseline, respectively, while packettransmit indicates the
transmitted PDCP packets in total during this period.

• The gain in time delayed for HO G�t : The time delay �t as expressed in
Figure 4.1 indicates when a HO decision is made with respect to the optimal
time instant. Therefore, G�t becomes a clear metric to measure how much faster
the DDQN HO algorithm makes the HO decision towards the optimal HO with
respect to the A3 RSRP algorithm. For each HO case, this is calculated as
G�t = tDDQN � tA3, where tDDQN is the HO decision time step for the proposed
algorithm, while tA3 represent that of the A3 baseline and the baseline value for
this metric is 0 (tA3 � tA3). Note that this metric becomes a logical indicator
in this work as the proposed algorithm and A3 RSRP algorithm are the only
benchmarks, with G�t > 0 suggesting improvement in HO performance while a
negative G represents inferior performance compared with the A3 baseline.

The HO period of interest used in the above metric is defined as “for each HO case,
starting from t0 until both considered HO algorithms (the proposed solution and the
A3 baseline) decide to execute this HO”, which is equivalent to the grey area presented
in Figure 4.1. To calculate these metrics, the HO period of interest is first defined for
each HO identified in the simulation in a case-by-case manner.

The presentation and analysis of G�t and GSINR for all 18 trajectories are not easily
presented in a graphical manner in the simulation scenario due to a number of HOs
occurring. Therefore, for the sake of simplicity and clarity, the results from 1 exemplar
trajectory selected from the full simulation are first presented in Section 4.3.3 to give a
detailed graphical demonstration of metric analysis for a single HO instance. Then, the
statistical results for the whole simulation scenario (i.e. all 18 trajectories including
the exemplar one) are then presented in Section 4.3.4 with some edge-case discussions.
With the exception of the reference results, all presented results are collected via the
same round of training and evaluation (hence the same trained DDQN model). Note
that the HO period of interest and the values of the performance metrics are dependent
on the moving speed of VUEs because, under the same trajectory and application
configuration, a larger moving speed will result in shorter travel time hence shorter
HO periods of interest for A3 baseline (due to RSRPs changing faster thus earlier
hysteresis satisfaction) and fewer transmitted packets in total. The opposite applies
when considering a slower moving speed.
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4.3.3 Result Analysis for One HO Case

Following the scenario and simulation setup, this subsection presents an exemplar
performance analysis of a single trajectory within the 18 trajectories in the simulation
scenario. The visualisation for this trajectory’s geographical information is shown in
Figure 4.5 (the illustrated trajectory), and the performance of the proposed DDQN
HO algorithm was evaluated against the A3 RSRP baseline with all other network
settings kept constant. In contrast to the learning-based algorithms, the A3 RSRP HO
algorithm triggers a HO based on event A3, when a neighbour BS’s RSRP becomes
greater than that of the serving BS by a predefined offset value, as shown in Figure 4.1.
The two parameters of this HO algorithm, hysteresis and TTT, are used to avoid the
ping-pong effect. To permit easy comparison in this performance evaluation, the A3
RSRP baseline used the same parameter configuration as current cellular networks as
stated in Table 4.1.

The RSRP record for all BSs throughout this trajectory is shown in the top half of Figure
4.6. For improved visual clarity, this part of Figure 4.6 is presented without fading.
Accordingly, 1 HO should be triggered for this trajectory, which also corresponds with
the simulation results. This HO period-of-interests is highlighted by a black rectangle
in the top half of Figure 4.6, and the zoomed-in of this area is presented in the bottom
half of the figure. The bottom half of Figure 4.6 is presented with fading enabled to
reflect the actual simulation.

The optimal triggering instant of this HO is around 116 seconds after the simulation
starts (0 seconds) based on Figure 4.6. This is when the RSRP of BS3 becomes greater
than that of BS4, the initial serving BS, and remains so until the end of the simulation.
Due to the 3 dB hysteresis and TTT, the A3 RSRP baseline must wait until both
thresholds are satisfied to trigger the HO at 126.72 seconds (with a time step interval
of 0.02 second), while the DDQN-based HO algorithm triggers the HO as soon as the
optimal HO point is reached (116.68 seconds). As a result, the DDQN-based HO reduces
the delayed time of HO by having a G�t = 10.04 seconds compared to the A3 RSRP
baseline for this exemplar case for the considered scenario. As G�t > 0, this means that
a positive performance gain is achieved by the proposed algorithm compared to the A3
RSRP baseline while combining the information in Figure 4.6, it can be judged that
the proposed algorithm reaches a near-optimal HO decision-making.

After presenting G�t , Figure 4.7 includes the normalised serving BS SINR (GSINR) using
the proposed DDQN HO with respect to the A3 baseline to show the SINR gain. When
not in the HO period, the normalised SINR is 0 dB as the experience SINR using both
HO algorithms are the same, while the differences are clearly evident during the HO
period of interest. As the simulation setup includes fading that introduces fluctuations
in Figure 4.7a, a reference curve of normalised SINR is also included in Figure 4.7b
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Figure 4.6: Case study: The corresponding RSRP record for the selected trajectory.
The top half of the figure includes the RSRP record for all 8 BSs (without fading for
a clear visual presentation). The bottom half of the figure is the zoomed-in period
of interests when a HO was triggered, with the triggering instants of DDQN and A3
baseline plotted as vertical lines (fading enabled, with configuration introduced above).



CHAPTER 4. HANDOVER DECISION-MAKING OPTIMISATION 80

using the same simulation configuration but disabling fading to give a clearer visual
presentation of GSINR. Note that the same DDQN trained using the dataset generated
in the scenario with fading is deployed to produce results in this reference, and in both
sub-figures, the average GSINR is calculated and plotted as well. Also, by disabling
fading, the RSRP record becomes smooth, leading to some state changes (as the DDQN
algorithm is trained using data that included fading) and hence different HO triggering
instances when using the two HO algorithms. However, the DDQN’s HO start at 115.8
seconds is still an optimal trigger shown by Figure 4.6. It can be inferred from above
that a “bad” HO decision, either a suboptimal one like the A3 triggering or a wrong
HO decision (i.e., HO to a worse performing BS) can lead to an overall negative GSINR

and thus service downgrade with a smaller throughput and more dropped packets due
to inferior link budget and potential ping-pong effect. However, the proposed solution
has resilience against such bad decisions and maintains optimal decision-making by
gaining environmental knowledge during the offline training stage, with the reward
design guarding the agent against making wrong decisions (since the agent aims to
maximise the long-term accumulated reward). This is further backed by the statistical
results in the following section.

The results shown in Figure 4.7 demonstrate an obvious HO performance gain with
respect to GSINR during the HO periods of interest, with a maximum SINR gain of
over 12.5 dB compared with the A3 RSRP baseline. According to the reference curve
without fading, an average GSINR of 3.51 dB is achieved by the DDQN HO algorithm
during the HO period-of-interests, which is between 116 and 127 seconds as indicated
by the two vertical dotted lines.

The improvement of HO performance is also reflected in packet loss as shown in Figure
4.8, where the PDCP packet loss is counted for this HO for the A3 RSRP baseline and
the DDQN algorithm, respectively. For the HO period-of-interest between 116 and 127
seconds shown in Figure 4.7, overall 550 packets are sent. When using the A3 RSRP
baseline, the UE experiences a packet loss of 27 packets due to waiting for HO to trigger
and the connection drop during HO. This number for DDQN is 9 packets, indicating a
66.7% better performance in packet loss and an equivalent throughput gain Gpacket of
3.3%.

4.3.4 Results Analysis for All Trajectories

In total, there are 46 HOs using the A3 RSRP baseline, and 47 HOs using the proposed
DDQN HO algorithms for all 18 trajectories throughout the simulation over the scenario.
The edge case for the additional HO that happened is shown by the black rectangle area
in Figure 4.9, where the RSRP difference between the best neighbouring BS and the
serving BS could not satisfy the A3 RSRP baseline’s 3 dB hysteresis. In contrast, the
DDQN algorithm learned the RSRP features along the whole trajectory and performed
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(a)

(b)
Figure 4.7: The SINR gain GSINR during the HO period-of-interests of the DDQN HO
with respect to the A3 RSRP baseline for the trajectory. Both results were produced
by the same DDQN trained using data with fading. (a) The original result with fading
enabled (b) Reference result with fading disabled. Note that before 116 and 127 seconds,
the serving BS is the same for both HO algorithms and thus the normalised SINR is 0
dB.
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Figure 4.8: Accumulated packet loss comparison between the proposed DDQN HO
algorithm and A3 RSRP baseline for the demonstrative trajectory. 550 packets were
sent during the considered HO period of interest between 116 and 127 seconds. The
recorded time scale is extended in this figure for clearer visuals.

an additional HO to improve optimal signal strength, demonstrating the superiority of
having knowledge of the environment. Excepting this one edge case, both HO algorithms
have the same number of HOs, indicating that DDQN manages the ping-pong effect
as effectively as the A3 RSRP baseline does. However, instead of using predefined
parameters (hysteresis and TTT) as in A3 RSRP HO, the proposed DDQN algorithm
learns with the HO cost punishment of unnecessary HOs while being able to avoid
staying connected to a BS with suboptimal signal strength until the static conditions
are satisfied as the A3 baseline.

Throughout the whole evaluation, there are 27400 packets transmitted for all 47
HO periods of interest. Using the DDQN-based HO algorithm results in 1736 fewer
accumulated lost packets over the 47 HOs compared to the A3 RSRP baseline, showing
an improvement in cumulated packet loss by 42.54%, as shown in Figure 4.10. This
corresponds to a throughput gain Gpacket of 6.3% for the whole simulation. As the HO
mechanism of 5G is very similar to that of the current LTE networks, the evaluation
results suggest a potential for significant performance gain in a dense 5G mmWave
network that will have many more HOs due to the short range of mmWave beams. The
significantly smaller packet losses using the proposed HO algorithm in the considered
simulation scenario will result in more packet loss reduction in a dense 5G network.

As demonstrated in section 4.3.3, using the DDQN-based HO algorithm makes the HO
triggering instant closer to an optimal HO point compared to the A3 RSRP baseline.
After checking the HO triggering point between the two algorithms, positive G�t is
achieved for all HOs that happened in the simulation scenario, suggesting positive gains
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Figure 4.9: The edge case that leads to DDQN’s 1 more HO trigger, marked in the
black rectangle. Fading is disabled for a clear visual presentation.

achieved for these HO cases. Moreover, the performance trend of the exemplar HO
case remains the same for all HO cases after this check, suggesting that the proposed
algorithm can reach a near-optimal (t0) HO decision-making point for the considered
scenario. For metric SINR, the proposed DDQN algorithm achieves an average of 3.03
dB gain, with a minimum gain being 1.84 dB while the maximum gain being 3.41 dB
across all HO cases. For the considered scenario, this is a significant gain in SINR
compared to the baseline of 0 dB according to the definition of this metric. Both metrics
suggest significant improvement compared with the A3-based solution deployed in the
current cellular network.

Figure 4.10: Accumulated packet loss comparison for all trajectories between the A3
RSRP baseline and the proposed DDQN HO algorithm. For all the HO periods of
interest, 27400 packets have been sent in total for these statistical results.
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4.4 Discussion on Deployment Aspects

After presenting the performance evaluation results, some insights are provided in this
section regarding the deployment aspects, which also point out potential future research
for this work. In addition, a qualitative comparison of the proposed algorithm with
some state-of-the-art research is also provided.

4.4.1 Discussion on the Effect of Vehicles’ Moving Speed

As HOs are for a moving VUE, for the same trajectory and system setup, different
moving speeds of the VUE will influence the state observation of the proposed RL
algorithm due to the resultant variation in fading, while also changing the value of the
performance metrics.

For a given trajectory, the recorded results of the considered metrics can vary depending
on the UE’s moving speed. The reason for this is that the slower a UE moves along
its passage, the longer it takes to satisfy the A3 RSRP baseline’s hysteresis and TTT,
resulting in a larger �t for the baseline and thus higher G�t and GSINR. Additionally, it
is also anticipated that the pack loss would be larger for the A3 RSRP algorithm with
a slower moving VUE as more packets are transmitted during the longer elapsed time
while a further delayed HO leads to a prolonged period for suboptimal signal strength
using the A3 baseline. The opposite of the above holds true considering a VUE with a
larger moving speed. In contrast to the A3 baseline, this aspect does not influence the
proposed algorithm since the state observation defined in (4.6) suggests a position in
the radio environment that corresponds to a geographical one, which remains constant
facing different VUE moving speed. Additionally, as the proposed DDQN is based on
the model-free Q-learning technique that does not require a model of the environment
and is trained using data generated via known trajectories, the state transition variation
caused by a UE’s moving at different speeds along a given trajectory will not influence
the overall decision making. Therefore, after the initial training, the proposed solution
would still make near-optimal HO (the optimal is defined to be at t0 as in Section 4.1)
decisions along the trajectory for different VUE moving speeds.

Nevertheless, the above discussion may not be true when considering moving speeds’
effect on fading and thus state observation of the DRL algorithm. Fading in wireless
channels can be broadly classified as large-scale and small-scale fading, and Doppler
spread from the small-scale fading has a positive correlation to the UEs’ moving speed
[233]. Consequently, a large moving speed indicates a more significant fading and thus
more noisy state observation for the proposed DRL algorithm. The fading setup in
Section 4.3.1 and the results in Figures 4.6 and 4.7 indicate that the same DDQN is able
to produce the optimal HO decision in both the theoretical worst fading situation and
in the ideal situation where only path loss is considered. The fact that the DDQN was
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only trained once using the noisy data and the satisfying results in such extreme cases
suggest that the proposed DDQN has greater resilience against the speed-dependent
Doppler spread within the considered UE speed range. However, it may be necessary
to train the algorithm using data generated at the speed limit to provide the DDQN
knowledge of the worst fading case, which requires further investigation.

4.4.2 Discussion on the Deployment Costs

As this research looks at the deployment aspect of an intelligent HO algorithm, it is
essential to consider the implementation cost alongside the performance gain. For the
proposed DDQN algorithm, the fundamental assumption is that the RSRP measurement
of all listed BSs in a local area to be reported for HO decision-making. Because the
related configuration options are available in the current cellular network setup [153,
155, 158], implementing the algorithm locally requires only a software patch.

Compared to the current HO solution (A3 RSRP), the proposed algorithm requires
proportionally larger data input to operate. In the proposed scenario of 8 BSs, the A3
RSRP baseline usually gets a report of two entries, the RSRP and IDs of the serving BS
and the best neighbouring BS. In contrast, the current design DDQN requires the reports
for all 8 listed BSs to operate, resulting in quad times the data input. Linear complexity
yields a moderate cost with respect to computation and storage. Furthermore, the
UE measurement reporting uses the dedicated control channel [158, 159], and the
increase in data transmission will result in a larger communication overhead in the
control channel. However, without the knowledge of the exact data structure (hence
data size) of measurement reports in the cellular system, an accurate quantity for the
communication overhead is thus unavailable for discussion. This aspect requires further
investigation and is considered a limitation of this work. With the deployment of 5G,
ultra-dense network deployment is also scheduled and in progress. The future large
number of BSs also adds to this potential issue of linear complexity and communication
overhead for the proposed DDQN, the effect of which demands further research and
quantitative analysis. Similar issues in resource allocation have previously attracted
attention and research to reduce input state space of a learning-based algorithm to
reduce communication overhead [234], which may also provide a valuable exploration
for learning-based HO algorithms.

For the real-world deployment, the HO algorithm is designed to work on a defined local
area, leading to the requirement of dedicated local area specifications and individual
ANNs to be trained and stored at the network controller for HO decision-making in
each local area. Moreover, this work has also assumed that the network controller can
automatically switch DDQN models for adjacent areas when a UE crosses the boundaries.
These aspects are heavily dependent on mobile operators’ physical network deployments.
Finally, same as all learning-based solutions, the DDQN-based HO algorithm requires a
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significant amount of data to form an effective training dataset. Therefore, the related
data collection and processing for the individual local area that influences the scalability
of the algorithm remains an important aspect of the algorithm’s implementation.

In summary, the proposed DDQN-based HO algorithm, after learning from collected data
of the environment, can improve the performance of handover significantly compared to
the A3 baseline. Importantly, it only requires a small change to the existing network
architecture setup. Therefore the implementation cost should be small, requiring only a
software patch. However, other important deployment aspects need to be considered,
including state space reduction, control signal overhead assessment, and data collection
and processing.

4.4.3 Qualitative comparison with the State-of-the-art Research

After discussing the deployment aspects, a comparison of the proposed DDQN HO
algorithm with the A3 RSRP baseline and some of the state-of-the-art research are
presented. The contents of this comparison include the methodologies and key design
concepts, followed by the input parameters required to operate the algorithms, and
what level within the network the algorithms are executed. Impact on the cellular
network architecture (LTE and 5G) is also compared at a qualitative level based on
the proposed algorithm and system architectures in the original literature. Finally, the
communication overhead using the selected algorithms is compared by analysing the
type and amount of information required to be transferred on wireless channels for
operation. The full comparison is presented in Table. 4.3.

With the exception of the A3 RSRP baseline, all state-of-the-art works are ML-based
solutions and are selected based on their ML application types for HO optimisation
as discussed in Section 4.1.2. Algorithm designs that considered multiple optimisation
objectives such as joint optimisation of HO and radio resource management [169] have
not been selected in this comparison in order to focus on HO optimisation.

According to Table. 4.3, ML-based HO parameter optimisation [125] and HO decision-
making [172] exploit information from various input parameters for optimisation and
require some network adjustment for the HO algorithms to operate. In contrast,
predictive HO triggering considers one type of input parameter for accurate predictions,
while the prediction is usually performed at the UE level. However, using additional
training setups (i.e., the FL setup in [132]) will require a major change to the network
architecture for deployment, while also demanding that the ANN model is transmitted
through the wireless channel among participants for global model aggregation. Similarly,
the two-tier design suggested by Aljeri and Boukerche [174] requires the RNN model to
be transmitted via wireless channels and may lead to a large communication overhead,
while its HMM-based centralised HO decision requires less modification to the network



CHAPTER 4. HANDOVER DECISION-MAKING OPTIMISATION 87

architecture compared to the design of Qi et al. [132]. In comparison, the proposed
DDQN HO design, although aimed at HO decision-making, requires only 1 type of input
parameter while maintaining a low impact on the existing network architectures (utilising
existing deployment design and input parameters). Therefore, it is a lightweight upgrade
considering real-world deployment aspects while delivering near-optimal decisions.
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4.5 Summary

Vehicles have higher mobility compared to a conventional cellular UE, which leads to
reduced connection time between a VUE and a BS. In addition, an increasing number
of BSs are being deployed to meet the demand of network densification, leading to more
target BSs to consider during HO. Moreover, as the reduction of BS coverage range will
cause more HOs for V2N communications due to vehicles’ high mobility, it has become
much more challenging for conventional HO algorithms to satisfy the requirements in
vehicular networks. As a result, ML-based HO optimisation research has utilised various
input parameters and enabling technologies to improve HO performance. However,
relatively less attention was paid to implementation in unified test environments as well
as real-world deployment aspects for ML-based solutions.

A double deep Q-network-based HO algorithm is proposed and evaluated using a
realistic bespoke simulation built with the ns-3 full-stack network simulator with the
LENA module. The results analysis from 47 HOs throughout the simulation show that
the proposed algorithm can reach near-optimal HO decision-making, with a 42.62%
reduction in accumulated packet loss (or 6.3% throughput improvement) compared to
the A3 RSRP HO algorithm baseline and an average SINR improvement of 3.03 dB for
the HO periods of interest. The proposed algorithm also aimed to utilise the existing
cellular network configuration with only minor additional information requirements,
reporting all neighbouring BS’s RSRP instead of only those satisfying predefined
conditions (as the A3 RSRP baseline). This makes the algorithm implementable via a
software patch.



Chapter 5

Federated Learning-enabled Adaptive
Resource Allocation

5.1 Introduction

Allocating resources efficiently and adaptively in vehicular networks is a substantial
topic to address the following major challenges: 1. The dynamically changing radio
environment of vehicular networks due to their high mobility causes serious impairments
with short-lived allocation policies; 2. V2X applications comprise a variety of services
with highly differentiated QoS requirements; and 3. The exponential increase in
connected vehicles accessing the already congested radio frequency bands demands
more advanced allocation algorithms. Spectrum and power are two fundamental radio
resources in wireless networks and it is critical to allocate frequency bands and transmit
power according to the channel conditions and users’ QoS requirements to improve
spectral efficiency, mitigate interference, and fulfil the various stringent V2X services.

V2V and V2N are two essential communication types in C-V2X and are exploited to
support different applications [15]. The real-time safety-critical message transmission
among proximally close vehicles is accomplished via V2V links, with strict latency
and reliability requirements, while V2N supports on-board infotainment services via
Internet access, requiring high capacity with large bandwidth between VUEs and BSs.
Such diverse QoS requirements are challenging for conventional centralised resource
allocation approaches to satisfy, which motivated the 3GPP organisation to develop
advanced resource allocation approaches for cellular V2X based on the dedicated resource
pool design for V2V and V2N links [236]. With a limited frequency spectrum and a
significantly increasing number of VUEs, the underlay sidelink architecture provides
more opportunities for the coexistence of V2V and V2N links on a shared resource
pool. However, this also complicates the network design for interference management,

90
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necessitating efficient resource allocation optimisation for proper spectrum sub-band
allocation and transmission power control to meet the diverse QoS requirements from
both V2V and V2N links.

Traditionally, model-based analytical algorithms have been widely utilised to optimise
resource allocation and interference management for V2X communications [121, 237].
Such methods have clear limitations for vehicular network applications as vehicles’ high
mobility makes it difficult to obtain precise information such as the Channel State
Information (CSI) to solve the formulated problem due to the rapid radio environment
changes. Furthermore, analytical solutions are computationally demanding due to the
complex problem formation for the V2X environments, and thus face challenges for
real-time applications with tight latency requirements [36].

In comparison, ML techniques extracting the underlying patterns from data generated
from the wireless environment can cope with vehicular networks’ uncertainty and
dynamics to provide more intelligent and flexible solutions which are usually hard to
derive using conventional optimisation [209]. As a result, ML techniques have been
widely explored in various wireless communication research for different system setups
in recent years [52]. Deep learning techniques utilising ANNs are capable of further
exploiting data patterns and improving task-specific performances, motivating existing
research’s proposal of both single-agent and multi-agent DRL algorithms for resource
allocations.

However, these DRL solutions introduce large communication overheads as information
needs to be sent to the central controller or shared between vehicular agents to train
the algorithms or for allocation decision-making. Furthermore, it is inconvenient for
existing designs to reuse trained ANN models for newly joined agents without any
knowledge of the environment. FL is a decentralised ML architecture that enables
knowledge sharing among agents through model aggregation and reduces frequent direct
information sharing, while also preserving participating agents’ data privacy. These
advantages of FL motivate this work for an algorithm proposal for decentralised joint
spectrum and power allocations in vehicular networks using FL-enhanced DRL.

5.1.1 Related Machine Learning Background

As this work focuses on DRL algorithmic design considering the deployment aspects,
some essential background that may significantly impact the deployment of algorithms
will first be presented.
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5.1.1.1 The Settings of Reinforcement Learning

According to the number of decision agents, RL can be classified into single-agent
and multi-agent RL. Only one decision-making agent exists in single-agent RL and
the agent takes actions purely based on its own state observations of the environment
(either the complete state or a partially observed one). The setting of single-agent RL is
considered centralised since both information gathering and action-taking are executed
by the decision-making agent, which is equivalent to a central controller. In contrast,
multi-agent RL (MARL) contains two or more decision-making agents. MARL also
includes different settings, corresponding to the cooperation level among agents via
reward design or the information structure as summarised in Figure 5.1.

Information structureCooperation level

Fully cooperative

All agents receive and aim to maximise the same
reward that represents the common interest.

Fully competitive 
Each agent is self-interested and aims to
maximise its own reward; the improvement of
one agent's reward will cause reward reduction to
another agent.

Mixed setting 
Each agent is self-interested and aims to
maximise its own reward; an agent's reward may
harmonise or conflict with other agents' rewards.

Centralised

A central controller exists that takes local
information (e.g. local state observation) from the
agents, forming a global information set.

Decentralised with communicating agents 

A communication network exists which allows
agents to share local information. However,
agents that are far away may not be able to
communicate due to network limitations.

Fully decentralised 
Agents cannot communicate with each other for
information sharing. An agent's action-taking is
purely based on local observations. 

Figure 5.1: Different settings of multi-agent reinforcement learning, recapitulated from
the related details in Chapter 3.

Regarding the cooperation levels, fully competitive and mixed settings can be im-
plemented using all three information structures depending on the specific problem.
However, the fully cooperative MARL setting requires either the “centralised” or “decen-
tralised with communicating agents” information structure as local information from all
agents is required to calculate a shared reward for all agents. Note that only a high-level
summary is presented here as more details have already been introduced in Chapter 2.

For deployment in vehicular networks, single-agent RL has large communication over-
heads as all information needs to be sent to the central controller for decision-making.
In comparison, the more decentralised an MARL information structure is, the smaller
communication overheads will be due to less information sharing. However, less in-
formation sharing causes agents to have reduced global information access, leading to
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more uncertainty in agents’ state observations hence action-taking and resulting in less
stable training.

5.1.1.2 Transfer Learning for MARL

A typical MARL problem has a defined set of agents within the considered environment.
However, this assumption or precondition cannot be satisfied when considering the
deployment in a vehicular network as vehicles frequently enter and leave local areas.
Since learning a complex task from scratch, especially in real-time, is impractical due to
the complexity of RL algorithms, reusing the knowledge from another agent or previous
experiences becomes vital for learning acceleration and scalable RL deployment [238].

Transfer learning [239] is a technique for knowledge reuse in ML systems. Traditionally,
an ML system trains a specific model for the identified task, while transfer learning
utilises knowledge extracted from the original task (source task) and updates the ML
model for a target task with additional data gathered in the target task. Figure 5.2
illustrates the differences between these two learning processes. Readers interested in
the detailed background of transfer learning can refer to the comprehensive surveys and
tutorials of [239–241].

Task 1 Task 2

Learning 
System

Dataset 1

Learning 
System

Learning 
System

Source task

Knowledge 
(e.g. trained

model) 
Learning 
System

Target task

Dataset 1

Task N

Dataset 2Dataset 2 Dataset 3

(a)

Task 1 Task 2

Learning 
System

Dataset 1

Learning 
System

Learning 
System

Source task

Knowledge 
(e.g. trained

model) 
Learning 
System

Target task

Dataset 1

Task N

Dataset 2Dataset 2 Dataset 3

(b)
Figure 5.2: The process of traditional ML and transfer learning. (a) Traditional ML.
(b) Transfer learning.

For MARL deployment for decentralised resource allocations in vehicular networks, a
newly joined vehicular agent can download a copy of the trained model from another
agent. The newly jointed agent can then update the copied model with its locally
collected data to help faster learning convergence and thus improve its decision-making,
avoiding the expensive training frame scratch and performance vacuum. The disadvan-
tage of this approach, however, is that the newly joined agent requires another agent to
be nearby and share a trained model, which may not always be satisfied. Additionally,
the shared model trained by the other agent’s local data may not be suitable for the
new agent’s situation as the other agent only has its local state observations during its
own training. An example scenario for this is two cars in the same street block (possible
for model sharing) but travelling through very different routes and thus having different
local data (knowledge).
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5.1.2 Related Work

For resource allocation optimisation in vehicular networks, ANN-enabled DRL al-
gorithms have made significant advances in applications with high complexity and
variability [121]. A sub-band and transmission power allocation scheme for V2V links
was proposed in [137] for a spectrum-sharing vehicular network between V2V and V2N
links. A centralised deep Q-learning algorithm was developed for the network controller,
with V2V pairs taking turns to send their local state observation at every time step
for resource allocation decisions to simultaneously minimise V2V transmission latency
and interference to V2N links. Also utilising deep Q-learning, a centralised resource
allocation scheme was developed by Li et al. [242] for MEC [63] in a cellular vehicular
network. By jointly considering the MEC server’s computation resources and VUEs’
transmission power, the centralised agent aims to minimise the overall delay and power
consumption for all VUEs.

Centralising the learning setup in vehicular networks has the obvious limitation of
communication overheads as information needs to be sent to the centralised agent for
decision-making while the agent is under heavy computation demands for both training
and execution. Moreover, the centralised agent usually suffers from partial observations
of the environment. These factors motivate the multi-agent DRL setup to directly
exploit local information at each vehicle to better explore the environment. Liang et
al. developed a multi-agent deep Q-learning for joint sub-band and V2V transmission
power selection in a spectrum-sharing cellular V2X [25]. Each V2V link is modelled
as an agent that trains a local ANN model for decision-making while cooperating to
maximise V2V payload delivery for all V2V links and the sum V2N transmission rate.
Similarly, Yuan et al. developed a hierarchical DRL solution for joint sub-band and V2V
transmission power selection [138]. They utilised two DRL algorithms, deep Q-learning
and DDPG [139], for spectrum allocation and power control, respectively. On top
of the DRL resource allocation scheme, a meta-reinforcement learning algorithm was
further implemented to adaptively tune the trained allocation scheme in response to
different communication scenarios. Furthermore, Gu et al. [243] proposed a multi-
actor-attention-critic algorithm based on resource allocation in C-V2X. Each VUE was
modelled as an agent in a 3GPP standard-compliant sensing-based scheduling setup
and selected spectrum resources to reduce V2V packet collisions, and all VUEs shared
their state transition observations with the RSU for centralised policy training.

Although achieving satisfying performance, these multi-agent DRL solutions are based
on the setting of cooperative learning with the centralised information structure and
configured in a “centralised training, distributed execution” manner. The cooperative
setting for RL-based decentralised resource allocation in vehicular networks has been
preferred because all agents aim to achieve a common objective for optimisation, e.g.,
system throughput, without being self-interest and competing with each other for radio
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resources. However, such a setting requires frequent information sharing between agents
and the controller or among agents during the training stage to calculate a cooperative
reward or to formulate a global state observation for all agents, and thus have large
communication overheads as the centralised single-agent setting.

To reduce the communication overheads in this setting, an additional ANN model was
proposed for CSI compression to reduce communication overheads [234]. However, the
additional ANN model leads to additional computation resource demand for VUEs
during deployment. Furthermore, the above multi-agent DRL solutions provided in the
existing research will encounter difficulties for online model updates after deployment.
This is because only the agents during the original training phase have a working DRL
model. After deployment, newly joined agents must either train a new DRL model
from scratch or by using transfer learning techniques, e.g., to update a copy of another
agent’s model, which has the disadvantages of potential unavailability of another agent
or performance downgrade as introduced above. These issues lead to high deployment
costs and need to be addressed for real-world applications.

FL is an alternative decentralised learning architecture utilising data distributed across
different local learners. As introduced in Section 2.4, each participating learner trains a
local model using its local training data, with an aggregator combining all local models’
parameters to form a global model and then redistributing the complete model to
all learners. Since only the ML models are transmitted between the aggregator and
learners, FL does not require frequent data sharing in real-time among learners which
also protects the learners’ data privacy [244] and has attracted attention for applications
in vehicular networks [56]. For resource allocation, FL has been combined with extreme
value theory [245] and Lyapunov optimisation [203] for joint power and spectrum
allocation in an ultra-reliable low-latency V2V network as designed by Samarakoon et
al. [246]. FL has also been utilised with DRL algorithms. For instance, a federated
multi-agent DRL solution was proposed by Zhang et al. [236] for each VUE cluster in a
local area for sub-band and V2V transmission power allocation under a cooperative
setup via a shared reward design. As the cooperative setting is still configured in their
work, local observations for each VUE must be shared to calculate the shared reward,
leading to even higher communication overheads combined with the requirement of
sending ANN models in the FL training process.

5.1.3 Objectives and Contributions

Compared with a cooperative setting, a mixed setting with self-interested agents does
not require direct information sharing among agents to attain a common reward and
thus can reduce communication overheads during training. However, a fully distributed
information structure in MARL with a mixed learning setting may face the extreme
case of independent learning, which can cause non-convergence in the learning process
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[86]. FL, as an alternative decentralised learning architecture, can provide another
form of information sharing via global model aggregation while avoiding other data
transmission. As ANN models are transmitted less frequently, FL is a promising
framework for developing multi-agent DRL-based resource allocation algorithms to
reduce communication overheads. Moreover, FL enables newly joined agents to directly
utilise the global model which avoids the inconvenience of training a new one, further
reducing the deployment cost and is another advantage over traditional MARL with
transfer learning setups.

However, FL-enhanced non-cooperative multi-agent DRL solutions for resource allo-
cation have received less attention than the cooperative setup due to their inherent
challenges and require further investigation. Consequently, a decentralised joint sub-
band and transmission power allocation scheme for cellular vehicular networks is
proposed for spectrum-sharing V2V and V2N links. The goal is to match or exceed the
performance compared with a cooperative setting while reducing the overall deployment
cost. The proposed scheme aims to maximise the successful V2V safety payload delivery
ratio while also maximising the overall V2N rate in the system. The main contributions
of this chapter are as follows:

• The proposed design utilises FL to form a new decentralised RL information
structure and is configured under a mixed setup for the multi-agent DRL algo-
rithmic design. As a result, the proposed solution does not require direct data
sharing among participating agents during training, while being fully distributed
for execution after training.

• The proposed solution is implemented with two different DRL algorithms to
explore the effectiveness of different types DRL algorithms in the considered
problem. Simulation results for training show that both algorithms are effective
and can successfully converge under the FL-enhanced DRL setup.

• Through extensive simulation implemented following 3GPP specifications through
the Python programming language, the proposed FL-enhanced DRL solution
outperforms the state-of-the-art MARL benchmark, especially regarding the
generalisation ability and online model updates.

• The proposed solution has a much smaller communication cost compared with a
state-of-the-art benchmark under the cooperative setting. The communication
overheads can further be greatly reduced with little performance sacrifice through
quantisation-based model compression in a proof-of-concept analysis.

• The proposed federated-DRL has a much more convenient model-sharing mecha-
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nism compared with model transfer while also requiring much less frequent data
transmission for online model updates.

5.2 System Model and Problem Formation

This work considers a cellular vehicular network consisting of one BS and multiple VUEs
as shown in Figure 5.3, forming J V2N and K V2V links in the network. As discussed in
3GPP’s Release 15 and 16 specifications for cellular V2X enhancement [247], V2N and
V2V links provide simultaneous support for high data rate infotainment services, and
reliable safety message sharing for essential safety applications and advanced driving
services, respectively. Note that mode selection for safety messaging is disabled, i.e.
VUEs transmit safety messages only via V2V links and V2N links are for infotainment
services only. Specifically, this work considers Mode 2 introduced in Section 3.2 for
C-V2X architecture as a distributed mechanism for spectrum selection of V2V links,
where each vehicle can autonomously select radio resources for its V2V link rather than
depending on the BS to allocate resources in a centralised manner.

Vehicle
e.g.

Vehicle
e.g. safety alerts to pedestrians, cyclists, etc. 

Vehicle-to-vehicle (V2V): 
e.g. collision avoidance messaging

Vehicle-to-infrastructure (V2I):
e.g. smart traffic signal control

V2V link 

V2N link

Interference link

Figure 5.3: A cellular vehicular network of spectrum sharing V2N and V2V links.

Define the set of V2N and V2V links as J = {1, 2, ..., J} and K = {1, 2, ..., K},
respectively, while the total bandwidth is divided into M orthogonal spectrum sub-
bands, forming the set M = {1, 2, ...,M}. Next, denote ⇢j,m, ⇢k,m (⇢j,m, ⇢k,m 2 {0, 1})
for the sub-band selection decisions to V2N and V2V links, i.e. ⇢j,m = 1 or ⇢k,m = 1

if the j-th V2N link and k-th V2V link select the m-th sub-band. Each V2V link
can select one sub-band at a time, while multiple V2V and V2N links can share the
same sub-band to improve the spectrum utilisation. It is further assumed that the
orthogonal spectrum sub-bands are uniformly preassigned to each V2N link with fixed
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transmission power, i.e. the j-th V2N link always occupies sub-band m̄j or ⇢j,m̄j
= 1,

m̄j = mod(j,M).

The channel power gain consisting of both large-scale and small-scale fading components
is considered. The channel gains for the j-th V2M link over sub-band m̄j and the
k-th V2V link over sub-band m are represented by hj,m̄j

and gk,m, respectively. The
interference to the j-th V2N link over the m̄j-th sub-band is Ij,m̄j

and similarly, the
interference to the k-th V2v link over sub-band m is Ik,m. The received SINR of the
j-th V2N link, and that of the k-th V2V link over sub-band m can be expressed as:

SINRv2n
j,m̄j

=
p
v2n

hj,m̄j

Ij,m̄j
+ �2

(5.1)

SINRv2v
k,m =

p
v2v
k,mgk,m

Ik,m + �2
(5.2)

where p
v2n and �

2 stand for the fixed V2N transmission power and the noise power,
respectively, while p

v2v
k,m represents the k-th V2V link’s transmission power over sub-

band m. Ij,m̄j
and Ik,m denote the total interference power to V2N link j over sub-band

m̄j and V2V link k over sub-band m, calculated as:

Ij,m̄j
=

J, j0 6=jX

j0=1

p
v2n

hj0,m̄
j0

+
KX

k=1

⇢k,m̄j
p
v2v
k gk,m̄j

; m̄j0 = m̄j

(5.3)

Ik,m =
JX

j=1

p
v2n

hj,m̄j

+
K, k0 6=kX

k0=1

⇢k0,mp
v2v
k0 gk0,m; m̄j = m

(5.4)

where hj0,m̄j
and gk,m̄j

represent the interfering channel gains at the j-th V2N receiver
from the transmitter of the j

0-th V2N link and the k-th V2V link over sub-band m̄j.
Similarly, hj,m̄j

and gk0,m stand for the interfering channel gains at the k-th V2V receiver
from the j-th V2N link and k

0-th V2V link over the m-th sub-band.

With the above definitions, the data rate of the j-th V2N link C
v2n
j and k-th V2V link
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C
v2v
k can then be obtained by (5.5) and (5.6), according to Shannon capacity theory:

C
v2n
j = BW log(1 + SINRv2n

j,m̄j
) (5.5)

C
v2v
k =

MX

m=1

⇢k,m · BW log(1 + SINRv2v
k,m), ⇢k,m 2 {0, 1} (5.6)

where BW is a constant representing sub-bands’ bandwidth. Note that as V2V links
can only choose 1 sub-band at a time step, (5.6) essentially finds sub-band m such that
⇢k,m = 1 since ⇢k,m0 = 0 where m

0 6= m.

As discussed above, V2V and V2V links need to satisfy differentiated service require-
ments. V2N links aim to provide infotainment services requiring a high data rate,
forming the clear goal of maximising the V2N sum rate

PJ
j=1 C

v2n
j .

In comparison, V2V links focus on the reliable transmission of safety-critical messages,
which leads to the network goal of maximising the average successful transmission
probability among all V2V links. For the k-th V2V link, the successful transmission of
payload u is represented by a binary value ⇣k,u 2 {0, 1}, calculated via the following
Boolean expression:

⇣k,u =
tu+tmax/�tX

t=tu

�t · Cv2v
k (t) � Bu (5.7)

where Bu is the size of the u-th payload for V2V link k. tu and �t stand for the starting
time of payload u’s transmission and a time step’s duration, respectively. t is the time
step index corresponding to the transmission time, and tmax is the maximum delay
tolerance for the V2V payload transmission. Based on (5.7), the delivery of V2V payload
u for V2V link k is successful (⇣k,u = 1) only if the delivery time consumption does
not exceed tmax, and unsuccessful (⇣k,u = 0) otherwise. Note that tu of each V2V link
to transmit payload u is the same for the synchronous transmission setup considered
in this work, and may differ if an asynchronous setup is considered. Therefore, the
successful transmission probability ⌘k of V2V link k during a given transmission period,
can be expressed as follows, assuming Npayload V2V payloads have been transmitted
during this period:
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⌘k =

PNpayload

u=1 ⇣k,u

Npayload
(5.8)

Following the above definitions, the optimisation problem for the considered spectrum-
sharing scenario can be formulated as follows at each resource allocation time step:

max
⇢̂,P̂ v2v

E =

PK
k=1 ⌘k

K
(5.9a)

s.t. max⇤ =
JX

j=1

C
v2n
j , (5.9b)

MX

m=1

⇢k,m  1, 8k (5.9c)

0  p
v2v
k,m  P

v2v
max, 8k (5.9d)

where E and ⇤ are the system-level V2V payload delivery ratio and V2N data rate,
respectively. ⇢̂ = {⇢1,1, ..., ⇢k,m, ..., ⇢K,M} is the set of the sub-band selection indicators,
while P̂

v2v = {pv2v1,1 , ..., p
v2v
k,m, p

v2v
K,M} is V2V power allocation indicator set, and P

v2v
max is

the maximum transmission power of a V2V transmitter. For power control, this work
considers discrete power control [248] and assumes the transmit power of VUEs has
Npow levels.

The formulated resource allocation problem in (5.9) is a multi-objective that aims to
maximise both the V2V payload delivery probabilities expressed in (5.9a) and the
V2N sum rates expressed by (5.9b) at the same time. Note that without (5.9b) the
optimisation will only aim to maximise V2V delivery probability regardless of V2N
service quality, while vice versa for the lack of (5.9a). Furthermore, as the problem
involves sequential decision-making over multiple resource allocation time steps, this
problem is NP-hard [138] and is highly challenging to solve using a conventional
optimisation solution, especially considering the time limit set to produce resource
allocation decisions for real-time applications.

5.3 DRL-based Resource Allocation Algorithm

The considered spectrum sharing scenario is modelled as a MARL problem, and an FL-
enhanced decentralised DRL solution is proposed to the original optimisation problem
in Eq. (5.9).
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To utilise DRL algorithms, the problem is first formulated as a Markov Game [85]
with multiple decision-making agents, as described in Figure 2.2. In a Markov Game,
multiple decision-making agents take actions according to their observations of the
current environmental state at time step t, forming a joint action. After the action
execution, the agents receive the observations of the resultant state at t + 1 and
corresponding immediate numeric rewards generated by the environment. It is assumed
that the scheduling period of V2V pairs is set to be 1 time step for the whole set of
V2V pairs. Through many rounds of training, the agents can develop an optimal policy
to adopt in taking action within the given environment to maximise the long-term
accumulated reward.

This section covers the design of the three key elements of the Markov Game model, i.e.,
state space, action space, and immediate reward, while also proposing two DRL algo-
rithms (1 on-policy and 1 off-policy) for resource allocation to explore the performance
between the different types of DRL algorithm.

5.3.1 State and Observation Space

For the considered problem, the true environmental state at any time step Zt may
include the global channel information, agent behaviours, and other related information.
However, individual agents cannot gather such global information and can only receive
state information via its observation, forming an observation space denoted as St for all
agents. To reduce communication overhead, the state observation of an agent at each
time step t should only include local information at each V2V receiver, which includes
the sensed V2V link SINR at each sub-band SINRt, the sub-band and transmission
power selection for the last time step ⇢̄t�1 and p̄

v2v
t�1, the remaining V2V payload B

0
t,

and the remaining time budget Tb,t.

For Nsb sub-bands, SINRt = {SINR1, ..., SINRNsb
}. The information of ⇢̄t�1 and ¯pv2vt�1 is

designed to be represented via one-hot encoding [213] to avoid potential confusion with
a decimal SINR value. For example, if an agent selects sub-band 2 with the 5 sub-bands
in total, then such action after one-hot encoding becomes the vector ⇢̄ = {0, 1, 0, 0, 0},
while p̄

v2v is also represented in this manner. In addition, B0 and Tb are two scalar
values. As a result, st of an agent can then be formally defined as:

st = {SINR; ⇢̄t�1; ¯pv2vt ;B0
t, Tb, t} (5.10)

which has the size of 2Nsb +Npow + 2 which is a constant for a defined system setup,
while the observation space St is the set of st for all agents at time step t.
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5.3.2 Action Space

The problem formation (5.9) defines the actions for each agent to be the spectrum
sub-band selection and V2V transmission power control at each time step. Consistent
with the notation in Section 5.2, such an action is defined as {m, p

v2v}. The spectrum
naturally breaks into M disjoint sub-bands, while the V2V transmission power is defined
to have Np levels as previously defined, such that m 2 M and p

v2v 2 {0, ..., pv2vmax

Np�1},
forming an action space sized MNp representing all possible {m, p

v2v} combinations.
Therefore, the action space is defined as at = {1, ...,MNp}, with each action in at

associated with a combination of spectrum sub-band and power selection.

5.3.3 Reward Design

RL is advantageous for decision optimisation by designing a reward function to represent
the hard-to-optimise objectives and constraints with a high degree of flexibility. After
an agent takes an action based on its policy for a state observation, it receives an
immediate reward generated by the environment, and the reward can indicate the
performance of this decision execution.

Following the optimisation objective in (5.9), an optimal outcome for each V2V agent
maximises the successful delivery probability of a V2V payload within the time tolerance
while sacrificing the V2N transmission rate as little as possible, which is the core concept
for the reward design. Note that the dynamic vehicular networks may require frequent
updates to the ANN after deployment, which makes a cooperative reward design
expensive with respect to communication overheads as in the work of Liang et al. [25]
since the reward needs to be transmitted and shared among all participating agents.
As a result, the immediate reward is also designed to only utilise the local information
of each agent, which is expressed as:

rt =

8
<

:
C

v2v
t ��B, if B0

t > 0

C
v2v
t + C

v2n
t , else

(5.11)

where �B is the average transmission rate for a given V2V payload with size B under
a defined network setup, while C

v2v and C
v2n are the transmission rate of the agent’s

corresponding V2V link and V2N link at the same receiver, consistent with the notions
in Section 5.2. The first case of (5.11) is the normalised V2V rate with respect to �B
to give the agent a clear baseline to satisfy the V2V payload tolerance, while the second
case of it stands for the sum V2N rate maximisation goal when the V2V payload is
delivered, plus an additional reward element of V2V rate to further encourage the agent
to achieve the V2V payload delivery as the second case leads to a much higher reward
than the first case.
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Since RL aims to find an optimal policy that can attain the expected reward from the
state in the long term, the cumulative discounted reward can be defined as follows,
recapitulated from Eq. (5.12):

Gt =
1X

l=0

�rt+l (5.12)

where �i 2 [0, 1] stands for the discount factor used to balance weight between the
future rewards and the immediate reward, and the cumulative reward Gt for state st

equals the immediate reward rt when �i = 0.

5.3.4 DRL Algorithmic Implementation

Two DRL algorithms are proposed to solve the formulated Markov Game for the
considered resource allocation optimisation problem. For the off-policy method, the
well-known DQN method initially proposed by Mnih et al. [105] is utilised. To be
specific, this work develops the algorithm based on the DDQN variant of the DQN
[107]. For the on-policy DRL algorithm, this work adopts the A2C algorithm [110].
The essential mechanisms of these algorithms are introduced in Chapter 2 and thus not
repeated here.

The DDQN and A2C algorithmic implementations for the proposed solution are sum-
marised in Algorithm 5.1. Note that these presented algorithms are for 1 time step t,
which by calling upon multiple iterations can represent the complete training phase.

5.4 Decentralised Resource Allocation by Federated
DRL

The proposed DRL algorithm in Section 5.3 to solve the considered problem in (5.9)
is under a mixed setting without any information exchange among the V2V agents.
Although this helps the reduction of control signal overheads in communication, this
setup leads to the extreme case of independent learning, where agents learn on local
state observation, action, and rewards and suffer from non-convergence in general
[86]. To deal with this potential issue, this work explores the federated learning (FL)
setup among the agents to indirectly share their local information and improve the
convergence probability. The fundamentals of FL are introduced in Chapter 2.

The core process of federated DRL is the global aggregation that defines how local models
are combined to form a global model. This work adopts the federated averaging method
[249] for global aggregation. With Nagent V2V pairs participating in the federated DRL,
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Algorithm 5.1: DRL-based Decentralised Algorithms
/* t - current time step; st - state observation; */
/* T - total time step. */

1 Function TrainingA2C(t, st, T):
Data: ✓a - Actor-network; ✓c - Critic-network;
� - Discount factor; M- Memory for n-step TD;

2 Execute at according to policy ⇡(at|st; ✓a);
3 Observe s

0
t and rt;

4 if t < T or st not terminal then
5 Store (st, at, s0t, rt) in M;
6 else

7 R 
(
0, for terminal state
V (si; ✓c), for non-terminal si

8 for i 1 to T do
9 R ri + �R;

10 Calculate loss for ✓a: k log ⇡(si, ai; ✓a) · (R� V (si; ✓c)k2;
11 Calculate loss for ✓c: kR� V (s, a; ✓c)k2;
12 end
13 Update parameters of ✓a and ✓c;
14 end

15 Function TrainingDQN(t, st, T):
Data: ✓q - Training DQN; ✓0q - Target DQN;
B - Reply buffer; Nrp - Replay buffer capacity;
Nmb - Mini-batch size; Nf - ✓0q update frequency;
� - Discount factor; ✏ - Random action probability.

16 at  
(

a random action, with ✏
argmaxa Q(st, a; ✓q), with1� ✏

17 Execute at and observe s
0
t and rt;

18 Store (st, at, s0t, rt) in B;
19 if Nrp is reached for B then
20 Delete the oldest sample in B;
21 end
22 if B reaches Nmb samples and t = T then
23 Sample a mini-batch of (s, a, s0, r) from B;
24 foreach (s, a, s0, r) sample do
25 Construct target value:

26 y  

8
><

>:

r, if s0 is the terminal state

r + �Q(s0, argmaxa0Q(s0, a0; ✓q); ✓
0
q), else

27 Calculate loss ky �Q(s, a; ✓q)k2;
28 end
29 Update parameters of ✓q
30 end
31 if Nf is reached then
32 ✓

0
q  ✓q; // Copy ✓q parameters to ✓

0
q

33 end
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the ANN weights of the global model ✓g can be updated by:

✓g  
1

Nagent
·
NagentX

id=0

✓agentid (5.13)

where ✓agentid is the ANN weights of agentid’s local model. Note that this equation (5.13)
is a simple global aggregation method that assumes the same aggregation weight from
every participant is utilised in this work. However, as the focus of this work is to explore
how federated DRL performs compared with a cooperative DRL setup, we assume that
the scenario during training contains a predefined set of participants without newly
added and dropped participants. Therefore, the related aspects of FL training are
beyond the scope of this work, which makes the aggregation method suitable for the
considered scenario. With the important aspects introduced, the proposed federated
DRL-based algorithm for resource allocation is summarised in Algorithm 5.2. The
DDQN and A2C algorithms with this FL setting are termed FL-DQN and FL-A2C,
respectively.

Algorithm 5.2: Federated DRL algorithm for training
Initialise :Global model: Actor-Critic pair {✓ga, ✓gc} or DQN ✓

g
q . BS aggregator

distributes the global model to each participant
Data: Nagg - Global aggregation step size;
Output :Trained global model

1 foreach communication round do
2 Get V2V payload size for each V2V link;
3 for t 1 to T do
4 All agents observes the state st ;
5 All agents performs TrainingA2C(t, st, T)
6 or TrainingDQN(t, st, T);
7 end
8 if Nagg is reached then
9 All agents upload local models to BS ;

/* Global model aggregation as in (5.13) */
10 ✓

g  1
Nagent

·
PNagent

id=0 ✓
agentid ;

11 BS distributes the global model to all agents;
12 end
13 end

5.4.1 Model Quantisation to Reduce Communication Overhead

The proposed federated-DRL framework enables knowledge sharing among the learning
agents via global aggregation without direct communication and data transmission.
However, the global aggregation requires local ANN models to be transmitted from
participating V2V agents to the BS aggregator, which also causes communication
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overheads. Therefore, effective ANN model compression that reduces model size
while maintaining as much performance as possible becomes valuable for the proposed
federated-DRL framework for communication cost reduction.

Model compression has attracted much research attention for model size reduction
and acceleration, with techniques such as pruning, quantisation, low-rank factorisation,
etc. [250]. This work adopts the quantisation technique for model compression, which
is effective for fully connected ANNs usually used for DRL algorithms and has high
robustness [251]. At present, ANN weights are stored as 32-bit floating-point numbers.
Therefore, reducing the number of bits used to represent the weights and activations
can lead to a significant reduction in the size of trained deep ANNs, e.g. decreasing
the 32-bit storage to 8 bits can directly result in a 4-time model size reduction. More
detail regarding the quantisation implementation is covered in Section 5.5. This work
focuses on proof-of-concept exploration of whether quantisation preserves the overall
performance for the proposed algorithms while bringing significant model size and thus,
communication overhead reduction. As a result, aspects such as combining different
kinds of compression techniques for compression optimisation and detailed real-world
deployment are beyond the scope of this work.

5.5 Evaluation Configurations

In this section, the experimental setup, benchmarks, and performance metrics are
presented to evaluate the effectiveness of the proposed federated-DRL algorithm in a
single-cell cellular vehicular network. Simulations have been implemented via Python
3.10 using Numpy [252] and Pytorch [204] on the Archlinux platform (ANN model
size based on the corresponding file system), and result visualisation is generated via
Matplotlib [253].

5.5.1 Simulation Setups

The simulation setup is based on the urban case’s evaluation methodology as defined
in [180]. This TR includes detailed vehicle types and mobility models, V2V and
V2N channel models, V2V data traffic models, etc. Major simulation parameters are
summarised in Table 5.1. Specifically, the simulation arena is set to contain four urban
grids as defined in Table A-1, Annex A. in [180] to focus on a local area centred at
a crossroad intersection. Moreover, the network traffic model is based on Model 2
(medium traffic intensity) in Section 6.1.5 of [180], while changing the inter-packet
arrival time and latency requirement to 50 ms. Also note that as in [25], the BS
transmission power is set to 23 dBm to mitigate V2V interference and the V2V power
control options in this work are set to four levels, i.e., [23, 10, 5, -100] dBm, where the
-100 dBm represents “zero” V2V transmission power (since -100 dBm is actually finite
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but is very small).

Table 5.1: Simulation configurations based on 3GPP TR 37.885 [180]
Setup properties Parameters and values
Simulation time 30 Seconds
Carrier frequency 6 GHz
Total bandwidth 140 MHz
Number of V2N links 5
Number of V2V links 5

Antenna height BS: 10 m
VUE: 1.5 m

Antenna gain BS: 8 dBi
VUE: 3 dBi

VUE mobility model

Option A for urban case in [180]:
VUE speed: 60 km/h;
VUE goes straight, left, right at an intersection
with probability: 0.5, 0.25, 0.25.

Pathloss model V2N: 3GPP Urban Micro
V2V: 3GPP Urban case

Transmission power BS: 24 dBm
UE: [23, 10, 5, -100] dBm

Fast fading Rayleigh fading

Shadowing V2V: As in Table A.1.4-1 of [254]
V2N: As in Table 7.4.1-1 of [222]

Receiver noise figure BS: 5 dB
VUE: 9 dB

Noise Power -114 dBm

Network traffic model Periodic traffic,
10 ms per packet arrival

V2V payload size 1200 bytes (20% probability),
800 bytes (80% probability)

V2V latency requirement 10 ms

The ANNs are configured to be the same wherever possible for all considered algorithms
for the performance evaluation, including the DRL-based benchmarks introduced in
Section 5.5.2. These configurations are summarised in Table 5.2. To be specific, the
Rectified Linear Unit (ReLU), i.e., f(x) = max(0, x), is used as the activation function
for DQN and Critic Network, while the Tanh and Softmax are used as the activation for
the actor-network to sample categorical actions. Moreover, the “Adam with decoupled
weight decay" (AdamW) optimiser [228] is used to train the ANN parameters with an
initial learning rate of 0.0001, and an exponential learning rate decay of 0.97 applied
every episode.

In addition, the global aggregation is set for every 30 seconds for the federated-DRL
solutions, while the Reply buffer is configured to have the capacity of 2e6 with a
mini-batch sample size of 1280 for the DDQN, which is also true for the considered
benchmarks using the DQN algorithm.
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Table 5.2: Neural network hyperparameter configurations

Hyperparameter Value
DQN Actor Network Critic Network

Hidden layer number 3
Neuron size 512⇥ 256⇥ 128
Hidden layer

activation function ReLU Tanh ReLU

Output layer
activation function Linear Softmax Linear

Optimiser AdamW [228]
Learning rate 10�4

Learning rate decay 0.97
� in (5.12) 0.98

5.5.2 Benchmarks

The proposed FL-DQN and FL-A2C’s performances are compared against two estab-
lished DRL-based benchmark methods in the literature and the baseline performance
from a fully random strategy. Furthermore, the performances are also compared with the
theoretical performance upper bounds for V2N and V2V links, respectively. Together,
these benchmarks are introduced as follows:

• C-MARL: This is the multi-agent DRL-based resource allocation scheme devel-
oped in [25] where each V2V link works as an agent. C-MARL is implemented in
a “centralised training, distributed execution" manner, that each agent makes its
own actions based on the state observations using only local information, while
a reward based on both V2V and V2N rates for all agents is shared among the
agents during training.

• Centralised: This is the centralised DRL-based resource allocation proposed in
[137]. At each time step, the centralised agent decides the action for the spectrum
sub-band and V2V power level for one V2V link, while the allocation decisions
for other V2V links remain the same (turn-based resource allocation). State and
reward information is sent to the centralised agent from each V2V pair.

• Random: This is the baseline that chooses the spectrum sub-band and V2V
transmission power for each V2V link in a random manner, i.e., without any
resource allocation optimisation strategy.

• max_v2n: This gives the maximum V2N sum rate upper bound for a given
scenario, calculated by disabling all V2V links for theoretical V2N performance.
In this case, the packet delivery rates for all V2V links are zero, which is equivalent
to a conventional cellular network with all UEs being vehicles.
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• max_v2v: This produces the successful V2V delivery ratio upper bound. Fol-
lowing the problem formation, this work essentially tries to solve a combinatorial
optimisation with discrete spectrum sub-band and V2V transmission power op-
tions. As a higher V2V transmission rate leads to a higher probability of successful
V2V payload delivery, this method exhaustively searches the action space of every
V2V agent in each time step to maximise the V2V transmission rate while com-
pletely ignoring the V2N service requirements and regardless of its computational
complexity.

Note that the two theoretical upper bounds are achieved by ignoring important factors
and thus are for reference only.

5.5.3 Performance Metrics

For the performance evaluation, all learning algorithms are first trained in an episodic
manner that runs the same environment (vehicle initial positions and trajectories, fading
behaviours) multiple times. After the training, the algorithms are then evaluated in
a testing environment whose data has not been experienced by the algorithms. The
evaluation is centred around the two network performance metrics:

1. V2V payload delivery ratio E: This is the primary metric as safety applications
are more essential and critical for V2X applications as defined in (5.8) and
0  E  1.

2. Sum V2N transmission rate ⇤: This is the sum transmission rate of all V2N
links defined in (5.9b).

3. Aggregated gain G: As the optimisation problem is a max-max problem with
two optimisations expressed by the above two metrics, an aggregated gain is
defined to achieve a more grounded comparison, defined as:

G =
Edrl � Ernd

Ernd
+
⇤drl � ⇤rnd

⇤rnd
(5.14)

where Edrl and Ernd stand for the V2V payload delivery ratio obtained by a con-
sidered DRL algorithm, e.g., FL-DQN, and the Random benchmark, respectively.
The same applies to ⇤drl and ⇤rnd, which are the sum V2N transmission rate
obtained by the corresponding algorithms. This metric indicates how much gain
considering both the above metrics an algorithm can achieve compared with the
Random benchmark’s bottom line performance. Without losing the generalisation
ability, E and ⇤ are set to have the same weight in the summation of (5.14).
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In addition to the above performance metric, the communication cost penalty and the
convergence behaviours are also analysed for the considered learning algorithms.

5.6 Experimental Results

To produce performance results, an offline training stage under the same configuration
was first carried out for all learning-based algorithms, i.e., Centralised, C-MARL, and
the two versions of the proposed solution, FL-DQN and FL-A2C. After training, the
algorithms are tested in the following scenarios:

• The training environment for direct performance evaluation. This shows the
raw performance after training in the completely same environment with VUEs’
moving trajectories unaltered, which does not reflect reality and is presented for
completeness.

• A direct generalisation test where the algorithms are deployed in a different
scenario, i.e., VUEs have different moving trajectories compared with the training
scenario.

• An online update scenario where the number of VUEs is not changed while one
of the agents does not have a trained model and is treated as newly joined. This
scenario considers the online model update and leaving/joining agents, which is
considered to most emulate a real-world situation.

In addition to the performance comparison, a proof-of-concept comparison between
C-MARL and the proposed solution regarding the communication cost is also presented.

5.6.1 Performance Results: The Training Scenario

5.6.1.1 Convergence Analysis

Since all considered learning algorithms are DRL algorithms, the convergence behaviour
will give valuable insights into how each algorithm performs during the training process,
which is shown in Figure 5.4.

From Figure 5.4a, the overall convergence trends of the proposed solution’s two imple-
mentations are highly similar, which is expected as they have the same Markov Game
modelling. Nevertheless, two aspects are worth noting, which are at the beginning of
the training process and after Episode 20. After Episode 1, FL-A2C has double the
cumulative return than FL-DQN. The main reason for this is that FL-DQN follows the
✏-greedy policy selection that a random action will be taken with a probability of ✏.
While ✏ is set to 1 for Episode 1, FL-DQN essentially follows a random policy during



CHAPTER 5. RESOURCE ALLOCATION OPTIMISATION 111

(a) (b)
Figure 5.4: Cumulative return per episode for all considered DRL algorithms. (a) The
proposed FL-A2C and FL-DQN. (b) The benchmarks.

this episode. In comparison, FL-A2C follows behaviour policy during the training while
also improving the policy, leading to a much higher return. After Episode 20, FL-DQN
has an increasing cumulative return while the improvement plateaued for FL-A2C. A
possible reason for this is that FL-A2C can only update its policy with the latest data,
while FL-DQN has a higher data efficiency by exploiting data stored in the experience
replay buffer and can find a more deeply hidden pattern to optimise.

Regarding the two benchmark results, C-MARL has a very smooth convergence line, as
in Figure 5.4b, due to its cooperative and direct information-sharing design with all
agents aiming to achieve a common goal. It has almost no fluctuation compared with
FL-A2C and FL-DQN, which are implemented with a mixed setting where self-interest
agents may conflict with each other, causing system-wise performance downgrade
and thus reduced return. In comparison, the Centralised benchmark has a diverging
behaviour starting from Episode 5 although in the same learning configuration. This
is because, for the Centralised benchmark, the network controller makes decisions for
each V2V link by taking turns, which causes instability in the RL environment.

5.6.1.2 Performance Results

The performance results regarding the two performance metrics, E and ⇤, are presented
in Figure 5.5. As can be expected from the convergence analysis, C-MARL has the
highest E for its cooperative setting with smooth training. This is followed by FL-DQN
whose E = 0.83, 0.06 lower than that of C-MARL. Also shown in the convergence
analysis, FL-A2C has a smaller E than FL-DQN due to having a lower cumulative
return throughout the training. Furthermore, since the Centralised benchmark goes
diverging during training, it also has the lowest E, which is very close to the bottom-line
performance generated by the Random baseline. As for ⇤, all considered algorithms
have values within 10% of the Random baseline’s performance. Note that the results
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obtained by max_v2v and max_v2n only provide the theoretical upper bounds for both
E and ⇤, which is not practically achievable for the considered optimisation problem
following their definition in Section 5.5.2 above.

(a) (b)
Figure 5.5: The performance results of different benchmarks in the training scenario.
(a) System-wise Successful V2V payload delivery ratio. (b) Sum V2N rate system-wise.

Table 5.3 shows the aggregated gain G (defined in Section 5.5.3) of all four DRL
algorithms with respect to the Random baseline. Consistent with the results in Figure
5.5, C-MARL has the highest G, and the second best performing algorithm in the
training scenario is FL-DQN, followed by FL-A2C. As the Centralised benchmark
becomes divergent during training, it ends up with a negative G in this scenario.
However, the results of the training environment can only show the performance in
an idealised situation (the same scenario for training), which is incomplete and needs
further elaboration by the generalisation tests.

Table 5.3: Aggregated gain G with respect to the Random baseline for all considered
DRL algorithms in the training scenario.

Algorithm FL-A2C FL-DQN C-MARL Centralised
Aggregated Gain G 0.603 0.700 0.903 -0.016

5.6.2 Performance Results: The Testing Scenario

Similar to the performance evaluation in the training scenario, another round of
performance evaluation is executed for generalisation tests. To obtain the results, all
considered benchmarks are deployed into a new scenario of the same environment, i.e.,
the trajectories of each V UE, and thus the radio environment, are different from those
in the training scenario. However, other settings such as the simulation parameters are
kept the same. Moreover, the trained ANN models of all learning algorithms are directly
used in this testing scenario without any online updates. Therefore, it is anticipated
that all DRL algorithms will experience performance decline because changing the
VUEs’ trajectories will lead to a state observation and transaction change that the
algorithms did not learn during training.
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Figure 5.6 shows the performance results with respect to E and ⇤ for the testing
scenario. Regarding E, all DRL algorithms have met performance downgrade, with
the best performing algorithm in this scenario changing from C-MARL to FL-DQN,
whose E = 0.8 has the lowest performance decline. This is followed by FL-A2C, which
has E = 0.69 with the second lowest drop. In comparison, C-MARL encounters a stiff
performance drop of 0.26 regarding E. Regarding the metric ⇤, a similar pattern can
be found compared to that in the training scenario, with all learning algorithms having
⇤ within the 10% range of the Random baseline’s value. As for G, Table 5.4 shows the
corresponding results of all four DRL algorithms with respect to the Random baseline,
with all DRL algorithms having a reduced performance compared with the same metric
in the training scenario. Also, as expected, FL-DQN now has the highest G of the four
DRL algorithms, followed by FL-A2C.

(a) (b)
Figure 5.6: The performance results of different benchmarks in the testing scenario
without ANN online updating. (a) System-wise Successful V2V payload delivery ratio.
(b) Sum V2N rate system-wise.

It is anticipated that the DRL algorithms will have a performance downgrade in this
direct generalisation test. The reason is that none of the DRL algorithms have previously
experienced the testing scenario due to the change of vehicles’ moving trajectories and
hence environmental state transitions, leading to the lack of knowledge for trained
ANN models. However, the proposed solution (both implemented versions) has a
relatively smaller reduction regarding the performance metrics, while the best-performing
algorithm in the training scenario, i.e., C-MARL, has the steepest performance decline.
A possible explanation for this is that the proposed scheme has self-interest agents while
C-MARL has cooperating agents through different reward designs. For the proposed FL
scheme, the agents map the state observations to corresponding decisions that maximise
their own reward. When directly applied to a new environment, this direct mapping is
less affected by the different state transition patterns as agents only focus on their own
interests. For C-MARL, however, the reward considers other agents’ service quality.
When the environment changes without ANN model updates, such cooperative design
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leads to impairment between the new environmental information and existing knowledge
learned by the models and thus a more significant performance downgrade. Therefore,
it can be concluded that without further model updates, the proposed solution has a
better generalisation ability.

Table 5.4: Aggregated gain G with respect to the Random baseline for all considered
DRL algorithms in the testing scenario.

Algorithm FL-A2C FL-DQN C-MARL Centralised
Aggregated Gain G 0.245 0.429 0.172 -0.313

5.6.3 Online Model Update: Results of the Newly Joined Agent

The radio environment in vehicular networks is highly dynamic, with vehicles travelling
in and out of a local area frequently. As a result, it is important for resource allocation
schemes to adapt to the changing environment which corresponds to the online updating
of ANN models for DRL algorithms. Therefore, the testing scenario is extended to
emulate the situation with leaving and newly joined VUEs. For the extended testing
scenario, it is assumed that one agent with a trained local model has left the local area,
with another agent joining the area without a trained model. Hence it is important for
the newly joined agent to have a proper ANN model for efficient resource allocation in
sidelink Mode 2, which necessitates VUEs for decision-making.

For the proposed federated-DRL, the new agent can download the global model from
the BS and further update it with its local data. As for the C-MARL, it is assumed that
the new agent manages to get a copy of another agent’s trained model upon entering
the area to avoid training a new ANN model from scratch. To simulate reality, the
episode number for the online ANN update is set to 1 as the same VUE will not travel
through the same trajectory multiple times. The trajectories in the testing scenario
are used in this extended scenario with all agents except the newly joined agent having
their trained local ANN models, and online model update is enabled. Besides, the
✏-greedy policy for FL-DQN and C-MARL is disabled to avoid random action-taking
affecting the performance statistics. Also note that the extended scenario focuses on
the Mode 2 resource allocation, and thus the Centralised benchmark is not considered.
The performance results for all three performance metrics are presented in the same
manner as the above sections.

Figure 5.7 shows the performance results regarding E and ⇤. FL-A2C and C-MARL
both come to the top with the same E = 0.83, with FL-DQN having a slightly lower
E = 0.78. As for ⇤, all three MARL algorithms have very similar performance
compared to the Random baseline, with only a little improvement made to this metric
(no improvement made by the FL-DQN). As a result, FL-A2C and C-MARL have
the same G, while FL-DQN has a 0.11 lower G in response to its lower E and ⇤. In
this extended scenario, FL-A2C shows impressive online update training results, in
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line with the C-MARL benchmark, which was the best-performing algorithm in the
training scenario. Besides, FL-DQN also reaches a much closer performance to C-MARL
compared with the results in the training scenario. Although only slight performance
gain is achieved by the proposed scheme, this satisfies the performance expectation of
this research as discussed in Section 5.1.3. These results support the superiority of the
proposed solution, especially regarding the real-world deployment aspects, which will
be further elaborated by the communication cost analysis below.

(a) (b)
Figure 5.7: The performance results of different benchmarks in the testing scenario
with online updating. (a) System-wise Successful V2V payload delivery ratio. (b) Sum
V2N rate system-wise.

Table 5.5: Aggregated gain with respect to the Random baseline for all considered DRL
algorithms in the extended testing scenario for online updating.

Algorithm FL-A2C FL-DQN C-MARL
Aggregated Gain G 0.557 0.444 0.557

5.6.4 Discussion on Communication Costs

The online model update requires information sharing to train the ANN models. This
will lead to communication costs for the deployed multi-agent DRL algorithms, i.e.,
FL-A2C, FL-DQN, and C-MARL. Therefore, a communication cost analysis for the
above-extended test scenario is presented. Note that this analysis is purely based on
the size of data that needs to be transmitted for online model updates.

For the proposed federated-DRL algorithms, the ANN models are transmitted during the
online update. On the implemented platform, the ANN model size is 696.0 KB in storage.
For the 30-second simulation time, there is only one round of model transmission, i.e.,
when the newly joined agent first downloads the global model, leading to a system-wide
communication cost of 23.2 KB/s for the scenario. This is also true for C-MARL with
model transfer as a model copy is downloaded from another agent.
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For C-MARL, the throughput information of all agents needs to be shared to enable
online model updates, and it is assumed that the corresponding message sent from each
agent is 4 bytes, i.e., the reward element consisting of an agent’s throughput information
is assumed to be represented by a 32-bit floating point number. As the control message
needs to be sent every 10 ms according to the simulation configuration in Table 5.1,
this will lead to an additional communication cost of 16 KB/s system-wise (as the other
four agents need to send their reward element to the newly joined agent). Combined
with the 23.2 KB/s for model copying, C-MARL has a communication cost of 39.2
KB/s for the online update scenario. The above analysis is summarised in Table 5.6.

Table 5.6: The communication cost analysis for the online update scenario.
Algorithm Proposal C-MARL
Communication overheads (KB/s) 23.2 39.2
Communication frequency per 30 s per 10 ms

From this analysis, the proposed federated-DRL solutions have a 40.8% smaller com-
munication cost compared to C-MARL with model transfer, while the related data is
sent at a much smaller frequency, i.e., 30 seconds compared to 10 ms in the considered
scenario. Additionally, the proposed solution has a much more convenient setting
for ANN model sharing via the FL aggregator designed to be deployed at a BS. In
contrast, a newly joined agent must copy another agent’s model to avoid training from
scratch for C-MARL. This setting of C-MARL is much less stable when applied to a
real-world scenario for optimised performance as it cannot guarantee another agent
with a trained model to appear near the newly joined agent. Moreover, there is also
a potential performance downgrade as the copied model did not have access to other
agents’ knowledge as those in FL did.

5.6.4.1 Quantisation for Model Size Reduction

Although with a much more convenient global model-sharing architecture, the large
model size will cause significant communication overheads when many agents need
to update their local models at the same time due to multiple local model uploads
and global model downloads. Therefore, effectively compressing the ANN model size
while preserving as much performance as possible becomes important for the proposed
federated-DRL solution.

The quantisation model compression technique is utilised in this section to achieve this
goal for the federated-DRL solution. It is implemented using the Post-training Dynamic
Quantisation (PTDQ) functionality provided in the Pytorch library [255] to prove
the concept. PTDQ converts all hidden layer weights from the 32-bit floating-point
representation to 8-bit integers, while keeping the floating-point representations for
biases and activations. FL-DQN is used for this proof of concept and the scenario of
the original testing scenario is chosen. The corresponding results are summarised in
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Table 5.7. The results indicate that PTDQ reduces the FL-DQN’s ANN model size
by 73.9% with only a 3% performance loss and a 1% reduction in E compared to the
results without PTDQ, suggesting great trade-offs for communication cost reduction
for the proposed federated-DRL solution.

Table 5.7: Model size and performance before/after PTDQ for FL-DQN in the testing
scenario.

Algorithm Model size Successful V2V
delivery ratio E

Sum
V2N rates ⇤

Aggregated
Gain G

FL-DQN 696.0 KB 0.8 3.28 MB/s 0.429
FL-DQN
(PTDQ) 181.1 KB 0.79 3.30 MB/s 0.417

5.6.4.2 Complexity

For computational complexity, the evaluation configuration has set all ANN models to
have the same hyperparameters (i.e., number of layers, number of neurons, activation
functions and learning rate.) where possible. As a result, the computational complexity
from the ANN models are anticipated to be theoretically equal, which was also the
motivation for such a configuration.
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5.7 Summary

The dynamic radio environment, differentiated QoS requirement, and substantial in-
crease in the numbers of VUEs in vehicular networks have led to the topic of optimised
resource allocation for C-V2X, especially for an underlay sidelink configuration. For
decentralised resource allocation in Mode 2 setup, existing research focuses on a coop-
erative MARL setting that has satisfying performance while requiring frequent direct
information sharing among agents. There are also difficulties in sharing a trained
model with newly joined agents to avoid training from scratch, and thus performance
downgrade. FL is an alternative decentralised ML architecture that allows model
sharing among participating agents while not requiring direct data transmission, being
a promising candidate to solve the above challenge. Additionally, the mixed MARL
setting requires much less information to be directly shared among agents to reduce
communication overheads. However, it depends on the algorithmic design to match or
even exceed the performance of the cooperative setting. In this work, a federated-DRL
solution is proposed to jointly allocate spectrum and power in Mode 2, underlay sidelink
C-V2X system. With its mixed MARL setting, the only information transmitted during
training is the local/global models. The proposed solution is also implemented with
two different DRL to explore the effectiveness of different DRL algorithm types.

Through extensive simulation, the proposed solution outperforms the state-of-the-art
with respect to the generalisation capability. To be specific, the two implemented
algorithms, FL-DQN and FL-A2C, outperform the best-performing C-MARL bench-
mark in the direct generalisation test by 17% and 6% regarding the metric of V2V
payload delivery ratio, and 149% and 42.4% regarding the metric of aggregated gain G,
respectively. For the online model update scenario, the proposed FL-A2C can match
the performance of the C-MARL benchmark with respect to both the V2V payload
successful delivery ratio E and G whilst FL-DQN has a close performance (5% and
20% inferior for the two metrics compared with C-MARL). For the communication cost
analysis, the proposed algorithm has a 40.8% smaller communication overhead compared
to C-MARL with model transfer. Furthermore, the proposed solution requires much
less frequent data transmission, i.e., 30 seconds compared with the 10 ms required by
the C-MARL benchmark. In addition, a proof-of-concept communication cost reduction
scheme is discussed via ANN model compression. Through the PTDQ implementation,
the ANN model of the proposed solution can be reduced to 1/4 of its original size with
only 3% performance loss. To sum up, the proposed federated-DRL solution is a highly
promising candidate regarding both performance and communication costs to deploy in
future vehicular networks for decentralised resource allocation.



Chapter 6

Adaptive Cell Switching Using Graph
Neural Networks

6.1 Introduction

Base stations (BSs) are the major energy consumers in cellular networks and account for
60% to 80% of cellular network’s total power consumption [42]. The proliferation of BS
deployment for network densification has significantly increased the environmental and
economical burden on society. Therefore, it is vitally important to optimise the energy
efficiency of BSs for vehicular networks to reduce OpEx and be more environmentally
friendly, combined with other energy efficiency schemes introduced earlier in Chapter
3. Green radio is a set of technologies that jointly consider service quality and power
consumption to deliver energy-efficient wireless communications. With the development
of green radio technologies, various options of energy efficiency schemes have been
proposed to reduce BS energy consumption [195]. These BS energy-saving strategies can
be classified into four main categories according to their target parameter to minimise
in Eq. (3.5), which is summarised in Figure 6.1 with examples. A more detailed
background introduction to green radio techniques for BSs is already covered in Section
3.3.

Cell switching is a spatial approach for BS energy efficiency by turning a cell or a BS
into sleep mode, which is a promising approach to optimise energy efficiency on the
network side. The conventional strategy has been to maintain constant BS operation
even when no active users are using the BS’s coverage, resulting in significant energy
wastage. As data traffic in cellular networks shows both temporal and spatial variation,
load adaptive network operation can be executed such that BSs could be switched to
sleep modes during periods of low/no traffic to optimise energy efficiency. Additionally,
sleep mode can be applied along with other green radio techniques for energy efficiency

119
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Spatial

Core idea: to reduce the equivalent number of
transceiver chains NTRX

Example approaches:

Cell switch-off
RF chain switch-off

Frequency

Core idea: to reduce the transmit power
requirement Pout

Example approach:

Bandwidth reduction technique

Engineering

Core idea: to improve components (e.g.
ηPA) hence BS energy efficiency.

Example approach: 

Advanced power amplifier architecture

Time

Core idea: to extend the duration of sleep
mode for a switched-off RF chain or a cell.

Example approach:

Cell discontinuous transmission

Green radio techniques for radio access networks

Figure 6.1: A brief summary of green radio techniques for radio access networks,
recapitulated from the related details in Chapter 3.

such as engineering higher-efficiency power amplifiers and reducing the transmit power
while keeping service QoS via link adaptation, etc.

However, it may not always be feasible to completely switch off BSs in the cellular
network architecture due to potential coverage holes that would inevitably downgrade
the users’ QoS. Moreover, a sleeping BS cannot transmit signals needed by UEs to
establish connections such as cell discovery and channel estimation [256]. Separating the
control signals requiring full coverage from those supporting high data rate transmissions,
the Control Data Separated Architecture (CDSA) is a crucial network architecture
to the above challenge [256]. In Control Data Separated Architecture (CDSA), a
Macro Cell (MC) control BS provides constant coverage, general data services, and
handles signalling tasks, while Small Cell (SC) data BSs provide high data rate services
to support various mobile applications. By appointing an MC to ensure the service
coverage and the backhaul connection between the MC and SCs, CDSA brings the
possibility to switch SCs within the MC’s cover into deep sleep mode without impacting
the users’ QoS during cell switching operation and traffic load re-association. Figure
6.2 demonstrates the considered Heterogeneous Network (HetNet) with CDSA and the
concept of cell switching. Figure 6.2a shows such a CDSA HetNet unit consisting of
one MC and four SCs while Figure 6.2b presents that after cell switching, one of the
SCs is turned into sleep mode and the MC takes over that SC’s connected cellular UEs.

To ensure maximum energy efficiency gain (trade-off between service and energy saving)
via sleep mode, it is essential for cell-switching solutions to reach optimal decision-
making. Research has been conducted for optimised cell switching solutions in CDSA
HetNets, and analytical models and heuristic algorithms were developed with a priori
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knowledge of the environment [257–259]. However, such approaches usually face the
NP-hardness solving issue due to the problem formation complexity and computational
overhead for complex scenarios and have limited generalisation capability adapting to
the dynamic environment of wireless networks [36, 51].

SC
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(b)
Figure 6.2: A CDSA HetNet unit consisting of an MC and densely deployed SCs within
the coverage of the MC. (a) Before cell switching, all users within an SC connect to it.
(b) After cell switching, the MC takes over the users of the sleeping SC; the backhaul
connections are omitted in this part for simplicity. Note that there are four types of
SCs according to [45], RRH: Remote Radio Head.

In comparison, Machine Learning (ML) techniques are able to extract knowledge
from historical and real-time collected data for cell switching decision optimisation.
Reinforcement Learning (RL) based algorithms can directly optimise cell switching
strategies [54, 143–145] while other ML techniques for prediction, classification, and
clustering are capable of assisting cell switching solutions for improved performances
[146–148]. Furthermore, deep learning techniques utilising the strong approximation
capability of ANNs can accommodate highly complex scenarios by directly learning
patterns from the rich datasets generated by the communication networks.

In recent years, Graph Neural Network (GNN) has received much attention from the
research community, achieving successes in different research areas such as in computer
vision, chemistry, and social networks [260, 261]. It has also been applied to wireless
network research including traffic prediction, power control, etc. [262]. This is because
the topology of communication networks can be naturally modelled using graphs, a
data structure comprising nodes and edges with relationship information embedded. A
detailed background of graph-structured data and GNN can be found in Section 2.3.3.

Compared to existing deep learning-based solutions, GNNs show an advantage over
traditional feed-forward ANNs of better generalisation capability through learning the
network topology via the graph data structure with node size invariance [136, 263].
The ability to learn the underlying topology on graph-structured data can increase
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dataset utilisation efficiency and learning robustness, while node-size invariance is a
significant advantage that reduces computational and time cost for retraining time after
deployment to differing scenarios when compared to other deep learning techniques
such as Deep Reinforcement Learning (DRL), which needs retraining when the action
space size changes. Both advantages make GNN a powerful candidate for cell-switching
decision optimisation. However, little research has been conducted exploring how GNNs
perform in cell switching problems to date. As a result, a cell-switching solution using
a GNN model is proposed for adaptive cell-switching decision-making.

6.1.1 Related Work

Cell-switching decision optimisation must find the best combination of SCs to offload
traffic and switch off in order to maximise power saving while maintaining user QoS.
Such a problem is naturally combinatorial and may be formulated as mixed integer
programming with multiple sets of variables to consider trade-offs among metrics [42]
as too aggressive cell switching may lead to user QoS sacrifices when maximising power
saving, while too mild cell switching leads to delivering a service capacity exceeding
the available users’ demands and causes energy wastage. Various approaches exist in
the literature to implement cell switching optimisation in CDSA HetNets for energy
optimisation. These methods can be broadly classified into heuristic algorithms and
ML-based direct cell switching decision-making (mainly RL-based). Some research also
developed multi-tier solutions combining heuristic algorithms with ML methods, or
developing combinations of different ML methods (e.g. supervised learning and RL).

For heuristic algorithms, the Exhaustive Search (ES) algorithm is guaranteed to produce
the most optimal cell switching results by traversing the whole search space to find
the best SC combination(s) based on the objectives while satisfying the constraints.
However, the complexity of ES grows exponentially and is only practical to apply to
small search spaces (small networks for V2X) [54]. To improve the search efficiency
towards an optimal solution, a suboptimal greedy SC on/off strategy was proposed in
[257] to determine the SC switching patterns for a BS cluster in a green ultra-dense
HetNet. This heuristic algorithm tried to maximise the network energy efficiency while
considering the traffic load of the SCs and user QoS requirements. Similarly, a firefly
algorithm was developed in [258], where joint optimisation of the area spectral efficiency
and energy efficiency was formulated to determine the optimal system parameters for
a two-tier ultra-dense HetNet. Moreover, a cooperative energy optimisation scheme
for 5G ultra-dense HetNet using graph theory was proposed in [259], where a graph
representation of the network was first developed, followed by applying graph theory to
determine the order of SC nodes to which power-off/on procedures are applied.

Heuristic algorithms are hard-coded with limited generalisation ability, and recurrent
applications are often required when network conditions change significantly. As a result,



CHAPTER 6. ENERGY EFFICIENCY OPTIMISATION 123

some research combined ML methods to boost the performance of heuristic algorithms,
or to reduce the problem search space and hence the overall problem complexity. An
example of such approaches is the work of Abubakar et al. [146] that presents a two-tier
cell switching based on unsupervised learning and the ES algorithm, where the search
space for the ES algorithm is reduced by separating an ultra-dense HetNet into different
smaller groups using a clustering algorithm.

To develop adaptive cell switching solutions, another approach is to design ML-based
direct cell switching algorithms. For example, a dynamic SC load adjustment algorithm
was proposed in [143] that used Q-learning to train an optimal offloading and load-
balancing policy to switch off redundant SCs in an ultra-dense HetNet. A distributed
Q-learning technique was utilised in [144] that modelled all SCs as learning agents that
cooperate to jointly learn the best sleep mode for each SC in a multi-sleep-mode HetNet
setup, in order to maximise the network’s energy efficiency. However, such tabular RL
methods require a large state-action table (or Q-table) to represent the optimal policy
when the HetNet scale rises, which leads to considerable memory consumption. As a
result, approximation-based RL algorithms become promising candidates, such as the
SARSA algorithm with linear function approximation proposed by Ozturk et al. [54].
Deployed for online training and execution in an ultra-dense HetNet, the feature space
of the SARSA algorithm contains all BSs’ traffic loads with the total network-wise
power consumption for optimal binary cell switching policies for SCs. Another approach
is to exploit the strong approximation capability of ANNs, such as the work of Zhang
et al. [145] who developed a DDQN-based cell switching algorithm to determine the
optimal sleeping strategy in a heterogeneous radio access network. The algorithm was
trained and tested using real-world traffic data to minimise the energy consumption of
the HetNet while maintaining the user QoS within the network.

Moreover, different learning-based techniques can jointly be utilised for cell switching
decision making, such as the work in [148] which combined CNN, RNN and DRL to form
a multi-tier solution. CNN and RNN were leveraged to exploit the geographical and
semantic spatial-temporal correlations of mobile traffic for future traffic prediction, while
the deep deterministic policy gradient algorithm [139] was used to compute optimal
cell switching decisions.

Different learning-based solutions have been proposed in the literature for cell switching
optimisation, while GNN techniques received relatively little attention although with
strong expressive capability and explored to be effective in solving a similar problem of
link scheduling [134, 136]. For instance, Lee et al. [134] proposed a graph representation
design for device-to-device communication and utilised graph embedding combined
with neural networks to learn an optimal link scheduling decision without requiring
channel state information. Their performance results showed that graph representation
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learning is competitive in performance optimality (over 90% of optimal system sum
rate), generalisation ability and scalability. However, their design centred around
communication links cannot be directly adapted to the cell switching use case, which
also motivated this work to explore GNNs on cell switching.

6.1.2 Research Contributions

GNN has the following advantages over other learning-based techniques for the cell
switching problem:

• GNN learns on graph-structured data, which include relationship information
among modelled BSs, which is absent from other techniques while being useful to
the NN model to learn the features with extra information and hence reduce the
training epochs.

• GNN is capable of being extended to different-sized networks without the need
of retraining, which considerably reduces the cost for deployment to different
HetNets compared to other learning-based techniques such as deep Q-learning.

Consequently, this chapter focuses on a first attempt to develop a GNN-based cell-
switching solution for CDSA HetNets that can be deployed at each MC of the network
to provide cell-switching decisions for SCs within its coverage at a system-level in a
locally centralised manner. The proposed solution consists of the graph representation
of individual HetNet units, GNN computational model building, and loss function design
for unsupervised training. The performance of the proposed solution is evaluated using a
dataset based on real-world cellular network traffic information. The performance results
are compared to the theoretical optimal results calculated by the exhaustive search
algorithm, a state-of-the-art RL-based solution, and the All-on method representing
no cell switching deployment. Note that although high-level discussions on how the
proposed cell switching algorithm may be deployed in the cellular protocol stack, this
work focuses on the algorithmic development and the detailed deployment aspect is
beyond the scope of this work. The contributions of this chapter are summarised as
follows:

• A graph representation of a CDSA HetNet unit considering BSs’ traffic loads
and power consumption, and a GNN-based Cell-switching Solution (GBCSS) for
CDSA HetNets. GBCSS has a much lower computational complexity during
execution compared to the ES algorithm hence is scalable and tractable for large
deployments for beyond 5G super connectivity.

• The proposed GBCSS is evaluated using a well-established telecommunication
dataset[264] that is based on real-world Call Detail Records (CDR) information
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in the city of Milan, making the results more realistic.

• Evaluation results show a 10.41% power efficiency gain using the GBCSS with
respect to the baseline without cell switching. Compared to the ES algorithm
used for the upper bound baseline, the GBCSS achieves 75.76% of the optimal
performance results with less than 0.5% of user QoS sacrificed. In addition, the
average energy efficiency of GBCSS outperforms that of the other learning-based
benchmark algorithm by 11.90%.

• Generalisation tests for different dates, times, and node sizes show the GBCSS’
strong generalisation ability that makes the method highly promising for practical
deployments.

6.2 System Model and Problem Formulation

6.2.1 Network Architecture and Power Consumption Model

This work considers an ultra-dense HetNet with a CDSA architecture [256], formulated
by multiple HetNet units comprising of one MC and multiple SCs of different types
within the coverage of the MC. For each HetNet unit as shown in Figure 6.2, the MC
serves as the control BS for signalling, and provides constant coverage and data services,
while the SCs only handle data services based on user-specific requests for network
capacity enhancement. The MC also acts as a centralised controller within its coverage
area for switching SCs in/out of sleep mode and takes over the traffic of sleeping SCs
as shown in Figure 6.2b. This task contains traffic load observations on all local SCs,
and decision-making on the set of SCs that should be switched into sleep mode during
periods of low traffic intensity, with the available capacity of the MC also taken into
consideration.

Using the above system model, the instantaneous power consumption of a HetNet unit
Ptot containing 1 MC and NSC SCs (with SCs’ BS types implied) in a CDSA HetNet is
given by:

Ptot =
NSC+1X

i=1

P
i
BS = PMC +

NSCX

i=1

P
i
SC (6.1)

where P
i
BS is the power consumption of the i-th BS (BSi) in the HetNet unit, BS type

implied, while PMC and P
i
SC denote the power consumption of the MC and the i-th SC

respectively.
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The calculation of P i
BS for every BS type follows (3.6) according to the EARTH power

consumption model [45]. In (3.6), Pout is the transmission power that is proportional to
the maximum transmission power Pmax based on a BS’s factorised traffic load. In this
chapter, P i

out and P
i
max are used to denote the transmission power and the maximum

transmission power of the i-th BS. The factorised traffic load is expressed as [265]:

P
i
out = �

i
tP

i
max (6.2)

where �it2 [0, 1] is BSi’s factorised traffic load at time step t, defined as:

�
i
t =

d
i
t

Ci
(6.3)

where d
i
t represents the radio resources of BSi utilised by its served users at t, and C

i

is the radio resource capacity of BSi.

It is also assumed that BSs of a given type (e.g. all micro BSs) are configured with
identical hardware for this general problem formation, such that every type of BSs will
have constant P

i
0, P i

max, and �i
p. Therefore, BSi’s power consumption P

i
BS depends

only on its traffic load �
i and BS type. For real-world applications, values of these

parameters can be specified based on individual BS setups.

6.2.2 Problem Formation

Following the above system model, the goal is to determine the optimal BS switching
strategy (i.e. the optimal set of SCs to switch on/off) for each time step t (in min-
utes) in a given time period T (in minutes), to minimise energy consumption while
maintaining user QoS in a HetNet unit. The switching strategy at t is defined as �t

= {�1t , �2t , ...�
NSC+1
t }, where �it 2 {0, 1} indicates the switching decision for BSi at t,

with 1 denoting ON and 0 representing OFF. In this work, the MC of each HetNet
unit is defined to be at index 1 (BS1) and is considered always ON according to its
functionality, i.e. �1t = 1, 8t 2 T .

By deciding the switching strategy �t at each time step t, a traffic re-association stage
is carried out before the cell switching execution, during which the MC takes the traffic
loads from, or allocates traffic loads to an SC within its coverage if that SC was switched
to sleep mode or brought back in service, i.e. moving di from BSi to BS1, where i 6= 1.
However, as SCs and the MC may have different capacities, it is essential to consider
such differences for traffic re-association when using the factorised traffic loads � during
this process. To represent such capacity differences, �i is introduced as the ratio of
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BSi’ capacity to that of BS1 (the MC). Note that �1 is always 1 as it means the MC’s
capacity comparing to itself:

�i =
Ci

C1
(6.4)

Therefore, for BSi (i 6= 1), �i�
i
t =

Ci

C1
⇥ di

t

Ci

= di
C1

represents the factorised traffic load of
this BS with respect to the capacity of BS1 (the MC), and the original factorised sum
traffic load ⇤t at time step t before executing cell switching �t can then be defined as
(6.5). Note that ⇤t is based on the capacity of BS1 (the MC):

⇤t = �
1
t +

NSC+1X

i=2

�i�
i
t = �

1
t+1 +

NSC+1X

i=2

di

C1
(6.5)

Moreover, each BS’ traffic load after re-association and cell switching can be calculated
as follows, starting with BS1 (the MC):

�̂
1
t = �

1
t +

NSC+1X

i=2

[�it�i�
i
t � (1� �it)�i�

i
t], if �it 6= �

i
t�1 (6.6)

and for all SCs (for i � 2):

�̂
i
t =

(
0 + (1� �it)�it, if �it 6= �

i
t�1

�
i
t, else

(6.7)

where �it and �̂it are the traffic loads of BSi at time step t before and after the execution
of traffic re-association and cell switching.

Note that after the cell switching execution, BSi’s power consumption P
i
BS will also

change to P̂
i
BS upon �it changes to �̂it. Following Eq. (3.6), P̂ i

BS is hence calculated as:

P̂
i
BS = �

i
t(P

i
o +�

i
p�̂

i
tP

i
max) + (1� �it)P i

s (6.8)

The factorised sum traffic load after cell switching ⇤̂t of the HetNet unit is then defined
as (6.9). It is noteworthy that ⇤̂t  ⇤t as switching off SCs after the MC reaches its
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capacity (�̂1t = 1) will lead to sacrifices of the original traffic loads:

⇤̂t(�t) = �̂
1
t +

NSC+1X

i=2

�i�̂
i
t (6.9)

Denote P̂tot as the energy consumption of the HetNet unit after executing �t, the
optimisation objective is hence to choose an optimal �t for the HetNet unit to maximise
the energy efficiency for all t 2 T , i.e. to minimise P̂tot while maximising ⇤̂t (to maintain
⇤t as much as possible and thus preserve the original user QoS) in the HetNet unit.
Combining (6.1), (6.8), and (6.9) this optimisation can be formulated as follows, with
NSC independent variables ( �t 2 �t) and two constraints:

min
�t

P̂tot(�t) =
NSC+1X

i=1

P̂
i
BS =

NSC+1X

i=1

[�it(P
i
o +�

i
p�̂

i
tP

i
max) + (1� �it)P i

s ] (6.10a)

s.t. max
�t

⇤̂t(�t) = �̂
1
t +

NSC+1X

i=2

�i�̂
i
t, (6.10b)

⇤̂t  ⇤t, 0  �̂
i
t  1. (6.10c)

where Eq. (6.10a) defines the optimisation objective to minimise a HetNet unit’s power
consumption P̂tot(�t) given a switching decision �t at time step t. Eq. (6.10b) represents
the optimisation constraint which can be regarded as another objective of maximising
the system-wide traffic. Eq. (6.10c) defines the optimisation constraints where ⇤̂(�t) is
defined by (6.9), which is calculated as the sum of all factorised loads of local BSs with
respect to the MC’s capacity. �̂it denotes BSi’s load factor after switching, as defined
above.

Note that the optimisation constraint max�t
⇤̂(�t) has an upper bound of ⇤t which

is the original traffic load of the HetNet unit at every time step before executing cell
switching as discussed above. Moreover, the value of �̂it should be between 0 and 1 to
not exceed a BS’s capacity at each time step after switching following the definition
of �. As a result, Eq.(6.10b) is equivalent “to maintain the original traffic load after
cell-switching as much as possible” when combined with (6.10c).

Although the formulated cell switching optimisation problem appears to be relatively
simple, it is a min-max trade-off problem that needs to consider both the MC’s and
all SCs’ traffic loads within a HetNet unit, while also needing to take the power
consumption of different SC types into account (e.g. 4 SC types are considered in the
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experiments covered in this work as in Table. 6.1), which is not directly presented in
Eq. (6.10a). Therefore, the search space for an optimal cell switching decision is much
larger with a highly complex underlying scenario, especially for a large number of SCs.
As �t is a discrete set of binary values, the defined min-max optimisation is naturally
combinatorial, with 2NSc possible combinations for every time step t for a given HetNet
unit.

Such combinatorial optimisation can be considered as a variation of the Knapsack
problem, which is a well-known NP-hard [54, 265, 266]. The Knapsack problem
considers a set of Nobj indivisible objects with integer labels id = 1, 2, ..., Nobj. Each
object is associated with a real number value vi and a positive real number weight wi.
The goal of the problem is to select a subset of these objects to achieve a maximum
sum value while maintaining the total weight within W units, and the mathematical
formulation of the problem is expressed as “find oi, such that”:

max

NobjX

id=1

oid · vid, (6.11a)

s.t.
NobjX

id=1

oid · wid  W, (6.11b)

oid 2 {0, 1}, id = 1, 2, ..., Nobj. (6.11c)

where the objective function (6.11a) can be directly related to the cell switching
objective (6.10a) after transforming the minimisation in (6.10a) to a maximisation form
by treating BSs’ power consumptions as negative values, with the binary Knapsack
decision oid representing �i. As for the constraint, the ⇤̂t  ⇤t part of (6.10c) represents
the Knapsack constraint in (6.11c), while an additional maximisation is added in the
formulated cell switching problem, making the cell switching problem overall a variation
of the Knapsack problem.

6.3 Cell Switching via Graph Representation Learning

GNN models learn on data represented by the graph data structure. Formally, a graph
g = (Vg, Eg,Xg,Ag) is composed of a set of vertexes/nodes Vg and a set of edges/arcs Eg
connecting pairs of nodes [117]. When the node pairs in g are unordered, g is referred
to as an undirected graph, while ordered node pairs in g make it a directed graph. To
enrich the graph g, additional node and edge information can be included in Xg and
Ag respectively. Each node v 2 Vg is associated with a node feature xv 2 Xg, while an
edge (u, v) connecting a pair of nodes u, v (u 6= v) holds an edge attribute auv 2 Ag.
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A graph is a powerful data structure to model a set of objects (as nodes) and their
relationships (as edges).

Following the general GNN design pipeline [267], this section presents the GBCSS from
the following aspects: graph representation design, GNN computational model building,
and learning task confirmation with loss function design.
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Figure 6.3: The proposed graph representation process. (a) System model. (b) Graph
representation model. Note that superscripts are for indexing purposes to match the
notations in problem formation.

6.3.1 Graph Representation of a HetNet Unit

Omitting the wireless communication links, the network architecture described in Figure
6.2 can be expressed as the system model shown in Figure 6.3a, where SCs within
the MC’s coverage are connected to the MC through the backhaul. It is assumed
that backhaul connections are achieved by high-speed optical fibre whose capacity
satisfies all necessary data transmission and the backhaul’s own energy consumption
is omitted in the considered optimisation problem. For cell-switching, each BS (SCs
and the MC) contains the essential information regarding their current traffic load �

and instantaneous power consumption PBS, which is sent to the HetNet unit’s local
controller located at the MC. Additionally, the type of each SC (e.g. micro or pico)
should also be known by the local controller. For each time step, the local controller
decides the set of SCs to offload and switch off according to the received information,
and then the MC sends the corresponding control signals to the SCs.

The proposed graphical modelling of the system model in Figure 6.3a starts with
treating each BS in the HetNet unit as a node, with the BS’s traffic load � modelled
as the node feature xv, while the power consumption PBS of each BS is treated as the
edge attributes a1,v that connects the BS at node v and the MC at node 1. Figure
6.3b demonstrates the proposed graph representation model. The neighbour design
of this model is based on the system-level assumption that an SC sends its current
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load and power consumption data via the backhaul to the local controller deployed
at the MC for cell-switching decision-making. Note that the traffic loads and power
consumption of the MC should also be sent to the local controller, hence another edge
is added to the proposed graph design connecting the MC node to itself. Additionally,
edges in this graph representation model are designed to be directed from each SC
node to the MC node following the above information flow. For example, the edge
connecting node BS3 and node BS1 has the direction of BS3 ! BS1, and this directed
edge hence is denoted as (

������!
BS3, BS1). Directionality reflects that different BSs have

differing power consumptions based on the BS types and traffic loads. If an undirected
graph representation is used, an edge feature is then shared by its connected node
pair, which is not suitable to represent this differentiated power consumption and thus
the relationship between an SC and the MC. Therefore, the directionality also allows
distinct edge weights to be utilised by the graph convolutional operator introduced in
the following section. The node and edge sizes of the proposed graph representation
model are both identical to the total number of BSs within a HetNet unit (e.g. tens to
hundreds) and thus denoted as n.

This graph representation should be considered as a dynamic graph; after cell switching,
the state of all node and edge features change to x̂v and âu,v, following the change of �
to �̂ and the resultant PBS for all BSs calculated by Eq. (6.6), Eq. (6.7), and Eq. (3.6).
It should be noted that other graph representation designs may have differentiated
learning outcomes combined with different GNN models. However, investigating the
performance of different modelling designs is beyond the scope of this work.

6.3.2 GNN Computational Model for Cell-switching

The graph g serves as the underlying topology for a GNN backbone and is taken as the
GNN’s input. The GNN then learns and produces a state embedding for each node in
g, containing the node’s own information and its neighbourhood. Specifically, the GNN
processes the set of node features Xg through a sequence of L hidden ANN layers. At
each layer l 2 {1, ..., L}, the feature vector xv of each node v 2 Vg is updated as:

x
l
v = µlhxl�1

v , {xl�1
u , eu,v}i (6.12)

where µlh·i is a parametric combination function (operator) with learnable parameters
that are updated by the objective (loss) function’s gradients through the ANNs’ back-
propagation. The variable u 2 Vg, u 6= v is a neighbouring node of v within g, such that
u and v are connected by edge (�!u, v), and eu,v 2 Ag is the attribute of edge (�!u, v). When
l = 1, xl�1

v = x
0
v, which denotes the original node features Xg. After all L layers, the

resulting output feature x
L
v is the node embedding of the original graph g. This work
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utilises the local extremum operator (LEConv) proposed in [268] for µl, which finds the
importance of nodes with respect to their neighbours using the difference operator, and
thus benefits from the distinct edge weight of directed edges. The combining function
in Eq. (6.12) for LEConv is expressed as:

x
l
v =  lh⇥l�1

1 x
l�1
v +

X

(�!u,v)2Eg

eu,v(⇥
l�1
2 x

l�1
v �⇥l�1

3 x
l�1
u )i (6.13)

where  lh·i represent the activation function of layer l, which is a configurable hyper-
parameter providing nonlinearity, while ⇥l

i (i 2 {1, 2, 3}) denote different learnable
parameters.

The main objective of cell-switching is to find the optimal strategy �t at every time
step to determine the best set of SCs to switch on or off to increase energy efficiency.
Therefore, the node features after node embedding will be passed through a final output
layer with another parametric function that maps xL

v to binary values �v 2 {0, 1}, while
this function needs to be continuous to calculate gradients for GNN’s backpropagation.
The solution is to first have a function  h·i that maps x

L
v to the continuous values

ranging between [0, 1] to provide the final output of the GNN, followed by another
function mapping such continuous GNN output values to binary ones. In practice,  h·i
can be implemented using another NN layer whose activation function has an output
range of [0, 1], and hence is another configurable hyper-parameter of the computation
model for the GBCSS. The value discretization can be achieved by the indicator function
I[0.5,1]h·i that near-evenly maps the continuous values from [0, 1] to binary values {0, 1}.

6.3.3 Complexity

As the problem given in (6.10a) is an NP-hard problem, it does not have a deterministic
polynomial-time solution. However, since it is a combinatorial optimisation, its optimal
solution can be found with an exhaustive search algorithm that iterates through every
possible option in the search space. Therefore, it is computationally demanding, and
since in the cell switching problem, every SC has two possible states (ON and OFF),
the total number of state combinations is 2NSC which is the steps required for the
exhaustive search to find the optimal ON/OFF switching combination.

In contrast, the presented graph representation modelling and GNN computation model
aim to reduce the overall computational complexity. With both graph representation
and GNN computation model introduced in previous sections, the forward inference of
the GBCSS procedure is summarised in Algorithm 6.1, which is a high-level abstraction
of the actual implementation using previously introduced notations to mainly help
analyse the algorithm’s complexity.
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Algorithm 6.1: Feed-forward inference for the proposed GBCSS at time step t

initialize :GNN of l 2 {1, ..., L} graph convolutional layers and 1 linear layer with
weight Wl and bias bl

input : Ptot = {P 1
BS, P

2
BS, ..., P

NSC+1
BS }, ⇤t = {�1t ,�2t , ...,�

NSC+1
t }, NSC

output :�t = {�1t , �2t , ...�
NSC+1
t }

1 (Vg, Eg,Xg,Ag) = CreateGraphData(PHetNet, ⇤HetNet, NSC) ;
2 for l  1 to L do
3 for v 2 Vg do

// for every node feature xv 2 Xg do graph convolution as
(6.13)

4 x
l
v   lh⇥l�1

1 x
l�1
v +

P
(�!u,v)2Eg eu,v(⇥

l�1
2 x

l�1
v �⇥l�1

3 x
l�1
u )i ;

5 end
6 end
7 Yg   hW T

l Xg + bli // W
T
l here stands for the transpose of a Wl

8 �t  I[0.5,1]hYgi

Step 1 of the algorithm denotes the graph data creation according to the graph repre-
sentation design, which can be treated as a linear function that maps the input Ptot

and ⇤t to graph-structured data, hence its overall operation steps grow linearly to
NSC . Steps 2 to 8 mimic the computational flow of the GNN computation model and
step 9 represents the value discretisation introduced in the above section. Step 2 to
7 represents the graph embedding using the LEConv convolution operator and has in
total L⇥ (NSC +1) operations. Step 8 indicates the linear output layer which essentially
performs a linear transformation before passing to the activation function  h·i, while
step 9 simply passes the output of step 8 to the indicator function I[0.5,1]h·i to produce
binary output �t. Both activation functions apply to the input element-wise so their
total number operations grow linearly to NSC .

Define N = NSC + 1 being the total number of BSs in a HetNet unit and thus the
number of nodes in the graph representation. The complexity of the exhaustive search
is then O(2N�1) according to the above discussion. In comparison, most operations
occur during steps 2 to 7 for the GBCSS which is L⇥ n, with other operations being
linear. Moreover, the number of neurons for all ANN layers will also impact the overall
number of operations. However, L will be a constant for a defined GNN model, and
each ANN layer’s number of neurons will also be a constant upon definition. Therefore,
GBCSS’ complexity is bound to O(N), which is linear to the total number of BSs in
a HetNet unit as introduced in the graph representation. Therefore, this complexity
will not lead to a large computational burden compared to the exhaustive search with
O(2N) that grows exponentially with respect to the total BS number.
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6.3.4 Training and Loss Function Design

The parameters of the GNN computation model can be trained in either supervised or
unsupervised learning manner [136]. For the supervised learning approach, it is essential
to obtain high-quality labelled samples indicating the optimal cell-switching decisions
for each input graph g. However, ES that always generates the optimal solutions has the
complexity of O(2N), and hence it is impractical to generate a dataset with sufficient
optimal cell-switching samples as the node size increases (e.g. above approximately
20 nodes). In contrast, other methods cannot always guarantee to produce optimal
cell-switching decisions for labelled samples, which may hinder the overall learning
performances.

Therefore, this research proposed an unsupervised learning approach to train the
proposed GBCSS. Assuming a batch of Batch unlabelled samples of a HetNet unit’s
graph representation g. The designed loss function L is given by

L = � 1

Batch

BatchX

i=1

⇣j,g (6.14)

where ⇣i,g(·) is the objective function for the j-th sample of graph g in the data batch. L
aims to directly tune the GNN model to optimise the objective functions in Eq. (6.10a)
and Eq. (6.10c). Derived from the calculation of Ptot(�)

⇤(�) , ⇣j,g indicates the system-wise
power consumption per unit traffic load for the graph representation after cell-switching,
following the cell-switching decisions from the GNN outputs. The calculation of ⇣i,g is
given by:

⇣i,g( hxL
v i) =

X

v2Vg

x̂v

âv,1
(6.15)

where ⇣j,g( hxL
v i) denotes the loss ⇣j,g following the cell switching decision represented by

the GNN output  hxL
v i; x̂v and âv,1 are the node and edge features after cell-switching,

following the calculation of Ptot, �̂ and ⇤, as described in the problem formation and
graph representation. Note that âv,1 is used instead of a general notation âv,u since all
edges are defined to connect an SC node to the MC node at index 1, according to the
proposed graph representation. The system requires that the MC should always be
switched on is also learned by the GNN, as the magnitude of L will become very large
when the output label of the MC node is OFF, due to a substantial decrease of ⇤.

In this section, a graph representation model and a cell switching scheme were proposed.
The design focuses on the BS side (the power consumption and traffic load), which
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is independent of the actual communication types from the UE side. As a result, the
proposed GBCSS can be applied to both V2N, general cellular networks, or a mixture
of communication scenarios as long as cellular BSs are being considered sleep model
decision-making and the ANN models being trained with corresponding datasets.

6.4 Evaluation Configurations

The experiments use the EARTH power consumption model [45] and compare the
performance of GBCSS with other cell switching benchmarks under various metrics.
The power consumption characteristics for each type of BSs are summarised in Table
6.1. For a real-world CDSA HetNet cell-switching scenario, it is natural to consider a
set of BSs at fixed geographic locations that experience traffic variances at different
time steps of a day and across different days, which is an essential assumption for the
experimental configurations in this work.

For the deployment of GBCSS, it is assumed that the algorithm is implemented at the
local controller located at the MC for every HetNet unit in a locally centralised manner,
along with all other benchmarking algorithms. At each time step t, all SCs in operation
send their factorised traffic load and power consumption measurement to the MC via
the backhaul for cell switching measurement, while that of the MC will be directly
available at the controller due to where it is deployed. For sleeping SCs, the traffic
load will naturally be 0, and the power consumption will be the sleeping power for
their corresponding BS types, which is known at the MC upon initial deployment. The
“measurement” from sleeping SCs can be filled by the MC after receiving all operating
SCs’ measurements. Note that this work focuses on algorithmic design and evaluation,
and thus more detailed real-world deployment setup is beyond the scope of this work.
An ultra-dense HetHet may comprise many HetNet units, each consisting of one MC
and various numbers of SCs, therefore the obtained results may also be utilised to infer
other HetNet units’ performances pattern in the network.

The experiments have been implemented via Python 3.9 using scientific and data analysis
libraries Numpy [252], Scipy [269], and Pandas [270], with related result visualisations
generated via Matplotlib [253].

Table 6.1: Power profiles for each type of BSs according to [45].

BS Type Power consumption (W)
�pOperational Po Transmit (max) Pmax Sleep Ps

Macro 130 20 75 4.7
RRH 84 20 56 2.8
Micro 56 6.3 39 2.6
Pico 6.8 0.13 4.3 4.0

Femto 4.8 0.05 2.9 8.0
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6.4.1 Dataset and Experimental Setups

6.4.1.1 The original dataset

When calculating power consumption using Eq. (3.6), it is important to obtain the
traffic load � for every BS, and it is also important to evaluate BS-based algorithms using
standardised datasets and/or simulation environments [36]. Both aspects considered,
an established multi-source dataset [264] is chosen for the performance evaluation, in
which the city of Milan is divided into 10,000 square-shaped grids of 235 m ⇥ 235 m.
The grid indices are calculated as IDgird = (x+ 1) + 100 · y, where x, y 2 [0, 99] are for
indexing purposes only, which is shown in Figure 6.4.
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Figure 6.4: The grid representation of the Milan dataset.

In particular, the telecommunication dataset of Milan city based on real-world CDR
data provided by Telecom Italia is used for the evaluation experiments [271]. The
dataset contains phone calls, text messages, and Internet activities between a user and
a BS, which are spatially aggregated into each grid according to the spatial intersections
among the grid and nearby BSs’ coverage. Additionally, the CDR data was recorded in
a 10-minute resolution for a two-month period from November 1st, 2013 to January 1st,
2014. Therefore, the original dataset contains 8 types of features: the grid ID, country
code, timestamp (representing date and time), in/out Short Message Service (SMS)
activities, in/out call activities, and Internet activities. In total, the dataset contains
62 days’ data with 144 time steps per day for 10,000 grids, resulting in 8928 entries of
{Grid ID, datetime, countrycode, in-SMS, out-SMS, in-call, out-call, Internet}. The
names in each data entry stand for the grid index, time interval, phone country code,
received SMS, sent SMS, incoming call, outgoing call, and Internet traffic of users.
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Although the dataset consists of unitless values (due to undisclosed reasons in the
original publication while potentially commercial confidentiality and user privacy) for
each type of activity, while no information is provided to reverse the spatial aggregation,
these activity levels represent the volume of user-network interaction at each time
step and can hence be utilised to calculate and compare traffic loads between grids.
Note that since the thesis considers vehicular networks, a dataset that comprises V2N
traffic should be considered to better evaluated the performance with vehicular network
features. However, due to pragmatic reasons, the chosen dataset may be the most
suitable open-source dataset that is also created out of real-world data. Moreover, since
the original dataset is composed of various CDR data, it can also be assumed that the
original dataset contains traffic generated by passengers using a cell phone on a car or
bus, which is similar to V2N regarding aspects such as service types and user mobility.
Overall, the insights generated by this evaluation can also be applied to V2N scenarios.

6.4.1.2 Dataset pre-processing and scenario setups

To evaluate the scalability of GBCSS, the experiments consider a scenario of a HetNet
unit located in the city centre area, with different numbers of SCs Nsc 2 {4, 8, 12, ..., 32}
with BS types assigned uniformly. In the data pre-processing phase of the evaluation
process, CDR values of all activity types are first combined into the sum CDR activity
data for each grid in the Milan dataset as the cell switching problem considers BSs’
overall traffic loads. This operation fuses the original feature set {in-SMS, out-SMS,
in-call, out-call, Internet} to a new feature type sum-load for each time step per grid,
which is demonstrated in Figure 6.5. Note that two assumptions have been made to
support this pre-processing:

• Unavailable data (marked as “nan”s) is assumed to have a value zero (suggesting
not related traffic activity) in order to combine all types of traffic.

• As the original dataset only provides unitless values, all 4 types of data traffic are
assumed to have the same unit and the summation of these traffics is treated as
the traffic load on a BS.

After the above steps comes a grid selection phase. The 10,000 grids in the Milan
dataset cover both urban and suburban areas containing markedly different behavioural
signatures regarding traffic variation trends, as shown in Figure 7 in the original work
[264] of the Milan dataset. Therefore, choosing grids within the full grid list may violate
the above scenario assumptions. Therefore, this work focuses on grids around the city
centre of Milan (Grid 5060 with x = 59 and y = 50, representing the area around the
Duomo di Milano cathedral, and prominent city square region) as defined in the original
article [264]. Grids of x± 4, y ± 4 from Grid 5060 have been chosen, forming an area
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Replace all "nan"s with zeros 

Remove the "countrycode" column  
& 

Sum traffic of all country codes

Sum traffic of all types

Figure 6.5: The pre-processing workflow of Milan Telecommunications Dataset for
performance evaluation. The top is part of the original dataset while the bottom is the
pre-processed version of it used in the evaluation. nan: Not A Number, suggesting
data unavailable in the original dataset.
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of 2115 m ⇥ 2115 m that contains 81 grids within the same geographic regions of the
Milan city centre. This also suggests that SC offloading is feasible in this area within
the coverage of the MC, which is a cornerstone for cell-switching operations.

By non-repetitive random selections, 12 dates were chosen from the business days within
the two-month period in the Milan dataset for all Nsc cases, and data for 8 of these
days were used to form a training dataset [272], while the other 4 days’ data were
utilised to form a validation dataset [272]. Additionally, two dates have been initially
preserved before the above random selections, forming a test dataset [272] that is not
used in the training process. Consisting of data from one workday (Nov. 15th, 2013)
and one holiday (Jan. 1th, 2014), the test dataset is used for one-day performance
evaluation emulating online execution after the algorithm’s deployment to test the
proposed GBCSS’ generalisation ability. As a result, for the processed dataset after
grid assignment, the feature set at the time step t is {�1t ,�2t , ...,�

NSC+1
t } of size NSC +1.

The training set contains 1152 entries while the validation and test sets consist of 576
and 288 entries, respectively.

As for the grid assignment, the MC was always assigned with Grid 5060’s activities in
each Nsc case, while one grid for each SC was then selected non-repetitively within the
defined region. Only one round of grid selections was carried out for every Nsc case
(i.e. data samples in the generated datasets were from the same set of grids for each
Nsc 2 {4, 8, 12, ...32} case). A fixed random seed is used for all Nsc cases to provide
consistent and reproducible results. After grid assignment, a BS will experience the
traffic variation following that of the assigned grid when no cell switching is applied.
For readers interested in the temporal and geographical aspects of traffic variations
that lead to the above pre-processing design, Figure 5 and 7 in the original work [264]
has provided the related information over a week’s time period.

Finally, a sum traffic normalisation phase is executed to produce factorised values that
represent � of BSs. The CDR normalisation scale is determined by � for each type of
BSs, after which the sum_load feature of a grid becomes �tn, 1  n  NSc + 1 while
preserving the traffic variation pattern. This calculation is expressed as follows:

�
t
n =

load
t
n

max( ¯load)
· �n (6.16)

where t and n denote the time step and BS identifier (BSn), respectively. ¯load represents
the set of sum_load values of all selected grids while load

t
n stands for BSn’s traffic at

time t, and �n is the relative capacity between BSn and BS1 (the MC) as defined in
(6.4).
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With all experiment setups introduced, the corresponding experimental parameters are
summarised in Table 6.2. All BSs are assumed to have the same maximum capacity
in terms of radio resources (bandwidth and resource blocks) to simplify the traffic
load normalisation during the data pre-processing, and the calculations in Eq. (6.10c)
and Eq. (6.19). This is due to the focus of this research being whether the original
traffic load is preserved for each cell-switching scheme according to the introduced
performance metrics, following the optimisation constraint defined by Eq. (6.10c).
Moreover, setting different capacities for each BS type only influences � and thus some
numerical results for ⇤ and Ptot after offloading, while such differences do not influence
how a cell switching strategy is formulated.

Table 6.2: Experimental configurations.
Parameters Values

Number of time steps per day 144
Number of grids considered for each BS 1

Number of days
Training set 8

Validation set 4

Test set 2
(1 workday & 1 holiday)

Bandwidth; number of resource blocks for BSs 20 MHz, 100

6.4.2 GNN Setups

For the experiments, the dataset goes through the graph representation process and
the normalised load factors become the node features (Xg) and the calculated power
consumption for all nodes becomes the edge features A}.

Some configurable hyper-parameters are mentioned. For the evaluation, L = 3 hidden
layers for node embedding in the GNN computation model are configured, with the
neuron size or 128, 128 and 64. The activation function µh·i is set to the Rectified
Linear Unit (ReLU) [273] for all 3 hidden layers. For the output layer setup and binary
value translation,  h·i is configured as:

 hxL
v i = �hW T

x
L
v + bi (6.17)

where Wl and bl represent learnable parameters (weights and biases) of a linear trans-
formation, T denotes the matrix transpose, and �h·i is the sigmoid activation function
[274]. This makes the GNN output continuous values between [0, 1], which can then be
used to provide binary via �v = I[0.5,1]h hW T

l x
L
v + blii as previously discussed.

For other GNN configurations, the batch size is set to 64, and each GNN model (one
for each Nsc instance) is trained for a maximum epoch of 200 in the experiments.
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The learning rate (LR) is initially set to 10�3, with a dynamic LR scheduler [275]
configured which reduces the LR by a factor of 2 if no improvement has been made to
the loss defined in Eq. (6.15) for the past 10 epochs. The optimisation algorithm is
set to the “Adam with decoupled weight decay" (AdamW) optimiser [228]. The above
GNN configurations are summarised in Table 6.3. The GNN model and other deep
learning-related implementations are fulfilled by Pytorch [204] and Pytorch Geometric
[276].

Table 6.3: GNN configurations
Hyperparameters Values

Number of hidden layers; Neuron size 3; 128 ⇥ 128 ⇥ 64
Hidden layer activation function ReLU [273]
Output layer activation function Sigmoid [274]

optimiser AdamW [228]
Learning rate (LR) 10�3

LR scheduler Reduce LR on Plateau [275]
Batch size 64

Maximum number of epochs 200

6.4.3 Benchmarks

Benchmarks are necessary to compare the performance of the proposed GBCSS, and the
comparison basis was selected following this rationale: 1. The optimal solution (where
applicable) maximising energy saving while preserving all original traffic, which stands
as the performance upper bound. 2. The bottom line of the performance benchmark is
without any cell switching strategy, such that all BSs’ traffic and thus user QoS are
preserved while sacrificing the energy efficiency optimisation. 3. Another sub-optimal
cell switching solution whose performance can be directly compared with GBCSS in
terms of the performance metrics defined in the next section. As a result, three different
methods are used for benchmarking, introduced as follows:

• Exhaustive search (ES): This method iterates through all possible combinations
of binary switching options consisting of the on/off states for all SCs. It also
considers the available radio resources at the MC for offloading such that the
maximum traffic demand that the network can serve is not exceeded during
power consumption optimisation. Therefore, this method checks all possible SC
combinations to switch off, and guarantees to produce the optimal cell-switching
policy that minimises the total power consumption of the network while preserving
the user QoS in the network.

• Linear function approximation-based SARSA (FA): This is a state-of-the-
art RL-based cell-switching scheme proposed by Ozturk et al. [54]. FA defines
every time step t as an episode, and uses a feature vector {Ptot,�

1
t �

2
t , ...,�

NSC+1
t }

containing all BSs’ load factors and system-wise power consumption to train
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a parameter set ✓ that represents the optimal cell switching policy via linear
function approximation. For interested readers, more detailed design of the FA
algorithm can be found in the original work.

• All-on: This approach implements a scheme with no off-loading and cell-switching,
and hence all BSs are always left ON. This method ensures the user QoS within a
HetNet unit, but no energy saving can be achieved since no SCs will be switched
off. It is used as the baseline of optimal throughput with respect to the power
consumption bottom line.

6.4.4 Performance Metrics

This subsection introduces the metrics used to evaluate the performance of GBCSS
compared with the selected benchmarks. As all metrics are based on the dataset, they
are chosen as:

• Power consumption Ptot: This is the HetNet unit’s instantaneous power con-
sumption during a day defined in Eq. (6.1) for each method calculated based on
Eq. (3.6). Measured in Watts (W), this metric evaluates the performance of each
solution as it reflects the variations in network power consumption in different
time steps of the day.

• Total energy saved Esaving: The total energy saved is another straightforward
yet essential metric to assess the performance of GBCSS. Compared to the All-on
method, which does not consider energy-saving, it is calculated as Esaving =

EM � EON , where EON and EM are the total energy consumption with All-on
method and with one of the cell-switching solutions: exhaustive search, the FA-
based solution and GBCSS, such that EM 2 {EGNN , EES, EFA}. The calculation
of daily total energy consumption E for each method following the dataset time
steps as follows:

E =
NslotsX

t=1

P
t
tot ⇥ 60⇥ 10 (6.18)

where P
t
tot is the power consumption (W) of the HetNet unit at time step t. As

t is presented in 10-minute resolution in the Milan dataset, one day (24 hours)
leads to Nslots = 144. Additionally, since the evaluation process may include
multiple-day samples, the average values among different day samples are further
calculated to represent E in such cases.
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• Normalised network traffic load ⇤%: This metric is the HetNet unit’s sum
traffic load after offloading normalised by that before offloading. As the All-on
method does not implement any offloading and cell-switching schemes, thus can
always preserve the original traffic loads. This metric can hence be calculated as
⇤% = ⇤M

⇤ON

, where ⇤M 2 {⇤GNN ,⇤ES,⇤FA} is the sum traffic load after offloading
using the covered solutions and ⇤ON is the sum traffic load using the All-on
method. Following Eq. (6.3) - Eq. (6.4) and Eq. (6.10c), the sum traffic load of
one day (24 hours) using any of the covered solutions is calculated as:

⇤ =
NslotsX

t=1

(�̂1t +
NSC+1X

i=2

�i�̂
i
t) (6.19)

where Nslots = 144 in the Milan dataset for 10-minute time steps.

• Normalised energy efficiency ⌘%: This is the daily energy efficiency of the
HetNet unit implemented cell-switching solutions, normalised by that without
cell-switching (i.e. All-on). Similar to that of ⇤%, this relative energy efficiency is
calculated as ⌘% = ⌘M

⌘ON

, where ⌘M 2 {⌘GNN , ⌘ES, ⌘FA} is the energy efficiency of
the HetNet unit using the corresponding cell switching solution while ⌘ON is that
without cell switching. The energy efficiency ⌘ using any of the covered solutions
is calculated as:

⌘ =
⇤

E
(6.20)

6.5 Results and Discussions

Following the evaluation setups, this section covers the experimental result analysis
for the proposed GBCSS, compared with other benchmarks. Qualitative discussions
regarding GBCSS with some state-of-the-art solutions are also included in this section.

For learning-based solutions (GNN and FA), an offline training stage was first carried
out. The trained GNN and FA’s policy were then exported to produce statistical results
(i.e. metrics Esaving and ⇤% with respect to Nsc) using the validation dataset. Finally,
the two-day samples in the test dataset are used to emulate the online deployment for
cell-switching execution that provides results for Ptot throughout the day (24 hours).
Unless otherwise stated, the results for each Nsc case are generated using the GNN
trained with the dataset generated for that case. Note that during the online execution
phase, it is possible to update the learning models using the latest collected data to
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further improve the models’ performances. However, such online model updating is
beyond the scope of this work.

Before presenting the results regarding each metric, it is also important to analyse the
convergence behaviours of the GNN training. Using the configured GNN setups, the
loss function value defined in Eq. (6.15) was collected during the training stage. For all
considered Nsc, the GNN model managed to converge within the first 20 epochs for 7
out of 8 Nsc cases, with the minimum epochs for convergence being 5, and the maximum
epochs around 55. As the loss records for all 8 Nsc cases cannot be summarised clearly
in a graphical manner, the essential information has been presented above.

6.5.1 Statistical Results from Validation Set

Figure 6.6 shows the results of metrics Esaving, ⇤%, and ⌘% with respect to Nsc. The
average values using the 4-day samples in the validation dataset are calculated for
the metrics. It is noteworthy that the ES algorithm has only been executed for
Nsc 2 {4, 8, 12, 16} due to the time consumption burden as the algorithm is highly
computationally demanding with a complexity of O(2N). This means that the processing
time for the ES algorithm doubles for every unit Nsc increment. In contrast, GBCSS
learns to find a sub-optimal solution that approximates the optimality as much as
possible while maintaining a much lower computational complexity of O(N).

The metric Esaving is the optimisation objective for cell switching solutions according to
the problem definition in Eq. (6.10a), and is an essential metric to consider. It can be
seen in Figure 6.6a that the daily total energy saved increases when Nsc is raised for all
cell-switching methods, based on the fact that deploying more SCs leads to increased
power consumption, while creating more possibilities for offloading and cell switching
when the MC has sufficient resource to take over and hence larger energy saving.

For Nsc 2 {4, 8, 12, 16}, the saved energy using the ES algorithm is the highest among
the considered solutions and can be expected to remain so for larger Nsc values if
ES was to be executed. For GBCSS, the energy saved is lower than that of ES. For
Nsc 2 {4, 8, 12, 16}, the GBCSS achieves 53.97%, 63.04%, 66.82%, and 60.08% of
ES’ Esaving performance, resulting in a 62% Esaving performance for the 4 Nsc cases.
Moreover, the GNN is able to further increase the Esaving for a large number of deployed
SCs as the slope of the Esaving curve has clearly increased for Nsc 2 {24, 28, 32}. A
detailed discussion regarding this aspect is covered in the one-day performance analysis
with more supporting results.

Interestingly, the Esaving using the FA benchmark is clearly larger than that of GBCSS
for most considered Nsc cases except for Nsc = 8 and 12, in which both solutions result
in similar Esaving. GBCSS can achieve a maximum of 103.61% and a minimum of
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(a)

(b)

(c)
Figure 6.6: Statistical results from the validation set for different Nsc (a) Total energy
saved Esaving. (b) Relative traffic load ⇤%. (c) Normalised energy efficiency ⌘%. ES is not
executed for Nsc > 16 due to huge time consumption. ES has the highest ⌘% (theoretical
upper bound) since it achieves the highest energy saving while sacrificing no original
traffic; The FA benchmark has the second highest energy saving but compromises too
much traffic with the increment of SC number and thus has a declining ⌘%. GBCSS
has a moderate energy saving in comparison but has almost no data traffic comprise
and hence has a satisfactory ⌘%.
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62.28% Esaving performances compared with using the FA, with an average of 86.60%
Esaving performance compared with using the FA for all Nsc cases. This suggests that
the FA benchmark outperforms GBCSS in raw energy saving.

However, it is equally important to also consider the metric ⇤%, which indicates how
much of the original traffic load without cell switching (i.e. All-on) can be preserved
using different cell-switching solutions and represents the optimisation constraint defined
in Eq. (6.10c). According to its definition, the maximum value for ⇤% is 100%, which
means that all original traffic load is preserved after cell switching execution.

Figure 6.6b shows this metric with a reference red dashed line of the All-on method
stands for the upper bound. It can be seen in the figure that ES has ⇤% = 100%

for Nsc 2 {4, 8, 12, 16}, and is reasonable to assume this trend will be consistent for
other Nsc cases. In comparison, using the proposed GBCSS results in an average ⇤%

of 99.63% for all 8 Nsc cases, with a maximum of 99.88% and minimum of 99.31%.
This suggests that the GNN learns to preserve the user QoS as much as possible when
reducing the HetNet unit’s energy consumption.

In contrast, it can be seen that the ⇤% using FA decreases from 99.77% for Nsc = 4 to
78.30% for Nsc = 32. This means that compared to GBCSS, the extra energy saved
when using the FA benchmark as shown in Figure 6.6a will cost 21% of the original
traffic load and hence the user QoS in the worst case. The reason is that using the
offline trained FA algorithm for online decision-making leads to much more frequent
decision-making that causes the MC to overload and thus user QoS downgrade, as only
the MC can take over the traffic load of an SC according to the problem formation.

Considering both energy consumption and traffic loads, Figure 6.6c shows the normalised
daily energy efficiency ⌘% for the considered cell switching solutions with respect to
All-on. It is clear that ⌘% of using the ES algorithm is the highest and achieves an
average ⌘% of 13.74% among the Nsc cases, with a maximum energy efficiency gain of
16.25% compared to that of All-on, while ⌘% using the FA solution drops continuously
and becomes even lower than that of All-on due to a large proportion of original
traffic load being sacrificed to achieve higher power saving. In comparison, GBCSS
achieves an average and maximum ⌘% of 8.50% and 10.41% respectively compared to
All-on. The trend of ⌘% using GBCSS is similar to that of ES based on the results for
Nsc 2 {4, 8, 12, 16} according to Figure 6.6c, while overall the energy efficiency gain
using the GNN is about 62% for these Nsc cases. Moreover, assuming the average ⌘%
(13.74%) using the ES is preserved for Nscin{20, 24, 28, 36}, the GNN can achieve a
maximum 75.76% of ES’ performance regarding energy efficiency gain.

Nevertheless, the FA benchmark still outperforms the proposed GBCSS when Nsc = 4
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with FA’s ⌘% being around 2.5% larger as in Figure 6.6c. A potential reason is that
the GNN is not able to further approximate the optimal solution when the gradient
calculated via the loss function Eq. (6.15) becomes too small, as learning to always
switch on the MC leads to a large L improvement when training the GBCSS. In
comparison, the FA benchmark avoids such situations as the action for the MC has
been predefined to be always ON. However, the relative underperformance of GNN, in
this case, can be regarded as insignificant as the overall energy saved in this case is low
due to only 4 SCs being deployed.

6.5.2 Test Set Performance Results

The results generated with the test dataset for one-day power consumption using each
solution are presented for 3 Nsc cases (i.e. Nsc 2 {4, 12, 32}) that represent scenarios of
a small, medium and a large number of deployed SCs within the considered Nsc cases.
The results of the node size generalisation test for the GNN are also covered in this
section.

6.5.2.1 Performance comparison on workday samples

Figure 6.7 shows the power consumption per time step using GBCSS and other bench-
marks throughout a workday (from 00:00 a.m. to 11:59 p.m.) for the three Nsc cases.
Due to the same computational complexity reason as for statistical results analysis, the
ES algorithm is not executed to generate results for Nsc = 32.

According to Eq. (3.6) and Eq. (6.2), the power consumption calculation is a linear
transformation of � when no BS is put into sleep. Therefore, a HetNet unit’s traffic
load trend throughout a day can be inferred by the power consumption trend of the
All-on method. It can be seen in Figure 6.7 that the HetNet unit’s power consumption
is relatively low before dawn with only a small number of active users, while the traffic
load starts to rise around 8 a.m. and peaks before midday, leading to an increased
power consumption period with less potential for power saving. Later, the traffic load
start to decline more significantly in the late afternoon (4 p.m.), leading to another
period for energy efficiency optimisation using cell switching.

As shown in Figure 6.7a, all 3 cell-switching solutions are able to significantly reduce the
power consumption from 0 a.m. to 8 a.m. During this period, the power consumption
using GBCSS highly mirrors the behaviour of the ES algorithm. During the high-traffic
hours, GBCSS turns to follow the strategy of All-on, which is a suboptimal strategy
for this time period. From 4 p.m. until midnight, the GNN also learns to reduce the
HetNet unit’s power consumption, but the performance is not as significant as it does
in the time period before dawn compared to the optimal results computed via ES. In
contrast, the FA benchmark also mirrors the behaviour of ES over the day and overall
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(a) Nsc = 4

(b) Nsc = 12

(c) Nsc = 32

Figure 6.7: One-day performance results for the workday sample (Nov. 15th, 2013) in
the test set with respect to power consumption for different Nsc.
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outperforms GBCSS, especially after 4 p.m. Moreover, during the busy hours between
9 a.m. and 4 p.m., it can be seen that for some time steps, the power consumption of
using the FA benchmark becomes less than that of using ES. Because ES produces the
optimal cell switching decisions for power saving while maintaining the original traffic
loads in the HetNet unit, it can be inferred that FA’s further power-saving comes from
sacrificing the user QoS.

For the Nsc = 12 case in Figure 6.7b, the behaviour of the ES algorithm remains
the same as in the Nsc = 4 case, while a larger gap can be found compared with
the power consumption of All-on, suggesting a larger potential for energy efficiency
optimisation. Similarly, GBCSS also demonstrates comparable results consistent to
those in Figure 6.7a, with the performance after 4 p.m. also improved compared to
that in the Nsc = 4 case. However, the results of the FA benchmark start to have
more significant fluctuations in Figure 6.7b, with obviously lower power consumption
compared with using the ES during busy hours. Combined with the results in Figure
6.6b, this means that the FA benchmark starts to output more decisions that cause
user QoS sacrifices.

As for the Nsc = 32 case in Figure 6.8c, the fluctuation in the results of the FA
benchmark has even worsened with the number of decisions sacrificing the user QoS
further rises. An obvious explanation for this trend is that the FA benchmark utilises
the linear function approximation technique to represent the value function, which
may not have enough expressiveness for scenarios with higher complexity. In contrast,
GBCSS shows much more stable results that are consistent with those for Nsc = 4

and 12. Moreover, GBCSS also starts to switch off SCs during busy hours, and the
power consumption during this period becomes smaller than that of All-on for Nsc = 32

according to Figure 6.7c. This is much more similar to the strategy that ES produces
based on results in Figure 6.7a and Figure 6.7b. As discussed in the above section,
the main reason for it can be that the loss function cannot be significantly optimised
when Nsc is small, following the calculation in Eq. (6.15). Moreover, cell switching
during a time period with intensive traffic mainly results in marginal power consumption
improvement for small Nsc, as shown by the results using the ES algorithm. In contrast,
a larger Nsc leads to more potential for a significant loss reduction during busy hours.
This can be regarded as an advantage to exploit because the envisioned ultra-dense
HetNet development beyond 5G will result in significantly large numbers of SCs to be
deployed, where the GNN may find great potential in approximating the optimal cell
switching decision. All the results presented in this section so far correspond to the
discoveries in Figure 6.6.

Additionally, it can be seen in Figure 6.7 that sometimes using GBCSS and the FA
benchmark results in more power consumption than using the All-on method during
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the busy hours for Nsc = 4 and 8. This raises another question as it is counter-intuitive
to have such observations that switching off some BSs causes more power consumption
than always keeping all the SCs on. However, considering Eq. (3.6) together with
the parameters in Table 6.1, it is possible for certain cell switching decisions to cause
an overall larger power consumption by offloading to the MC. For example, switching
off a half-loaded Femto BS results in a 2.1W power consumption reduction under
the experiment configuration, but the MC taking over the offloaded traffic (assuming
sufficient resources) will have its power consumption raised by 47W, which leads to a
-44.9 W power consumption gain. A formal mathematical proof can be found in [54]
that uses the same power model and BS power profiles.

In summary, the proposed GBCSS is able to closely approximate the optimal cell
switching decisions computed by the ES algorithm when the total traffic load on the
HetNet unit is low while tending to generate suboptimal strategies during the time
period with intensive traffic. Nevertheless, such suboptimal strategy during busy hours
can be improved when Nsc becomes larger (Figure 6.7c) when the GNN starts to mirror
the behaviours of ES as in Figure 6.7a and 6.7b. The one-day performance evaluation on
a workday produces results that closely correspond to the statistical results generated
from the validation dataset.

6.5.2.2 Performance Comparison on Holiday Samples

Under the same setup, Figure 6.8 shows the power consumption using different cell
switching solutions on the New Year’s Day holiday (2014/01/01). The trending in the
figures corresponds with the event of people celebrating New Year’s Eve, leading to a
large number of active users and hence high power consumption throughout the early
hours after midnight. In comparison, the overall power consumption during daytime is
more stable compared with that during the workday sample in Figure 6.7.

Furthermore, it is clear that using cell-switching solutions results in significant power
savings during the daytime. This is similar to the two power-saving time periods in
Figure 6.7, suggesting that during such a holiday, mobile service requests during normal
busy hours are not as intensive compared to that in a workday. Moreover, in Figure
6.8a, the power consumption using both GNN and FA is nearly identical to the optimal
results using the ES benchmark. In addition, the GNN makes no decisions that cause
the power consumption to be higher than All-on, and FA also performs significantly
better in this regard. The reasoning behind this phenomenon is that learning-based
solutions learn to capture the power-saving potential during low-activity time periods
better than during the high-activity periods, combined with the results in Figure 6.7.

Other results found in Figure 6.8 are highly comparable to the findings in Figure 6.7,
such as the results using the FA benchmark have fluctuations with the magnitude
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(a) Nsc = 4

(b) Nsc = 12

(c) Nsc = 32

Figure 6.8: One-day performance results for the holiday sample (Jan. 1st, 2014) in the
test set with respect to power consumption for different Nsc.
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increases for a larger Nsc, while the GNN is more stable in this regard. As these aspects
are already discussed in the workday case, this section includes no further elaborations.

6.5.2.3 Generalisation Capability on Node Size

A remarkable feature of GNN models is their node size invariance, indicating that
as long as the data with a similar underlying topology can be expressed using the
same graph representation, a GNN model trained using data of node size i can be
directly used to produce results for node size j (i 6= j). This feature greatly boosts the
generalisation capability of GNN models compared with other ML models, leading to
a significant cost reduction when deploying GNN models to different scenarios for a
defined task.

Therefore, this section presents the node size generalisation test for the proposed GBCSS.
The workday data samples in the test dataset are used. Two GNN models trained with
training data of Nsc = 4 and 32 are applied in this test, while the node size for the
test case is Nsc = 12 for both models to give a clearer comparison. Because RL-based
solutions need to confirm the feature space and/or action space that cannot be naturally
extended by the model itself without reapplication, the FA benchmark is hence not
applicable in this evaluation.

The one-day power consumption results of this test are shown in Figure 6.9. These
results show that both models trained with different node sizes (both larger and smaller
node sizes during the training stage) can be directly utilised in the Nsc = 12 scenario.
For the two lower-traffic periods, 0 a.m. to 8 a.m. and after 4 p.m., both models
generate comparable results to that in the same node size scenarios in Figure 6.8b.
Furthermore, it can be seen that the models follow some detail from what was learned
in the original node size scenario. For example, the GNN model trained with Nsc = 4

produces some sub-optimal decisions that lead to higher power consumption around 9
a.m., similar to that in Figure 6.7a, while the GNN model trained with Nsc = 32 tends
to result in large power consumption around 0 a.m., which corresponds to the behaviour
in Figure 6.7c. Unfortunately, the model trained with Nsc = 32 does not maintain the
strategy to switch off some SCs for power saving as in Figure 6.7c for Nsc = 12, while
keeps mirroring All-on during busy hours, similar to that in Figure 6.7b. The reason
for this may still be the learned loss function characteristics, that a smaller Nsc leads
to insignificant loss improvement for cell switching during busy hours, as discussed for
the workday case.

The node size generalisation test results suggest that models trained with one node
size can be directly applied to a similar scenario with another node size. Although the
performance may not be optimal, this feature can greatly reduce the cost of the model
transfer, as the whole GNN model can be directly utilised without any preparatory
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steps. After the transfer, the model can be updated using data collected in the new
scenario to learn the underlying patterns to improve performance.

(a) (b)
Figure 6.9: One-day power consumption results for the GNN’s node size generalisation
test, with models trained using two different node sizes tested with Nsc = 12. (a)
Nsc = 4 for training. (b) Nsc = 32 for training.

6.6 Summary

The development of cellular networks has led to the proliferation of network deployment
with BSs being the major energy consumers in cellular networks. This has resulted
in calls for greater energy efficiency to meet green and sustainable cellular network
demands when applied to real-life network deployments and architectures. This is also
true for the V2N communication case of C-V2X as cellular VUEs use the same interface
as general UEs such as mobile phones. As GNN has the significant features of learning
graph-structured data to improve training robustness and node size invariance that
largely reduce the computational cost for redeployment, this work initially explores a
GNN-based cell switching solution (GBCSS) for a CDSA HetNet which can be deployed
at each macro BS and is capable of learning the optimal policy in a dense HetNet
environment to save energy and while maintaining the user QoS. The performance of
GBCSS approach was then evaluated against other benchmarks including the baseline
without any cell switching, the theoretical upper bound performance calculated by the
exhaustive search algorithm, and a state-of-the-art RL algorithm. Overall, this work
covers a theoretical derivation of the problem, an algorithmic design, and simulations
using real-world data from the Milan telecommunication dataset.

Experimental results showed that the GBCSS approach can attain 10.41% energy
efficiency gains compared to the baseline power with no cell switching while main-
taining an average of 99.63% of the original traffic loads for differing numbers of BSs,
suggesting that virtually no user QoS is sacrificed while reducing energy consumption.
This performance is 75.76% of the optimum results computed by the ES algorithm.
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Additionally, the GNN model trained using data from only workdays generalises well
to both workday and holiday test cases and is capable of learning the pattern for cell
switching during busy hours in a larger node size (number of SCs deployed) setup for
further performance improvement. Node size generalisation tests were also performed,
with the results supporting the notable feature of GNN’s node size invariance that
models trained using data of one node size can be directly utilised in scenarios with
different node sizes. Furthermore, GBCSS has a computational complexity of O(N)

for online execution and is thus much more scalable compared to the ES and similar
algorithms of O(2N) as discussed in the complexity analysis.

The proposed GBCSS produces satisfactory energy saving in the network with almost no
impact on the user QoS while showing great potential for a large number of deployed SCs.
Besides, the proposed solution has a very good generalisation ability and scalability. All
these results make GBCSS a promising candidate for practical cell switching applications
to future ultra-dense HetNets. With the development of beyond 5G comes new energy
efficiency and network intelligence demand, and the world is also witnessing the rise
of energy prices, implementing GBCSS will result in significant energy cost savings,
while also relieving the deployment cost of the learning-based algorithm. This will
significantly relieve the operational cost for both developed and developing markets.
Although the utilised real-world dataset comprises of general CDR data, the generated
insights can also be applied to V2N use cases.



Chapter 7

Conclusions, Future Trends, and Open
Issues

Vehicular networks are a key enabler to improve road safety and traffic efficiency
and to support a variety of infotainment services for future intelligent transportation
development. The fundamental characteristics of vehicular networks are the high
mobility of road vehicles and heterogeneous communication and service types. With the
evolution of vehicular networks, a new requirement for cost-effective and sustainable
network development has also been raised. Three research topics have been studied:
Handover (HO) management, resource allocation, and energy efficiency at the network
side for cellular vehicular networks centred around the core idea of adaptive network
optimisation. Specifically, three detailed research questions have been developed from
the literature review and answered by the research work.

In this chapter, conclusions are drawn for each detailed research question developed
from these research topics, including the summary of contributions, limitations, and
future work proposal. Open issues and future trends are also provided to each research
topic and ML applications to vehicular networks as a whole.

7.1 Contribution Statement

Vehicle’s high mobility and network densification lead to frequent HOs that can greatly
influence the quality of V2N services, leading to the first research question: If deployed
within the current cellular architecture, does an ML-based HO decision-
making scheme improve HO performances for seamless V2N communications?
A well-establish DRL algorithm, Double Deep Q-network (DDQN), was utilised to
develop a HO algorithm for V2N communications in Chapter 4. The proposed DDQN
HO algorithm used the same input parameter as conventional HO solutions, i.e., the
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Reference Signal Received Power (RSRP), and its performance was evaluated using the
full-stack network simulator ns-3 emulating a cellular network protocol stack against the
A3 HO algorithm. The proposed DRL algorithm can achieve near-optimal HO decision-
making through exhaustive case analysis, with a 42.62% reduction in accumulated
packet loss compared to the A3 RSRP HO algorithm baseline. This DRL HO algorithm
can be theoretically implemented by software patching to the current network with
little network architecture modification, answering the research question with clear
positivity, and extending the state-of-the-art research from proof-of-concept solution
designs towards the deployment of high-performing ML-based solutions.

The second research question considers effective resource management to improve
network performance: Can the latest decentralised learning architecture be
utilised to improve the decentralised radio resource allocation and reduce
communication overheads for V2N and general cellular communication
networks? A cellular V2X with the sidelink setup of underlay, Mode 2 was considered
in Chapter 5, with the decentralised learning framework, Federated Learning (FL),
explored for the development of a fully decentralised, DRL-based resource allocation
scheme for joint spectrum and power allocation in for spectrum-sharing V2V and V2N
communications. Evaluated against other state-of-the-art DRL solutions, the proposed
algorithm outperformed the benchmarks by having a smaller communication overhead
of 40.8% with much less frequent signalling for training, while having a matched
performance in V2V payload delivery ratio and V2N transmission rate. Furthermore,
the proposed quantisation-based ANN model compression could reduce the ANN model
size by 73.9% with only a 3% performance sacrifice. This research also examined two
different types of DRL algorithms with the FL structure and proved the viability of both
algorithms. The main advantage of the proposed solution is the simple global knowledge
sharing through model aggregation compared with the state-of-the-art solutions without
FL while still having small communication overheads by requiring no direct information-
sharing in the algorithmic design.

Aiming at green and cost-effective network development, the third research question
asks: Can the latest ML techniques be leveraged to improve cell switching
decision-making performance for energy efficiency optimisation for V2N
and general cellular communication networks? This question was answered by
Chapter 6, where the GNN-based Cell-switching Solution (GBCSS) was proposed for
a Heterogeneous Network (HetNet) under the Control Data Separated Architecture
(CDSA) configuration. The proposed GBCSS contained a graph representation of the
BSs in a HetNet unit and a GNN-based cell switching algorithm and was evaluated
against the optimal solution calculated by the Exhaustive Search (ES) algorithm, an
RL-based state-of-the-art solution, and the baseline without any cell-switching. The
evaluation was based on the Milan telecommunication dataset comprising real-world
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call detail record data to be more realistic. The experimental results showed that the
GBCSS could obtain 94.98% of ES’s performance regarding the normalised energy
efficiency, which is 11.55% higher compared to the RL benchmark, with almost all
(over 99%) user QoS (original traffic) preserved. Although the performance is still
suboptimal, GBCSS has a much smaller computational complexity (linear to the number
of considered BSs) compared to ES (exponential to the number of BSs). Exploiting
the feature of a GNN model, the proposed GBCSS had a very strong generalisation
capability, which could be directly deployed without any model update to operate with
satisfactory performance in a similar scenario with a different network configuration.
As BSs are the main energy consumers in cellular network systems, the GBCSS with
a close performance to the theoretical upper bound could greatly reduce the energy
consumption in cellular networks to help achieve the sustainable development goal
and reduce the network operators’ OpEx. Its generalisation ability also has the great
potential to reduce the redeployment cost for real-world applications. Overall, the
proposed GBCSS greatly extends the cell-switching research by exploring the GNN
model and the demonstration of high performance and generalisation ability through
effective design of the graph model and cell switching algorithm.

In summary, the key contributions of research work for all three research questions are:

• Effective solution proposal which considers real-world deployment aspects

• Filling the gap of the state-of-the-art with respect to algorithmic development:
exploring different RL design including the overall setting, the state space, and
reward design; exploring the GNN models receiving less attention in the research
topics.

• Proof-of-concept and experimental demonstration of the deployment potentials
for all proposed solutions.

7.2 Future Trends and Open Issues

7.2.1 Future Trends for Research Topics

7.2.1.1 Handover management

As 5G is being rolled out globally, future research extending the work of the proposed
DRL HO algorithm presented in Chapter 4 is to first update the implementation of
the proposed DDQN HO algorithm using ns-3’s latest standardised cellular module,
5G-LENA [217]. The 5G-LENA module became publically available at the time
the proposed algorithm was being implemented but is still under active development
requiring updating with the 5G HO interfaces [277]. The aim is to validate the
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performance of the proposed algorithm in a 5G network setup while also examining
how many neighbouring BSs are sufficient for the state space design, especially with
the inclusion of mmWave that have distinct features in the radio environment. Other
research direction aiming at learning-based algorithm optimisations, such as state space
reduction, is also relevant to this research to reduce the foreseeable communication
overheads in the control plane.

Beyond the research question studied in this thesis, HOs can be extended to different
scenarios following different system setups, such as intra-frequency (within the same
frequency range) and inter-frequency (between different frequency ranges), as well as
inter-RAT HOs (between different RATs such as from a cellular BS to a DSRC access
point) [120, 154, 210]. As 5G already has two frequency bands (Frequency Range 1
and 2) while also aiming to accomplish the internetworking among different RATs to
form a unified wireless network [18, 278, 279], all the above scenarios are bringing
new challenges to HO management with additional variables to consider for future
vehicular networks. Moreover, it is essential for future HO algorithms to consider three-
dimensional scenarios, such as vehicular networks on/under viaducts or tunnels and
future 3D networks or ground, air, and space networks. To be specific, 3D networks are
envisioned to integrate road vehicles, Unmanned Aerial Vehicles (UAVs) and satellites,
which have high complexity on the decision-making of when and which entity to connect
to [280]. In these scenarios, communication links can be on different layers and cross
layers, where ML is envisioned to play a key role in HO decision-making for complex
environments.

7.2.1.2 Resource Allocation

For future work on the considered resource allocation problem presented in Chapter
5, the FL deployment aspects are an important research direction by considering how
communication-related factors influence the FL training process. For example, how
unreliable communication channels influence the federated model aggregation and its
effect on the overall performance [281]. Furthermore, encompassing a hierarchical DRL
algorithm as in [138] to the current design remains another promising future direction to
enable automatic adaptation to different communication environments such as different
network congestion levels influenced by the pattern of road traffic.

MEC and NFV are extensively studied and key technologies for adoption in vehicular
networks as well [282]. In vehicular networks, ML must deal with high network
dynamics, which is further enhanced by scenarios of viaducts, tunnels, and future 3D
networks, leading to an even more complex network environment. In addition to the
HO management requirement as introduced above, the vision of 3D networks also
includes differentiated on-demand services such as Intelligent Transportation Systems
(ITS) services and remote surgery, further requiring effective resource allocation to
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fulfil the stringent service requirement [280]. MEC enables distributed solutions by
moving less computationally demanding tasks from cloud computing centres to network
edges, which helps in latency improvement and gives the possibility to exploit data
stored in different network nodes. In comparison, NFV introduces more flexibility to
the network through hardware abstraction, where ML methods can be applied and
form a more general solution independent of hardware. Applying ML methods with
these technologies in vehicular networks faces significant challenges from the highly
dynamic vehicular networks and needs specific attention. With the deployment of
MEC, computation resources including computation power and data storage become
another type of valuable resource and the joint resource allocation optimisation of
different resource types should be further investigated beyond the existing work such
as [242, 283]. An interesting direction is to develop a joint solution for computation
load-balancing and data storage management (what data is worth storing) among MEC
nodes to improve MEC efficiency and fault detection for network slices in NFV for the
network operation maintenance and safety measures.

7.2.1.3 Energy Efficiency via Cell Switching

Future research in the cell switching aspect extending the proposed GNN-based cell
switching solution (GBCSS) includes combing RL algorithms and GNN to further
improve the GBCSS’ convergence to the optimality and thus further enhance the
performance. Another viable future work direction is exploring the heterogeneous graph
representation for a cell switching problem. Incorporating date and time information in
the heterogeneous graph representation in addition to power and throughput information
to improve robustness for GBCSS remains of high importance. Extending the binary cell
switching decision-making into multi-level sleep mode is also a viable future direction.
This is because deep sleep mode usually requires more time for a BS to reactivate,
which may lead to slowness in face of rapid response requirements (e.g., another BS
going offline and the network requiring service reinforcement). Multi-level sleep mode
hence gives the flexibility for more generalised cases for energy-saving. Moreover, as
the work of GBCSS mainly focused on algorithmic design, investigating how GBCSS
and learning-based algorithms, in general, may be deployed in a real-world scenario
considering detailed protocol stacks is also a valuable direction. One possible approach
is to implement the GBCSS and benchmarks in a network simulator such as ns-3 and
evaluate using real-time generated data in a realistic network simulation.

For ML-based cell switching solutions in general, the real-world deployment issues such
as data processing and storage, and redeployment for online model update remain an
outstanding issue for future research and development. Besides, ML-based joint energy
efficiency scheme development remains a possible direction for future resources, such
as joint decision-making of cell switching and link adaptation, following the different
energy efficiency schemes introduced in Chapter 3.
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7.2.2 Machine Learning for Vehicular Networks

Beyond the research topics, several major issues exist in the state-of-the-art ML
applications to vehicular networks in general.

7.2.2.1 Data Collection and Processing

Data is the fundamental ingredient to support ML algorithmic developments. Vehicular
networks are rich in data as various data sources exist in the network including onboard
sensors of vehicles such as cameras and communication components. However, with
gigantic data being produced in vehicular networks, what types of data should be
collected becomes the fundamental and foremost question to answer to reduce data
redundancy. Moreover, as data are distributed on different network nodes, while the
overall data volume is enormous, managing the data storage becomes an important
challenge to address regarding how much and what type of data to store. This is highly
important, especially for centralised ML solutions that require data to be managed
and trained by a central controller. Finally, the data quality in vehicular networks
is heterogeneous, e.g., the image quality of photos taken from different cameras can
have significant differences due to e.g., out-of-focus and blur caused by motion. How
to process the data to guarantee the overall data quality to train high-performing ML
algorithms remains an outstanding topic for the research community.

7.2.2.2 Distributed learning and Multi-agent Cooperation for ML in Vehic-
ular Networks

In contrast to traditional ML application scenarios, data in vehicular networks is
generated and stored in different network units, such as vehicles and BSs. Therefore,
individual vehicles would not have access to all the rich data sources demanded by certain
types of learning tasks. These expectations lead to learning on local partially-observed
data while exploiting values from data stored in other devices. A multi-agent setup for
ML methods can thus promise better performance at a system level through cooperation
in vehicular networks to avoid the aforementioned systematic communication delay and
overhead of a purely centralised setup for data transfer. The setup can also utilise the
computational power of vehicles to make decisions locally. Research has investigated
in that direction such as the research that inspired the work in Chapter 5 with a
cooperative MARL setup [25, 138, 243]. However, these existing designs have the
disadvantage of individual agents having access to only local data, and thus lacking
knowledge of the global state or data distribution.

Federated Learning (FL) is another decentralised ML technique to train models via
distributed data and learner cooperation, which can also exploit value through MEC
as shown by some recent work [246, 284]. It has also been identified as a key enabler
for the development of future ML-based vehicular networking solution [30]. The main
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advantage of FL is that it enables knowledge sharing among individual learners through
local model sharing to produce a global model with values extracted from distributed
data sources. Attempts have also been made in this thesis to explore the algorithmic
design using the FL framework. However, given its potential importance to vehicular
networks with identified future trends introduced above, key challenges still exist for
FL with respect to its deployment. Specifically, how to cope with the extra stages of
global model aggregation in real-time applications, how to deploy FL aggregators and
the heterogeneous data issues as discussed above, which need further exploration.

7.2.2.3 ML Method Complexity Issues

ANN-based learning methods have achieved continuous performance breakthroughs
in various areas. Many current ML solutions in vehicular networks have ANN-based
methods or combined ANNs with different ML techniques [138, 148, 174, 285], e.g., ANN-
based prediction with SVM classification, with top performances reaching greater than
99% accuracy in tasks such as mobility prediction [285]. Future vehicular networks will
need to extend current two-dimensional scenarios for handover and resource allocation to
three-dimensional ones with possible UAV integration, causing overall task complexity
to continue to rise. ANN-based DL is currently the best solution for its descriptive
power. However, the training process of ANNs often takes up a significant amount
of computation resources because of the deep ANN structure. Unlike traditional ML
methods, ANNs can learn directly from raw data while not requiring dedicated feature
design or causing large data batches, either of which increase overall computation
complexity.

Sophisticated DL methods have significantly improved performance but can lead to
greater latency and reduced energy efficiency. While devices such as self-powered RSUs
have limited computation power, the requirement of regulating complexity arises for
computation alleviation while coping with performance requirements. One practical
solution lies in model compression that reduces the ANN model size while maintaining
much original performance, which has also been adopted in this thesis. However, more
detailed implementation aspects need to be explored in this realm, such as where
to place the compression, on user devices or a network controller? Computation
offloading is also a promising solution in this topic. Leveraging mobile cloud and
edge computing, computation offloading avoids the direct reduction on a DL model
complexity but transfers the training to a remote cloud server to complete or divided
into less computationally intensive subtasks, which are then distributed among network
edge nodes to share training results. However, the accompanying communication
overhead issues need to be investigated for offloading approaches and DL models need
to be transmitted, while the task dividing and reconstruction quality should also be
considered for the edge computing approach. To conclude, different designs for model
compression should be assessed for real-world deployment, while the execution design
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of computation offloading for ANN training in vehicular networks needs more research
in the future.

7.2.2.4 Privacy and Security Issues

It can be seen from the above aspects that either data or ML models need to be
transmitted among different entities within the network, e.g., data transmission for
centralised processing and model transmission for federated learning and computation
offloading. These raise the need to guarantee the privacy and security of ML applications
in the network. Specifically, collected data used for ML applications may contain
sensitive data such as user identity, positioning data, etc. Since a potential data
leakage of such data will cause serious consequences, privacy protection becomes vitally
important for real-world ML applications in the network. Moreover, model transmission
for the above situations can be in danger of cyber attacks, causing damage to the
network. For example, if a transmitted ML model is hacked and cannot provide desired
outputs, the corresponding functionality will be heavily damaged and may even lead
to casualties when safety-critical applications are concerned. As a result, the privacy
and security aspects of ML applications in vehicular networks may need to be further
explored in this realm.

7.2.2.5 Dataset and Simulation Environment Standardisation for ML Adop-
tion

Regarding ML methodology adoption in the field, a remaining issue is the standardisation
of research datasets and simulation environments. To assist researchers to focus on
learning algorithm design and to simplify performance comparison, common problems
should be identified with related datasets, while simulation environments should also
be standardised in common with other ML areas. A good example is the Modified
National Institute of Standards and Technology (MNIST) database [286] used for image
recognition tasks and the Open AI Gym environment [287] employed for RL algorithm
development. Some work has been done in these aspects of vehicular networks, such
as Klautau et al.’s [288] presentation of a dataset for mmWave beam selection and a
simulator for vehicle traffic and raytracing. Another work developed the first framework
for RL research in networking, combining the ns-3 network simulator and Open AI gym
[289], with an inspired study also developed ns-3 interconnections with popular ML
frameworks [229]. However, more research resources are necessary to fill this gap, which
requires enriched datasets able to perform more networking tasks and standardised
networking simulation environments that support ML integration.

7.2.2.6 Interpretability and Trust for ML methods

Another major challenge for ML adoption is the "BlackBox" problem for complex
methods, such as DL techniques. As decision-making procedures in DL algorithms
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presently cannot produce output that can be interpreted directly by humans, it creates
risks for safety- and security-related applications that cause trust issues involving
verification and legal liability confusion when accidents occur. As ML methods have
attracted more research interests in vehicular networks, adding interpretability for such
systems becomes crucial to enable drivers and network operators to understand system
behaviour, introducing the possibility of user-based control, justification, and improved
performance [290]. Interpretable DL-based systems for vehicular networks should also be
developed to assist the legal system with traceable interpretability-founded responsibility
made available for legal judgement. A recent advance in CNN hidden-layer neuron
activity visualisation tools has shown promising means of supporting non-experts in
understanding the DL process of CNN training [291]. This can be a valuable example
for related research to improve the interpretability of other ANN-based methods and
help address potential liability issues.

The research questions studied in this thesis have only addressed a small part of the
challenges demanded by the industry to deploy ML-based solutions in a real network,
with other outstanding issues for ML solution development. Nevertheless, through
working closely with the industry to address the identified open issues, it should be
possible for ML solutions to greatly improve the user experience beyond 5G.
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