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Chapter 1
Introduction

Nowadays, there are many complicated processes that play important roles in our society.
Examples include the process by which support requests are handled by a company and
the process by which a county decides whether or not to grant a building permit. Let us
consider an example process in some more detail. The example is based on a workshop
that repairs broken telephones. In this workshop, the process of repairing phones works
as follows.

1. A customer delivers a broken phone; it gets registered in the system.

2. An employee analyzes what the cause of the defect is.

3. The phone is dispatched to one of two repair teams. One of the teams is able to
perform simple repairs; the other team handles complex repairs. After the repair is
done, someone tests whether the repair was successful.

4. While the phone is being repaired, an employee informs the customer of the cause
of the defect.

5. If the repair was successful, the phone is returned to the customer and the case is
filed in an archive. If the defect has not been fixed, the phone is dispatched back to
one of the repair teams, after which a new test is performed, and so on.

Often it is necessary to study a process like these, for example for quality control, or
to discover how the process could be improved. In order to investigate a process, we
need to know how it works in practice. Therefore, it is useful to record a log of what
happens during the execution of the process.

Let us give a formal definition of such a log file. We assume that the process is
executed often, and that within the process we can distinguish distinct activities, that
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we can represent by some name. In our repair shop example, we identify the following
activities: Register, Analyze Defect, Repair (Simple), Repair (Complex), Test Repair, Restart
Repair, Inform User and Archive Repair. To collect log data about the process, we just write
down, for a series of executions, a list of all activities that happened. This gives rise to
the following definition.

Definition 1.1 (Traces and logs). A trace is an ordered list of activities. A particular
occurrence of an activity within a trace is called an event. A log is a multiset of traces.

We model a log as a multiset of traces since a log may contain multiple traces that
consist of exactly the same series of activities.

In Figure 1.1, three possible traces from our repairshop example are shown. Further-
more, to show what a log looks like in practice, we show a tiny part of a real log (only
three events from a single trace) from the repairshop in Figure 1.2. We see that there
is a wealth of information in this log. It goes much beyond a simple list of activities:
for every event a timestamp and a resource (the entity performing the event) is stored.
However, in this thesis we do not consider those additional attributes.

[Register, Analyze Defect, Repair (Complex), Test Repair, Inform User, Archive Repair]

[Register, Analyze Defect, Inform User, Repair (Complex), Test Repair, Archive Repair]

[Register, Analyze Defect, Inform User, Repair (Simple), Test Repair,

Restart Repair, Repair (Complex), Test Repair, Archive Repair]

Figure 1.1: Three example traces from the repairshop example.

From the three traces in Figure 1.1 we can already draw some conclusions. For
example, all traces start with Register, and all of them end with Archive Repair. Also, we
can see from the traces that there are two types of repairs: simple and complex ones.
Inspecting real-world log data by hand is not easy however, since real-world logs are
huge: every single event that happens during the process is logged.

Hence, we want to analyze logs in an automated fashion. More precisely, for the
process at hand, we want to find a description of the process from a log of its execution.
This is called process mining. For a broad overview of process mining, we refer to the
seminal work by Van der Aalst et al. [2].
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Chapter 1. Introduction

<event>

<string key="org:resource" value="System"/>

<date key="time:timestamp" value="1970-01-02T12:23:00.000+01:00"/>

<string key="concept:name" value="Register"/>

<string key="lifecycle:transition" value="complete"/>

</event>

<event>

<string key="org:resource" value="Tester3"/>

<date key="time:timestamp" value="1970-01-02T12:23:00.000+01:00"/>

<string key="concept:name" value="Analyze Defect"/>

<string key="lifecycle:transition" value="start"/>

</event>

<event>

<string key="defectType" value="6"/>

<string key="org:resource" value="Tester3"/>

<string key="lifecycle:transition" value="complete"/>

<string key="phoneType" value="T2"/>

<date key="time:timestamp" value="1970-01-02T12:30:00.000+01:00"/>

<string key="concept:name" value="Analyze Defect"/>

</event>

Figure 1.2: A small part of a log file as it is stored on disk.

1.1 Mining algorithms

An algorithm that takes a log and produces a process description is called a mining
algorithm or a discovery algorithm. The resulting process description can be expressed
in various formalisms. A formalism that is very well-known in the process mining
community is the Petri net. We use the definition by Van der Aalst [1] here.

Definition 1.2 (Petri net). A Petri net is a directed graph (P ∪ T, F) where P is a set of
places, T is a set of transitions and F ⊆ (P× T) ∪ (T × P) is a set of edges.

Note that edges can exist between places and transitions and between transitions
and places, but not between places and places or between transitions and transitions. In
diagrams, we depict places as circles and transitions as rectangles. An example Petri net
is shown in Figure 1.3a.

A Petri net describes a process by representing states the process can be in by a
marking. A marking is a function M : P→N that assigns to every place a non-negative
number of tokens. In drawings of Petri nets, we visualize the tokens by drawing M(p)
dots in every place p. In Figure 1.3a for example, the place p1 contains two tokens.

The transitions in the Petri net model the way the process can go from one state into
another. If at least one token is present in all places p with an edge (p, t), a transition t
can fire, meaning that it changes the marking by taking away one token from all those
places p, and it puts one new token in all places p′ with an edge (t, p′). In Figure 1.3a
transition a can fire; the result of this operation is shown in Figure 1.3b.

A well-known example of a mining algorithm is the α-algorithm [3], that produces
process descriptions in the form of Petri nets. Just like most other mining algorithms, it
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1.2. The directly-follows graph

p1
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p2

p3

b

c

(a) The initial state.

p1

a

p2

p3

b

c

(b) After transition a fired.

Figure 1.3: An example of a simple Petri net.

is based on the directly-follows relation. This relation captures which activities happen
directly after each other in the log.

Definition 1.3 (Directly-follows relation). Let L be a log file and A the set of activities
occuring in it. The directly-follows relation of L is a relation >L ⊆ A× A where (a1, a2) ∈
>L iff

∃t ∈ L : a2 directly follows a1 in t.

The α-algorithm is based on a set of rules that define a Petri net based on the directly-
follows relation. For every activity that occurs in the log, the algorithm produces a
transition in the Petri net. The places in the resulting Petri net correspond to pairs of
subsets of activities. A full description of the algorithm would be quite lengthy and is
out of the scope of this thesis; for more details we refer to Van der Aalst et al. [3].

There are many more mining algorithms. Examples include a mining algorithm based
on heuristics [21] and the so-called inductive visual miner [14, 15]. Like the α-algorithm,
those algorithms both use the directly-follows relation to produce the resulting process
model.

The process mining community has created implementations of mining algorithms.
A large software package called ProM1 [19] implements many mining algorithms, and is
also able to visualize the resulting process models. In Figure 1.4, a screenshot of ProM is
shown.

1.2 The directly-follows graph

As noted in the previous section, the usual workflow in process mining is to use some
mining algorithm on the log to obtain a model of the process, and then inspect this

1ProM can be downloaded from http://promtools.org.

7

http://promtools.org


Chapter 1. Introduction

Figure 1.4: A screenshot of the ProM workbench.

process model. This approach has a disadvantage, however. Every mining algorithm
assumes that the analyzed process satisfies the formalism used by the algorithm to
express the process model. For example, as we saw in the previous section, the α-
algorithm produces Petri nets. Hence, it is only able to reconstruct useful models for
processes that can actually be represented as a Petri net. This phenomenon that patterns
that are not supported by the formalism will not be represented correctly in the resulting
process model, is called a representational bias [2].

To avoid this representational bias, it can be useful to inspect the log directly, without
the use of a mining algorithm. Still, we do not want to do this inspection by reading the
raw log file. Hence, it can be useful to visualize the directly-follows relation.

To visualize the directly-follows relation >L, we can represent it as the graph (A,>L).
So, we use a vertex for every activity, and insert a directed edge (a1, a2) if activity a2

directly follows activity a1 in some trace from the log. We call this graph the directly-
follows graph. The classic way of visualizing a graph is a node-link drawing, where we
represent the vertices by dots, and the edges by arrows from one dot to another. As an
example, in Figure 1.5, the directly-follows graph is drawn for the event log that consists
of the three traces from the telephone repair process shown in Figure 1.1.

However, such a visualization is not often used in practice. The reason for this
is that the directly-follows graph is usually very dense and non-planar. Hence, the
drawing becomes cluttered and hard to read. As an example, in Figure 1.6 the directly-
follows graph of the real-world repairshop log is shown. While this process is not very
complicated, the drawing becomes quite cluttered already.
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1.3. Concurrency

Register

Analyze Defect

Repair
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Repair
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Test Repair
Restart
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Inform
User

Archive Repair

Figure 1.5: The directly-follows graph for the three traces in Figure 1.1.

1.3 Concurrency

We note that the clutter in Figure 1.6 is mainly caused by the large number of edges from
and to Inform User. In fact, Inform User has such a large degree because it does not matter
when Inform User is executed during the repair, as long as it is done. We say that Inform
User is executed concurrently with Repair (Simple), Repair (Complex), Restart Repair and
Test Repair.

More generally, this pattern, named concurrency or parallellism, means that two or
more parts of the process are executed at the same time, without any synchronization.
This means any possible ordering between those parts can occur in a trace. For example,
consider two separate teams that are going to execute activities a1, a2, a3 and b1, b2, b3,
respectively. Then, although a1 must always happen before a2, and likewise, b1 must
happen before b2, there is no fixed ordering between, say, a2 and b2. Hence, resulting
traces can include [a1, a2, a3, b1, b2, b3], [b1, b2, b3, a1, a2, a3] and [a1, b1, a2, a3, b2, b3].

In the directly-follows graph concurrency manifests itself as a large number of
edges between {a1, a2, a3} and {b1, b2, b3} (see Figure 1.7), corresponding to all switches
between {a1, a2, a3} and {b1, b2, b3} that are present in the log. For example, with the
above traces we get the edges (a3, b1), (b3, a1), (a1, b1), (b1, a2) and (a3, b2). We can also
see this pattern occurring in Figure 1.5: all edges between Inform User and Repair (Simple),
Repair (Complex), Restart Repair and Test Repair are present.

In the ideal case, any edge between {a1, a2, a3} and {b1, b2, b3} will be present. How-
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Register

Analyze Defect

Repair
(Simple)

Repair
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Test Repair
Restart
Repair

Inform
User

Archive Repair

Figure 1.6: The directly-follows graph for the repairshop example log.

s

a1 a2 a3

b1 b2 b3

e

Figure 1.7: Concurrency in the directly-follows graph.

ever, this will happen only if we have enough traces that happen to cover all of the
switches. Especially if the concurrent parts of the process contain a lot of activities,
this will probably not happen in practice. For example, in Figure 1.5 a lot of the edges
between Inform User and the other activities are missing, while those activities could
certainly happen directly after each other in the underlying process, as evidenced by
Figure 1.6.

Concurrency often occurs in real-world processes, so a node-link drawing of the
directly-follows graph, like the one in Figure 1.6, will often be cluttered. Hence it makes
sense to try to simplify node-link drawings like these. This is what we are investigating
in this thesis.
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1.4. Edge and vertex bundling

1.4 Edge and vertex bundling

The problem of making drawings of dense, non-planar graphs easier to read has been
studied extensively. There are many well-known techniques to accomplish this.

A major approach is called edge bundling. This means that instead of drawing edges
all as separate line segments or curves, edges are grouped together. This reduces the
amount of clutter in the drawing. For determining which edges are grouped together
and how the grouping is performed, many techniques have been invented.

Many edge bundling techniques introduce ambiguity, which means that it is not
possible to correctly reconstruct the edges from the original graph by using just the
resulting drawing. There are also ambiguity-free techniques, that produce drawings
from which we can completely reconstruct the original graph. This necessarily leaves
more information in the drawing. Hence, ambiguity-free techniques are generally suited
best to drawings of smaller graphs. Techniques that do introduce ambiguity, on the
other hand, throw away information and are suited to drawings with a larger amount of
edges.

Some examples of the many proposed edge bundling techniques that introduce
ambiguity are the following. Holten [10] presented a technique, called hierarchical
edge bundles, that visualizes graphs with a hierarchical structure using any tree layout
algorithm. Holten and Van Wijk [11] also presented force-directed edge bundling, where
edges are positioned by a force-directed method. Lambert et al. [13] proposed a method
that routes the edges over a grid graph. All of these methods result in drawings where
edges are represented by smooth curves that are grouped in bundles.

On the other hand there are ambiguity-free edge bundling techniques. Luo et al. [16]
proposed a method to do this, that is based on making bundles in which all edges share
a common node. Another technique, confluent drawings, was invented by Dickerson et al.
[4]. In this thesis, we discuss confluent drawings, including related work, in Chapter 2.

A radically different approach is used by vertex bundling methods. Instead of group-
ing edges together, like the edge bundling methods, vertex bundling methods create
groups of vertices to reduce the amount of clutter in the drawing. In particular, we
consider a technique called power graph analysis. This ambiguity-free technique was
pioneered by Royer et al. [18] in the context of protein networks and later refined by
Dwyer [6, 5]. We study power graph analysis and related work on it in Chapter 3.

1.5 Results in this thesis

In this thesis, we set out to investigate edge and vertex bundling techniques for the
visualization of directly-follows graphs. In particular, we study confluent drawings in
Chapter 2 and power graph analysis in Chapter 3. We see that both techniques can be
useful for visualizing a directly-follows graph. However, the drawings created by power
graph analysis seem to be less cluttered than the confluent drawings; hence, we think
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Chapter 1. Introduction

that the former are the most useful in practice.
Power graph analysis is an ambiguity-free technique. As already noted in the

previous section, ambiguity-free techniques are generally best suited for small graphs.
Indeed in practice turns out that the drawings of large directly-follows graphs are not
readable anymore because the large complexity of the drawing (we show examples of
this in the experimental evaluation in Chapter 6). As far as we know, there is no vertex
bundling technique known yet that allows ambiguity. Therefore we invented a variation
on power graph analysis that we call fuzzy power graphs. We present this technique in
Chapter 4.

To experiment with power graph analysis and fuzzy power graphs, we made an
implementation of those algorithms. We discuss this in more detail in Chapter 5. Then,
we ran the implementation on several logs to see how well the methods worked. The
results are presented in Chapter 6.
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Chapter 2
Confluent drawings

In this chapter, we study confluent drawings in more detail. Confluent drawings are an
edge bundling technique to make drawings of dense graphs clearer. However, unlike
most edge bundling techniques, confluent drawings are ambiguity-free.

Confluent drawings were first proposed by Dickerson et al. [4]. After they were
introduced, confluent drawings have been extensively researched. As we will see in Sec-
tion 2.2, not all graphs admit a confluent drawing. Therefore, in particular, researchers
have also studied the problem of recognizing which graphs admit a confluent drawing.
Hui et al. [12] proposed a variant on confluent drawings, called strong confluent drawings,
that is defined slightly differently. They showed that it is possible to test whether a
graph admits a strongly confluent drawing is in NP. Eppstein et al. [7] introduced the
∆-confluent drawings, and showed that the graphs that admit a ∆-confluent drawing are
exactly the distance-hereditary graphs, that can be recognized in linear time. Further-
more, Eppstein et al. [9] introduced another class of graphs, namely the graphs that
admit a so-called strict confluent drawing, and showed that testing whether a graph is
in this class is NP-complete. To our knowledge however, the complexity of deciding
whether a general graph admits a confluent drawing is still open.

2.1 Definition

In this section, we follow the definitions for confluent drawings as given in the paper by
Dickerson et al. [4] that originally introduced them. Confluent drawings can be used for
both undirected and directed graphs. We will give both definitions.

A locally-monotone curve is a smooth curve that does not self-intersect in any point.

Definition 2.1 (Undirected confluent drawing). Let G = (V, E) be an undirected graph.
A confluent drawing of G is a drawing A consisting of curves in R2 where

13



Chapter 2. Confluent drawings

1. every v ∈ V is represented by a point v′ ∈ A,

2. (vi, vj) ∈ E iff there is a locally-monotone curve in A that connects v′i and v′j, and

3. curves are allowed to overlap, but curves are not allowed to intersect each other.

If G admits a confluent drawing, we call G confluent.

The definition for confluent drawings of directed graphs is very similar.

Definition 2.2 (Directed confluent drawing). Let G = (V, E) be a directed graph. A
confluent drawing of G is a drawing A consisting of directed curves in R2 where

1. every v ∈ V is represented by a point v′ ∈ A,

2. (vi, vj) ∈ E iff there is a directed locally-monotone curve in the drawing that runs
from v′i to v′j,

3. curves are allowed to overlap, but curves are not allowed to intersect each other,
and

4. if curves overlap, they must share the same direction at the overlapping part.

If G admits a confluent drawing, we call G confluent.

The idea behind confluent drawings is to merge edges together. A confluent drawing
represents every edge from the original graph by a smooth curve; see Figure 2.1. While
the original graph is non-planar and cluttered, the confluent drawing does not contain
intersecting curves and contains much less clutter.

Figure 2.1: The idea of confluent drawings: we represent every edge from the original
directed complete bipartite graph K3,3 (left) by a smooth curve in the confluent
drawing (right).

2.2 Confluent graphs

Not all graphs are confluent. For the undirected case, Dickerson et al. presented several
graph classes of which all members are confluent. However, they also showed that
there exist non-confluent graphs. For example, the Petersen graph (see Figure 2.2) is
non-confluent. Dickerson et al. do not discuss whether there exist non-confluent directed
graphs. However, the next lemma confirms this.
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2.2. Confluent graphs

Figure 2.2: The Petersen graph, an example of a non-confluent undirected graph.

Lemma 2.3. Let G = (V, E) be an undirected graph, and let G′ = (V, E′) be a directed graph
obtained by directing the edges of G in an arbitrary way. If G is non-confluent, then G′ is
non-confluent either.

Proof. We prove that if G′ is confluent, G is also confluent. Let A′ be a confluent drawing
of G′. We claim that the drawing A, obtained by replacing all of the curves in A′ by
undirected curves, is a confluent drawing of G, hence proving the lemma.

To prove the claim, we show that A satisfies the three requirements of Definition 2.1.

1. This follows trivially from requirement 1 of Definition 2.2.

2. We prove both directions separately.

Let {vi, vj} ∈ E be an edge in G. Then either (vi, vj) or (vj, vi) is in E′. Without
loss of generality, assume (vi, vj) ∈ E′. By requirement 2 of Definition 2.2 there is a
locally-monotone curve from v′i to v′j in A′. Since we constructed A by removing
the directions from the curves in A′, there is a locally-monotone curve between v′i
and v′j in A.

For the other direction, take some {vi, vj} /∈ E. Then neither (vi, vj) nor (vj, vi) are
in E′. Hence, again by requirement 2 of Definition 2.2, in A′ there is no locally-
monotone curve from v′i to v′j and no locally-monotone curve from v′j to v′i. Now
assume a locally-monotone curve between v′i and v′j does exist in A. Then in A′

not all parts of this curve can have the same direction – otherwise, there was a
locally-monotone curve from v′i to v′j or from v′j to v′i. That means that there must
be some point in A′ where curves of the opposite direction meet. This is disallowed
by requirement 4 of Definition 2.2, hence, a locally-monotone curve between v′i
and v′j cannot exist in A.

3. This follows trivially from requirement 3 of Definition 2.2.

Since the Petersen graph is non-confluent, any directed graph obtained by directing
its edges is also non-confluent. Furthermore, for any graph G = (V, E) we can create a
log that has G as its directly-follows graph. This can be done, for example, by making a
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Chapter 2. Confluent drawings

trace [a1, a2] for every edge (a1, a2) ∈ E. Hence, we can create a log that has a directed
version of the Petersen graph as its directly-follows graph. From this we conclude
that we cannot guarantee that the confluent drawing of a directly-follows graph exists.
Clearly, this is not desirable.

However, there is a simple solution to this problem. In the remainder of this chapter,
we drop requirement 3 (that curves are not allowed to intersect) from Definitions 2.1
and 2.2. Now every graph becomes confluent: any (non-necessarily planar) node-
link drawing is already a valid confluent drawing. The same approach of dropping
the planarity requirement is also taken for the same reason by Eppstein et al. [8] for
producing confluent layered drawings.

2.3 Algorithm

Dickerson et al. proposed simple heuristic algorithms to produce undirected and directed
confluent drawings [4]. We consider only the version for directed confluent drawings
here, The algorithm iteratively replaces all edges of a maximal directed complete bipartite
subgraph by a series of curves; basically it repeatedly applies the transformation in
Figure 2.1.

The original algorithm by Dickerson et al. includes the planarity restriction that we
dropped. Hence, it produces planar confluent drawings only, and returns fail if it cannot
find one. Since we dropped the planarity restriction, we modified the algorithm so that
it just tries to perform as many replacements as possible, and stops when there are no
complete bipartite subgraphs anymore to replace.

Also, the original algorithm never replaces bipartite subgraphs with only one vertex
at a side. This is done since performing such a replacement never helps to make the
drawing planar. However, since we are not interested in obtaining a planar drawing
anymore, we also replace such small bipartite graphs. This results in the algorithm
CONFLUENT-DRAWING that is given as pseudocode in Figure 2.3.

The algorithm first replaces the bipartite subgraph it found by a single vertex. Then
it performs a recursive call to find more bipartite graphs in the remainder of the graph;
during this search it can use the new vertex. Only when the recursive call returns, the
new vertex is replaced again by switches.

To see why this is useful, see Figure 2.4. First the algorithm finds a bipartite subgraph
and replaces it by a single vertex v. After that, there is a new bipartite subgraph that
is replaced by a new vertex v′, after which the algorithm is ready and replaces all new
vertices by pairs of switches. Note that if v would not have been inserted after the first
replacement, the algorithm would not be able to find the second replacement, which
would enable less simplification.
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2.4. Results

Algorithm CONFLUENT-DRAWING(G = (V, E))
1 find a maximal bipartite complete subgraph
2 if there is none:
3 return
4 L, R← the left and right side of the subgraph
5 remove all edges from L to R
6 add a new vertex v; add edges from L to v and from v to R
7 CONFLUENT-DRAWING(G)
8 remove v and its adjacent edges again
9 add curves between L and R as shown in the right part of Figure 2.1

Figure 2.3: A heuristic algorithm to find a confluent drawing of a directed graph. This
algorithm is adapted from algorithm HEURISTICDRAWUNDIRECTED by Dick-
erson et al. [4].

2.4 Results

In Figure 2.5, a confluent drawing of the repair shop example is shown. We did not
implement the algorithm. Hence, we obtained this drawing by executing the algorithm
by hand on the directly-follows graph of the log file.

Some properties of the process are clear in this drawing: we can see that it is possible
to loop from Test Repair back to the repair activities via Restart Repair. Unfortunately, the
result still seems rather messy and unstructured, even while we layouted the graph by
hand to obtain a clear drawing. Also, the concurrency between Inform User and Repair
(Simple), Repair (Complex), Restart Repair and Test Repair is not clearly visible.
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Chapter 2. Confluent drawings

v

v

v′

Figure 2.4: An example of the execution of algorithm CONFLUENT-DRAWING.

Register
Analyze
Defect

Restart
Repair

Repair
(Simple)

Repair
(Complex)

Test
Repair

Inform
User

Archive
Repair

Figure 2.5: A confluent drawing for the repair shop data set. This figure was constructed
manually using algorithm CONFLUENT-DRAWING.
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Chapter 3
Strict power graphs

In this chapter we study power graphs in more detail. As we saw in the introduction, this
is an approach to the problem of drawing dense graphs in a clear way, just like confluent
drawings. However, power graphs use vertex bundling instead of edge bundling.

Power graph analysis was first discussed in 2008 by Royer et al. [18] for the analysis
of biological protein networks. After that, Dwyer et al. refined this new concept. They
performed a user study showing that inexperienced users are able to use power graphs
to accurately answer shortest-path queries [6]. They also expanded on the technique by
developing algorithms to compute power graphs [5].

The idea of power graph analysis is to draw the vertices in groups, and allow edges
to attach to entire groups of vertices; see Figure 3.1. Hence, while edge bundling
methods reduce the number of edges in the drawing by bundling them, vertex bundling
methods achieve this by representing many edges in the original graph by one edge in
the drawing.

Figure 3.1: The idea of power graph analysis: instead of grouping edges like with
confluent drawings (left), we group vertices (right).
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Chapter 3. Strict power graphs

3.1 Definition

In this section, we give formal definitions for power graphs. We mostly follow the
definitions by Dwyer et al. [6]. Note that power graphs can also be used for undirected
graphs, just like confluent drawings. Again, we discuss only the directed variant here.

Definition 3.1 (Power graph configuration). Let V be a set of vertices. A power graph
configuration, or just configuration, on V is a set M ⊆ 2V of modules, where every module
is a subset of the vertices, satisfying the following requirements: {v} ∈ M for all v ∈ V,
and for all modules m, n ∈ M: if m ∩ n 6= ∅, then m ⊆ n or n ⊆ m.

This means that the modules in a power graph configuration are not allowed to
overlap partially: if modules overlap, one of them needs to completely contain the other.
Hence, modules are ordered in a hierarchical, tree-like fashion. See Figure 3.2 for an
example.

v1 v2 v3

v4 v5

{v1, v2, v3, v4, v5}

{v1, v2, v3}

{v1, v2} {v4, v5}

{v1} {v2} {v3} {v4} {v5}

Figure 3.2: An example of a valid power graph configuration on five nodes, and its
representation as a tree of modules.

Definition 3.2 (Power graph). Let G = (V, E) be a directed graph. A power graph on V
is a pair P = (M, R) where M is a configuration on V and R ⊆ M×M is a set of power
edges. We say that P represents G if

• for every edge (u, v) ∈ E, there exists a power edge (m, n) ∈ R with u ∈ m and
v ∈ n (“every edge in G is represented by a power edge in P”);

• for every power edge (m, n) ∈ R, for any u ∈ m and v ∈ n, (u, v) ∈ E (“every
power edge in P represents a complete set of edges in G from all vertices in m to
all vertices in n”).
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3.1. Definition

To avoid confusion with fuzzy power graphs later on, we also refer to power graphs
as strict power graphs.

In Figure 3.3 a simple graph G is shown, along with three power graphs that represent
G. It is clear that for any graph G, there are many power graphs representing G. Since
our goal is to simplify the drawing, we are interested in obtaining power graphs with a
low number of power edges.

Figure 3.3: An example of a graph G (top left), along with three power graphs represent-
ing G.

Note that in the power graph drawings in Figure 3.3, we left out the modules for
individual vertices (just like in Figure 3.1). Instead, power edges arriving at such a
single-vertex module are connected directly to the original vertex. In the remainder, we
do the same for all drawings of power graphs, since it reduces clutter.

Finally, note that it is allowed for power edges to cross module boundaries. This
happens, for example, in the lower two power graphs in Figure 3.3. This is essential
to the definition of power graphs. A power graph without power edges that cross
module boundaries is called a modular decomposition [6]. We will not discuss modular
decompositions further here, since they allow for much less simplification than power
graphs.
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Chapter 3. Strict power graphs

3.2 The greedy algorithm

Dwyer et al. [5] proposed a greedy algorithm to produce power graph configurations.
This algorithm tries to minimize the number of power edges needed; however it is not
optimal. Dwyer et al. present strong evidence that the problem of finding an optimal
power graph configuration is NP-hard, although as far as we know a complete proof has
not been found yet. Therefore, we focus on the greedy algorithm in this thesis.

In this section we look at the greedy algorithm in detail. Later, in Chapter 4, we will
use a modified version of it to find fuzzy power graphs.

The greedy algorithm builds the tree of modules bottom-up. It starts with single-
vertex modules for every vertex, that form the leaves in the tree. The algorithm then
starts executing merges. For two top-level modules m and n, merging m and n means that
a new module m ∪ n is introduced in the module tree. By performing a merge, any pair
(m, v) and (n, v) of power edges can be replaced by a single power edge (m ∪ n, v), and
similar for pairs (v, m) and (v, n); see Figure 3.4. The algorithm greedily picks the merge
that eliminates the largest number of power edges. This is repeated until no merge step
can reduce the number of power edges anymore.

m

n

v v

m ∪ n

merge m and n

Figure 3.4: During a merge, we replace pairs of power edges (m, v) and (n, v) by a single
power edge (m ∪ n, v).

To implement this algorithm, we need a way to determine how many power edges
can be eliminated by merging m and n. We could just perform the merge and count the
number of eliminated power edges. We can also just count the number of outgoing and
incoming neighbours that m and n share:

nedges(m, n) := the number of eliminated power edges when merging m and n

= |N+(m) ∩ N+(n)|+ |N−(m) ∩ N−(n)|,

where N+(m) and N−(m) are the sets of outgoing and incoming neighbours of m,
respectively.

Finally, we note that merging m and n might leave m or n without any associated
power edges. Such modules do not serve any purpose while adding clutter to the
drawing. Hence, we check for this situation after the merge step by removing m or n
when they do not have any power edges attached to them. Alternatively, we can perform
a post-processing step after the entire algorithm is ready.
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3.3. Results

The complete procedure is described in pseudocode in Figure 3.5. In Figure 3.6 an
example execution of the algorithm is shown.

Algorithm POWER-GRAPH-GREEDY(G = (V, E))
1 P← a set of modules with a module {v} for every vertex v ∈ V
2 R← the set of power edges: {({v1}, {v2}) | (v1, v2) ∈ E}
3 while improved:
4 find the top-level modules m, n ∈ P with the largest nedges(m, n)
5 P← P ∪ {m ∪ n}
6 for all v ∈ P with (m, v), (n, v) ∈ R:
7 R← R \ {(m, v), (n, v)} ∪ {(m ∪ n, v)}
8 . . . I repeat line 6–7 for incoming power edges
9 if there are no more power edges in R incident to m or n:

10 remove that module from P
11 return P, R

Figure 3.5: The greedy algorithm proposed by Tim Dwyer et al. for generating a power
graph decomposition.

Note that different implementations of this algorithm do not necessarily come up
with the same power graph drawing. In line 4, there may be several pairs of modules
which all have the same nedges. In such a case, the algorithm can pick any of those pairs,
resulting in different power graphs.

3.3 Results

As we saw in Section 1.3, concurrency manifests itself in the directly-follows graph
as a group of edges between the sets of activities that are carried out in parallel. In a
power graph, a complete set of edges between two groups of vertices is really simple to
represent: it just consists of two power edges (in both directions) between two sets of
vertices. So, in the ideal case concurrency would be visualized like in Figure 3.7, which
is a much clearer visualization than the node-link drawing in Figure 1.7.

To see whether this works in practice, in Figure 3.8 the result of running algorithm
POWER-GRAPH-GREEDY on the directly-follows graph of the repair shop example (see
Figure 1.6) is shown. The resulting drawing has 9 power edges. For comparison, the
original directly-follows graph contains 19 edges.

We note that the choice between Repair (Simple) and Repair (Complex) is visible clearly
in the drawing. However; the concurrency between Inform User and the other nodes is
not really clear, just like in the confluent drawing in Section 2.4.
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Chapter 3. Strict power graphs

Figure 3.6: An example of executing algorithm POWER-GRAPH-GREEDY. The situation
is shown after every iteration of the while loop.

Figure 3.7: The directly-follows graph of a process containing concurrency visualized as
a power graph drawing.
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3.3. Results

Register

Analyze
Defect

Restart
Repair

Repair
(Simple)

Repair
(Complex)

Test Repair Inform User Archive Repair

Figure 3.8: A strict power graph drawing for the repair shop example as generated by
the algorithm POWER-GRAPH-GREEDY.
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Chapter 4
Fuzzy power graphs

As we saw in the previous chapter, strict power graphs work well to make drawings of
directly-follows graphs easier to read. However, for large logs, the resulting drawings
are still very large and hard to read. Hence, we want to investigate whether it is possible
to reduce the complexity of the drawing more than what strict power graphs are able to
achieve.

It turns out that we can do this, by allowing our method to introduce ambiguity in
our drawing. As an example, consider the bipartite graph K4,4 − {e}. In Figure 4.1b the
result of POWER-GRAPH-GREEDY on this graph is shown; compare this to the drawing
of K4,4 in Figure 4.1a. By removing one edge from K4,4, we need an additional edge and
an additional module to represent the graph.

(a) K4,4. (b) K4,4 − {e}.

Figure 4.1: Strict power graph representations of two directed bipartite graphs.

If we allow some ambiguity, it makes sense to represent K4,4 − {e} by the drawing
in Figure 4.1a. In that case, we are not able to see which of the 16 edges is not present,
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4.1. Definition

but we save one edge and one module. In this chapter we introduce an extension to the
concept of strict power graphs, based on this idea, called fuzzy power graphs, that allows
ambiguity

4.1 Definition

Definition 4.1 (α-fuzzy power graph). Let G = (V, E) be a directed graph, and α ∈ [0, 1].
An α-fuzzy power graph on V is a pair P = (M, R) where M is a configuration on V and
R ⊆ M×M is a set of power edges. We say that P represents G if

• for every edge (u, v) ∈ E, there exists a power edge (m, n) ∈ R with u ∈ m and
v ∈ n (“every edge in G is represented by a power edge in P”);

• for every power edge (m, n) ∈ R, |E ∩ (m× n)| ≥ α · |m× n| (“at least a fraction
of α of the edges from the vertices in m to the vertices in n exists in E”)

Note that the definition for fuzzy power graphs is almost identical to the definition
for strict power graphs. The only distinction is in the second condition. With strict
power graphs, we required that a power edge (m, n) indicates that all edges (u, v) with
u ∈ m and v ∈ n exist in the original graph. Said differently, a power edge represents a
complete bipartite subgraph in G. Now, with fuzzy power graphs, we require only that
a power edge represents a partial bipartite subgraph. Such a partial bipartite subgraph
needs to contain at least a fraction of α of the edges of the corresponding complete
bipartite subgraph. Thus, the definition of 1-fuzzy power graphs is equivalent to the
one for strict power graphs.

This definition solves the problem where K4,4 − {e} is not drawn clearly: for α ≤
15/16 the drawing in 4.1a is a valid α-fuzzy power graph representing K4,4 − {e}. While
the disadvantage of fuzzy power graphs is that they are ambiguous, by setting α to
values between 0 and 1, we can trade off the ambiguity and the simplicity of the drawing.

4.2 A naive algorithm

To obtain a simple algorithm that generates fuzzy power graphs, we take algorithm
POWER-GRAPH-GREEDY from Section 3.2 as a starting point.

The basic idea is as follows. During a merge operation, instead of replacing only
pairs of power edges (m, v) and (n, v) by a single power edge (m∪ n, v) (as in Figure 3.4),
we can sometimes also move a single power edge (m, v) to (m ∪ n, v), even when (n, v)
does not exist (see Figure 4.2). Of course, we cannot always do this: we need to check if
the new power edge satisfies the second condition of Definition 4.1.

To be able to perform this check, we need to know for every power edge e how many
edges it represents in the original graph G. To do that we simply store these counts
along with the power edges; we will denote by r(e) the number of edges represented by
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Chapter 4. Fuzzy power graphs

m

n

v v

m ∪ n

r
merge m and n

(fuzzy) r

Figure 4.2: During a fuzzy merge, we can sometimes replace a single power edge (m, v)
by the power edge (m ∪ n, v), even when (n, v) does not exist. Compare this
to the step for strict power graphs (Figure 3.4).

a power edge e. Every time we replace a pair of power edges e1, e2 by a single power
edge e, we take the sum of the counts of the old power edges: r(e) = r(e1) + r(e2).

Now, to perform the check, we compute which fraction of all possible edges is
present between the new module m ∪ n and v. The total number of possible edges is
|(m ∪ n)× v| = |m ∪ n| · |v|. Thus, we are allowed to execute the replacement step iff

r((m, v))
|m ∪ n| · |v| ≥ α.

Of course, instead of the power edge (m, v) we can also replace (n, v) in the same
way. Also the same can be done for power edges that run in the other direction (that
is, from v to m or n). This results in the pseudocode for the algorithm that is given in
Figure 4.3; the additions to POWER-GRAPH-GREEDY are shown in red.

4.3 Problems with this approach

Although the algorithm FUZZY-POWER-GRAPH-NAIVE always produces valid α-fuzzy
power graphs, it turns out that it has major problems finding an optimal one, or even
one that comes close to being optimal.

For example, consider again the graph K4,4 − {e}. As we saw in Section 4.1, for
α ≤ 15/16 we would expect to obtain the power graph from Figure 4.1a. Unfortunately,
FUZZY-POWER-GRAPH-NAIVE will come up with this drawing only for α ≤ 3/4: for
α > 3/4 it returns the drawing from Figure 4.1b. To see why this happens, we take a
more detailed look what the algorithm is doing in this case.

First, the algorithm merges {a1} and {a2} to produce {a1, a2}, and then it merges
{a1, a2} and {a3} to produce {a1, a2, a3}. This is exactly the same as in the non-fuzzy
case.

Now, the algorithm will start merging m := {a1, a2, a3} and n := {a4}; see Figure 4.4a.
Of course, the pairs of power edges from m and n to {b1}, {b2} and {b3} are all replaced
by single power edges from m ∪ n. So, we get the situation depicted in Figure 4.4b.
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Algorithm FUZZY-POWER-GRAPH-NAIVE(G = (V, E), α)
1 P← a set of modules with a module {v} for every vertex v ∈ V
2 R← the set of weighted power edges: {({v1}, {v2}, 1) | (v1, v2) ∈ E}
3 while improved:
4 find the top-level modules m, n ∈ P with the largest nedges(m, n)
5 P← P ∪ {m ∪ n}
6 for all v ∈ P with (m, v, r1), (n, v, r2) ∈ R:
7 R← R \ {(m, v, r1), (n, v, r2)} ∪ {(m ∪ n, v, r1 + r2)}
8 . . . I repeat line 6–7 for incoming power edges
9 for all v ∈ P with (m, v, r):

10 if
r

|m ∪ n| · |v| ≥ α:

11 R← R \ {(m, v, r)} ∪ {(m ∪ n, v, r)}
12 . . . I repeat line 9–11 for incoming power edges and with m replaced by n
13 if there are no more power edges in R incident to m or n:
14 remove that module from P
15 return P, R

Figure 4.3: A simple modification to algorithm POWER-GRAPH-GREEDY to generate
α-fuzzy power graphs. The additions to POWER-GRAPH-GREEDY are shown
in red.

If α ≤ 3/4, the power edge (m, {b4}) will be replaced by the power edge (m∪n, {b4}).
When we execute the algorithm further, {b1, b2, b3, b4} will be merged into one module,
and we get the power graph from Figure 4.1a.

If however α > 3/4, we cannot replace this power edge. Since the algorithm will
try to merge top-level modules only, and m is not a top-level module anymore, the
algorithm will never be able to replace (m, {b4}) by (m ∪ n, {b4}) anymore. This results
in the drawing in Figure 4.1b.

The main problem here is that the algorithm, at the moment it merges m and n, does
not know yet that {b1, b2, b3, b4} will all be merged in later steps of the algorithm. This
limitation is inherent in using a greedy algorithm. We can however fix the problem by
accepting the limitation, but doing the merge step in a different way.

4.4 An improved algorithm

In this section, we present an improved variant of FUZZY-POWER-GRAPH-NAIVE that
overcomes the problem mentioned in the previous section. The basic structure of the
algorithm stays the same; we only do the merge step in a different way.

Consider the situation where we are merging two top-level modules m and n. In the
naive algorithm, we would look at every other top-level module v to see if both m or
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a1

a2

a3

a4

b1

b2

b3

b4

(a)

a1

a2

a3

a4

b1

b2

b3

b4

(b)

Figure 4.4: Two situations during the execution of FUZZY-POWER-GRAPH-NAIVE on
the graph K4,4 − {e}.

m

n

x1

x2

...

v

m ∪ n

x1

x2

...

v

merge m and n
(fuzzy)

Figure 4.5: In the improved algorithm for finding fuzzy power graphs, we also consider
power edges from m or n to submodules of v. We can sometimes replace
all of those power edges by one power edge (m ∪ n, v). Compare this to
Figures 3.4 and 4.2.

n had power edges towards v, and if so, replace those power edges by a single power
edge from m ∪ n (see again Figure 4.4). Hence, we did not look at power edges towards
submodules of v.

However, those power edges represent edges from G that are also a part of the same
bipartite subgraph between m ∪ n and v. Therefore it is beneficial to look at all power
edges to submodules of v, and – if possible – replace them by a single power edge
(m ∪ n, v) (see Figure 4.5).

To determine whether we are allowed to perform this replacement, we compute the
sum N of the weight of all power edges from m or n to any module x ⊆ v:

N := ∑
{

r(e)
∣∣ e ∈ R from m or n to x ⊆ v

}
.

Now if
N

|m ∪ n| · |v| ≥ α,
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we can replace all of the power edges by a single power edge (m ∪ n, v) with weight N.

Algorithm FUZZY-POWER-GRAPH- (G = (V, E), α)
1 P← a set of modules with a module {v} for every vertex v ∈ V
2 R← the set of weighted power edges: {({v1}, {v2}, 1) | (v1, v2) ∈ E}
3 while improved:
4 for all pairs of top-level modules m, n ∈ P:
5 Pm,n, Rm,n ← MERGE(α, P, R, m, n)
6 take m, n with the smallest |Rm,n|
7 P← Pm,n, R← Rm,n

8 if there are no more power edges in R incident to m or n:
9 remove that module from P

10 return P, R
Subroutine MERGE(α, P, R, m, n)
1 P← P ∪ {m ∪ n}
2 for all v ∈ P:
3 e← a list of all power edges (m, x, r) or (n, x, r) in R where x ⊆ v
4 N← ∑

(a,x,r)∈ e
r

5 if
N

|m ∪ n| · |v| ≥ α:

6 R← R \ e ∪ {(m ∪ n, x, N)}
7 . . . I repeat line 3–6 for incoming power edges
8 return P, R

Figure 4.6: A variant on algorithm FUZZY-POWER-GRAPH-NAIVE that does not suffer
from the problem described in Section 4.3.

The full algorithm is given as pseudocode in Figure 4.6. For clarity we moved the
merge step into a separate subroutine. Also, since there is no simple expression for
nedges anymore, we just execute all merges and take the one with the smallest number
of power edges.

We now look again at the problem discussed in Section 4.3 and see how FUZZY-
POWER-GRAPH-GREEDY solves this. For α = 15/16, the algorithm still arrives at
the situation depicted in Figure 4.4b, and it is still unable to replace the power edge
(m, {b4}) by (m ∪ n, {b4}). However, after some more merge steps the algorithm merges
m := {b1, b2, b3} and n := {b4} (see Figure 4.7). The list e now contains both power
edges in the graph, which have a total weight of 15. Since |m ∪ n| · |v| = 16, we are now
allowed to replace both power edges by a single edge (v, m ∪ n), resulting in the power
graph depicted in Figure 4.1a.
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a1
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Figure 4.7: The situation before merging m := {b1, b2, b3} and n := {b4} during algo-
rithm FUZZY-POWER-GRAPH-GREEDY on the graph K4,4 − {e}.

4.5 Results

In this section we apply algorithm FUZZY-POWER-GRAPH-GREEDY to the repair shop
data set to see whether it works in practice. In Figure 4.8 we show the result of running
the algorithm for α = 0.6 on the directly-follows graph of the repair shop example.

Due to the complexity of this algorithm we did not execute the algorithm by hand,
since that would be very error-prone. Instead, we used the implementation discussed in
Chapter 5. We used a version of the implementation that outputs a debug message for
every step it takes. Using those messages, we verified manually that the algorithm was
executed correctly according to the pseudocode in Figure 4.6.

We see that the general structure of the drawing is quite similar to the strict power
graph drawing in Figure 3.8, but there are more nested modules and less power edges.
The strict power graph drawing contains 9 power edges, while the fuzzy power graph
contains 7 power edges.

However, as expected, also a lot of structure is lost. In the drawing, we do not see
anymore that there is a choice between Repair (Simple) and Repair (Complex). Instead, if
we interpret this drawing as a strict power graph, there seems to be a choice between
four activities: Repair (Simple), Repair (Complex), Restart Repair and Archive Repair.

There is an interesting edge from Restart Repair to the module containing Repair
(Simple), Repair (Complex) and Restart Repair itself. If we assume that the original graph
does not have any self-loops, such power edges to parent modules will never happen
with strict power graphs. However, in a fuzzy power graph they do happen. In this
case, the directly-follows graph contains edges from Restart Repair to both Repair (Simple)
and Repair (Complex). Hence, with α = 0.6 < 2/3 we are allowed to use a single power
edge from Restart Repair to its parent module to represent those two edges in the original
graph.
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Figure 4.8: A 0.6-fuzzy power graph drawing for the repair shop example as generated
by the algorithm FUZZY-POWER-GRAPH-GREEDY. Compare this to the strict
power graph drawing in Figure 3.8.
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Chapter 5
Implementation

In this chapter, we discuss our proof-of-concept implementation of the algorithms for
strict and fuzzy power graphs. The proof of concept is available on http://wimiso.nl/

research/logvis/demo.

5.1 WebCola

To experiment with strict and fuzzy power graphs, we used the WebCola library1 by
Dwyer et al. This is a library for layouting graphs with constraints on the layout.
Supported constraints are alignment constraints (vertices need to have the same x- or
y-coordinate) and separation constraints (the distance between vertices on the x- or y-axis
needs to be above some minimum value).

WebCola is written in TypeScript, a language that compiles to JavaScript, so it runs
inside the user’s web browser. Since OpenXES, the library that reads log files (see
Section 6.1), is written in Java and we already wrote Java code to call this library, we
added functionality to export a log file to a format that WebCola is able to read.

WebCola already contained an implementation of the greedy algorithm from Sec-
tion 3.2. The library also contained a grid router, which is a function to layout the edges
on a rectangular grid, but this was experimental.

5.2 Bug fixes

We needed to make a few bug fixes to WebCola. They have all been incorporated in the
library. In this section we give descriptions of those bug fixes.

1WebCola can be downloaded from http://marvl.infotech.monash.edu/webcola.
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5.2. Bug fixes

5.2.1 Browser incompatibility

In the greedy algorithm, the JavaScript sort() function was used to find the merge
with the largest nedges. However, this sort function is not guaranteed by the JavaScript
specification to be stable: some browsers implement a stable sorting algorithm, others
do not. Hence, the output of the greedy algorithm varied between browsers. For the
sake of reproducibility, we made the sort stable, by modifying the comparison function
to compare based on the original ordering if nedges is identical.

5.2.2 Edge reversal bug

The grid router reverses edges, so that bundled edges all share the same direction.
However, it forgot to reverse the edges back again after the algorithm, resulting in
incorrect drawings like in Figure 5.1. We fixed this by adding code to reverse the edges
back.

Figure 5.1: A double edge between two modules. This is an effect of the edge reversal
bug: actually one of the arrows would have to be reversed to obtain a correct
drawing.

5.2.3 Crash in the grid router

This issue is a bit more complicated; we give only a high-level overview here. When
routing edges over the grid, edges will often share the same grid line. Since a drawing
with overlapping edges would not be clear, the grid router pushes the edges apart a
bit (this is already visible in Figure 5.1). However, when doing this it is important to
pick a good ordering of edges within a single bundle, since otherwise we can get a lot of
unnecessary edge crossings.
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Chapter 5. Implementation

Therefore WebCola’s grid router contains a subroutine orderEdges() that takes care
of determining a smart ordering of two edges in a single bundle. The heart of the
subroutine is a case distinction:

1. if the two edges are completely identical, it takes an arbitrary ordering;

2. otherwise, it looks at one of the endpoints where the two paths diverge, and bases
the ordering on that.

The problem was that there is a third case that does not normally occur when
rendering graphs, but does happen with power graphs: the case where one of the edges
is entirely covered by another edge (see Figure 5.2). In this case, the algorithm would
decide that the edges are not identical, so it would go to the second case, and try to find
an endpoint where the paths diverge. Obviously, the paths do not diverge on either
endpoint, which eventually resulted in an out-of-bounds array access, causing a crash.

The fix for this was surprisingly simple. Note that in Figure 5.2, the ordering of the
two edges does not matter, just like in the first case of the case distinction. Hence, we
modified the guard on the first case to include all possible cases where the order does
not matter. This indeed solved the problem.

v1

v2 v3

v4

Figure 5.2: Sketch of a situation that would crash the grid router. When drawing normal
graphs, this situation would never happen, since the grid router avoids
vertices when routing edges, so the edge from v1 to v4 could never visit other
vertices on its path. However, in power graphs, this situation can happen
when v1 and v4 are submodules of v2 and v3, respectively.

5.3 Fuzzy power graph algorithm

We implemented the FUZZY-POWER-GRAPH-GREEDY algorithm from Section 4.4 in
WebCola. To do this, we extended the function powerGraphGroups() to accept an
additional, optional parameter α. If α = 1, or if the parameter is omitted, the original
implementation of POWER-GRAPH-GREEDY is run. If α < 1, the new implementation is
run.

While the implementation works, it is not completely stable yet, and could use
further improvements. Therefore we made no attempt to get this change included in the
WebCola project.
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5.4 Results for the repair shop example

To test whether the implementation works correctly, we used the example data set from
the telephone repair shop. In this section we present screenshots of the results.

To make the drawings of the repair shop example more readable, we shortened the
activity names: Simple corresponds to Repair (Simple), Analyze corresponds to Analyze
Defect, and so on. This was necessary because the grid router in WebCola has problems
layouting non-square vertices, so we had to fit the labels in square vertices. Hence, long
labels like Analyze Defect would cause the vertices to become very large.

Strict power graphs First, we ran the strict power graph algorithm on the directly-
follows graph. Figure 5.3 presents two strict power graph drawings for this data set.

Figure 5.3a presents the layout that is generated initially by WebCola. WebCola offers
the possibility to make vertices in a graph draggable, so that the layout can be improved
by hand. To demonstrate this capability, Figure 5.3b presents the layout after dragging
the vertices so that the layout corresponds to the drawing in Figure 3.8. We see that the
constructed power graph is identical to the power graph that was constructed by hand.

Fuzzy power graphs Figure 5.4 presents the result of running the implementation for
fuzzy power graphs with α = 0.6. The output is identical to the drawing in Figure 4.8.
This is logical, because we used the implementation to generate the power graph shown
in the figure. However, as described in Section 4.5, we manually verified the results.

The layout was manually dragged again to correspond to Figure 4.8. An interesting
point is the edge from Restart to its parent module. WebCola draws this edge as a very
short arrow directly to the module boundary. In our manual drawing we used an arrow
that leaves the module and reaches the module boundary from the outside.
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Chapter 5. Implementation

(a) The original layout.

(b) After manual layouting.

Figure 5.3: The repairshop example visualized as a strict power graph.

Figure 5.4: The repairshop example visualized as a 0.6-fuzzy power graph.
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Chapter 6
Evaluation

In this chapter we evaluate how well the power graph visualizations work in prac-
tice. We provide screenshots of the strict and fuzzy power graphs generated by the
implementation on several example data sets.

6.1 Data sets

In this section we start by describing the data sets used.
To store log data, the process mining community developed a standardized file

format named XES (Extensible Event Stream) [20], that is also used by ProM. The file
format is based on XML and is able to store a lot of information about events. For
example, the log file shown in Figure 1.2 is in the XES format. All example data sets
are stored in XES files, so we need a way to read them. Luckily, there is an existing,
open-source library called OpenXES1 to read XES files. We wrote a small Java program
that uses this library to read the files and export a representation of the directly-follows
graph that we can use as input for our visualizations.

6.1.1 Repair shop
First of all, we use the data set from a telephone repair shop, that was already used as
the running example in this thesis. There are 1104 traces, with 11 855 events in total.
As we saw already in Chapter 1, the data set contains examples of both choice and
concurrency: there is a choice between Repair (Simple) and Repair (Complex), and Inform
User is performed in concurrency with Repair (Simple), Repair (Complex), Test Repair and
Restart Repair.

1OpenXES can be downloaded from http://www.xes-standard.org/openxes/start.
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Chapter 6. Evaluation

In the original log file, some activities (Analyze Defect, Repair (Simple), Repair (Complex)
and Test Repair) have both a start and a complete variant. This is done to model activities
that take a long time. Those sub-activities are called lifecycle transitions. For example, a
trace from the log file, with lifecycle transitions, could be

[Register, Analyze Defect/start, Analyze Defect/complete,

Repair (Simple)/start, Repair (Simple)/complete, Inform User,

Test Repair/start, Test Repair/complete, Archive Repair].

In the examples in this thesis we do not consider those start and complete variants as
separate activities. Instead, in a preprocessing step, we merged all activities with the
same name and distinct lifecycle transitions, and removed the resulting self-loops. This
removal of self-loops is necessary because, for example, the sequence [Test Repair/start,
Test Repair/complete] would create a self-loop on Test Repair, that does not actually occur
in the process (Test Repair was not executed twice).

6.1.2 Generated data sets
We also use a series of data sets with 12, 22, 32 and 42 activities, that we call a12, a22,
a32 and a42, respectively. Those data sets are created by Măruşter et al. [17] and do not
contain real-world data; instead they have been generated to evaluate process mining
algorithms.

The logs have been generated by drawing Petri nets by hand; this has been done on
purpose to contain many examples of concurrency. After that, traces were generated
that conform to the Petri net. The Petri net of the a12 log is given in Figure 6.1.

S

b

f

c

d

e
j

h

g i
k

E

Figure 6.1: A drawing of the Petri net used to generate the a12 data set. This is a modified
version of Figure 1 in the paper by Măruşter et al. [17].

We see that, according to the Petri net, the process starts by doing S, and then there is
a choice between two possibilities. In the first possibility, we do either b and then we can
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6.2. Generated data sets

choose between doing either c and e, or d. After that we do j and finish. In the second
possibility, we get two concurrent processes: one performs g and i; the other performs
just h. After that we do k and finish.

The method of generating the logs is explained in more detail in the paper by
Măruşter et al. [17, § 3]. From this paper, we used the logs with 1000 lines, no noise and
no imbalance of execution properties.

6.1.3 Financial log
Finally, to evaluate how well the algorithms work for very large event logs, we use the
event log from the 2012 Business Processing Intelligence Challenge2. This event log
contains data from a financial institution, and consists of 13 087 traces containing 262 200
events in total.

6.2 Generated data sets

First, we look at the generated data set a12. In Figure 6.2, the result as generated by our
implementation is depicted. The drawing is very readable; it contains only 13 power
edges. The drawing clearly shows the choice between the two possibilities, and the
choice between [c, e] and d inside the first possibility. The concurrency between [g, i] and
h is less visible in the drawing, however.

Since the strict power graph drawing is rather simple already, we do not expect that
using fuzzy power graphs would really help in this case. To see if this is indeed the case,
a 0.5-fuzzy power graph of the data set is given in Figure 6.3. The drawing contains
12 power edges, one less than the strict power graph. Note that the drawing contains
several edges between vertices and their parent modules, just like the drawing of the
repair shop example (see Section 4.5 and 5.4).

We then tried the implementation on the larger data sets a22, a32 and a42. Screenshots
of the generated strict and fuzzy power graphs can be found in Appendix A.1.

For a22, the generated strict power graph is still reasonably readable; we can see
quite well what is going on in the process. The 0.5-fuzzy power graph has a lot less
edges than the strict power graph, but it also loses a lot of information about the process.

For a32, the strict power graph has so many edges that it is quite unreadable. In
the 0.5-fuzzy power graph we notice something strange: the module {b, n, h9, i, f , k10}
overlaps with the module next to it (see Figure A.4). It seems like h9, i, f and k10 are
actually in two modules, which would of course be totally wrong.

Luckily, in fact, that is not what is going on. The algorithm works fine; those
vertices belong only to the module {b, n, h9, i, f , k10} in the underlying data structure.
The problem is the way WebCola layouts power graphs. The layout algorithm uses

2More information about this challenge and the corresponding data set can be found on http://www.

win.tue.nl/bpi/2012/challenge.
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Chapter 6. Evaluation

Figure 6.2: A strict power graph drawing of the a12 data set, as generated by our imple-
mentation.

constraints to enforce that modules do not overlap, but the constraints do not take into
account the padding between the contents of a module and its boundary. Usually this
is not a problem since the padding is only small compared to the minimum distance
enforced between modules.

However, for deeply nested module hierarchies this creates a problem, since there
are a lot of paddings next to each other, so that modules can overlap each other with
their padding areas. Figure A.4 presents an extreme case of this problem. This issue
could probably be fixed by defining the constraints in a different way. However, since
this is only a proof-of-concept implementation, we did not pursue this further.

For a42, the strict power graph is a total mess due to the large amount of edges. (In
particular, the two strange sloped edges are caused by a bug in the grid router.) So,
let us direct our attention to the 0.5-fuzzy power graph. Although this drawing is still
large, it has a lot less edges and is actually quite readable. On the other hand, it seems
that we cannot get a lot of information about the process from this drawing anymore.
Hence, it makes sense to try increasing the α-value here. Therefore we tried generating a
0.8-fuzzy power graph (see Figure A.7). This drawing seems to retain much more of the
structure of the original log, while still removing a lot of edges compared to the strict
power graph.
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Figure 6.3: A 0.5-fuzzy power graph drawing of the a12 data set, as generated by our
implementation.

6.3 The financial log

Finally, we looked at the financial event log described in Section 6.1. We tried running
the algorithm for strict power graphs on the directly-follows graph of this data set. This
results in a huge drawing that is not clear at all. While using the algorithm for fuzzy
power graphs helped a bit to make the graph more manageable, even at α = 0.5 the
number of edges is very large. We conclude that our visualization simply does not work
on such enormous log files.

Several screenshots of the generated strict and fuzzy power graphs can be found in
Appendix A.2.
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Chapter 7
Conclusion

In this thesis, we described two ways to visualize event logs using the directly-follows
graph. Firstly, we studied confluent drawings; secondly we looked at power graph
analysis. Of those methods, power graph analysis seems to be the most promising, since
confluent drawings result in a rather cluttered drawing.

We introduced a modification of power graph analysis, called fuzzy power graphs,
to reduce the complexity of drawings, at the cost of losing some information about the
original graph. We developed an algorithm to find fuzzy power graphs, based on an
existing algorithm for power graph analysis.

Our approach also has some limitations. All methods we studied are not able to
visualize edge weights. For visualizing directly-follows graphs, this means that it does
not matter whether some activity occurs in one single trace or in a hundred traces. Of
course, this throws away a lot of useful information. Furthermore, because we currently
use a greedy algorithm, the behaviour is a bit unpredictable.

We implemented the fuzzy power graph algorithm in a proof of concept, together
with the strict power graph algorithm that was already present in WebCola, and evalu-
ated the results. We found out that strict power graphs generally work well for small log
files, but fail to result in a clear drawing for large logs. Fuzzy power graphs are able to
reduce the number of power edges in the drawing, also for larger log files. Unfortunately,
a rather small α is needed to obtain a significant reduction in the number of edges, so
we need to sacrifice a lot of accuracy to get useful results.

Future work While the method using fuzzy power graphs is promising, there is still a
lot of work to do before it becomes useful for analyzing real-world log files.

First of all, we need to be able to visualize edge weights, for example by extending
the concept of power graphs with power edge weights. Also, it seems to be worthwhile
to try to improve the algorithm used for finding fuzzy power graphs. The greedy
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algorithm that we use is not accurate enough, and sometimes comes up with very
strange drawings. It would be interesting to look at other algorithms, for example beam
search (as proposed by Dwyer et al. for strict power graphs [5]).

Alternatively, maybe the definition of α-fuzzy power graphs could be improved. For
example, with α = 1/2, the algorithm allows for any edge (a1, a2) in the original graph
to be replaced by a power edge ({a1, b}, a2), for any arbitrary activity b, also if the edge
(b, a2) does not exist. This seems undesirable, since there is no evidence at all that b
has anything to do with a1, which would justify such a grouping. Hence, a different
definition that prohibits groupings like these may be better suited to visualizing event
logs.
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Appendix A
Screenshots of results

In this appendix we present some more screenshots of power graphs generated by
our implementation. All screenshots in this appendix show the layouts generated by
WebCola; they have not been improved manually by dragging vertices.

A.1 Generated data sets

In Figure A.1, A.3 and A.5, we show strict power graph drawings of the a22, a32 and
a42 data sets, respectively. In Figure A.2, A.4 and A.6, we show 0.5-fuzzy power graph
drawings of those data sets. Finally, we show a 0.8-fuzzy power graph drawing of the
a42 data set in Figure A.7.
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A.1. Generated data sets

Figure A.1: A strict power graph drawing of the a22 data set, as generated by our
implementation.

Figure A.2: A 0.5-fuzzy power graph drawing of the a22 data set, as generated by our
implementation.
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Figure A.3: A strict power graph drawing of the a32 data set, as generated by our
implementation.
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Figure A.4: A 0.5-fuzzy power graph drawing of the a32 data set, as generated by our
implementation.

51



Appendix A. Screenshots of results

Figure A.5: A strict power graph drawing of the a42 data set, as generated by our
implementation.
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Appendix A. Screenshots of results

Figure A.7: A 0.8-fuzzy power graph drawing of the a42 data set, as generated by our
implementation.
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A.2. The financial log

A.2 The financial log

In Figure A.8, a strict power graph of the financial data set is shown. In Figure A.9
and A.10 α-fuzzy power graphs are shown for α = 0.8 and α = 0.5, respectively.

For comparison, we show a node-link drawing of the directly-follows graph in
Figure A.11. In this drawing, the thickness of the edges encodes the number of times
activities directly follow each other.
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Figure A.8: A strict power graph drawing of the financial data set, as generated by our
implementation.
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Figure A.9: A 0.8-fuzzy power graph drawing of the financial data set, as generated by
our implementation.
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Figure A.10: A 0.5-fuzzy power graph drawing of the financial data set, as generated by
our implementation.
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