31 research outputs found

    Properties and Algorithms of the KCube Graphs

    Get PDF
    The KCube interconnection topology was rst introduced in 2010. The KCube graph is a compound graph of a Kautz digraph and hypercubes. Compared with the at- tractive Kautz digraph and well known hypercube graph, the KCube graph could accommodate as many nodes as possible for a given indegree (and outdegree) and the diameter of interconnection networks. However, there are few algorithms designed for the KCube graph. In this thesis, we will concentrate on nding graph theoretical properties of the KCube graph and designing parallel algorithms that run on this network. We will explore several topological properties, such as bipartiteness, Hamiltonianicity, and symmetry property. These properties for the KCube graph are very useful to develop efficient algorithms on this network. We will then study the KCube network from the algorithmic point of view, and will give an improved routing algorithm. In addition, we will present two optimal broadcasting algorithms. They are fundamental algorithms to many applications. A literature review of the state of the art network designs in relation to the KCube network as well as some open problems in this field will also be given

    Master index: volumes 31–40

    Get PDF

    Formally Verified Compositional Algorithms for Factored Transition Systems

    Get PDF
    Artificial Intelligence (AI) planning and model checking are two disciplines that found wide practical applications. It is often the case that a problem in those two fields concerns a transition system whose behaviour can be encoded in a digraph that models the system's state space. However, due to the very large size of state spaces of realistic systems, they are compactly represented as propositionally factored transition systems. These representations have the advantage of being exponentially smaller than the state space of the represented system. Many problems in AI~planning and model checking involve questions about state spaces, which correspond to graph theoretic questions on digraphs modelling the state spaces. However, existing techniques to answer those graph theoretic questions effectively require, in the worst case, constructing the digraph that models the state space, by expanding the propositionally factored representation of the syste\ m. This is not practical, if not impossible, in many cases because of the state space size compared to the factored representation. One common approach that is used to avoid constructing the state space is the compositional approach, where only smaller abstractions of the system at hand are processed and the given problem (e.g. reachability) is solved for them. Then, a solution for the problem on the concrete system is derived from the solutions of the problem on the abstract systems. The motivation of this approach is that, in the worst case, one need only construct the state spaces of the abstractions which can be exponentially smaller than the state space of the concrete system. We study the application of the compositional approach to two fundamental problems on transition systems: upper-bounding the topological properties (e.g. the largest distance between any two states, i.e. the diameter) of the state spa\ ce, and computing reachability between states. We provide new compositional algorithms to solve both problems by exploiting different structures of the given system. In addition to the use of an existing abstraction (usually referred to as projection) based on removing state space variables, we develop two new abstractions for use within our compositional algorithms. One of the new abstractions is also based on state variables, while the other is based on assignments to state variables. We theoretically and experimentally show that our new compositional algorithms improve the state-of-the-art in solving both problems, upper-bounding state space topological parameters and reachability. We designed the algorithms as well as formally verified them with the aid of an interactive theorem prover. This is the first application that we are aware of, for such a theorem prover based methodology to the design of new algorithms in either AI~planning or model checking

    Proceedings of the 3rd International Workshop on Optimal Networks Topologies IWONT 2010

    Get PDF
    Peer Reviewe

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    corecore