704 research outputs found

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs

    Full text link
    This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the well-known Cooley-Tukey FFT and make the algorithms' derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast algorithms, many of which have not been found before.Comment: 31 pages, more information at http://www.ece.cmu.edu/~smar

    A fast algorithm for the computation of 2-D forward and inverse MDCT

    No full text
    International audienceA fast algorithm for computing the two-dimensional (2-D) forward and inverse modified discrete cosine transform (MDCT and IMDCT) is proposed. The algorithm converts the 2-D MDCT and IMDCT with block size M N into four 2-D discrete cosine transforms (DCTs) with block size ðM=4Þ ðN=4Þ. It is based on an algorithm recently presented by Cho et al. [An optimized algorithm for computing the modified discrete cosine transform and its inverse transform, in: Proceedings of the IEEE TENCON, vol. A, 21–24 November 2004, pp. 626–628] for the efficient calculation of onedimensional MDCT and IMDCT. Comparison of the computational complexity with the traditional row–column method shows that the proposed algorithm reduces significantly the number of arithmetic operations

    Machine Learning and Data Mining Applications in Power Systems

    Get PDF
    This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient power system analysis. Conventional signal processing is no longer adequate to extract all the relevant information from distorted signals through filtering, estimation, and detection to facilitate decision-making and control actions. Machine learning algorithms, optimization techniques and efficient numerical algorithms, distributed signal processing, machine learning, data-mining statistical signal detection, and estimation may help to solve contemporary challenges in modern power systems. The increased use of digital information and control technology can improve the grid’s reliability, security, and efficiency; the dynamic optimization of grid operations; demand response; the incorporation of demand-side resources and integration of energy-efficient resources; distribution automation; and the integration of smart appliances and consumer devices. Signal processing offers the tools needed to convert measurement data to information, and to transform information into actionable intelligence. This Special Issue includes fifteen articles, authored by international research teams from several countries

    Representations of Toeplitz-plus-Hankel matrices using trigonometric transformations with application to fast matrix-vector multiplication

    Get PDF
    AbstractRepresentations of real Toeplitz and Toeplitz-plus-Hankel matrices are presented that involve real trigonometric transformations (DCT, DST, DHT) and diagonal matrices. These representations can be used for fast matrix-vector multiplication. In particular, it is shown that the multiplication of an n Ă— n Toeplitz-plus-Hankel matrix by a vector requires only 4 transformations of length n plus O(n) operations

    Generalized discrete Fourier transform with non-linear phase : theory and design

    Get PDF
    Constant modulus transforms like discrete Fourier transform (DFT), Walsh transform, and Gold codes have been successfully used over several decades in various engineering applications, including discrete multi-tone (DMT), orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA) communications systems. Among these popular transforms, DFT is a linear phase transform and widely used in multicarrier communications due to its performance and fast algorithms. In this thesis, a theoretical framework for Generalized DFT (GDFT) with nonlinear phase exploiting the phase space is developed. It is shown that GDFT offers sizable correlation improvements over DFT, Walsh, and Gold codes. Brute force search algorithm is employed to obtain orthogonal GDFT code sets with improved correlations. Design examples and simulation results on several channel types presented in the thesis show that the proposed GDFT codes, with better auto and cross-correlation properties than DFT, lead to better bit-error-rate performance in all multi-carrier and multi-user communications scenarios investigated. It is also highlighted how known constant modulus code families such as Walsh, Walsh-like and other codes are special solutions of the GDFT framework. In addition to theoretical framework, practical design methods with computationally efficient implementations of GDFT as enhancements to DFT are presented in the thesis. The main advantage of the proposed method is its ability to design a wide selection of constant modulus orthogonal code sets based on the desired performance metrics mimicking the engineering .specs of interest. Orthogonal Frequency Division Multiplexing (OFDM) is a leading candidate to be adopted for high speed 4G wireless communications standards due to its high spectral efficiency, strong resistance to multipath fading and ease of implementation with Fast Fourier Transform (FFT) algorithms. However, the main disadvantage of an OFDM based communications technique is of its high PAPR at the RF stage of a transmitter. PAPR dominates the power (battery) efficiency of the radio transceiver. Among the PAPR reduction methods proposed in the literature, Selected Mapping (SLM) method has been successfully used in OFDM communications. In this thesis, an SLM method employing GDFT with closed form phase functions rather than fixed DFT for PAPR reduction is introduced. The performance improvements of GDFT based SLM PAPR reduction for various OFDM communications scenarios including the WiMAX standard based system are evaluated by simulations. Moreover, an efficient implementation of GDFT based SLM method reducing computational cost of multiple transform operations is forwarded. Performance simulation results show that power efficiency of non-linear RF amplifier in an OFDM system employing proposed method significantly improved

    Fourier Transform

    Get PDF
    The application of Fourier transform (FT) in signal processing and physical sciences has increased in the past decades. Almost all the textbooks on signal processing or physics have a section devoted to the FT theory. For this reason, this book focuses on signal processing and physical sciences. The book chapters are related to fast hybrid recursive FT based on Jacket matrix, acquisition algorithm for global navigation satellite system, determining the sensitivity of output parameters based on FFT, convergence of integrals of products based on Riemann-Lebesgue Lemma function, extending the real and complex number fields for treating the FT, nonmaterial structure, Gabor transform, and chalcopyrite bioleaching. The book provides applications oriented to signal processing and physics written primarily for engineers, mathematicians, physicians and graduate students, will also find it useful as a reference for their research activities

    Sparse Fast Trigonometric Transforms

    Get PDF
    Trigonometric transforms like the Fourier transform or the discrete cosine transform (DCT) are of immense importance in signal and image processing, physics, engineering, and data processing. The research of past decades has provided us with runtime optimal algorithms for these transforms. Significant runtime improvements are only possible if there is additional a priori information about the sparsity of the signal. In the first part of this thesis we develop sublinear algorithms for the fast Fourier transform for frequency sparse periodic functions. We investigate three classes of sparsity: short frequency support, polynomially structured sparsity and block sparsity. For all three classes we present new deterministic, sublinear algorithms that recover the Fourier coefficients of periodic functions from samples. We prove theoretical runtime and sampling bounds for all algorithms and also investigate their performance in numerical experiments. In the second part of this thesis we focus on the reconstruction of vectors with short support from their DCT of type II. We present two different new, deterministic and sublinear algorithms for this problem. The first method is based on inverse discrete Fourier transforms and uses complex arithmetic, whereas the second one utilizes properties of the DCT and only employs real arithmetic. We show theoretical runtime and sampling bounds for both algorithms and compare them numerically in experiments. Furthermore, we generalize the techniques for recovering vectors with short support from their DCT of type II using only real arithmetic to the two-dimensional setting of recovering matrices with block support, also providing theoretical runtime and sampling complexities for the obtained new two-dimensional algorithm

    Design of digital IP block for discrete cosine transform

    Get PDF
    Tato diplomová práce se zabývá návrhem IP bloku pro diskrétní kosinovou transformaci. V~teoretické části jsou shrnuty algoritmy pro výpočet diskrétní kosinové transformace a diskutována jejich použitelnost v~hardwaru. Zvolený algoritmus pro hardwarovou implementaci je modelován v jazyce C. Poté je popsán na RTL úrovni, verifikován a je provedena syntéza v~technologii TSMC 65 nm. Hardwarová implementace je poté zhodnocena s ohledem na datovou propustnost, plochu, rychlost and spotřebu.This diploma thesis deals with design of IP block for discrete cosine transform. Theoretical part summarizes algorithms for computation of discrete cosine transform and their hardware usability is discussed. Chosen algorithm for hardware implementation is modeled in C language. Algorithm is described at RTL level, verified and synthesized to TSMC 65 nm technology. Hardware implementation is then evaluated with respect of throughput, area, speed and power consumption.

    The Design and Implementation of FFTW3

    Full text link
    • …
    corecore