22 research outputs found

    RNA folding on the 3D triangular lattice

    Get PDF

    Designing RNA secondary structures is hard

    Get PDF
    An RNA sequence is a word over an alphabet on four elements {A, C, G, U} called bases. RNA sequences fold into secondary structures where some bases match one another while others remain unpaired. Pseudoknot-free secondary structures can be represented as well-parenthesized expressions with additional dots, where pairs of matching parentheses symbolize paired bases and dots, unpaired bases. The two fundamental problems in RNA algorithmic are to predict how sequences fold within some model of energy and to design sequences of bases which will fold into targeted secondary structures. Predicting how a given RNA sequence folds into a pseudoknot-free secondary structure is known to be solvable in cubic time since the eighties and in truly subcubic time by a recent result of Bringmann et al. (FOCS 2016), whereas Lyngsþ has shown it is NP-complete if pseudoknots are allowed (ICALP 2004). As a stark contrast, it is unknown whether or not designing a given RNA secondary structure is a tractable task; this has been raised as a challenging open question by Anne Condon (ICALP 2003). Because of its crucial importance in a number of fields such as pharmaceutical research and biochemistry, there are dozens of heuristics and software libraries dedicated to RNA secondary structure design. It is therefore rather surprising that the computational complexity of this central problem in bioinformatics has been unsettled for decades. In this paper we show that, in the simplest model of energy which is the Watson-Crick model the design of secondary structures is NP-complete if one adds natural constraints of the form: index i of the sequence has to be labeled by base b. This negative result suggests that the same lower bound holds for more realistic models of energy. It is noteworthy that the additional constraints are by no means artificial: they are provided by all the RNA design pieces of software and they do correspond to the actual practice (see for example the instances of the EteRNA project). Our reduction from a variant of 3-Sat has as main ingredients: arches of parentheses of different widths, a linear order interleaving variables and clauses, and an intended rematching strategy which increases the number of pairs iff the three literals of a same clause are not satisfied. The correctness of the construction is also quite intricate; it relies on the polynomial algorithm for the design of saturated structures – secondary structures without dots – by Haleơ et al. (Algorithmica 2016), counting arguments, and a concise case analysis

    Designing RNA secondary structures is hard

    Get PDF
    An RNA sequence is a word over an alphabet on four elements {A, C, G, U} called bases. RNA sequences fold into secondary structures where some bases match one another while others remain unpaired. Pseudoknot-free secondary structures can be represented as well-parenthesized expressions with additional dots, where pairs of matching parentheses symbolize paired bases and dots, unpaired bases. The two fundamental problems in RNA algorithmic are to predict how sequences fold within some model of energy and to design sequences of bases which will fold into targeted secondary structures. Predicting how a given RNA sequence folds into a pseudoknot-free secondary structure is known to be solvable in cubic time since the eighties and in truly subcubic time by a recent result of Bringmann et al. (FOCS 2016), whereas Lyngsþ has shown it is NP-complete if pseudoknots are allowed (ICALP 2004). As a stark contrast, it is unknown whether or not designing a given RNA secondary structure is a tractable task; this has been raised as a challenging open question by Anne Condon (ICALP 2003). Because of its crucial importance in a number of fields such as pharmaceutical research and biochemistry, there are dozens of heuristics and software libraries dedicated to RNA secondary structure design. It is therefore rather surprising that the computational complexity of this central problem in bioinformatics has been unsettled for decades. In this paper we show that, in the simplest model of energy which is the Watson-Crick model the design of secondary structures is NP-complete if one adds natural constraints of the form: index i of the sequence has to be labeled by base b. This negative result suggests that the same lower bound holds for more realistic models of energy. It is noteworthy that the additional constraints are by no means artificial: they are provided by all the RNA design pieces of software and they do correspond to the actual practice (see for example the instances of the EteRNA project). Our reduction from a variant of 3-Sat has as main ingredients: arches of parentheses of different widths, a linear order interleaving variables and clauses, and an intended rematching strategy which increases the number of pairs iff the three literals of a same clause are not satisfied. The correctness of the construction is also quite intricate; it relies on the polynomial algorithm for the design of saturated structures – secondary structures without dots – by Haleơ et al. (Algorithmica 2016), counting arguments, and a concise case analysis

    Inapproximability of maximal strip recovery

    Get PDF
    In comparative genomic, the first step of sequence analysis is usually to decompose two or more genomes into syntenic blocks that are segments of homologous chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps need to be removed first. Maximal Strip Recovery (MSR) is an optimization problem proposed by Zheng, Zhu, and Sankoff for reliably recovering syntenic blocks from genomic maps in the midst of noise and ambiguities. Given dd genomic maps as sequences of gene markers, the objective of \msr{d} is to find dd subsequences, one subsequence of each genomic map, such that the total length of syntenic blocks in these subsequences is maximized. For any constant d≄2d \ge 2, a polynomial-time 2d-approximation for \msr{d} was previously known. In this paper, we show that for any d≄2d \ge 2, \msr{d} is APX-hard, even for the most basic version of the problem in which all gene markers are distinct and appear in positive orientation in each genomic map. Moreover, we provide the first explicit lower bounds on approximating \msr{d} for all d≄2d \ge 2. In particular, we show that \msr{d} is NP-hard to approximate within Ω(d/log⁥d)\Omega(d/\log d). From the other direction, we show that the previous 2d-approximation for \msr{d} can be optimized into a polynomial-time algorithm even if dd is not a constant but is part of the input. We then extend our inapproximability results to several related problems including \cmsr{d}, \gapmsr{\delta}{d}, and \gapcmsr{\delta}{d}.Comment: A preliminary version of this paper appeared in two parts in the Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC 2009) and the Proceedings of the 4th International Frontiers of Algorithmics Workshop (FAW 2010

    Designing RNA Secondary Structures is Hard

    Get PDF
    International audienceAn RNA sequence is a word over an alphabet on four elements {A, C, G, U } called bases. RNA sequences fold into secondary structures where some bases pair with one another while others remain unpaired. Pseudoknot-free secondary structures can be represented as well-parenthesized expressions with additional dots, where pairs of matching parentheses symbolize paired bases and dots, unpaired bases. The two fundamental problems in RNA algorithmic are to predict how sequences fold within some model of energy and to design sequences of bases which will fold into targeted secondary structures. Predicting how a given RNA sequence folds into a pseudoknot-free secondary structure is known to be solvable in cubic time since the eighties and in truly subcubic time by a recent result of Bringmann et al. (FOCS 2016), whereas LyngsĂž has shown it is NP-complete if pseudoknots are allowed (ICALP 2004). As a stark contrast, it is unknown whether or not designing a given RNA secondary structure is a tractable task; this has been raised as a challenging open question by Anne Condon (ICALP 2003). Because of its crucial importance in a number of fields such as pharmaceutical research and biochemistry, there are dozens of heuristics and software libraries dedicated to RNA secondary structure design. It is therefore rather surprising that the computational complexity of this central problem in bioinformatics has been unsettled for decades. In this paper we show that, in the simplest model of energy which is the Watson-Crick model the design of secondary structures is NP-complete if one adds natural constraints of the form: index i of the sequence has to be labeled by base b. This negative result suggests that the same lower bound holds for more realistic models of energy. It is noteworthy that the additional constraints are by no means artificial: they are provided by all the RNA design pieces of software and they do correspond to the actual practice (see for example the instances of the EteRNA project). Our reduction from a variant of 3-Sat has as main ingredients: arches of parentheses of different widths, a linear order interleaving variables and clauses, and an intended rematching strategy which increases the number of pairs iff the three literals of a same clause are false. The correctness of the construction is also quite intricate; it relies on the polynomial algorithm for the design of saturated structures-secondary structures without dots-by HaleĆĄ et al. (Algorithmica 2016), counting arguments, and a concise case analysis

    Predicting RNA Secondary Structures By Folding Simulation: Software and Experiments

    Get PDF
    We present a new method for predicting the secondary structure of RNA sequences. Using our method, each RNA nucleotide of an RNA Sequence is represented as a point on a 3D triangular lattice. Using the Simulated Annealing technique, we manipulate the location of the points on the lattice. We explore various scoring functions for judging the relative quality of the structures created by these manipulations. After near optimal conïŹgurations on the lattice have been found, we describe how the lattice locations of the nucleotides can be used to predict a secondary structure for the sequence. This prediction can be further improved by using a greedy, 2-interval post-processing step to ïŹnd the maximum independent set of the helices predicted by the lattice. The complete method, DeltaIS, is then compared with HotKnot, a popular secondary structure prediction program. We evaluate the relative eïŹ€ectiveness of DeltaIS and HotKnot by predicting 252 sequences from the Pseudobase Database. The predictions of each method are then scored against the true structures. We show DeltaIS to be superior to HotKnot for shorter RNA sequences, and in the number of perfectly predicted structures

    Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction

    Get PDF
    Janssen S, Schudoma C, Steger G, Giegerich R. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformatics. 2011;12(1): 429.BACKGROUND:Many bioinformatics tools for RNA secondary structure analysis are based on a thermodynamic model of RNA folding. They predict a single, "optimal" structure by free energy minimization, they enumerate near-optimal structures, they compute base pair probabilities and dot plots, representative structures of different abstract shapes, or Boltzmann probabilities of structures and shapes. Although all programs refer to the same physical model, they implement it with considerable variation for different tasks, and little is known about the effects of heuristic assumptions and model simplifications used by the programs on the outcome of the analysis.RESULTS:We extract four different models of the thermodynamic folding space which underlie the programs RNAfold, RNAshapes, and RNAsubopt. Their differences lie within the details of the energy model and the granularity of the folding space. We implement probabilistic shape analysis for all models, and introduce the shape probability shift as a robust measure of model similarity. Using four data sets derived from experimentally solved structures, we provide a quantitative evaluation of the model differences.CONCLUSIONS:We find that search space granularity affects the computed shape probabilities less than the over- or underapproximation of free energy by a simplified energy model. Still, the approximations perform similar enough to implementations of the full model to justify their continued use in settings where computational constraints call for simpler algorithms. On the side, we observe that the rarely used level 2 shapes, which predict the complete arrangement of helices, multiloops, internal loops and bulges, include the "true" shape in a rather small number of predicted high probability shapes. This calls for an investigation of new strategies to extract high probability members from the (very large) level 2 shape space of an RNA sequence. We provide implementations of all four models, written in a declarative style that makes them easy to be modified. Based on our study, future work on thermodynamic RNA folding may make a choice of model based on our empirical data. It can take our implementations as a starting point for further program development

    A new paradigm for the folding of ribonucleic acids

    Get PDF
    De rĂ©centes dĂ©couvertes montrent le rĂŽle important que joue l’acide ribonuclĂ©ique (ARN) au sein des cellules, que ce soit le contrĂŽle de l’expression gĂ©nĂ©tique, la rĂ©gulation de plusieurs processus homĂ©ostasiques, en plus de la transcription et la traduction de l’acide dĂ©soxyribonuclĂ©ique (ADN) en protĂ©ine. Si l’on veut comprendre comment la cellule fonctionne, nous devons d’abords comprendre ses composantes et comment ils interagissent, et en particulier chez l’ARN. La fonction d’une molĂ©cule est tributaire de sa structure tridimensionnelle (3D). Or, dĂ©terminer expĂ©rimentalement la structure 3D d’un ARN s’avĂšre fort coĂ»teux. Les mĂ©thodes courantes de prĂ©diction par ordinateur de la structure d’un ARN ne tiennent compte que des appariements classiques ou canoniques, similaires Ă  ceux de la fameuse structure en double-hĂ©lice de l’ADN. Ici, nous avons amĂ©liorĂ© la prĂ©diction de structures d’ARN en tenant compte de tous les types possibles d’appariements, dont ceux dits non-canoniques. Cela est rendu possible dans le contexte d’un nouveau paradigme pour le repliement des ARN, basĂ© sur les motifs cycliques de nuclĂ©otides ; des blocs de bases pour la construction des ARN. De plus, nous avons dĂ©velopĂ©es de nouvelles mĂ©triques pour quantifier la prĂ©cision des mĂ©thodes de prĂ©diction des structures 3D des ARN, vue l’introduction rĂ©cente de plusieurs de ces mĂ©thodes. Enfin, nous avons Ă©valuĂ© le pouvoir prĂ©dictif des nouvelles techniques de sondage de basse rĂ©solution des structures d’ARN.Recent findings show the important role of ribonucleic acid (RNA) within the cell, be it the control of gene expression, the regulation of several homeostatic processes, in addition to the transcription and translation of deoxyribonucleic acid (DNA) into protein. If we wish to understand how the cell works, we first need to understand its components and how they interact, and in particular for RNA. The function of a molecule is tributary of its three-dimensional (3D) structure. However, experimental determination of RNA 3D structures imparts great costs. Current methods for RNA structure prediction by computers only take into account the classical or canonical base pairs, similar to those found in the well-celebrated DNA double helix. Here, we improved RNA structure prediction by taking into account all possible types of base pairs, even those said non-canonicals. This is made possible in the context of a new paradigm for the folding of RNA, based on nucleotide cyclic motifs (NCM): basic blocks for the construction of RNA. Furthermore, we have developed new metrics to quantify the precision of RNA 3D structure prediction methods, given the recent introduction of many of those methods. Finally, we have evaluated the predictive power of the latest low-resolution RNA structure probing techniques
    corecore