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ABSTRACT

Predicting RNA Secondary Structures by Folding Simulation:

Software and Experiments

by

Joel Gillespie, Master of Science

Utah State University, 2009

Major Professor: Dr. Minghui Jiang
Department: Computer Science

We present a new method for predicting the secondary structure of RNA sequences.

Using our method, each RNA nucleotide of an RNA Sequence is represented as a point on a

3D triangular lattice. Using the Simulated Annealing technique, we manipulate the location

of the points on the lattice. We explore various scoring functions for judging the relative

quality of the structures created by these manipulations. After near optimal configurations

on the lattice have been found, we describe how the lattice locations of the nucleotides

can be used to predict a secondary structure for the sequence. This prediction can be

further improved by using a greedy, 2-interval post-processing step to find the maximum

independent set of the helices predicted by the lattice. The complete method, DeltaIS,

is then compared with HotKnot, a popular secondary structure prediction program. We

evaluate the relative effectiveness of DeltaIS and HotKnot by predicting 252 sequences

from the Pseudobase Database. The predictions of each method are then scored against the

true structures. We show DeltaIS to be superior to HotKnot for shorter RNA sequences,

and in the number of perfectly predicted structures.

(176 pages)
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CHAPTER 1

INTRODUCTION

Ribonucleic acid (RNA) folding has become an increasingly important field of research

within the fields of Bioinformatics and Computational Biology. It has reached this level of

importance because of the relationship between the tertiary (3D) structure of a sequence

and the function of the RNA sequence. Researchers believe that a sequence’s tertiary

structure is strongly related to its function, influencing whether a sequence facilitates the

copying of a gene, transfers amino acids during translation, decodes mRNA, or performs

RNA splicing and regulation. Because studying RNA sequences directly can be expensive

and slow, using computational methods to predict how a sequence folds together, thus

predicting its function, has become increasingly popular.

To solve the RNA folding problem, many different solutions have been proposed. Many

of these solutions follow a straightforward dynamic programming paradigm. In these so-

lutions, RNA folding is simulated using a scoring function. The scoring function solves

for the best score for the entire RNA sequence by defining the best solution in terms of

simpler sub problems. The computation is then organized to allow the final solution to be

progressively built up from the base cases to the final solution. These solutions have proved

to be relatively fast, O(n3), and relatively accurate. Indeed, because the final solution is

built up from optimal solutions to smaller problems, the final solution can be guaranteed

to be optimal for the given scoring function. Unfortunately, these solutions are generally

unable to handle arbitrary RNA configurations.

For dynamic programming solutions to work, we must be able to build up from the

smaller ones. This restriction limits what types of configurations can be solved. One

common limit of dynamic programming solutions to the folding problem is the inability

to handle pseudoknots, a sequence in which two or more sets of base pairings interleave

with each other. In other words, if pairs (i1, j1) and (i2, j2) form a pseudoknot, then

i1 < i2 < j1 < j2. In Figure 1.1 we show an example of a simple pseudoknotted structure.

Pseudoknots are not generally handled by dynamic programming solutions because the
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(a) (b)

Figure 1.1. Example pseudoknotted sequence. (a) predicted structure without pseudoknots,
(b) predicted structure with pseudoknots.

ability of the pairs to interleave means that sub-solutions are no longer independent. To

understand how this affects the quality of structure prediction, we again refer to Figure 1.1.

Part (a) of the figure shows a sequence prediction when pseudoknots are not supported, part

(b) shows the same sequence correctly predicted with pseudoknots. In some cases, dynamic

programming solutions have been able to handle specific types of pseudoknots, but this

results in a greatly increased running time of O(n6), making this approach unfeasible for

all but the smallest sequences.

To reduce the running time of dynamic programming solutions, heuristic algorithms

emerged. These algorithms attempted to build a final solution in a greedy fashion. Instead

of directly solving for the final solution, the final solutions were built by incrementally

adding loops into the current structure. These solutions were faster and more flexible than

the dynamic programming solutions, but they were no longer guaranteed to be optimal on

the current scoring function. Additionally, the early heuristic approaches were too rigid;

once a change was committed to the current structure, the change could not be undone.

Recent heuristic approaches have largely removed this constraint. One recent solution to this

problem, the HotKnots program created by Ren et al., solves this problem by maintaining

multiple incomplete solutions. These solutions are then incrementally improved, giving

preference to the most “energetically favorable substructures” [1].
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We now present a new solution to the RNA folding problem. This solution builds off our

proof-of-concept implementation presented in [2, 3]. Our method uses a combination of two

unique approaches, 3D Triangular lattices and 2-Interval graphs, to predict the secondary

structure of RNA sequences. First, we propose using simple pull moves to incrementally

manipulate the structure of an RNA sequence on a 3D triangular lattice. After each pull

move has been completed, the resulting arrangement is scored and either accepted or re-

jected using a Simulated Annealing approach. This approach allows the search space to be

reduced from an infinite number of positions for any given nucleotide, to a relative handful

of neighboring locations for each consecutive nucleotide. After Simulated Annealing has

completed, and a reasonable approximation of the 3D structure of the sequence has been

obtained, we use the lattice adjacencies to create a candidate set of base pairings. Second,

the candidate set of base pairs is converted into a 2-Interval graph. The 2-Interval graph

is used to model the helices, and to make the final secondary structure prediction. The

remainder of this paper is organized as follows. In Chapter 2 we discuss the features of the

Delta Library and Toolset (the Delta portion of DeltaIS). The Delta Library consists of

the 3D Triangular lattice, pull moves, and everything necessary to simulate RNA folding

on the 3D Triangular lattice. The Delta Toolset consists of two tools: Fold, a tool used for

folding simulation, and Show, a tool used for structure visualization. Chapter 3 discusses

the process of secondary structure prediction (the IS portion of DeltaIS). We present the

shortfallings of predictions made directly from the 3D Triangular lattice and introduce the

2-Interval graph. Chapter 4 presents a detailed description of the data, experiments, and

experimental results. Conclusions are presented in Chapter 5.



CHAPTER 2

RNA FOLDING SIMULATION

To predict the tertiary (3D) structure of an RNA sequence, we utilize the Delta Library

and Toolset. The Library provides the functions and data structures upon which the tools

are then built. In this Chapter we discuss this library in detail. Following our presentation

of the Delta Library, we present two tools, Fold and Show, which were developed using

the library. We discuss how these tools can be used to directly predict the tertiary structure

of an RNA sequence.

2.1 The Delta Library

The Delta Library consists of a set of functions intended to manipulation RNA. Included

in the library are all the functions needed to input the RNA sequence, create a specified or

default configuration for the sequence, manipulate the sequence in a safe manner, and then

write the sequence out to file. The core of the Delta library is the 3D triangular lattice.

The input RNA sequence is wrapped on the lattice; the sequence manipulations take place

on the lattice; and the final structure is shown in 3D using the lattice.

2.1.1 3D Triangular Lattice

The 3D triangular lattice can seem complicated, but by comparing it with simpler

lattices we can easily understand both how the 3D triangular lattice is constructed, and

why it is useful. We start first with a simple Square lattice in 2D, an example of which is

shown in Figure 2.1.

The square lattice has exactly two axes: the familiar ~X and ~Y axes. This lattice

is simple, intuitive, and can be understood by anyone familiar with 2D graphing. Each

point on the square lattice can be referenced using a single point as the origin and then

counting the displacement in the ~X and ~Y directions. Even though the 2D lattice is simple,

it has proved useful in protein-folding algorithms and should not be discounted because of

its simplicity. Nevertheless, the Square lattice suffers from two major limitations. First, it



5

Y

X

Figure 2.1. Square lattice.

cannot approximate anything resembling a 3D structure. This inibility is to be expected

because the square lattice only models 2D interactions. The second limitation of the square

lattice is the parity problem. Given a base with index n, the parity problem is that base n

cannot bond with a base of index n + 2. Figure 2.2 demonstrates the problem. In Figure

2.2 we see a 2 × 2 section of the square lattice. We show a point, n, in the center of the

lattice. From this point we had four choices of positions to place the n + 1 point. For

our example, we placed the point in the right position, corresponding to the positive ~X

direction. Assuming that we want to pair n + 2, we again have four choices of where to

place n + 2. The left position is invalid, as the position is already occupied by n. The

right position, while valid, is not adjacent and is 2 unit distances away from n. Finally,

the two remaining directions keep the n and n + 2 points close, but neither of these n + 2

positions is adjacent to n. This parity problem would be of negligible consequence, except

this parity problem exists for not only n and n + 2, but for n and all n + 2k where k

is any integer greater than zero. These limitations make the square lattice inadequate to

accurately simulate RNA sequences.

Having shown that a square lattice is insufficient, we move to the 2D triangular lattice.

To construct the triangular lattice, we start by defining a square lattice and then split each

square into two equal halves. Each square is divided by connecting the bottom left point
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n + 2

n n + 1

n + 2

Figure 2.2. Parity problem of 2D square lattice.

of each square with the top right point of the same square. We define this new axis as the

~U axis. In other words, ~U = ~X + ~Y . To complete the lattice, we skew the lattice until the

angle between ~X and ~Y is exactly 2π
3 . Manipulating the lattice in this way skews each line

segment on the lattice until each segment is exactly 1 unit distance. The process of creating

the lattice is shown in Figure 2.3.

X

Y U

(a)

Y

  

X

U

(b)

Figure 2.3. Creating the 2D triangular lattice. (a) The divided square lattice with the new
U axis. (b) The completed 3D triangular lattice.

The 2D triangular lattice is a significant improvement over the square lattice for two

reasons: (1) it is more flexible, and (2) it does not suffer from the parity problem. To see

how the 2D triangular lattice increases flexibility, we consider the number of neighbors for

each lattice. The square lattice allowed a maximum of four neighbors. Using the additional
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axis ~U , the triangular lattice allows any given point to have six neighbors. In addition to

the increased number of neighbors, the triangular lattice does not suffer from the parity

problem. Using the 2D triangular lattice, we again attempt to realize a configuration where

n is adjacent to n + 2. Figure 2.4 demonstrates an easy solution to this problem. We start

by placing point n. This point can be placed on any lattice position. After placing the first

point, we again choose to place point n + 1 in the ~X direction. Just as in our previous

example, the second position could have been any of the other possible positions, as by

rotation all the secondary positions are identical. From this point we now have 2 positions

adjacent to n in which we can place the n+2 point: the positive ~Y and negative ~U positions.

We can see that by using the 2D triangular lattice, any two bases can be arranged to form a

pair. Allowing any two bases to potentially be paired allows the triangular lattice to predict

a much wider range and much more realistic set of configurations. It is also interesting to

note that while the ~U axis defines additional adjacencies, each point on the lattice can still

be uniquely identified using only the ~X and ~Y axes.

n + 2

n

n + 2

  

X

UY

n + 1

Figure 2.4. The 2D triangular lattice solves the parity problem of the square lattice. Shown
are two possible configurations in which n pairs with n + 2.

We have demonstrated the significant advantages of the 2D triangular lattice over the

square lattice, but the lattice is not yet powerful enough to predict a tertiary structure. To

accomplish this task, we need to expand the triangular lattice into 3D. We can stop this

combining the square and 2D triangular lattices in 3D. We start with a cubic lattice. The
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cubic lattice is simply the square lattice extended into 3D. Instead of being limited to the

~X and ~Y axes, we have expanded the lattice to include the ~Z axis as well. Just as we did

with the original square lattice, we will now skew the ~Z axis of the cubic lattice until it

forms a 2π
3 angle with both the ~X and ~Y axes. Because only the ~Z axis is skewed, the ~X

and ~Y axes remain perpendicular to each other, the distance between the top and bottom

planes is reduced to
√

2
2 unit distance, and each consecutive XY -plane is shifted by −1

2 in

both the ~X and ~Y directions. Finally, as a last step, we complete the 3D triangular lattice

by creating the auxiliary axes ~U , ~V , and ~W , defined respectively as:

~U = ~X + ~Z

~V = ~Y + ~Z

~W = ~X + ~Y + ~Z

In Figure 2.5 we show the completed 3D triangular lattice. To make this figure easier to

read, we have show only the ~X, ~Y , and ~Z axes. Each point with its respective coordinate

(X,Y, Z).

sqrt2

1

1

1,0,1

−1,−1,−1

0,0,0

1,1,1

0,−1,−1

0,1,1

0,0,1

0,1,0

0,−1,0

1,0,0−1,0,0

0,0,−1

−1,0,−1

X

Z Y

Figure 2.5. The 3D triangular lattice with auxiliary axes suppressed.

Even with the addition of 3 axes, each point on the 3D triangular lattice can be specified

using only the ( ~X, ~Y , ~Z) displacement from an origin point, and, like the 2D triangular
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lattice, the 3D triangular lattice does not suffer from the parity problem. The 3D triangular

lattice is also much more versatile than the square, 2D triangular, or cubic lattices. Each

point on the 3D triangular lattice has 12 neighbors: ± ~X,±~Y ,±~Z and the adjacency vectors

±~U,±~V , and ± ~W . Each of these features make the 3D triangular lattice a more compelling

choice for simulation work. This lattice can directly predict 3D structures and has enough

flexibility to predict a huge number of configurations, thus making it possible to predict

much biologically realistic configurations.

2.1.2 Sequence Representation and Data Structures

The Delta Library provides functions to read in, manipulate, and then save RNA se-

quences and sequence structure. To understand this process, we first discuss the external

representation of an RNA sequence. Each sequence is represented as two sequences: a

sequence of bases, and a sequence of turns. The bases sequence identifies the organic

compounds that make up the sequence, and the turns sequence defines the spacial rela-

tionship between these compounds on the lattice. The bases sequence is the simplest, and

it represents a direct mapping of the nucleotides Adenine, Cytosine, Guanine, and Uracil

to their common abbreviations of A, C, G, and U, respectively. The turns sequence is very

similar, with a set of twelve characters ({X, x, Y, y, Z, z, U, u, V, v, W, w}) representing

the six axes, and the lower and upper cases corresponding to the negative and positive

directions on those axes, respectively.

Internally, each RNA sequence is represented as arrays of points, bases, and turns.

The bases and turns arrays are used to directly store the external representation; that

is, a character array is used as the internal structure for storing both the base and turn

sequences. In addition to the external information, each nucleotide has a location on the

lattice and in cartesian space. This location information is stored inside the points array.

The bases and the points together form the sequence’s configuration. When an RNA

sequence is read into Delta, the turns sequence is translated into lattice coordinates. This

translation is done in two steps. Step one, we place the first nucleotide at the origin point
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(0, 0, 0). Each subsequent nucleotide then has its location assigned by adding the lattice

coordinates of the previous nucleotide to the vector corresponding to the turn between

them. We define a function axis_c2v(t) to transform each individual turn (t)into a vector

(Mapping shown in Table 2.1).

Table 2.1. Mapping of turns to vectors.
w (−1,−1,−1)
v (0,−1,−1)
u (−1, 0,−1)
z (0, 0,−1)
y (0,−1, 0)
x (−1, 0, 0)
X (1, 0, 0)
Y (0, 1, 0)
Z (0, 0, 1)
U (1, 0, 1)
V (0, 1, 1)
W (1, 1, 1)

Now, given an RNA sequence S of length n and a turn sequence T of length n− 1, we

can define the points array for P , where P [i] is defined to be the lattice coordinates of the

ith point, and T [i] is the vector representation of the ith element in the turn sequence. We

now have the following:

P [i]X =
{

0 i = 1
P [i− 1]X + T [i− 1]X i > 1

P [i]Y =
{

0 i = 1
P [i− 1]Y + T [i− 1]Y i > 1

P [i]Z =
{

0 i = 1
P [i− 1]Z + T [i− 1]Z i > 1.

As part of the process of reading in the bases and turns, Delta ensures that the sequence

forms a valid configuration. A valid configuration is any configuration of points resulting in

a non-intersecting walk along the 3D triangular lattice. To ensure that a given configuration

is valid, Delta verifies that a lattice location is empty before inserting a point into the

location. In order to make this check efficient, we implemented a hashtable to ensure an
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expected constant running time. The hashtable is initialized to be twice the size of the

input sequence length to ensure that collisions are rare. When collisions do occur, they are

handled using a linked list. To verify a lattice location is empty—the lattice coordinates—

the target coordinates, of any candidate lattice location are hashed using a formula adapted

from [4]:

h(X, Y, Z) = |2na · (((aX + Y ) · a) + z)| (2.1)

where a =
√

5−1
2 , and n is the length of the RNA sequence. This hashcode is then used as

the key (index) into the hashtable. If the key location is not empty, we check each entry

in the locations linked list to see if the entry coordinates match the lattice coordinates of

the current point. If the coordinates match, the configuration is invalid, and the input turn

sequence is replaced with the default stem-loop configuration. If the key location is empty,

or none of the entry coordinates match the lattice coordinates of the current point, then

the configuration is valid.

2.1.3 Structural Manipulation

In addition to providing a structure on which to manipulate RNA sequences, the Delta

Library also provides a set of functions with which to manipulate them. These functions

are based on the Pull move concept first introduced by [5] for use on a simple square lattice.

The pull move has since been adapted for use on a hexagon lattice [6], and we here adapt

it for use on the 3D triangular lattice. A pull move is a simple, reversible way of moving

between valid configurations while affecting as few nucleotides as possible. Each pull move

consists of the index of a nucleotide to be moved, (i), and the vector, (t), along which it

should be moved. The vector, t, corresponds to a direction along one of the six axes, and for

convenience, we use the same character set as the turn array. We now define the function,

p(i, d), to mean the lattice location that corresponds to walking from the lattice location

of the ith nucleotide in the direction of d. To complete a pull move, a nucleotide is pulled

to p(i, d), and its neighbor bases are updated to make sure they remain adjacent.
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Before we perform the move itself, we must first verify the resulting configuration is

valid. This validation is done by the test(i, d) function. The test function takes the

candidate move as input and first verifies the location p(i, d) is unoccupied. A configu-

ration where two or more nucleotides occupy the same lattice location is invalid, so a pull

move resulting in such a configuration is also invalid. Next, test verifies that i is either an

endpoint of the sequence, or that an anchor point exists for the move. Given a point i in

the sequence S, an anchor point is either S[i − 1] or S[i + 1], and it must be adjacent to

p(i, d). The anchor point is so named because it indicates the side of the sequence that is

unchanged if the pull move is executed. The side opposite of the anchor will be affected by

the pull move.

After verifying that the move is valid, the function pull(i, d) can be executed. The

pull function executes the pull move by first moving S[i] to the location p(i, d). Assuming

the pull move (i, d) was valid, we have one of three cases:

1. S[i+1] and S[i−1] are both adjacent to p(i, d). This special case is called a flip. In

this case the pull move is completed immediately after moving S[i], and no additional

updating is required.

2. S[i+1] was adjacent to p(i, d). In this case S[i+1] is the anchor, and the nucleotides

S[i + k] (k ≥ 1) are not moved. Each element opposite the anchor point (S[i − k]

where k ≥ 1) may need to be updated.

3. S[i−1] was adjacent to p(i, d). In this case S[i−1] is the anchor, and the nucleotides

S[i − k] (k ≥ 1) are not moved. Each element opposite the anchor point (S[i + k]

where k ≥ 1) may need to be updated.

After S[i] is moved to p(d, i), the point S[i] and the point opposite the anchor point

(for example, S[i− 1], if S[i + 1] was the anchor), are tested for adjacency. If these points

are adjacent, the pull move is completed. If the points are not adjacent, then we continue

moving consecutive points until this condition is true. In the example where S[i + 1] is the

anchor, S[i− 1] is moved to the former location of S[i]. We then check to see if S[i− 1] is



13

adjacent to S[i−2]. If not, we move S[i−2] to the former location of S[i−1]. This process

is continued for each pair S[i− k] and S[i− k − 1] (k ≥ 1) until all pairs are adjacent and

we again have a valid configuration. The process for completing the pull move in the case

that S[i − 1] is the anchor is exactly symmetric, with each pair S[i + k] and S[i + k + 1]

(k ≥ 0) being tested for adjacency, and S[i + k + 1] being moved to the former location of

S[i + k] when the pairs are not adjacent.

After completing a pull move, we sometimes want to undo the pull move. Fortunately,

as mentioned previously, pull moves are completely reversible. Reversing a pull move is as

simple as knowing the last base affected by the pull move and knowing the location from

which the point originated. To understand how this works, we observe that while several

nucleotides may be moved during the course of a pull move, only one new lattice location

is occcupied. With the exception of the first nucleotide, all bases are moved to the former

location of another nucleotide. To undo a move, the last nucleotide is pulled back to its

original location. This change, a valid pull move, then causes all the other nucleotides to be

sequentially moved back to their original locations. This process is demonstrated in Figure

2.6. In this figure we see two valid configurations. Each configuration has a line extending

from one of the nucleotides. When pulled in the direction of the arrow, the configuration

is transformed into the other configuration. By examining this figure, we can see both how

reversible a pull move is, as well as how small a change a single pull move makes to the

configuration.

Figure 2.6. Example pull moves. Pulling a nucleotide in the direction of the arrow pulls
one configuration into the other.

We have discussed what a pull move is and demonstrated its use within the Delta library.

In addition to the use described above, there are two additional, noteworthy properties.
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The first noteworthy property of pull moves is that a single pull move moves a relatively

small number of bases [5]. This locality of change makes pull moves ideal for folding

biological sequences because pull moves can be used to make small, incremental changes to

the structure. These changes can then be evaluated by some predefined criteria and then

either accepted or rejected without much effort being spent on any particular move.

As part of our research into the 3D triangular lattice, we verified that this general

property of pull moves holds true for our specific implementation. To verify the property

held true, we created five sequences of lengths 32, 64, 128, 256, and 512. Each of these

sequences was loaded into Delta and subjected to 105n random pull moves (starting from

a straight line configuration). After these initial moves were completed, each sequence was

subjected to 105n additional random pull moves. For each of the moves in the second set

of 105n moves, the total number of bases moved was recorded. We present the results of

this test in Table 2.2. These results demonstrate that the number of elements moved by a

single pull move is indeed a small constant.

Table 2.2. Statistics on point displacement for a single pull move.
Sequence Size (n) Average Standard Deviation

32 2.40625 1.29164
64 3.79688 2.65581
128 4.10938 3.21716
256 3.36328 1.97754
512 3.48438 2.40347

The second important property of pull moves is that they are complete. This prop-

erty means that any valid configuration can be reached from any other valid configuration

through a series of pull moves. Given that a pull move can be undone, this property is very

easy to demonstrate. One can easily imagine taking a valid configuration and pulling the

first or last nucleotide away from the rest of the sequence. Through repeatedly pulling this

nucleotide in a single direction, we eventually reach a straight line configuration. We can

use this straight line configuration as the link between any configuration (a source config-

uration) and any desired configuration (the target configuration). We first pull the source
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configuration into a straight line configuration. Next we pull the target configuration into

a straight line configuration. These two sequences are now, for all intents and purposes,

identical. We know that pull moves are reversible, so if we can pull the target configuration

to a straight line, then we can pull the straight line back to the target configuration.

2.1.4 Delta Library Quick Reference

As has been discussed, the Delta Library is designed to allow the bioinformatics com-

munity at large to develop their own tools for structure prediction on the 3D triangular

lattice. The Delta Library provides all the functions necessary to input, manipulate, and

output sequences on the 3D triangular lattice. Appendix D contains the source code for the

Delta library, as well as the source for the tools designed from it. Appendix G containes

the makefiles used to compile the library and build the tools.

When using the library to create your own tool, you will, at a minimum, need to use

several of the provided functions. These functions, along with a short description of the

function, are listed in Table 2.3. For a more complete description of Delta library functions,

please see Appendix C for the website1 or see Appendix B for the Application Programming

Interface.

Table 2.3. Delta library minimum required functions.
Function Description
input_bases_turns Reads in a sequence or sequence 2 file. This function initializes

the bases and turns arrays. Returns the length of the bases array.
turns_to_points Populates the points array based on the turns array. This is the

function used to wrap the points onto the 3D Triangular lattice.
points_to_turns Used to save a desired configuration. Sets the turns array based

on the points array.
output_bases_turns Writes the bases and turns array out to file, creating a sequence

2 file.

1http://www.cs.usu.edu/∼mjiang/rna/,
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2.2 Folding Simulation

Delta’s structural manipulation tool is one of the major accomplishments of this work.

This tool, Fold, uses the 3D triangular lattice to fulfill two purpose. First, it simulates ter-

tiary structure interactions to predict a given sequence’s tertiary structure. This structure

can then be used to predict the given sequence’s secondary structure. Second, Fold can

be used to reproduce, or reconstruct, a previously defined secondary structure. To accom-

plish these purposes, we make use of Simulated Annealing. This technique, first proposed by

Nicholas Metropolis [7], has become popular in other folding algorithms [8, 9, 10, 11, 12, 13].

In this section we first define the Prediction and Reconstruction Modes. These two modes

correspond to the two purposes of the structural manipulation tool. We then discuss using

Simulated Annealing in the tool itself. Finally, we provide a quick reference for Fold.

2.2.1 Prediction and Reconstruction Mode

Predicting a tertiary structure and reconstructing a secondary structure in 3D are quite

similar. In fact, to accomplish either objective, we simply change the scoring function. In

Prediction mode, the tool uses a scoring function designed to emulate, to the greatest degree

possible, the tertiary interactions of the individual nucleotides composing the sequence

that Fold is trying to predict. The more closely the structure approximates the actual

interactions, the higher the score it receives. In Reconstruction Mode, the tool uses a

simpler scoring function. This function returns a score based on how much of the desired

structure has been realized. We discuss each scoring function in detail.

2.2.1.1 Prediction Mode

The purpose of Prediction mode is to reliably predict a sequence’s secondary structure

by simulating its tertiary structure interactions. It is thus logical that our scoring function

starts by looking at the pairs formed by individual nucleotides. Although exceptions exist,

RNA bonds generally consist of two types of pairings: the Watson-Crick pairs, {AU, CG,

GC, UA}, and the Wobble pairs, {GU, UG}. We started our search for a good scoring

function by awarding a score for each pair type, awarding a score of 8 for each GC (or CG)
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pair, 5 for each AU (UA) pair, 3 for each GU (UG) pair, and a penalty of −2 for all other

pairings [2]. This simple scoring scheme was derived from the Nussinov scoring matrix,

which, in turn, was based off the actual number of bonds formed by each of the pairs [14].

This scoring scheme proved to be relatively ineffective. This was entirely expected, as the

scoring scheme was entirely too simplistic.

After determining the pair-based model was too simple, we moved to a stack-based

mode. This stack-based scoring scheme models the idea that RNA sequences fold to a global

structure minimizing the free energy of the structure [15]. According to model [16], any

given RNA sequence can be reduced to a series of loops. These loops have an independent

free energy associated with them. In order to fold to the minimum free energy structure,

stacking pairs (pairs with negative free energy) are required. Our stack scoring scheme

attempted to build up an approximation of the stacking pairs by using the following steps:

1. Determine if two adjacent bases form a pair. While the 3D triangular lattice allows

sharp turns and any two arbitrary bases to be adjacent, RNA sequences are not nearly

as flexible, requiring a separation of at least three bases [17]. We thus only consider

two lattice adjacent bases to be paired if they are separated by at least three bases in

the RNA sequence.

2. Calculate the sum of all pairs in which the base (i) could participate by virtue of being

adjacent to the pair on the lattice and being separated by the minimum number of

bases in the sequence:

sum(i) =
∑

(i,j)

|s(i, j)| (2.2)

where s(i, j) is the score of the base pairing between base i and base j, as defined in

our original pair-based scoring scheme.

3. Calculate the normalized score for each pairing:

s′(i, j) =
s(i, j)
sum(i)

· s(i, j)
sum(j)

· s(i, j) (2.3)
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In this scoring scheme, individual bases are not required to participate in exclusive

pairings. In other words, one base may participate in several pairings. The normalized

score is designed to scale the pair score achieved by the pair (i, j) by how committed

each of the bases is to the pairing.

4. Calculate the stacking score for each stacking pair (a stacking pair consists of any two

pairings (i, j) and (i + 1, j − 1) whose normalized scores are both positive):

s′′(i, j) = s′(i, j) + s′(i + 1, j − 1) (2.4)

5. Calculate the sum of all stacking scores.

While this method of computing scores proves to be relatively effective when compared

with the previous method, it requires a great deal of extra computation. In the end this

stack-based scoring scheme is just an estimation of the values we really want to compute.

To more accurately model stacking interactions on the lattice, we move to our final scoring

scheme. This scoring scheme is based on direct computation of the structure’s free energy.

Instead of calculating a score for a pair of bases and then trying to extrapolate the stack

score based on commitment, we use the mfold [18] free energy parameters shown in Table

2.4.

Table 2.4. mfold Stacking Energy.
AU CG GC UA GU UG

AU −0.90 −2.20 −2.10 −1.10 −0.60 −1.40
CG −2.10 −3.30 −2.40 −2.10 −1.40 −2.10
GC −2.40 −3.40 −3.30 −2.20 −1.50 −2.50
UA −1.30 −2.40 −2.10 −0.90 −1.00 −1.30
GU −1.30 −2.50 −2.10 −1.40 −0.50 1.30
UG −1.00 −1.50 −1.40 −0.60 0.30 −0.50

The mfold energies were obtained by first downloading mfold and then parsing out

the data from the coaxial.dat and stack.dat files. Throughout the rest of this paper, we

will reference the mfold stacking energy table as the e[i][j] table, and we will index into



19

the array by using two indexes, i and j. These two indexes represent the two pair type that

will have its stacking energy returned. For example, if the two pairs, (i, j), are the pairs

AU and UG respectively, the free energy of the stacked pairs can be obtained by finding

AU on the left, UG on the top, and then reading the energy from the table. In this case

we see the stacking energy of the pairs AU and UG is −1.40.

Having the free energies of each stacking pair pre-calculated allows us to simplify the

calculations considerably, while at the same time increasing the accuracy of our scoring

schema. We increase our accuracy by defining a new function: stack_score_ij(i, j).

This function takes, as input, the indexes of two points from the RNA sequence S. The

function first determines if the pairs (i, j), (i + 1, j − 1), and (i − 1, j + 1) are canonical

pairs (Watson-Crick or Wobble pairs). For simplicity in explaning our scoring scheme, let

us refer to the first pair (i, j) as simply pair k, and pairs (i− 1, j + 1) and (i + 1, j − 1) as

pairs l and m respectively. stack_score_ij(i, j) then assigns scores as follows:

1. If k is not a canonical pair, then the score of the pair is 0.

2. If the first pair, k, is a Watson-Crick pair, then the stack score is non-zero only in the

case where l and/or m is also a Watson-Crick pair. In this case the stack score for k

is the summation of the stacking energies of k and the other Watson-Crick pair(s).

3. If k is a Wobble pair, then the stack score is non-zero only in the case where both l

and m are Watson-Crick pairs. In this case the stack score is twice the summation

of the stacking energies lk and km. We double the score for this case because the

Wobble pair will only be scored once, while the Watson-Crick pairs could be counted

multiple times.

After using stack_score_ij(i, j) to calculate the Stack Score for a given pair (i, j), we

have only to determine how to use the individual pair scores to calculate the RNA con-

figuration’s global score. The calculation of the global score is computed by first using

stack_score_ij(i, j) to calculate the score of each single nucleotide i, and then using

these individual scores to compute the global score. Given that any nucleotide could partici-
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pate in multiple pairs, and thus participate in multiple stackings as well, we elected to check

each nucleotide for possible pairings and then use the minimum of all positive scores. This

system allows us to reward the annealer for finding good stackings, while simultaneously

discouraging it from finding configurations that are too tightly clustered. We now have:

stack score(i) = min{stack score ij(i, j) for all j}. (2.5)

Finally, the RNA configuration’s global score can be calculated by adding the

stack_score(i) for all nucleotides in the sequence:

Global Score =
n∑

i=1

stack score(i). (2.6)

2.2.1.2 Reconstruction Mode

In Reconstruct mode, the scoring function no longer considers how nucleotides interact.

Instead the scoring function returns a score based on how completely a specific set of pairs

is realized. The set of pairs to be realized is first read from a file. The input file specifies

the pairs in the format:

index1 index2

with the lower index listed first. To determine the score of a given configuration, the scoring

function awards a score of 5 for each realized pair. The scoring function awards no penalty

and no bonus for each pairing that the program was not asked to construct. In addition

to the pair-based scoring, the reconstruct scoring is heavily based on the angles formed

along the lattice. We emphasize the angles because real RNA sequences are not as flexible

as adjacencies on the lattice make them appear. To encourage less intense angles, a turn

penalty is defined:

turn penalty = f · c

n
(2.7)

where n is the sequence length, c is set to 5 (the score for each realized pair), and f is a con-

stant defined for each of the four possible angles (shown in Table 2.5). This penalty scheme

is designed to encourage 180 ◦ and 120 ◦ angles and discourage 90 ◦ and 60 ◦ angles. These
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Table 2.5. Turn penalty constant (f).
Angle Penalty Factor(f)
180 ◦ 0
120 ◦ 0
90 ◦ 1
60 ◦ 4

turn penalties are small enough to be negligible relative to the pair score, but significant

enough to cause the structure to take on a smoother configuration.

Having defined the two scoring schemes, we turn now to a discussion on Simulated

Annealing, the method that uses these scoring schemes to find the desired structures.

2.2.2 Simulated Annealing

Simulated Annealing is a heuristic technique for finding near-optimal solutions to spe-

cific problems. It derives its name from the metallurgical process it is designed to simulate,

the metallurgical process of Annealing. During the course of Annealing, metals are heated

and then allowed to slowly cool. This process is used to increase the metal’s ductility,

decrease its hardness, or, in other words, transform it to a more desirable state [19].

Simulated Annealing is a heuristic technique designed to optimize solutions for a prob-

lem. We say optimize because Simulated Annealing is not guaranteed to find the optimal

solution to any problem. Rather, Simulated Annealing takes solutions to a given problem

and, through local modifications, attempts to find better solutions. Like all optimization

methods, Simulated Annealing is dependent on a scoring function (previously discussed in

Section 2.2.1). Because this function judges the quality of individual solutions, it is directly

responsible for the quality of the final solution found by the simulated annealer.

Simulated annealing is set apart from other problem-solving methods by its use of tem-

perature and cooling functions. Instead of repeatedly generating new states and then select-

ing only the best choices, a process known as hill-climbing or gradient descent, Simulated

Annealing selects worse choices with some probability (p). This probability is the current

temperature. When the Simulated Annealer is in a high temperature state, this means the
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annealer is more likely to accept a poor choice. This does not mean the annealer will not

accept a better choice when presented the opportunity, only that when presented with a

poor choice the annealer will still accept it with high probability. When the annealer is

in a low temperature state, on the other hand, the annealer is less likely to accept a poor

choice. If the termperature is sufficiently low, the Simulated Annealer will act exactly the

same as a hill-climber, accepting only the best solutions. The cooling function is used to

control the current temperature. As in the process that simulated annealing imitates, the

“temperature” (or the probability of picking a bad choice) starts out high, and then is

gradually lowered. The heating and cooling process may be repeated several times and may

be much more complex than a simple linear decrease from a high to low temperature.

The purpose of the cooling function is to allow the annealer the freedom to escape from

local maxima or minima, while still progressing towards a global maximum or minimum.

Metropolis suggested computing the probability (p) of accepting a configuration at any

given step as:

pi = e
−∆E

kT (2.8)

where kT is the cooling function [7]. We have modified our acceptance probability to:

pi = 2
∆S
Ti (2.9)

In this function, i is the current step, ∆S is the change in score, and Ti represents the

temperature of the cooling function T at step i. Equation (2.10) defines the temperature T

at step i:

Ti =
c

log2(
n+i
n )

(2.10)

where n is the total number of steps, c is the scaling factor of the function, and c = 1/ log2 10.

These changes to Metropolis’ acceptance function provide two key features. First, our c

constant is used to scale the cooling function to guarantee the acceptance probability of the

last step is exactly 10%. Second, the 1/ log temperature function is the fastest decaying

function that converges to the optimal solution [20].
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Now that we have a useful cooling function, we manipulate the function in order to

make pull moves more efficient. Recall that at each step of the simulated annealing process,

solutions are accepted with a probability based on the current step, and the relative im-

provement from the previous step. In practice this means an annealing program must keep

track of the current score at any stage, and must be able to revert to the previous configura-

tion if a move is not accepted. The most straightforward way of using the scoring function

above is to execute a pull move using a scoring fuction. The scoring function calculates the

score before the move, executes the move, and then calculates the score again. The current

score is saved, and the change in score is returned. When a configuration is rejected, which

is the most likely outcome of any given pull move, another pull move (the undo move) is

taken, and score calculations are done again. Instead of following this process, we use a

more efficent method. Under this method we use Equations (2.9) and (2.10) to solve for the

threshold difference in score, ∆S. If, after a pull move has been taken, the score difference is

at least the threshold difference, the move is accepted and the difference in score is returned.

If the score difference is less than the threshold, then the pull move is immediately undone

and a difference of zero is returned. In both cases the returned difference is then used to

update the current configuration score. We can see this method is more efficient because

it requires fewer pull moves, and less time spent calculating a new score. We solve for the

threshold difference (∆S) as follows:

pi = 2
∆S
Ti

log2 pi =
∆S

Ti

Ti · log2 pi = ∆S

c

log2(
n+i
n )

· log2 pi = ∆S (2.11)

To finish the manipulation, we must solve for pi. In our initial equation, Equation (2.9),

pi represented the probability that a given configuration would be accepted. After ∆S has

been solved and pi computed, a random real number between 0 and 1 is generated. If the

probability is no more than pi, then the configuration is accepted. In our new equation,
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Equation (2.11), pi represents our random real number. Instead of using the random real

number to specify whether or not to accept a specific configuration, the pi is now used to

calculate the minimum difference in score that will be accepted.

After developing our cooling schedule and experimenting with the results, we were still

not satisfied with the results. We investigated several other cooling functions but found none

that improved upon our original results. After failing to find a better cooling function,

we began searching for ways to improve the current cooling schedule. In [9], Schmitz

and Steger suggested it iss not necessary to directly progress from start to finish along

the cooling schedule curve. Instead of following a cooling schedule exactly (a progressive

approach), Schmitz suggests better results can be achieved by selecting a random step

from the cooling schedule. We then use the temperature corresponding to this step as

the acceptance probability for the candidate solution. We refer to this strategy as the

sampling approach. Instead of using either of these approaches directly, we have chosen to

use a novel mixing strategy. Under this strategy the progressive approach is used half the

time, while the sampling approach is used the remainder of the time. We chose to use a

combination of the sampling and progressive approaches because we found that while both

methods were effective individually, neither method was as good as some form of the mixing

approach. This is the case because the benefit of the mixing strategy is that the sampling

approach can be used to break out of local maximums in our RNA configuration search.

We performed extensive experimentation to try to determine the exact mixing ratio, but

the optimal strategy seems to be sequence dependent. Given there is no clearly superior

ratio between the progressive and sampling strategies, we decided on the 50-50 split as a

logical compromise between the 2 cooling strategies.

After defining the scoring and cooling functions for Fold, we now define how these

functions are used in the folding process. The Fold tool first reads an RNA sequence into

the library. The turn sequence, if it exists, is decoded, and the points array is allocated. If a

turn sequence is not provided, the RNA sequence is initialized to a stem-loop configuration.

After the initial configuration has been stored in the points array, the annealing process be-
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gins. The annealing process consists of a predetermined number of repeats, each consisting

of a predetermined number of steps. At each step, a random pull move is generated. This

pull move is first investigated using the test function to verify that the move is valid. For

efficiency the test function also returns the indices of the first and last bases to be moved

(stored as s and t, respectively). This information can then be used to determine the total

list of bases that will be affected:

1. For convenience, we test to see if s > t. If it is, we swap s and t so that we know s is

the lower index.

2. We subtract one from s if s > 1 and add one to t if t < n. This is done to make sure

that any base that stacks with any moved base is included.

3. We gather into an array all points in the range [s : t]. Then, making sure that we

do not include duplicate points, we include the immediate neighbors of the original

points s through t. To ensure that points aren’t duplicated, we keep a flags array

that is parallel to the points array. When a point is added to the the neighbor array,

we simply set the flag, indicating the point should not be included again.

After all affected bases have been gathered, we use Equation (2.5) to determine the

stack score of each affected base. The sum of these scores is then computed and saved

as the initial score of the affected bases. The pull move is then executed and the score

calculation is repeated, generating a modified score for the affected bases. These scores’

difference is then computed. Those configurations in which scores show an improvement

are accepted automatically; the remaining configurations are accepted with the probability

determined by Equation (2.9) and the “mixing” strategy. This process is repeated for each

step of each repeat, with each repeat using the same cooling schedule. After all repeats

have been completed, we use a specialized Doubling Step Mode to determine if the folding

process is complete. This is done because, while we have endeavored to tune the parameters

as much as possible, not all sequences require the same amount of manipulation to find an
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optimal solution. This may be caused by either the optimal structure’s complexity or by

the annealer’s random nature.

To determine if additional folding is required in order to find the optimal solution, we

simply keep track of how much improvement a sequence has undergone throughout the

annealing process. Before we start annealing, we record the initial score. When we have

finished all annealing rounds and steps, we record the final score (this is the best score

found over the course of all annealing). The improvement can thus be measured by simply

computing the improvement ratio between the final and initial scores. If the final score

shows an improvement of greater than the improvement threshold of 1.02, then we save the

final score as the initial score, the number of steps per round is doubled, and the entire set

of repeats is done again. This process continues until the improvement ratio is less than

the threshold.

2.2.3 Fold Tool Quick Reference

Now that we have explained the inner workings of Fold, we provide a Quick Refer-

ence explaining how to use the Fold tool. The Fold tool is configured exclusively from

the command line and provides many useful options. These options include command

line arguments for inputting and outputting both sequences and pairs, preparing data for

demonstrations, setting annealing options, specifying which lattice type should be used,

and controlling randomization. These command line options are shown in Table 2.6. The

reader is referred to the Software Manual in Appendix A for a more in depth explanation

of Fold.

2.3 Structure Visualization

In addition to structure manipulation, the Delta toolset includes support for structure

visualization. Structure visualization is done using a simple ball-and-stick model. Under

this model each nucleotide is represented as a ball, with A,C, G, and U bases represented as

red, yellow, green, and blue balls respectively. Each nucleotide is connected to the previous

and next nucleotide in the sequence using a stick. Finally, each paired base is connected
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Table 2.6. Fold command line options.
Command Use Description
-i <file> Required Reads bases and turns from file.
-i2 <file> Required∗ Reads base pairs from file (∗required for

reconstruction only).
Setting this option will automatically change Fold
to reconstruct mode.

-o <file> Optional Writes bases and turns to file.
-o2 <file> Optional Writes base pairs to file.
-movie Optional Writes all accepted pull moves to stdout (one pull

move per line) in the format: index direction.
This output can then be fed into the Show tool
to display a visual representation of the folding
process.

-v Optional Writes verbose messages to stderr.
-a [steps][repeats] Optional Performs simulated annealing for the given number

of repeats and steps. By default Fold will set
repeats to 5 and steps to 100n2 where n is the
number of points in the sequence.

-d Optional Enables Doubling Steps.
-t Optional Terminates early. This option is used exclusively

with reconstruct and causes the the annealer to
terminate as soon as all pairs have been realized.
This means the configuration will not be as smooth
as may be desired, but fulfills all the pair
requirements.

-s <seed> Optional Initializes the random number generator with seed.
-l2 Optional Turns on 2D triangular lattice mode.
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to its pair by a thin wire. In Figure 2.7 we can see a simple example of the ball-and-stick

model for the sequence ACGUGCA. In the model each type of nucleotide is shown, and a

pairing between the 3rd and 6th indicies (G and C) is shown.

Figure 2.7. Ball-and-stick representation of ACGUGCA.

2.3.1 Graphical Representation

In order to visualize a sequence, the visualizer takes an RNA file as input, just as the

structure manipulation tool did. Using the same process as the structure manipulation

tool, the input sequences are loaded onto the lattice. As discussed previously, each lattice

location corresponds to a location in cartesian space, and this corresponding location is

the location displayed by the visualizer. To translate the lattice points (~p = (x, y, z)) to

cartesian coordinates (~p′ = (x′, y′, z′)), we use the following equations:

x′ = x− z

2
(2.12)

y′ = y − z

2
(2.13)

z′ =
z√
2

(2.14)

Using these equations we translate each point to cartesian space, and we translate it

in a way that is visually pleasing to the user. We here note that the translation specified is

not the only possible translation. We use this translation because it provides two distinct

advantages. First, it defines a uniform lattice. This means that from any given point, each

of the twelve neighbors is exactly one unit distance from the origin point. Second, using

this definition allows us to separate the points along the three parallel square planes, with
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each of these three planes containing exactly four of the origin point’s neighbors. This

configuration has proved to be much more intuitive than other configurations. In addition

to accurately representing the 3D triangular lattice, the visualization tool can be used to

represent other lattice types. Other lattice types can be represented by simply changing

the axes allowed2. For example, a square lattice can be represented by allowing only the ~X

and ~Y axes to be used. It should be noted, however, that the skew in the Z axis may lead

to a somewhat misleading view of the structure when other lattice types are displayed on

the 3D triangular lattice.

2.3.2 Viewing

After a structure has been represented in this simple ball-and-stick model, the next step

is to display the structure to the user. This is done by creating a view. The view specifies

exactly what the user sees at any given point in time by controlling the perspective from

which the structure is viewed. The view consists of:

center : The X, Y , and Z coordinates of the center of the view. Using these coordinates

we translate, or shift, the viewing perspective in order to position the model in the

viewscreen.

rotation : The vector around which the scene is rotated and the angle of the rotation.

zoom : The zoom level of the scene.

The view is initialized to be centered at the center of mass, with no additional rotation. We

define the initial zoom as the average of the minimum and maximum zooms. We define the

minimum zoom (Zmin) as:

Zmin = 6.0c, (2.15)

where c is the circumradius (calculated using the previously determined center of mass).

The maximum zoom (the closest the sequence can be to the screen without being clipped)
2While the visualization tool can easily be customized to allow other lattice types, the structure manip-

ulation tool requires additional coding to support these lattice types. Specifically, when attempting to use
the structural manipulation tool, the user must define the pull and adjacency functions for any additional
lattice type.
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is set to a fixed constant.

Having defined the initial view, we use OpenGL library to construct the specified

scene. To construct the scene, OpenGL uses a display function. The display function

first translates to the zoom defined in the default view. The scene is then rotated to the

correct viewing position (rotation). Finally, the scene is translated to the appropriate

center location. Using this simple display function, we can now change the scene by simply

changing the current view.

2.3.2.1 View Rotation

One of the structure visualizer’s most important features is its ability to rotate the

scene. To accomplish this efficiently, we used Quaternion Math. Recall that the rotation of

any scene consists of the vector ( ~X, ~Y , ~Z) around which to rotate and the angle of rotation.

This rotation can be easily represented as a single array of length four, where the first

subscript location is the angle of rotation, and the following three locations represent the

vector around which to rotate. When the scene is rotated, we need to add the new rotation

to the current rotation. We add the two rotations by first converting the current rotation,

and the rotation to be added to the current rotation, to quaternions (also arrays of length

four). The method for converting a rotation (r) to a quaternion (q) is shown below:

q0 = cos(
r0

2
· π

180
) (2.16)

q1 = r1 · sin(
r0

2
· π

180
) (2.17)

q2 = r2 · sin(
r0

2
· π

180
) (2.18)

q3 = q3 · sin(
r0

2
· π

180
) (2.19)

In each of these equations, the angle r0 is assumed to be in degrees.

After the current and new rotations have been converted to quaternions, we can

multiply the two to effectively add the new rotation to the current rotation. Multiplying

the two quaternions (p, q) creates a new quaternion of the same dimensions. This quaternion
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(o) is defined as:

o0 = p0 · q0 − p1 · q1 − p2 · q2 − p3 · q3 (2.20)

o1 = p0 · q1 + p1 · q0 + p2 · q3 − p3 · q2 (2.21)

o2 = p0 · q2 − p1 · q3 + p2 · q0 + p3 · q1 (2.22)

o3 = p0 · q3 + p1 · q2 − p2 · q1 + p3 · q0 (2.23)

Finally, this new quaternion is converted back to the rotation (r′) vector as follows:

r′0 = arccos(o0) · 360
π

(2.24)

r′1 =
o1

sin(arccos(q0))
(2.25)

r′2 =
o2

sin(arccos(q0))
(2.26)

r′3 =
o3

sin(arccos(q0))
(2.27)

The original rotation (r) can now be replaced with the final rotation (r′), causing the display

function to update the scene to the new rotation.

2.3.2.2 View Animation

Having demonstrated how changing the rotation in the view causes the scene to update,

we can intuitively see that changing the center coordinates, or the zoom, will have the same

effect. We now show how these simple changes can be upgraded to support a variety of

scene animations. Instead of working with a single view, the current view, we now define

the current view as simply the current position of a scene in transition from one view (the

source view) to another (the destination view). When we are not moving, the view we

are moving from and the view we are moving to are both defined to be the current view.

Animation can now be defined as simply a source view (Vs), destination view (Vd), and the

amount of time spent transitioning between them. The current view (Vc) is then defined

as:

Vc = Vs · (1.0− d) + Vd · d (2.28)
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where d is the percentage of the transition time passed.

Using view animation the user is allowed to change focus from one nucleotide to

another by transitioning from the view centered at one nucleotide to the view centered at

another nucleotide. The visualizer also supports a drifting mode where the view drifts from

one nucleotide to another while changing the rotation and zoom. This is accomplished by

creating a new view such that the center is the cartesian coordinates of a random nucleotide,

and the rotation and zoom are chosen at random.

2.3.3 RNA Folding Movie

Because the visualizer and the structural manipulation tool are built on the same Delta

framework, the visualizer can also call the pull library function. This function allows the

visualizer to make small structural changes to the sequence by selecting a nucleotide to

move and the direction in which the nucleotide should be moved. While this is not useful

for finding the optimal structure—the visualizer cannot use scoring functions—this ability

can either allow users to manipulate the structure as they see fit or allow the visualizer

to automatically execute a series of pull moves. The latter use gives users the impression

of watching a simple movie. For this reason we refer to this mode as Movie Mode. When

the visualizer is in movie mode, the visualizer creates a movie by performing the following

steps:

1. Read a pull move from stdin.

2. Test the move to make sure it is valid.

3. If the move is valid, complete the pull move.

4. Update the nucleotides cartesian coordinates by translating the updated lattice coor-

dinates provided by the Delta library.

5. Display the new scene.

6. Wait t ms and then repeat.
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2.3.4 Graphical Performance Tuning

In order to provide a rich user experience, the Show tool provides a great deal of

animation. Movie mode and Drift mode can be used to provide interesting demonstrations;

pulsing can be used to make it easy to see, at a glance, which nucleotide is selected; and

drifting from one nucleotide to another provides a sense of perspective when observing or

manipulating a sequence. In addition to these features, users interact with the displayed

sequence by rotating and zooming. All of these features require some sort of animation,

and all of these features may possibly interfere with each other. To understand and solve

this problem, we first need to understand the structure used to keep track of the sequence

orientation at any given time. For obvious reasons, this new structure is the view.

Each view consists of the current shift, rotation, and zoom. The shift can be understood

as how far left or right, and how far towards the top or bottom of the window the image is.

Rotation and zoom are intuitive and require no further explanation. We now define drifting

as simply transitioning between two views; thus; Drifting Mode is simply drifting between

random views. Zooming in and out, rotating, and shifting between bases are then just

special subsets of drifting, where only the corresponding component of the view structure

is manipulated (see section 2.3.2).

Given a current view, we can now create an animation using the new target view and

a timer. Animation is accomplished by simply displaying the current view and then the

target view, separated by some number of transition views. The key to animating the view

is determining the number of transition views to use. If we use too few views, the animation

is choppy and distracting. If we use too many, the animation is smooth, but may be too

slow to be useful.

Rather than trying to solve for the optimal number of steps, we have chosen to dynam-

ically calculate the number of views. This solution is more useful because we not only find

a middle ground allowing for both as many transition frames as possible and an animation

taking a desired amount of time, but we can also account for the vast difference in computer

speeds. To dynamically scale the frame rate, we simply use a timer and specify a target
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duration. When the display function is called, we use the amount of time that has passed,

as a ratio of the target duration, to decide how far the current view should be along the

animation. The relationships between the current view (Vc), the starting (source) view (Vs),

and the target view (Vt) are described in the following interpolate equation:

Vc =
{

Vs · (1.0−4T ) + Vt · 4T 4T < 1
Vt 4T ≥ 1

(2.29)

4T =
Tc − Ti

D
(2.30)

where Tc is the current time, Ti is the initial time, and D is the target duration.

We see that drifting can be used to describe shifting, drifting mode, zoom, and, rotation.

To guarantee optimal performance of the visualization tool, we must now guarantee that

additional animations do not interfere with each other or with the drifting process. We now

explain how pulsing, movie mode, and user interactions are handled.

When using the structure visualization tool, it is useful to cause the currently selected

nucleotide to pulse. Using this visual cue provides a point of reference for users, and makes

navigating through the sequence much easier. This animation is accomplished using a

variation of the interpolate equation (Equation (2.29)). In the original version of interpolate,

the equation measures time from a fixed point, and it scales from one point to another. With

pulse we need to continuously cycle from small to large and back again. To incorporate

this behavior, we use the sin function and the current time (in ms) to scale the radius of

the current nucleotide. In this case we use the current time because we do not want to

measure time from any specific point; we just want to vary the radius over time. We now

have 4T = Tms
1000000.0 · π · 2.0. We then simply use equation (2.29), substituting a target and

initial radius for the target and initial views. In this way we easily update the radius of the

current nucleotide each time the display function is called. Calling the display function in

quick succession creates the pulsing effect. To call the display function in quick succession,

we create a variable, need_redisplay indicating a call to the display function should be

scheduled. Then, at the end of the display function, the value of need_redisplay is checked.
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If need_redisplay is set to true, which it will be, the schedule_redisplay function is

called, and a new variable, redisplay_scheduled, is set to false. As the name implies,

this new variable indicates whether a display function has already been scheduled, and is

functionally the same as indicating a display is in progress. Using redisplay_scheduled,

the schedule_redisplay function fills a simple purpose: when called, it checks to see if a

call to the display function has already been scheduled. If it has, it does nothing; if not,

it marks the display function as scheduled and then calls display. Scheduling the display

function in this way causes the display function to be called every few milliseconds and

guarantees that only one display function is scheduled at a time.

Scheduling a display every few milliseconds seems safe enough, and indeed it may seem

unnecessary to use the need_redisplay variable, or to keep track of whether a display has

been scheduled or not (since up to this point only one display could be scheduled). To

understand the necessity of need_redisplay and schedule_redisplay, we look at how

drifting interacts with pulsing. If we run a drifting function (whether “drifting mode” or

one of the simpler drift methods discussed previously), this animation is accomplished by

repeatedly calling the display function. As the values in the current view are changed, the

display function slowly shifts the user perspective. If these interactions are handled sepa-

rately, we could expect the scheduled displays of the drifting function to overlap and collide

with the scheduled displays of the pulsing function. It is for the purpose of preventing these

collision that we use need_redisplay and schedule_redisplay to keep track of whether

or not a display has been scheduled. When a call to the display function is completed,

whether initiated to cause either the drift function or the pulsing function, we check to see

if a redisplay is needed, and then call the schedule_redisplay function. Using this unified

path allows us to handle drifting and pulsing together and prevent undesired effects from

the schedules colliding.

The second interaction that must be handled is the “movie mode” interaction. This

mode causes additional scheduling problems because the movie speed can be adjusted us-

ing keyboard shortcuts. We can imagine the movie speed set at a very slow rate, while
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pulsing and/or drifting occur at a very fast rate. To solve this problem we introduce a

sentry variable. The sentry variable is used to guarantee a move is taken only at the de-

sired intervals. We discuss how this is accomplished. When the movie first starts, this

sentry variable, movie_busy, is set to false. Setting movie_busy to false indicates that

no movie step is in progress, and that it is safe to schedule a movie step. At the end of

each call to the display function, if “movie mode” has been enabled, is not paused, and

movie_busy is set to false, then the movie_busy is set to true. After setting movie_busy

to true, need_redisplay is set to true and the move is taken. The move is used to update

the sequence, which in turn changes what is displayed (the display function is immedi-

ately called because need_redisplay was set to true). After re-displaying the scene, the

sentry variable prevents any additional movies from being taken until the current move is

completed. At the same time the movie_busy is set to true, a call to another function,

movie_advance, is scheduled for some time in the future, and the need_redisplay variable

is set to true. The scheduling of the movie_advance function depends on a user controlled

time delay variable. Using keyboard shortcuts, the user can increase or decrease the de-

lay between each consecutive movie step. After the specified amount of time has passed,

movie_advance is called. This function signals the movie step in progress has completed

by setting movie_busy to false, and scheduling the display function. This process continues

until the movie completes.

The final interaction that must be handled is user interaction. While a screen is dis-

played, the user may wish to rotate, zoom, or shift the view. This interaction is also easily

solved using the schedule_redisplay function. Instead of calling the display function im-

mediately after the user attempts to rotate, zoom, or shift, and then continuing to schedule

a refresh as soon as the current refresh completes—a process that may waste all our CPU

cycles doing nothing more than displaying and re-displaying what we already have— each

of the rotate, zoom, and shift functions immediately call the schedule_redisplay func-

tion. Recall that at the end of each call to the display function, the redisplay_scheduled

variable is set to false. This means that if redisplay_scheduled is set to true, the display



37

function is already in progress, and calling display again would not increase the speed with

which the screen is updated, and thus would not increase the responsiveness of the pro-

gram. Then, when the current display function is completed, the need_redisplay variable

is checked to see if pulsing, drifting, or movie mode needs the display to be updated. If so,

schedule_redisplay is called again; otherwise, the program will wait for a rotate, zoom,

shift, or other user interaction for display process to be initiated again.

2.3.5 Show Tool Quick Reference

The Show tool is intuitive to use, but it is also more complex than the Fold tool.

The Show function includes command line options defining the sequence to be displayed,

whether the optional “movie mode” is used, which base pairings to display, and where to

save changes to the initial configuration. These command line options are shown in Table

2.7. Once configured from the command line and executed, Show makes exploring and

manipulating the sequence easy by providing both mouse and keyboard support. Left-

clicking and dragging with the mouse rotates the model around the ~X and ~Y axes. Holding

shift while doing this switches to rotating around the ~Z axis and adjusting the zoom. Finally,

right-clicking shows the menu. From the menu, you may select a command directly; it is

also a useful reference to learn the keyboard commands (summarized in Table 2.8).

Table 2.7. Show command line options.
Command Use Description
-i <file> Required Reads bases and turns from file.
-i2 <file> Optional Reads base pairs from file. If specified only the pairs defined

in file will be shown paired.
-o <file> Optional Specifies the file to which the bases and turns will be saved

when the user selects to save the currently displayed
configuration.

-movie Optional Reads pull moves from stdin in the format:
index direction
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Table 2.8. Show keyboard shortcuts.
Key Description
‘w’ Write the current configuration to file specified at the command

line.
<Space> Adjust the zoom and perspective so that the entire sequence can

be viewed.
‘i’ Zoom in.
‘o’ Zoom out.
‘a’ Toggle animation on and off. By default this option is turned on.
‘d’ Toggle drift mode. When this option is turned on, the camera

will zoom, rotate, and pan randomly. This option is turned off
by default, but it automatically turns on when movie mode is
turned on.

‘b’ Toggle RNA bonds on and off. By default this option is turned
on.

‘v’ Toggle vector arrow on and off. By default this option is turned
off, but this option is automatically turned on whenever the
<Up>/<Down> keys are pressed.

‘m’ Pause the movie. This option only has effect when Movie Mode
has been initiated from the command line.

‘f’ Make the movie faster.
‘s’ Make the movie slower.
‘p’ Move the selected base in the direction indicated by the axis

arrow.
‘r’ Redo the last undone pull move.
‘u’ Undo the last pull move.

<Left>/<Right> Navigate through the current sequence.
<Up>/<Down> Switch which axis the axis arrow is showing. This option

automatically sets the axis arrow to on.
<Esc> Quit.



CHAPTER 3

RNA SECONDARY STRUCTURE PREDICTION

In Chapter 2 we discussed how the 3D triangular lattice can be used to simulate an

RNA sequence’s tertiary structure interactions. This method, by itself, has been shown to

be very effective. In [2, 3], the authors show that without any additional processing, this

method is comparable in sensitivity (see Equation (3.1)) to some of the commonly used

programs. In other words, the triangular lattice is able to predict a comparable number of

the true base pairings. Unfortunately, using the 3D triangular lattice for prediction is not

sufficient for general purpose secondary structure prediction. In this chapter we present

the problem with using the 3D triangular lattice, alone, for prediction, as well as the steps

necessary to solve this problem.

3.1 3D Triangular Lattice Prediction Problem

To understand the limitation and underlying problem with using only the 3D triangular

lattice to predict a sequence’s secondary structure, it is important to understand how the

secondary structure is predicted from the lattice. After the structure manipulation tool

has been completed, and a tertiary structure has been predicted, we must translate this

tertiary structure into a secondary structure. This translation is done by first identifying

all adjacencies. Each adjacency (i, j) is then considered a valid base pairing if:

1. The pairs (i, j) are separated by a minimum of three bases.

2. The pair (i, j) is a Watson-Crick pair, and either (i− 1, j + 1) or (i + 1, j − 1) is also

a Watson-Crick pair.

3. The pair (i, j) is a Wobble Pair, and both (i−1, j+1) and (i+1, j−1) are Watson-Crick

pairs.

If an adjacency is a valid pair, the structural manipulation tool writes the base pairing to

an output file. It is written with each line representing one pairing and the indices of the

two pairs separated by a single space. As we can see, instead of predicting a secondary
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structure, the lattice really just predicts a filtered set of adjacencies. In any moderately

complex RNA folding, many of the bases are adjacent to multiple other pairs. Thus, the 3D

triangular lattice, alone, gives us little help in separating the true pairings from the simple

adjacencies.

To demonstrate why considering adjacencies to be pairings can be a problem, we first

introduce three quality measures: sensitivity, specificity, and accuracy. The first measure,

sensitivity, measures how many of the correct pairs are predicted. The next measure,

specificity, measures how reliable the predictions are. The final measure, accuracy, is the

most informative; it can be thought of as a summary statistic, combining the sensitivity

and specificity measures. For purposes of comparison, we define the sensitivity, specificity,

and accuracy as follows:

Sensitivity =
tp

tp + fn
(3.1)

Specificity =
tp

tp + fp
(3.2)

Accuracy =
tp

tp + fn + fp
(3.3)

where tp is the number of true positives, fn is the number of false negatives, and fp is the

number of false positives.

Returning to the quality of the 3D triangular lattice predictions, we observe that this

method is sensitive: it predicts many or most of the correct pairs. The problem is the

method is neither specific nor accurate. To understand why the specificity and accuracy of

an algorithm are important, consider the following example. Imagine an algorithm which

always predicts every nucleotide will pair with every other nucleotide in a sequence. This

algorithm would predict all true pairings 100% of the time, but wouldn’t be worth anything

to anyone in terms of understanding the structure. It is for this reason that we use all three

statistics—sensitivity, specificity, and accuracy—for evaluating our solution.
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3.2 Helicies and 2-interval Graph

To create a more effective solution, and to maximize the sensitivity, specificity, and

accuracy of the solution, we use the 3D triangular lattice as only a portion of the solution.

The next step of our solution requires a new data representation. When the structural

manipulation tool completes, it returns a simple list of base pairings. We translate1 these

pairs into helices. Each helix consists of a starting index (i), ending index(j), and the

number of consecutive pairs contained in the helix (the length L). For example, the base

pairings:

1 10
2 9
1 15
2 14
3 13
4 12
5 11
5 12
6 11
16 20

can be more succinctly represented by the helicies:
1 10 2
1 15 5
5 12 2
16 20 1

In this example, we see that the pairs (1, 15), (2, 14), (3, 13), (4, 12), and (5, 11) are

grouped together to form the second helix (1, 15, 5). The helix representation (1, 15, 5)

means the pair (1, 15) is the first pair in the helix, and each pair (1 + k, 15 − k) is also a

pair, where k is all integers in the range 0 < k < L. As we can see, the helix representation

contains the same information as the pair representation, but the helix representation is

much more compact.

Translating the pairs’ output from the structural manipulation tool to the helices is

a relatively simple process. Each pair is converted to a helix using a simple pair data

structure. This structure keeps track of the starting index (i) and the ending index (j);

it also records whether or not a pair has been used. We then follow this simple algorithm

(Bp2hx) to make the conversion:
1Appendix E contains source code for all our format manipulations
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1. Read in each base pair. Each pair has the format:

i j

where i is the lower index in the pairing, and j is the higher index in the pairing.

2. For each pair read, create a pair structure and insert it into the collection of pairs.

When the insert is done, we use an insertion sort to order the pairs first by i and then

by j. At the time of each insertion, we set the variable that indicates whether or not

the pair has been used to false, indicating it has not been used.

3. Iterate over each pair in the sorted collection. For each pair:

(a) Test if the pair has been used. If it has, do nothing, and move to the next pair

in the collection.

(b) Mark the pair as used, and set the length to 1.

(c) Using the sorted nature of the collection, look for the kth adjacent pair (i+k, j−
k), where k is initially set to 1. We denote this target pair as t. For convenience

we denote the indices of t as simply ti and tj , corresponding to the lower and

upper indecies respectively. We also denote the pair under evaulation as c, with

its pair indecies corresponding to ci and cj . We can now efficiently search the

collection for c using, in order, the following properties of the sorted list:

i. If a pair is marked as used, we can immediately skip to the next pair.

ii. If ci is less than i + 1, we can immediately skip to the next pair.

iii. If ci is greater than ti, we can stop looking for t.

iv. If cj is less than j − 1, we skip to the next pair.

v. If cj is greater than j − 1, we stop looking for t.

vi. If none of the previous conditions is true, then we have found t, and we can

mark t as used, and increment the length of our original pair. We can then

increment k by one and continue at step 3(c).
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(d) Once we have failed to find an adjacent neighbor (t), print out the helix we have

found. This helix is defined to be the indices for the initial pair and the length.

Each helix can now be used to create a 2-interval graph. A 2-interval graph is a sim-

ple graph representation of helix interactions first proposed by Vialette [21]. An example

2-interval graph is shown in Figure 3.1. In this figure there are 8 helices represented. Each

helix has been decomposed into lower and upper line segments. The lower segment repre-

sents the lower half of the helix, the indices ranging from i to i+L−1. The upper segment is

similar, connecting the indices ranging from j to j−L+1. These two line segments are then

connected with an arc. The arcs help us see the relationship between each helix, showing

pseudoknotting when lines cross, or indicating a nested helix when an arch is completely

contained within another arch. While Figure 3.1 models a set of independent helices, this

is not necessarily the case with the helices converted from the structural manipulation tool.

Because each base on the lattice may participate in multiple pairs, the helices converted

from the structural manipulation tool may overlap. The 2-interval graph constructed from

these overlapping helices are confusing, allowing us to easily observing the problem with

using the structural prediction method alone.

61 4 7 82 3 5

Figure 3.1. 2-interval graph.

3.3 Maximum Weighted Independent Set

Using the helix representation of the predicted pairs and the 2-interval concept we

have introduced, we can now use the 2-interval graph to construct the maximum weighted

independent set of helices. We compute this independent set using our independent set

program, called simply Is for short. Is computes the independent set using the RNA

sequence, a set of base pairs, and a 2-interval graph. The algorithm is as follows:

1. Read the RNA sequence from an input file.
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2. Read each helix from stdin into a simple helix data structure. Similar to the pair data

structure discussed previously, the helix structure contains the starting index i, the

ending index j, and the length. Additionally, the helix structure contains the color,

validity, and energy of the helix. As part of reading the helix file in, each of the helix

structure variables are initialized. The process is as follows:

(a) The helix is tested for validity. This testing includes checking to make sure the

starting and ending indices fall within the valid range of indices, verifying the

minimum distance between paired bases has been satisfied and verifying the helix

has a negative folding energy. The helix’s folding energy is determined by using

the mfold energies previously presented in Table 2.4. Valid helicies are added

to the helix collection; invalid helices are filtered out.

(b) Is next attempts to extend the inside of the helix. Given that each helix is defined

by the indices of the outermost paired nucleotides (i, j) and the length (L), the

innermost paired nucleotides must then be i + L− 1, j − L− 1. In attempting to

extend the inside of the helix, we first test to see if adding the pair (i + L, j−L)

increases the score of the helix while still maintaining a valid helix. If this is true,

we increase the length of the sequence by simply incrementing L. This extending

process continues until it either results in a lower scoring helix or the resulting

helix is invalid.

(c) Is next attempts to extend the outside of the helix. This is done in exactly the

same manner as in step (b), except that instead of just incrementing L, we must

increment j and decrement i at the same time as we increment k.

(d) The helix is verified to be at least as long as the minimum length, defined as 3

in this program.

3. Begin the process of creating the independent set of helices as follows:

(a) Find the candidate helix (U) with the highest score (the lowest energy). A

candidate is any unused helix.
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(b) Compare each candidate helix to all previously accepted helices (V ) to see if the

helices cross. A helix is said to cross if Ui < Vi < Uj < Vj or if Vi < Ui < Vj < Uj .

We can understand this by remembering the 2-interval representation previously

introduced. Recall that the 2-interval representation consists of the first half of

the helix (indices ([i : i + L− 1]), connected by an arc to the second half of the

helix (indices ([j−L−1 : j]). If the arcs of two helices cross each other, then the

helices are crossing. Figure 3.2 shows a simple example of a crossing pair. In this

example U does not cross V 2, but U is crossing V 1 (V 1i < Ui and V 1j < Uj).

U
V1

V2

Figure 3.2. 2-interval graph with crossing: U crosses V 1.

For reasons that will be explained in step (d), we can assume helices u and

v are disjoint, or in other words, helices u and v do not share any nucleotide

indices. It is important here to look ahead a little further in the algorithm.

When a candidate helix is accepted as part of the independent set of helices, it

is assigned a color. This color is one of two possible options, corresponding to

upper or lower. The Is algorithm uses these two colors to define whether the

arc is drawn above the intervals or below the intervals. If the arc is above the

intervals, we say that it exists on page one; if the arc is below, it exists on page

two. Figure 3.3 demonstrates this concept. In the figure we show four helices.

If the arcs could only be drawn above the helix sections (as they would be in a

single page solution), then helices 1 and 2 would be conflicting as would (2, 3)

and (3, 4). In a two page solution we are allowed to use both the top and the

bottom sections. This means that while there are crossing helices in Figure 3.3,

there are no conflicting helices in the figure.

Returning to the present part of the algorithm, if our candidate helix (U)
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2 4

31

Figure 3.3. 2-interval graph on two-pages with no conflicting helices.

crosses a helix, we mark the color of the crossed helix as invalid for (U). This

marking is equivalent to specifying that the candidate helix cannot be on the

same page as the helix with which it conflicted.

(c) If the candidate helix U conflicts on both colors, discard the helix and mark it

as invalid. If the candidate helix is valid on the first color, then assign it the first

color; otherwise, assign it the second color. If the helix is valid, add the helix to

the collection.

(d) Compare the helix to all remaining unused helices. This comparison checks for

overlap between the newly accepted helix and the remaining potential candidates.

If there is overlap, the overlapping pairings are removed from the potential can-

didates, and the helices’ indices, length, and score are updated. In some cases

this results in removing entire helices from the set of potential candidates. It

is because of this step, which removes all overlapping pairs from the remaining

candidates, that we can assume the candidate helices are independent of the

selected helices in step (b).

(e) Repeat steps (a) through (d) until there are no remaining candidate helices.

4. Print to stdout the helices in the collection; these are the helices that make up the

independent set.

3.4 Final Prediction Methodology

Having developed a method for determining the maxium weighted independent set

of helices, we can use this method, in conjunction with the structural prediction tool,

to generate more accurate secondary structure predictions. To make our final secondary
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structure predictions, we first use Fold to predict a tertiary structure. The predicted

bases are then translated from base pair format to helices. These helices are read into the

2-interval tool; the maximum weighted independent set of helices is calculated; and the

resulting helices are saved. As a final step, the helices of the independent set are translated

back into base pairs. These base pairs are then read back into Fold. Using Fold’s

Reconstruction Mode, we can realize the tertiary structure of our final predictions. This

final step does not increase the accuracy of the secondary structure prediction, but is useful

for generating more visually pleasing input into the Show tool. The final tertiary structure

is much cleaner and easier to understand than the original tertiary structure predicted by

the structural manipulation tool alone. This process is summarized in Figure 3.4.

delta.bp
showfold foldis

delta.hx seq2delta.is.bpdelta.is.hxseq
pseudobase.fasta

Figure 3.4. Overview of the RNA project prediction process.

It may not be immediately obvious how predicting the maximum weighted indepen-

dent set of helices improves a prediction’s sensitivity, specificity, and accuracy. To demon-

strate the necessity of this step, we show how this step improves the prediction of sequence

PKB00003. After using Fold to predict a near-optimal tertiary structure, we save the

predicted base pairs to file. We can then convert the base pairs to helices using the bp2hx

program previously described. At this stage we use a simple script, hx2i.awk, to create a

text art representation of the structure. Each line of the structure’s text art representation

represents a single helix. Using this format we can can quickly get an idea of the prediction’s

quality. Shown in 3.5 is the PKB00003 sequence, along with the initial prediction. As we

can see in this simple diagram, the Fold-predicted structure includes five helices. The he-

lices range in length from 2 to 5, and contain several overlapping helices. The true structure

of PKB00003 consists of two helices: (2, 20, 6) and (11, 36, 4). Grading the predictions at

this point we see that Fold predicted all but one of the true pairs (tp = 9, fn = 1). Using

Equation (3.1), we see that Fold receives a sensitivity score 9
10 = 0.9, which is relatively

high. Unfortunately, the specificity and accuracy are not as good. Fold predicted a total
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AGGGGCUCAAGGGAGGCCCCAGAAACAAACUUUCCCG
_____ _____

__ __
____ ____
_____ _____

__ __

Figure 3.5. The initial prediction of PKB00003 sequence, using Fold alone.

of 18 pairings, resulting in 9 false positives. Using Equations (3.2) and (3.3), respectively,

to determine specificity and accuracy, we see Fold has a specificity of 9
9+9 = 0.5 and an

accuracy of 9
9+1+9 = 0.47.

Now that we have computed the quality measures obtained from Fold alone, contrast

these results with the improved maximum weighted set prediction (shown in 3.6). A quick

glance at Figure 3.6 is all that is required to see this step’s value in the prediction process.

We can see that when Fold and Is are used together, the prediction not only includes

no overlapping helices, but correctly predicts both true helices and makes this prediction

without making any false predictions. In this case the sensitivity, specificity, and accuracy

are all 100%. In other words, using Fold and Is together resulted in perfectly predicting

the secondary structure of PKB00003.

AGGGGCUCAAGGGAGGCCCCAGAAACAAACUUUCCCG
______ ______

____ ____

Figure 3.6. The prediction of PKB00003 sequence, using Fold and Is together.



CHAPTER 4

EXPERIMENTS

4.1 Data Acquisition

In order to measure our prediction method’s effectiveness, on May 25, 2008, we down-

loaded 275 RNA sequences from the Pseudobase Database [22]. This database is ideal for

testing our prediction process, as the database is dedicated to pseudoknotted sequences. As

of the writing of this paper, no method existed for downloading all the sequences together.

Rather than download the sequences individually, we designed a script to automatically

download, filter, and save the data. This script is called pbdb, deriving its name from its

function, to translate the Pseudobase RNA sequences to sequences in our database file.

pbdb is a simple algorithm designed to download each individual RNA file, stored

as HTML, and translate it into one simple fasta style file called pseudobase.fasta. The

algorithm follows these simple steps:

1. Download the main Pseudobase page. This page is important because it contains

links to all the Pseudobase sequences.

2. Parse the main page and identify all RNA sequence links. This identification process

can be accomplished using pattern matching. We know that all RNA sequences are

stored on a page with the format PKB, followed by a series of numbers and ending with

.HTML. To search for this pattern, we use the regular expression “PKB[0-9]+.HTML”.

3. Use wget to download all the individual files. An example of a Pseudobase sequence

page is shown in Figure 4.1.

4. For each download html file:

(a) Separate out the nucleotide and secondary structure information. Each html

file contains a block of code defining the RNA nucleotide sequence, the index

into its parent sequence, and a series of colons, brackets, braces, and parentheses

defining the known secondary structure (we refer to this method of specifying
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Figure 4.1. Screenshot of Pseudobase sequence website.
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the secondary structure as the dot-bracket method and a file consisting of this

information as a dot-bracket file). An example of this section is shown below:

<pre class=show>

1590 1600 1610 1620 1630

# |123456789|123456789|123456789|123456789|123456

$ 1590 AAAAAACUAAUAGAGGGGGGACUUAGCGCCCCCCAAACCGUAACCCC=1636

% 1590 ::::::::::::::[[[[[[:::::(((]]]]]]::::)))::::::

</pre>

Using awk to perform additional pattern matching, separate out the nucleotide

sequence and the structure information.

(b) Create a more favorable test environment by removing extra data with an awk

script. Extra data exists because, while the Pseudobase database of Pseudoknot-

ted structures contains a significant number of sequences, not all of the structures

are completely known. Sometimes sequences contain a significant amount of un-

known or unpaired structures. Sometimes the nucleotide bases themselves are

not known.

(c) Save the resulting data in a temporary file.

5. After each html file has been processed, combine the individual temporary files to-

gether in a fasta format. Our adaptation of this format specifies that each record begin

with a ‘>’ followed by the sequence name or id. The next line of the record should

be the nucleotide sequence. The third, and last, line of the record is the dot-bracket

representation of the secondary structure. To illustrate this format, we present a small

section of our resulting pseudobase file:

>PKB00081
GCGAUUUCUGACCGCUUUUUUGUCAG
(((::::[[[[[)))::::::]]]]]
>PKB00082
UAAAGUUUGUGUUUCUAAAACACAC
:(((:::[[[[)))::::::]]]]:
>PKB00083
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ACGUGGUACGUACGAUAACGUACA
:(((:[[[[[[))):::]]]]]]:

4.2 HotKnot

To determine our method’s effectiveness, we compared our results with those of Hot-

Knot. HotKnot was a natural choice for comparison because it has also been shown to be

quite effective in predicting pseudoknotted structures. In [1], Ren et al. tested HotKnot

using sequences from PseudoBase and demonstrated their program to be comparable to

or better than several other RNA prediction programs including: Rivas and Eddy’s Pseu-

doknots algorithm [23], NUPACK [24], the iterative loop matching algorithm by Ruan et

al. [25], STAR [26], and pknotsRG-mfe [27]. HotKnot has been demonstrated to be a

highly effective program and a good program from which to gauge the success of our own

approach.

4.3 Experiment Setup

The experiment itself consists of two parts. The first part is designed to evaluate

the predictive accuracy of DeltaIS. The second part evaluates the ability of DeltaIS to

reconstruct a previously determined secondary structure in 3D.

4.3.1 Prediction Experiment

Evaluating the prediction process of DeltaIS is accomplished in three steps: evaluating

the sensitivity, selectivity, and accuracy of HotKnot, evaluating the same statistics for

DeltaIS, and finally comparing the two results.

To determine the sensitivity, selectivity, and accuracy of HotKnot, each RNA se-

quence is fed into HotKnot and the resulting bpseq files are saved. The individual bpseq

files are then translated into base pair files using awk. Each of the initial sequence files has

a known structure, saved in dot-bracket format. These dot-bracket files are then translated

to base pair file formats using a simple utility program (Db2bp). The base pair file pro-

duced for each sequence by HotKnot are then compared to the known structure using the

utility program Ssa. Ssa compares the predicted base pairs with the true base pairs and
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computes each sequence’s sensitivity, selectivity, and accuracy. The individual statistics,

along with the counts of true positivies, true negatives, false positives, and false negatives

are returned.

Our prediction method’s sensitivity, selectivity, and accuracy were determined in a sim-

ilar way. Each sequence was fed into the Fold program and initialized to a default con-

figuration, in this case a stem-loop configuration. Fold then performed 100 · n2 simulated

annealing steps, with the Doubling Steps mode turned on. After completing Fold’s pre-

dictions, the resulting base pair files were converted to helix files and then fed into the

independent set program as discussed in Chapter 3, and summarized in Figure 3.4. After

the process completed, the base pair files from DeltaIS are compared to the true structure

base pair files, again using Ssa.

After determining the accuracies of both DeltaIS and HotKnot, we compared the

two methods. Rather than average the resulting statistics, a final utility program, Stats,

determined the results. Stats reads Ssa’s output for each method’s resulting sequences.

This program allows us to compare the statistics while weighting the results based on the

actual number of bases predicted. Ssa is also capable of handling the results of several test

iterations, allowing us to provide the average statistics over several runs. This test’s process

is depicted in Figure 4.2, which uses a simple flow-chart diagram to illustrate the entire ex-

periment process. Appendix F contains the source code used for evaluating the effectiveness

of HotKnot and DeltaIS, and can be used to evaluate the relative effectiveness of other

algorithms against DeltaIS.

To provide the best test environment, and to generate a significant number of test runs,

we performed this experiment on several machines. We list each of the machines, along

with a basic description of each machine’s configuration.

1. Dell XPS M1710 Laptop

(a) Intel(R) Core(TM)2 CPU with a T7400 Processor clocked at 2.16 GHz, and 2.00

GB of RAM
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Figure 4.2. Beginning-to-end diagram of experiment.

(b) Windows XP Professional Service Pack 3, Cygwin Version 2.573.2.3, and GCC

Version 3.4.4

2. Apple iMac

(a) 2.0 GHz Power PC G5 Processor with 2.0 GB DDR SDRAM RAM

(b) MAC OS X Version 10.4.11 and GCC Version 4.0.0

3. Dell OptiPlex GX620 Desktop

(a) Pentium(R) D CPU 2.8 GHz with 2.00 GB RAM

(b) Microsoft XP Service Pack 3, Cygwin Version 2.573.2.3, and GCC Version 3.4.4

4. Dell OptiPlex GX620 Desktop

(a) Pentium(R) D CPU 3.0 GHz with 2.00 GB RAM

(b) Microsoft XP Service Pack 3, Cygwin Version 2.573.2.3, and GCC Version 3.4.4

4.3.2 Reconstruction Experiment

To evaluate how accurately DeltaIS can reproduce specified structures, we again use

the 252 PseudoBase sequences. This experiment is not used to compare the performance

of DeltaIS to the performance of another algorithm. Rather, this experiment is used to

determine if DeltaIS can be used as a reconstruction tool, and, if it can, how accurately
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it can reconstruct pre-specified sequences. To evaluate DeltaIS’s ability to reconstruct, the

dot-bracket representation of each sequence in the PseudoBase database is translated into

base pair format using the db2bp utility. These base pairs, along with the sequence itself,

are read into Fold. Each sequence is run until one of two conditions is met: the specified

number of annealing steps and rounds is complete, or the structure has been predicted

perfectly. Once Fold has completed the annealing process, the resulting prediction is

graded using the Ssa utility.

4.4 Results and Analysis

4.4.1 Predictive Results

After completing 66 runs of all 252 sequences (each run taking 20-30 hours), we found

the predictive portion of our method had mixed results when compared with HotKnot.

For all 252 sequences, DeltaIS had better sensitivity (79.1% compared with 71.73%) and

accuracy (64.25% compared with 59.93%), while HotKnot had better selectivity (78.47%

compared with 77.37%). These final results are presented in Table 4.1.

Table 4.1. Final experiment results with standard deviations.
Method Sensitivity Selectivity Accuracy
DeltaIS 79.1%± 0.82% 77.37%± 0.83% 64.25%± 1.09%
HotKnot 71.73% 78.47% 59.93%

A close examination of the individual results, shown as a scatter plot in Figure 4.3,

indicates that while individual runs vary, DeltaIS is much more accurate with short se-

quences, while HotKnot is more accurate with larger sequences. To emphasize where, on

average, each method is more accurate, Figure 4.3 uses a exponential plot with a simple

linear regression trend line.

In addition to looking at the overal statistics and evaluating which method is more

accurate for which sequence lengths, it is informative to look at which method predicts

more perfect secondary structures. This method not only gives us an additional method of

comparison, but reminds us of one of the key differences between HotKnot and DeltaIS
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Figure 4.3. Scatter plot results of HotKnot and DeltaIS. A trend line is show for
both methods: the increasing line is HotKnot, the decreasing DeltaIS. The trend lines
intersect at 68.59, indicating DeltaIS is better for lengths less than 69, while HotKnot
is better for lengths 69 and greater.
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method. This key difference is that while HotKnot always predicts the same secondary

structure for the same sequence, DeltaIS’ predicted structures may vary. To provide an

accurate comparison between the two methods, in Figure 4.4 we present a histogram com-

paring the number of structures predicted by HotKnot and DeltaIS. Since the predictions

of DeltaIS vary, we present two separate bars for comparison. The first, DeltaIS-AND,

represents the percent of the sequences predicted perfectly in all test runs. The second,

DeltaIS-OR, represents the percent of the sequences predicted perfectly in at least one of

the test runs. These results are also summarized in Table 4.2. As the table and histogram

have shown, DeltaIS is able, in all cases, to predict more perfect structures than Hot-

Knot.

Table 4.2. Number of sequences perfectly predicted by HotKnot and the DeltaIS.
Method Sequences
HotKnot 14.29%
DeltaIS-AND 18.65%
DeltaIS-OR 32.54%

4.4.2 Reconstructive Results

While DeltaIS proved to be very accurate for predicting RNA secondary structure,

DeltaIS proves still more accurate in reconstructing specified RNA configurations. In

our tests, DeltaIS is able to successfully reconstruct all 252 sequences with an accuracy

of 100%. In addition to reconstructing these sequences accurately, our method is able to

reconstruct these sequences quickly, with most sequences reconstructed in a single round,

and all 252 sequences correctly reconstructed in less than 15 minutes.

While it may seem strange that reconstruction is so much faster and more accurate than

prediction, the difference can be understood by examining the key difference between the

problems. When predicting, the best solution is unknown, while reconstructing a portion

of the solution is given. During prediction a single pairing may be accepted and rejected

several times before settling on a solution, while in the reconstruction process once a solution
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Figure 4.4. Percentage of sequences perfectly predicted by HotKnot and DeltaIS. Hot-
Knot perfectly predicts 14.29% of the sequences. DeltaIS perfectly predicts 18.65% of
the sequences all the time, and predicts 32.54% of the sequences at least once.
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is found, the scoring function is designed to save the known solution. Having portions of

the solution saved makes finding the remainder of the solution significantely easier.



CHAPTER 5

CONCLUSIONS

Solving the RNA folding problem is an important step to understanding how RNA func-

tions. Through the years this problem has been extensively studied, and many interesting

and efficient strategies have been proposed. These solution include dynamic programming

solutions, heuristic solutions, genetic algorithms, and many more. In this work we have

demonstrated that the 3D triangular lattice, when combined with a 2-interval graph post

processing step, is an efficient way to accurately predict RNA secondary structures as well.

We have shown that it is particularly effective at predicting short RNA sequences. While we

have shown this solution is an improvement on current methods, and we provide the tools

to immediately start using the DeltaIS prediction process, this is not the only value we

provide to the bioinformatics community. A major accomplishment of this work is the Delta

Library. This library provides all the tools necessary to work with the 3D triangular lattice,

and it has been reviewed, refactored, and optimized to ensure its accuracy, efficiency, and

usability. Through the use of this library and the accompanying application programming

interface, we hope to provide future researchers the tools to build on our work and continue

working towards the ultimate solution to the RNA folding problem.

In the future we hope to continue improving DeltaIS. We are currently working on

improving our independent set algorithm. Currently Is only implements a greedy algorithm,

and while this algorithm has substantially improved the accuracy of DeltaIS, we believe

it can be improved upon further.

Another potential improvement to DeltaIS could be achieved by creating a hybrid

search process between the standard and reconstruction modes of Fold. Instead of either

looking for an optimal structure or trying to reproduce a specified structure while using a

minimum number of sharp turns, the new mode could accept “hints.” These hints could be

used to guide the program to good initial configurations, while still providing the freedom

to find better solutions. This new search method could be used alternately with 2-interval,

with one method’s output being used to influence the other’s result. The accuracy of any
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prediction done on the 3D triangular lattice is partially determined by the quality of the

starting solution. This is intuitive becauses the closer you are to the optimal configuration,

the more likely you are to find it. The problem we currently face is that the high initial

temperatures required by our cooling function largely negate any benefit of a better starting

configuration. The walk is initially so random (because the probability of acceptance is so

high), that benefits of the initial configuration may become so distant that the annealer

never returns to the configuration, getting stuck in local maximums or just not finding an

acceptable path back to the configurations. Implementing this new search method could

provide a way to guide the search, keeping the search close to an initial configuration.

More work could also be done with the cooling function. Our research has shown

that increasing Delta’s base move set has very little effect on the outcome, but changing

the cooling function of the simulated annealer can change the results drastically. This

drastic change is largely due to the function’s ability to escape local maximums. Using the

mixing strategy provided an excellent method for leaving local maximums, as did Doubling

Steps and multiple Rounds, but these are clearly not the only ways to solve this problem.

Reinforcement learning is a possible avenue for research into this problem. A learning agent

could be tasked with learning a more efficient cooling schedule, or with learning how to

adjust the temperature in response to the rate of improvement of the best solution found,

or in response to the relative quality of the solutions currently being found.

The DeltaIS project, consisting of the Fold, Show, and Is tools, along with the Delta

library, has been shown to be an effective means for predicting an RNA sequence’s secondary

structure. It is hoped the tools will be quickly accepted for everyday use in RNA structure

prediction, and that the provided library will be valuable to the Bioinformatics community

at large.
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APPENDIX D

DELTAIS SOURCE CODE

D .1 delta.h

/*

* delta.h - Delta library header

*

* Minghui Jiang, Martin Mayne, and Joel Gillespie

* Tue Feb 24 10:18:43 MST 2009

*/

/* data structure */

10 extern char *bases;

extern char *turns;

typedef struct point {

struct point *next;

int x, y, z;

} s_point;

extern s_point *points;

extern int n_points;

20

extern int *pairs;

extern int n_pairs;

/* lattice */

void lattice2();

#define C_w ’w’

#define C_v ’v’

30 #define C_u ’u’

#define C_z ’z’

#define C_y ’y’

#define C_x ’x’

#define C_0 ’0’

#define C_X ’X’

#define C_Y ’Y’

#define C_Z ’Z’

#define C_U ’U’

#define C_V ’V’

40 #define C_W ’W’

#define I_w -6

#define I_v -5

#define I_u -4

#define I_z -3

#define I_y -2

#define I_x -1

#define I_0 0
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#define I_X 1

50 #define I_Y 2

#define I_Z 3

#define I_U 4

#define I_V 5

#define I_W 6

char axis_i2c(int i);

int axis_c2i(char c);

extern const s_point *vectors;

60

int axis_pq(const s_point *p, const s_point *q);

int adjacent_pq(const s_point *p, const s_point *q);

int adjacent_ij(int i, int j);

int neighbor_pd(const s_point *p, int d);

int neighbor_id(int i, int d);

void walk(const s_point *p, int d, s_point *q);

70

void turns_to_points();

void points_to_turns();

/* pull move */

typedef struct {

int i; /* index */

int d; /* direction */

int i_; /* index for undo */

80 int d_; /* direction for undo */

} s_move;

int test(s_move *move);

void pull(const s_move *move);

void undo(const s_move *move);

/* RNA-specific */

int valid_ij(int i, int j);

90

extern double energies[6][6];

#define _AU_ 0

#define _CG_ 1

#define _GC_ 2

#define _UA_ 3

#define _GU_ 4

#define _UG_ 5

100 int pair_ab(char a, char b);

int pair_ij(int i, int j);

int watson_crick(int index);
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int wobble(int index);

int valid_adjacent_pair(int i, int j);

/* input/output */

110 void input_bases_turns(const char *filename);

void output_bases_turns(const char *filename);

void input_pairs(const char *filename);

void output_pairs(const char *filename);
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D .2 delta.c

/*

* delta.c - Delta library code

*

* Minghui Jiang, Martin Mayne, and Joel Gillespie

* Tue Feb 24 10:18:43 MST 2009

*/

#include <ctype.h>

#include <math.h>

10 #include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "delta.h"

/* hashtable */

static s_point **hashtable = NULL;

static int hashtable_size = 0;

static double hashcode_magic;

20

static void hashtable_init(int size) {

if (hashtable)

free(hashtable);

if ((hashtable = malloc(size * sizeof(s_point *))) == NULL) {

fprintf(stderr, "hashtable_init: malloc error\n");

exit(1);

}

memset(hashtable, 0, size * sizeof(s_point *));

hashtable_size = size;

30 hashcode_magic = (sqrt(5.0) - 1.0) / 2.0;

}

static int hashcode(const s_point *p) {

double f = ((((p->x * hashcode_magic) + p->y)

* hashcode_magic) + p->z) * hashcode_magic;

if (f < 0.0)

f = -f;

return (int) (hashtable_size * f) % hashtable_size;

40 }

static int hashtable_find(const s_point *p) {

int i = hashcode(p);

s_point *point;

for (point = hashtable[i]; point; point = point->next)

if (point->x == p->x && point->y == p->y && point->z == p->z)

return point - points;

return -1;

50 }

static void hashtable_insert(s_point *p) {

int i = hashcode(p);
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p->next = hashtable[i];

hashtable[i] = p;

}

static void hashtable_remove(s_point *p) {

60 int i = hashcode(p);

s_point *point, *prev = NULL;

for (point = hashtable[i]; point; point = point->next) {

if (point == p) {

if (prev)

prev->next = point->next;

else

hashtable[i] = point->next;

point->next = NULL;

70 return;

}

prev = point;

}

}

/* data structure */

char *bases = NULL;

char *turns = NULL;

80

s_point *points = NULL;

int n_points = 0;

int *pairs = NULL;

int n_pairs = 0;

/* lattice */

#define LATTICE_3D 0

90 #define LATTICE_2D 1

static const int lattice_axes[4][14] = {

/* {w,v,u,z,y,x, 0, X,Y,Z,U,V,W} */

{1,1,1,1,1,1, 0, 1,1,1,1,1,1}, /* LATTICE_3D */

{0,0,1,1,0,1, 0, 1,0,1,1,0,0}, /* LATTICE_2D: xXzZuU */

};

static const int *valid_vectors = &(lattice_axes[LATTICE_3D][6]);

100 void lattice2() {

valid_vectors = &(lattice_axes[LATTICE_2D][6]);

}

char axis_i2c(int i) {

static const char C_[14] =

{ C_w, C_v, C_u, C_z, C_y, C_x, C_0, C_X, C_Y, C_Z, C_U, C_V, C_W };

static const char *C = &(C_[6]);
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return C[i];

110 }

int axis_c2i(char c) {

switch (c) {

case ’w’: return I_w;

case ’v’: return I_v;

case ’u’: return I_u;

case ’z’: return I_z;

case ’y’: return I_y;

case ’x’: return I_x;

120 case ’X’: return I_X;

case ’Y’: return I_Y;

case ’Z’: return I_Z;

case ’U’: return I_U;

case ’V’: return I_V;

case ’W’: return I_W;

default: return I_0;

}

}

130 const s_point vectors_[13] = {

{NULL, -1,-1,-1}, /* w = -X + -Y + -Z */

{NULL, 0,-1,-1}, /* v = -Y + -Z */

{NULL, -1, 0,-1}, /* u = -X + -Z */

{NULL, 0, 0,-1}, /* z = -Z */

{NULL, 0,-1, 0}, /* y = -Y */

{NULL, -1, 0, 0}, /* x = -X */

{NULL, 0, 0, 0}, /* 0 */

{NULL, 1, 0, 0}, /* X */

{NULL, 0, 1, 0}, /* Y */

140 {NULL, 0, 0, 1}, /* Z */

{NULL, 1, 0, 1}, /* U = X + Z */

{NULL, 0, 1, 1}, /* V = Y + Z */

{NULL, 1, 1, 1} /* W = X + Y + Z */

};

const s_point *vectors = &(vectors_[6]);

int axis_pq(const s_point *p, const s_point *q) {

static const int I[3][3][3] =

150 {{{ I_w, I_0, I_0}, { I_u, I_x, I_0}, { I_0, I_0, I_0}},

{{ I_v, I_y, I_0}, { I_z, I_0, I_Z}, { I_0, I_Y, I_V}},

{{ I_0, I_0, I_0}, { I_0, I_X, I_U}, { I_0, I_0, I_W}}};

int x = q->x - p->x;

int y = q->y - p->y;

int z = q->z - p->z;

return (x < -1 || x > 1 || y < -1 || y > 1 || z < -1 || z > 1)

? I_0 : I[x + 1][y + 1][z + 1];

}

160

int adjacent_pq(const s_point *p, const s_point *q) {

return valid_vectors[axis_pq(p, q)];

}
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int adjacent_ij(int i, int j) {

return adjacent_pq(&points[i], &points[j]);

}

int neighbor_pd(const s_point *p, int d) {

170 s_point o;

if (!valid_vectors[d])

return -1;

walk(p, d, &o);

return hashtable_find(&o);

}

int neighbor_id(int i, int d) {

180 return neighbor_pd(&points[i], d);

}

void walk(const s_point *p, int d, s_point *q) { /* p + axis[d] = q */

q->x = p->x + vectors[d].x;

q->y = p->y + vectors[d].y;

q->z = p->z + vectors[d].z;

}

void points_to_turns() {

190 int i;

for (i = 0; i < n_points - 1; i++)

turns[i] = axis_i2c(axis_pq(&points[i], &points[i + 1]));

}

void turns_to_points() {

int i;

if (!turns || strlen(turns) < n_points - 1) {

200 if (turns)

free(turns);

if ((turns = malloc(n_points * sizeof(char))) == NULL) {

fprintf(stderr, "turns_to_points: malloc error\n");

exit(1);

}

/* stem loop */

for (i = 0; i < (n_points - 1) / 2; i++)

turns[i] = ’X’;

210 turns[i++] = ’Z’;

for (; i < n_points - 1; i++)

turns[i] = ’x’;

turns[n_points - 1] = ’\0’;

}

if (points)

free(points);

if ((points = malloc(n_points * sizeof(s_point))) == NULL) {
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fprintf(stderr, "turns_to_points: malloc error\n");

220 exit(1);

}

hashtable_init(n_points * 2); /* load factor 0.5 */

points[0].x = points[0].y = points[0].z = 0;

hashtable_insert(&points[0]);

for (i = 1; i < n_points; i++) {

s_point *q = &points[i];

s_point *p = &points[i - 1];

int d = axis_c2i(turns[i - 1]);

230

if (!valid_vectors[d]) {

fprintf(stderr, "turns_to_points: invalid turn %c at %d\n",

axis_i2c(d), i);

exit(1);

}

walk(p, d, q);

if (hashtable_find(q) >= 0) {

fprintf(stderr, "turns_to_points: collision at %d\n", i);

exit(1);

240 }

hashtable_insert(q);

}

}

/* pull move */

int test(s_move *move) {

s_point o, *p;

int i = move->i;

250 int d = move->d;

int anchor;

if (i < 0 || i >= n_points)

return 0;

if (d < -6 || d > 6 || !valid_vectors[d])

return 0;

walk(&points[i], d, &o);

if (hashtable_find(&o) >= 0)

260 return 0;

if (i == 0)

anchor = -1;

else if (i == n_points - 1)

anchor = 1;

else if (adjacent_pq(&o, &points[i - 1]))

anchor = -1;

else if (adjacent_pq(&o, &points[i + 1]))

anchor = 1;

270 else

return 0;

p = &o;
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if (anchor < 0)

while (i + 1 < n_points && !adjacent_pq(p, &points[i + 1])) {

p = &points[i];

i++;

}

else

280 while (i - 1 >= 0 && !adjacent_pq(p, &points[i - 1])) {

p = &points[i];

i--;

}

move->i_ = i;

move->d_ = axis_pq(p, &points[i]);

return 1;

}

void pull(const s_move *move) {

290 s_point *p = &points[move->i];

int i, anchor;

anchor = move->i < move->i_ ? -1 : 1;

for (i = move->i_; i != move->i; i += anchor) {

s_point *s = &points[i];

s_point *t = &points[i + anchor];

hashtable_remove(s);

s->x = t->x;

300 s->y = t->y;

s->z = t->z;

hashtable_insert(s);

}

hashtable_remove(p);

walk(p, move->d, p);

hashtable_insert(p);

}

void undo(const s_move *move) {

310 s_point *p = &points[move->i_];

int i, anchor;

anchor = move->i > move->i_ ? -1 : 1;

for (i = move->i; i != move->i_; i += anchor) {

s_point *s = &points[i];

s_point *t = &points[i + anchor];

hashtable_remove(s);

s->x = t->x;

320 s->y = t->y;

s->z = t->z;

hashtable_insert(s);

}

hashtable_remove(p);

walk(p, move->d_, p);

hashtable_insert(p);

}
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/* RNA-specific */

330

int valid_ij(int i, int j) {

int k;

if (i > j) {

k = i;

i = j;

j = k;

}

return i >= 0 && j < n_points && j >= i + 4;

340 }

double energies[6][6] = {

{-0.90, -2.20, -2.10, -1.10, -0.60, -1.40},

{-2.10, -3.30, -2.40, -2.10, -1.40, -2.10},

{-2.40, -3.40, -3.30, -2.20, -1.50, -2.50},

{-1.30, -2.40, -2.10, -0.90, -1.00, -1.30},

{-1.30, -2.50, -2.10, -1.40, -0.50, 1.30},

{-1.00, -1.50, -1.40, -0.60, 0.30, -0.50}

};

350

int pair_ab(char a, char b) {

int index = -1;

if (a == ’A’ && b == ’U’)

index = _AU_;

else if (a == ’C’ && b == ’G’)

index = _CG_;

else if (a == ’G’ && b == ’C’)

index = _GC_;

360 else if (a == ’U’ && b == ’A’)

index = _UA_;

else if (a == ’G’ && b == ’U’)

index = _GU_;

else if (a == ’U’ && b == ’G’)

index = _UG_;

return index;

}

int pair_ij(int i, int j) {

370 return pair_ab(bases[i], bases[j]);

}

int valid_adjacent_pair(int i, int j) {

return valid_ij(i, j) && adjacent_pq(&points[i], &points[j])

? pair_ab(bases[i], bases[j]) : -1;

}

int watson_crick(int index) {

return index >= _AU_ && index <= _UA_;

380 }

int wobble(int index) {

return index == _GU_ || index == _UG_;
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}

/* input/output */

static char *read1(FILE *file) {

char c, *s, *t;

390 int i, size;

int count;

i = 0;

size = 64;

if ((s = malloc(size * sizeof(char))) == NULL) {

fprintf(stderr, "read1: malloc error\n");

exit(1);

}

400 count = 0;

while (1) {

if ((c = fgetc(file)) == EOF)

break;

if (c == ’\n’ && ++count >= 2)

break;

if (isspace(c))

continue;

count = 0;

410

if (i == size - 1) { /* buffer full */

size *= 2;

if ((t = malloc(size * sizeof(char))) == NULL) {

fprintf(stderr, "read1: malloc error\n");

exit(1);

}

s[i] = ’\0’;

strcpy(t, s);

420 free(s);

s = t;

}

s[i++] = c;

}

s[i] = ’\0’;

return s;

}

static void write1(FILE *file, char *s) {

430 while (s[0] != ’\0’) {

s += fprintf(file, "%.40s", s);

fprintf(file, "\n");

}

}

void input_bases_turns(const char *filename) {

FILE *file;
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if ((file = fopen(filename, "r")) == NULL) {

440 fprintf(stderr, "input_bases_turns: fopen(%s) error\n", filename);

exit(1);

}

if (bases)

free(bases);

bases = read1(file);

n_points = strlen(bases);

if (turns)

free(turns);

450 turns = read1(file);

fclose(file);

}

void output_bases_turns(const char *filename) {

FILE *file;

if ((file = fopen(filename, "w")) == NULL) {

fprintf(stderr, "output_bases_turns: fopen(%s) error\n", filename);

exit(1);

460 }

write1(file, bases);

fprintf(file, "\n");

write1(file, turns);

fclose(file);

}

void input_pairs(const char *filename) {

FILE *file;

470 int i, j;

if (pairs)

free(pairs);

if ((pairs = malloc(n_points * n_points * sizeof(int))) == NULL) {

fprintf(stderr, "input_pairs: malloc error\n");

exit(1);

}

memset(pairs, 0, n_points * n_points * sizeof(int));

480 n_pairs = 0;

if ((file = fopen(filename, "r")) == NULL) {

fprintf(stderr, "input_pairs: fopen(%s) error\n", filename);

exit(1);

}

while (fscanf(file, "%d%d", &i, &j) == 2) {

if (i < 1 || i > n_points || j < 1 || j > n_points) {

fprintf(stderr, "input_pairs: invalid pair (%d, %d)\n", i, j);

490 exit(1);

}

i--;
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j--;

pairs[i * n_points + j] = pairs[j * n_points + i] = 1;

n_pairs++;

}

fclose(file);

}

500

void output_pairs(const char *filename) {

FILE *file;

int i, j;

if (pairs)

free(pairs);

if ((pairs = malloc(n_points * n_points * sizeof(int))) == NULL) {

fprintf(stderr, "output_pairs: malloc error\n");

exit(1);

510 }

memset(pairs, 0, n_points * n_points * sizeof(int));

n_pairs = 0;

for (i = 0; i < n_points; i++)

for (j = i + 1; j < n_points; j++) {

int k = valid_adjacent_pair(i, j);

int l = valid_adjacent_pair(i - 1, j + 1);

int m = valid_adjacent_pair(i + 1, j - 1);

520

if (watson_crick(k)) {

if ((watson_crick(l) || watson_crick(m)))

pairs[i * n_points + j] = 1;

} else if (wobble(k)) {

if (watson_crick(l) && watson_crick(m)) {

pairs[i * n_points + j] = 1;

pairs[(i - 1) * n_points + (j + 1)] = 1;

pairs[(i + 1) * n_points + (j - 1)] = 1;

}

530 }

}

if ((file = fopen(filename, "w")) == NULL) {

fprintf(stderr, "output_pairs: fopen(%s) error\n", filename);

exit(1);

}

for (i = 0; i < n_points; i++)

for (j = i + 1; j < n_points; j++)

540 if (pairs[i * n_points + j])

fprintf(file, "%d %d\n", i + 1, j + 1);

fclose(file);

}
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D .3 fold.c

/*

* fold.c - RNA folding simulation

*

* Minghui Jiang, Martin Mayne, and Joel Gillespie

* Fri Feb 27 14:28:48 MST 2009

*/

#include <math.h>

#include <signal.h>

10 #include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/time.h>

#include "delta.h"

int movie_mode = 0;

int verbose = 0;

/* scoring for predict: stack_score_i */

20

double stack_score_ij(int i, int j) {

double score = 0.0;

int k, l, m;

if (i > j) {

k = i;

i = j;

j = k;

}

30

k = valid_adjacent_pair(i, j);

if (watson_crick(k)) {

l = valid_adjacent_pair(i - 1, j + 1);

if (watson_crick(l))

score -= energies[l][k];

m = valid_adjacent_pair(i + 1, j - 1);

if (watson_crick(m))

score -= energies[k][m];

} else if (wobble(k)) {

40 l = valid_adjacent_pair(i - 1, j + 1);

if (watson_crick(l)) {

m = valid_adjacent_pair(i + 1, j - 1);

if (watson_crick(m))

score -= (energies[l][k] + energies[k][m]) * 2.0;

}

}

return score;

}

50 double stack_score_i(int i) {

double score = 0.0;

int d, j;
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for (d = -6; d <= 6; d++) {

double score_d;

if ((j = neighbor_id(i, d)) < 0)

continue;

60 score_d = stack_score_ij(i, j);

/* score = minimum! of positive score_d */

if (score_d > 0.0 && (score_d < score || score == 0.0))

score = score_d;

}

return score;

}

/* scoring for reconstruct: match_count_i, turn_score_i */

70

#define MATCH_BONUS 5.0

int match_count_i(int i) {

int count = 0;

int d, j;

for (d = -6; d <= 6; d++) {

if ((j = neighbor_id(i, d)) < 0)

continue;

80

count += pairs[i * n_points + j];

}

return count;

}

#define A180 0

#define A120 0

#define A090 1

#define A060 4

90 #define A000 1000 /* not used */

const int ANGLE_FACTOR[13][13] =

{{A180,A120,A120,A090,A120,A120,A000,A060,A060,A090,A060,A060,A000},

{A120,A180,A090,A120,A120,A060,A000,A120,A060,A060,A090,A000,A060},

{A120,A090,A180,A120,A060,A120,A000,A060,A120,A060,A000,A090,A060},

{A090,A120,A120,A180,A060,A060,A000,A120,A120,A000,A060,A060,A090},

{A120,A120,A060,A060,A180,A090,A000,A090,A000,A120,A120,A060,A060},

{A120,A060,A120,A060,A090,A180,A000,A000,A090,A120,A060,A120,A060},

{A000,A000,A000,A000,A000,A000,A000,A000,A000,A000,A000,A000,A000},

{A060,A120,A060,A120,A090,A000,A000,A180,A090,A060,A120,A060,A120},

100 {A060,A060,A120,A120,A000,A090,A000,A090,A180,A060,A060,A120,A120},

{A090,A060,A060,A000,A120,A120,A000,A060,A060,A180,A120,A120,A090},

{A060,A090,A000,A060,A120,A060,A000,A120,A060,A120,A180,A090,A120},

{A060,A000,A090,A060,A060,A120,A000,A060,A120,A120,A090,A180,A120},

{A000,A060,A060,A090,A060,A060,A000,A120,A120,A090,A120,A120,A180}};

double turn_score_i(int i) {

if (i == 0 || i == n_points - 1)

return 0.0;
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else {

110 int d0 = axis_pq(&points[i - 1], &points[i]);

int d1 = axis_pq(&points[i], &points[i + 1]);

/* match_count is more important than turn_score:

sum of turn_score_i for all i approx< -MATCH_BONUS for one match */

return -ANGLE_FACTOR[d0 + 6][d1 + 6] * (MATCH_BONUS / n_points);

}

}

/* scoring: total_score, init_delta, delta */

120

int n_matches = 0; /* for reconstruct */

double total_score() {

double score = 0.0;

int i;

if (pairs) { /* for reconstruct */

n_matches = 0;

for (i = 0; i < n_points; i++) {

130 score += turn_score_i(i);

n_matches += match_count_i(i);

}

score += n_matches * MATCH_BONUS;

} else /* for predict */

for (i = 0; i < n_points; i++)

score += stack_score_i(i);

return score;

}

140 int *indices = NULL;

int *flags = NULL;

void init_delta() {

if ((indices = malloc(n_points * sizeof(int))) == NULL) {

fprintf(stderr, "init_delta: malloc error\n");

exit(1);

}

if ((flags = malloc(n_points * sizeof(int))) == NULL) {

fprintf(stderr, "init_delta: malloc error\n");

150 exit(1);

}

memset(flags, 0, n_points * sizeof(int));

}

int gather_neighbors(s_point *p, int n) {

int d, j;

for (d = -6; d <= 6; d++) {

if ((j = neighbor_pd(p, d)) < 0)

160 continue;

if (!flags[j]) {

flags[j] = 1;
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indices[n++] = j;

}

}

return n;

}

170 double delta(double threshold) {

s_move move;

s_point o;

double diff;

int n_matches_;

int k, n;

int i, s, t;

do {

move.i = random() % n_points;

180 move.d = random() % 13 - 6;

} while (!test(&move));

/* determine range [s, t] of indices to bases to be moved */

s = move.i;

t = move.i_;

if (s > t) {

i = s;

s = t;

t = i;

190 }

if (--s < 0) /* extend by 1 on each end to account for stacking */

s = 0;

if (++t > n_points - 1)

t = n_points - 1;

/* gather indices to affected bases (bases to be moved and neighbors) */

n = 0;

for (i = s; i <= t; i++) {

if (!flags[i]) {

200 flags[i] = 1;

indices[n++] = i;

}

n = gather_neighbors(&points[i], n);

}

walk(&points[move.i], move.d, &o);

n = gather_neighbors(&o, n);

/* calculate difference in total score before and after pull */

n_matches_ = n_matches;

210 diff = 0;

if (pairs) { /* for reconstruct */

for (i = s; i <= t; i++)

diff -= turn_score_i(i);

for (k = 0; k < n; k++) {

i = indices[k];

n_matches -= match_count_i(i);

}

} else /* for predict */
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for (k = 0; k < n; k++) {

220 i = indices[k];

diff -= stack_score_i(i);

}

pull(&move);

if (pairs) { /* for reconstruct */

for (i = s; i <= t; i++)

diff += turn_score_i(i);

for (k = 0; k < n; k++) {

230 i = indices[k];

n_matches += match_count_i(i);

flags[i] = 0;

}

diff += (n_matches - n_matches_) * MATCH_BONUS;

} else /* for predict */

for (k = 0; k < n; k++) {

i = indices[k];

diff += stack_score_i(i);

flags[i] = 0;

240 }

if (diff < threshold) { /* undo */

undo(&move);

diff = 0.0;

n_matches = n_matches_;

} else { /* commit */

if (movie_mode)

printf("%d %d\n", move.i, move.d);

}

250 return diff;

}

/* simulated annealing: anneal */

volatile int anneal_interrupted = 0; /* flag set on ctrl-c */

void anneal_interrupt(int signum) {

anneal_interrupted = 1;

}

260

int anneal_repeats = 5;

int anneal_steps = 0;

int anneal_doubling = 0;

int anneal_rounds = 0;

int early_terminate = 0; /* for reconstruct */

int reconstructed = 0; /* for reconstruct */

270 void anneal() {

double c = -M_LN2 / log(0.1);

double improvement = 1.02;

double increment = 1e-3;
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double best_best, best_best_; /* best of all rounds */

int repeat, step;

if (anneal_steps == 0)

anneal_steps = n_points * n_points * 100;

best_best = increment;

280 init_delta();

turns_to_points();

signal(SIGINT, anneal_interrupt);

anneal_start:

anneal_rounds++;

best_best_ = best_best;

for (repeat = 1; repeat <= anneal_repeats; repeat++) {

290 double best = 0.0; /* best of current repeat */

double score = total_score();

if (verbose)

fprintf(stderr, "Repeat %d\n", repeat);

for (step = 1; step <= anneal_steps; step++) {

double T, threshold;

int step_mix;

300 if (anneal_interrupted)

goto anneal_end;

if ((double) random() / RAND_MAX < 0.5)

step_mix = random() % anneal_steps + 1;

else

step_mix = step;

T = c / log(1.0 + (double) step_mix / anneal_steps);

threshold = T * log((double) random() / RAND_MAX);

310 score += delta(threshold);

if (score > best + increment) {

best = score;

if (verbose)

fprintf(stderr, "%f %.2f\n",

(double) step / anneal_steps, score);

if (best > best_best + increment) {

320 best_best = best;

points_to_turns(); /* save the record */

if (pairs) /* for reconstruct */

if (n_matches >= n_pairs * 2) {

reconstructed = 1;

if (early_terminate) {

anneal_repeats = repeat;

goto anneal_end;
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}

330 }

}

}

}

if (verbose)

fprintf(stderr, "Repeat %d: %.2f %.2f\n", repeat, best, best_best);

}

if (anneal_doubling && best_best / best_best_ > improvement) {

340 anneal_steps *= 2;

goto anneal_start;

}

anneal_end:

turns_to_points();

}

/* main */

350 void print_help_and_exit() {

printf("FOLD\n");

printf("Options for input/output:\n"

" -i <file> read bases and turns from file\n"

" -i2 <file> read base pairs from file (for reconstruct)\n"

" -o <file> write bases and turns to file\n"

" -o2 <file> write base pairs to file\n"

" -movie write movie to stdout\n"

" -v write verbose messages to stderr\n");

printf("Options for simulation:\n"

360 " -a repeats [steps] perform simulated annealing\n"

" -d iterate rounds with doubling steps\n"

" -e early terminate (for reconstruct)\n"

" -2 use 2-dimensional lattice\n"

" -s <seed> initialize random number generator with seed\n");

exit(0);

}

int main(int argc, char* argv[]) {

char *input_filename = NULL;

370 char *input2_filename = NULL;

char *output_filename = NULL;

char *output2_filename = NULL;

unsigned long seed = -1;

int i;

for (i = 1; i < argc; i++)

if (!strcmp(argv[i], "-i")) {

if (i + 1 < argc && argv[i + 1][0] != ’-’)

input_filename = argv[++i];

380 else

print_help_and_exit();

} else if (!strcmp(argv[i], "-i2")) {

if (i + 1 < argc && argv[i + 1][0] != ’-’)
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input2_filename = argv[++i];

else

print_help_and_exit();

} else if (!strcmp(argv[i], "-o")) {

if (i + 1 < argc && argv[i + 1][0] != ’-’)

output_filename = argv[++i];

390 else

print_help_and_exit();

} else if (!strcmp(argv[i], "-o2")) {

if (i + 1 < argc && argv[i + 1][0] != ’-’)

output2_filename = argv[++i];

else

print_help_and_exit();

} else if (!strcmp(argv[i], "-movie")) {

movie_mode = 1;

} else if (!strcmp(argv[i], "-v")) {

400 verbose = 1;

} else if (!strcmp(argv[i], "-a")) {

if (i + 1 < argc && argv[i + 1][0] != ’-’) {

anneal_repeats = atoi(argv[++i]);

if (i + 1 < argc && argv[i + 1][0] != ’-’)

anneal_steps = atoi(argv[++i]);

} else

print_help_and_exit();

} else if (!strcmp(argv[i], "-d")) {

anneal_doubling = 1;

410 } else if (!strcmp(argv[i], "-e")) {

early_terminate = 1;

} else if (!strcmp(argv[i], "-2")) {

lattice2();

} else if (!strcmp(argv[i], "-s")) {

if (i + 1 < argc && argv[i + 1][0] != ’-’)

seed = atoi(argv[++i]);

else

print_help_and_exit();

}

420

if (seed == -1) {

struct timeval tv;

gettimeofday(&tv, NULL);

seed = (unsigned long) tv.tv_sec;

}

srandom(seed);

if (input_filename)

430 input_bases_turns(input_filename);

if (n_points <= 0)

print_help_and_exit();

if (input2_filename)

input_pairs(input2_filename);

if (verbose)

fprintf(stderr, "bases: %s\nturns: %s\n", bases, turns);

anneal();
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if (verbose)

440 fprintf(stderr, "bases: %s\nturns: %s\n", bases, turns);

if (output_filename)

output_bases_turns(output_filename);

if (output2_filename)

output_pairs(output2_filename);

if (movie_mode)

return 0;

450 if (pairs) /* for reconstruct */

printf("%s %d %d %d\n",

input_filename, n_points, reconstructed, anneal_repeats);

else /* for predict */

printf("%s %d %g\n",

input_filename, n_points, total_score());

return 0;

}
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D .4 show.c

/*

* show.c - RNA structure visualization

*

* Minghui Jiang, Martin Mayne, and Joel Gillespie

* Tue Feb 24 10:18:43 MST 2009

*/

#include <ctype.h>

#include <math.h>

10 #include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/time.h>

#include "delta.h"

#ifdef __APPLE__

#include <GLUT/glut.h> /* MacOSX */

#else

#include <GL/glut.h> /* Cygwin/Linux */

#endif

20

int movie_mode = 0;

int animate_on = 1; /* reset_view, shift_view, display_scene/pulse */

int drift_on = 0; /* random_view */

int bonds_on = 1;

int vector_on = 0;

/* input/output */

30

char *input_filename = NULL;

char *input2_filename = NULL;

char *output_filename = NULL;

void read_files() {

if (input_filename)

input_bases_turns(input_filename);

if (input2_filename)

input_pairs(input2_filename);

40 }

void write_file() {

if (output_filename)

output_bases_turns(output_filename);

}

/* vec-math, coordinates, rotations, quaternions */

typedef float (coord_t)[3];

50

coord_t *coords;

void points_to_coords() {
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int i;

for (i = 0; i < n_points; i++) { /* from lattice to Cartesian */

coords[i][0] = points[i].x - points[i].z / 2.0;

coords[i][1] = points[i].y - points[i].z / 2.0;

coords[i][2] = points[i].z * M_SQRT1_2;

60 }

}

float dist(coord_t p, coord_t q) {

float x = p[0] - q[0];

float y = p[1] - q[1];

float z = p[2] - q[2];

return sqrt(x * x + y * y + z * z);

}

70

typedef float (rotate_t)[4];

typedef float (quat_t)[4];

float r2d(float r) { /* radian to degree */

return r * 180.0 / M_PI;

}

float d2r(float d) { /* degree to radian */

return d * M_PI / 180.0;

80 }

void rotate_to_quat(rotate_t r, quat_t q) {

float angle = d2r(r[0] * 0.5);

float cos_ = cos(angle);

float sin_ = sin(angle);

q[0] = cos_;

q[1] = r[1] * sin_;

q[2] = r[2] * sin_;

90 q[3] = r[3] * sin_;

}

void quat_to_rotate(quat_t q, rotate_t r) {

float angle = acos(q[0]);

float sin_ = sin(angle);

r[0] = r2d(angle * 2.0);

r[1] = q[1] / sin_;

r[2] = q[2] / sin_;

100 r[3] = q[3] / sin_;

}

void quat_multiply(quat_t p, quat_t q, quat_t o) { /* p times q = o */

o[0] = p[0] * q[0] - p[1] * q[1] - p[2] * q[2] - p[3] * q[3];

o[1] = p[0] * q[1] + p[1] * q[0] + p[2] * q[3] - p[3] * q[2];

o[2] = p[0] * q[2] - p[1] * q[3] + p[2] * q[0] + p[3] * q[1];

o[3] = p[0] * q[3] + p[1] * q[2] - p[2] * q[1] + p[3] * q[0];

}
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110 /* colors */

typedef float (color_t)[4];

const color_t COLORS[7] = {

{0.0, 0.0, 0.0, 1.0}, /* BLACK */

{1.0, 1.0, 1.0, 1.0}, /* WHITE */

{0.4, 0.4, 0.4, 1.0}, /* GRAY */

{1.0, 0.0, 0.0, 1.0}, /* RED */

{1.0, 1.0, 0.0, 1.0}, /* YELLOW */

120 {0.0, 1.0, 0.0, 1.0}, /* GREEN */

{0.0, 0.0, 1.0, 1.0} /* BLUE */

};

#define BLACK 0

#define WHITE 1

#define GRAY 2

#define RED 3

#define YELLOW 4

#define GREEN 5

130 #define BLUE 6

int *icolors;

void bases_to_icolors() {

int i;

for (i = 0; i < n_points; i++)

switch (bases[i]) {

case ’A’:

140 icolors[i] = RED;

break;

case ’C’:

icolors[i] = YELLOW;

break;

case ’G’:

icolors[i] = GREEN;

break;

case ’U’:

icolors[i] = BLUE;

150 break;

default:

icolors[i] = BLACK;

}

}

/* execute */

#define MAX_MOVES 128

s_move moves[MAX_MOVES];

160

int i_moves = 0;

int n_redos = 0;

int n_undos = 0;
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int dir = 1;

int idx = 0;

void execute_pull() {

s_move move;

170

if (movie_mode || drift_on)

return;

move.i = idx;

move.d = dir;

if (test(&move)) {

pull(&move);

points_to_coords();

180 points_to_turns();

moves[i_moves] = move;

if (++i_moves == MAX_MOVES)

i_moves = 0;

n_redos = 0;

if (++n_undos > MAX_MOVES)

n_undos = MAX_MOVES;

}

}

190

void execute_redo() {

if (movie_mode || drift_on)

return;

if (n_redos) {

s_move move;

move = moves[i_moves];

if (++i_moves == MAX_MOVES)

200 i_moves = 0;

pull(&move);

points_to_coords();

points_to_turns();

n_redos--;

n_undos++;

}

}

210

void execute_undo() {

if (movie_mode || drift_on)

return;

if (n_undos) {

s_move move;

if (--i_moves < 0)
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i_moves = MAX_MOVES - 1;

220 move = moves[i_moves];

undo(&move);

points_to_coords();

points_to_turns();

n_redos++;

n_undos--;

}

}

230

/* timer */

struct timeval start_time;

float duration; /* 1.0 = 1/4 sec */

void set_timer(float d) {

gettimeofday(&start_time, NULL);

duration = d;

}

240

float timer_progress() {

struct timeval tv;

float delta;

gettimeofday(&tv, NULL);

delta = tv.tv_sec - start_time.tv_sec

+ (tv.tv_usec - start_time.tv_usec) / 1000000.0; /* secs */

delta *= 4.0; /* convert to 1/4 secs */

return delta / duration;

250 }

/* view */

typedef struct {

coord_t c;

rotate_t r;

float zoom;

} s_view;

260 s_view source, target, current;

coord_t center;

float circumradius;

float zoom_near, zoom_far;

int same_view(s_view *v1, s_view *v2) {

return !memcmp(v1, v2, sizeof(s_view));

}

270 void reset_view() {

int i;

if (!same_view(&source, &target))
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return;

vector_on = 0;

center[0] = center[1] = center[2] = 0.0;

for (i = 0; i < n_points; i++) {

280 center[0] += coords[i][0];

center[1] += coords[i][1];

center[2] += coords[i][2];

}

center[0] /= n_points;

center[1] /= n_points;

center[2] /= n_points;

circumradius = 0.0;

for (i = 0; i < n_points; i++) {

290 float d = dist(coords[i], center);

if (d > circumradius)

circumradius = d;

}

zoom_near = 2.0;

zoom_far = circumradius * 6.0;

target.c[0] = center[0];

300 target.c[1] = center[1];

target.c[2] = center[2];

target.r[0] = 45.0;

target.r[1] = 1.0;

target.r[2] = 0.0;

target.r[3] = 0.0;

target.zoom = (zoom_near + zoom_far) / 2.0;

if (animate_on)

set_timer(4); /* 1 sec */

310 else

current = source = target;

}

void shift_view(int offset) {

if (!same_view(&source, &target))

return;

idx += offset;

if (idx > n_points - 1)

320 idx = 0;

else if (idx < 0)

idx = n_points - 1;

target.c[0] = coords[idx][0];

target.c[1] = coords[idx][1];

target.c[2] = coords[idx][2];

if (animate_on)

set_timer(2); /* 0.5 sec */
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else

330 current = source = target;

}

void random_view() {

float v;

int i;

if (!same_view(&source, &target))

return;

340 i = random() % n_points;

target.c[0] = coords[i][0];

target.c[1] = coords[i][1];

target.c[2] = coords[i][2];

target.r[0] = (float) random() / RAND_MAX * 360;

target.r[1] = (float) random() / RAND_MAX * 2.0 - 1.0;

target.r[2] = (float) random() / RAND_MAX * 2.0 - 1.0;

target.r[3] = (float) random() / RAND_MAX * 2.0 - 1.0;

v = sqrt( target.r[1] * target.r[1]

350 + target.r[2] * target.r[2]

+ target.r[3] * target.r[3]);

target.r[1] /= v;

target.r[2] /= v;

target.r[3] /= v;

target.zoom = zoom_near

+ (float) random() / RAND_MAX * (zoom_far - zoom_near) * 0.5;

set_timer(20); /* 5 sec */

}

360

void interpolate_view() {

float delta = timer_progress();

if (delta < 1.0) {

int i;

for (i = 0; i < 3; i++)

current.c[i] = source.c[i] * (1.0 - delta) + target.c[i] * delta;

for (i = 0; i < 4; i++)

370 current.r[i] = source.r[i] * (1.0 - delta) + target.r[i] * delta;

current.zoom = source.zoom * (1.0 - delta) + target.zoom * delta;

} else

current = source = target;

}

void rotate_view(rotate_t r) {

rotate_t q1, q2, q;

int i;

380 rotate_to_quat(r, q1);

rotate_to_quat(current.r, q2);

quat_multiply(q1, q2, q);

quat_to_rotate(q, current.r);



129

for (i = 0; i < 4; i++)

source.r[i] = target.r[i] = current.r[i];

}

void zoom_to(float zoom) {

if (zoom < zoom_near)

390 zoom = zoom_near;

if (zoom > zoom_far)

zoom = zoom_far;

source.zoom = target.zoom = current.zoom = zoom;

}

void zoom_in() {

zoom_to(current.zoom - (zoom_far - zoom_near) / 20);

}

400 void zoom_out() {

zoom_to(current.zoom + (zoom_far - zoom_near) / 20);

}

/* movie */

int movie_paused = 0;

void movie_pause() {

if (movie_mode)

410 movie_paused = !movie_paused;

}

int movie_delay = 5; /* (1 << 5) = 32 msec */

void movie_faster() {

if (movie_mode)

if (--movie_delay < 0)

movie_delay = 0; /* (1 << 0) = 1 msec */

}

420

void movie_slower() {

if (movie_mode)

if (++movie_delay > 11)

movie_delay = 11; /* (1 << 11) = 2048 msec; about 2 seconds */

}

/* display */

int width;

430 int height;

#define _B_ 256

#define _R_ 5

void display_console() {

static char buffer[_B_];

static char s[_R_ + 3 + _R_ + 1];

int i;
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440 s[_R_ + 3 + _R_] = ’\0’;

s[_R_] = ’<’;

s[_R_ + 1] = bases[idx];

s[_R_ + 2] = ’>’;

for (i = 0; i < _R_; i++)

s[_R_ + 3 + i] = (idx + i + 1 < n_points ? bases[idx + i + 1] : ’ ’);

for (i = 0; i < _R_; i++)

s[_R_ - 1 - i] = (idx - i - 1 >= 0 ? bases[idx - i - 1] : ’ ’);

snprintf(buffer, _B_, " %s"

" %s"

450 " %4d/%-4d"

" %c%c"

" animate%c drift%c bonds%c vector%c movie%c",

input_filename,

s,

idx + 1, n_points,

dir > 0 ? ’+’ : ’-’, toupper(axis_i2c(dir)),

animate_on ? ’+’ : ’-’,

drift_on ? ’+’ : ’-’,

bonds_on ? ’+’ : ’-’,

460 vector_on ? ’+’ : ’-’,

movie_mode ? (!movie_paused ? ’+’ : ’-’) : ’ ’);

glMaterialfv(GL_FRONT, GL_AMBIENT, COLORS[BLACK]);

glRasterPos2f(1, 5);

for (i = 0; i < strlen(buffer); i++)

glutBitmapCharacter(GLUT_BITMAP_8_BY_13, buffer[i]);

}

const rotate_t TURN_ROTATIONS[13] = {

470 {135.0, M_SQRT1_2,-M_SQRT1_2, 0.0}, /* w */

{135.0, M_SQRT1_2, M_SQRT1_2, 0.0}, /* v */

{135.0,-M_SQRT1_2,-M_SQRT1_2, 0.0}, /* u */

{135.0,-M_SQRT1_2, M_SQRT1_2, 0.0}, /* z */

{ 90.0, 1.0, 0.0, 0.0}, /* y */

{-90.0, 0.0, 1.0, 0.0}, /* x */

{ 0.0, 0.0, 0.0, 0.0}, /* NOT USED */

{ 90.0, 0.0, 1.0, 0.0}, /* X */

{-90.0, 1.0, 0.0, 0.0}, /* Y */

{ 45.0, M_SQRT1_2,-M_SQRT1_2, 0.0}, /* Z */

480 { 45.0, M_SQRT1_2, M_SQRT1_2, 0.0}, /* U */

{ 45.0,-M_SQRT1_2,-M_SQRT1_2, 0.0}, /* V */

{ 45.0,-M_SQRT1_2, M_SQRT1_2, 0.0} /* W */

};

const rotate_t *turn_rotations = &(TURN_ROTATIONS[6]);

#define TURN(i) glRotatef(turn_rotations[(i)][0], \

turn_rotations[(i)][1], turn_rotations[(i)][2], turn_rotations[(i)][3])

#define RADIUS_BALL 0.12

490 #define RADIUS_STICK 0.04

float LIGHT[] = { 0.0, 0.0, 1.0, 0.0 }; /* from +z */
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void switch_light(int on) {

if (on) {

glLightfv(GL_LIGHT0, GL_AMBIENT, COLORS[GRAY]);

glLightfv(GL_LIGHT0, GL_DIFFUSE, COLORS[GRAY]);

glLightfv(GL_LIGHT0, GL_SPECULAR, COLORS[WHITE]);

} else {

500 glLightfv(GL_LIGHT0, GL_AMBIENT, COLORS[BLACK]);

glLightfv(GL_LIGHT0, GL_DIFFUSE, COLORS[BLACK]);

glLightfv(GL_LIGHT0, GL_SPECULAR, COLORS[BLACK]);

}

}

void display_scene() {

static GLUquadricObj *quadric = NULL;

int i, j, d;

510 if (quadric == NULL) {

quadric = gluNewQuadric();

gluQuadricNormals(quadric, GLU_SMOOTH);

gluQuadricDrawStyle(quadric, GLU_FILL);

}

glTranslatef(0.0, 0.0, -current.zoom);

glRotatef(current.r[0], current.r[1], current.r[2], current.r[3]);

glTranslatef(-current.c[0], -current.c[1], -current.c[2]);

520 if (bonds_on) {

switch_light(0);

for (i = 0; i < n_points; i++)

for (d = -6; d <= 6; d++) {

if ((j = neighbor_id(i, d)) < i)

continue;

if ((pairs && !pairs[i * n_points + j])

|| (!pairs && pair_ij(i, j) < 0))

continue;

530

glBegin(GL_LINES);

glVertex3fv(coords[i]);

glVertex3fv(coords[j]);

glEnd();

}

switch_light(1);

}

/* shared material property of sticks, balls, and direction vector */

540 glMaterialfv(GL_FRONT, GL_DIFFUSE, COLORS[GRAY]);

glMaterialfv(GL_FRONT, GL_SPECULAR, COLORS[WHITE]);

glMaterialf(GL_FRONT, GL_SHININESS, 100.0);

/* draw sticks */

glMaterialfv(GL_FRONT, GL_AMBIENT, COLORS[WHITE]);

for (i = 0; i < n_points - 1; i++) {

glPushMatrix();

glTranslatef(coords[i][0], coords[i][1], coords[i][2]);
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TURN(axis_c2i(turns[i]));

550 gluCylinder(quadric, RADIUS_STICK, RADIUS_STICK, 1.0, 32, 1);

glPopMatrix();

}

/* draw balls */

for (i = 0; i < n_points; i++) {

glPushMatrix();

glTranslatef(coords[i][0], coords[i][1], coords[i][2]);

glMaterialfv(GL_FRONT, GL_AMBIENT, COLORS[icolors[i]]);

if (i == idx && animate_on) { /* pulse */

560 struct timeval tv;

float theta, scale;

gettimeofday(&tv, NULL);

theta = (tv.tv_usec / 1000000.0) * M_PI * 2.0; /* period: 1 sec */

scale = 1.0 + 0.2 * (1.0 + sin(theta)); /* range: [1.0, 1.4] */

glutSolidSphere(RADIUS_BALL * scale, 32, 16);

} else

glutSolidSphere(RADIUS_BALL, 32, 16);

570 glPopMatrix();

}

/* draw vector */

if (vector_on) {

glTranslatef(coords[idx][0], coords[idx][1], coords[idx][2]);

TURN(dir);

glMaterialfv(GL_FRONT, GL_AMBIENT, COLORS[WHITE]);

gluCylinder(quadric, RADIUS_STICK, RADIUS_STICK, 1, 32, 1);

580

glTranslatef(0.0, 0.0, 1.0);

gluCylinder(quadric, RADIUS_BALL, 0.0, 0.3, 32, 1);

}

}

int redisplay_scheduled = 0;

void schedule_redisplay() {

if (!redisplay_scheduled) {

590 redisplay_scheduled = 1;

glutPostRedisplay();

}

}

int movie_busy = 0;

void movie_advance(int value) {

movie_busy = 0;

schedule_redisplay();

600 }

void display() {

float ratio = (float) width / height; /* aspect ratio */



133

int need_redisplay = 0;

glClear(GL_COLOR_BUFFER_BIT);

glClear(GL_DEPTH_BUFFER_BIT);

glViewport(0, 0, width, 20);

610 glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0, width, 0, 20);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

display_console();

glViewport(0, 20, width, height);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

620 if (ratio < 1.0)

glFrustum(-0.5, 0.5, -0.5 / ratio, 0.5 / ratio, 1.0, circumradius * 8);

else

glFrustum(-0.5 * ratio, 0.5 * ratio, -0.5, 0.5, 1.0, circumradius * 8);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

if (!same_view(&source, &target))

interpolate_view();

display_scene();

630 glutSwapBuffers();

if (animate_on)

need_redisplay = 1;

if (drift_on) {

random_view();

need_redisplay = 1;

}

if (movie_mode && !movie_paused && !movie_busy) {

s_move move;

640

movie_busy = 1;

if (scanf("%d %d\n", &move.i, &move.d) != EOF) {

if (test(&move)) {

pull(&move);

points_to_coords();

points_to_turns();

}

glutTimerFunc(1 << movie_delay, movie_advance, 0);

}

650 need_redisplay = 1;

}

redisplay_scheduled = 0;

if (need_redisplay)

schedule_redisplay();

}

void reshape(int w, int h) {
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width = w;

660 height = h;

}

/* keyboard, special, mouse, motion */

void keyboard(unsigned char key, int x, int y) {

switch (key) {

/* execute */

case ’p’:

670 execute_pull();

break;

case ’r’:

execute_redo();

break;

case ’u’:

execute_undo();

break;

/* movie */

680 case ’m’:

movie_pause();

break;

case ’f’:

movie_faster();

break;

case ’s’:

movie_slower();

break;

690 /* toggle */

case ’a’:

animate_on = !animate_on;

break;

case ’d’:

drift_on = !drift_on;

if (!drift_on)

source = target = current;

break;

case ’b’:

700 bonds_on = !bonds_on;

break;

case ’v’:

vector_on = !vector_on;

break;

/* view */

case ’i’:

zoom_in();

break;

710 case ’o’:

zoom_out();

break;

case ’ ’:
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reset_view();

break;

/* top */

case ’w’:

write_file();

720 break;

case 27: /* <esc> */

exit(0);

}

schedule_redisplay();

}

void cycle_vector(int offset) {

dir += offset;

if (dir == 0)

730 dir += offset;

else if (dir < -6)

dir = 6;

else if (dir > 6)

dir = -6;

vector_on = 1;

}

void special(int key, int x, int y) {

switch (key) {

740 case GLUT_KEY_LEFT:

shift_view(-1);

break;

case GLUT_KEY_RIGHT:

shift_view(1);

break;

case GLUT_KEY_UP:

cycle_vector(-1);

break;

case GLUT_KEY_DOWN:

750 cycle_vector(1);

break;

}

schedule_redisplay();

}

int key_modifiers = 0;

int mouse_x, mouse_y;

void mouse(int button, int state, int x, int y) {

760 mouse_x = x;

mouse_y = y;

key_modifiers = (state == GLUT_DOWN ? glutGetModifiers() : 0);

}

void motion(int x, int y) {

int dx = x - mouse_x;

int dy = y - mouse_y;
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mouse_x = x;

770 mouse_y = y;

if (dx == 0 && dy == 0)

return;

if (!same_view(&source, &target))

return;

if (!(key_modifiers & GLUT_ACTIVE_SHIFT)) { /* x and y rotation */

float d = sqrt(dx * dx + dy * dy);

780 rotate_t r;

r[0] = d; /* amount */

r[1] = dy / d;

r[2] = dx / d;

r[3] = 0.0; /* perpendicular to (dx, dy) direction */

rotate_view(r);

} else if (abs(dx) > abs(dy)) { /* z rotation */

rotate_t r;

790 r[0] = dx; /* amount */

r[1] = 0.0;

r[2] = 0.0;

r[3] = 1.0; /* in +z direction */

rotate_view(r);

} else

zoom_to(current.zoom + dy / 20.0);

schedule_redisplay();

}

800 /* menu */

void menu_top(int id) {

switch (id) {

case 1:

write_file();

break;

case 2:

exit(0);

break;

810 }

schedule_redisplay();

}

void menu_execute(int id) {

switch (id) {

case 1:

shift_view(-1);

break;

case 2:

820 shift_view(1);

break;

case 3:

cycle_vector(-1);
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break;

case 4:

cycle_vector(1);

break;

case 5:

execute_pull();

830 break;

case 6:

execute_redo();

break;

case 7:

execute_undo();

break;

}

schedule_redisplay();

}

840

void menu_movie(int id) {

switch (id) {

case 1:

movie_pause();

break;

case 2:

movie_faster();

break;

case 3:

850 movie_slower();

break;

}

schedule_redisplay();

}

void menu_toggle(int id) {

switch (id) {

case 1:

animate_on = !animate_on;

860 break;

case 2:

drift_on = !drift_on;

if (!drift_on)

source = target = current;

break;

case 3:

bonds_on = !bonds_on;

break;

case 4:

870 vector_on = !vector_on;

break;

}

schedule_redisplay();

}

void menu_view(int id) {

switch (id) {

case 1:
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zoom_in();

880 break;

case 2:

zoom_out();

break;

case 3:

reset_view();

break;

}

schedule_redisplay();

}

890

/* main */

void print_help_and_exit() {

printf("SHOW\n"

"Options:\n"

" -i <file> read bases and turns from file\n"

" -i2 <file> read base pairs from file\n"

" -o <file> write bases and turns to file\n"

" -movie turn on movie mode\n");

900 exit(0);

}

int main(int argc, char *argv[]) {

int m_execute, m_movie, m_toggle, m_view;

int i;

for (i = 1; i < argc; i++)

if (!strcmp(argv[i], "-movie")) {

movie_mode = 1;

910 drift_on = 1;

} else if (!strcmp(argv[i], "-i")) {

if (i + 1 < argc && argv[i + 1][0] != ’-’)

input_filename = argv[++i];

else

print_help_and_exit();

} else if (!strcmp(argv[i], "-o")) {

if (i + 1 < argc && argv[i + 1][0] != ’-’)

output_filename = argv[++i];

else

920 print_help_and_exit();

} else if (!strcmp(argv[i], "-i2")) {

if (i + 1 < argc && argv[i + 1][0] != ’-’)

input2_filename = argv[++i];

else

print_help_and_exit();

}

read_files();

if (n_points == 0)

930 print_help_and_exit();

if ((coords = malloc(n_points * sizeof(coord_t))) == NULL) {

fprintf(stderr, "malloc error\n");
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exit(1);

}

turns_to_points();

points_to_coords();

if ((icolors = malloc(n_points * sizeof(int))) == NULL) {

940 fprintf(stderr, "malloc error\n");

exit(1);

}

bases_to_icolors();

reset_view();

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize(800, 800);

950 glutCreateWindow("SHOW");

glutDisplayFunc(display);

glutReshapeFunc(reshape);

glutKeyboardFunc(keyboard);

glutSpecialFunc(special);

glutMouseFunc(mouse);

glutMotionFunc(motion);

glLightfv(GL_LIGHT0, GL_POSITION, LIGHT);

switch_light(1);

960 glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_DEPTH_TEST);

glEnable(GL_LINE_SMOOTH);

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glHint(GL_LINE_SMOOTH_HINT, GL_DONT_CARE);

glShadeModel(GL_SMOOTH);

glClearColor(1.0, 1.0, 1.0, 0.0); /* white background */

glColor3f(0.0, 0.0, 0.0); /* black bonds */

970

m_execute = glutCreateMenu(menu_execute);

glutAddMenuEntry("i.prev - left", 1);

glutAddMenuEntry("i.next - right", 2);

glutAddMenuEntry("d.prev - up", 3);

glutAddMenuEntry("d.next - down", 4);

glutAddMenuEntry("Pull - p", 5);

glutAddMenuEntry("Redo - r", 6);

glutAddMenuEntry("Undo - u", 7);

980 m_movie = glutCreateMenu(menu_movie);

glutAddMenuEntry("Pause - m", 1);

glutAddMenuEntry("Faster - f", 2);

glutAddMenuEntry("Slower - s", 3);

m_toggle = glutCreateMenu(menu_toggle);

glutAddMenuEntry("Animate - a", 1);

glutAddMenuEntry("Drift - d", 2);

glutAddMenuEntry("Bonds - b", 3);
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glutAddMenuEntry("Vector - v", 4);

990

m_view = glutCreateMenu(menu_view);

glutAddMenuEntry("Zoom In - i", 1);

glutAddMenuEntry("Zoom Out - o", 2);

glutAddMenuEntry("Reset - space", 3);

glutCreateMenu(menu_top);

glutAddSubMenu("Execute", m_execute);

if (movie_mode)

glutAddSubMenu("Movie", m_movie);

1000 glutAddSubMenu("Toggle", m_toggle);

glutAddSubMenu("View", m_view);

glutAddMenuEntry("Write - w", 1);

glutAddMenuEntry("Quit - esc", 2);

glutAttachMenu(GLUT_RIGHT_BUTTON);

glutMainLoop();

return 0;

}
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D .5 is.c

/*

* is.c - maximum weight independent set of RNA helices in two pages

*

* Joel Gillespie and Minghui Jiang

* Wed Jan 28 14:10:55 MST 2009

*/

#include <stdio.h>

#include <stdlib.h>

10 #include <string.h>

#include "delta.h" /* energies, pair_ij */

#define MAXSEQ 256 /* maximum length of the sequence of bases */

#define MAXHLS 64 /* maximum number of helices */

#define MINDST 4 /* minimum distance between two indices of a base pair */

#define MINLEN 3 /* minimum length of a helix */

int n_bases = 0;

20

typedef struct {

int valid;

int color; /* colors 1 and 2 for two-page structure */

int i;

int j;

int length;

double energy;

} s_helix;

30 s_helix helices[MAXHLS];

int n_helices = 0;

int valid_helix(int i, int j, int length) {

return i >= 0 && j < n_bases && length >= 1

&& j - length + 1 >= i + length - 1 + MINDST;

}

double energy(int i, int j, int length) {

double e = 0.0;

40

while (length >= 2) {

int i_ = pair_ij(i, j);

int j_ = pair_ij(i + 1, j - 1);

if (i_ >= 0 && j_ >= 0)

e += energies[i_][j_];

i++;

j--;

length--;

50 }

return e;

}
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void add_helix(int i, int j, int length, double energy) {

int k = n_helices++;

helices[k].valid = 1;

helices[k].color = 0;

helices[k].i = i;

60 helices[k].j = j;

helices[k].length = length;

helices[k].energy = energy;

}

void input_helix(int i, int j, int length) {

double e, e_;

int k;

if (i > j) {

70 k = i;

i = j;

j = k;

}

if (valid_helix(i, j, length) && (e = energy(i, j, length)) < 0.0) {

while (valid_helix(i, j, length + 1)

&& (e_ = energy(i, j, length + 1)) < e) {

/* extend inside */

length++;

e = e_;

80 }

while (valid_helix(i - 1, j + 1, length + 1)

&& (e_ = energy(i - 1, j + 1, length + 1)) < e) {

/* extend outside */

i--;

j++;

length++;

e = e_;

}

if (length >= MINLEN)

90 add_helix(i, j, length, e);

}

}

int cross(s_helix *u, s_helix *v) { /* assume that u and v are disjoint! */

return (u->i < v->i && v->i < u->j && u->j < v->j)

|| (v->i < u->i && u->i < v->j && v->j < u->j);

}

int trim_ab(s_helix *u, int a, int b) {

100 double e;

int a_ = u->i;

int b_ = u->i + u->length - 1;

int ij = u->i + u->j;

int i, j, length;

if (ij < a + b) { /* center of [a b] on the right of center of u */

int c;
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/* flip to the left */

110 a = ij - a;

b = ij - b;

c = a;

a = b;

b = c;

}

if (a > b_ || b < a_) /* no overlap */

return 0;

if (a >= a_ + MINLEN) { /* [a_ a) b_ */

120 i = a_;

j = ij - i;

length = a - a_;

if (valid_helix(i, j, length) && (e = energy(i, j, length)) < 0.0)

add_helix(i, j, length, e);

}

if (b <= b_ - MINLEN) { /* a_ (b b_] */

i = b + 1;

j = ij - i;

length = b_ - b;

130 if (valid_helix(i, j, length) && (e = energy(i, j, length)) < 0.0)

add_helix(i, j, length, e);

}

return 1;

}

int trim_helix(s_helix *u, s_helix *v) {

int ia = v->i;

int ib = v->i + v->length - 1;

int ja = v->j - v->length + 1;

140 int jb = v->j;

/* use v to trim u, return 1 if u has no remains */

return trim_ab(u, ia, ib) || trim_ab(u, ja, jb);

}

void is() {

int k;

while (1) {

150 int conflict[3] = {0, 0, 0}; /* for colors 0, 1, 2 */

s_helix *v = NULL;

double e = 0.0;

/* find candidate v with lowest energy */

for (k = 0; k < n_helices; k++) {

s_helix *u = &helices[k];

if (u->valid && !u->color && u->energy < e) {

e = u->energy;

160 v = u;

}

}

if (v == NULL)
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break;

/* assign color to candidate v */

for (k = 0; k < n_helices; k++) {

s_helix *u = &helices[k];

170 if (u != v && u->valid && u->color

&& !conflict[u->color] && cross(u, v)) {

conflict[u->color] = 1;

if (conflict[1] && conflict[2])

break;

}

}

if (!conflict[1])

v->color = 1;

else if (!conflict[2])

180 v->color = 2;

else {

v->valid = 0;

continue;

}

/* trim other helices! */

for (k = 0; k < n_helices; k++) {

s_helix *u = &helices[k];

190 if (u != v && u->valid && !u->color && trim_helix(u, v))

u->valid = 0;

}

}

}

int main(int argc, char *argv[]) {

int i, j, length, k;

if (argc < 2) {

200 fprintf(stderr, "usage: cat <hx_input> | %s <seq_file> > <hx_output>\n",

argv[0]);

exit(1);

}

input_bases_turns(argv[1]);

n_bases = strlen(bases);

while (scanf("%d %d %d\n", &i, &j, &length) != EOF)

input_helix(i - 1, j - 1, length);

210 is();

for (k = 0; k < n_helices; k++) {

s_helix *u = &helices[k];

if (u->valid)

printf("%d %d %d\n", u->i + 1, u->j + 1, u->length);

}

return 0;
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}
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APPENDIX E

FORMAT MANIPULATION SOURCE CODE

E .1 db2bp.c

/*

* db2bp.c - dot brackets to base pairs

*

* Joel Gillespie and Minghui Jiang

* Tue Feb 3 09:11:32 MST 2009

*/

#include <stdio.h>

10 #define MAXPAIRS 256

int p[MAXPAIRS]; /* parentheses */

int b[MAXPAIRS]; /* brackets */

int c[MAXPAIRS]; /* curly-braces */

void output(int i, int j) {

printf("%d %d\n", i + 1, j + 1);

}

20 int main() {

int ip = 0;

int ib = 0;

int ic = 0;

int i = 0;

while (1)

switch (getchar()) {

case EOF:

return 0;

30 case ’:’:

i++;

break;

case ’(’:

p[ip++] = i++;

break;

case ’[’:

b[ib++] = i++;

break;

case ’{’:

40 c[ic++] = i++;

break;

case ’)’:

output(p[--ip], i++);

break;

case ’]’:

output(b[--ib], i++);

break;

case ’}’:
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output(c[--ic], i++);

50 break;

}

return 0;

}
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E .2 hx2bp.c

/*

* hx2bp.c - helices to base pairs

*

* Joel Gillespie and Minghui Jiang

* Mon Jan 12 13:59:57 MST 2009

*/

#include <stdio.h>

10 int main() {

int i, j, length;

int k;

while (scanf("%d %d %d\n", &i, &j, &length) != EOF)

for (k = 0; k < length; k++)

printf("%d %d\n", i++, j--);

return 0;

}
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E .3 bp2hx.c

/*

* bp2hx.c - base pairs to helices

*

* Joel Gillespie and Minghui Jiang

* Mon Jan 12 15:48:24 MST 2009

*/

#include <stdio.h>

#include <stdlib.h>

10

typedef struct {

int used;

int i;

int j;

} s_pair;

s_pair *pairs = NULL;

int n_pairs = 0;

int max_pairs = 16;

20

void insert_pair(int i, int j) {

int k;

if (i > j) {

k = i;

i = j;

j = k;

}

if (n_pairs == 0) {

30 if ((pairs = malloc(max_pairs * sizeof(s_pair))) == NULL) {

fprintf(stderr, "insert_pair: malloc error\n");

exit(1);

}

} else if (n_pairs == max_pairs) {

s_pair *temp = pairs;

max_pairs *= 2;

if ((pairs = malloc(max_pairs * sizeof(s_pair))) == NULL) {

fprintf(stderr, "insert_pair: malloc error\n");

40 exit(1);

}

for (k = 0; k < n_pairs; k++)

pairs[k] = temp[k];

free(temp);

}

k = n_pairs++;

while (k > 0

&& (pairs[k - 1].i > i

|| (pairs[k - 1].i == i && pairs[k - 1].j > j))) {

50 /* insertion sort */

pairs[k] = pairs[k - 1];

k--;

}
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pairs[k].used = 0;

pairs[k].i = i;

pairs[k].j = j;

}

void make_helix(int k) { /* pairs[k] is the outermost pair */

60 int i, j, l, length;

if (pairs[k].used)

return;

pairs[k].used = 1;

length = 1;

i = pairs[k].i + 1;

j = pairs[k].j - 1;

for (l = k + 1; l < n_pairs; l++) { /* extends the current helix */

70 if (pairs[l].used)

continue;

/* find (i, j) */

if (pairs[l].i < i)

continue;

if (pairs[l].i > i)

break;

if (pairs[l].j < j)

continue;

80 if (pairs[l].j > j)

break;

pairs[l].used = 1;

length++;

i++;

j--;

}

printf("%d %d %d\n", pairs[k].i, pairs[k].j, length);

}

90

int main() {

int i, j, k;

while (scanf("%d %d\n", &i, &j) != EOF)

insert_pair(i, j);

for (k = 0; k < n_pairs; k++)

make_helix(k);

return 0;

}
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E .4 hx2i.awk

#

# hx2i.awk - helices to 2-intervals

#

# Minghui Jiang

# Wed Jan 14 14:48:51 MST 2009

#

{

for (i = 1; i <= $2; i++)

10 if (i >= $1 && i < $1 + $3 || i > $2 - $3 && i <= $2)

printf("_")

else

printf(" ")

printf("\n")

}
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E .5 bpseq2bpseq.c

/*

* bpseq2bpseq.c - base pairs and base sequence to bpseq

*

* Joel Gillespie and Minghui Jiang

* Sat Feb 7 08:19:17 MST 2009

*/

#include <stdio.h>

#include <stdlib.h>

10 #include <string.h>

#define MAXSEQ 256

int pairs[MAXSEQ];

char bases[MAXSEQ];

int n_bases = 0;

int main(int argc, char *argv[]) {

FILE *file;

20 int i, j, k;

if (argc < 2) {

fprintf(stderr, "usage: cat <bp_file> | %s <seq_file> > <bpseq_file>\n",

argv[0]);

exit(1);

}

if ((file = fopen(argv[1], "r")) == NULL) {

fprintf(stderr, "fopen(%s) error\n", argv[1]);

exit(1);

30 }

if (fgets(bases, MAXSEQ, file) == NULL) {

fprintf(stderr, "fgets error\n");

exit(1);

}

fclose(file);

n_bases = strlen(bases);

bases[--n_bases] = ’\0’; /* overwrite ’\n’ */

/* [1, n_bases] <-> [0, n_bases-1] */

40 for (k = 0; k < n_bases; k++)

pairs[k] = -1;

while (scanf("%d %d\n", &i, &j) != EOF)

if (i >= 1 && i <= n_bases && j >= 1 && j <= n_bases) {

pairs[i - 1] = j - 1;

pairs[j - 1] = i - 1;

} else

fprintf(stderr, "invalid pair (%d, %d)\n", i, j);

for (k = 0; k < n_bases; k++)

printf("%d %c %d\n", k + 1, bases[k], pairs[k] + 1);

50 return 0;

}
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APPENDIX F

EVALUATION SOURCE CODE

F .1 ssa.c

/*

* ssa.c - sensitivity, selectivity, accuracy

*

* Joel Gillespie and Minghui Jiang

* Sat Feb 7 08:21:43 MST 2009

*/

#include <stdio.h>

#include <stdlib.h>

10

typedef struct {

int i;

int j;

int length;

} s_helix;

#define PREDIC 0

#define ANSWER 1

20 #define MAXSIZE 512

s_helix helices[2][MAXSIZE];

int n_helices[2] = {0, 0};

int n_pairs[2] = {0, 0};

void input_helices(char *filename, int type) {

FILE *file;

int i, j, length;

if ((file = fopen(filename, "r")) == NULL) {

30 fprintf(stderr, "input_helices: fopen(%s) error\n", filename);

exit(1);

}

n_helices[type] = 0;

while (fscanf(file, "%d %d %d\n", &i, &j, &length) != EOF) {

int k;

if (i > j) {

k = i;

i = j;

40 j = k;

}

k = n_helices[type];

helices[type][k].i = i;

helices[type][k].j = j;

helices[type][k].length = length;

n_helices[type]++;
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n_pairs[type] += length;

50 }

fclose(file);

}

int overlap(int a, int b, int c, int d) {

int ac = a > c ? a : c;

int bd = b < d ? b : d;

return ac <= bd ? bd - ac + 1 : 0;

}

60

int intersection() {

int i, j, n_pairs = 0;

for (i = 0; i < n_helices[PREDIC]; i++)

for (j = 0; j < n_helices[ANSWER]; j++) {

s_helix *u = &helices[PREDIC][i];

s_helix *v = &helices[ANSWER][j];

if (u->i + u->j == v->i + v->j) /* aligned with the same center */

70 n_pairs += overlap( /* compare two left intervals */

u->i, u->i + u->length - 1,

v->i, v->i + v->length - 1);

}

return n_pairs;

}

int main(int argc, char *argv[]) {

int tp, fp, fn;

double sensitivity, specificity, accuracy;

80

if (argc < 3) {

fprintf(stderr, "usage: %s <prediction_file> <answer_file>\n", argv[0]);

exit(1);

}

input_helices(argv[1], PREDIC);

input_helices(argv[2], ANSWER);

tp = intersection();

fp = n_pairs[PREDIC] - tp;

fn = n_pairs[ANSWER]- tp;

90 sensitivity = (double) tp / (tp + fn);

specificity = (double) tp / (tp + fp);

accuracy = (double) tp / (tp + fn + fp);

printf("%3d %3d %3d %5.2f %5.2f %5.2f",

tp, fn, fp, sensitivity, specificity, accuracy);

return 0;

}
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F .2 stats.c

/*

* stats.c - average and standard deviation

*

* Joel Gillespie and Minghui Jiang

* Thu Feb 26 14:02:22 MST 2009

*/

#include <math.h>

#include <stdio.h>

10 #include <stdlib.h>

#define N 512

double data[3][N]; /* sensitivity, specificity, accuracy */

int main() {

double average[3] = {0.0, 0.0, 0.0};

double stdev[3] = {0.0, 0.0, 0.0};

int i, k, n = 0;

20

while (scanf("%lf %lf %lf\n", &data[0][n], &data[1][n], &data[2][n]) != EOF)

n++;

for (k = 0; k < 3; k++) {

for (i = 0; i < n; i++)

average[k] += data[k][i];

average[k] /= n;

if (n > 1) {

for (i = 0; i < n; i++) {

double diff = data[k][i] - average[k];

30

stdev[k] += diff * diff;

}

stdev[k] = sqrt(stdev[k] / (n - 1));

} else

stdev[k] = 0;

printf("%.4f %.4f", average[k], stdev[k]);

printf(k < 2 ? " " : "\n");

}

return 0;

40 }
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F .3 linear.c

/*

* linear.c - linear regression

*

* Joel Gillespie and Minghui Jiang

* Sat Feb 7 08:20:35 MST 2009

*/

#include <math.h>

#include <stdio.h>

10

#define MAXPOINTS 500

double x[MAXPOINTS] = {0.0};

double y[MAXPOINTS] = {0.0};

int main() {

double ax = 0.0;

double ay = 0.0;

double xx = 0.0;

20 double xy = 0.0;

double slope;

int i, n_points = 0;

while (scanf("%lf %lf\n", &x[n_points], &y[n_points]) != EOF) {

ax += x[n_points];

ay += y[n_points];

n_points++;

}

ax /= n_points;

30 ay /= n_points;

for (i = 0; i < n_points; i++) {

double diff_x = x[i] - ax;

double diff_y = y[i] - ay;

xx += diff_x * diff_x;

xy += diff_x * diff_y;

}

slope = xy / xx;

40 /* a and b as in y=ax+b */

printf("%g %g\n", slope, ay - slope * ax);

return 0;

}
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F .4 ssa.awk

#

# ssa.awk - sensitivity, specificity, accuracy

#

# Joel Gillespie and Minghui Jiang

# Sat Feb 7 08:18:43 MST 2009

#

{

l[$1] = $2

10 tp[$1] += $3

fn[$1] += $4

fp[$1] += $5

}

END {

for (id in l) {

sensitivity = tp[id] / (tp[id] + fn[id])

specificity = tp[id] / (tp[id] + fp[id])

accuracy = tp[id] / (tp[id] + fn[id] + fp[id])

print l[id], sensitivity, specificity, accuracy

20 }

}
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F .5 filter.awk

#

# filter.awk - filter pseudobase.fasta

#

# Minghui Jiang and Joel Gillespie

# Fri Jan 9 15:51:54 MST 2009

#

BEGIN {

if (!min_len)

10 min_len = 0

if (!max_len)

max_len = 100000

if (!max_gap)

max_gap = 100000

if (!min_den)

min_den = 0

if (!max_den)

max_den = 1

}

20

/^>/ {

name = substr($1, 2)

bases = ""

}

! /^>/ {

if (!name || query && query != name)

next

30 # 1st line

if (!bases) {

bases = $0

next

}

# 2nd line

if (!allow_hole && bases ~ /N/)

next

len = length(bases)

40 if (len < min_len || len > max_len)

next

db = $0 # dot-brackets

gap = 0 # max number of consecutive dots in a gap

n = 0 # total number of dots in gaps

while (match(db, ":+")) {

if (RLENGTH > gap)

gap = RLENGTH

db = substr(db, RSTART + RLENGTH)

n += RLENGTH

50 }

if (gap > max_gap)

next

den = (len - n) / len

if (den < min_den || den > max_den)
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next

command = "cat > " name ".rna"

print bases | command

print $0 | command

close(command)

60 }
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F .6 count.awk

#

# count.awk - count dot-brackets

#

# Minghui Jiang and Joel Gillespie

# Sat Feb 21 09:17:52 MST 2009

#

{

s = $0 # dot-brackets

10 k = 0 # max number of consecutive dots

n = 0 # total number of dots

while (match(s, ":+")) {

if (RLENGTH > k)

k = RLENGTH

s = substr(s, RSTART + RLENGTH)

n += RLENGTH

}

l = length($0) # number of bases

p = (l - n) / 2 # number of base pairs

20 d = (l - n) / l # density of paired bases

printf("%3d %3d %3d %5.2f", l, p, k, d)

}
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APPENDIX G

MAKEFILES

G .1 Makefile.generic

#

# Makefile.generic - platform-independent Makefile

#

# Minghui Jiang and Joel Gillespie

# Mon Mar 2 16:27:14 MST 2009

#

EXE1 = fold.exe show.exe is.exe

EXE2 = db2bp.exe hx2bp.exe bp2hx.exe bpseq2bpseq.exe

10 EXE3 = ssa.exe stats.exe linear.exe

SRC0 = README Makefile.generic Makefile.Cygwin Makefile.Linux Makefile.MacOSX

SRC1 = delta.h delta.c fold.c show.c is.c

SRC2 = db2bp.c hx2bp.c bp2hx.c bpseq2bpseq.c

SRC3 = ssa.c stats.c linear.c

SRC4 = filter.awk hx2i.awk count.awk ssa.awk scatter.gp.save

PKB = pseudobase.fasta

HOT = hotknot.zip

20

.PHONY: all clean clobber spotless

%.o: %.c

cc -o $@ $(CFLAGS) -c $<

%.exe: %.c

cc -o $@ $(CFLAGS) $(LDFLAGS) $<

all: delta.o $(EXE1) $(EXE2) $(EXE3)

clean:

30 rm -f *.rna *.seq *.db *.bp *.hx *.hx2i *.bpseq *.ct *.seq2

rm -f *.scr *.sum *.raw *.dat *.gp *.eps *.pdf *.rec

clobber: clean

rm -f *.o *.exe

spotless: clean clobber

rm -f *.delta.zip *.summary.txt reconstruct.txt

delta.o: delta.h

fold.exe: fold.c delta.o

cc -o $@ $(CFLAGS) $(LDFLAGS) $^

40 show.exe: show.c delta.o

cc -o $@ $^ $(CFLAGS) $(LDFLAGS) $(GLFLAGS)

is.exe: is.c delta.o

cc -o $@ $(CFLAGS) $(LDFLAGS) $^

##

# Pseudo(Knot)Base:

# .rna .seq .db

# .pkb.bp .pkb.hx

# .hx2i
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50 # pkb

##

.PHONY: pkb

%.rna: $(PKB) filter.awk

awk -f filter.awk query=$* $<

%.seq: %.rna

head -n 1 $< > $@

%.db: %.rna

60 tail -n 1 $< > $@

%.pkb.bp: %.db db2bp.exe

cat $< | ./db2bp.exe > $@

%.pkb.hx: %.pkb.bp bp2hx.exe

cat $< | ./bp2hx.exe > $@

%.hx2i: %.hx hx2i.awk

sort -n $< | awk -f hx2i.awk > $@

70 pkb: $(PKB) filter.awk db2bp.exe bp2hx.exe

rm -f *.rna

awk -f filter.awk $<

ls *.rna | sed -e ’s/rna/seq/’ | awk ’{system("make -s " $$0)}’

ls *.rna | sed -e ’s/rna/db/’ | awk ’{system("make -s " $$0)}’

ls *.rna | sed -e ’s/rna/pkb.hx/’ | awk ’{system("make -s " $$0)}’

##

# HotKnot:

# .bpseq

80 # .hotknot.bp .hotknot.hx

# hot

##

.PHONY: hot

%0.bpseq: $(HOT) # extract pre-computed PKB?????0.bpseq

unzip $(HOT) $@

# install HotKnot_v1.2 (Linux only)

90 # HotKnots.tar.gz from http://www.cs.ubc.ca/labs/beta/Software/HotKnots/

#HotKnot: HotKnots.tar.gz

# tar zxf $<

# cp HotKnot_v1.2/hotspot/$@ .

# cp -r HotKnot_v1.2/hotspot/params .

#

# repeat HotKnot experiment (Linux only)

#%0.bpseq: %.seq

# ./HotKnot -b -noPS -I $* > /dev/null

#$(HOT): HotKnot pkb

100 # rm -f *0.bpseq

# ls *.rna | sed -e ’s/\.rna/0.bpseq/’ | awk ’{system("make " $$0)}’

# zip -rmT $@ *0.bpseq

%.hotknot.bp: %0.bpseq
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awk ’$$1<$$3 {print $$1, $$3}’ $< > $@

%.hotknot.hx: %.hotknot.bp bp2hx.exe

cat $< | ./bp2hx.exe > $@

hot: $(HOT) bp2hx.exe

110 rm -f *0.bpseq

unzip $(HOT) > /dev/null

touch *0.bpseq

ls *0.bpseq | sed -e ’s/0.bpseq/.hotknot.hx/’ | awk ’{system("make -s " $$0)}’

##

# Delta:

# .delta.bp .delta.hx .delta.is.hx .delta.is.bp .seq2 .bpseq

# .result .show .movie

##

120

%.delta.bp: %.seq fold.exe

./fold.exe -i $< -o2 $@ -d

%.delta.hx: %.delta.bp bp2hx.exe

cat $< | ./bp2hx.exe > $@

%.delta.is.hx: %.delta.hx %.seq is.exe

cat $*.delta.hx | ./is.exe $*.seq > $@

%.delta.is.bp: %.delta.is.hx hx2bp.exe

cat $< | ./hx2bp.exe > $@

130

%.seq2: %.seq %.delta.is.bp fold.exe

./fold.exe -i $*.seq -i2 $*.delta.is.bp -o $@

%.bpseq: %.seq %.delta.is.bp bpseq2bpseq.exe

cat $*.delta.is.bp | ./bpseq2bpseq.exe $*.seq > $@

%.result:

make $*.delta.hx $*.delta.is.hx $*.seq2

140 %.show: %.seq %.delta.hx2i %.delta.is.hx2i %.delta.is.bp %.seq2 show.exe

cat $*.seq; cat $*.delta.hx2i; echo ">"; cat $*.delta.is.hx2i

./show.exe -i2 $*.delta.is.bp -i $*.seq2

%.movie: %.seq fold.exe show.exe

./fold.exe -i $< -movie | ./show.exe -i $< -movie

##

# Do prediction experiment and save results in mmddHHMM.delta.zip

# delta stop

150 ##

.PHONY: delta stop

%.delta.zip:

rm -f *.delta.hx

ls *.rna | sed -e ’s/rna/delta.hx/’ | awk ’{system("make " $$0)}’

zip -rmT $@ *.delta.hx

delta: all pkb
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160 while true; do make ‘date +%m%d%H%M‘.delta.zip; done

stop:

killall make awk gawk ./fold.exe

##

# Analyze results in mmddHHMM.delta.zip

# txt sts scatter.pdf

##

.PHONY: txt

170

%.delta.is.scr: %.db %.delta.is.hx %.pkb.hx count.awk ssa.exe

echo -n $* "" > $@

awk -f count.awk $*.db >> $@

echo -n " " >> $@

./ssa.exe $*.delta.is.hx $*.pkb.hx >> $@

echo " DeltaIS" >> $@

%.hotknot.scr: %.db %.hotknot.hx %.pkb.hx count.awk ssa.exe

echo -n $* "" > $@

180 awk -f count.awk $*.db >> $@

echo -n " " >> $@

./ssa.exe $*.hotknot.hx $*.pkb.hx >> $@

echo " HotKnot" >> $@

%.sum: %.delta.is.scr %.hotknot.scr %.seq %.db %.delta.hx2i %.delta.is.hx2i\

%.hotknot.hx2i %.pkb.hx2i

cat $*.delta.is.scr > $@

cat $*.hotknot.scr >> $@

cat $*.seq >> $@

190 cat $*.db >> $@

cat $*.delta.hx2i >> $@

echo ">" >> $@

cat $*.delta.is.hx2i >> $@

echo ">" >> $@

cat $*.hotknot.hx2i >> $@

echo ">" >> $@

cat $*.pkb.hx2i >> $@

echo >> $@

200 %.summary.txt: %.delta.zip

rm -f *.delta.hx

unzip $*.delta.zip > /dev/null

touch *.delta.hx

rm -f *.delta.is.hx

ls *.delta.hx | sed -e ’s/delta.hx/delta.is.hx/’ | awk ’{system("make -s " $$0)}’

rm -f *.delta.is.scr

ls *.delta.hx | sed -e ’s/delta.hx/delta.is.scr/’ | awk ’{system("make -s " $$0)}’

rm -f *.sum

ls *.delta.hx | sed -e ’s/delta.hx/sum/’ | awk ’{system("make -s " $$0)}’

210 cat *.sum > $@

txt: all pkb hot

ls *.rna | sed -e ’s/rna/hotknot.scr/’ | awk ’{system("make -s " $$0)}’

rm -f *.summary.txt
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ls *.delta.zip | sed -e ’s/delta.zip/summary.txt/’ | awk ’{system("make " $$0)}’

.PHONY: sts

sts: ssa.awk stats.exe

220 awk ’$$12=="DeltaIS" {print FILENAME, FILENAME, $$6, $$7, $$8}’ *.summary.txt \

| awk -f ssa.awk | awk ’{print $$2, $$3, $$4}’ | ./stats.exe

awk ’$$12=="HotKnot" {print FILENAME, FILENAME, $$6, $$7, $$8}’ *.summary.txt \

| awk -f ssa.awk | awk ’{print $$2, $$3, $$4}’ | ./stats.exe

# FILENAME, FILENAME, true positives, false negatives, false positives

# | FILENAME, sensitivity, specificity, accuracy

# | sensitivity, specificity, accuracy

# | average and stdev of sensitivity, specificity, accuracy

awk ’$$12=="HotKnot" && $$11==1 {print $$1}’ *.summary.txt | sort | uniq | wc -l

awk ’$$12=="DeltaIS" && $$11==1 {print $$1}’ *.summary.txt | sort | uniq | wc -l

230 awk ’$$12=="DeltaIS" && $$11==1 {print $$1}’ *.summary.txt | sort | uniq -c | \

awk ’$$1 == $(shell ls *.summary.txt | wc -l)’ | wc -l

# scatter.pdf

delta.is.raw: ssa.awk

awk ’$$12=="DeltaIS" {print $$1, $$2, $$6, $$7, $$8}’ *.summary.txt | \

awk -f ssa.awk | awk ’{print log($$1)/log(2), $$4}’ > $@

hotknot.raw: ssa.awk

awk ’$$12=="HotKnot" {print $$1, $$2, $$6, $$7, $$8}’ *.summary.txt | \

240 awk -f ssa.awk | awk ’{print log($$1)/log(2), $$4}’ > $@

# id, length, true positives, false negatives, false positives

# | length, sensitivity, specificity, accuracy

# | log_2(length), accuracy

scatter.gp: scatter.gp.save delta.is.raw hotknot.raw linear.exe

cp $< $@

cat delta.is.raw | ./linear.exe | awk ’{print ",", $$1, "* x +", $$2, \

"with lines ls 3\\"}’ >> $@

cat hotknot.raw | ./linear.exe | awk ’{print ",", $$1, "* x +", $$2, \

250 "with lines ls 4"}’ >> $@

%.dat: %.raw

awk ’BEGIN{srand()} {print $$1 + (rand() - 0.5) * 0.02, $$2}’ $< > $@

# perturb the raw data

scatter.eps: scatter.gp delta.is.dat hotknot.dat

gnuplot $<

scatter.pdf: scatter.eps

ps2pdf $<

260

##

# Do reconstruct experiment

# reconstruct

##

%.rec: %.seq %.pkb.bp fold.exe

./fold.exe -i $*.seq -i2 $*.pkb.bp -e > $@

reconstruct: all pkb
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270 ls *.rna | sed -e ’s/rna/rec/’ | awk ’{system("make " $$0)}’

cat *.rec > reconstruct.txt

##

# Software package and source code

# all.zip code.pdf

##

all.zip: $(SRC0) $(SRC1) $(SRC2) $(SRC3) $(SRC4) $(PKB) $(HOT)

zip -r $@ $^

280

%.h.ps: %.h

enscript -MLetter -2r -Ec -T4 --header=’$$n||$$%’ -p $@ $< || true

%.c.ps: %.c

enscript -MLetter -2r -Ec -T4 --header=’$$n||$$%’ -p $@ $< || true

%.awk.ps: %.awk

enscript -MLetter -2r -Eawk -T4 --header=’$$n||$$%’ -p $@ $< || true

%.ps: %

enscript -MLetter -2r -T4 --header=’$$n||$$%’ -p $@ $< || true

%.pdf: %.ps

290 ps2pdf $<

code.pdf: delta.h.pdf delta.c.pdf fold.c.pdf show.c.pdf is.c.pdf \

Makefile.generic.pdf \

db2bp.c.pdf hx2bp.c.pdf bp2hx.c.pdf bpseq2bpseq.c.pdf \

ssa.c.pdf stats.c.pdf linear.c.pdf \

filter.awk.pdf hx2i.awk.pdf count.awk.pdf ssa.awk.pdf

pdftk $^ output $@
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G .2 Makefile.Cygwin

CFLAGS = -O3 -Wall

GLFLAGS = -I/usr/include/w32api -lglut32 -lglu32 -lopengl32 -L/usr/lib/w32api

include Makefile.generic

G .3 Makefile.Linux

CFLAGS = -O3 -Wall

LDFLAGS = -lm

GLFLAGS = -lglut -lGLU -lGL

include Makefile.generic

G .4 Makefile.MacOSX

CFLAGS = -O3 -ansi -pedantic -Wall

GLFLAGS = -framework GLUT -framework OpenGL -framework Cocoa

include Makefile.generic
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