290 research outputs found

    Deformable and articulated 3D reconstruction from monocular video sequences

    Get PDF
    PhDThis thesis addresses the problem of deformable and articulated structure from motion from monocular uncalibrated video sequences. Structure from motion is defined as the problem of recovering information about the 3D structure of scenes imaged by a camera in a video sequence. Our study aims at the challenging problem of non-rigid shapes (e.g. a beating heart or a smiling face). Non-rigid structures appear constantly in our everyday life, think of a bicep curling, a torso twisting or a smiling face. Our research seeks a general method to perform 3D shape recovery purely from data, without having to rely on a pre-computed model or training data. Open problems in the field are the difficulty of the non-linear estimation, the lack of a real-time system, large amounts of missing data in real-world video sequences, measurement noise and strong deformations. Solving these problems would take us far beyond the current state of the art in non-rigid structure from motion. This dissertation presents our contributions in the field of non-rigid structure from motion, detailing a novel algorithm that enforces the exact metric structure of the problem at each step of the minimisation by projecting the motion matrices onto the correct deformable or articulated metric motion manifolds respectively. An important advantage of this new algorithm is its ability to handle missing data which becomes crucial when dealing with real video sequences. We present a generic bilinear estimation framework, which improves convergence and makes use of the manifold constraints. Finally, we demonstrate a sequential, frame-by-frame estimation algorithm, which provides a 3D model and camera parameters for each video frame, while simultaneously building a model of object deformation

    Force-based representation for non-rigid shape and elastic model estimation

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.IEEE This paper addresses the problem of simultaneously recovering 3D shape, pose and the elastic model of a deformable object from only 2D point tracks in a monocular video. This is a severely under-constrained problem that has been typically addressed by enforcing the shape or the point trajectories to lie on low-rank dimensional spaces. We show that formulating the problem in terms of a low-rank force space that induces the deformation and introducing the elastic model as an additional unknown, allows for a better physical interpretation of the resulting priors and a more accurate representation of the actual object's behavior. In order to simultaneously estimate force, pose, and the elastic model of the object we use an expectation maximization strategy, where each of these parameters are successively learned by partial M-steps. Once the elastic model is learned, it can be transfered to similar objects to code its 3D deformation. Moreover, our approach can robustly deal with missing data, and encode both rigid and non-rigid points under the same formalism. We thoroughly validate the approach on Mocap and real sequences, showing more accurate 3D reconstructions than state-of-the-art, and additionally providing an estimate of the full elastic model with no a priori information.Peer ReviewedPostprint (author's final draft

    Unsupervised 3D reconstruction and grouping of rigid and non-rigid categories

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we present an approach to jointly recover camera pose, 3D shape, and object and deformation type grouping, from incomplete 2D annotations in a multi-instance collection of RGB images. Our approach is able to handle indistinctly both rigid and non-rigid categories. This advances existing work, which only addresses the problem for one single object or, they assume the groups to be known a priori when multiple instances are handled. In order to address this broader version of the problem, we encode object deformation by means of multiple unions of subspaces, that is able to span from small rigid motion to complex deformations. The model parameters are learned via Augmented Lagrange Multipliers, in a completely unsupervised manner that does not require any training data at all. Extensive experimental evaluation is provided in a wide variety of synthetic and real scenarios, including rigid and non-rigid categories with small and large deformations. We obtain state-of-the-art solutions in terms of 3D reconstruction accuracy, while also providing grouping results that allow splitting the input images into object instances and their associated type of deformation.Peer ReviewedPostprint (author's final draft

    Optical Flow Constraints on Deformable Models With Applications to Face Tracking

    Get PDF
    Optical flow provides a constraint on the motion of a deformable model. We derive and solve a dynamic system incorporating flow as a hard constraint, producing a model-based least-squares optical flow solution. Our solution also ensures the constraint remains satisfied when combined with edge information, which helps combat tracking error accumulation. Constraint enforcement can be relaxed using a Kalman filter, which permits controlled constraint violations based on the noise present in the optical flow information, and enables optical flow and edge information to be combined more robustly and efficiently. We apply this framework to the estimation of face shape and motion using a 3D deformable face model. This model uses a small number of parameters to describe a rich variety of face shapes and facial expressions. We present experiments in extracting the shape and motion of a face from image sequences which validate the accuracy of the method. They also demonstrate that our treatment of optical flow as a hard constraint, as well as our use of a Kalman filter to reconcile these constraints with the uncertainty in the optical flow, are vital for improving the performance of our system

    Non-Rigid Structure from Motion

    Get PDF
    This thesis revisits a challenging classical problem in geometric computer vision known as "Non-Rigid Structure-from-Motion" (NRSfM). It is a well-known problem where the task is to recover the 3D shape and motion of a non-rigidly moving object from image data. A reliable solution to this problem is valuable in several industrial applications such as virtual reality, medical surgery, animation movies etc. Nevertheless, to date, there does not exist any algorithm that can solve NRSfM for all kinds of conceivable motion. As a result, additional constraints and assumptions are often employed to solve NRSfM. The task is challenging due to the inherent unconstrained nature of the problem itself as many 3D varying configurations can have similar image projections. The problem becomes even more challenging if the camera is moving along with the object. The thesis takes on a modern view to this challenging problem and proposes a few algorithms that have set a new performance benchmark to solve NRSfM. The thesis not only discusses the classical work in NRSfM but also proposes some powerful elementary modification to it. The foundation of this thesis surpass the traditional single object NRSFM and for the first time provides an effective formulation to realise multi-body NRSfM. Most techniques for NRSfM under factorisation can only handle sparse feature correspondences. These sparse features are then used to construct a scene using the organisation of points, lines, planes or other elementary geometric primitive. Nevertheless, sparse representation of the scene provides an incomplete information about the scene. This thesis goes from sparse NRSfM to dense NRSfM for a single object, and then slowly lifts the intuition to realise dense 3D reconstruction of the entire dynamic scene as a global as rigid as possible deformation problem. The core of this work goes beyond the traditional approach to deal with deformation. It shows that relative scales for multiple deforming objects can be recovered under some mild assumption about the scene. The work proposes a new approach for dense detailed 3D reconstruction of a complex dynamic scene from two perspective frames. Since the method does not need any depth information nor it assumes a template prior, or per-object segmentation, or knowledge about the rigidity of the dynamic scene, it is applicable to a wide range of scenarios including YouTube Videos. Lastly, this thesis provides a new way to perceive the depth of a dynamic scene which essentially trivialises the notion of motion estimation as a compulsory step to solve this problem. Conventional geometric methods to address depth estimation requires a reliable estimate of motion parameters for each moving object, which is difficult to obtain and validate. In contrast, this thesis introduces a new motion-free approach to estimate the dense depth map of a complex dynamic scene for successive/multiple frames. The work show that given per-pixel optical flow correspondences between two consecutive frames and the sparse depth prior for the reference frame, we can recover the dense depth map for the successive frames without solving for motion parameters. By assigning the locally rigid structure to the piece-wise planar approximation of a dynamic scene which transforms as rigid as possible over frames, we can bypass the motion estimation step. Experiments results and MATLAB codes on relevant examples are provided to validate the motion-free idea
    • …
    corecore