12 research outputs found

    Measurement and Prediction of Software Performance by Models

    Get PDF
    Software Performance Engineering (SPE) provides a systematic, quantitative approach to constructing software systems that meet performance objectives. It prescribes ways to build performance into new systems rather than try to fix them later. Performance is a pervasive quality of software systems; everything affects it, from the software itself to all underlying layers, such as operating system, middleware, hardware, communication networks, etc. Software Perfor - mance Engineering encompasses efforts to describe and improve performance, with two distinct approaches: an earlycycle predictive model-based approach, and a late-cycle measurement-based approach. Current progress and future trends within these two approaches are described, with a tendency (and a need) for them to converge, in order to cover the entire development cycle

    Rapid Parallelization by Collaboration

    Get PDF
    The widespread adoption of Chip Multiprocessors has renewed the emphasis on the use of parallelism to improve performance. The present and growing diversity in hardware architectures and software environments, however, continues to pose difficulties in the effective use of parallelism thus delaying a quick and smooth transition to the concurrency era. In this document, we describe the research being conducted at the Computer Science Department at Columbia University on a system called COMPASS that aims to simplify this transition by providing advice to programmers considering parallelizing their code. The advice proffered to the programmer is based on the wisdom collected from programmers who have already parallelized some code. The utility of COMPASS rests, not only on its ability to collect the wisdom unintrusively but also on its ability to automatically seek, find and synthesize this wisdom into advice that is tailored to the code the user is considering parallelizing and to the environment in which the optimized program will execute in. COMPASS provides a platform and an extensible framework for sharing human expertise about code parallelization -- widely and on diverse hardware and software. By leveraging the "Wisdom of Crowds" model which has been conjunctured to scale exponentially and which has successfully worked for Wikis, COMPASS aims to enable rapid parallelization of code and thus continue to extend the benefits for Moore's law scaling to science and society

    System Support for Implicitly Parallel Programming

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems Laborator

    Performance and Memory Space Optimizations for Embedded Systems

    Get PDF
    Embedded systems have three common principles: real-time performance, low power consumption, and low price (limited hardware). Embedded computers use chip multiprocessors (CMPs) to meet these expectations. However, one of the major problems is lack of efficient software support for CMPs; in particular, automated code parallelizers are needed. The aim of this study is to explore various ways to increase performance, as well as reducing resource usage and energy consumption for embedded systems. We use code restructuring, loop scheduling, data transformation, code and data placement, and scratch-pad memory (SPM) management as our tools in different embedded system scenarios. The majority of our work is focused on loop scheduling. Main contributions of our work are: We propose a memory saving strategy that exploits the value locality in array data by storing arrays in a compressed form. Based on the compressed forms of the input arrays, our approach automatically determines the compressed forms of the output arrays and also automatically restructures the code. We propose and evaluate a compiler-directed code scheduling scheme, which considers both parallelism and data locality. It analyzes the code using a locality parallelism graph representation, and assigns the nodes of this graph to processors.We also introduce an Integer Linear Programming based formulation of the scheduling problem. We propose a compiler-based SPM conscious loop scheduling strategy for array/loop based embedded applications. The method is to distribute loop iterations across parallel processors in an SPM-conscious manner. The compiler identifies potential SPM hits and misses, and distributes loop iterations such that the processors have close execution times. We present an SPM management technique using Markov chain based data access. We propose a compiler directed integrated code and data placement scheme for 2-D mesh based CMP architectures. Using a Code-Data Affinity Graph (CDAG) to represent the relationship between loop iterations and array data, it assigns the sets of loop iterations to processing cores and sets of data blocks to on-chip memories. We present a memory bank aware dynamic loop scheduling scheme for array intensive applications.The goal is to minimize the number of memory banks needed for executing the group of loop iterations

    PERFORMANCE ANALYSIS AND FITNESS OF GPGPU AND MULTICORE ARCHITECTURES FOR SCIENTIFIC APPLICATIONS

    Get PDF
    Recent trends in computing architecture development have focused on exploiting task- and data-level parallelism from applications. Major hardware vendors are experimenting with novel parallel architectures, such as the Many Integrated Core (MIC) from Intel that integrates 50 or more x86 processors on a single chip, the Accelerated Processing Unit from AMD that integrates a multicore x86 processor with a graphical processing unit (GPU), and many other initiatives from other hardware vendors that are underway. Therefore, various types of architectures are available to developers for accelerating an application. A performance model that predicts the suitability of the architecture for accelerating an application would be very helpful prior to implementation. Thus, in this research, a Fitness model that ranks the potential performance of accelerators for an application is proposed. Then the Fitness model is extended using statistical multiple regression to model both the runtime performance of accelerators and the impact of programming models on accelerator performance with high degree of accuracy. We have validated both performance models for all the case studies. The error rate of these models, calculated using the experimental performance data, is tolerable in the high-performance computing field. In this research, to develop and validate the two performance models we have also analyzed the performance of several multicore CPUs and GPGPU architectures and the corresponding programming models using multiple case studies. The first case study used in this research is a matrix-matrix multiplication algorithm. By varying the size of the matrix from a small size to a very large size, the performance of the multicore and GPGPU architectures are studied. The second case study used in this research is a biological spiking neural network (SNN), implemented with four neuron models that have varying requirements for communication and computation making them useful for performance analysis of the hardware platforms. We report and analyze the performance variation of the four popular accelerators (Intel Xeon, AMD Opteron, Nvidia Fermi, and IBM PS3) and four advanced CPU architectures (Intel 32 core, AMD 32 core, IBM 16 core, and SUN 32 core) with problem size (matrix and network size) scaling, available optimization techniques and execution configuration. This thorough analysis provides insight regarding how the performance of an accelerator is affected by problem size, optimization techniques, and accelerator configuration. We have analyzed the performance impact of four popular multicore parallel programming models, POSIX-threading, Open Multi-Processing (OpenMP), Open Computing Language (OpenCL), and Concurrency Runtime on an Intel i7 multicore architecture; and, two GPGPU programming models, Compute Unified Device Architecture (CUDA) and OpenCL, on a NVIDIA GPGPU. With the broad study conducted using a wide range of application complexity, multiple optimizations, and varying problem size, it was found that according to their achievable performance, the programming models for the x86 processor cannot be ranked across all applications, whereas the programming models for GPGPU can be ranked conclusively. We also have qualitatively and quantitatively ranked all the six programming models in terms of their perceived programming effort. The results and analysis in this research indicate and are supported by the proposed performance models that for a given hardware system, the best performance for an application is obtained with a proper match of programming model and architecture
    corecore