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Abstract

Embedded systems have three common principles: real-time performance, low

power consumption, and low price (limited hardware). Embedded computers use chip

multiprocessors (CMPs) to meet these expectations. However, one of the major prob-

lems is lack of efficient software support for CMPs; in particular, automated code

parallelizers are needed.

The aim of this study is to explore various ways to increase performance, as well

as reducing resource usage and energy consumption for embedded systems. We use

code restructuring, loop scheduling, data transformation, code and data placement, and

scratch-pad memory (SPM) management as our tools in different embedded system

scenarios. The majority of our work is focused on loop scheduling. Main contributions

of our work are:

We propose a memory saving strategy that exploits the value locality in array data

by storing arrays in a compressed form. Based on the compressed forms of the input

arrays, our approach automatically determines the compressed forms of the output

arrays and also automatically restructures the code.

We propose and evaluate a compiler-directed code scheduling scheme, which

considers both parallelism and data locality. It analyzes the code using a locality-

parallelism graph representation, and assigns the nodes of this graph to processors.

We also introduce an Integer Linear Programming based formulation of the schedul-

ing problem.

We propose a compiler-based SPM conscious loop scheduling strategy for ar-

ray/loop based embedded applications. The method is to distribute loop iterations

across parallel processors in an SPM-conscious manner. The compiler identifies po-

tential SPM hits and misses, and distributes loop iterations such that the processors

have close execution times.

We present an SPM management technique using Markov chain based data access

prediction for irregular accesses.



We propose a compiler directed integrated code and data placement scheme for

2-D mesh based CMP architectures. Using a Code-Data Affinity Graph (CDAG) to

represent the relationship between loop iterations and array data, it assigns the sets of

loop iterations to processing cores and sets of data blocks to on-chip memories.

We present a memory bank aware dynamic loop scheduling scheme for array-

intensive applications. The goal is to minimize the number of memory banks needed

for executing the group of loop iterations.
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Chapter 1

Introduction

Embedded computers are widely used, common usage areas ranging from cell phones to brake systems in

high-end automobiles. General-purpose processors are designed to work well in various situations. While

embedded processors must also have a certain level of flexibility, they are often customized for a particular

application. Customization may be expensive, but the large number of embedded computers sold justify that

cost in many cases. Because of this, some of the design guidelines that are commonly followed in general-

purpose computer design may not be used for embedded computers.

In general, embedded systems have three common principles. First, they need to provide real-time per-

formance; since embedded computers are used in important, even critical tasks. Second, their power/energy

consumption should be low; hence preventing heating problems and increasing battery life. Third, they

should be cheap; in most cases, embedded computers cannot have a lot of hardware. This is true not only due

to cost issues, but also physical space limitations.

In accordance with these principles, we want an embedded system to perform well on limited hardware,

while consuming as little power as possible. It is important that the system has a good performance, but it

is not the only metric that is important. Therefore, working solely on enhancing the performance may not

be a good idea if it increases the power consumption considerably, since it may cause heating, and drain the

battery.

1.1 Our Goal

The aim of this study is to explore various ways to enhance embedded systems’ performance and reduce

the use of resources. We use code restructuring, loop scheduling, data transformation, code and data place-
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Figure 1.1: A CMP architecture with a shared on-chip cache.

Figure 1.2: A CMP architecture with a shared on-chip SPM.

ment, and SPM management as our tools in different embedded system scenarios, while seeking to increase

performance, improve memory access and reduce energy consumption.

While some of our methods make no assumptions about the hardware of the system; as there are different

embedded system architectures, we also aimed at optimization utilizing particular hardware components, and

hence assumed the existence of particular architectures in some of our work.

1.2 Target System Architectures

1.2.1 Chip Multiprocessors

As transistor sizes continue to shrink and the number of transistors per chip keeps increasing, chip multi-

processors (CMPs) are becoming a promising alternative to remain on the current performance trajectory for

both high-end systems and embedded systems. The best way to meet the results expected from embedded
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Figure 1.3: A CMP architecture with on-chip banked memory.

Figure 1.4: A Network-On-Chip architecture.

computers is by using multi-processors. This is particularly true when we must meet real-time constraints

and are concerned with power consumption. Today, embedded computers are organized into multiprocessors.

The most recent advances in microprocessor design involve putting multiple processors on a single die

(computer chip). These designs are known as Chip Multiprocessors because they allow for single chip multi-

processing. These designs are popularly called multicore (each processor is called a core) and are completely

replacing the traditional single core designs.

Recently, the CMP has become the preferred method of improving overall system performance. This

is a departure from the approach of increasing the clock frequency or processor speed to achieve gains in

overall system performance. Increasing the clock frequency has started to hit its limits in terms of cost-
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effectiveness. Higher frequency requires more power, making it harder and more expensive to cool the

system. This also affects sizing and packaging considerations. So, instead of trying to make the processor

faster to gain performance, the response is now just to add more processors. As chip capacity increased,

placing multiple processors on a single chip became practical. Major CPU developers have started producing

CMP processors. Each computer chip manufacturer is trying to increase the number of cores that can be

placed on a single chip economically.

From a logical point of view, there is no real significant difference between programming for multiple

processors in separate packages and programming for multiple processors contained on a single chip. There

may be performance differences, however, because the new CMPs are using advances in bus architectures and

connections between processors. In some circumstances, this may cause an application that was originally

written for multiple processors to run faster when executed on a CMP. Aside from the potential performance

gains, the design and implementation are very similar.

One of the major factors that can potentially slow down widespread use of embedded chip multiproces-

sors is lack of efficient software support. The primary problem is that regular desktop software has not been

designed to take advantage of the new CMP architectures. In fact, to see any real speedup from the new

CMP architectures, desktop software will have to be redesigned. In particular, automated code parallelizers

are badly needed, since it is not realistic to expect an average programmer to parallelize a large complex

embedded application over multiple processors, taking into account several factors at the same time such

as code density, data locality, performance, power and code resilience. As chip multiprocessors proliferate,

programming support for these devices is likely to receive a lot of attention in the near future.

Parallelism and multiprocessing come at a cost. In some cases, introducing the overhead of parallel pro-

gramming techniques into a piece of software can decrease its performance. Not every software application

is suitable for multiprocessing or multithreading. The kind of software we are focused on is based heavily on

loops handling arrays.

Mesh Processors

A mesh is a network of processors in which every node is connected to all of its neighbors. We can build

meshes in different dimensions, including dimensions larger than three. A mesh network is scalable in that a

network of dimension n + 1 includes subnetworks that are meshes of dimension n.

A mesh network balances connectivity with link cost. All links are fairly short, but a mesh provides a

rich set of connections and multiple paths for data. The shortest path between two nodes in a mesh network

is equal to its Manhattan distance, which in general is the sum of the differences between the indexes of the
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source and destination nodes.

Since future technologies offer the promise of being able to integrate billions of transistors on a chip, the

prospects of having hundreds to thousands of processors on a single chip along with an underlying memory

hierarchy and an interconnection system is entirely feasible. This would mean mesh computing will be a

mainstream computing architecture.

Figure 1.4 shows the high level architecture of a Network-On-Chip system. We focus on this architecture

in Chapter 7.

1.2.2 Memory

In our work, we target CMP architectures, with various memory models, including shared cache, shared

SPM, and on-chip banked memory.

Memory system utilization is an important issue for many embedded systems that operate under tight

memory limitations. This is a strong motivation for recent research on reducing the number of banks required

during execution of a given application. Reducing memory space requirements of an application can bring

three potential benefits.

First, if we are to design a customized memory system for a given embedded application, reducing its

memory requirements can cut the overall cost. Second, if we are to execute our application in a multi-

programmed environment, the saved memory space can be used by other applications, thereby increasing

the degree of multi-programming. Third, it is also possible to reduce the energy consumption in a banked

memory system by reducing the amount of memory space occupied by application data and placing the

unused banks into low-power operating modes.

Figure 1.4 shows the high level architecture of a CMP system with on-chip banked memory. We focus

on this architecture in Chapter 6.

Cache Memory

Memory behavior plays a major role in both performance and energy consumption. Cache is memory placed

between the processor and main system memory (RAM). Cache is faster than RAM, but does not have

the capacity of main memory. A cache is designed to move a relatively small amount of data close to the

processor. Caches use hardwired algorithms to manage the cache contents; hardware determines when values

are added or removed from the cache. Cache increases the effective memory transfer rates and, therefore,

overall processor performance. Cache is used to contain copies of recently used data or instruction by the
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processor. Small chunks of memory are fetched from main memory and stored in cache in anticipation that

they will be needed by the processor.

One of the primary functions of cache is to take advantage of the temporal and spatial locality character-

istics that programs tend to exhibit. Temporal locality is the tendency to reuse recently accessed instructions

or data. Spatial locality is the tendency to access instructions or data that are physically close to items that

were most recently accessed.

Cache is often divided into two levels: Level 1 and Level 2. Level 1 cache is small in size sometimes

as small as 16K. L1 cache is usually located inside the processor and is used to capture the most recently

used bytes of instruction or data. Level 2 cache is bigger and slower than L1 cache. Currently, it is stored

on the motherboard (outside the processor), but this is slowly changing. L2 cache is currently measured in

megabytes. L2 cache can hold an even bigger chunk of the most recently used instruction, data, and items

that are in the near vicinity than L1 holds. Because L1 and L2 are faster than general-purpose RAM, the more

correct the guesses of what the program is going to do next are, the better the overall system performance

because the right chunks of data will be located in either L1 or L2 cache.

Figure 1.1, illustrates a simplified view of a shared memory based architecture. In this architecture,

multiple CPUs share an on-chip cache space. We also assume the existence of a large off-chip memory

space, shared by all processors in the system. We focus on this architecture in Chapter 3.

Scratch Pad Memory

Scratch-pad memory (SPM), is a small, high-speed on chip data memory (SRAM) that is physically addressed

but mapped into the virtual address space. Along with traditional memory hierarchy consisting of cache

levels and main memory found in everyday systems, embedded systems increasingly make use of SPMs.

Leveraging the power of SPMs is crucial to extract maximum performance from application programs.

Figure 1.2 shows the high level architecture of a system with an SPM that is shared by all processors.

We focus on this architecture in Chapter 4 and Chapter 5.

Physically, SPM is within the same chip as the processors so that it can be accessed much faster than

the off-chip main memory. Logically, however, SPM is within the same address space as the off-chip main

memory; therefore, both the SPM and the main memory accesses use the same memory access (load/store)

instructions. Many systems (e.g., [51]) also provide a DMA channel to speed up data transmission between

the SPM and the main memory.

SPM differs from a conventional cache in that it is explicitly managed by software, while cache is implic-

itly managed by hardware. SPM’s access time is predictable, unlike accesses to a cache, and predictability
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is a key attribute of SPMs. The advantages of on-chip scratch-pad memory over a conventional hardware

managed on-chip cache is twofold. Firstly, references to a cache are subject to conflict, capacity and com-

pulsory misses, while references to scratch-pad guarantee that they will result in a hit, as data movements are

managed by software. Secondly, scratch-pads are accessed by direct addressing. This mitigates the overhead

of expensive hardware cache tag comparison, typically present in set associative caches.

Like cache memory, the size of SPM is chosen to fit on-chip and provide high-speed access. Due to

its limited size, SPM usually cannot hold all the data accessed by the application. In order to take the most

advantage of the SPM, one must be careful in SPM management (i.e. determining which data should be stored

in the SPM at different points of the application code). While a programmer can select a set of frequently-

accessed data and manually write code to load them into the SPM, a more desirable approach is to employ

a compiler that effectively analyzes the data access patterns exhibited by the application code and identifies

the frequently reused data. Many compiler-based strategies have been proposed by the previous efforts (e.g,

[34, 56, 54]).

SPM can be managed using a combination of compile-time and runtime decision making. While regular

accesses like scalar values and array expressions with affine subscript functions have been tractable for com-

piler analysis (to be prefetched into SPM), irregular accesses like pointer accesses and indexed array accesses

are not easily amenable for compiler analysis. We address this issue in Chapter 5.

1.3 Software for CMPs

Chip multiprocessors are a promising candidate for a billion-transistor embedded computing era. While

there have already been several different chip multiprocessor architectures from both academia and industry,

necessary software support for extracting maximum performance from these architectures is still in their

infancy. This is unfortunate because unless we are able to parallelize a given application code effectively

across processors, there is little benefit to be gained from the parallelism provided by CMPs. In this context,

compiler support is particularly crucial, since it is not realistic to expect an average programmer to parallelize

a large complex embedded application manually.

1.3.1 Loop Scheduling

In a parallel system with multiple CPUs, one of the key problems is to assign loop iterations to proces-

sors. This process is called loop scheduling, and has been studied in the past for various types of parallel

architectures. The majority of our work is also focused on loop scheduling.



8

Previously published loop scheduling techniques can be roughly divided into static and dynamic tech-

niques. Static scheduling techniques try to perform the loop iteration-to-processor assignment at compile

time, before the application starts executing, whereas dynamic techniques postpone this assignment to run-

time. As compared to static loop scheduling, the main advantage of dynamic scheduling is the ability of

capturing the variations across the workloads of different CPUs, and exploiting this information when per-

forming iteration assignment at runtime. These dynamic variations can occur due to different reasons such as

conditional flow of control and cache behavior. On the other hand, the main advantage of static scheduling

over dynamic scheduling is that, it doesn’t require any system resources at runtime.

1.3.2 Our Target Software

Since we use loop scheduling, we are targeting the type of software that consists mainly of loops manipulat-

ing arrays. Array/loop based codes constitute an important class of embedded applications, since most im-

age/video processing applications are coded as a series of nested loops that operate multidimensional arrays.

A straightforward parallelization of a loop by distributing its iterations across available processors evenly -

where every processor are assigned a similar number of iterations - may not be the best option in many cases,

though it is easy to automate within a compiler. This is because, in general different loop iterations can take

different number of cycles to finish, due to conditional execution constructs (e.g., if-statements) within loop

body and dynamic memory behavior (e.g., data locality). While most image/video codes do not really have

too many conditional constructs in loop bodies, data locality behavior can be an important factor shaping

the overall performance; therefore, both static and dynamic scheduling techniques use different methods to

reduce variation and achieve load balancing.

1.4 Our Work

The rest of the chapters are organized as follows. In Chapter 2, we propose and evaluate a compiler-based

memory saving strategy [126] that exploits the value locality in array data by storing arrays in a compressed

format. Based on the compressed forms of the input arrays, our approach automatically determines the

compressed forms of the intermediate and output arrays and also automatically restructures the application

code to work with compressed arrays. Our experimental results show that this scheme reduced both the

memory space requirements and the execution cycles of the applications tested.

In Chapter 3, we propose and evaluate a compiler-based code scheduling scheme [127], which considers

both parallelism and data locality at the same time. Our approach uses a locality-parallelism graph (LPG) to
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capture the parallelism and data reuse, and assigns the nodes of this graph (sets of loop iterations) to the pro-

cessors. Our experimental results indicate that our approach improves overall execution latency significantly.

We also introduce an ILP (Integer Linear Programming) formulation of the problem, and compare its results

to our heuristic approach.

In Chapter 4 we propose and evaluate a compiler-based loop scheduling strategy [122] that distributes

loop iterations across processors in an SPM-conscious manner. In this strategy, the compiler analyzes the

loop, identifies the potential SPM hits and misses, and distributes loop iterations over processors such that

the processors have similar execution times, taking into account the difference between access times for the

SPM and main memory. Our experimental results indicate that the proposed approach brings a significant

performance improvement.

In Chapter 5 we propose and evaluate an SPM management technique [129] using Markov chain based

data access prediction for irregular (e.g., pointers, index arrays) accesses that have hidden data reuse. Our

experimental results indicate that the proposed approach brings a significant performance improvement in a

set of applications with both regular and irregular access patterns.

In Chapter 6 we present a memory bank aware dynamic loop scheduling scheme [58] that minimizes

the number of memory banks that need to be used for executing a group of loop iterations. The goal of this

approach is to minimize memory energy consumption in banked memory systems, which can be a significant

portion of the overall energy consumption; and that is an important metric to consider during scheduling,

especially in battery-operated embedded systems. Our approach considers the bank access patterns of loop

iterations and assigns iteration sets to processors such that, if possible, the number of memory banks that are

used at the current state is not increased. Our experimental results show that the proposed scheme leads to

much better energy results when compared to prior techniques and is also competitive in performance.

In Chapter 7 we propose and evaluate a compiler directed integrated code and data placement scheme

[128] for 2-D mesh based CMP architectures. Our approach uses a Code-Data Affinity Graph (CDAG)

to represent the relationship between loop iterations and array data. It assigns the sets of loop iterations

to processing cores and sets of data blocks to on-chip memories, taking into account the on-chip memory

capacity and load imbalance across different cores as well as the topology of the NoC. Our experimental

results show that our CDAG based placement scheme brings improvements in both performance and energy

consumption.

We conclude with a summary and a discussion of future work in Chapter 8.
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Chapter 2

Code Restructuring for Operating

with Compressed Arrays

2.1 Introduction

In this chapter, we propose and evaluate a static array compression and code restructuring scheme, target-

ing CMP architectures. Our approach doesn’t make any assumptions about the memory subsystem of the

architecture.

Many embedded computing systems operate under tight memory constraints. As a consequence, pro-

grammers need to restructure the data access patterns of their applications and reorganize data in memory

to make best use of the available memory space. Unfortunately, as embedded applications are becoming

increasingly complex and processing ever-increasing datasets, this programmer-based approach to code/data

restructuring may not be a viable option (in terms of scalability) in the near future. While automatic compiler

support can be of help for this problem, many known compiler optimizations today have been developed for

high-end computing systems (e.g., large scale parallel machines) with no memory constraints, and so, pay

little attention to the memory space demands of the application code being compiled.

Therefore, the compilers targeting embedded systems with tight memory budgets should adopt novel

compilation techniques to reduce memory space demand. Prior research has already investigated several such

techniques, as will be discussed in detail in Section 2.2. One of the common characteristics of many of these

techniques is that they trade-off performance with memory savings. In other words, memory space savings

come with performance degradation and/or extra power consumption. While this can be tolerated to a certain
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extent in some embedded systems, there also exist many execution environments for which such a trade-off

may not be an option. Based on this discussion, it is clear that an automated optimization that reduces both

memory space requirements and the number of execution cycles (and possibly power consumption) at the

same time would be very useful in practice.

One of the unexplored directions is the possibility of working with compressed data. In many appli-

cations, input arrays are given as compressed and the programmer is left with the task of determining the

compressed formats of intermediate and output data sets. Due to the lack of automated tools, this task is very

demanding and error prone. Specifically, observing that many data arrays used in embedded applications

exhibit a high degree of value locality∗ (i.e., most of the array elements have the same value), we propose a

novel compilation technique that exploits this property.

Loop scheduling has been an important problem in compiler area since early times of parallel comput-

ing. Consequently, prior research considers both static and dynamic compilation techniques with the aim of

balancing workloads of individual processors and improving runtime behavior. While some of the static tech-

niques take into account variations among different loop iterations due to conditional constructs and cache

behavior, most of current implementations distribute loop iterations equally across parallel processors.

Our proposal has two components. The first component is a compiler algorithm that determines the

compressed formats of intermediate and output data sets, given the compressed formats of input data sets.

The second component is a scheduling algorithm which performs loop iteration-to-processor assignment

taking into account whether an iteration operates on compressed or uncompressed data; thereby generating a

restructured version of the code that operates on these compressed arrays. Since the restructured version of

the code takes advantage of value locality and skips certain computations that would normally be performed

in the original code, we save execution cycles (and potentially power as well, though the latter is not explicitly

quantified). A high level view of our approach is depicted in Figure 2.1.

We implemented our approach and made experiments with 4 array-based applications. In our experi-

mental evaluation, we also compare our proposal to an alternate scheme where scheduling is done without

considering the type of the data on which iterations operate. The experimental results collected so far are

promising and show that our compiler-based approach reduces both execution cycles (about 14% on the av-

erage) and memory space demands (about 19% on the average). While data compression has been used in

the past for reducing memory space requirements, communication/data transfer latencies, and energy con-

∗Value locality in this context indicates the case where a significant fraction of the elements of a given
array have the same value. For example, if 20% of the elements of a given array have value a and are clustered
in a region of the array and 35% of the elements of the same array have value b and are clustered in another
region, we say that the array exhibits value locality. Note that, in order to exploit value locality, our approach
does not need to know the actual (numeric) values of a and b at compile time.
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Figure 2.1: A high level view of our approach.

sumption, our work is unique in that it uses automated compiler support to determine both the compressed

array formats and the restructured code that works with these compressed arrays.

The rest of this chapter is organized as follows. In Section 2.2, we discuss the relevant work on instruc-

tion and data compression. In Sections 2.3 and 2.4, we present the mathematical details of the proposed

compression and parallelization approaches, respectively. In Section 2.5, we quantify the memory space

and performance benefits of our approach. Section 2.6 concludes the chapter with a summary of our major

findings.

2.2 Related Work

We discuss related work in two categories: compression and CMPs. Prior research considered compres-

sion techniques to reduce the memory footprint of both program code and application data. Most of the

code compression techniques proposed in the literature implement an encoding scheme. A pattern-matching

technique is described by Cooper and McIntosh [27]. They try to coalesce the instruction sequences by this

pattern-matching technique to reduce the size of a given program code fragment. Code compression has been

used within the context of VLIW architectures as well. For example, Ros and Sutton [106] apply code com-

pression algorithms to instruction words in VLIW architectures. Lekatsas and Wolf [65] propose a runtime

decompression unit to decompress the code on-the-fly before it gets executed. Arithmetic coding along with

a Markov model has been employed in this scheme. Liao et al [72] concentrate on the applications from

the DSP domain. In their approach, compressed data is expressed using a dictionary and a skeleton which

can be executed by different methods. Along a similar direction, methods that use profile information have

been proposed as well [120, 29]. Code compression has also been applied to VLIW architectures that use

variable-to-fixed (V2F) coding [119, 112]. An extension to this approach, called the variable-sized-block

method, is presented by Lin et al [74].

On the data compression side, the prior efforts include both hardware and software approaches. Hardware-

assisted on-the fly data compression and decompression is proposed by Benini et al [13]. Specifically, they
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propose an architecture where compressions and decompressions occur between the cache and the main

memory. In this sense, the uncompressed cache lines are compressed on-the-fly before they are written back

to the main memory. A similar approach is applied to VLIW processors by Macii et al [77]. They aggres-

sively try to minimize energy consumption by using a differential technique on a hardware compression unit.

Yang et al [124] reduce miss penalties and the number of cache misses by applying compression to a first

level cache. Data compression has been investigated as a viable solution in the context of SPMs (scratch pad

memories) as well. For example, Ozturk et al [96] propose a compression-based SPM management. They

also formulate the data compression/decompression problem using ILP. The impact of using data compres-

sion is studied in [1] from a system performance angle. In [3], Ahn et al discuss effective algorithms for data

compression and decompression. Data compression has also been used to decrease the energy consumption

in banked main memories [98]. Ozturk and Kandemir [98] propose a compiler-assisted compression and mi-

gration technique to cluster data with similar access patterns in the same set of banks to exploit the low-power

operating modes in banked-memories. The impact of data compression on different peripherals has also been

investigated. Xu et al [121] present energy savings on a handheld device through data compression. Chen and

Fowler [22] use data compression to efficiently manage sensor networks. MPSoC architectures are becoming

popular for designing embedded systems. They gain ground in both academic environments and industry

[38, 41, 11, 84, 86, 102]. Hammond et al [40] compared three alternative microarchitectures: MPSoC, SMT,

and superscalar. They found the MPSoC architecture favorable over the others in both software and hardware

trends. Olukotun and Hammond [93] studied conventional uniprocessor and MPSoC. They found MPSoCs

to have major advantages over conventional uniprocessors in several aspects such as hardware design, per-

formance, and power, and therefore concluded that the transition to MPSoCs is inevitable. In [88], Nayfeh

et al explored the optimal ratio of processors to cache memory size in terms of cost/performance. They stud-

ied the trade-offs between cache size and number of processors in an MPSoC system, and showed that for

parallel applications, clustering via shared caches provides an effective mechanism for increasing the total

number of processors in a system without increasing the number of invalidations. Richardson [105] studied

the design issues in the MPOC project, a chip multiprocessor for embedded systems. A four-stage pipeline

and co-resident on-chip DRAM are found to improve performance. Wolf [117] reviewed several commercial

MPSoC designs and identified the unique challenges, from hardware to software, for MPSoCs in embedded

domains. Gomma et al [36] utilizes the extra on-chip parallelism for improving MPSoC’s reliability against

hardware transient errors. The proposed technique, CRTR (Chiplevel Redundantly Threaded multiprocessor

with Recovery) achieves fault tolerance by executing and comparing two copies of a given application. Sev-

eral techniques, such as asymmetric commit and Death- and Dependence-Based Checking Elision (DDBCE),

are proposed for hiding inter-processor latency and checking overhead.
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2.3 Working with Compressed Data

In this section, we present the mathematical details of our compression approach. First, in Section 2.3.1, we

explain how we represent a compressed array within our compiler (i.e., the array abstraction to the compiler).

Then, in Section 2.3.2, we discuss our compression algorithm in detail.

2.3.1 Compressed Array Format Abstraction

Many data arrays used in embedded applications exhibit a high degree of value locality and these data arrays

are generally accessed/modified by nested loops. Our approach exploits this observation. When all the

data elements in a rectilinear region of an array contains an identical value†, we refer to such a region as

a uniform block. Note that an array may have more than one uniform block. Essentially, if we know the

size and location of the uniform blocks within an array, we can partition this array into a set of uniform and

non-uniform blocks.‡

If the array references on the right hand side of an assignment statement within a loop nest have large

uniform blocks, this means the same values are being accessed many times throughout the loop execution

from different memory locations, i.e., a high degree of value locality. Furthermore, if the uniform blocks of

these arrays have a non-empty intersection, then some of these values might be actually used in the same

loop iteration.

In this work, we define a compressed array format to capture uniform and nonuniform blocks of a given

data array in a concise manner. The proposed technique takes as input a set of input arrays in the compressed

format (the arrays with no uniform block are represented in the conventional way). The compressed format

captures the uniform blocks in the array in the following fashion:

A :: {d : s1 : s2 : ... : sd : u :

[x11, x21...xn1 : y11, y21...yn1 : v]; [...]; ...},

where A is the name of the array, d is the number of dimensions of the array, s1 through sd are the size of

each dimension, u is the number of uniform blocks within this array, (x11, x21...xn1) and (y11, y21...yn1)

†In cases where approximate computation is applicable, we can handle regions that contain “similar”
values as well, instead of “identical” values.

‡Our current implementation relies on programmer assistance to identify uniform blocks of input arrays.
Note that, the more accurate the programmer is in specifying the uniform blocks of input arrays, the more
memory savings our approach will achieve. Note also that the uniform blocks of the intermediate and output
arrays are determined by our approach automatically; the programmer needs to specify the partitioning of
input arrays only.



15

Figure 2.2: Format of compressed array X :: {3 : 16 : 16 : 6 : 2 : [0, 8, 0 : 5, 15, 3 :
a]; [9, 4, 0 : 15, 15, 5 : b]}.

specify the location of each uniform block, and v gives the value of the this uniform block. Note that the

array may be multidimensional. For example, an entry such as

X :: {3 : 16 : 16 : 6 : 2 :

[0, 8, 0 : 5, 15, 3 : a]; [9, 4, 0 : 15, 15, 5 : b]}

represents a three-dimensional array X of size 16×16×6 with two uniform blocks. One of these contains the

elements in the region delimited by (0,8,0) and (5,15,3) and the other capturing the elements from (9,4,0) to

(15,15,5), as shown in Figure 2.2.

Our approach first identifies the nonuniform blocks of a given array based on the specified uniform

blocks. For example, for the array in Figure 2.2, we identify 4 nonuniform blocks: [0, 0, 0 : 5, 5, 5], [0, 5, 0 :

5, 15, 5], [6, 0, 0 : 8, 15, 5], [9, 0, 0 : 15, 3, 5]. After performing this for each input array of a given loop nest,

our compiler-based approach next restructures the loop nest (which will be explained in detail later in this

section) and determines the compressed format of the output array(s) in the nest. In moving from one loop

nest to the next, we also update the set of arrays whose compressed formats have been determined so far. In

this way, when the entire program has been processed, our approach determines the compressed formats of

all the arrays with value locality and restructures all the loop nests (i.e., the data access pattern of the entire

application) that operate on these arrays.

2.3.2 Mathematical Details

Our focus is on applications with affine loop bounds and affine array subscript functions. Given vectors

u⃗ = (u1, u2, ..., un)
T and v⃗ = (v1, v2, ..., vn)

T, we define an order relation “≤” as:

u⃗ ≤ v⃗ ⇐⇒ ∀i, 1 ≤ i ≤ n→ ui ≤ vi.
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Further, we define integer vector set [u⃗, v⃗] as:

[u⃗, v⃗] ≡ {I⃗ | u⃗ ≤ I⃗ ≤ v⃗}.

We focus on loop nests of the following form:

T : for i1 = u1 to v1

for i2 = u2 to v2

· · ·

for in = un to vn {

Y [I⃗] = f(X1[G1I⃗ + g⃗1], X2[G2I⃗ + g⃗2], ..., Xm[GmI⃗ + g⃗m]);

}

In this loop nest, we evaluate the value of array Y based on the value of arrays X1, X2, ..., Xm. Specifi-

cally, the value of array element Y [I⃗] depends on the values of array elements X1[G1I⃗ + g⃗1], X2[G2I⃗ + g⃗2],

..., Xm[GmI⃗ + g⃗m], where I⃗ (referred to as the “iteration vector”) is the vector of the index variables, i.e.,

I⃗ = (i1, i2, ..., in); and the affine function Gk I⃗ + g⃗k (0 ≤ k ≤ m), where G is a constant matrix and g⃗ is a

constant vector, maps the iteration vector to the subscript of array Xk. As an example, for the reference to

array X1 in Figure 2.4(a), G1 is identity matrix and g⃗1 is (0 0)T.

Let us assume, without loss of generality, array X1 contains r uniform blocks, which are represented

as X1[U⃗
(1)
1 , V⃗

(1)
1 ], X1[U⃗

(2)
1 , V⃗

(2)
1 ], ..., X1[U⃗

(r)
1 , V⃗

(r)
1 ]. Note that these uniform blocks do not intersect with

each other, i.e., we have [U⃗
(p)
1 , V⃗

(p)
1 ] ∩ [U⃗

(q)
1 , V⃗

(q)
1 ] = ϕ. Consequently, if data dependencies permit, we can

partition loop nest T into a set of loop nests:

{T0, T1, T2, ..., Tr},

such that the array access instruction X1[G1I⃗ + g⃗1] in loop nest T0 does not access any element of any

uniform region of X1, and the array access instruction in loop nest Tj (j = 1, 2, ...r) does not access the

element in any uniform region of array X1 other than X1[U⃗
(j)
1 , V⃗

(j)
1 ]. In other words, the iteration space of

loop nest Tj (j = 1, 2, ..., r) can be specified as:

Ij = {I⃗ | U⃗ (j)
1 ≤ G1I⃗ + g⃗1 ≤ V⃗

(j)
1 },
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and the iteration space of loop nest T0 can be computed as:

I0 = {I⃗ | ∀1 ≤ j ≤ r : (G1I⃗ + g⃗1 < U⃗
(j)
1 and V⃗

(j)
1 < G1I⃗ + g⃗1)}.

Notice that, by using a tool (such as Omega Library [94]) that performs polyhedral arithmetic, one can

construct a loop nest for each iteration space Ij (j = 0, 1, ..., r), i.e., we can construct a loop nest that iterates

over the elements contained in a given Ij .

Using the method described above, we first partition loop nest T into loop nests T0, T1, T2, ..., Tr based

on array access instruction X0[G0I⃗ + g⃗0]. After that, using the same method, we further partition loop nests

T1, T2, ..., Tr based on array access instruction X1[G1I⃗ + g⃗1]. Note that there is no need to further partition

loop nest T0 since the elements of array Y whose values are evaluated in this loop nest do not belong to any

uniform block of array Y . We repeat this loop partitioning procedure, each time based on a different array

access instruction Xk[Gk I⃗ + g⃗k], until all the array access instructions are considered. Finally, we obtain a

set of loop nests, each of which evaluates the value of a uniform block of array Y .

Figure 2.3 shows the sketch of our compiler algorithm. We can observe that our compiler partitions each

loop nest that accesses arrays with uniform blocks based on the uniform blocks in these arrays. In addition,

when the compressed format of an intermediate array is determined, we add the information about the format

of this array into a repository so that it can be used in the analysis of the next loop nest. In a sense, we

incrementally build a set of compressed formats for arrays with value locality.

In our implementation, we also change the declaration of each array according to its uniform blocks, so

that memory space savings are achieved. For example, compressed integer array X :: {2 : 10 : 10 : 2 : [0, 0 :

3, 3 : a]; [5, 5 : 9, 9 : b]} can be declared in C code as:

int Xa = a; // uniform block [0, 0 : 3, 3 : a]

int Xb = b; // uniform block [5, 5 : 9, 9 : b]

int X1[6][4]; // nonuniform block X[0, 4 : 3, 9]

int X2[1][10]; // nonuniform block X[4, 4 : 0, 9]

int X2[5][5]; // nonuniform block X[5, 0 : 9, 4]



18

for each loop nest T in the application do
partition loop nest T based on the uniform blocks

of the arrays accessed by T ;
for each array Y appears on the right hand side do

determine the uniform blocks in Y ;
add the compressed format of array Y to repository;

end
end

Figure 2.3: Sketch of our compiler algorithm.

2.4 Compression-Aimed Parallelization

In this section, we present our parallelization approach for code that uses compressed data. First, in Sec-

tion 2.4.1, we explain the mathematical details. Then, in Section 2.4.2, we discuss some factors that could

affect the results. Finally, in Section 2.4.3, we give examples to show how our approach works.

2.4.1 Theory

In the case of on-chip multiprocessors we want to distribute the outermost loop iterations to the multiple

processors working in parallel.

In a general case, we have p processors.

If our loop is like:

for i = lbi to ubi

loop-body

The number of iterations for the outermost loop is N = ubi − lbi + 1.

When we distribute this loop to to p processors, each processor will get a portion of the loop:

p1 : lbi → lbi +N/p− 1

p2 : lbi +N/p→ lbi + 2N/p− 1

...

pj : lbi + (j − 1)N/p→ lbi + jN/p− 1

...

pp : lbi + (p− 1)N/p→ lbi + pN/p− 1 = ubi

Here, the assumption N ≫ p ensures that the slightly uneven distribution of iterations due to rounding

of N/p has a minimal effect.
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The objective in loop distribution is to divide the iterations among the processors in such a way that the

time spent by each processor is approximately the same. In other words,we want the cost for each processor

to be approximately equal; that is, if ci denotes the cost for processor i, then c1 ∼= c2 ∼= ... ∼= cp.

When the arrays used in the loop are in compressed format, the loop is broken down into smaller uniform

and non-uniform loops as described in previous sections. Let’s say size(loop) gives the number of outermost

iterations for a nested loop structure loop. Let’s further assume that we have U uniform loops and Nu non-

uniform loops; the uniform loops are accessed as ui(i ∈ 1..U) and the non-uniform loops are accessed as

nuj(j ∈ 1..Nu).

Then the total number of iterations for outermost loops is as follows:

Uniform: Su =
∑

size(u(i))

Non-uniform: Snu =
∑

size(nu(i))

In a normal partition, each processor gets an equal amount of iterations, that is N/p = (Su + Snu)/p.

But uniform and non-uniform loops may be grouped in specific processors. Since we expect uniform itera-

tions to take much less time with respect to non-uniform ones, this will disturb the balance, and just assigning

the same number of iterations to each processor is no longer sufficient. In such a case, we have to adjust the

distribution process for optimized results.

To distribute the iterations, for balanced execution times, we use the following approach. The goal is to

assign each processor pi approximately the same (Su/p) number of non-uniform iterations. Each processor

should also get approximately the same (Su/p) number of uniform iterations.

Then we can calculate the workload on processor pi, that is, Costi as:

Costi = αi.cnu+ βi.cu,

where αi and βi are the number of non-uniform and uniform iterations on pi, respectively, and cnu and cu

are the respective average costs of a non-uniform and a uniform iteration.

αi = Snu/p

βi = Su/p

Since non-uniform operations are cost-wise dominant, distributing these evenly to each processor is more

important, but we are also distributing the uniform ones evenly.
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2.4.2 Discussion

If there are k statements in the loop body, due to the use of compressed representation it is possible that for

some iterations a subset S1 of the statements will be uniform, and for some iterations, some other subset S2

will be uniform. In general, there can be Q = 2k such combinations.

Then we can calculate the cost for processor pi as follows:

Costi =
∑Q

k=1 γk.ck

where γk and ck are the frequency and cost of combination k, respectively.

There are some important factors that may have an effect on the execution time for the statements. One

of these is the cache architecture of the system. The cache architecture of a multiprocessor system can have

a dramatic effect on the execution time, depending on the data access patterns of an application, since access

times for cache and memory are very different. Another important factor is the use of conditionals. If there

are conditional statements (e.g. an if statement) within the loop body, different branches may possibly have

very different execution paths that may considerably differ in execution time.

2.4.3 Examples

We now present two examples to illustrate the working of our approach. In the first example, we want to

focus on loop partitioning, so we assume a single processor system, and avoid parallelization. In the second

example, we assume the system has 2 processors, and show parallelization as well as partitioning.

Single Processor Example

Figure 2.4(a) shows a loop nest that operates on three arrays. Our goal is to determine the compressed format

for array Y , based on the given compressed format of the input arrays X1 and X2. Figure 2.4(b) shows

the result of partitioning this loop nest based on the uniform blocks of X1. In the resulting loop nests, T ′
1

and T ′
2 access the uniform blocks of array X1, and therefore, they are selected for further partitioning, this

time based on the uniform block of array X2. The other loop nests T ′
3 , T ′

4 , and T ′
5 do not need any further

partitioning.

Figure 2.4(c) shows the final resulting code after partitioning T ′
1 and T ′

2 based on the uniform block

of array X2. From this generated code, we can observe that array Y contains two uniform blocks, namely

Y [0, 2 : 3, 3] and Y [5, 5 : 9, 8], whose values are a+ c and b+ c, respectively.
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T : for i = 0 to 9 do
for j = 0 to 9 do
Y [i, j] = X1[i, j] +X2[i, j];

(a) Original code.

T ′
1 : for i = 0 to 3 do

for j = 0 to 3 do
Y [i, j] = a+X2[i, j];

T ′
2 : for i = 5 to 9 do

for j = 5 to 9 do
Y [i, j] = b+X2[i, j];

T ′
3 : for i = 0 to 3 do

for j = 4 to 9 do
Y [i, j] = X1[i, j] +X2[i, j];

T ′
4 : for j = 0 to 9 do

Y [i, j] = X1[4, j] +X2[4, j];
T ′
5 : for i = 5 to 9 do

for j = 0 to 4 do
Y [i, j] = X1[4, j] +X2[4, j];

(b) Loop partitioning based on X1.
T ′′
1 : Y [0, 2 : 3, 3] = a+ c;

T ′′
2 : Y [5, 5 : 9, 8] = b+ c;

T ′′
3 : for i = 0 to 3 do

for j = 0 to 1 do
Y [i, j] = a+X2[i, j];

T ′′
4 : for i = 5 to 9 do

for j = 5 to 8 do
Y [i, j] = b+X2[i, j];

T ′′
5 : for i = 0 to 3 do

for j = 4 to 9 do
Y [i, j] = X1[i, j] +X2[i, j];

T ′′
6 : for j = 0 to 9 do

Y [i, j] = X1[4, j] +X2[4, j];
T ′′
7 : for i = 5 to 9 do

for j = 0 to 4 do
Y [i, j] = X1[4, j] +X2[4, j];

(c) Loop partitioning based on X2.

Figure 2.4: Example. The compressed format of arrays X1 and X2 are X1 :: {2 : 10 : 10 :
2 : [0, 0 : 3, 3 : a]; [5, 5 : 9, 9 : b]} and X2 :: {1 : 10 : 10 : 1 : [1, 2 : 9, 8 : c]}, respectively.

Multiprocessor Example

Figure 2.5(a) shows a loop nest that operates on three arrays. Our goal is to determine the compressed format

for array Y , based on the given compressed format of the input arrays X1 and X2. Figure 2.5(b) shows the

result of partitioning this loop nest based on the uniform blocks of X1 and X2. In the resulting loop nests,

T ′
1 accesses the uniform blocks of arrays X1 and X2, whereas T ′

2 accesses the non-uniform blocks. Since T ′
1

and T ′
2 contain an equal number of iterations, each one is assigned to separate processor.

Figure 2.5(c) shows the final resulting code after partitioning T ′
1 and T ′

2 and assigning to processors in a

balanced manner. From this generated code, we can observe that the number of non-uniform block iterations

performed by each processor is equal. The number of uniform block iterations performed by each processor

is also equal.
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T : for i = 0 to 1599 do
for j = 0 to 1599 do
Y [i, j] = X1[i, j] ∗X2[i, j];

(a) Original code.

P1

T ′
1 : for i = 0 to 799 do

for j = 0 to 1599 do
Y [i, j] = u ∗ v;

P2

T ′
2 : for i = 800 to 1599 do

for j = 0 to 1599 do
Y [i, j] = X1[i, j] ∗X2[i, j];

(b) Parallelization and loop partitioning.
P1

T ′′
1 : for i = 0 to 399 do

for j = 0 to 1599 do
Y [i, j] = u ∗ v;

T ′′
2 : for i = 800 to 1199 do

for j = 0 to 1599 do
Y [i, j] = X1[i, j] ∗X2[i, j];

P2

T ′′
3 : for i = 400 to 799 do

for j = 0 to 1599 do
Y [i, j] = u ∗ v;

T ′′
4 : for i = 1200 to 1599 do

for j = 0 to 1599 do
Y [i, j] = X1[i, j] ∗X2[i, j];

(c) Balanced parallelization and loop partitioning .

Figure 2.5: Example for 2 processors. The compressed format of arrays X1 and X2 are
X1 :: {2 : 1600 : 1600 : 1 : [1, 1 : 800, 800 : u]} and X2 :: {2 : 1600 : 1600 : 1 : [1, 1 :
800, 800 : v]}, respectively

Program Source Number of Arrays Memory (MB) Time (ms)
adi Livermore 6 137 3120
apsi Perfect Club 17 27.3 42
eflux Perfect Club 5 14 410
tomcatv Spec 9 0.23 6.5

Table 2.1: Benchmarks
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Table 2.2: Compressed formats for the input arrays of our bench-
marks.
Program Compressed Formats
adi au1::{3:2000:2000:2:1:[100,100,1:601,601,1:v1]}

au2::{3:2000:2000:2:1:[100,100,1:601,601,1:v2]}
au3::{3:2000:2000:2:1:[100,100,1:601,601,1:v3]}

apsi DKZH::{3:700:700:700:2:[1,700,700:51,700,700:a];[200,700,700:301,700,700:b]}
WZ::{3:700:700:700:2:[2,700,700:50,700,700:a];[201,700,700:300,700,700:b]}
HVAR{1:700:2:[1:51:e];[200,301:f]}
DTM{1:700:2:[1:51:g];[200,301:h]}
DKM{1:700:2:[1:51:i];[200,301:j]}

eflux W::{3:1000:334:4:4:[400,50,1:800,250,1:p];[400,50,2:800,250,2:q];[400,50,3:800,250,3:r];[400,50,4:800,250,4:s]}
X::{3:1000:334:4:2:[400,50,1:800,250,1:t];[400,50,2:800,250,2:u]}
P::{2:1000:334:1:[400,50:800,250:v]}

tomcatv X::{2:100:100:1:[31,31:80,80,p]}
Y::{2:100:100:1:[31,31:80,80,q]}

Table 2.3: Different compressed formats for the adi benchmark.
ID Compressed Formats
1 au1::3:2000:2000:2:1:[100,100,1:601,601,1:v1]

au2::3:2000:2000:2:1:[100,100,1:601,601,1:v2]
au3::3:2000:2000:2:1:[100,100,1:601,601,1:v3]

2 au1::3:2000:2000:2:1:[100,100,1:900,900,1:v1]
au2::3:2000:2000:2:1:[100,100,1:900,900,1:v2]
au3::3:2000:2000:2:1:[100,100,1:900,900,1:v3]

3 au1::3:2000:2000:2:1:[100,100,1:1201,1200,1:v1]
au2::3:2000:2000:2:1:[100,100,1:1201,1200,1:v2]
au3::3:2000:2000:2:1:[100,100,1:1201,1200,1:v3]

4 au1::3:2000:2000:2:2:[100,100,1:700,700,1:v1];[1000,1000,1:1500,1500,1:v4]
au2::3:2000:2000:2:2:[100,100,1:700,700,1:v2];[1000,1000,1:1500,1500,1:v5]
au3::3:2000:2000:2:2:[100,100,1:700,700,1:v3];[1000,1000,1:1500,1500,1:v6]

2.5 Experiments

We implemented a source-to-source translator to map a given application code into a transformed code that

uses the compressed formats for arrays and modified loops that take advantage of the value locality in the

application.

2.5.1 Setup

For the first experiment, we used a set of four array-based benchmark codes to test our approach. Table 2.1

gives the important information about these four benchmarks. The second column of this table gives the

number of arrays manipulated by each benchmark. The third column gives the memory space requirement

of each benchmark and the last column shows the execution cycles obtained. The values in these last two

columns are for the unmodified (original) benchmarks without any particular optimization for memory space

saving.

We applied compression in each of these cases, and measured times on a single processor and 8 proces-

sor CMP, both with regular and balanced distribution of loops. The applied array compression saves 19%

memory space on the average for the patterns used.
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Figure 2.6: Obtained speedups for different benchmarks.

Figure 2.7: Obtained speedups for the adi benchmark for varying number of processors.

Figure 2.6 gives the speedup obtained by using CMP. For each pair of columns, the first denotes regular

distribution, and the second denotes balanced distribution. These results indicate that the proposed balancing

approach increases the speedup by 20% on the average. To obtain these results, we used the (value) pat-

terns shown in Table 2.2. Note that these patterns define the compressed formats for the input arrays in our

application.

For the second and third experiments, we focus on one of our applications (adi). In the second exper-

iment, we used the same pattern for adi that is given in Table 2.2, changing the number of processors to

measure speedup values. The results are given in Figure 2.7. Again, each pair of columns shows the speedup

obtained by regular and balanced distributions, respectively.

In our third experiment, we measure the behavior of our approach when the input arrays have different

value locality (and thus different compressed formats). For this purpose, we give the speedups under different

value patterns (compressed format) in Figure 2.8. The compressed format patterns for adi used in obtaining

the results in Figure 2.8 are listed in Table 2.3.

To recap, the results in Figures 2.6, 2.7 and 2.8 clearly demonstrate that the proposed balanced loop

distribution approach for compressed arrays is successful in providing better speedup.

2.5.2 Results

While the results presented so far are encouraging, one may also want to see how they compare to memory

savings that could be obtained from alternate schemes such as those based on lifetime analysis. In a lifetime
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Figure 2.8: Obtained speedups for the adi benchmark with different uniform block sizes in
the input arrays.

analysis based approach, the dead memory locations (i.e., the locations that hold data that will not be refer-

enced in the rest of the execution) are recycled, and this helps reduce both average and maximum memory

requirements. For the applications in our experimental suite, we found that such a lifetime-based approach

can reduce memory space requirement by 13.3% on the average (compared to 19% average space savings our

approach achieves). Therefore, from the memory space saving angle, our approach is competitive with the

lifetime-based approach. In addition, we need to mention that, while a pure lifetime-based approach does not

bring any performance benefits in general, as has been shown above, our approach reduces execution times

as well, since it exploits value locality by transforming loop nests.

Implementing compressed format generally increases the code size, but since the code sizes of these

benchmarks are much smaller than the sizes of the data arrays they manipulate,§ the impact of the code size

increase is not significant. Note that the impact of this code size increase on the execution cycles has already

been included in the execution time results presented above.

2.6 Conclusion

Reducing data memory requirements of embedded applications is beneficial from cost, area, and power

perspectives. However, most of the prior approaches to memory space reduction incur certain performance

penalties. Our goal is to explore how one can reduce memory space requirements and improve performance

at the same time. We propose a compiler-directed approach to achieve this objective. Specifically, in the

proposed approach, the compiler exploits the value locality in array applications and determines compressed

formats for arrays with value locality. This helps reduce the memory space demand of the loop nests in

the application code. The compiler also restructures the application code to take advantage of value locality

and this enhances performance. Our experiments with 4 array-intensive applications show that the proposed

approach reduces the memory space requirements by 19% on average and execution time by 14% on average,

§While the code sizes are in KB ranges, the data size are in MB ranges.
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and performs better than a lifetime-based memory space saving strategy.

The focus of this approach is on data compression. It works on both single and multi processor systems,

and does load balancing on CMPs. It does not assume the existence of any particular memory subsystem,

like a cache or SPM. In the next chapter we will focus on CMP systems with a shared cache.
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Chapter 3

Code Scheduling for Optimizing

Parallelism and Data Locality

3.1 Introduction

In this chapter, we propose and evaluate a static code scheduling scheme, which considers both parallelism

and data locality at the same time. We target a shared memory based CMP architecture, where multiple

CPUs share an on-chip cache space. A simplified view of this architecture is illustrated in Figure 1.1. We

also assume the existence of a large off-chip memory space, shared by all processors in the system.

As chip multiprocessors are finding their ways into commercial market in embedded domain, program-

ming support for these devices is becoming increasingly critical. This support includes language, compiler,

and debugging related issues and is likely to receive a lot of attention in the near future.

In a chip multiprocessor based execution environment, two issues are critical to address: parallelism and

data locality. The first of these indicates how well an execution exploits available computation resources. Ide-

ally, one wants to use all available processors at each step of computation if doing so improves performance.∗

Data locality, on the other hand, captures how well an execution exercises available memory hierarchy. The

concept of data locality is particularly important in the context of chip multiprocessors as the gap between la-

tencies of the on-chip and off-chip accesses is huge. Clearly, one wants to satisfy majority of data references

from the higher levels of memory, i.e., those components that are close to processor. In order to achieve good

∗In some cases, increasing the number of processors used beyond a certain point can degrade performance
due to increased inter-processor communication.
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performance in a chip multiprocessor based embedded system, an optimizing compiler has to exploit both

parallelism and locality in a synergistic fashion.

Unfortunately, most of the published work in the literature focuses only on one of these problems, and

this can prevent one from achieving the best possible performance. For example, if locality remains unop-

timized, one can expect poor performance at runtime even if all available parallelism is extracted from the

application. Similarly, a locality-optimized program that is not parallelized appropriately can result in poor

runtime behavior.

Therefore, optimizing for both parallelism and locality is very important in this CMP architecture. In

particular, in order to attain good performance, one has to use all available CPUs to the maximum extent

allowed by intrinsic data dependencies in the code, and the reused data elements should be caught in the

on-chip cache space as much as possible (instead of going off chip). In this chapter, we demonstrate how

data scheduling can be used for this purpose.

We propose and evaluate a compiler-directed code partitioning/scheduling scheme, which considers both

parallelism and data locality at the same time. Our target application domain is data-intensive codes that use

arrays as the primary data structures. These arrays have affine subscript expressions and are operated using

loops with affine bounds. Our compiler captures the inherent parallelism and data reuse in the application

code being analyzed using a novel representation called the locality-parallelism graph, or LPG for short. It

then executes a partitioning/scheduling algorithm on this graph, which assigns the nodes of this graph to the

processors in the parallel architecture (a chip multiprocessor). An important characteristic of this algorithm is

that it has a global view of the computations in the application code. That is, during scheduling, it considers

all loop nests and data access patterns before assigning a scheduling slot to a computation. In contrast, most

current multi-core scheduling efforts are local, i.e., focus on a single loop at a time. We implemented this

algorithm and evaluated its effectiveness using a set of four benchmark codes. The results collected so far

indicate that our approach improves execution latency significantly.

We also present an ILP (Integer Linear Programming) based formulation of the combined parallelization

and data-locality optimization problem. We implemented this ILP solver based solution and compared the

results it generated to those obtained using our heuristic approach. The collected experimental results indicate

that our approach gets within 4% of the ILP based solution.

The rest of this chapter is organized as follows. Related work is discussed and compared to our work in

Section 3.2. Section 3.3 describes our compiler representation, LPG, and Section 3.4 presents the details of

our partitioning/scheduling algorithm. The ILP formulation of the problem is discussed in Section 3.5. An

experimental evaluation of the proposed approach is given in Section 3.6, and the chapter is concluded in

Section 3.7 with a summary.
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3.2 Related Work

In this section, we first evaluate the previous work on parallelization then we revise the efforts on data local-

ity. Parallelism can be obtained at different levels of abstraction. Instruction-level parallelism is exploited by

high-performance microprocessors, whereas data-level parallelism is utilized in nested loops using compil-

ers. Similarly, task-level parallelism can be found in many embedded applications. To exploit the data-level

parallelism, Kadayif et al [50] proposed to use different number of processor cores for each loop nest to

obtain energy savings. This way idle processors are switched to a low-power mode to increase the energy

savings. Mei et al [81] propose a modulo scheduling algorithm for coarse-grained reconfigurable architec-

tures by exploiting loop-level parallelism. To parallelize loops, Bondalapati [14] exploits the distributed

memory available in the digital signal processing domain. More specifically, he exploits the reconfigurable

architecture by implementing a data context switching technique. Goumas et al [37] try to generate parallel

code for tiled nested loops through different loop transformations using MPI. Hogstedt et al [42] predict the

execution time of tiled loop nests and use this prediction to automatically determine the tiling parameters

that minimizes the execution time. Arenaz et al [7] exploit coarse-grain parallelism by a gated single assign-

ment (GSA) based approach with complex computations. Yu and D’Hollander [130] construct an iteration

space dependency graph to visualize a 3D iteration space. Beletskyy et al [12] adopt a hyperplane-based

representation to apply on transformation matrices with both uniform and non-uniform dependences. Lim et

al [73] employ affine partitioning to maximize parallelism with minimum communication overhead. Ozturk

et al [97] focus on optimizing parallelism in chip multiprocessors using constraint networks. In [104], authors

propose an abstract interpretation to analyze needed loop parallelization.

Two major techniques to exploit locality are loop transformations and data transformations. Wolf and

Lam [116] define reuse vectors and reuse spaces. Moreover, they use these concepts to implement an iteration

space optimization technique. Similarly, Li [70] uses reuse vectors to detect the dimensions of loop nest

that carry reuse. In [19], authors analyze data dependences by a variable renaming technique to break

anti and output dependences along with a technique to resolve recurrences in a nested loop. Navarro et

al [87] represent the locality using a locality graph, and mixed integer nonlinear programming is used on this

graph to minimize the communication cost and load imbalance. Carr et al [17] re-order the computation by

using a simple locality criterion to enhance data locality. Tiling [26, 60, 62] is another loop based locality

enhancing technique. On the data transformation side, in [92], authors generate the code with a given data

transformation matrix. Kandemir et al [53] implement an explicit layout representation, whereas [66] focuses

more on memory consumption reduction due to a layout transformation. There are also efforts to combine

data and loop transformations. Among these is one of the first papers [24] that offers a scheme which unifies
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loop and data transformations. On the other hand, Anderson et al [6] propose a transformation technique

that accesses contiguous data elements. Chen et al [21] employ a constraint network based solution to the

combined data/loop optimization problem.

Hwu et al [82] present a parallel programming model for many-core microprocessors, and provide initial

technical approaches towards this goal. Leverich et al [67] compare hardware-managed coherent caches

and software-managed streaming memory under the same set of assumptions in terms of technology, area,

and computational capabilities. Xue et al [123] propose a memory-conscious loop parallelization strategy

which is formulated as a branch-and-bound problem. Hughes et al [45] examine parallelization potential of

physics-based simulation and characterize its behavior on a chip multiprocessor.

As compared to these prior studies, we target chip multiprocessors where processors share an on-chip

cache and propose a scheduling scheme for improving both data reuse and parallelism in a synergistic manner.

3.3 Locality-Parallelism Graph

Our scheduling algorithm, which targets loop based applications, operates with a locality-parallelism graph

(LPG) of code blocks. This graph captures the dependencies among code blocks and locality among the

blocks. An LPG is an acyclic graph G(V,Edep, Eloc), where V is a set of nodes and Edep and Eloc are sets

of edges. Each vi in V represents a code block (which will be explained in detail shortly). A directed edge

ei,j in Edep from vi in V to vj in V means there is a dependency between vi and vj (i.e., data produced by

vi is used by vj). In this case, vi is an immediate predecessor of vj , and vj is an immediate successor of vi.

We denote the set of immediate predecessors of a node v as Predv, and the set of immediate successors of

v as Succv . A directed edge e′i,j in Eloc from vi to vj means there is a data reuse, i.e., vi and vj share some

data between them. The weight Wei,j of edge e′i,j captures the amount of data shared by the two nodes (code

blocks). To make our problem formulation simpler, all non-existing edges in an LPG are assumed to have a

weight of 0. The set of nodes that share a locality edge with a node v is denoted as Locv.

When we have a loop with a large number of iterations, we can rewrite the same loop as a set of loops

of fewer iterations, which have the same loop body as the original. For example, if the original loop has

n iterations, we can break it into k blocks, each block having roughly n/k iterations. In this context, we

call each one of these smaller loops a code block. Notice that a given loop (i.e., the set of iterations in it)

can be divided into multiple code blocks (unit of scheduling in our approach) and each code block contains

a subset of the iterations in that loop. These code blocks can then be executed in parallel, based on the

data dependency constraints. The number and size (i.e., the number of iterations) of the code blocks can be
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Figure 3.1: An example illustrating the concept of LPG.

arranged to achieve the desired level of granularity. In our case, this code block generation and process of

extracting data dependencies among code blocks is carried out by the compiler.

As an example, in the graph in Figure 3.1, we have five separate loop nests in our code (shown on

the left.) The solid lines represent the data dependencies, whereas the dotted lines capture the data reuse

edges.† We partition each of these loops into smaller loops of reasonable size (i.e., into code blocks). On

the right part of this figure, we see the code blocks that are generated by the partitioning of loop nests.

Note that the number of edges has increased, since it now shows the dependencies and data reuse between

small code blocks, instead of larger nests. This graph on the right (which is our LPG in this case) shows

dependencies and data localities at a finer granularity, and is the main compiler based data structure on which

our partitioning/scheduling scheme operates. When there is no confusion, in the remainder of this chapter,

when we mention ”block”, we mean ”code block”.

3.4 Our Approach

3.4.1 Theory

As mentioned earlier, our target domain is data intensive computations that operate primarily on array data

using nested loops. We assume that the loop bounds and array subscript expressions are affine functions of

enclosing loops and loop-independent variables/constants.

We can think of a schedule as a two dimensional matrix, where the rows represent scheduling steps (also

†Note that, while a data dependency edge between two nodes means that there is also a data reuse edge
between them, the opposite may not always be true. This is because if two code blocks only read the same
data, this does not introduce a data dependency but we still have a data reuse between them.
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Figure 3.2: An example scheduling matrix.

referred to as the execution steps in this work) and the columns correspond to available CPUs. At the end of

scheduling (which is explained below), we fill the entries of this matrix such that both parallelism and data

locality are improved.

Our goal is to schedule, considering the CPUs we have in our given CMP, code blocks that have data

reuse between them as close together as possible (in time), while respecting data dependencies. This is

because, if two or more blocks that access the same data are scheduled in the same (or close by) execution

steps, then the data will be loaded into the on-chip cache once, and used by all of them, instead of each block

loading the same data into the cache separately at different times. This will hopefully result in an increase in

cache hit ratio and enhance overall performance. ‡

Consider for example the scheduling matrix shown in Figure 3.2. From the parallelism perspective,

we want to fill all the entries in a row (scheduling slots) with code blocks. However, as mentioned earlier,

data dependencies among code blocks may not allow such full utilization of scheduling slots. From the data

locality perspective on the other hand, we want the code blocks that share data among them to be scheduled

in close by scheduling slots. For example, Figure 3.2 shows the preferable scheduling slots (1 being the most

preferable and 5 being the least) for a code block CBj that has data reuse with code block CBi if the latter

has already been scheduled as shown in the figure.

To accomplish this goal, we designed a heuristic algorithm for resource-constrained scheduling. In

this section, the key parts of our algorithm are given as a pseudo-code along with short explanations of

the functions implemented. In our approach (which is fully automated), certain data structures are used

throughout our algorithm, and are considered global. These are given in Table 3.1.

Before discussing the technical details of our scheduling strategy, let us informally state what it does. Our

‡Ideally, we want to load each data element from the off-chip memory to the shared on-chip cache only
once. However, this may not always be realizable due to data dependencies in the code and other potential
scheduling constraints.
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Table 3.1: Global variables.

Variable Definition
Stepv Execution step that node v is scheduled.

The value is 0 for unscheduled nodes.
Schi the set of nodes scheduled in execution step i.
sReady the set of nodes that are ready to be scheduled.
sManda the set of nodes that are ready and

have to be scheduled as soon as possible.
sRemain the remaining set of nodes that are not ready.
cap the remaining capacity in the current step.

approach consists of arranging nodes of a given LPG into an execution schedule depending on the amount of

data reuse they exhibit and parallelism they have. At each step, a node is scheduled for the current execution

step (scheduling slot); the node is selected such that it has the largest amount of data reuse with the nodes

already selected for that step, as well as nodes scheduled for previous steps in a weighted fashion (i.e., data

reuse within the same step has more weight than that of previous steps). While choosing the first node in a

step, its amount of data reuse with ready-to-be-scheduled but unscheduled nodes is also taken into account.

In more technical terms, our approach starts by computing the ASAP (as soon as possible) and ALAP

(as late as possible) values for the nodes of the LPG at hand. An ASAP value for a node v gives the earliest

step of execution that v can be scheduled. The ASAP algorithm assigns an ASAP label Sv to each node v.

Similarly, in ALAP scheduling, each block is scheduled to start at the latest possible step. An ALAP value

for a node v represents the latest step of execution that v can be scheduled. The ALAP algorithm assigns an

ALAP label Lv (step index) to each node v. T represents an upper bound on the number of steps. We omit

the pseudo codes for the ASAP () and ALAP () procedures since they are well known in literature [83].

Each step of execution has a capacity of p, that is, the number of processors in the system. In other words, at

most p code blocks can be scheduled in an execution step.

The procedure calcSchedule(p, α, β, flag) in Algorithm 1 calculates the schedule for a system with p

processors. It first initializes several variables, populates sRemain, and then assigns ASAP/ALAP labels

to each node. insertReadyNodes(1) adds the possible starting nodes (nodes that are not dependent on any

other nodes) to sReady.

The rest of the code is the main while loop, which iterates as long as there are ready nodes (code blocks)

to be scheduled. At each iteration, it first goes on to next execution step, initializes variables, and calls

doMandatory (schedules nodes that would otherwise increase the total number of execution steps.) At each

iteration of the inner while loop, the ready node with the highest score is selected and scheduled, as long

as there are ready nodes and there is room in the current execution step to accommodate new code block(s).
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When either condition is false, insertReadyNodes(cs + 1) loads sReady with nodes ready for the next

execution step and goes back to the next iteration of the main while loop.

The selection of the nodes from sReady is performed according to the score calculated by calcScore Sch.

The boolean flag enables contribution to the score by calcScore sReady, in the case of current step being

empty. If the flag is down, the first node of the step is chosen, solely based on data reuses it exhibits with

nodes scheduled in previous steps. Otherwise, a constant (β) times the calcScore sReady score (a node’s

locality with p − 1 other nodes in sReady) is added to the total score. Note that the use of the parameters

flag, α and β enables us to generate multiple heuristics and fine-tune our algorithm.

The procedure insertReadyNodes(s) in Algorithm 2 scans the set of nodes sRemain and determines

if any of the nodes are ready for step s (i.e., all its predecessors have already been scheduled, and step s lies

between its ASAP and ALAP labels). It then puts all ready nodes in the set of ready nodes, sReady, and

deletes them from sRemain.

The procedure doMandatory(s) in Algorithm 3 iterates through the nodes in sReady to find the nodes

that have an ALAP label Lv such that Lv ≤ s (the given step) and adds them to sManda. It then schedules

the nodes in sManda in the order of non-decreasing ALAP values as long as there are nodes in sManda

and there is available capacity in step s.

The procedure scheduleNode(v, s) given as Algorithm 4 below schedules node v in execution step s. It

updates Schs and Stepv accordingly, deletes the node from sReady, and decreases the remaining capacity

of the execution step.

The function calcScore sReady(vi, c) in Algorithm 5 is optionally used when it is time to pick the first

node for a step, since the amount of data reuse (i.e., the number of data elements shared) with other nodes

already scheduled on the same step is not sufficiently high. Instead, it calculates a total weight value for vi,

based on its amount of data reuse with other unscheduled ready nodes. The parameter c is used as an upper

bound on the number of nodes considered, since there can be at most p nodes scheduled in a step. Basically,

the function returns the sum of highest t locality weights that vi shares with other ready nodes. The actual

number of nodes is given by t = min(c, | Locvi ∩ sReady |).

The weight value returned by calcScore sReady(vi, c) is given by the formula:

∑
vj∈(Locvi∩sReady)

Wei,j ,

where vj is one of the t nodes in sReady with the highest data reuse with respect to vi.

The function calcScore Sch(vi, α, s) given in Algorithm 6 calculates the amount of weighted data reuse

between vi and already scheduled nodes both in the same step (s) and previous steps. The weight value
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Algorithm 1 calcSchedule(p, α, β, flag)

procedure CALCSCHEDULE(p, α, β, flag)
for all v ∈ V do

Stepv ← 0
sRemain← sRemain ∪ {v}

end for
cs← 0 ◃ current step
ASAP ()
ALAP () ◃ Assign ASAP/ALAP values to each node
sReady ← ∅ ◃ initialize ready nodes set
insertReadyNodes(1)
while (sReady ̸= ∅) do

cs← cs+ 1 ◃ next execution step
Schcs ← ∅
cap← p ◃ remaining capacity in current step
doMandatory(cs)
while (cap > 0) and (sReady ̸= ∅) do

myMax← −1
myNode← null
for all v ∈ sReady do

ss← 0 ◃ sReady score
if (flag and (Schcs = ∅)) then

ss← calcScore sReady(v, p− 1)
end if
ts← calcScore Sch(v, α, cs) + β ∗ ss
if ts > myMax then ◃ total score

myMax← ts
myNode← v

end if
end for
scheduleNode(myNode, p− cap+ 1, cs)

end while
insertReadyNodes(cs+ 1)

end while
end procedure



36

Algorithm 2 insertReadyNodes(s)

procedure INSERTREADYNODES(s)
for all node v in sRemain do

if ((Sv ≤ s) and (Lv ≥ s) and (∀vi ∈ Predv. Stepvi > 0)) then
sReady ← sReady ∪ {v}
sRemain← sRemain− {v}

end if
end for

end procedure

Algorithm 3 doMandatory(s)

procedure DOMANDATORY(s)
for all v ∈ sReady do

if (Lv ≤ s) and (v /∈ sManda) then
sManda← sManda ∪ {v}

end if
end for
while (cap > 0) and (sManda ̸= ∅) do

sManda0 ← v ∈ sManda with lowest Lv

scheduleNode(sManda0, p− cap+ 1, s)
sManda← sManda− {sManda0}

end while
end procedure

Algorithm 4 scheduleNode(v, s)

procedure SCHEDULENODE(v, s)
Schs ← Schs ∪ {v}
Stepv ← s
sReady ← sReady − {v}
cap← cap− 1

end procedure
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Algorithm 5 calcScore sReady(vi, c)

function CALCSCORE SREADY(vi, c)
k ← 0
for all (vj ∈ Locvi) do

if vj ∈ sReady then
k ← k + 1
sReadyLocs[k]←Wei,j

end if
end for
sort sReadyLocs
wt← 0
for l← 1,Min(c, k) do

wt← wt+ sReadyLocs[k − l + 1]
end for
return wt

end function

returned by calcScore Sch(vi, α, s) is given by the formula:

∑
vj∈Locvi

[sgn(Stepvj ) ∗Wei,j/(α ∗ (s− Stepvj ) + 1)]

The signum function in the formula prevents contribution from unscheduled nodes, and is defined as

follows:

sgn(x) =


−1 : x < 0

0 : x = 0

1 : x > 0

Different α values change the effect of step difference (e.g., α=0 ignores execution steps and uses the

locality value directly, whereas a large α value concentrates on the current execution step).

As explained earlier, in our CMP architecture, we assume that the highest level of memory for data is the

on-chip shared cache, and there are no private on-chip data caches. However, we can also accommodate the

case where the processors also have private on-chip data caches by making a small change in our algorithm.

Currently, the algorithm considers which step to schedule a block in, but does not care for which particular

processor the block is assigned. If there are private on-chip data caches attached to processors, the modified

algorithm will also try to assign blocks with data reuse to the same processor in consecutive steps, so that the

majority of data requests can be satisfied from the on-chip private data cache.
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Algorithm 6 calcScore Sch(vi, α, s)

function CALCSCORE SCH(vi, α, s) ◃ Check weights with all scheduled items and
consider the step distance

wt← 0
for all vj ∈ Locvi do

if Stepvj > 0 then
wt← wt+Wei,j/(α ∗ (s− Stepvj) + 1)

end if
end for
return wt

end function

Figure 3.3: LPG of the adi benchmark.

3.4.2 Example

As an example we consider the case of adi benchmark (one of our benchmarks used in this study) when using

4 processors. This benchmark implements alternate directed integration, a frequently used approach. In this

case, the adi benchmark code was broken into 40 code blocks, and Figure 3.3 illustrates the corresponding

LPG. The schedules obtained by the heuristic solution and the ILP solution (to be presented shortly) are

given in Table 3.2. Each line shows the nodes executed in that execution step. The weighted data reuse score

for these schedules are 16.33 for the schedule returned by our heuristic approach, and 17 for the schedule

returned by the ILP solver (which represents the optimal case). These scores are calculated using the formula

given in Algorithm 6 with α=1. The heuristic schedule executed in 51.4 seconds, while the ILP schedule

executed in 47.2 seconds. The details of the ILP based formulation will be given shortly.

3.4.3 Discussion

We want to re-iterate here is that in our approach LPG is built by the compiler. That is, using the compiler (gcc

in our case) we extract data dependencies among code blocks and construct the LPG for the application code.

As stated earlier, our scheduling strategy operates on this LPG. Note however that our proposed scheduling

strategy is actually independent of how the input LPG is built. This brings us to the other point we want to
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Table 3.2: adi schedule with 4 processors.

Heuristic Approach ILP Based Approach
n11—n07—n10—n06 n01—n02—n03—n04
n09—n13—n14—n08 n05—n06—n07—n08
n16—n02—n12—n01 n09—n10—n11—n12
n17—n15—n20—n05 n13—n14—n15—n16
n19—n04—n18—n03 n17—n18—n19—n20
n30—n29—n28—n27 n21—n22—n23—n24
n26—n25—n24—n23 n25—n26—n27—n28
n22—n21—n31—n32 n29—n30—n31—n32
n33—n34—n35—n36 n33—n34—n35—n36
n39—n38—n40—n37 n37—n38—n39—n40

Table 3.3: Constants used in our ILP formulation.

Constant Definition
p number of processors
Wei,j The weight of edge ei,j
Svi ASAP value of operation vi
Lvi ALAP value of operation vi

make. In case an application code is not fully analyzable by the compiler, the user can build an LPG (and

in fact each node of this LPG can be an arbitrary computation as long as the computation workloads across

different code blocks are more or less balanced) if she can extract data dependencies based on application-

level information she has. The resulting LPG can then be fed to our scheduler for schedule generation.

3.5 ILP Formulation of the Problem

In order to see how close our heuristic comes to the optimal, we also implemented an ILP (Integer Linear

Programming) based solution to the problem, and performed experiments with it. This section gives the

details of our ILP based solution. Table 3.3 lists the constant terms used in our ILP formulation. We used

LPSolve [76], a public-domain ILP tool, to formulate and solve our 0-1 ILP problem. Although ILP generates

an optimal result (under the assumptions made), the time complexity of ILP prohibits practical usage in most

cases. The computation of the solutions for the ILP problems mentioned below took days on average and

more than a week in one case. Therefore, it is very important to explore heuristic solutions for this combined

parallelism-data locality problem.



40

A 0-1 ILP problem is a special kind of ILP problem, where each variable can only take the value of 0 or

1. In our case, we have only one type of 0-1 solution variable, Xi,l, which indicate whether vi is scheduled on

step l. To make our presentation clear, we use the expression Stepvi to represent the execution step that the

code block vi is scheduled. Stepvi is expressed in terms of the Xi,l variables and ILP constants as follows:

Stepvi =

Lvi∑
l=Svi

(l ∗Xi,l).

3.5.1 Objective Function

Our objective is to find the execution step that each node is to be scheduled, such that, nodes that exhibit

high data reuse with each other are scheduled as close to each other as possible. In our formulation, the 0-1

variables Xi,l are used to capture this information. In other words, we want to minimize the scheduling step

distance between nodes with data locality. Therefore, we can express our objective function as follows:

Minimize
∑
ei,j

(|Stepvi − Stepvj | ∗Wei,j ),

where ei,j ∈ Eloc (e.g. ei,j is a locality edge).

3.5.2 Constraints

We have three types of constraints in our problem.

1. The execution step Stepvi for code block vi is unique for all i ∈ {1, ..., n}. As a result, for a given i,

only one of the Xi,l variables will take a value of 1, and the rest will be 0, which can be formulated

as follows:
Lvi∑

l=Svi

(Xi,l) = 1.

For example, if Sv1 = 3 and Lv1 = 5, then X1,3 + X1,4 + X1,5 = 1 is a constraint in our ILP

formulation.

2. Sequencing relations must be satisfied. If a code block vj depends on vi, then vj should be scheduled

at a later step than vi. This constraint can be expressed as follows: Stepvj > Stepvi , where ei,j ∈

Edep (e.g., ei,j is a dependency edge).

3. Since we have p processors, at most p code blocks can be scheduled at an execution step. In other

words, for any given step l, the sum of Xi,l values cannot exceed p. Note that the actual number of

nodes scheduled at a step can be less than p due to data dependencies between code blocks. Therefore,
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Table 3.4: Benchmark codes used in our experimental evaluation.

Benchmark Name Number of Nodes
adi 40
bmcm 23
tsf 26
vpenta 28

for each step l, we include the following constraint in our formulation:

[
∑

i∈{j|Svj
≤l≤Lvj

}

Xi,l] ≤ p.

The above mentioned constraints and objective function constitute our ILP formulation of the problem.

In this formulation, the nodes that do not exhibit data reuse are not part of the objective function, and are

therefore scheduled based solely on data dependencies, or arbitrarily if they have none.

3.6 Experiments

We implemented the algorithm explained in this chapter as a software tool which takes an LPG, as well as

α, β and the number of processors in the CMP as input parameters. The tool parses the graph and applies

our heuristic algorithm with the given parameters to obtain the data locality-optimized parallel execution

schedule.

3.6.1 Setup

We used four data-intensive, array-dominated benchmarks to test our algorithm, and performed experiments

on three hardware platforms (with 2, 4 and 8 processors.) Table 3.4 lists the benchmark codes we used and

the number of nodes in their LPGs. Table 3.5 on the other hand lists the key properties of the hardware

platforms used in our tests. For our tests, we simulated the hardware and OS using Simics [108]. Simics is a

simulation toolset for multi-processor systems and allows building a binary-compatible instance of the target

hardware, which operates completely within a virtualized environment running on standard PCs.

For each of the hardware platforms, the following operations were performed. We applied our algorithm

to the LPG of each benchmark. The above mentioned ILP formulation of each of these problems produced

an alternate schedule. We used the Intel C++ Compiler 10 [48] and OpenMP API [95] to compile the codes
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Table 3.5: Key parameters of our experimental platform

Number of Processors Cache Size Memory Capacity
2 128KB 256MB
4 256KB 256MB
8 512KB 256MB

Figure 3.4: Results for the 2 processor case.

Figure 3.5: Results for the 4 processor case.

resulting from these schedules (for both heuristic scheme and ILP solver based scheme). We also compiled

the original code both without parallelization and using the Intel compiler’s own parallelization mechanism.

For our tests, the default values of α = β = 1 were used. We also made experiments with other values of

the α and β parameters, but the results were very close to those shown here for the α = β = 1 case. More

specifically, the difference between the result obtained with different α, β values were within 4%.

3.6.2 Results

On each platform, we obtained four results for each benchmark. Figures 3.4, 3.5 and 3.6 show the results of

the experiments with 2, 4 and 8 processors, respectively. The bars show the speeds normalized with respect

to the result given by our heuristic algorithm. The normalized value for each version is computed as the ratio
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Figure 3.6: Results for the 8 processor case.

of the heuristic result’s execution time to that version’s execution time. The four bars for each benchmark in

the figures represent the performances achieved by the following scheduling schemes:

1. Original: Original program with no scheduling. This represents the sequential code without exploit-

ing loop level parallelism.

2. Compiler Parallel: The original code compiled by using the compiler’s [48] own parallelization

mechanism. While we obviously do not know the details of this parallelization strategy, it is reason-

able to assume that it represents state-of-the-art in industry.

3. Heuristic Parallel: The code scheduled by our heuristic scheduling approach (Section 4).

4. ILP: The code scheduled based on the solution returned by the ILP based formulation (Section 5).

Our first observation is that, our algorithm performs better than the original in all but one of the bench-

marks. This exception is due to that benchmark having a small body of code, which makes the synchroniza-

tion overhead brought by parallelization significant. We also note that our scheduling algorithm performs

better than the compiler’s own parallelization mechanism in all cases, and is very close to the result achieved

by the ILP solver. The overall speedups achieved by our algorithm with respect to the original code are 1.62,

1.50 and 4.21 for the 2, 4 and 8 processor cases, respectively. By comparison, the overall speedups achieved

by the ILP based solution with respect to the original code are 1.63, 1.54 and 4.29 for the 2, 4 and 8 processor

cases, respectively. As stated earlier however, ILP based scheduling may not be a viable option in some cases

due to enormous solution times it requires.

3.7 Conclusion

Increasing use of chip multiprocessors in embedded computing domain makes automated software support

a primary concern for programmers. In particular, compiler plays an important role since it shapes the code
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behavior as well as data access pattern. Targeting chip multiprocessors and loop-intensive computations, we

propose a novel compiler-based loop scheduling scheme with the goal of exploiting both parallelism and

locality. In this chapter, we describe our strategy and evaluate it using a set of four application codes. The

schedules generated by our algorithm are compared to those obtained by an ILP based scheduler and the

original codes. The experimental results we collected are promising and indicate that our approach achieves

better results than the commercial compiler and the improvements we obtain are close to those obtained using

the ILP solver based scheduler.

In this chapter, our focus was on CMP architectures with a shared cache. We will be focusing on CMP

systems that have a shared SPM in the next chapter.
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Chapter 4

SPM Conscious Static Loop

Scheduling

4.1 Introduction

Developing loop parallelization strategies that take into account memory behavior can be very useful in

practice. In this context, parallelization is distribution of loop iterations across available parallel processors.

Motivated by this observation, in this chapter we propose a novel static loop scheduling strategy for array/loop

based applications. We target CMP architectures with a shared SPM (i.e. an SPM that is shared by all

processors). Figure 1.2 shows the high level architecture of such a system.

This strategy tries to achieve two objectives. First, the sets of loop iterations assigned to different pro-

cessors should approximately take the same amount of time to finish. Second, the set of iterations assigned

to a processor should exhibit high data reuse. Satisfying these two objectives help us to minimize parallel

execution time of the application at hand. The specific method adopted by our scheduling strategy to achieve

these objectives is to distribute loop iterations across parallel processors in an SPM conscious manner. In this

strategy, the compiler analyzes the loop, identifies the potential SPM hits and misses, and distributes loop

iterations over processors such that the processors have more or less the same execution time. The technique

presented here is not bound to any particular SPM management scheme.

We implemented the proposed approach using an optimizing compiler and conducted experiments with

six array/loop based embedded applications. Our results so far indicate that the proposed approach generates

much better results than existing loop schedulers. Specifically, it brings 18.9%, 22.4%, and 11.1% improve-
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ments in parallel execution time (with a chip multiprocessor of 8 cores) over a previously proposed static

scheduler, dynamic scheduler, and locality-conscious scheduler, respectively.

The rest of this chapter is organized as follows. The next section discusses related work. Section 4.3

presents the details of our loop scheduling strategy. An experimental evaluation of the proposed scheduler

as well as its comparison against several other schedulers are given in Section 4.4. Finally, we conclude in

Section 4.5 by a summary.

4.2 Related Work

While there have been a plethora of studies in the context of code and data optimization for loop based

applications, in this section we discuss only the most related work on loop level scheduling. Loop-level

scheduling can be performed in two different ways: static or dynamic. In static scheduling, the iteration space

is partitioned across the processor prior to execution. Prior static scheduling algorithms include [63, 79].

Note that static scheduling can be made locality aware by ensuring that the set of iterations assigned to a

processor exhibit data reuse, as in the case [63]. While static scheduling is easy to implement, it may

suffer from load imbalance when the processors complete their assignments at different times. To remedy

this problem, dynamic scheduling algorithms [100, 111, 125, 55, 68] have been proposed. The main idea

behind these algorithms is to perform workload assignment at runtime. In this way, a processor that finishes

its current assignment early can get a new assignment. To our knowledge, all of the implemented dynamic

algorithms in the literature are centralized (i.e., master based). That is, a single master performs workload

distribution at run- time across the processors. While these algorithms solve the load imbalance problem and

can be made locality aware (as shown in [55, 68]), they can incur performance bottle- necks at runtime. Also,

master processor can be a point of contention and entire execution fails if master becomes dysfunctional. In

contrast to the prior work on loop level scheduling, in this chapter, we focus on an SPM based system and

propose an SPM conscious scheduling algorithm that is locality aware. The proposed approach is different

from the prior static algorithms since it allows dynamic workload distribution. It is also different from the

previous dynamic scheduling techniques since it exploit the SPM contents as much as possible.
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4.3 Our Approach

4.3.1 Parallel and Sequential Loops

Our focus is on array-based loop-intensive parallel applications. Such an application typically consists of a

set of loop nests accessing a set of data arrays. In this chapter, we consider two types of loops: parallel loops

and sequential loops. All the iterations of a parallel loop can be executed in parallel, while the iterations of a

sequential loop must be executed sequentially. Sequential loops are used where the loop iterations cannot be

executed in parallel due to data and control dependencies. We denote a parallel loop as:

forall i ∈ [L,U ] : {B},

where i is the index variable, [L,U ] is the iteration region (iteration space), and B is the body of the loop. On

the other hand, a sequential loop is denoted using the following form:

for i ∈ [L,U ] : {B}.

We assume that all the sequential loops have been normalized, i.e., index variable i iterates from the lower

bound L to the upper bound U with increment 1 at each step.

The iterations of a parallel loop are distributed among a set of processors so that they can be executed

in parallel. This is performed by a parallelizing compiler. Specifically, the compiler partitions the iteration

space (i.e., the set of loop iterations) of each parallel loop into a group of sub- spaces; the loop iterations that

belong to different subspaces are assigned to different processors. In order to guarantee the correctness of

the execution, the compiler implicitly inserts a barrier to the end of each parallelized loop such that the code

following this loop cannot be executed until all the iterations of this loop, which are distributed over multiple

processors, are completed. Due to the overheads incurred by barriers, parallelizing a loop at a very small

granularity is usually not desirable. A loop nest can contain multiple loops; and each loop of a given nest can

be either parallel or sequential. While all the parallel loops in a loop nest can be parallelized if desired, in

order to minimize the synchronization overheads due to the barriers, for each loop nest, we parallelize only

the parallel loop that is not enclosed by any other parallel loops. All the iterations of a parallel loop that is not

parallelized are executed on the same processor. Since there are no data dependencies among the iterations

of a parallel loop, the compiler can reorder the execution of these loop iterations to improve data locality or

for any other target optimization metric.
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4.3.2 Example

A given parallel loop can be partitioned across processors in different ways and each of these potential parti-

tionings typically yields a different performance. In particular, assigning the same number of loop iterations

to all processors does not guarantee load balance. Figure 4.1 illustrates this point using an example. Figure

4.1(a) shows a code fragment that consists of two parallel loops L1 and L2. We assume, for illustrative

purpose, that the system contains two processors, p1 and p2. A parallelizing compiler partitions loop L1 into

L1,1 and L2,1, and loop L2 into L1,2 and L2,2, as shown in Figure 4.1(b). Let us further assume that loops

L1,1 and L1,2 are executed on processor p1, and loops L2,1 and L2,2 are executed on processor p2. Before

entering loops L1,1 and L2,1, processors p1 and p2 load, respectively, B[0..49] and B[50..99] - the regions

of array B that will be respectively accessed by loops L1,1 and L2,1 - into the SPM. Since we do not remove

data from the SPM during the execution of loop nests L1,1 and L2,1, at the synchronization point (marked as

”barrier”) following loops L1,1 and L2,1, the SPM contains array elements in the region B[0..99].

The executions of loops L1,2 and L2,2 follow those of loops L1,1 and L2,1. Since the array elements

in B[0..99] are used by loop L1,2, we keep them in the SPM. Let us assume that the SPM can hold only

100 elements of array B, and thus, we cannot load any additional elements of array B into the SPM. As a

result, loop L2,2 has to access elements of array B from the off-chip memory. On the other hand, all the array

elements that are used by loop L1,2 are already in the SPM. Since on-chip SPM can be accessed much faster

than the off-chip memory, the execution time of L1,2 is much shorter than that of L2,2. When processor p1

completes its execution of L1,2, it has to wait in idle until processor p2 finishes with the iterations in L2,2.

This example clearly shows that a load imbalance across processors can easily hurt parallel execution time.

Let us assume that the average per iteration execution time of loop Li,j (i =1, 2, and j =1, 2) is Ti,j .

Since L1,2 accesses array B from the SPM while L2,2 accesses array B from the off-chip memory, we have

T1,2 < T2,2. The difference between T1,2 and T2,2 is determined by the difference in access latencies of

the SPM and the off-chip memory. The overall execution time of the code shown in Figure 4.1(b) can be

estimated as:

T = max{50T1,1, 50T2,1}+max{100T1,2, 100T2,2}

= 50max{T1,1, T2,1}+ 100T2,2

In order to minimize the overall execution time of the application, we need to balance the execution time

of processors p1 and p2. That is, after the execution of loop L1,2, processor p1 can execute some iterations

of loop L2,2, instead of waiting in idle for the completion of p2. The number of the iterations of loop L2,2
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that need to be moved from p2 to p1 to achieve the best balance can be computed as:

N = 100(T2,2 − T1,2)/(2T2,2).

Based on this observation, we can rewrite the code of loops L1,2 and L2,2, as shown in Figure 4.1(c).

After this code rewriting, the overall parallel execution time can be estimated as:

T ∗ = 50max{T1,1, T2,1}+ 50(T1,2 + T2,2).

Since T1,2 < T2,2,we have:

T ∗ < 50max{T1,1, T2,1}+ 50(T2,2 + T2,2) = T .

That is, through redistribution of the iterations of parallel loop L2, we can reduce the overall execution

time of this loop.

4.3.3 Problem Formulation

Our goal is to determine a partitioning of a given parallel loop such that the overall parallel execution time of

the loop is minimized. This problem can be formulated as follows. Given the number of processors, p, and a

parallel loop with iteration space I of the following form:

forall i ∈ I : {B},

determine a partitioning for I as:

P (I) = {I1, I2, ..., Ip},

where I1 ∪ I2 ∪ ... ∪ Ip = I and Ii ∩ Ij = ∅ for all i ̸= j, such that the value of T , which can be

computed using the following expression, is minimized:

T = max
J∈P (I)

T (J ,B),

where T (J ,B) is the execution time of the following loop:

for i ∈ J : {B}.

Since the total time taken by all the loop iterations combined, i.e., the value of
∑

J∈P (I) T (J ,B), is a

constant, it is not difficult to prove that, when the execution times of the p processors are balanced, that is,

when
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load B[0..99] into SPM;
L1:forall i ∈ [0, 99]{. . . B[i] . . . }
L2:forall i ∈
[100, 199]{. . . B[i] . . . }
(a) A code fragment with two loops.

Processor p1 Processor p2
load B[0..49] into SPM; load B[50..99] into SPM;
L1,1:for i ∈ [0, 49] L2,1:for i ∈ [50, 99]

. . .B[i] . . . . . .B[i] . . .
— barrier—

L1,2:for i ∈ [0, 99] L2,2:for i ∈ [100, 199]
. . .B[i] . . . . . .B[i] . . .

— barrier—
(b) Unbalanced parallelization over processors p1 and p2.

Processor p1 Processor p2
load B[0..49] into SPM; load B[50..99] into SPM;
L1,1:for i ∈ [0, 49] L2,1:for i ∈ [50, 99]

. . .B[i] . . . . . .B[i] . . .
— barrier—

L′
1,2:for i ∈ [0, 49 + N ] L′

2,2:for i ∈ [50 + N , 199]
. . .B[i] . . . . . .B[i] . . .

— barrier—
(c) Balanced parallelization over processors p1 and p2.

Figure 4.1: Motivation Example

T (I1,B) = T (I2,B) = ... = T (Ip,B),

we achieve the minimum value of T as:

T ∗ =
1

p

∑
J∈P (I)

T (J ,B).

In other words, in order to minimize the execution time of a parallel loop, we need to find a balanced parti-

tioning of the iteration space of this loop.
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4.3.4 Estimating Loop Execution Time

It should be noted that the body of a parallel loop may contain multiple sequential loop nests. For clarity of

discussion, let us assume that B, the body of the parallel loop in question, has the a structure of the following

form:

for i1 ∈ [l1, u1]

for i2 ∈ [l2, u2]

. . . . . .

for im ∈ [lm, um]{

. . . X1[f1(i0, i1, im)] . . . ;

. . . X2[f2(i0, i1, im)] . . . ;

. . . . . .

. . . Xn[fn(i0, i1, im)] . . . ;

},

where i0 is the index variable for the parallel loop, Xr (where 1≤ r ≤ n) is the name of an array, and function

fr maps the iteration vector (i0, i1, ..., in)T to the subscript vector of array Xr. We require fr(i0, i1, ..., in)

be an affine function of iteration vector (i0, i1, ..., in)T . For processor k, we have i0 ∈ Ik,where Ik is the set

of the iterations of the parallel loop in question that are assigned to processor k. Based on this assumption,

T (Ik,B), the total execution time due to the loop iterations that are assigned to processor k can be computed

as:

T (Ik,B) = N1Cdatapath +N2CSPM +N3Cmemory ,

where N1 is the number of times that the body of innermost loop is executed, and N2 is the number of

accesses to the SPM, N3 is the number of accesses to the off-chip main memory, Cdatapath is the number

computation cycles spent by the processor core, CSPM is the access latency for the SPM, and Cmemory is

the access latency for the main memory. For a typical array-intensive application, memory accesses dominate

the execution time of the entire loop; therefore, we can omit the time due to the computation performed by

the processor core. Consequently, we have:

T (Ik,B) ≈ N2CSPM +N3Cmemory .
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The values of Cmemory and CSPM are determined by the implementation of the system hardware; and

the values of N2 and N3 can be computed as discussed below.

Let us first compute N , the number of total memory (including both the SPM and the main memory)

accesses as:

N = M(B)|Ik|
m∏
r=1

(ur − lr + 1),

where M(B) is the number of memory access instructions in loop body B; and |Ik|, the size of set Ik,

gives the number of the iterations of the parallel loop that are assigned to processor k. In this equation,

|Ik|
∏m

r=1(ur − lr + 1) gives the number of times that loop body B is executed.

The number of SPM accesses, N2, can be computed as:

N2 =
n∑

r=1

|Sr|,

where Sr is the set of the iterations of the loop nest where the memory accesses made by Xr[fr(i0, i1, . . . , im)]

can be satisfied by the contents of SPM. Sr can be computed as:

Sr = {(i0, i1, . . . , in)T |i0 ∈ Ik and

∀q = 1, 2, . . . , n : lq ≤ iq ≤ uq and

Xr[fr(i0, i1, . . . , im)] ∈ DSPM},

where DSPM is the set of array elements that are stored in the SPM, which is determined by the SPM

management strategy. The size of set Sr can be computed using the techniques presented in [25, 59].

Finally, we can compute the number of the main memory accesses as:

N3 = N −N2.

4.3.5 Loop Partitioning Algorithm

In this section, we discuss our loop partitioning algorithm. Specifically, given the number of processors p

and a parallel loop of the following form:

forall i ∈ [0,M ] : {B},

our algorithm determines the partitioning points P1, P2, ...Pp−1 such that:
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Input:
p: number of processors;
Parallel loop ”forall i ∈ [0,M ] : {B}”

Output:
Partitioning points P1, P2, . . . , Pp−1 such that
T ([0, P1 − 1],B) ≈ T ([P1, P2 − 1],B) ≈ · · · ≈ T ([Pp−1,M ],B).

T ∗ = T ([0,M ],B)/p.
P0 = 0;
for i =1 to p− 1

Pi = partition([Pi−1,M ], T ∗)

function partition([L,U ], T ∗) {
a = L; b = U ;
while (a < b) {
t = (a+ b)/2;
if (T ([L, t],B) < T ∗)a = t;
else if (T ([L, t],B) > T ∗)b = t;
else return t;
}
return a;

}

Figure 4.2: Loop partitioning algorithm.

0 < P1 < P2 < ... < Pp−1 < M ,

and

T ([0, P1 − 1],B) ≈ T ([P1, P2 − 1],B) ≈ T ([P2, P3 − 1],B) ≈ . . .

· · · ≈ T ([Pp−1,M ],B) ≈ T ([0,M ],B)
p .

Figure 4.3.5 shows the details of our algorithm. The algorithm first estimates T , the execution time of

the given parallel loop if the entire load is distributed to the p processors evenly, as follows:

T ∗ = T ([0,M ],B)/p.

After that, it determines the first partitioning point P1 by binary searching [L,U ] - the entire iteration

space of the given parallel loop. Partitioning point Pi,where 2 ≤ i ≤ q, however, is determined by binary

searching the iteration space [Pi−1, U ]. The computational complexity of our algorithm is O(p log2 Mf(B)),where

f(B) is the computational complexity of the static analysis algorithm used for estimating T (J ,B).
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4.4 Experiments

Our goal in this section is to experimentally evaluate the effectiveness of our SPM conscious loop scheduling

strategy. While the primary metric of evaluation we employ is execution cycles, we also expect our approach

to bring (leakage) energy benefits as well, as a side effect of reducing the parallel execution time. We

collected our results using a simulation platform based on Simics [108], a multiprocessor simulator. Simics

is a system-level instruction set simulator, capable of simulating target (uniprocessor and multiprocessor)

systems with sufficient fidelity and speed to boot, and run operating systems and commercial workloads. It

models several processor types and associated peripheral devices. The simulated chip multiprocessor has 8

embedded cores; each can issue and execute two instructions at each cycle. Processors are assumed to share

an on-chip SPM space, which is 32KB in our default configuration. The off-chip memory access latency is

assumed to be 90 cycles.

We implemented and simulated five different scheduling schemes:

• Default: This is a conventional static loop scheduling scheme that partitions the set of iterations across

processors statically at compile time. Each processor is assigned a consecutive set of Q/P iterations,

where Q is the number of loop iterations in the nest and P is the number of processors.

• Dynamic: This is a dynamic loop scheduling strategy that works with fixed chunk size. This approach

starts by assigning a set of iterations to processors. When a processor finishes its current set, it is given

a new set, in an attempt to fix load imbalance.

• Locality Aware: This is a locality-aware static scheduling technique proposed by Markatos et al [79].

This algorithm, like ours, attempts to balance the workload, minimize the number of synchronization

operations, and exploit processor affinity. The idea is to ensure that a loop iteration is always assigned

to the same processor. After the first execution of the iteration, the processor will contain the required

data, so subsequent executions of the iteration will not need to load data into the SPM.

• SPM-Conscious: This is the SPM conscious loop scheduling strategy we propose.

We collected six different real-life embedded applications to evaluate the loop scheduling schemes de-

scribed above. Table 4.1 lists the important characteristic of these applications. The main reason that we

focus on these applications is that they represent a range of opportunities for addressing data locality, load
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Benchmark Description Data Size Execution Time
AC Adjoint Convolution Computation 0.82 MB 147.5 ms
GE Gaussian Elimination 1.13 MB 218.9 ms
FLT Particle Filtering for Wireless Communication 1.89 MB 305.7 ms
SEG Parallel Image Segregation 1.52 MB 273.3 ms
LRR Link Reversal Routing 0.67 MB 121.8 ms
AGM Adaptive Graph Matching 1.36 MB 257.3 ms

Table 4.1: Benchmarks used in this study.

imbalance and synchronizations overheads. The third column of Table 4.1 gives the amount data manipu-

lated by each application in our experimental suite, and the last column gives the total parallel execution time

for each application under the default scheme explained above.

Let us first present the maximum potential benefits (in terms of parallel execution time) that could be

obtained by being SPM-conscious during loop scheduling. The bar-chart in Figure 4.3 presents three bars

for each benchmark code in our experimental suite. The last two bars are normalized with respect to the

first one, which represents the default static scheduling where each processor is assigned the same number

of iterations and the iterations assigned to a processor are consecutive in the iteration space (recall that these

absolute parallel execution times under the default scheme are listed in the last column of Table 4.1). The

second bar captures the hypothetical case when all data accesses result in hits in the SPM. Clearly, this is not

achievable in practice; but, it is interesting to observe the large savings this could bring. The third bar, which

is achievable in principle, represents the perfect load balance among parallel processors. That is, in this case,

the hits and misses are equally distributed across processors and for each processor data locality has been

exploited as much as possible. Clearly, the third bar for each benchmark represents the lower bound for any

SPM latency conscious loop scheduling scheme. We see that such a perfect hit/miss balancing can reduce

total parallel execution time by 22.96% on average. Our goal in developing an SPM latency loop scheduling

scheme is to approach to this third bar as much as possible.

Figure 4.4 presents the normalized parallel execution times for four different loop scheduling strategies.

The first strategy, against which all other schemes are normalized, is the default static one explained above.

The second bar on the other hand represents a dynamic loop scheduling scheme (proposed in [111]), where

loop iterations are distributed to processors at runtime in an attempt to minimize the load imbalance across

processors. When comparing the first two bars, we see that the dynamic scheduling strategy does not help

too much, mainly because the load balancing benefits it brings are offset by the overhead of performing par-

titioning at runtime. These overheads include executing the semaphore-protected loop iteration distribution

code executed by the master and restarting the suspended processor with new workload. The third scheme
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Figure 4.3: The maximum potential benefits that could be obtained by being SPM con-
scious during loop scheduling.

represents a prior loop scheduling scheme [79] that tries to maintain data locality for a processor as we move

from one loop nest to another. Finally, the last bar corresponds to the scheduling strategy proposed in this

work. Our first observation is that the average execution time savings brought by the dynamic, locality aware

and SPM conscious scheduling schemes are -4.54%, 8.77% and 18.87%, respectively. These results empha-

size the importance of balancing hits and misses across parallel processors. Our second, and maybe more

important, observation is that the difference between our approach and the perfect load balancing (see the last

bar in Figure 4.3 for each benchmark) very small (specifically, 18.87% savings versus 22.96% savings over

the default scheduling scheme), meaning that our approach is very successful in exploiting SPM/off-chip

latencies during loop scheduling.

We next study the impact of the number of processors used on our savings. In Figure 4.5, we have two

bars per benchmark. The first bar (titled LC/LA) gives results of our approach normalized against the results

of the prior locality aware scheduling scheme in [79]. The second bar (titled LB/LC) on the other hand gives

the results with the perfect load balancing scheme normalized against our scheme. We see from this bar-chart

that our approach tracks the optimal load balancing scheme very well; and, the difference between it and the

prior locality aware scheme slightly increases as we increase the number of processors (processor count).

Our final set of results investigates the influence of the SPM capacity on the performance improvements

we achieve. As in the previous case, we give only the values when averaged over all applications in our

suite. An important observation from the results shown in Figure 4.6 is that the difference between our

SPM-conscious scheduling strategy and the locality-aware method slightly increases as the SPM capacity is

increased. The main reason for this is the fact that a large SPM enables us keep more data elements on-chip,



57

Figure 4.4: Normalized parallel execution times for four different loop scheduling strate-
gies.

Figure 4.5: Impact of the number of processors.

and this in turn reduces the number of off-chip references and make it even more important to balance the

distribution of SPM misses across the parallel processors.

4.5 Conclusion

Increasing use of chip multiprocessor in embedded computing makes automated software support a primary

concern for programmers. In particular, compiler plays an important role since it shapes the code behavior

as well as data access pattern. We propose a novel compiler-based loop scheduling scheme with the goal of

capturing the fact that the different loop iterations can exhibit entirely different SPM (scratch-pad memory)
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Figure 4.6: Impact of SPM capacity.

behaviors and, consequently, take different number of cycles to finish. Therefore, an SPM conscious loop

scheduling, as opposed to just allocating the same number of iterations to each and every processor, can be

very useful in practice. We describe our compiler implementation of such a scheduling strategy and compare

it to several previously-proposed schedulers using a set of six embedded applications. The experimental

results we collected clearly emphasize the importance of SPM conscious loop scheduling.

In this chapter, our focus was on loop scheduling on CMP architectures with a shared SPM. While our

approach took into account the presence of the SPM while performing loop scheduling, it did not actually

perform SPM management. In the next chapter we will be focusing on SPM management on the same

architecture.
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Chapter 5

SPM Management Using Markov

Chain Based Data Access Prediction

5.1 Introduction

In this chapter, we present a data access prediction scheme and a code restructuring scheme for SPM man-

agement. Like the previous chapter, we target CMP architectures with a shared SPM. Figure 1.2 shows the

high level architecture of such a system.

While there are numerous publications ( [49, 52, 54, 69, 90, 114]) that focus on SPM management for

programs with regular array accesses, only a few prior studies have considered irregular accesses. What we

mean by ”irregular accesses” are data accesses that cannot be statically resolved at compile time. Two exam-

ples of such irregular accesses are illustrated in Figure 5.1. In (a), a pointer is used to access data elements

within a loop. Since in general it may not be possible to completely resolve pointer accesses statically, the

compiler may not be able to determine which data elements will be accessed at runtime. Similarly, in (b), the

set of elements accessed from array A depends on the contents of index array X, which may not be known

in general until runtime. In both these cases, it is not possible at compile time to determine the best set of

elements to place into the SPM.

However, we want to point out that the lack of static analyzability does not necessarily mean lack of

locality in data accesses. Consider, for example, Figure 5.1(b) again. Within the main loop of this code

fragment (loop t), the same array elements may be reused over and over again. Consequently, based on the

contents of this index array, accesses to array A can also exhibit high levels of data reuse, although this is

not evident at compile time. To be more specific, assuming N is 20 for illustrative purposes, if the contents
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Figure 5.1: Sample irregular access patterns. (a) Irregular access to data by pointers (b)
Irregular access to data by indexed array expression.

of array X happen to be {8, 3, 6, 3, 3, 17, 18, 3, 3, 3, 6, 8, 18, 18, 17, 6, 8, 8, 6, 18}, the same five

elements of array A ({A[3], A[6], A[8], A[17], A[18]}) are accessed repeatedly by loop t. Therefore, if

somehow this pattern can be captured dynamically (during the course of execution), via a compiler inserted

code, significant performance gains can be achieved. We present and evaluate a novel approach to this

problem. Specifically, targeting data-intensive applications with irregular memory access patterns, we makes

the following contributions:

• We propose a Markov Chain (MC) based data access pattern prediction scheme. The goal of this

scheme is to predict the next data block to be accessed by execution, given the current data block

access.

• We present a compiler-based code restructuring scheme that employs this MC based approach. This

scheme transforms a loop into two sub-loops. The first sub-loop forms the training part and is respon-

sible for constructing a MC based memory access pattern prediction model. The second sub-loop is

the prefetching part where data is prefetched into the SPM based on the MC based prediction model

constructed in the training part.

• We quantify the benefits of this approach using seven data- intensive applications. Five of these

applications have irregular data accesses and two have regular data accesses. Our experimental results

show that the proposed MC based scheme is very successful in reducing execution time for all seven

applications. We also present the results from our sensitivity experiments, and compare our approach

to several previously proposed SPM management schemes.

The rest of this chapter is structured as follows. The next section discusses related work. Section 5.3

presents the details of our approach. An experimental evaluation is given in Section 5.4. Finally, we conclude

in Section 5.5 by a summary.
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Figure 5.2: CDF of the number of distinct data elements accessed by a reference.

5.2 Related Work

Scratch-pad memories (SPMs) have been widely used in both research and industry, focusing mainly on the

management strategies such as static versus dynamic and instruction SPM versus data SPM [99, 10]. Egger

et al [32] present a dynamic SPM allocation strategy targeting a horizontally partitioned memory subsystem

for processors in the embedded system domain. In [31], authors propose a fully automatic dynamic SPM

management technique for instructions, where required code segments are being loaded into the SPM on

demand at runtime. Puaut and Pais [103] present an algorithm for off-line selection of the contents of on-

chip memories. Li et al [69] employ a compiler-based memory coloring technique to allocate the arrays of

a program onto an SPM. Golubeva et al [35] tackle the SPM management problem from a leakage energy

perspective. Nguyen et al [90] present an SPM allocation scheme that does not require any compiler support

for interpreted-language based applications such as Java. In [30], authors present a compile-time method for

allocating heap data to SPM. Nguyen et al [89] discuss an SPM allocation scheme targeting a scenario where

SPM capacity is unknown at compile time. This compiler method provides portability to different processor

implementations with different SPM sizes.

Some embedded array-intensive applications do not have regular access patterns that can easily be an-

alyzed by static techniques. For such applications, conventional SPM management schemes will fail to

produce the best results and will prevent allocating the SPM efficiently [2, 20, 23]. To tackle this problem,

Absar et al [2] propose a compiler-based technique for analyzing irregular array-access, and mapping such

arrays to the SPM. On the other hand, Chen et al [20] present an approach for data SPMs, where the task of

optimization is divided between compiler and runtime. Cho et al [23] present a profiling based technique that

generates a memory access trace. This trace, then, is used to identify the data placement within the SPMs.
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Figure 5.3: High level view of our approach depicting the division of iterations into training
part and prefetching part and associated transformation procedures.

While [2] and [20] can handle only irregular accesses due to indexed array expressions, our approach can

handle pointer codes as well. Also, as against [23], we do not use profile data, and instead use compiler

support to capture runtime behavior and exploit it. Since [2], [20] and [23] are the most relevant prior

works, in our experiments we compare our approach to these three approaches.

5.3 Our Approach

5.3.1 Hidden Data Reuse in Irregular Accesses

As stated earlier, the main motivation for our work is the fact that the lack of compile-time analyzability

does not necessarily mean lack of locality in data accesses. To quantify this, we collected statistics on five

data-intensive applications that are hard to analyze using compile-time techniques alone. The graph in Figure

5.2 plots the CDF of the number of distinct data elements accessed by a reference (when all references are

considered). A point (x, y) in this plot indicates that y% of the accesses made by the reference are to x

or fewer distinct data elements. For example, for application vpr, 11.4% of the memory accesses made

by a reference are to only 5 distinct data elements, that is, there is significant data reuse per reference.

Unfortunately, due to irregular data accesses (i.e., because of the way the code is written), this data reuse

cannot be captured and exploited at compile-time.

We propose to use Markov Chains (MC) to capture and optimize such data accesses at runtime. Figure

5.3 shows a high-level view of our approach. For each loop nest of interest, the first few loop iterations are
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used to build a Markov Model, which is used to fill a compiler-generated data structure, so that the remaining

iterations can take advantage of the available SPM. In the remainder of this section, we present the details of

our MC based approach.

We can think of MC as a finite state machine such that if the machine is in state qi at time i, then the

probability that it moves to state qi+1 at time i + 1 depends solely on the current state. In our MC based

formulation of the SPM optimization problem for irregular data accesses, each state corresponds to an access

to a data block, i.e., a set of consecutive data elements that belong to the same data structure. The weight

associated with edge (i, j), i.e., the edge that connects states qi and qj , is the probability with which the

execution touches block qj , right after touching data block qi.

5.3.2 Different Versions

Figure 5.4 gives an example that shows the code transformation performed by our proposed approach. Our

approach operates at a loop nest granularity, that is, it is given one loop nest at a time. It divides the given

loop nest in two parts (sub-loops). The first part is the training part and its main job is to fill a compiler-

generated data structure, which is subsequently used in the second part. This data structure represents the

MC based model of data accesses encountered in the training part. The second part, called the prefetching

part, uses this model to issue prefetch requests. Each prefetch request brings a new block to the SPM ahead

of time, i.e., before it is actually needed. Therefore, at the time of access, the execution finds that block in

the SPM and this helps improve performance and power, though in this work only performance benefits have

been evaluated. We can see from Figure 5.4 that the first k iterations (k << N ) are used for the training part.

The remaining iterations are tiled into tiles of t iterations each, and prefetching for the each tile is performed

at the beginning of the tile. Selection of t is done such that off-chip memory access latency can be hidden.

We now want to discuss the functionality of next(.). For a given data block Bi, next(Bi) gives the set

of blocks that are to be prefetched within the prefetching part. Clearly, there are many different potential

implementations of next(.). Below, we summarize the implementations evaluated in this work, using the

sample Markov Model illustrated in Figure 5.5:

• A1: It returns only one block which corresponds to the edge in the Markov Model with the highest

weight (transition of probability). For example, in Figure 5.5, if the current data block being accessed

is B0, next(.) will return B2. While this implementation is simple and can be effective in many cases,

it may not perform well in every case, as even the highest weight may not be very high. For example,

in the same transition diagram, if the current block being accessed is B6, the prefetched block will be

B9, but, the corresponding probability is only 22%.



64

Figure 5.4: Code transformation depicting the training and prefetching parts in our ap-
proach.

Figure 5.5: Sample Markov Model. Note that this figure shows only high transition proba-
bilities; low ones are omitted for clarity. Each state qi denotes an access of block Bi, and the
weight associated with edge (i, j), between states qi and qj corresponds to the probability
with which the execution touches block qj , right after touching data block qi.
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Name Data Size (MB) Dominant Access Type
terpa 1.2 3.88 index arrays
aero 5.27 index arrays
bdna 5.9 index arrays
vpr 4.43 pointer based
vortex 2.71 pointer based
oa filter 2.86 regular
swim 3.76 regular

Table 5.1: Benchmarks and their characteristics.

• A2: This alternative is a variant of the previous one and returns a block only if the corresponding

transition probability is the largest among all blocks and above a preset threshold value (δ). In this

way, we guarantee that the likelihood of the prefetched block being accessed by execution is high.

Again, in the example of Figure 5.5, if the current data block is B0 and δ is 50%, no block is

prefetched under the A2 scheme. As another example, if the threshold value is 50%, next(B4) is B3.

• A3: The third alternative prefetches k blocks with the largest transition probabilities. In our example

of Figure 5.5, next(B2) would be {B4, B5} if k is set to 2.

• A4: The last alternative we experiment with selects k blocks to prefetch such that the cumulative

sum of the transition probabilities of these blocks is larger than a preset threshold value (δ). As an

example, if δ is set to 80%, next(B4) would be {B3, B9} under this alternative. Notice that under this

scheme next(.) set can contain any number of blocks.

It is to be noted that some of these alternatives work with parameters, the values of which may be critical

to their success. More specifically, schemes A2 and A4 use a threshold parameter (δ), whereas A3 operates

with a k parameter. When there are multiple options (combination) that lead to the same threshold value of

δ, the A4 alternative selects the combination with minimum number of blocks. The important point to note

is that the code shape shown in Figure 5.4 does not change much with the particular scheme (alternative)

adopted; the different schemes change only the contents of next(.).

After determining the next(.) blocks in the training part, it is important to efficiently insert the prefetch

instructions to the scratch-pad memory for each next block to be used in the successive iterations of the

prefetching part. We use an algorithm similar to [85] in order to insert prefetch instructions in the code to

prefetch data into the SPM. The prefetch distance (the time difference between time of prefetch and time of

first use of a data block) is an important parameter that is determined using the approach in [85], which can

be computed as a simple function of the estimated time for a single prefetch and the estimated cycle of each

loop iteration. Note that, although this compiler prefetch algorithm is efficient, the choice of the compiler
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CPU 2-issue embedded core
SPM Capacity 64KB
Block Size 1KB
SPM latency 2 cycles
Off-chip memory latency 200 cycles

Table 5.2: Simulation parameters.

algorithm for prefetching is orthogonal to the problem of predicting the next(.) blocks. It is also important

to note that, the next(.) set of each block could potentially consist of more than one block (depending on

whether A1, A2, A3 or A4 is being used), and in such a case, we conservatively insert prefetch for each block

in the next(.) set.

A fully adaptive scheme that selects these parameters dynamically can be expensive to implement. There-

fore, we fix the values of these parameters at compile time. Obviously, a programmer can experiment with

different values of parameters in a given alternative, and select the best performing one for the application at

hand.

Another potential issue is what happens when our approach is applied to code with regular data access

patterns. While our approach works with such codes as well, the results may not be as good as those that could

be obtained using a conventional (static) SPM management scheme. This is due to the overheads incurred by

our approach (mainly within the training part) at runtime. In order to quantify this behavior, we also applied

our approach to two codes with regular data access patterns, and reported the results in Section 5.4. Note that

a compiler implementation can select between our approach and a conventional static scheme, depending on

the application code at hand. This is possible because a compiler can infer that a given reference is irregular,

though it cannot fully analyze the irregularity it detects.

5.4 Experiments

We implemented our proposed approach using the SUIF compiler [39], and performed simulations with the

schemes (A1 through A4) above as well as three SPM management schemes. To perform our simulations, we

enhanced SimpleScalar [9]. The important simulation parameters and their default values are listed in Table

5.2. The set of applications used in this study are given in Table 5.1. In the following discussion, Static,

Alt-I and Alt-II represent the schemes explained in [54], [20], and [2], respectively. The results of our

schemes include both the training and prefetching parts, i.e., all overheads of our schemes are captured. All

the performance improvement results presented below are with respect to a version that uses a conventional
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Figure 5.6: Percentage improvement in execution cycles under different schemes.

Figure 5.7: Additional performance improvements our approach brings over the approach
in [23].

(hardware managed) cache of the same size as the SPM capacity used in other schemes.

Our first set of results are present in Figure 5.6, and give the percentage improvement (reduction) in

execution cycles under the different schemes explained above. Our first observation is that the average per-

formance improvements brought by schemes Static, A1, A2, A3, A4, Alt-I, and Alt-II are 11.9%, 21.0%,

21.5%, 20.5%, 20.0%, 10.4% and 10.6%, respectively. We also note that our dynamic schemes (A1 through

A4) generate much better savings than the static scheme for all five applications with irregular access pat-

terns. This is expected as the static SPM management scheme in [54] can only optimize a few loop nests in

these applications, namely, the nests with compile-time analyzable data access patterns, and the remaining

loop nests remain unoptimized. In contrast, our approach, using the explained MC based model, successfully

optimizes these applications. We also observe that our dynamic scheme improves performance for our two
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Figure 5.8: Contribution of overheads to the overall execution cycles.

regular applications (oa filter and swim) as well, though the results (savings) are not as good as those brought

by the static scheme. This difference is mainly due to the runtime overheads incurred by our scheme as dis-

cussed earlier. However, as explained earlier in Section 5.3.2, an optimizing compiler may choose between

the static and dynamic schemes depending on the application code at hand.

Among our schemes, we observe that A2 generates better results than the rest in terpa 1.2. This is because

the transition diagram for terpa 1.2 is very dense, and as a result, given a node, transition probabilities are

almost equally distributed in many cases. This behavior in turn favors A2 over A1, as A2 is more selective in

prefetching and does not perform useless prefetches. On the other hand, A3 and A4 issue too many prefetches

in this application, and this contributes to the runtime overheads. In applications vpr and vortex, the extra

overheads brought by A3 and A4 are compensated by their benefits (the increase in SPM hit rate as a result

of more prefetches), and the overall performance is improved.

We now discuss how our approach compares against two previously-proposed schemes that try to ad-

dress irregular data ac- cesses. Alt-I tracks the statements that make assignments to index arrays and use

these values to determine the minimum and maximum bounds of the data arrays. Since this scheme targets

irregularity that arises from indexed array accesses, it does not offer a solution for pointer based applications,

and consequently, it performs no better than the static scheme for our pointer applications (vpr and vortex).

In fact, due to the overheads involved, Alt-I performs worse than the static scheme [54] in these two appli-

cations. The same observation goes for Alt-II as well, which also targets exclusively indexed array accesses.

When the index array applications (terpa 1.2, aero, and bdna) are considered, our schemes are better than

both Alt-I and Alt-II, thanks to the inherent locality exhibited by the indexed array based data accesses.

We also compared our approach (version A1) to the SPM management scheme in [23], which uses profile
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Figure 5.9: Sensitivity of the A2 scheme to the threshold value (δ).

data to place data into the SPM. To do this, we profiled each application using an input set (Input-0) and then

executed the same application using two different input sets, Input-I and Input-II, both of which are different

from Input-0. The bar-chart in Figure 5.7 gives the additional performance benefits our approach brings

over the scheme in [23]. The average improvement when considering all benchmarks is around 13.5%. The

reason for this is that in irregular applications the input data used for execution can change the behavior of

the application significantly. Therefore, any profile based method will have difficulty in optimizing irregular

codes, unless the profile input is the same as the input used to execute the application.

Since our schemes (A1 through A4) incur runtime overheads, it is also important to quantify these over-

heads. Figure 5.8 gives the contribution of these overheads to the overall execution cycles in our applications.

We observe that the overheads range between 4.4% and 9.1%, depending on the particular alternative. As

expected, most overheads are incurred by the A4 alternative.

As noted earlier, different versions (A1 through A4) work with different parameters. Now, we quantify

the impact of these parameters. Due to space constraints, we focus on A2 and A3 versions only. First,

in Figure 5.9, we present the sensitivity of the A2 version to the threshold value (δ), for our irregular

applications. It is easy to see from these curves that, for each application, there is an optimum threshold

value (among those tested). Working with a smaller threshold value causes unnecessary prefetches to the

SPM, while employing a larger threshold value suppresses a lot of prefetches, some of which could have

been useful. Similarly, Figure 5.10 plots the sensitivity of the A3 version to parameter k. It can be seen that

the different applications reach differently to varying k. For example, terpa 1.2 and vpr take advantage of

increasing k values, whereas aero’s performance decreases as we increase k.

We now quantify, in Figure 5.11, the influence of the granularity of prefetch on our savings. Each curve
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Figure 5.10: Sensitivity of the A3 scheme to parameter k.

Figure 5.11: Sensitivity to the data block size.

Figure 5.12: Average improvement values across all applications.
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in this plot represents the average improvement value (across all applications) under varying data block sizes.

the default block size used in our experiments so far was 1KB (Table 5.2). We see from these results that

block size selection is a critical issue. For example, working with large blocks is not very useful as it causes

frequent displacements from the SPM. While this argues for employing smaller blocks, doing so can lead to

complex Markov models, which may be costly to maintain at runtime. In addition, small block sizes also

increase the activity between the SPM and the off-chip memory, which can in turn affect overall performance.

Considering these two factors, one has to make a careful choice for the block size.

It is also important to study the behavior of our scheme under different SPM capacities. The default

SPM capacity used in our experiments is 64KB (Table 5.2). The results plotted in Figure 5.12, which

represent average performance improvement values across all applications, show that our dynamic scheme is

consistently better than the remaining schemes for all SPM capacities tested. As can be seen, our performance

improvements reduce a bit with increasing SPM capacities. This is expected as the presented results are

values normalized with respected to the original case, i.e., the case with conventional hardware-managed

cache. As the on-chip memory capacity (SPM or cache) is increased, the difference between our scheme and

the original case gets reduced. It should also be noted however that, as the increase in data set size is usually

much higher than increase in on-chip memory capacities, we can expect higher savings from our scheme in

future systems.

5.5 Conclusion

We proposed various schemes to predict irregular data accesses in data intensive applications using a Markov

chain based model. Using such a data access pattern prediction model for prefetching data into scratch-

pad memory helps improve the performance of applications with irregular data accesses to a large extent. We

observe that scratch-pad memory management using our approaches produces 12.7% to 28.5% improvements

in performance across a range of applications with both regular and irregular access patterns, with an average

improvement of 20.8%.

In this and the previous chapters, our work targeted CMP systems with a shared cache and a shared SPM.

In the next chapter, we will target a CMP architecture with on-chip banked memory.
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Chapter 6

Memory Bank Aware Dynamic Loop

Scheduling

6.1 Introduction

In this chapter, we present a dynamic loop scheduling scheme. We target CMP architecture with on-chip

shared banked-memory that is shared by all the processors.

In a battery-operated embedded execution environment, power consumption is an important metric to

consider during dynamic loop scheduling. In particular, in a banked memory system, the loop iteration-to-

processor mapping can have substantial impact on memory system power consumption (since it determines

the set of banks that will be exercised at any given period of time), which can be a significant portion of the

overall energy consumption for the data-intensive embedded applications.

In this chapter, we present a bank aware dynamic loop scheduling scheme for array-intensive embedded

media applications. The goal behind this new loop scheduling scheme is to minimize the number of memory

banks that need to be used for executing the current working set (group of loop iterations) when all processors

are considered together. The unused memory banks can then be held in a low power state, for longer periods

of time, to conserve energy. The proposed scheduling approach represents both the current active/idle status

of banks and the set of banks that may be accessed by a given loop iteration using bitmaps and uses these

bitmaps at runtime in performing the iteration assignment. The goal is to minimize the number of banks that

are active at any given period of time.

We implemented this memory bank-aware loop scheduling scheme and performed experiments with
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several embedded application codes. In our experimental evaluation, we compare it, in terms of both energy

consumption and performance, to a number of previously proposed loop scheduling strategies, including both

static and dynamic techniques. Our experimental results show that the proposed scheduling scheme not only

reduces the energy consumption significantly, but it also leads to much better energy savings when compared

to these prior techniques and it is competitive with the loop scheduler that generates the best performance.

To our knowledge, this is the first dynamic loop scheduling scheme that is memory bank aware.

The remainder of this chapter is structured as follows. Section 6.2 gives background on loop scheduling

and banked memories. It also discusses the relevant prior work on loop scheduling. Section 6.3 presents

the details of our proposed bank-aware loop scheduling scheme. This scheme is evaluated along with several

previously proposed scheduling techniques in Section 6.4, and the results are discussed from both energy

and performance angles. Section 6.5 concludes the chapter with a summary.

6.2 Related Work

As mentioned earlier, the prior work on loop scheduling considered both static and dynamic techniques. The

static techniques perform iteration assignment to CPUs at compile time, and therefore, are easy to implement,

as compared to their dynamic counterparts, which require some work to be performed at runtime, thereby

contributing (as overhead) to the execution time. The basic static technique [101, 118] divides the iteration

space of the parallel loop (i.e., the set of all iterations in the loop) to be scheduled into P equal (or almost

equal) subsets where P is the number of processors at hand, and each processor is assigned a subset. As

mentioned in [63], static scheduling can also assign iterations in a locality aware fashion by ensuring that the

set of iterations assigned to a processor exhibit data reuse among themselves. However, such a purely static

assignment of iterations can lead to load imbalances, which can be due to the different reasons:

• Variations due to conditional control flow. For example, the different branches of an IF or SWITCH

statement can be taken by the different loop iterations, and consequently, there can be large variations

across the execution times of the iterations that belong to the same parallel loop.

• Variances due to loop index dependent bounds. When the lower bound and/or upper bound of an inner

(sequential) loop depends on the index of the parallel outer loop, the different iterations of this outer

loop can experience different execution latencies.

• Variances due to data locality (cache behavior). The different loop iterations can produce different

cache hit/miss counts, which can in turn lead to significant variations among their execution times.
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Figure 6.1: Distribution of the execution latencies of iterations for a typical parallel loop
from one of our applications.

It needs to be noted that most of these variations are not possible to capture at compile time, and thus,

a purely static scheduling technique can be very inefficient when these variations are really significant. As a

result, due to these factors, partitioning loop iteration space across available processors evenly such that each

processor receives more or less the same number of iterations can lead to large variances across the execution

times of the CPUs. In addition, since the execution time of a parallel loop nest is typically determined by the

execution time of the processor that finishes its group of iterations last, an unbalanced partitioning (in terms

of execution cycles) can be detrimental to performance. To give an idea about the magnitude of this variance,

Figure 6.1 shows the distribution of the execution latencies of iterations for one of the loops in baleen, one

of our embedded applications (we will present the details of our embedded applications and the simulation

platform used later). The y-axis in this figure captures the percentage of occurrences for each latency group.

The value 1 on the x-axis represents the most frequently occurring latency across all iterations, and all other

latencies are normalized with respect to that value. So, each bar gives the percentage of occurrences for a

latency interval. It is easy to see that the largest variance across the executing latencies of the different loop

iterations is around 40%, indicating the severity of the problem. We need to mention that this particular

loop nest was not an extreme case; rather, it was exhibiting a typical behavior. In fact, we observed during

our experimental evaluation that the largest variation across two different iterations of the same parallel loop

varied between 1% and 82%, averaging on 37%.
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In dynamic loop scheduling, a master CPU assigns works to slave (worker) processors at runtime. One

of the earliest dynamic scheduling schemes is known as self scheduling [101], and addresses load imbalance

by assigning a small load to slave processors initially, and allowing the slaves to ask for more work once they

are done with their current assignments. Each work assignment takes place within a critical section, a piece

of code for which entrance is granted to one CPU at a time. A variant of self scheduling is tapering, also

known as guided self scheduling [100], where the loads assigned to processors are reduced gradually as the

execution progresses, in an attempt to prevent potential imbalances towards the end of the iteration space. The

other variants of dynamic scheduling include factoring [46] and trapezoid self scheduling [113]. Our initial

experiments with these different performance overhead of dynamic schedulers found that the performance

and energy behaviors of tapering, factoring, and trapezoid self scheduling were very similar to each other

(within 1% of one another). Therefore, as far as dynamic schedulers are concerned, we present results with

self scheduling and tapering only.

More recently, there have been several proposals for locality aware loop scheduling schemes. The dis-

tinguishing characteristic of these schemes is that they are specifically designed for optimizing the behavior

of data cache by assigning iterations to processors carefully. Such techniques either take advantage of the

data reuse across different iterations (as in [55]) or exploit the fact that the same loop can be visited multiple

times during the execution of the program [80]. Since optimizing cache locality means exploiting temporal

and/or spatial reuse in the innermost loop iterations, one can expect a locality aware loop scheduling scheme

to reduce bank energy consumption as well. This is the main reason why we compare, during the experi-

mental evaluation, our approach to the locality aware loop scheduling schemes as well, in addition to pure

static and dynamic scheduling techniques. We discuss a static scheduling scheme, specifically designed for

software managed on-chip memories. There also exist several efforts that consider dynamic scheduling in the

operating system (OS) [18] or system levels [125]. Our approach is different from such approaches in that

in our case the compiler dictates the scheduling decisions, and we target embedded chip multiprocessors.

As far as the banked memory architecture is concerned, we are focusing on an SRAM-based on-chip

memory system, divided into multiple banks. In this system, each bank can be transitioned into a low leak-

age mode independently of the others to save energy. The specific policy we implemented in our simulations

is based on [33], where the banks are placed into the low leakage mode periodically (using the suggested

threshold values by [33]), and are activated when they are accessed (we assume the same reactivation penal-

ties as in [33]). Consequently, working with a small set of banks at a given period of time increases the

chances for the other (unused) banks to remain in the low leakage mode, thereby increasing energy savings.

This is why our dynamic approach tries to schedule the loop iterations in such a fashion that the idle periods

of the banks are lengthened as much as possible. We are not proposing a new bank power reduction strategy,
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but readers interested on power saving in banked SRAM/DRAM memories can read the papers [57, 64] and

the references therein.

6.3 Our Approach

As discussed in the previous section, in dynamic scheduling, when a worker CPU finishes its current work

(assignment), it asks the master CPU to give it a new set of loop iterations. The important point to note

is that the master has complete freedom in selecting this set of iterations, due to the fact that we consider

parallelization of dependence-free loops only. In order to reduce the number of active banks at any given

moment, our bank aware scheduler selects this set of iterations such that it reuses only the active banks, if

it is possible to do so. Clearly, this complete bank reuse may not always be achievable, and when this is

the case, our approach selects the iterations to be assigned to the requesting CPU such that the number of

additional banks required is minimum. In mathematical terms, we represent the current on/off status∗ of the

banked memory system using a bitmap∇c of the following form:

∇c = m1 •m2 •m3 • · · · •ms,

where s is the number of banks in the memory system and mi captures the status of bank i. Specifically, if mi

is 1, bank i is currently active, i.e., there is at least one processor in the system that executes an iteration which

accesses that bank. On the other hand, mi = 0 indicates that the bank is currently unused (Such a bank can

be in high leakage or low leakage mode, depending on how long it was unused.) At a particular step, when

the scheduler is about to assign a workload to a processor, it selects the set of iterations (that constitute the

workload to be assigned) such that only the currently active banks are used if it is possible. Mathematically,

let ζ(I⃗) be a function that gives the set of banks that may be accessed by iteration I⃗ (Note that I⃗ is a vector

where each entry corresponds to a value of a loop, starting from the outermost loop, corresponding to the first

entry). Note that this is a conservative estimate since it may not always be possible to determine the exact set

of banks to be accessed by a particular loop iteration. As a consequence, in the worst case, ζ(I⃗) can contain

all the banks in the memory system. Observe that a ζ(I⃗) can also be represented as a bitmap β(I⃗) as follows:

β(I⃗) = n1 • n2 • n3 • · · · • ns,

∗When there is no confusion, we use the terms such as low power mode, low leakage mode, and off mode
interchangeably. It needs to be made clear however that, in our implementation, when a bank is placed into
the low power mode, its contents are maintained, using an approach, similar to that discussed in [33].
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where ni is set to 1 if bank i belongs to the ζ(I⃗) set; otherwise, it is set to 0. Now, we can also define a

workload level bitmap that captures the bitmaps of all the iterations in a given workload collectively. That is,

τ(W ) = k1 • k2 • k3 • · · · • ks,

such that ki is set to 1 if there is at least a I⃗ ∈ W such that ni of β(I⃗) is 1; otherwise, ki is set to 0. In other

words, let I⃗1, I⃗2, . . . , I⃗l be the set of iterations in the workload assigned to a processor when it asks for more

work, and β(I⃗j) = nj,1 • nj,2 • nj,3 • · · · • nj,s, where 1 ≤ l, Then, we have

ki = n1,i ∨ n2,i ∨ n3,i ∨ · · · ∨ nl,i,

where ∨ denotes the OR operator.

The main job of our bank aware dynamic scheduler is to build a workload W at runtime and assign it to

an idle processor which asks for more work to do. Let us first make the following definition. Given bitmaps

p and q, we write p ◃ q, if the following two conditions are satisfied together:

• The number of 1s in q is equal to or larger than that in p, and

• If p has 1 in ith position, q also has a 1 in its ith position.

For example, we have 11001000 ◃ 11101001 and 0101 ◃ 0101, while 1010 ◃ 0101 and 111000 ◃ 101000

are not correct. Based on this definition, the iterations to put in set W should be selected in such a fashion

that τ(W ) ◃∇c should be satisfied if it is possible to do so. Before giving the pseudo code for the algorithm

that selects W , the set of iterations to be assigned to a worker CPU that requires work, we want to discuss a

couple of important issues.

First, it can be costly to compute a W set at runtime such that τ(W ) ◃∇c even if such a set that satisfies

this condition does actually exist. Therefore, our approach does some extra work at compile time to reduce

this potential runtime overhead. Let us use Z to denote the set of iterations to be executed for the current

parallel loop (i.e., Z represents the iteration space of this loop). We divide at compile time this set into 2s

bins, where s is the number of banks in the memory system. Each bin holds the set of iterations that have the

same β(I⃗) bitmap (in our implementation, each bin is represented by the constraints that give the iterations

which belong to that bin). Clearly, some of these bins can be empty (i.e., there may not exist any iteration that

accesses a particular set of banks). As the iterations are assigned to processors, we update the contents of

these bins accordingly, a process during which some (originally full) bins can become empty. It is important

to note that each bin can be represented using a bitmap, similar to those used for representing the on/off

status of the banks (∇c) and the bank access patterns of iterations (β(I⃗)). Let µ(q) represent the bitmap of
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Figure 6.2: Compile time component of our approach.

Figure 6.3: Runtime component of our approach.

bin q. Suppose now that we are to assign a workload W (which contains K iterations to be selected from the

iterations contained in Z) to a processor which asks for work. Using∇c, we first check the whether the bin q

where µ(q) = ∇c has at least K iterations. If this is the case, we give K iterations to the requesting processor

and we are done. If this is not the case (i.e., when bin q can provide only M(< K) iterations, we next search

to find a set of bins q1, q2, . . . , qr such that µ(q1) ∨ µ(q2) ∨ · · · ∨ µ(qr) ◃ ∇c and can collectively provide

K−M iterations for the requesting processor, where M(< K) is the number of iterations provided by µ(q).

Informally, this means selecting a set of bins such that collectively they provide K −M iterations and these

K −M iterations do not demand access to any of the unused banks. Since there are many ways of selecting

these banks and we cannot try all the alternatives at runtime due to cost considerations, we mark at compile

time which alternative to try if we cannot find a bin q where µ(q) = ∇c has at least K iterations. In our

current implementation, we try only one alternative which consists of two banks, and if that alternative cannot

provide the required number of iterations, we select the remaining iterations randomly. It is also important

to explain why we first try to find a bin q such that µ(q) = ∇c has at least K iterations. This is due to the

following observation. At the time the slave processor in question asks for a workload, the set of banks that

are active is captured by ∇c. Since these banks are active anyway, we may want to reuse all of them (while

they are active). This is because such a reuse will also likely to help cluster the iterations that do not use

some subsets of these banks, which will in turn help increase power savings in the rest of the execution of
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Figure 6.4: Example application of our loop scheduling algorithm. The last two columns
give the number of iterations in five bins; the other bins are assumed to be empty.

this parallel loop nest. Figure 6.2 shows the compile-time portion of our approach based on the explanation

above.

Second, our bank aware loop scheduling approach can be used with any variant of self scheduling. This

is because the different variants of self scheduling such as tapering [100] and factoring [46] differ only in

the number of iterations they assign at runtime to a requesting CPU. Based on our discussion of the previous

paragraph, this only affects the value of K (size of the workload W ) and the rest of our approach can be used

as it is. In our experimental evaluation however, we only implemented the bank aware version of the baseline

self scheduling.

Third, it is important to understand why a purely static (bank aware) scheduling approach may not be as

successful as our dynamic bank-aware scheduler. Notice that any purely static loop scheduling scheme that

is to be bank aware needs to make conservation assumptions about the on/off status of the memory banks

during each phase of the execution of the parallel loop. In other words, it needs to estimate the bitmap ∇c

conservatively (at compile time). However, such a conservative estimation can be far from reality due to

at least two factors. First, dynamic cache behavior can affect the bank access pattern of a loop iteration

completely. For example, for a given loop iteration, the compiler can conservatively deduce that it can access

four banks; however, at runtime, all these four accesses can be captured and supplied by the data cache,

resulting in no memory access. The second potential reason that can invalidate the compiler based estimation

is the dynamic code behavior. For example, a procedure/function can have a lot of conditional branches. In

order to make a conservative estimate, the compiler needs to consider the worst case scenario. However,

in a given execution, only a subset of all possible branches can be taken, which means a much smaller

number of bank accesses, compared to the conservative estimation made at compile time. Nevertheless, in

our experiments, we also measured how much energy we would lose, had we adopted a static bank aware

scheduling approach, instead of the dynamic approach presented in this chapter. The pseudo-code for the

algorithm that selects the workload W to be given to a requesting CPU is shown in Figure 6.3. This algorithm

is executed at run-time and constitutes the dynamic portion of our approach (the static portion of our approach
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is given earlier in Figure 6.2).

We now give an example to illustrate how our approach works in practice using two scenarios presented

in Figure 6.4. In this example, we assume that the memory system has four banks and at compile time

we grouped the iterations into five different bins (q1, q2, . . . , q5). Let us assume that the current bank on/off

status,∇c, is 1010, the same as the bitmap of bin q3. We further assume that the workload W we are to assign

has 10 iterations. Note that each scenario in Figure 6.4 corresponds to a particular number of iterations at

each bin. Under Scenario I, we first check q3 to see whether it can supply the required number of iterations.

Since this bin has currently 20 iterations and we need only 10 (i.e., K=10), we take the first 10 iterations

from this bin, and reduce its contents to 10, and we are done. Under Scenario II, we also first check q3. But,

this time, this bin can supply only 2 iterations (i.e., M=2). So, we need K −M = 10-2 = 8 more iterations.

Assuming that q1 and q4 are identified as the backup bins for q3 (since µ(q1) ∨ µ(q4) = µ(q3)), we next

check q1 and q4. Since q1 can give us 7 iterations, we need only 1 (=10-(2+7)) iteration from q4. After that,

the contents of q1 and q4 are updated accordingly.

6.4 Experiments

Using SIMICS [108], we simulated a chip multiprocessor architecture and evaluated the following loop

scheduling schemes:

• static: This represents the well-known compiler based loop scheduling scheme. In this approach, the

iterations of the loop to be executed in parallel are divided across the available parallel processors as

evenly as possible. As noted earlier in the text, the main problem with this approach is that it cannot

take into account the dynamic variances across the workloads of the different processors. In other

words, distributing loop iterations evenly does not necessarily lead to evenly distributed workloads.

• dynamic: This is a well-known dynamic loop scheduling scheme (also known as self scheduling

[118]). A master processor controls the loop distribution at runtime.

• tapering: This is a slight variant of the dynamic scheme, and we followed the specific implementation

discussed in [100]. Our initial experiments that compared this scheduling scheme with trapezoid self-

scheduling [113] and factoring [46] showed that all these three schemes exhibit similar behavior for

our benchmark codes; therefore, we do not report separate results with the trapezoid self-scheduling

or factoring.

• locality aware-dynamic: This is a dynamic locality aware scheduling scheme, explained in [55]. In

this scheme, whenever a processor asks for a workload, it is given a set of loop iterations that exhibit
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Table 6.1: Default values of our simulation parameters.

Parameter Value
Number of Processors 8
IPC 2
L1 Cache (Per Processor) 8KB; 2-way; 32 byte line size
Shared On-Chip Memory 4MB; 8 banks of 512KB
L1 Access Latency 2 Cycles
On-Chip Memory Access Latency 8 Cycles
Bus Contention Cost 5 Cycles

Table 6.2: Benchmark codes used in our experiments. The numbers under the last two
columns are for the static loop scheduling scheme. The energy numbers are calculated for
70 nm.

Benchmark Explanation Dataset # of Energy
Name Size Cycles Consump.
Baleen Segments an image into subimages 2.85MB 344.52M 171.48mJ
Demosaic Interpolates a complete image 3.51MB 576.12M 247.18mJ

from partial raw data
Imar ver2 Transforms different sets of data 2.51MB 305.83M 148.17mJ

into one coordinate system
Zonography A variant of linear tomography 3.94MB 883.9M 481.92mJ

kernel
Poly 1.1 A complex form of tomography 3.98MB 927.06M 515.64mJ

(poly tomography)
Cbd Car barrier detection algorithm 1.73MB 290.46M 129.13mJ

high degree of data reuse among them. The goal of such an assignment is to improve the data cache

locality. The reason that we make experiments with such a scheme as well is to demonstrate that

a dynamic scheduling scheme that targets only cache locality may not be sufficient for maximizing

bank energy savings.

• locality aware-static: This scheduling scheme is similar to the previous one, except that the assign-

ment of loop iterations to processors are done statically (at compile time). Simply put, the iterations

space of the parallel loop is divided at compile time into P subsets (P being the number of proces-

sors) such that the iterations in each subset reuse a lot of data elements among themselves. It generates

similar results to the locality-aware static scheduling described in [80].

• bank aware: This is the scheduling scheme discussed in Section 6.3.

The code modifications required by these schemes are automated using the SUIF infrastructure [39]. As

mentioned earlier, we used the SIMICS [108] platform to perform our experimental evaluation. SIMICS is
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Figure 6.5: Execution cycles normalized with respect to the static scheduling scheme.

a functional simulator and runs unmodified operating systems, drivers, firmware, and application software

on the simulated machines. As far as the software is concerned, there is no difference from a real machine.

We used this platform to simulate an embedded chip multiprocessor system with private (on-chip) L1 and

shared (on-chip) SRAM memory, which is banked. The default number of banks is 8 and each bank is 512KB

(meaning that the total on-chip memory space is 4MB). The architecture has separate L1 instruction and data

caches for each and every processor. The default simulation parameters used in most of our experiments are

given in Table 6.1.

Table 6.2 present the important characteristics of the benchmarks used for evaluating our bank aware

dynamic loop scheduling scheme. The third column of this table gives amount of data manipulated by each

benchmark, and the fourth column shows the execution cycles taken by a pure static scheduling scheme (as

explained above). The last column of the table gives the energy consumption in the memory system, again

under the static loop scheduling scheme. The performance and energy numbers presented in the rest of this

section are given as values, normalized with respect to the last two columns of this table.

Figure 6.5 presents the execution cycle results. One can easily see that the dynamic scheduling scheme

(second bar) generates savings (over the static scheme) in three applications, namely demosaic, poly 1.1,

and cbd. These are exactly the benchmarks with large workload variations across processors when the static

workload assignment is employed. In the other three benchmarks, however, the dynamic scheme generates

poor results. Overall, as compared to the static scheme, the dynamic scheme ends up with 3.7% performance

degradation when averaged over all six benchmark codes. The behavior exhibited by the tapering scheme
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Figure 6.6: Energy consumptions normalized with respect to the static scheduling scheme.

Figure 6.7: Average energy-delay products normalized with respect to the static scheduling
scheme.
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(third bar) is similar to that of the dynamic scheme, with an average performance degradation of about 2%

over the static scheme. In comparison, locality aware-static scheme (fourth bar) performs better, bringing

reasonable improvements in two benchmarks (baleen and zonography). The locality aware-dynamic scheme

(fifth bar) is much more successful since it is able to both take advantage of data reuse and exploit load

imbalances. The locality aware static and dynamic schemes bring average performance improvements of

1.2% and 9.2%, respectively, over the static loop scheduling scheme. Lastly, our bank-aware loop scheduling

scheme (last bar) achieves 6.5% improvement over the static scheme. Although it is not as good as the

locality aware-dynamic scheme (as the latter is pure performance oriented), it is not too far from it either.

This is because of the fact that, most of the time, minimizing the number of accesses to a small set of banks

(which is the main goal of our approach) also leads to good data cache behavior, as it tends to improve data

reuse within a given time period.

The normalized energy consumption results are presented in Figure 6.6. The energy consumptions for

on-chip memory components (L1 cache and on-chip memory) are calculated with the help of the CACTI

toolset [107]. The energy consumption of the remaining components on the other hand are obtained using

activity based energy models similar to those used in Wattch [15]. Maybe the most important observation

one can make from the results in Figure 6.6 (which include energy consumption of both memory and non-

memory components) is that the bank aware scheme performs much better than the remaining schemes,

bringing an average energy saving of 16.4% over the static loop scheduling scheme. In fact, it reduces energy

in all six benchmark codes. In comparison, the remaining scheduling schemes do not repeat the savings they

achieve in execution cycles. For example, the dynamic, tapering, locality aware-static, and locality aware-

dynamic scheduling schemes increase the energy consumption of the static scheduling scheme by 11.6%,

11.1%, 1,1%, and 3.4%, respectively, on average.

Since any loop scheduling scheme affects both execution cycle count and energy consumption, it is also

important to quantify the energy-delay product values. Figure 6.7 gives the energy-delay products when

averaged over all six application codes. Each bar in this figure is normalized with respect to the average

energy-delay product of the static loop scheduling scheme. Since the bank aware scheduling approach im-

proves both performance and energy consumption, it exhibits the best energy-delay product. We also see that,

as well as energy-delay product is concerned, the locality aware-dynamic scheme is the only scheme (other

than our bank aware approach) that brings some reasonable improvement.

Figure 6.8 presents the average performance and energy values with the different processor counts (4,

8, 12, and 16). Remember that our default processor count was 8. We see that, as we increase the number

of processors, the differences among the different scheduling schemes get magnified (this is true for both

performance and energy). The main reason for this is the fact that an increase in the processor count usually
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leads to spread the bank accesses more in the memory space (i.e., more irregularity in the bank accesses).

Considering the possibility that future chip multiprocessors will accommodate large number of CPUs, we

believe that these results are encouraging. Figure 6.9 gives the energy results with different number of

banks, keeping the total memory space at 4MB. All other parameters are set to their default values shown in

Table 6.1. We see that the behavior of the locality aware scheduling schemes improve with smaller number

of banks. This is because as the number of banks gets smaller, optimizing for cache locality generates similar

results to those obtained by optimizing bank locality. However, when the number of banks is increased, these

two locality concepts start to behave differently, and as a consequence, our bank aware scheduling scheme

generates much better results than the others.

We next study an alternate bank aware scheduling scheme, which is a static version of the dynamic

scheme discussed here. The only difference between this scheme and our dynamic scheme is how the ∇c

bitmap is obtained. In our dynamic scheme, it is obtained at run-time, while in this alternate bank aware

scheme, it is computed at compile time. As discussed earlier in Section 6.3, the compile time computation

of ∇c can be overly pessimistic. The energy results captured by the first two bars (for each benchmark) in

Figure 6.10 corroborate this expectation. We see that the average energy improvements by the dynamic

and static scheduling schemes are 16.4% and 10.4%, respectively (the results for the dynamic scheduling

scheme are reproduced from Figure 6.6). These results underline the importance of dynamically obtaining

the∇c bitmap. To better understand the difference between the statically computed and dynamically obtained

bitmaps, we also recorded during the experiments, the causes for misprediction (of the ∇c bitmap) with the

static scheme. The results are presented in Figure 6.11. As discussed earlier, cache behavior and dynamic

control flow are two important reasons for the conservative estimation of the bitmap, also corroborated by the

results in this graph. The third portion of each bar in this graph represents the mispredictions whose cause

we could not identify.

Recall that in our current implementation we make two attempts to select the set of iterations that satisfy

the requirement that no new banks are activated by the newly-assigned workload. In the first attempt, we try

to find a bin q where µ(q) = ∇c has at least K iterations. If this fails, in the second attempt, we try to find a

set of bins q1 and q2 such that µ(q1)∨ µ(q2) ◃∇c and can collectively provide the K −M iterations, where

M is the number of iterations provided by bin q. If this try also fails, then we select the remaining iterations

required randomly. However, it is clear that, further improvements to this implementation are possible by

increasing the number of attempts. In the general case, when the first attempt fails, we can search for a set

of bins q1, q2, . . . , qr such that µ(q1) ∨ µ(q2) ∨ · · · ∨ µ(qr) ◃∇c and these bins can collectively provide the

required number of iterations. Note that in general there are many ways of selecting these bins. The last

two bars for each benchmark in Figure 6.10 represent the energy consumption values with two enhanced



86

Figure 6.8: Average energy consumption and execution cycle results with different proces-
sor counts.

Figure 6.9: Average energy and execution cycle results with different bank counts. In each
experiment, the total memory capacity is the same.
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Figure 6.10: Energy comparison of different schemes.

Figure 6.11: Breakdown of causes for mispredictions of the ∇c bitmap when the static
bank aware scheme is used.
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implementations of our bank aware dynamic loop scheduling scheme. The bar marked using ”+1” tries one

more alternative over our second attempt in the default implementation, whereas the bar marked using ”+n”

tries all possible alternatives. We see that the average energy savings brought by the ”+1” scheme and ”+n”

scheme are 19.1% and 21.9%, respectively. Considering these values with our default value (16.4%), we can

conclude that our default implementation is not far from them, as far as energy consumption is concerned. In

addition, although not presented here in detail, the ”+n” scheme increased the execution cycles by nearly 6%

over our default implementation, making the latter even more promising option, when energy consumption

and execution cycles are considered together.

6.5 Conclusion

In this chapter, we presented a memory bank-aware dynamic loop scheduling scheme. Our approach selects

the set of iterations to assign to a requesting processor such that the currently active banks are reused if

possible (without activating a new bank). We tested this approach and collected both performance and energy

numbers using a SIMICS based simulation platform. In our evaluation, we also compared it to a number of

previously published loop scheduling schemes, including the pure static and dynamic schemes, variants of

dynamic scheme, as well as two locality oriented loop scheduling approaches. Our experimental results with

six embedded applications clearly show that the proposed scheduling scheme not only reduces the energy

consumption significantly, but it also leads to much better energy savings when compared to these prior

techniques and it is competitive with the loop scheduler that generates the best performance.

Until now we have focused on CMP systems with different memory structures, including cache, SPM

and on-chip banked memory. Although the memory subsystems were different, these systems were similar in

that, they had a bus for communication. In the next chapter, we will focus on 2-D mesh based CMP systems,

which use a grid-based Network-on-Chip architecture.
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Chapter 7

Integrated Code and Data Placement

in 2-D Mesh Based CMPs

7.1 Introduction

In this chapter, we present a static code and data placement scheme. We target two-dimensional mesh based

chip multi-processor (CMP) architectures. Each node of this CMP contains a processor core, an on-chip

memory component, and a network interface which connects the node to its neighbors. We assume that the

compiler/programmer manages the on-chip memory space and thread-to-core assignments. In this architec-

ture, cost of a data access depends on the distance between the requesting core and requested data.

As CPU design has become severely power limited, it is now commonly accepted that staying on the

current performance trajectory will come about through the integration of multiple processors on a chip

rather than through increases in the clock rate of single processors. Once the number of CPUs on one chip

passes some threshold (∼8 CPUs), these future chip multiprocessors (CMPs) will require an on-chip network

(an NoC, Network-on-Chip) in order to be able to handle the required communications between the CPUs

in a scalable, flexible, programmable, and reliable fashion. With this network-on-chip-based CMP (NoC-

based CMP) as the computing platform, a very rich set of research challenges arise. Circuit and architectural

challenges such as router design, IP placement, and sensor placement are currently being studied in the

context of CMPs in both industry and academia, as is evident from recent publications [78, 43, 47]. In

comparison, the work on programming and compiling for these architectures has received considerably less

attention. Unfortunately, unless critical software issues such as programming language support, application

mapping, data placement, and compiler support are adequately addressed, CMPs may not be able to deliver
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promised performance levels.

Motivated by this observation, we propose a compiler directed code and data placement scheme for

two-dimensional mesh based CMP architectures. The proposed approach uses a Code-Data Affinity Graph

(CDAG) to represent the relationship between loop iterations and array data and then assigns the loop iter-

ations to processing cores and sets of data blocks to on-chip memories. During the mapping process, the

on-chip memory capacity and load imbalance across different cores as well as the topology of the NoC are

also taken into account.

We assume that code parallelization has already been applied prior to our approach, using any known

technique. In fact, the choice of the code parallelization scheme used is orthogonal to the main focus of our

approach, which performs code and data placement. Therefore, in principle, our approach can work with

any code parallelization strategy. Note that the data dependencies across loop iterations will be taken care of

during code parallelization and, consequently we assume that the iteration blocks (used in our approach) do

not have data dependencies among them.

We propose two variants of our integrated code-data mapping approach: Depth First Placement (DFP)

and Breadth First Placement (BFP).The experimental evaluation shows that our CDAG based placement

schemes are very successful in practice, achieving average performance improvements of 19.9% (DFP) and

16.8% (BFP), and average energy improvements of 29.7% (DFP) and 27.8% (BFP).

The rest of this chapter is structured as follows. The next section discusses related work. Section 7.3

explains the CDAG structure. Section 7.4 presents the details of our approach. An experimental evaluation

is given in Section 7.5. Finally, we conclude in Section 7.6 by a summary.

7.2 Related Work

Automatic computation and data decomposition using compilers has not been effective with large codes,

although there are myriad previous works attempting to achieve this [5, 91, 71, 110]. Mapping applications

for NoC based architectures using compilers has also been a hot research issue in the recent past [44].

Kuijlman et al [61] present a compiler framework that takes a program with partial work and data placement

information, and transforms it into an explicit parallel program optimized for the amount of communication.

[16] compares performance impact of alternate code and data mapping strategies on a 64 node IBM RP3, but

this technique is very architecture specific and does not extend easily to chip multiprocessors. Lowenthal and

Andrews [75] describe an adaptive system that takes an initial data placement, and changes the placement

whenever a monitor indicates that a different placement would perform better. Performance overheads of
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such monitoring as well as modifying of placement is avoided by a good compiler based approach. Moreover,

affinity between code and data has not been considered or its impact on the performance has not been studied

well in the previous works.

7.3 Code-Data Affinity Graph

Our compiler based placement scheme employs a data structure called the Code-Data Affinity Graph (CDAG).

CDAG is essentially a bipartite graph G(V1, V2, E), where V1 represents iteration blocks, V2 represents data

blocks, and E captures the access relationship between iteration and data blocks. In this context, an iteration

block is a set of consecutive loop iterations that belong to the same loop nest and a data block corresponds to

a set of consecutive elements that belong to the same array. An edge e ∈ E indicates that at least one of the

iterations in V1 accesses at least one of the data elements in V2. This is referred to as an access relationship.

Note that CDAG is built by the compiler and used for data code placement.

Clearly, an important question is how to determine the iteration and data blocks to use and how to extract

the access relationships from the application code. Our approach is flexible in the sense that it can work with

any iteration/data block size. Consider, for instance, that a given array is divided into data blocks of size

Ld and an iteration space is also divided into blocks of size Li. Note that, in general, Ld may be different

from Li. As an example, consider the following simple loop, written in a pseudo language, where two

one-dimensional arrays are accessed:

for j = 2, N-1

b[j] = a[j+1] + a[j-1] + a[j] ;

Figure 7.1(a) shows how the loop iterations (on the left) access data elements (on the right) in this loop

(we focus only on array a for illustrative purposes). In this code fragment, we can identify a block with its

first element; that is,

Bi,p = {j|max 2, p ≤ j < min{p+ Li, N − 1}}

Bd,q = {k|max 1, q ≤ k < min{p+ Ld, N}},

where Bi,p and Bd,q correspond to pth iteration block and qth data block, respectively, assuming that array

a has N elements. If the number of loop iterations is not divisible by Li or Ld, the remaining elements are

placed in a new block with fewer iterations or data elements; this would not affect the performance in any

significant way as in general Li and Ld << N .
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Figure 7.1: Pictorial representation of loop iteration elements, data elements and construc-
tion of iteration blocks, data blocks and access relationships.

In the loop shown above, each iteration j accesses three data elements of array a. Note that, the data

elements accessed by a given j can belong to the same or different data blocks. In formal terms, we can

define an access relationship ∆(Bi,p, Bd,q) between data block Bd,q and iteration block Bi,p as follows:

∆(Bi,p, Bd,q) =

{ 1, if ∃j, k,R such that j ∈ Bi,p &

k ∈ Bd,q & R ∈ R & R(j) = k

0, else.

where R refers to the set of array references in the code. Informally, ∆(Bi,p, Bd,q) takes a value of 1 if

there is an iteration in Bi,p that accesses a data element in Bd,q. It should be noted that the access rela-

tionships between iteration blocks and data blocks can be represented using a bi-partite graph. For example,

assuming Li and Ld are each set to 3, the bi-partite graph in Figure 7.1(b) represents the access relationships

implied by the code fragment above. This graph is referred to as the Code-Data Affinity Graph (CDAG), and

is the main data structure built and used by our compiler for optimizing code and data placement. For ease of

representation, we use V1 to represent the set of nodes that contain the iteration blocks, and V2 for the set of

nodes that contain the data blocks. Note that the two nodes, Bi,p and Bd,q, of a CDAG have an edge between
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Figure 7.2: Pictorial representation of loop to data mapping (a) and corresponding CDAG
for a case where two loops access three arrays (b).

them if and only if ∆(Bi,p, Bd,q) is 1. We also associate a weight, ωi,d with each edge ei,d (from iteration

block represented by vi ∈ V1 to data block represented by vd ∈ V2) of a CDAG, and this weight captures the

total number of elements from V2 accessed by the iterations in V1.

An important point about CDAG is that it can take a different shape when the value of Li and/or Ld is

changed. For example, Figure 7.1(c) shows another CDAG for the same code fragment above, this time with

Li and Ld values of 6 and 3, respectively. We renumber all loop iterations and data blocks in the application

code such that the only ids that we use during the optimization (placement) process are Bi,p and Bd,q. Figure

7.2(a) shows loop-iterations-to-data mapping and Figure 7.2 (b) gives the CDAG that corresponds to the

code fragment below where two separate loops manipulate five different data arrays (again, for illustration,

we focus only on arrays a, b, and c).

Loop1: for j = 1, N-1

d[j] = a[j+1] + a[j+1] + a[j] ;

Loop2: for i = 2, N-1

e[i] = a[i-1] + b[i] * c[i+1] ;

One can potentially build a CDAG for the entire application program or divide a program into disjoint

code regions such that no two code regions share any data block between them and build a separate CDAG
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for each such region to optimize code/data placement independently. This is the approach taken in our current

implementation.

7.4 Our Approach

Our code and data placement algorithms for CMP architecture use CDAG. In our placement algorithms,

iteration blocks are units of code placement, and similarly, data blocks are units of data placement. Integrated

code-data placement decides the iterations blocks that will be mapped to CPUs for execution and data blocks

that will be stored in the on-chip memories attached to the CPUs. In this section, we describe two algorithms

for this integrated placement problem.

7.4.1 Depth First Placement

Our first algorithm, called the depth-first placement (DFP) algorithm, performs code and data placement for

each core in turn. The DFP algorithm starts with a node which can be an iteration block node (that belongs

to V1) or data block node (that belongs to V2). Without loss of generality, let us assume that it is an iteration

block node (vx ∈ V1). In the next step, we select a node vy ∈ V2 such that ωx,y ≥ ωx,z for any vz ∈ V2

that is connected to vx. In other words, we proceed from the iteration block node to a data block node whose

associated edge has the highest weight among all alternatives. In the next step, we move from vy to vn ∈ V1

such that ωn,y ≥ ωm,y for any vm ∈ V1 that is connected to vy . That is, we proceed from the data block node

to an iteration block node whose associated edge has the highest weight among all alternatives. This ping-

pong style movements between V1 and V2 continue in this fashion. Each time we move to an iteration block

node vi, we add its size |vi| to C, and similarly, each time we move to a data block node vj , we add its size

|vj | to C ′ (both C and C ′ are initialized to 0). This process continues until either C ≥ Cideal, where Cideal

represents the maximum allowable load on the core or C ′ ≥ C ′
ideal, where C ′ ideal represents the on-chip

memory capacity for a node. Once either of these is reached, the data blocks visited so far are assigned to be

stored in a core’s memory and the iteration blocks visited so far are assigned to the same core for execution.

The important point to note here is that the loop iterations and data elements assigned to a core using this

approach exhibit a certain degree of affinity, i.e., the iterations mostly use the data elements assigned to the

memory attached to the same core.

After the code and data placements for the first core are complete, we move to a neighboring core and

carry out its code and data assignment. However, in doing so, our approach takes into account both the

topology of NoC in question and the code-data placements that have already been performed up to this point.
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Algorithm 7 Depth First Placement Algorithm
Input: A mesh based CMP, a weighted bipartite graph G = (V,E) and a vertex vi ∈ V ,
where V = {V1 (iteration blocks)

∪
V2 (data blocks) }.

Output: Placement of code and data on appropriate cores and local memories.
Vc = V ′

c = ϕ; C = C ′ = 0;
Select a free core, Cf , that is a neighbor of already processed cores (if any).
Create a Stack, S and Push(S, vx)
while C ≤ Cideal && C ′ ≤ C ′

ideal && not(S.empty()) do
vx = Pop highest priority(S), Mark vx as ”placed”
if vx ∈ V1 thenVc = Vc

∪
{vx};C = C + |vx|;

elseV ′
c = V ′c

∪
{vx};C ′ = C ′ + |vx|;

end if
for all vy, such that (vx, vy) ∈ E selected in reverse order of priority do

if vy is ”non− placed” then
Push(S, vy)

end if
end for

end while
Place Vc on processor Cf and V ′

c in memory of Cf

Select a ”non − placed” node vi such that, ∀vp, such that vp is marked ”placed” and
(vi, vp) ∈ E and ∃vp marked ”placed”, ωp,i is the maximum
if such a node is found then

goto 1.
elseTerminate.
end if

More specifically, we always select the core to process next from among the ones that are neighbors to already

processed cores, and the CDAG node to start (for the new core) is selected such that it is a neighbor of one of

the traversed nodes (during processing the previous core) and the edge that connects it to the already traversed

nodes has the highest weight among all alternatives. This ensures that we start our graph traversal for the

second core with either (1) a data block node that is frequently accessed by an iteration block node already

assigned to a neighboring node, or (2) an iteration block node that frequently accesses a data block node

already assigned to a neighboring node. Then, we traverse the bi-partite graph for this second core using a

similar ping-pong like strategy explained above. A sketch of our DFP algorithm is given in Algorithm 7.

7.4.2 Breadth First Placement

Like the DFP algorithm, our second algorithm, called the breadth-first placement (BFP) algorithm, also

performs code and data placement for each core in turn. However, it traverses the bi-partite graph in a
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breadth-first fashion. It starts with a node which can be an iteration block node (that belongs to V1) or data

block node (which belongs to V2). Let us assume, that it is an iteration block node (vx ∈ V1). In the next

step, we select a set of nodes ν ⊆ V2 such that, for all vy ∈ ν, (x, y) is an edge in the CDAG. That is, we

proceed from the iteration block to all the data blocks that are connected to that iteration block. In the next

step, we start with ν and include all iteration block nodes that are connected to the data block nodes in ν.

In the next step, we consider all the data block nodes that can be reached from I, the set of iteration block

nodes. This process continues until we exceed the thresholds of Cideal or C ′
ideal. If this happens, instead of

including all the nodes, we include only a subset of them (to maximize locality, we select the ones with the

largest weights). Once we are done with the placements for the first core, we move to a neighboring core and

repeat the procedure explained above. Algorithm 8 presents a sketch of the BFP algorithm.

Algorithm 8 Breadth First Placement Algorithm
Input: A mesh based CMP, a weighted bipartite graph G = (V,E) and a vertex vi ∈ V ,
where V = {V1 (iteration blocks)

∪
V2 (data blocks) }.

Output: Placement of code and data on appropriate cores and local memories.
Vc = V ′

c = ϕ; C = C ′ = 0;
Select a free core, Cf , that is a neighbor of already processed cores (if any).
Create a Priority Queue, Q and Enqueue(Q, vx)
while C ≤ Cideal && C ′ ≤ C ′

ideal && not(Q.empty()) do
vx = Dequeue(Q), Mark vx as ”placed”
if vx ∈ V1 thenVc = Vc

∪
{vx};C = C + |vx|;

elseV ′
c = V ′c

∪
{vx};C ′ = C ′ + |vx|;

end if
for all vy, such that (vx, vy) ∈ E do

if vy is ”non− placed” then
Enqueue(Q, vy)

end if
end for

end while
Place Vc on processor Cf and V ′

c in memory of Cf

Select a ”non − placed” node vi such that, ∀vp, such that vp is marked ”placed” and
(vi, vp) ∈ E and ∃vp marked ”placed”, ωp,i is the maximum
if such a node is found then

goto 1.
elseTerminate.
end if
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Figure 7.3: (a) Illustration of a simple CDAG. (b) Partitions corresponding to DFP. (c)
Partitions corresponding to BFP. The target system consists of two processors, Cideal = 75
and C ′

ideal = 60.

7.4.3 Example

To better illustrate the difference between the DFP and BFP algorithms, we now go over a simple example.

Figure 7.3 (a), depicts a simple CDAG with associated weights and sizes. Sizes of nodes are different in this

example to illustrate the most general case. Our DFP scheme is depicted in Figure 7.3 (b). The algorithm

starts from node I-1. The edge with the highest weight from I-1 is the edge to D-1 which is taken. Similarly,

at every further node, the edge incident on the target node with the highest weight and is yet to be taken is

selected (D-1 to I-2) . At each step, based on whether the node represents an iteration block or data block,

corresponding sizes are accumulated in C and C ′. In our example, when the edge I-5 to D-5 is taken, C ′

accumulates a total of 65 (data block sizes of 35, 20 and 10), which is greater than C ′
ideal. This indicates

the end of accumulation of affine code and data for one core. In order to move to the next core, we select a

neighboring core to an already processed core. In this simple example, it happens to be the second core. The

node from which the new traversal starts is determined as the node connected with the edge with the highest

weight from any node that is already processed. In our example, it is the node connected with the highest

weight to any node in the partition {I-1, I-2, I-5, D- 1, D-4, D-5}. I-4 is connected to D-5 with a weight of

4 which is the highest. Therefore, we start our next traversal from I-4 and accumulate the rest of the nodes

to be placed in the second processor. Note that, in DFP, every partition is formed by alternating between an

iteration block and a data block if a partition is completely selected without retracing any path. Therefore, in
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Architecture 5 × 5 2D mesh
Core two-issue

Data/Instr L1 Capacity 8KB (per node)
Local On-Chip Memory 512KB (per node)

Link Speed 1GHz
Link Activation Latency 1 µsec
Link Activation Energy 140 µjoule

Packet Header Size 3 flits
(Li, Ld) (20, 20)

Table 7.1: Default values of our simulation parameters

a given partition, the number of iteration blocks could differ from the number of data blocks by any degree

in general but only one in case the entire partition is selected over a single trace.

On the other hand, the operation of our BFP scheme is depicted in Figure 7.3 (c). In this scheme, all the

nodes connected to the node being processed are traversed first. In our example, starting from I-1, all nodes

connected to I-1, namely D-1 and D-2 are traversed in order of corresponding edge weights. Accumulation

of sizes happens as in depth first placement. The node dequeued from the priority queue is D-2. Therefore,

all nodes that are not marked and are connected to D-2 are traversed in the next phase. This continues until

D-4 is accumulated and C ′ becomes greater than C ′
ideal. Note that the partition derived here is different from

the DFP case and also, in general, that the partitions can have any number of iteration or data blocks and the

scheme does not impose any relationship between them.

Before moving to our experimental evaluation of these two algorithms and their quantitative comparison

to alternate placements, we want to emphasize that it is not clear which one of these two placement algorithms

is better than the other. Depending on the program code to be analyzed, one of them may be better than the

other. The advantage of BFP over DFP is that it covers all data blocks (resp. iteration block) accessed by

an iteration block (resp. data block) in a single shot, whereas the DFP algorithm may not be able to include

all those blocks. The drawback of BFP on the other hand is that some of such quickly-included blocks may

not be the best candidates (for the current core being processed) in the long run as the corresponding edge

weights may not be very high. In our experiments, we evaluate both these algorithms.

7.5 Experiments

In this section, we introduce our experimental setting and present the data collected from the evaluation of

our proposed placement schemes. To conduct our experiments, we implemented a flit-level network-on-chip
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simulator (built on top of Orion [115]) and connected it with SIMICS [108], a multi-processor simulator.

The network is parameterized in a similar fashion to that in [28]. The link speed is set to 1Gb/sec. Each

input port of switch has a buffer that can hold 64 flits, each of which is 128 bits wide (packet size is 16 flits).

7.5.1 Setup

We used all the benchmarks from the SPECOMP suite [8] to evaluate the proposed integrated code-data

placement schemes. For each benchmark, after fast-forwarding 1 billion instructions, we collected statistics

for the next 2 billion instructions. To compare different approaches proposed to alleviate the code-data

placement problem, we implemented several schemes in our experimental framework and quantified their

impact. The schemes tested in this work can be summarized as follows:

• Code-Only: In this scheme, the data are distributed across the on-chip memory components in a

round-robin fashion, but the code distribution is carried out taking into account the data distribution.

In other words, loop iterations are assigned to processing core to maximize data locality (for the

round-robin data distribution).

• Data-Only: This is the dual of the previous scheme. The code assignment across cores is performed

in a round-robin fashion. However, the data-to-memory assignment is done such that data locality is

maximized as much as possible based on the round-robin iteration distribution.

• DFP and BFP: These are the implementations of the integrated code-data placement algorithms de-

scribed in this chapter.

• Topology Agnostic: This is a previously proposed integrated code-data placement scheme [5]. The

fundamental difference between our scheme and this work is that the latter does not take the net-

work topology into account in performing code-data placement. However, to our knowledge, this

scheme represents the state-of-the-art in compiler-directed code and data placement in multiprocessor

machines.

Each loop in the application has been analyzed by the compiler (SUIF [4]) and transformed such that

outermost loop parallelism is obtained to the extent allowed by data dependencies, i.e., from each loop nest,

the compiler parallelizes the outermost loop that does not carry any data dependency. This strategy tends to

minimize inter-processor synchronization and helps reduce execution time. It also represents, in our opinion,

the state-of-the-art in loop-level code parallelization.

We make experiments with Code-Only and Data-Only schemes to show that, for the maximum perfor-

mance and energy benefits, code and data placement should be carried out in a synergistic fashion. Also,
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our experiments with the scheme proposed in [28] are aimed at revealing the importance of considering

the CMP topology during code-data placement. All these versions are implemented using the SUIF com-

piler framework [4]. The additional compilation time increases brought by our DFP and BFP schemes over

the Code-Only scheme were 14.7% and 12.8%, respectively, on average. The longest compilation time we

witnessed during our experiments was 1.6 minutes, which is not too high in our opinion, considering that

compilation is basically an off-line process. Also, the additional code size increases brought by DFP and

BFP (again over the Code-Only scheme) were, on average, 6.6% and 4.7%, respectively. Consequently, we

did not observe any degradation in the instruction cache performance.

Table 7.1 gives the major simulation parameters and their default values. Under these parameters,

the execution times for our applications under the Code-Only scheme varied between 55.7 seconds and 1.6

minutes, and their energy consumptions varied between 118 mJ and 809 mJ. The performance and energy

numbers presented in the remainder of this section are normalized with respect to the corresponding values

obtained under the Code-Only scheme. Unless otherwise stated, the code and data block sizes are equal to

20 (iteration and data elements).

7.5.2 Results

Our first set of results give normalized execution latencies and are presented in Figure 7.4. We first observe

that our placement schemes generate better results than the Code-Only and Data-Only schemes. In fact,

the average latency improvements the DFP algorithm brings over Code-Only and Data-Only are 19.9% and

22.0%, respectively. In galgel, the default (round robin) code distribution performs reasonably well, and

therefore, the results obtained using our algorithms and Data-Only are close to each other. Similarly, in mgrid,

our approach and Code-Only generate very similar results. Secondly, in general, for this set of applications,

DFP generates better results than BFP. The third major observation one can make from these results is that

there is more than 10% difference between the average improvement brought by DFP and that obtained using

the Topology

Agnostic scheme (19.9% versus 9.5%), emphasizing the importance of considering on-chip network

topology during code-data placement. This difference between our placement schemes and the Topology

Agnostic scheme can be explained as follows. The Topology Agnostic scheme distinguishes between only

two types of data localities: local and remote. The former of these refers to the case when a thread accesses

the data element it requires from its local on-chip memory. The latter on the other hand captures the remaining

accesses, i.e., accesses to data that do not reside on the local memory. In an NoC based platform however,

the exact location of the remote (non-local) data in the chip matters and this is where our schemes bring
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Figure 7.4: Normalized execution latencies.

Figure 7.5: Thread-to-data access distances (average values).

additional benefits over the approach in [5].

To better explain these improvements in execution latencies, we present in Figure 7.5 the average thread-

to-data access distances. What we mean by this is the number of NoC links for a thread to access a data

element (when averaged over all data accesses executed by the application). We see that the lowest distances

are achieved by our schemes (DFP and BFP). As a result, our schemes result in lower execution latencies

than the other schemes tested.

Figure 7.6 gives the performance improvements brought by the DFP scheme under different on-chip

memory sizes and core counts. Recall from Table I that the default mesh topology we use is 5 5 and the

default on-chip memory capacity attached to each node is 512KB. The results presented in Figure 7.6 show

that the effectiveness of our scheme improves with larger number of cores and smaller on-chip memory
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Figure 7.6: Normalized performance improvements under the different mesh sizes and
on-chip memory capacities.

sizes. The reason for the first one is because a larger network leads in general to worse behavior as far as

the Code-Only scheme is concerned. Since the results with our scheme are normalized with respect to those

of the Code-Only scheme, we witness an improvement with larger networks. The reason for the observed

improvement with smaller on-chip memories is that larger memories typically hide the inherent weaknesses

of simple schemes (such as Code-Only). In fact, a very large on-chip memory space may even obviate the

need for sophisticated locality optimizations. However, we want to mention that both of these observed trends

from Figure 7.6 are encouraging. It is projected that, in the long run, both the number of cores and on-chip

memory sizes in CMPs will increase. However, it is also the case that the increases in the amount of data

processed by parallel applications outpace the increase in memory capacities. Therefore, schemes such as

ours which favor smaller memory sizes (as compared to application dataset sizes) and large number of cores

will be more popular in the future.

While these performance improvements brought by our approach are good, it is also important to evaluate

the energy consumption of the different schemes. This is particularly important in battery-operated execution

environments. We assume that the communication links in the NoC can be shutdown independently, using

a time-out based mechanism as described in [109] (to be fair in our evaluation of different schemes, this

mechanism is used in all the schemes tested). We set the time-out counter threshold for the hardware-based

power reduction scheme to 1.5µsec based on some preliminary analysis. The time it takes to switch a link

from the power-down state to the active state is set as 1µsec, and the energy overhead of this switching is

assumed to be 140µJ based on the prior research. Since the network energy model employed is not a major

contribution of our work, we do not elaborate on it any further. For modeling the energy consumption of

memory components, we used CACTI [107], and for collecting energy data for core-related activities, we
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enhanced SIMICS with accurate timing models and Wattch-like energy models [15]. All the energy numbers

presented below include both dynamic energy and leakage energy consumed in computation, inter-thread

communication, on-chip and off-chip memory accesses. Also, as in the case of performance, the results we

report include all the overheads incurred by our placement schemes.

The energy consumption results for the different code-data placement schemes are presented in Figure

7.7 under the default values of the simulation parameters in Table I. As compared to the performance results

given in Figure 7.4, we see that the energy savings are higher. More specifically, the DFP scheme achieves

an average 29.8%, 28.5% and 16.8% improvement in energy consumption over the Code-Only, Data-Only

and Topology Agnostic schemes, respectively. The corresponding average energy savings obtained using the

BFP schemes are 27.7%, 26.4% and 14.3%. That is, our schemes are very effective in reducing total energy

consumption. The reason why our energy savings are higher than our performance savings can be explained

as follows. In parallel execution, some remote data accesses (within chip) can be hidden during parallel

execution (that is, although its latency is not eliminated, it is hidden in parallel execution). However, while

performance overheads can be hidden, energy overheads cannot be. As a result, our approach brings larger

energy savings compared to its performance benefits (recall that all the results in Figures 7.4 and 7.7 are

normalized with respect to the first bar (Code-Only) for each application).

Our code and data placement approach works with the given iteration block and code block sizes. Recall

that the default values used in our experiments so far was 20. We also conducted experiments with different

block sizes and the performance results are presented in Figure 7.8 (Energy results were similar and hence

not shown explicitly). In this graph, each (Li, Ld) point on the x-axis indicate the (iteration block size, code

block size) pair used. Consequently, our default operating point is (20,20). Each bar in this plot represents

the average values over all twelve benchmarks. We can make several interesting observations from these

results. First, the results with (10,10), (20,20) and (50,50) are similar to each other. By comparison, when

we move to (100,100) the savings we achieve start to get reduced, and (though not shown in this bar-chart),

the larger blocks resulted in even worse behavior (power and performance). This result motivates for using

smaller block sizes. This in our opinion makes sense because larger block sizes tend to blur the affinities

between individual iterations and data elements, and this tends to generate results which are more on the

sub-optimality side. Another interesting observation from Figure 7.8 is that (10,20) and (20,10) generate

worse results than both (10,10) and (20,20). This result says that, unless there is a reason, we should not

work with cases where the iteration block sizes and data block sizes differ.

We also made experiments to compare our performance and energy savings to the optimal savings that

can be achieved under the given code and data block sizes. To obtain the optimal savings, we used a profile

based approach. In this approach, we first profiled the application code to determine the relationship between
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Figure 7.7: Normalized energy consumption values.

Figure 7.8: Sensitivity to the iteration block and data block sizes.

Figure 7.9: Comparison of the DFP scheme with the optimal code-data placement.
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code and data blocks, and then formulated an ILP (integer linear programming) based solution, which gives

the code and data placements for all cores. The results are shown in Figure 7.9 for both performance and

energy. An interesting observation is that in four applications (apsi, art, galgel, and swim), DFP and the

optimal placement scheme produced the same result, and in facerec, the difference between the two schemes

was very low. When all twelve applications are considered, we see that the optimal placement is 4.8% better

than our scheme from a performance viewpoint and 6.3% from an energy viewpoint. Therefore, we can

conclude that our approach in general comes very close to the optimal code-data placement. Also, we want

to mention that an ILP based solution may not be feasible in general due to the large number of variables

and constraints involved in the code-data placement problem. In fact, we observed during the experiments

that in some cases the solution time taken by the linear solver was as high as 18 hours on a 2 GHz machine.

Therefore, when both solution time and solution quality are considered together, we believe that our approach

strikes a good balance.

7.6 Conclusion

We present an integrated code and data placement scheme targeting two-dimensional mesh based CMPs. The

proposed approach uses a novel (compiler based) data structure called the Code-Data Affinity Graph (CDAG)

to represent the relationship between loop iterations and array data and then places the sets of iteration blocks

to processing cores and sets of data blocks to on-chip memories. We evaluated two different variants of this

approach and compared them against three alternate code and data mapping schemes. The results indicate

that our CDAG based placement schemes achieve average performance improvements of 19.9% (DFP) and

16.8% (BFP), and average energy improvements of 29.7% (DFP) and 27.8% (BFP).
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

We used different algorithms to optimize performance, memory usage and energy consumption on different

embedded system architectures utilizing data compression, data placement, code placement, code scheduling

and SPM management approaches.

In Chapter 2, we discussed a compiler-based strategy that uses compressed arrays for saving memory.

We saw in our experiments that it improved performance and reduced memory usage, and it increased the

executable size due to code restructuring to work with compressed arrays. Though it requires a particular

type of data locality to be effective, it provides impressive results with suitable applications.

In Chapter 3, we discussed a compiler-based code scheduling scheme for shared cache CMP systems,

which considers both parallelism and data locality at the same time. Our experimental results indicated that

our approach provides significant performance improvement, and gets very close to the performance of the

ILP solution.

In Chapter 4 we discussed an SPM-aware static loop scheduling strategy for CMP systems with a shared

SPM. Our experimental results indicate that the proposed approach brings a performance improvement over

previous strategies.

In Chapter 5 we discussed an SPM management approach using Markov chain based data access predic-

tion for irregular accesses that have hidden data reuse. Our experimental results indicate that our approach

brings a significant performance improvement in a set of applications with both regular and irregular access

patterns.

In Chapter 6 we discussed a memory bank aware dynamic loop scheduling scheme that minimizes mem-
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ory energy consumption in CMP systems with banked memory. This leads to reduction of overall energy

consumption, and this is important, especially in battery-operated embedded systems. Our experimental re-

sults show that the proposed scheme leads to much better energy results when compared to prior techniques

and is also competitive in performance.

In Chapter 7 we discussed a compiler directed integrated code and data placement scheme for 2-D mesh

based CMP architectures. Our approach assigns sets of loop iterations to processors and sets of data blocks

to on-chip memories, taking into account the on-chip memory capacity and load imbalance, as well as the

topology of the NoC. Our experimental results show that our CDAG based placement scheme brings im-

provements in both performance and energy consumption.

8.2 Future Work

There are two interesting avenues for future work. The first is to derive new methods by combining the

discussed approaches wherever possible. We will discuss a possible application in section 8.3. The second is

to try to apply our approaches in a different target platform, where the system shows similar characteristics

to those discussed. We will discuss this in section 8.4.

8.3 Data Locality and SPMs

Our work mainly consists of data placement and code scheduling in multiprocessor systems. In chapter 3

we discussed a data locality based code scheduling method that makes no assumptions about the memory

hardware. In chapters 4 and 5, we discussed SPM related approaches.

A combination of these approaches would be to transform the code scheduling algorithms of chapter 3

in such a way that they will work in an SPM-conscious manner; meaning, the approach will be aware of the

embedded system’s underlying memory hierarchy, and try to make use of this information to further speed

up memory accesses. We see two applications for this approach.

The first is to determine the best schedule, given a memory hierarchy and code to optimize. This tool

will take as input a memory hierarchy and code, and give as output a schedule and a mapping of data to the

SPMs.

Of course, it makes sense to optimize an application for a system, but there are cases where the focus

is on the software, and not the hardware. There are many situations where a system is built for a single

application. An embedded system that controls the brake system in your car, or the hardware for a handheld



108

Tetris game are not concerned with providing overall good performance for general purpose applications;

they run a single application and nothing else. The manufacturer of such a system has to make a decision on

which hardware to choose for the mission critical application.

So the second application is to determine best memory hierarchy for a given application. This tool will

take as input a code, and give as output a memory hierarchy, a schedule and a mapping of data to SPM. Of

course, the second approaches makes use of and builds on the first.

8.3.1 Example Case

Let us elaborate on the details for a system with two levels of SPM structure.

p : number of processors

q : number of SPMs

|L| : Total on-chip memory capacity

|L1| : Level 1 capacity

|L2| : Level 2 capacity

|S| : Total data size manipulated by the program.

We can assume the following:

|S| ≥ |L| = |L1|+ |L2|

|L1| = 2k1

|L2| = 2k2

There will be costs associated with access to SPMs by the processor, as well as costs associated with moving

a data block from one SPM to another. These costs are given by Tables 8.1 and 8.2. The goal would be to

move a data block b from SPMi to SPMj when it is beneficial; that is, if

C1 = the access cost to SPMi by the processors that use b

C2 = the access cost to SPMj by the processors that use b

C3 = the cost of moving b from SPMi to SPMj

then C1 > C2 + C3 is our criteria for moving b from SPMi to SPMj .

For execution step si:
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Table 8.1: Access Cost Matrix

SPM1 SPM2 ... SPMq

CPU1 ac1,1 ac1,2 ... ac1,q
CPU2 ac2,1 ac2,2 ... ac2,q
CPU3 a a a a
... ...
CPUp acp,1 acp,2 ... acp,q

Table 8.2: Move Cost Matrix

SPM1 SPM2 ... SPMq

SPM1 0 mc1,2 ... mc1,q
SPM2 mc2,1 0 ... mc2,q
SPM3 mc3,1 mc3,2 ... mc3,q
... ...
SPMq mcq,1 mcq,2 ... 0

If the access cost associated with CPUj at si is Cost(i, j), then the total access cost for si is
p

max
j=1

Cost(i,j),

since the accesses are in parallel.

Therefore, the cost function that has to be minimized is
#steps∑
i=1

p
max
j=1

Cost(i,j).

8.4 General Purpose Computing on Graphics Pro-

cessing Units

Another avenue for continuation of our work would be exploring the applicability of some of the approaches

in other scenarios, such as General Purpose Computing on Graphics Processing Units (GPGPU).

Although state of the art GPUs are not available on embedded systems, the GPU subsystem itself has

some similar characteristics to an embedded system, which makes the application of the discussed data

placement approaches for GPU memory access optimization as a possible next project.

Due to developments in video and gaming technologies, the demand for graphics processing power is

always increasing. The GPU manufacturers’ response to that is continuously packing more processing power

in their GPUs to be able to keep up with this demand.

As a result, most state of the art Graphics Processing Units (GPUs) have lots of processing power. Most

people don’t use graphics intensive applications, or do so at a fraction of the time. As a result, there is a lot

of idle processing capacity in many desktop computers in the form of GPUs. General Purpose Computing on
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Graphics Processing Units (GPGPU) is the concept of using the GPU processing power for general purpose

computing.

Modern GPUs have multicore architectures that have hundreds of processors and their memory architec-

tures have multiple levels that feature SPMs and constant (read-only) memory as well as RAM. So the general

ideas and approaches discussed for embedded systems are applicable for GPUs, with some restrictions.

Open Computing Language (OpenCL) standard for GPGPU programming was recently released. OpenCL

is not limited to GPGPU computing, but is an open standard for parallel programming of heterogeneous sys-

tems. All major GPU manufacturers support OpenCL, and some also have proprietary GPGPU software

models, which only work with their products. In spite of its increasing popularity, software support for

GPGPU is still in its infancy.

In all GPGPU programming models, a basic unit of code that runs on a GPU core is called a kernel. A

kernel is executed on multiple cores simultaneously. The code for all instances is identical, but each instance

is uniquely identified by its index.

As a result, to run a piece of code on GPUs, it has to be translated to a format suitable for GPU execution

first. This task is currently not automated, so it is an error prone, manual task for the programmer.

GPGPU memory models provide access to memory at different levels, such as core-specific, core-group-

specific, system-wide and constant memory, with varying access times. Therefore, because of this multi-level

memory access model, a given piece of GPGPU code can be optimized for memory access by using data

placement techniques.
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