
Clemson University
TigerPrints

All Dissertations Dissertations

12-2011

PERFORMANCE ANALYSIS AND FITNESS
OF GPGPU AND MULTICORE
ARCHITECTURES FOR SCIENTIFIC
APPLICATIONS
Mohammad Bhuiyan
Clemson University, mbhuiya@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Bhuiyan, Mohammad, "PERFORMANCE ANALYSIS AND FITNESS OF GPGPU AND MULTICORE ARCHITECTURES FOR
SCIENTIFIC APPLICATIONS" (2011). All Dissertations. 827.
https://tigerprints.clemson.edu/all_dissertations/827

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/827?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

i

PERFORMANCE ANALYSIS AND FITNESS OF GPGPU AND MULTICORE

ARCHITECTURES FOR SCIENTIFIC APPLICATIONS

A Dissertation

Presented to

the Graduate School of

 Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Engineering

by

Mohammad Ashraf Uddin Bhuiyan

December 2011

Accepted by:

Dr. Melissa C. Smith, Committee Chair

Dr. Walter B. Ligon, III

Dr. Haying (Helen) Shen

Dr. Jan Medlock

Dr. James von Oehsen

 ii

ABSTRACT

Recent trends in computing architecture development have focused on exploiting

task- and data-level parallelism from applications. Major hardware vendors are

experimenting with novel parallel architectures, such as the Many Integrated Core (MIC)

from Intel that integrates 50 or more x86 processors on a single chip, the Accelerated

Processing Unit from AMD that integrates a multicore x86 processor with a graphical

processing unit (GPU), and many other initiatives from other hardware vendors that are

underway.

Therefore, various types of architectures are available to developers for

accelerating an application. A performance model that predicts the suitability of the

architecture for accelerating an application would be very helpful prior to

implementation. Thus, in this research, a Fitness model that ranks the potential

performance of accelerators for an application is proposed. Then the Fitness model is

extended using statistical multiple regression to model both the runtime performance of

accelerators and the impact of programming models on accelerator performance with

high degree of accuracy. We have validated both performance models for all the case

studies. The error rate of these models, calculated using the experimental performance

data, is tolerable in the high-performance computing field.

In this research, to develop and validate the two performance models we have also

analyzed the performance of several multicore CPUs and GPGPU architectures and the

corresponding programming models using multiple case studies. The first case study used

 iii

in this research is a matrix-matrix multiplication algorithm. By varying the size of the

matrix from a small size to a very large size, the performance of the multicore and

GPGPU architectures are studied. The second case study used in this research is a

biological spiking neural network (SNN), implemented with four neuron models that

have varying requirements for communication and computation making them useful for

performance analysis of the hardware platforms. We report and analyze the performance

variation of the four popular accelerators (Intel Xeon, AMD Opteron, Nvidia Fermi, and

IBM PS3) and four advanced CPU architectures (Intel 32 core, AMD 32 core, IBM 16

core, and SUN 32 core) with problem size (matrix and network size) scaling, available

optimization techniques and execution configuration. This thorough analysis provides

insight regarding how the performance of an accelerator is affected by problem size,

optimization techniques, and accelerator configuration.

We have analyzed the performance impact of four popular multicore parallel

programming models, POSIX-threading, Open Multi-Processing (OpenMP), Open

Computing Language (OpenCL), and Concurrency Runtime on an Intel i7 multicore

architecture; and, two GPGPU programming models, Compute Unified Device

Architecture (CUDA) and OpenCL, on a NVIDIA GPGPU. With the broad study

conducted using a wide range of application complexity, multiple optimizations, and

varying problem size, it was found that according to their achievable performance, the

programming models for the x86 processor cannot be ranked across all applications,

whereas the programming models for GPGPU can be ranked conclusively. We also have

 iv

qualitatively and quantitatively ranked all the six programming models in terms of their

perceived programming effort.

The results and analysis in this research indicate and are supported by the

proposed performance models that for a given hardware system, the best performance for

an application is obtained with a proper match of programming model and architecture.

 v

DEDICATION

This dissertation is dedicated to my wife, Selina, for her support and

understanding in the course of my doctoral research, and my son, Ian, for the peace and

joy in my life.

 vi

ACKNOWLEDGMENTS

I would like to acknowledge my advisor, Melissa C. Smith, for her focused

guidance toward the goals of this research. Without her inspiration and guidance I could

not complete this dissertation. I would also like to thank to other members of my

committee, Walter B. Ligon III, Haying (Helen) Shen, Jan Medlock, and James von

Oehsen, who played very important roles for completing my thesis. Their comments and

suggestions certainly improved my research. I would also like to thank my colleagues in

our research group, specially, Vivek Pallipuram and Scott Gibson for their constructive

suggestions towards my research goal. I would also like to thank Arctic Region

Supercomputing Center (ARSC), Nvidia, and Cyberinfrastructure Technology Integration

(CITI) group of Clemson University for their help in use of the computing nodes. Finally,

this research was supported in part by the National Science Foundation (NSF) under

grant No. CCF-0916387.

 vii

TABLE OF CONTENTS

 Page

Title Page ..………………………………………………………………….................. i

Abstract …………………………………………………………………...................... ii

Dedication ………………………………………………………………….................... v

Acknowledgement ……………………………………………………………............... vi

List of Tables …………………………………………………………………............... ix

List of Figures ………………………………………………………………….............. xi

1 Introduction …………………………………………………………………........... 1

 1.1 Application Accelerators ………………………………………………………. 3

 1.2 Programming models ………………………………………………………….. 5

 1.3 Motivation and Organization………………………………………………….. 6

 1.4 Method of Study ………………………………………………………………. 11

 1.5 Dissertation Organization ……………………………………………………… 11

2 Background And Related Work…………………………………………………… 13

 2.1 Performance Study of Multicore ………………………………………………. 13

 2.2 Performance Study of GPGPU ………………………………………………… 14

 2.3 Programming Models …………………………………………………………. 15

 2.4 Performance Models …………………………………………………………… 20

 2.5 Case Studies …………………………………………………………………… 22

 2.6 Use of Roofline Model as a Visual Performance Model ……………………… 23

 2.7 Conclusions ……………………………………………………………………. 25

3 Case Studies ………………………………………………………………………… 26

 3.1 Matrix-matrix Multiplications …………………………………………………. 26

 3.2 Spiking Neural Networks………………………………………………………. 27

 3.3 Two-Level Network …………………………………………………………… 30

 3.4 Summary……………………………………………………………………….. 32

4 Experimental Systems and Implementations …………………………………….. 33

 4.1 Accelerators ……………………………………………………………………. 33

 4.2 Programming models ………………………………………………………….. 37

 4.3 Matrix-matrix Multiplication: Implementation ………………………………... 41

 4.4 SNN: Implementation and Optimization ……………………….……………… 41

 4.5 Summary ………………………………………………………………………. 49

5 Architecture Performance Analysis ………………………………………………. 50

 5.1 Performance Results for Matrix-matrix Multiplication ……………………….. 50

 5.2 Performance Results for SNN Models ………………………………………... 51

 5.3 Impact of Optimization Techniques ………………………….………………... 60

 5.4 Impact of Accelerator Configuration ……………..…………………………… 71

 5.5 Advanced Multicore and GPGPU performance ……… ………………………. 77

 5.6 Summary ………………………………………………………………………. 81

6 Programming Model Impact on Performance …………………………………… 82

 6.1 GPU programming models …………………………………………………….. 82

 viii

 6.2 Multicore Programming Models……………………………………………….. 88

 6.3 Qualitative Comparison Among Programming Models ……………………….. 105

 6.4 Summary ………………………………………………………………………. 111

7 Performance Models ……………………………………………………………….. 113

 7.1 Performance Prediction With Roofline Model ………………………………… 114

 7.2 Fitness Performance Model ……………………………………………………. 116

 7.3 Prediction Rank of Architectures With the Fitness Model …………………...... 119

 7.4 Extension of Fitness Model: Multiple Regression Model ……………………... 125

 7.5 Summary ………………………………………………………………………. 138

8 Performance Model Validation …………………………………………………….

 8.1 Fitness Model Validation………………………………………………………. 140

 8.2 Regression Model Validation ………………………………………………….. 146

 8.3 Performance Explanation With Fitness And Roofline Model …………………. 151

 8.4 Summary ………………………………………………………………………. 154

9 Conclusions And Future Work ……………………………………………………. 157

 9.1 Summary of Experimental results And Findings ……………………………… 157

 9.2 Contributions …………………………………………………………………... 160

 9.3 Future Work …………………………………………………………………… 162

Reference ……………………………………………………………………………….. 165

APPENDIX …………………………………………………………………………….. 173

APPENDIX A …………………………………………………………………………... 174

APPENDIX B …………………………………………………………………………... 188

APPENDIX C …………………………………………………………………………... 192

 ix

LIST OF TABLES

Table Page

3.1 Floating-point operations and number of bytes required for matrix operations ….. 27

3.2 SNN model parameters …………………………………………………………… 29

3.3 SNN configurations for different image sizes …………………………………….. 32

5.1 Flops and data transfer for neuron dynamics updates …………………………….. 53

5.2 Performance summary of CUDA on the Fermi GPGPU …………………………. 67

6.1 Performance summary of p-threading on the Intel i7 processor ………………….. 93

6.2 Performance summary of OpenMP for the four neuron models on an Intel i7

processor …………………………………………………………………………..

97

6.3 Performance summary of Concurrency Runtime for the four neuron models on an

Intel i7 processor …………………………………………………………………..

102

6.4 Prominent features of programming models ……………………………………… 107

6.5 Comparing programming effort in terms of additional lines of code required for

the five programming models ……………………………………………………..

109

6.6 Comparing programming effort in terms of the increase of complexity of the

programming models on Intel i7 and Nvidia GPU ………………………………..

109

6.7 Comparing application performance for the four programming models on Intel i7

and Nvidia …………………………………………………………………………

110

7.1 Selected matrix sizes and corresponding characteristics ………………………..… 120

7.2 Characteristics for the four accelerators …………………………………………... 120

7.3 Predicted runtime (in second) of the accelerator based on Table 7.2 …………….. 121

7.4 Fitness Model Predicted rank of the accelerator based on Table 7.3 …………….. 121

7.5 Application vector components of the four SNN models with a network size of

9216 neurons ………………………………………………………………………

123

7.6 Application vector components of the four SNN models with a network size of

0.9 million ………………………………………………………………………....

123

7.7 Application vector components of the four SNN models with a network size of

5.8 million neurons ………………………………………………………………...

123

7.8 Performance rank using the Fitness model for 9216 neurons ………………….…. 124

7.9 Performance rank using the Fitness model for 0.9 million neurons ……………… 124

7.10 Performance rank using the Fitness model for 5.8 million neurons ……………… 124

8.1 Selected matrix sizes and corresponding characteristics …………………………. 141

8.2 Fitness Model predicted performance rank of the accelerator ……………………. 141

8.3 Actual runtime (in second) of the accelerators ………………………………...… 142

8.4 Actual performance rank of the accelerators …………………………………..…. 142

8.5 Actual performance rank for 9216 neurons …………………………………..…... 143

8.6 Actual performance rank for 0.9 million neurons ……………………………..….. 144

 x

8.7 Actual performance rank for 5.8 million neurons ………………………………... 145

8.8 SNN model characteristics for verification of Accelerator Regression models ….. 147

8.9 Predicted runtime from the Intel Xeon regression model ………………………… 147

8.10 Predicted runtime from the AMD Opteron regression model ……………………. 147

8.11 Verification of results for the regression model of two accelerators …………...... 148

8.12 SNN model characteristics for verification of accelerators regression model …… 148

8.13 Predicted runtime from the CUDA regression model …………………………….. 149

8.14 Predicted runtime from the Concurrency Runtime regression model ……………. 15

8.15 Verification of results for two programming models …………………………….. 149

8.16 Achieved and % of Peak Gflop/s performance for the Izhikevich and Wilson

models ……………………………………………………………………………..

150

8.17 Achieved and % of Peak Gflop/s performance for the ML and HH models ……... 151

 xi

LIST OF FIGURES

Figure Page

2.1 A general Roofline performance model ………………………………………… 25

3.1 Two-level Character Recognition Network ……………………………………... 31

4.1 Data transfer without using local memory ………………………………………. 48

4.2 Data transfer using local memory ……………………………………………….. 48

5.1 Performance of accelerators for various sizes of matrix multiplication ………… 51

5.2 Izhikevich model: Speedup performance of the four architectures over Intel

Core 2 Quad ……………………………………………………………………...

52

5.3 Wilson model: Speedup performance of the four architectures over Intel Core 2

Quad ……………………………………………………………………………...

55

5.4 Morris-Lecar model: Speedup performance of the four architectures over Intel

Core 2 Quad ……………………………………………………………………...

57

5.5 Hodgkin-Huxley model: Speedup performance of the four architectures over

Intel Core 2 Quad ………………………………………………………………..

59

5.6 Speedup vs. network size for various optimizations: Izhikevich model on Nvidia

Fermi using CUDA ………………………………………………………………

65

5.7 Speedup vs. network size for various optimizations: Wilson model on Nvidia

Fermi using CUDA ………………………………………………………………

65

5.8 Speedup vs. network size for various optimizations: Morris-Lecar model on

Nvidia Fermi using CUDA ………………………………………………………

66

5.9 Speedup vs. network size for various optimizations: HH model on Nvidia Fermi

using CUDA ……………………………………………………………………..

66

5.10 Intel Xeon speedup (8 cores) with different optimization techniques applied for

the Izhikevich and Wilson models ………………………………………………

68

5.11 Intel Xeon speedup (8 cores) with different optimization techniques applied for

the Morris Lecar and Hodgkin-Huxley models ………………………………….

68

5.12 AMD Opteron speedup (8 cores) with different optimization techniques applied

for the Izhikevich and Wilson models …………………………………………...

69

5.13 AMD Opteron speedup (8 cores) with different optimization techniques applied

for the Morris-Lecar and Hodgkin-Huxley model ……………………………….

69

5.14 PS3 speedup (6 SPUs) with different optimization techniques applied for

Izhikevich and Wilson model …………………………………………………...

70

5.15 PS3 speedup (6 SPUs) with different optimization techniques applied for

Morris-Lecar and Hodgkin-Huxley models ……………………………………...

70

5.16 Intel Xeon speedup for increasing number of cores for the Izhikevich and

Wilson models …………………………………………………………………...

74

5.17 Intel Xeon speedup for increasing number of cores for the Morris-Lecar and

 xii

Hodgkin-Huxley models ………………………………………………………… 74

5.18 AMD Opteron speedup for increasing number of cores for the Izhikevich and

Wilson models …………………………………………………………………...

74

5.19 AMD Opteron speedup for increasing number of cores for the Izhikevich and

Wilson models …………………………………………………………………...

74

5.20 PS3 speedup for increasing number of SPUs for the Izhikevich and Wilson

models ……………………………………………………………………………

76

5.21 PS3 speedup for increasing number of SPUs for the Morris-Lecar and Hodgkin-

Huxley models …………………………………………………………………...

76

5.22 Speedup of Intel 32-core with varying number of threads for all four models …. 78

5.23 Speedup of AMD 32-core with varying number of threads for all four models ... 79

5.24 Speedup of SUN 16-core with varying number of threads for all four models …. 79

5.25 Speedup of QS22 16-core with varying number of threads for all four models … 80

6.1 Speedup vs. network size for various optimizations: Izhikevich model on Nvidia

Fermi using OpenCL ……………………………………………………………

86

6.2 Speedup vs. network size for various optimizations: Wilson model on Nvidia

Fermi using OpenCL …………………………………………………………….

86

6.3 Speedup vs. network size for various optimizations: Morris-Lecar model on

Nvidia Fermi using OpenCL …………………………………………………….

87

6.4 Speedup vs. network size for various optimizations: HH model on Nvidia Fermi

using OpenCL ……………………………………………………………………

87

6.5 Speedup vs. network size for various optimizations: Izhikevich model on Intel

i7 using p-threading ……………………………………………………………...

89

6.6 Speedup vs. network size for various optimizations: Wilson model on Intel i7

using p-threading ………………………………………………………………...

89

6.7 Speedup vs. network size for various optimizations: Morris-Lecar model on

Intel i7 using p-threading ………………………………………………………...

91

6.8 Speedup vs. network size for various optimizations: Hodgkin-Huxley model on

Intel i7 using p-threading ………………………………………………………...

91

6.9 Speedup vs. network size for various optimizations: Izhikevich model on Intel

i7 using OpenMP ………………………………………………………………...

95

6.10 Speedup vs. network size for various optimizations: Wilson model on Intel i7

using OpenMP …………………………………………………………………...

95

6.11 Speedup vs. network size for various optimizations: Morris-Lecar model on

Intel i7 using OpenMP …………………………………………………………...

95

6.12 Speedup vs. network size for various optimizations: HH model on Intel i7 using

OpenMP ………………………………………………………………………….

95

6.13 Speedup vs. network size for various optimizations: Izhikevich model on Intel

i7 using Concurrency Runtime …………………………………………………..

99

6.14 Speedup vs. network size for various optimizations: Wilson model on Intel i7

using Concurrency Runtime ……………………………………………………..

99

6.15 Speedup vs. network size for various optimizations: Morris-Lecar model on

Intel i7 using Concurrency Runtime …………………………………………….

101

 xiii

6.16 Speedup vs. network size for various optimizations: Hodgkin-Huxley model on

Intel i7 using Concurrency Runtime ……………………………………………..

101

6.17 Izhikevich model on an Intel i7 using OpenCL …………………………………. 104

6.18 Wilson model on an Intel i7 using OpenCL ……………………………………. 104

6.19 Morris-Lecar model on an Intel i7 using OpenCL ……………………………… 104

6.20 Hodgkin-Huxley model on an Intel i7 using OpenCL …………………………... 104

7.1 Roofline model for the matrix multiplication and four SNN models on the

Fermi GPGPU ……………………………………………………………………

114

7.2 Roofline model for the matrix multiplication and four SNN models on the Xeon 114

7.3 Roofline model for the matrix multiplication and four SNN models on the

Opteron …………………………………………………………………………..

115

7.4 Roofline model for the matrix multiplication and four SNN models on the PS … 115

8.1 Izhikevich model: Speedup performance of the four architectures over Intel

Core 2 Quad ……………………………………………………………………...

152

8.2 Wilson model: Speedup performance of the four architectures over Intel Core 2

Quad ……………………………………………………………………………...

152

8.3 Morris-Lecar model: Speedup performance of the four architectures over Intel

Core 2 Quad ……………………………………………………………………...

154

8.4 Hodgkin-Huxley model: Speedup performance of the four architectures over

Intel Core 2 Quad ………………………………………………………………..

154

1

Chapter 1

Introduction

Recent developments in multicore processors and General-Purpose Graphical

Processing Units (GPU) mainly focus on exploiting task- and thread-level parallelism

from applications. In this research, we analyze various aspects of the performance of

these leading architectures including one of the most advanced GPGPUs from NVIDIA

and multicore processors from Intel, AMD, IBM, and SUN. This research investigates

multiple architectures, the largest being a 32-core multicore (Intel and AMD) and 512-

core GPGPU (Nvidia Fermi). These processors offer various types and levels of

parallelism through its parallel architecture. Thus, to exploit the offered parallelism,

various parallel programming models available to exploit the parallelism including

POSIX-threading, OpenMP, OpenCL, and Concurrency Runtime for multicore

processors as well as CUDA and OpenCL for GPGPUs. These programming models are

not only different in terms of the programming effort required by the developers, but the

performance of applications developed with these programming models also varies for a

given combination of application and architecture.

The first case study used in this research is a matrix-matrix multiplication of square

size matrix. The problem size, i.e., matrix size is varied to collect performance data of

four architectures.The second case study used in this research is a biological spiking

 2

neural network (SNN), implemented with the Izhikevich, Wilson, Morris-Lecar, and

Hodgkin-Huxley neuron models. The four SNN models have varying requirements for

communication and computation making them useful for performance analysis of the

hardware platforms. Of these, the Hodgkin-Huxley (HH) model is the most compute

intensive, while the Izhikevich model is the most computationally efficient.

We report and analyze the performance variations with network (problem size)

scaling, available optimization techniques and execution configuration. Based on the

performance analysis of various architectures, a Fitness performance model, that predicts

the suitability of the single node architecture for accelerating an application is proposed

and verified with the matrix-matrix multiplication and SNN implementation results. The

Fitness model is extended to model the performance of the accelerator more accurately

by utilizing statistical regression. The effect of programming models, such as POSIX

threading, OpenMP, Concurrency Runtime, OpenCL, and CUDA on the performance of

accelerators is demonstrated with the implementation of the SNN and modeled using

statistical regression. The Roofline model, an existing performance model, has also been

used in this research to verify the hardware bottleneck(s) and attainable peak

performance of the architectures.

Our parallel implementations were successful in attaining application speed-up for the

most computationally intensive HH model as high as 976x for CUDA and 878x for

OpenCL. For the communication intensive Izhikevich model 17x speedup was achieved

for CUDA and 12x for OpenCL on Nvidia‘s Tesla C2050 over a serial implementation

on an Intel Core 2 Quad 2.66GHz system using all compiler optimizations. Using an

 3

Intel i7 multicore platform, a speedup of 27x was achieved for the HH model with

OpenCL and 28x for the Izhikevich model with p-threading compared to the same serial

implementation mentioned above. Application speed-up values were found to be

dependent on the communication and computation requirements of each model and the

way they were mapped onto the architecture utilizing the parallelization and

optimizations techniques offered by the programming models. The thorough

performance analysis produced the Fitness model and extension with multiple regression

introduced in Chapter 7 which conclude that a proper match of architecture and

programming model with algorithm complexity provides the best performance.

1.1 Application Accelerators

The history of relying on the principles of Moore‘s Law for increasing performance

from a single core processor is no longer plausible due to physical limiting factors

including the memory and clock walls. The performance/power ratio is another important

limiting factor, as it is one of the most important considerations for building future

supercomputers. To overcome these limitations, the industry trends have moved to

multicore or many-core processors, increasing the number of processing cores per

processing chip (CPU). For the last couple of years, 4 to 6 core processors were available

from major vendors such as Intel, IBM, AMD, and Oracle-SUN. Currently these

companies are presenting prototypes of up to 80 cores in each CPU. Theoretically, more

than 1 Tera FLOPs can be achieved from this processor [1]. The current state-of-the-art

 4

is a 100-core processor available for general-purpose and high-performance computing

[2].

In addition to multicore CPUs, GPGPUs have been very effective and popular in

high-performance computing for the last four years. This paradigm uses the CPU and

GPGPU together in a heterogeneous co-processing computing model. In this model, the

serial part of the application is run on the CPU whereas the compute intensive parallel

part is run on the GPGPU so that the parallel portion is accelerated exploiting the

massively parallel architecture of the GPGPU. More than 1 tera FLOPs peak

performance is claimed for NVIDIA‘s and AMD/ATI‘s advanced GPGPUs [3][4].

The current and future generations of multicore processors and GPGPUs are

discussed in the following sub-sections.

1.1.1 Multicore Processors

The number of cores per processor has been increasing during the last decade. The

most popular multicore architectures used in high-performance computing and

supercomputers are Intel Xeon, AMD Opteron, IBM Cell, and SUN T2+ UltraSparc.

These processors predominantly have 4 to 8 cores. At the SuperComputing 2010 (SC10)

Conference [5], IBM presented the "heptadecacore" BlueGene/Q processor, which has 18

cores per CPU; though only 16 cores are available for application acceleration. At 1.6

GHz clock speed, the processor would manage 205 GFLOPs. This year Intel plans to

announce the next-generation Itanium processor, code-named Poulson, the follow-on

processor to Tukwila [6]. According to [6], the Poulson processor is a "32nm, 3.1 billion

 5

transistor, 12-Wide-Issue Itanium processor for mission-critical servers." The processor

has 8 cores (each supports multi-threading), a ring-based system interface, and the

combined cache on die is 50MB. The communication link supports 128 GB/s of

bandwidth between the processors and 45 GB/s of memory bandwidth. AMD revealed its

latest multicore processor, the 16-core Interlagos at SC10. Interlagos executes 64 double-

precision floating-point operations per clock, for 224 Gflops at 3.5 GHz [7]. This is a

competitive performance with Intel's planned 8-core Poulson processor, which will

achieve similar theoretical peak flops value [7].

1.1.2 GPGPU Processors

General Purpose Graphical Processing Units (GPGPUs) have attracted attention from

researchers in the HPC community for accelerating numerous data parallel algorithms.

The introduction of CUDA by the NVIDIA Corporation in November 2006 [8] has

completely changed the face of the graphical computing. Several research groups have

explored NVIDIA GPGPUs with CUDA to accelerate large data-parallel algorithms such

as the Smith Waterman algorithm [9], NAMD [10], LAMMPS [11], OpenMM [12] and

others of significant concern in the biological and physical sciences communities.

1.2 Programming models

Given the growing interest of researchers in multicore and GPGPUs, several

programming models have emerged, establishing their niche in the HPC community.

While a few multicore models like POSIX-threading [81] and OpenMP [82] have existed

for several years, newer programming models have emerged with their own strengths,

 6

such as Open Computing Language (OpenCL) [84], Concurrency Runtime [83], and

Thread Building Block (TBB) [117]. These programming models are not only different

in terms of the programming effort required, applications performance also varies

significantly for a given combination of architecture and application. Thus a thorough

study is required to investigate application performance for a correlation of architectures

with programming models.

While there are many programming models available for multicore processors as

discussed earlier, only two programming models are currently available for GPGPU:

CUDA and OpenCL. While CUDA coupled with NVIDIA‘s GPGPUs has the major

share of the HPC GPGPU market, the Open Computing Language (OpenCL) [84] is a

growing standard that allows for portability across architectures. Unlike CUDA, which is

solely dedicated for computing with NVIDIA GPGPUs, OpenCL was conceived to

support a variety of architectures such as GPGPUs from different vendors, DSPs, Cell

processors and multicore architectures.

1.3 Motivation And Organization

Scientific application developers need the capability to estimate and understand

architecture performance to minimize development time and produce an optimized

implementation. Benchmark results across various accelerators are one of the indicators

used to determine if an accelerator is suitable for an application. But application

characteristics can vary widely in terms of computation, communication, patterns of

 7

instructions. Thus a specific benchmark result alone is not adequate for a developer to

estimate the potential performance of an accelerator for an application.

Along with the benchmark results, understanding the performance characteristics and

limitations is very important for developing parallel software. Thus some case study

applications having varying computational and communication requirements can provide

insight on various aspects of accelerator performance. The result and the analysis of the

study not only aid the developer in performance estimation but can also help with

optimization of the application for the target accelerator. Also it will be beneficial for the

developers to know what software optimizations have the greatest impact on

performance so that they can prioritize their optimization effort.

There are broad ranges of multiprocessor architectures available and new accelerators

are continuously evolving. The programming nuances, implementation strategies,

hardware bottlenecks, and software optimizations are very different from one architecture

to the next. Substantial development time is required to build an optimized and

accelerated implementation of an application for each platform. Therefore, implementing

an application on all available architectures to determine which performs the best is

unreasonable. For this reason, a Fitness performance model is proposed, the first

contribution of this research, as a useful tool for a developer to determine the top

architecture matches for an application from a pool of candidate platforms. To predict the

performance of accelerator in a high degree of accuracy, the Fitness model is extended

with multiple statistical regression. The multiple regression model for the accelerators

and programming models is able to predict the actual runtime performance.

 8

We have applied both of the proposed performance models to the implementations of

SNNs and matrix-matrix multiplications on the hardware architectures to project the best

match and the actual performance.

The second contribution of this research is a rigorous study of several leading

accelerators, and using case studies, various aspects of accelerator performance are

investigated. As the leading accelerators, we have studied Intel multicore, AMD

multicore, IBM PowerXCell 8i and PS3, SUN T2 UltraSparc, NVIDIA Tesla C870, and

Fermi, and AMD/ATI Radeon. Additionally some experimental prototypes, such as

AMD 32 core and the Intel 32 accelerator are also studied. As the first case study, a

single precision matrix-matrix multiplication algorithm is used to study the accelerator

performance over a range of problem sizes. For the second case study, we have selected

four computation models used in Spiking Neural Networks, namely Hodgkin-Huxley,

Morris-Lecar, Wilosn, and Izhikevich model. Of these, the Hodgkin-Huxley (HH) model

is the most compute intensive, while the Izhikevich model is the most computationally

efficient.

In summary, the contributions of this research are:

1) Introduction of a Fitness performance model for accelerators and its validation

2) Extension of the Fitness model with statistical multiple regression for accelerators

and programming models and its validation

3) Performance analysis of several leading accelerators with the variation of problem

size, optimization technique, accelerator configuration

 9

4) Investigation and quantification of the effect of programming models on the

application performance and programming effort for a given architecture

1.3.1 Fitness Performance Model Introduction

There are various types of multiprocessors available having different hardware

bottlenecks and software optimizations. Thus, it is very time consuming for a developer

to implement an application on all of these multiprocessors to determine the best one for

that application and/or problem size. Therefore a performance Fitness model is

introduced that ranks the performance of architectures for an application so that the best

match of architecture and application is determined. The Fitness model is validated using

the data collected from the performance analysis of architectures.

1.3.2 Extended Fitness Model

To predict the runtime performance in higher accuracy and to include the impact of

accelerator configurations and programming models on the architecture performance, a

multiple statistical regression model is developed as an extension to the Fitness Model.

Multiple regression models are developed for eight accelerators and six programming

models. These models are validated using the performance dataset of accelerators and

programming models.

1.3.3 Architecture Performance analysis

A scaling study of any application is an important aspect for understanding

accelerator performance. In some cases, the performance increases with an increase in

 10

problem size whereas in others, the performance decreases. It is also important to know

which accelerators can accommodate larger problems sizes. Thus in this research we

investigate these aspects for the set of leading accelerators using the SNN case study.

Additionally, optimization techniques may have varying effect on the performance. We

investigate and analyze the effect of optimization techniques on the application

performance across a set of accelerators.

It is also important to understand how the addition of cores increases or decreases the

performance. In this research, the performance as cores are added is thoroughly studied.

The recent multicores from all the major vendors support hyper threading techniques

meaning more threads than cores can be launched. Using more threads than the number

of cores may not always increases performance. Similarly for the GPPGU, threads per

block can be controlled by the developer and the ratio has a significant effect on

performance. Thus we analyzed the effect of hyper threading for multicore and thread

per block on the GPGPU for inclusion in the Fitness model.

1.3.4 Programming Model Investigation

There are various programming models that have been developed to exploit the

parallel architectures. For example, POSIX-threading, OpenMP, Concurrency Runtime,

OpenCL are available for multicore architectures whereas CUDA and OpenCL are

available for GPGPUs. It is found in our studies, the performance of an application-

architecture pair depends on the programming model used. For example, for a given

combination of architecture and application, the resulting performance varies from one

 11

programming model to the next. We investigate and quantify the programming model

effect on application performance.

1.4 Method of Study

The effect of problem sizes, several software-level optimizations, accelerator

configuration, programming models on the accelerator performance are analyzed. Based

on the above performance analysis, we introduce a Fitness performance model to predict

the theoretical best accelerator, or group of accelerators, for an application. The Fitness

model is validated using the matrix-matrix multiplication and SNN implementations on

the accelerators. Then the Fitness model is extended to predict the runtime performance

with high degree of accuracy and include the effect of accelerator configurations using

statistical regression. Finally, statistical regression is used to model the effect of

programming models on the application performance on accelerators.

1.5 Dissertation Organization

In the next chapter, we present an overview of the related work in accelerator

performance, programming models, performance modeling, and SNNs. Chapter 3 details

the case studies, matrix-matrix multiplications and four SNN models. Chapter 4 explains

the experimental systems, which include the accelerators, programming models,

implementations, and optimization techniques. Chapter 5 and 6 details the experimental

results on the accelerators performance and programming models respectively. A

multiple regression model for accelerators and programming models are also developed

in this chapter. Chapter 7 develops the Fitness model and multiple regression models for

 12

accelerators and programming models. Chapter 8 presents the validation of Fitness

model and the multiple regression models using the selected case studies. In Chapter 9,

we summarize all the results and derived models and describe the implication of this

research in the HPC paradigm. The conclusions and suggestions for future work based on

the current results are also described in this chapter.

 13

Chapter 2

Background And Related Work

In this chapter we will discuss the trends in high-performance computing related to

this research. In recent years, vendors have been releasing more complex and advanced

computing architectures that are proving to be increasingly challenging for researchers to

use. These challenges, such as methods for exploiting the memory hierarchy are placing

more emphasis on performance analysis of new architectures for scientific and

commercial applications. These advanced multicore processors and many-core graphic

processors have garnered attention from the HPC community because of the theoretical

performance but the actual performance for a given application can be dramatically

lower. In this chapter, we focus our discussion on the existing body of performance

analysis research for multicore processors, many-core graphic processors, and various

proposed performance models for these architectures. Additionally, matrix-matrix

multiplication algorithm and four SNN models are used as case studies in this research

and we will discuss the relevant work on accelerating these case studies.

2.1 Performance Study of Multicore

Recent performance analysis research has been focused on emerging multicore

architectures using different case studies. Aparna Chandramowlishwaran, et al. [28] used

the Fast Multipole Method (FMM) as a case study to analyze several performance

 14

metrics including speedup on emerging multicore architectures: Intel‘s Nahelam, AMD‘s

Barcelona, and Sun‘s Victoria Falls. They consider several performance enhancements

including low-level tuning, numerical approximation, data structure transformations,

OpenMP parallelization, and algorithmic tuning. The authors report significant speedups,

for example, 25x with Intel‘s Nahelam. Sam Williams, et al. [29] utilize the Lattice

Boltzmann Computation algorithm to study the performance of the Intel Xeon E5345

(Clovertown), AMD Opteron 2214 (Santa Rosa), AMD Opteron 2356 (Barcelona), Sun

T5140 T2+ (Victoria Falls), and QS20 IBM Cell Blade. They also studied the impact of

various memory, instruction, and data structure optimizations on speedup and throughput

performance. Kaushik Datta, et al. [30] presents various optimization techniques of

stencil computations on the Intel Itanium2, AMD Opteron, and IBM Power5 processors.

They were able to achieve 88% of algorithmic peak on the Cell BE and 54% on the

cache-based processors. Our research includes a rigorous performance study of several

leading advanced multicore processors from Intel, AMD, IBM, and SUN and GPGPUs

from NVIDIA and AMD/ATI considering various architecture and software level factors

that affect their performance.

2.2 Performance Study of GPGPU

In addition to traditional multicore architectures, several groups are analyzing the

performance of GPGPUs to accelerate scientific and commercial applications. Araya-

Polo, et al. [31] accelerated the Reverse Time Migration (RTM) algorithm used in

advanced seismic imaging techniques on the IBM Cell/BE system (QS22 blade), the

NVIDIA Tesla C1060, and an FPGA-based system (SGI RASC RC100 platform having

 15

two Virtex 4 FPGAs). A maximum speedup of 26x was achieved with NVIDIA Tesla

over the Intel Harpertown processor. Ali Khajeh-Saeed, et al. [32] accelerated the Smith

Waterman algorithm on NVIDIA GPGPUs and discuss the application of optimization

and parallelization techniques. Using the SSCA#1 (Bioinformatics) benchmark, they

were able to achieve a speedup of 45x and they show linear scaling up to 4 GPGPUs.

Nageswaran, et al. [33] implemented a large-scale spiking neural network using the

Izhikevich model on a GPGPU. They were able to simulate 100K neurons with 50

million synapses achieving a speedup of 27x. In this research, we use four different SNN

neuron models having a range of computational complexities as one of the case studies

for performance analysis of the multicore and GPGPU architectures.

2.3 Programming Models

Along with the development of parallel architectures, diversified efforts have been

made to develop parallel programming models to exploit the parallelism present in

applications and offered by hardware. Programming models play a significant role in

software parallelization and many parallel models have been explored over the last few

decades.

In 1970, a Parallel Random Access Machine (PRAM) [89] was proposed as a shared

memory Single Instruction Multiple Data (SIMD) model. Using PRAM, many parallel

algorithms were developed by the computational science community for mathematical

problems over the next 20 years. Though it was very successful on a shared memory

architecture, it could not be used in real-world distributed systems. In 1989, Valiant

proposed the Bulk-Synchronous Parallel [91] style for writing efficient parallel programs

 16

on distributed memory machines. In 1994, the Message Passing Interface (MPI) [90]

standards were released; the APIs are callable from C, C++ and FORTRAN. So far, MPI

has been the most successful in distributed memory clusters. In [93], Parallel FORTRAN

Preprocessor (PFP) and Parallel C Preprocessor (PCP) are proposed as new parallel

programming models. Contrary to the fork-join models, they allow the programmer to

view the entire program as executing in parallel. The processors are split into teams that

execute sections of the code in parallel or serial where needed. In [86], the Parallel

Cellular Programming model is proposed, where the number of parallel processes in a

program is much larger than the number of processors in a machine. In this model, the

authors present a computation model where many processes execute on a single processor

efficiently. They also present a virtual machine that runs processes according to this

model. The programming model is well-suited to the design of massively parallel fine-

grained applications, such as automata, partial differential equations, and finite element

methods.

The Parallel Phase Model [88], introduced in 2009, is a high-level programming

abstraction that exploits the parallelism of many cores on a node and parallelism at the

cluster level. The programming abstraction enables those low-level parallel programming

tasks to be handled by the compiler and runtime systems. Thus the application

developers are relieved from traditional coding difficulties. The programming model uses

the virtualization of processors, virtualization of memory, implicit communications,

implicit synchronization, automatic data distribution and locality management, and

layered parallelisms. The authors implement four applications on a Cray XT4 machine

 17

with a total of 9660 compute nodes, each node having 4 cores (AMD Opteron 2.3GHz

Quad Core) and 8GB of physical shared memory. The performance of PPM was shown

to be slightly better than MPI. In [92], a programming model is proposed that attempts to

maximize data/process locality and balance computational load. The model is based on

the observation that irregular neural networks mostly execute local operations, reduction,

and broadcasts. The language used in this programming model is fully abstract; the

number of processors, data distribution, process distribution, and the execution model are

hidden from the user. The compiler can derive most of the information to generate

parallel code from the non-annotated code. There are many other programming models

that have been proposed by researchers such as [87], [94] but the community does not

actively use these.

Attempts have also been made to compare the various parallel programming models.

In [95], the authors compared four programming models for multiblock flow

computation: data parallel, message passing, work sharing, and explicit shared memory.

All four models were implemented on a 1024 processor Cray T3D system. Comparative

advantages of each programming model were assessed in terms of ease of use,

functionality, and performance. In [96], the authors discuss the benefits of using the two

dominant programming models: shared memory and distributed memory, and then the

merging of the two models into the Virtual Shared Memory (VSM) programming model.

The VSM can be used with physically distributed memory and provide both programmer

convenience and high scalability. They compared the shared and distributed memory

models for several case studies and emphasize the use of VSM in the case studies. In

 18

[97], performance of a hybrid programming model (MPI+OpenMP) for a cluster of

multi-CPU nodes is compared with a pure MPI model. Two metrics, bandwidth and

latency, were used for comparing the two models. The pure MPI implementation

exhibited higher performance than the hybrid programming model based on the two

selected metrics. In [98], MPI and Explicit Multi-threading C (XMTC) are compared in

terms of programming effort. One group of subjects (students in one class) implemented

sparse-matrix dense-vector multiplication using MPI while a second group of subjects

implemented the same application on XMTC. The development time and correctness of

the program were compared, and the authors reported that programming in XMTC was

more likely to be correct and required 46% less effort (development time).

In [99], the author compared three programming models, Thread Building Block

(TBB), OpenMP, and POSIX-threading in terms programming methodology.

Performance results from ten different benchmarks were obtained using TBB, and the

results were analyzed. In [100], two programming models representative of the

distributed memory model (MPI) and the shared memory model (Unified Parallel C

(UPC)) were compared in terms of speedup and runtime performance. The performance

of MPI did not vary with the optimizations while the performance of UPC fluctuated

significantly. Both models reportedly had similar performance but UPC required less

programming effort, measured in terms of number of lines of code. In [101], six

programming models for IBM cell processors were compared: Sequoia, StarSs, Cell-

Gen, Tagged Procedure Calls (TPC), CellMP, and IBM‘s low-level Cell software

developer‘s kit (SDK). The comparison involves performance and productivity. Three

 19

applications were used in this study, CellStream, FixedGrid, and PBPI where the Cell

SDK performed the best in terms of speed up among the six programming models.

There has been a limited amount of work done on systematic comparison of OpenCL

and CUDA. In [113], the authors have accelerated an EMRI modeling application using

Nvidia‘s C1060 as one of the accelerators and have achieved similar performance for

both CUDA and OpenCL. In [114], the authors used the Adiabatic Quantum Algorithms

(AQUA), which are Monte Carlo simulations, to compare CUDA and OpenCL on

Nvidia‘s GTX-260 (with compute capability 1.3). The programming models were

compared in terms of data transfer time, kernel execution time and end-to-end runtime.

Their results indicated that the CUDA implementations perform consistently better than

the OpenCL implementations. In [115], the authors studied the performance portability of

OpenCL and concluded that the performance is not portable. They implemented TRSM

and GEMM for their studies on both Fermi and Radeon architectures.

Thus, it is apparent that there is a need for further investigation of currently popular

parallel programming models on x86 and GPGPU systems. In this research, we have

selected four of the most popular x86 programming models (p-threading, OpenMP,

Concurrency Runtime, and OpenCL) x86 and two of the GPGPU programming models

(CUDA and OpenCL). Unlike many of the existing studies, our research varies the

problem size and experiments with the algorithms that have of different ―communication

to computation‖ requirements providing well-rounded comparison between the

programming models. Additionally, we have qualitatively and quantitatively ranked the

 20

programming models in terms of programming effort required and provided insight into

the relationship between programming models and application characteristics.

2.4 Performance Models

There are three general performance modeling methods used for predicting

application performance on architectures: Visual Performance Modeling, Analytic

Modeling and Simulation. Here we have discussed trends in these areas and their relation

to our proposed Fitness model and its extension.

Various attempts have been made to model the performance of multicore and GPGPU

architectures. In [22][34], Sam Williams introduces the Roofline model, a visual

performance model, for floating-point algorithms and multicore architectures. We will

discuss this model further in Section 2.6. There are some probabilistic models that

analytically model the performance of multithreaded architectures. Xi E. Chen, et al. [38]

presents a Markov chain model for analytically estimating the throughput of multicore

architectures. They show that their models accurately predict cache contention and

throughput trends across varying workloads on real hardware – a Sun Fire T1000 server.

Noonberg, et al. [39] proposes a theoretical model of superscalar processor performance

that is viewed as an interaction of program parallelism and machine parallelism.

In [35], Sunpyo Hong, et al., model GPGPU performance with a simple analytical

model that estimates the execution time of parallel algorithms on GPGPUs. This model

also provides information regarding performance bottlenecks of the algorithm on the

GPGPU architecture. Sara S. Baghsorkhi, et al. [36] introduces a performance model for

an application running on a GPGPU architecture. Their model is based on a symbolic

 21

evaluation module that determines the effects of structural conditions and complex

memory access on the GPGPU kernel performance. The model identifies the bottlenecks

and can guide the compiler through the optimization process. Shane Ryoo, et al. [37]

developed performance metrics for evaluating an optimization configuration on GPGPU

architecture. By plotting optimization configurations on a Pareto-optimal curve, they

were able to reduce the search space by up to 98% without missing the highest

performance configuration.

Many researchers in the HPC community have used simulation-based performance

models. This approach normally involves developing a model for the accelerator system

and implementing the abstract workload of the application or trace data on the system

model. For example, in [43], the Performance Evaluation Research Center (PERC)

simulation-based frame-work is proposed which makes use of tools for machine profile

and application signatures and provides automated convolution of the two. PERC can be

applied both for single and multi-node processor systems.

Recently statistical methods have been applied to predict accelerator performance and

identify bottlenecks [110][111]. These methods produce a machine signature by running

a training set on them and derive the parameters from performance.

In our study, we have introduced a new model, the Fitness Performance model, which

projects the Fitness match of the architecture with an application. The model can be

applied equally to different architecture types. Our proposed Fitness model is a simple

analytical model based on the peak performance values of the accelerators and

 22

application characteristics taken from the algorithm. It can quickly predict the relative

performance of accelerators for the parallel algorithms.

2.5 Case Studies

A single-precision matrix-matrix multiplication algorithm has been used by many

researchers to analyze the performance of emerging architectures [102][103][104]. We

use single-precision floating point since the four models of second case study make use

of single precision. Thus to keep the precision consistent throughout the results and

modeling, we use single precision floating point for all the case studies. Software routines

included in libraries have been developed by vendors to accelerate matrix-matrix

multiplications. BLAS with MKL [105], BLAS with ACML [106], CUBLAS [107], and

CellBLAS [108] have been developed by Intel, AMD, Nvidia, and IBM respectively to

accelerate matrix-matrix multiplication algorithms along with other linear algebra sub-

routines.

SNNs are used as a case study for this research due to the range of compute and

communication requirements, and the scalability. Further, there is increased interest in

the neurology community to develop biological-scale implementations of spiking neural

networks for studying the neuronal dynamics seen in the brain. The EPFL in Switzerland

and IBM are developing a highly biologically accurate brain simulation at the sub-

neuron level [55]. Their studies utilized the Hodgkin Huxley and the Wilfred Rall [56]

models to simulate up to 100,000 neurons on an IBM BlueGene/L supercomputer

consisting of 65,536 compute nodes (each computing node has 2 processors and can

 23

have a maximum throughput of 11.2 Gflop/s). At the IBM Almaden Research Center,

Ananthanarayanan and Modha [57] utilized the Izhikevich spiking neuron models to

simulate 109 neurons and 1013 synapses (equivalent to a cat-scale cortical model) on a

147,456 processor IBM BlueGene/L supercomputer.

Many attempts have been made to build custom hardware for simulating SNNs. For

example, the SpiNNaker project uses an ARM-based multiprocessor to evaluate leaky

integrate-and-fire neurons [58]. The authors in [59] report the use of memristors for the

design of neural circuits [60], and in [61], a simplified model of the neocortex based on

spiking neurons was proposed using future CMOS and CMOL technologies. Most of the

FPGA-based SNN implementations [62] [63] have focused on the integrate-and-fire (IF)

model, which is computationally simplified (13 FLOPs) and less accurate biologically

[64]. The Izhikevich neuron model has also been implemented on FPGAs [65] [66].

Among all the FPGA implementations of the Izhikevich model, the authors of [66] were

able to simulate 9264 neurons in one node of a Cray XD1 and achieved a speedup of 8x.

In [67], Weinstein, et. al. implemented 48 Hodgkin-Huxley neurons and achieved a

theoretical performance of 8.7x real time utilizing 90% of the logic on a Xilinx Virtex-4

XC4VSX35-fg676-10 FPGA on a Xilinx XtremeDSP series development board.

2.6 Use of Roofline Model as a Visual Performance Model

As discussed in [22], the Roofline model is based on three performance components

of single-program multiple-data (SPMD) type kernels: communication, computation, and

locality. The communication component is from DRAM, the computation component is

from the number of floating-point operations, and locality is associated with arithmetic

 24

intensity (AI), defined as the ratio of floating-point operations to total bytes of

communication. Here, communication is peak GB/s and with the computation is peak

Gflop/s. The performance can naïvely be estimated as:

 /
Attainable GFlop/s = min

 /

Peak GFlop s

Peak GB s AI






The attainable peak Gflop/s of a generic architecture is shown in Figure 2.1. Moving

from left to right on the x-axis, we see a ramp up in performance (line labeled ―w/ all

mem opt‖) followed by a plateau at peak flop/s (line labeled ―Peak SP FP‖) resembling a

sloped roofline of a house. The outermost slant line represents the peak performance if

all the memory optimizations are applied and the outermost horizontal line represents the

performance if all the optimizations for floating-point operations are applied. On modern

architectures, peak Gflop/s and peak GB/s typically cannot be achieved since it requires

exploiting all architectural optimizations many of which may not apply to the given

kernel. Moreover, this model assumes that the computation time and communication

time is fully overlapped, which in practice is almost impossible. The most important

compiler optimization techniques for floating-point performance are the Single

Instruction Multiple Data (SIMD) computation, instruction level parallelism (ILP), and

the balance of multiply with add instructions. Here, the compiler optimization ILP

maximizes the instruction level parallelism through instruction scheduling. If any of

these optimizations are not applied to a kernel, the attainable peak Gflop/s will be

reduced as shown in the parallel horizontal lines below the peak SP FP in Figure 2.1.

Similar parallel inner slant lines represent the peak Gflop/s when memory optimizations

 25

cannot be achieved. Here, the memory optimization techniques are not specified, as the

memory hierarchies are very different in multicore and GPGPU architectures.

Figure 2.1. A general Roofline performance model

2.7 Conclusions

In this chapter we have discussed the research in the literature regarding performance

analysis and modeling and the case studies. We have also suggested how this research is

different and its relevance to the HPC field. In the next chapter we will discuss the

experimental setup and methods for our experiments.

 26

Chapter 3

Case Studies

Two types of applications have been used in this research, Spiking Neural Network models

and a matrix-matrix multiplication algorithm. In this section we will first discuss the matrix-

matrix multiplication algorithm followed by the four of the SNN models and the two level SNN

network.

3.1 Matrix-matrix Multiplication

In this research, the first algorithm used to analyze the performance of accelerator

architectures and programming models, and to later validate the proposed Fitness and

regression models, is a matrix-matrix multiplication algorithm. In this case study two

square matrixes are built and filled with random floating-point numbers. A typical matrix

multiplication between two matrixes, A and B is shown in equation (3.1).

00 01 02 00 01 02 00 01 02

10 11 12 10 11 12 10 11 12

20 21 22 20 21 22 20 21 22

 B B C C

 B B C C

 B B C C

A A A B C

A A A B C

A A A B C

     
     

 
     
          

 (3.1)

The floating-point matrix-matrix multiplication requires both floating-point addition

and multiplication. We keep the matrix size of the matrices A and B equal and use a range

of matrix sizes to scale the problem as shown in table 3.1.

 27

Table 3.1. Floating-point operations and number of bytes required for matrix operations
Size of Each matrix Total flops Total bytes

 Multiplications Additions

100 x 100 1.00E+06 9.90E+05 2.00E+06

150 x 150 3.38E+06 3.35E+06 6.75E+06

200 x 200 8.00E+06 7.96E+06 1.60E+07

250 x 250 1.56E+07 1.56E+07 3.13E+07

300 x 300 2.70E+07 2.69E+07 5.40E+07

400 x 400 6.40E+07 6.38E+07 1.28E+08

500 x 500 1.25E+08 1.25E+08 2.50E+08

600 x 600 2.16E+08 2.16E+08 4.32E+08

700 x 700 3.43E+08 3.43E+08 6.86E+08

800 x 800 5.12E+08 5.11E+08 1.02E+09

900 x 900 7.29E+08 7.28E+08 1.46E+09

1000 x 1000 1.00E+09 9.99E+08 2.00E+09

1200 x 1200 1.73E+09 1.73E+09 3.46E+09

1300 x 1300 2.20E+09 2.20E+09 4.39E+09

1500 x1500 3.38E+09 3.37E+09 6.75E+09

1700 x 1700 4.91E+09 4.91E+09 9.83E+09

2000 x 2000 8.00E+09 8.00E+09 1.60E+10

2200 x 2200 1.06E+10 1.06E+10 2.13E+10

2400 x 2400 1.38E+10 1.38E+10 2.76E+10

2500 x 2500 1.56E+10 1.56E+10 3.13E+10

In Table 3.1, the multiplication and addition operations are shown in separate

columns, but in one matrix-matrix multiplication, they are summed to calculate the total

number of flops required. As seen from the table, the matrix is scaled from 100x100 to

2500x2500, which varies the total required flops from 2 Mega flops to 31 Giga flops, and

the total memory accesses required from 2 MByte to 29 GByte.

3.2 Spiking Neural Networks

SNNs use a neuron-level model, where neuron states are updated using a

mathematical algorithm in each time-step. Thus, all of the neurons in a network can be

updated in parallel if the connections between neurons are preserved. The inherent

 28

parallelism of the algorithm makes multicore processors and GPGPUs attractive

platforms for accelerating SNN simulations.

A neuron consists of three functionally distinct parts called dendrites, axons, and a

soma. Each neuron is typically connected to over 8,000 other neurons [24] [25] [26]. The

dendrites of a neuron collect input signals from other neurons, while the axons send

output signals to other neurons. Input signals coming in along dendrites can cause

changes in the ionic levels within the soma, which in turn can cause the neuron‘s

membrane potential to change. If this membrane potential crosses a certain threshold, the

neuron is said to have ―fired‖ or ―spiked‖. In these events, the membrane potential rises

rapidly for a short period of time (a spike) and causes electrical signals to be transmitted

along the axons of the neuron to its corresponding connected neurons. Spiking is the

primary mechanism by which neurons send signals to each other [26]. Over the last 50

years, several models [64][72] have been proposed that capture the spiking mechanism

within a neuron. In this research, we use four of the most biologically accurate spiking

neuron models for implementation on multicore architectures and GPGPUs. The model

parameters are shown in Table 3.1 and the differential equations of the four SNN neurons

models are given in the articles [26], [73], [74], and [75].

 29

Table 3.2. SNN model parameters

Model
Differential

Equations /neurons

Dynamic Variables

/cycle/neuron
*flops /neuron

Izhikevich 2 3 13

Wilson 4 6 37

Morris-Lecar 2 4 132

Hodgkin-Huxley 4 6 265
*flops: floating point operations

3.2.1 Hodgkin-Huxley

The Hodgkin–Huxley (HH) model is considered to be one of the most biologically-

accurate spiking neuron models. It consists of four differential equations and a large

number of parameters describing the neuron membrane potential (twenty-five compared

to only four in the Izhikevich model), activation of Na and K currents, and inactivation of

Na currents. The model can describe almost all types of neuronal behavior if its

parameters are properly tuned. This model is valuable for studying neuronal behavior and

dynamics since its parameters are biophysically meaningful and measurable.

3.2.2 Morris-Lecar

Cathy Morris and Harold Lecar proposed a two dimensional conductance-based

spiking model (ML) in 1981 [74]. The model consists of two differential equations. Three

of the parameters in the differential equations are evaluated each cycle, thus adding a set

of three more equations. These three equations involve hyperbolic functions, which make

it computationally more expensive than the Izhikevich and Wilson models. The

computational demand is lower than the Hodgkin-Huxley model however, making it

popular in neurocomputation communities.

 30

3.2.3 Wilson

The Wilson model [75], proposed in 1999, requires four differential equations. The

model has more parameters than the Izhikevich model (discussed next) and tuning these

parameters allows the model to exhibit almost all neuronal properties. Three of the

parameters in the differential equations must be evaluated each cycle, which adds a set of

three more equations.

3.2.4 Izhikevich

Izhikevich proposed a new spiking neuron model in 2003 [76] that is based on only

two differential equations and four parameters. The model is attractive for slower

computing systems since it requires fewer computations than the Hodgkin Huxley model

(13 flops as opposed to 265 flops per neuron update) but can still reproduce almost all

types of neuron responses that are seen in biological experiments.

3.3 Two-level Network

The SNN network used in this case study consists of two levels [27] [68] [77] where

the first level acts as a collection of input neurons and the second level acts as a

collection of output neurons. A binary input image is presented to the first level of

neurons, each image pixel corresponding to a separate input neuron. The number of

output neurons is equal to the number of training images that the network will recognize.

Each input neuron is fully connected to all of the output neurons as shown in Figure 3.1.

Each neuron has an input current that is used to evaluate its membrane potential.

 31

Figure 3.1. Two-level Character Recognition Network

If the membrane potential crosses a certain threshold during a cycle, the neuron is

considered to have fired. For a level 1 neuron, the input current is zero if the neuron‘s

corresponding pixel in the input image is ―off‖. If the pixel is ―on,‖ a constant current is

supplied to the input neuron. A level 2 neuron‘s overall input current is the sum of all the

individual currents received from the level 1 neuron connections. This input current for a

level 2 neuron is given by the following equation:

(,) ()j
i

I w i j f i (3.2)

Here, w is a weight matrix and w(i,j) is the input weight from level 1 neuron i to level

2 neuron j; and f is a firing vector where, f(i) is 0 if level 1 neuron i does not fire and a 1

if the neuron does fire. A single fire in level 2 indicates that an image has been detected.

The elements of the weight matrix, w, are determined through a training process as

described in [27], [69]. The network was trained to recognize the 48 different input

images given in [27] and later scaled for larger networks. In this study, we have

accelerated the recognition phase of the network on the processor architectures and the

network configurations used are reported in Table 3.3.

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

 32

Table 3.3. SNN configurations for different image sizes

Input image

size

Level 1

neurons

Level 2

neurons

Total

neurons

96×96 9216 48 9264

192×192 36864 48 36912

240×240 57600 48 57648

384×384 147456 48 147504

480×480 230400 48 230448

720×720 518400 48 518448

960×960 921600 48 921648

1200×1200 1440000 48 1440048

1680×1680 2822400 48 2822448

2160×216 4665600 48 4665648

2400×2400 5760000 48 5760048

3120×3120 9734400 48 9734448

3.4 Summary

In this section, we have detailed the case studies used in this research. The matrix-

matrix multiplication case study including problems sizes, flops, and required byte

accesses are detailed in this chapter. Additionally, the four SNN models and the two-level

SNN network have also been detailed forming the foundation for the following chapters.

In the next chapter we will discuss the experimental systems and proposed methods for

this research.

 33

Chapter 4

Experimental Systems and the Implementations

In this chapter we present the experimental systems, implementations and

optimization techniques used. The performance of the architecture set is studied by

varying the problem size, available optimization techniques, number of cores, number of

threads, and programming models. These studies will form the basis and analysis for the

Fitness model and multiple statistical regression model proposed in Chapter 5.

4.1 Accelerators

Modern processors no longer rely on increasing clock frequencies to improve

performance. Exploiting parallelism through multiple cores, heterogeneous systems with

GPGPUs and FPGAs, memory hierarchy techniques, and in some cases vector

parallelism is the current trend for achieving performance as discussed below.

4.1.1 Multicore

We have used multicore processors from four vendors (Intel, AMD, IBM, and Sun)

that are currently used in state-of-the-art clusters and supercomputers. A short description

of each of the multicore architectures used in this research is given below.

4.1.1.1 Intel Multicore

The first multicore processor system from Intel examined in this research is the Intel

Xeon 5345 processor-based Dell PowerEdge 1950, which has two 2.33 GHz quad-core

 34

Intel Xeon 5345 processors. These processors contain 32 KB of level-one cache per core

and 8 MB of level-two cache per four cores. The processor can execute vector

instructions using the SSE3 instruction set. The second Intel multicore system examined

has two 2.8 GHz quad-core Intel i7 processors, for a total of 8 cores. This multicore

processor has 8MB of level-three shared cache per four cores. The processor can also

execute vector instructions using SSE3. The final Intel processor examined is the Intel

32 core processor available through the Intel Many Core Testing Lab. This experimental

multiprocessor has four Intel Xeon X7560 2.27GHz processors, each of which has 8

cores. This processor contains 24.5 MB of shared cache per 8 cores and 256 GB of

RAM.

4.1.1.2 AMD Multicore

The two X86 architecture processors from AMD studied in this research are the

Opteron 2356 processor-based SunFire 2200 and an experimental 32-core processor. The

SunFire 2200 has two 2.33 GHz quad-core AMD Opterons. These processors contain 64

KB of level-one cache per core, 512 KB of level-two data and instruction cache per core,

and a 2MB level-three cache shared by four processing cores. Similar to the X86

processors from Intel, the Opterons can execute vector instructions using the SSE3

instruction set. The AMD 32-core multiprocessor is a 6134 system that has four, eight-

core processors (total of 32 cores). The processor executes at 2.3 GHz with 256 GB of

memory for the processor. These processors contain 512 KB of cache and can execute

vector instructions using the SSE-like instruction set.

 35

4.1.1.3 Sun T2+ UltraSparc

Available from Sun, the SPARC Enterprise T5440 Server is a long-term storage

server. It has four,eight-core T2+ CoolThread processors (32 cores total). The processor

operates at 1.4 GHz with 128 GB of memory. These processors contain a 4 MB level-two

cache and unlike the X86 processors, cannot execute vector instructions with the SSE-

like instruction set.

4.1.1.4 IBM Cell Architecture

The Cell Broadband Engine developed by IBM, Sony, and Toshiba [68] is a

multicore processor that heavily exploits vector parallelism. The current generation of the

IBM Cell BE processor operates at 3.2 GHz and consists of nine processing cores: a

PowerPC based Power Processor Element (PPE) and eight independent Synergistic

Processing Elements (SPE). All processors and internal RAM are connected through an

Element Interconnect Bus (EIB). The PPE is primarily used for administrative functions

while the SPEs provide high performance through vector operations. In the PS3 version

of the Cell BE used in this research, only six of the eight SPUs are available for

computation. The second Cell architecture examined in this research is a QS22 blade that

has two IBM Cell Broadband Engine (BE) processors operating at 3.2 GHz and

consisting of nine processing cores each: a PowerPC based Power Processor Element

(PPE) and eight independent Synergistic Processing Elements (SPE). All processing

cores and the internal 8GB of RAM are connected through an Element Interconnect Bus

 36

(EIB). Like the PS3 version, the PPE is primarily used for administrative functions while

the SPEs provide high performance through vector operations.

4.1.2 GPGPU

In the following subsections we will discuss the architecture of the most popular

and powerful GPGPUs from NVIDIA and AMD.

4.1.2.1 NVIDIA GPGPU

Two NVIDIA GPGPUs were used in our research; the 1
st
 generation Tesla C870 and

the 20-series Tesla C2050, also known as Fermi. The GPGPU architecture appears as an

array of streaming multiprocessors each containing scalar processors, special function

units, double-precision units, and local memory (in CUDA terminology, it is called

shared memory) to enable thread cooperation. NVIDIA‘s Tesla C870 card uses compute

capability 1.0 and has 16 multiprocessors consisting of 128 cores, 1.5 GB global

memory, 64 KB constant memory, 16 KB local memory and operates at a clock rate of

1.35 GHz. The system provides over 1500 MB/sec host-device transfers for pageable

memory and over 60,000 MB/sec device-to-device bandwidth.

NVIDIA‘s Tesla 20-series architecture, codenamed Fermi, has brought a lot of

innovation versus previous architectures: 512 CUDA cores organized as 16 SMPs with

32 cores each gathered around a L2 cache. A Gigathread scheduler dispatches thread

blocks to the SMP thread schedulers. The GPGPU has the capability of supporting 6 GB

of GDDR 5 DRAM memory. The SMPs also have a new look with an instruction cache,

dual warp schedulers and dispatch units. SMPs now have two sets of 16 CUDA cores, 4

 37

special function units for transcendental functions, 16 load/store units, a hefty register

file, and most importantly, a configurable 64 KB of shared memory/L1 cache. The SMPs

also share a second level L2 cache. More information about the architecture can be found

in [69]. For our studies, we have used a single NVIDIA Tesla C2050 belonging to the

Compute Capability 2.0 with 14 multiprocessors (448 cores), 2.6 GB global memory, 64

KB shared memory/L1 cache per multiprocessor, 768 KB L2 cache, 64 KB constant

memory, and operating at a clock rate of 1.15 GHz. The system‘s GDDR interface offers

data bandwidth up to 144 GB/sec.

4.2 Programming Models

In this section, we will discuss the four programming models used for the X86

multicore processors (X86POSIX-threading, OpenMP, Concurrency Runtime, and

OpenCL) and the two programming models for GPGPU (OpenCL and CUDA).

4.2.1 POSIX-threading

POSIX threading [81] or p-threading is a C-based threaded programming model. For

UNIX/Linux systems, this programming interface has been specified by the IEEE POSIX

1003.1c standard. In shared memory multiprocessor architectures, such as a symmetric

multiprocessor (SMP), p-threading programming is used to exploit the parallelism

offered by SMPs. Most modern multicore processor systems use the SMP architecture. In

this paper, we have utilized the p-threading programming model to exploit the SMP-type

Intel i7 multicore processor and study its performance variation.

 38

4.2.2 OpenMP

Open Multi-Processing (OpenMP) [82] is an application programming interface that

focuses on compiler directives to accelerate multi-threaded, shared memory programs

using C, C++, and Fortran on Linux and Windows system. OpenMP uses a master thread

approach to run serial code and fork new threads during sections of computation that

benefit from multiple cores and/or processors. Once the parallel code has been

completed, the threads are joined back into a master thread until parallel execution is

required again. The programmer is given some degree of control over this process, but

the details of the parallelization are left to the OpenMP compiler itself. Built-in options

for controlling thread synchronization, data sharing, thread scheduling, and other basic

functionality do exist in the API, though, and the number of threads to create can be set

statically or dynamically by the user. The OpenMP standard does not require compilers

to provide explicit checking for data dependencies, race conditions, deadlocks, or other

hazards of parallelization, so any user-defined blocks of parallel code must be reviewed

and analyzed carefully to determine suitability for OpenMP compiler directives.

4.2.3 Concurrency Runtime

There are three libraries provided by Visual Studio 2010 to facilitate parallelizing an

application, including Concurrency Runtime, the Parallel Pattern Library, and the

Asynchronous Agents Library [83]. These libraries provide powerful APIs for

application parallelization [83]. In this research, we use Concurrency Runtime to

 39

describe the programming model constituted by these three pieces. The Concurrency

Runtime libraries provide several benefits such as cooperative scheduling, nested

parallelism, and cooperative blocking for parallelizing an application.

First, in cooperative scheduling, Concurrency Runtime uses a cooperative task

scheduler that implements a work-stealing algorithm. In the work-stealing algorithm, if a

thread completes its assigned tasks, it offloads tasks from other threads that have

remaining tasks. In this way all threads are kept busy. Second, in nested parallelism, if

two nested loops are parallelized using concurrency runtime, the created threads

coordinate with each other to share computation and communications resources. Third, in

cooperative blocking, if a thread cooperatively blocks in a particular loop iteration for a

specific resource, the Concurrency Runtime spawns another thread that will execute the

remaining loop iterations if there are any remaining. The detailed architecture of the

Concurrency Runtime can be found in [83].

4.2.4 OpenCL

The OpenCL programming model allows developers to target x86, GPGPU, Cell, and

DSP architectures. A kernel written in OpenCL describes the functionality of each work

item, or thread. All created work items run the same kernel but on different data sets. The

developer can specify the number of work items in a local group, called a local work

group size. If the target platform is an NVIDIA GPGPU, this work group can be further

divided into a group of 32 threads, called warps. Several concurrent local work groups

can run on a multiprocessor, depending on multiprocessor resources such as local

 40

memory size and number of registers. The total number of work items in a kernel call is

the global work group size and this size is defined before the kernel call. For an AMD

GPGPU the kernel can support vector calculations. Thus if the algorithm allows, all or

part of the computation in a kernel can be executed in a vectorized fashion.

OpenCL also supports any modern X86 processors whereas, CUDA does not support

any platforms other than NVIDIA GPGPUs . In an X86 processor, the OpenCL kernel is

translated into p-threading like functions. All of the APIs in OpenCL, that are used in

GPGPU programming can also be used in X86 programming. The OpenCL runtime

translate the APIs, which are originally intended for GPGPU hardware, into CPU

hardware.

4.2.5 CUDA

In CUDA for C [85], the GPGPU functionality is defined by writing device functions

called C Kernels. Typically, only one kernel can be executed on the GPGPU at a time. A

thread, which is a sequence of instructions, is instantiated several thousands of times.

When a kernel is called, N threads execute the kernel in parallel. Threads are accessed

inside kernels using built-in variables: threadIdx, blockIdx, and blockDim. Collections of

threads, called thread blocks are executed on the SMPs. The blocks are further divided

into SIMD groups of 32 threads called warps, which are further divided into groups of 16

threads called half-warps. The memory hierarchy in CUDA is comprised of a set of

registers (on-chip) and local memory (residing in an off-chip DRAM) for each thread, a

private shared memory for thread blocks, a global memory for all threads launched, and

 41

read-only texture cache and constant memory. CUDA offers three primary optimization

strategies, namely the Memory Optimization, Execution Configuration Optimization, and

Instruction Optimization.

4.3 Matrix-matrix Multiplication: Implementation

 The Matrix-matrix multiplication algorithm has been long studied in computing due

to its pervasiveness in scientific computing. Many libraries have been developed to

optimize the algorithm on various hardware platforms. On Intel the x86 platform,

mkl_cblas library is provided by the Intel Math Kernel Library (MKL) for the faster

matrix-matrix multiplication. On AMD platform, AMD Core Math Library (ACML)

provides the best performance for the algorithm. Similarly, for matrix-matrix

multiplication Cellblas and CUBLAS libraries are available for IBM Cell and Nvidia

GPGPU platform. We have implemented the matrix-matrix multiplication algorithm on

the Intel Xeon, AMD Opteron, IBM Cell, and Nvidia Fermi platform using the

corresponding math libraries to obtain the best performance.

4.4 SNN: Implementation And optimization

In this section we first discuss the implementation and optimization techniques for the

case studies on multicore architectures and finally the GPGPU implementation and

optimizations of the case studies will be discussed.

4.4.1 Multicore

4.4.1.1 Multicore Implementation

 42

Network parallelization: All neurons in both levels of the SNN evaluate in parallel

and are independent of each other, allowing the neurons to be divided evenly across all

available processing cores. Each processing core is assigned a set of level 1 neurons and

generates a level 1 firing vector after evaluating all neurons in this set.

Evaluation of the level 2 neurons on the PS3 architecture is different from the X86

and SUN T2+ architectures. In the X86 architectures, the firing vectors store the index of

each level 1 neuron that was evaluated by that processing core and which, if any, fired.

The number of firing vectors is the same as the number of processing cores utilized. Each

processing core reads all firing vectors form the other processing cores when evaluating

the level 2 neurons. This approach has the advantage of simplifying the level 2 neuron

weight computation in training, requiring only examination of the level 1 neurons that

fired.

In the PS3 architecture, after generating its firing vector, each SPU calculates the

current input for level 2 using its firing vector. Thus there will be six input current

vectors for level 2, one per SPU, where each vector has 48 elements corresponding to the

48 output neurons. These current vectors are then sent to the PPU where they are

accumulated to form the total current for each level 2 neuron. Finally, the PPU evaluates

the level 2 neurons.

Vectorization: Neurons in a level are independent of each other. Thus, simply

evaluating four neuron-level calculations in parallel on each processing core vectorizes

the network.

4.4.1.2 Multicore Optimization

 43

On the Intel and AMD architectures, three types of optimizations are applied: a)

POSIX-threading (pth), b) SIMD computation (SC), and c) Software Prefetching (SP).

POSIX threading (p-threading) was used to create threads and distribute the computations

among threads. All of the X86 architectures support the SIMD computation called

Streaming SIMD Extension 3 (SSE3). In this SSE3 technique, four similar floating-point

operations are carried out in one cycle using 128-bit registers. Software prefetching

techniques used in the GPGPU OpenCL optimizations (discussed later) can also be

applied in the X86 implementations. Finally, software prefetching shows a significant

speedup for most of the SNN models investigated, as will be seen in the results section.

The following optimization techniques were explored for the PS3 architecture: a)

Multi-Threading (MT), b) SIMD Computation (SC), c) Double Buffering (DB), d)

Reducing Conditional Statement (RCS), e) Loop Unrolling (LU), and f) Software

Pipelining (SP). In the multi-threaded technique, 6 threads are created for execution on

the 6 SPUs. In the SIMD optimization technique, four similar floating-point operations

are carried out in one cycle using 128-bit registers. In the PS3, data transfers are

accomplished through a DMA engine where two sets of variables are defined for

computation. Double buffering is used to overlap communication with computation

allowing one DMA request to transfer data from DRAM to one set of variables, while the

SPU is computing on the other set of variables. Since the SPUs of the PS3 do not have

branch prediction units, the technique of reducing conditional statements is useful to

improve performance. Further performance gains can be achieved if conditional

statements are reduced through loop unrolling. We have experimented with varied

 44

amounts of unrolling in our case studies and found that by unrolling up to 8 loops, we

achieve a measurable performance gain. Finally, software pipelining is implemented by

prefetching the variables that will be used for computation. Software pipelining can

achieve good performance if it is combined with loop unrolling since the variables are

used for multiple computations instead of fetching each array element each time it is

used.

4.4.2 GPGPU

The GPGPU implementation involves acceleration of the level 1 neurons, the most

compute intensive level of the two levels, on the GPGPU. Level 2 is less than 5% of the

total computation and requires accessing the large weight matrix (48 times the size of the

level 1 voltage array). The GPGPU kernel is invoked at each time step and if the level 2

neurons are computed in the GPGPU, the weight matrix transfer time would dominate the

computation time, slowing down the overall implementation. The size of the weight

matrix increases with the network size and is 48 times larger than the other data

structures used in these applications. For example, the network of 5.7 million neurons,

the weight matrix size will be (5.7×10
6
×48×4 Byte =) 1.03 GB. To transfer this data from

the host to device, takes about 0.7 sec (considering the data transfer rate of 1500 MB/s as

given in Section 3.2.2.1). For the Izhikevich model, this will cause 244% increase in

runtime and for the Hodgkin-Huxley model, the runtime will be increased by 35%.

Evaluating the level 2 neurons on the GPGPU cannot compensate for this substantial

increase in data transfer overhead since the level 2 neurons only take 5% of the total

compute runtime. We have confirmed this performance analysis with an implementation

 45

in which both network levels are evaluated on the GPGPU. However, if the kernel is only

invoked once in the life of the simulation, it would provide a performance gain to

evaluate both network levels on the GPGPU because, in that case, the overhead related to

the kernel call and firing data transfer in each simulation cycle can be avoided.

Unfortunately, the algorithm requires synchronization across all the threads in each

simulation cycle and currently there is no way to synchronize all the threads inside the

GPGPU kernel. For these reasons, the level 2 neuron evaluations and the associated

weight matrix are kept on the host instead of porting them to the GPGPU.

The GPGPU computes the neuron dynamics of level 1 and supplies the resulting

firing data to the host. The host uses this firing information to compute the neuron

dynamics for level 2. A thread on the GPGPU computes the single neuron dynamics for

level 1; the functionality of the thread is described by the kernel code. Different code

optimization techniques are applied and evaluated for performance improvement as will

be discussed in the next subsection. We have avoided data transfers between the host and

GPGPU as much as possible, the only frequent communication involved was the transfer

of the firing information from level 1 (from the GPGPU to the host) in each time step.

4.4.2.1 GPGPU Optimization

OpenCL was used to implement the SNN models on the GPGPU. A program written

in OpenCL can target various architectures including CPUs, GPGPUs, CellBEs, DSPs

and many other multiprocessors. We have also implemented the SNN with four neuron

models in CUDA on Telsa C870 and presented results previous paper [78]. In this study,

our target platform is a NVIDIA‘s GPGPU.

 46

A kernel written in OpenCL describes the functionality of each work item, or thread.

All created work items run the same kernel but on different data sets. The developer can

specify the number of work items in a local group, called a local work group size. If the

target platform is an NVIDIA GPGPU, this work group can be further divided into a

group of 32 threads, called warps. Several concurrent local work groups can run on a

multiprocessor; the number depends on the multiprocessor resources such as local

memory size and number of registers.

OpenCL provides several optimization techniques that can be employed for optimal

performance including Memory Level, Instruction Level, and Execution Configuration

Optimizations. The optimization techniques used in this work are, a) Multithreading

(MT), b) Software Prefetching (SP), c) Local Memory (LM), d) memory write function

(MW), e) Native Math (NM), f) unsafe math (UM), and g) reducing conditional statement

(RCS). The first naïve implementation uses a multithreading (MT) technique where the

same OpenCL kernel is executed by all of the created work items. In each cycle, the

kernel is launched from the host code and the firing information from the level 1 neurons

is sent from the GPGPU to the host. This configuration is the base implementation and all

other optimization techniques are applied to the base implementation.

Memory Level Optimizations: In the kernel code, the variables that determine the

state of neurons are accessed many times from the global memory, which takes several

clock cycles per access. Thus, to reduce the number of accesses to the global memory,

these variables are first stored in local variables and once the processing is complete, they

 47

are transferred back to the global memory. This memory optimization technique is called

Software Prefetching (SP).

In every cycle of neuron updates, the firing vector containing the firing information

from the level 1 neurons is sent from the kernel back to the host. The size of this firing

vector is equal to the number of neurons in the level 1. From the OpenCL profiler, it is

found that the time to send this firing vector is almost 40% of the total GPGPU device

runtime. To reduce this data communication time, a separate array, called local_fire, is

declared in the local memory. Each entry of this array contains a record of any firing in a

local work group after executing a logical operation within a local group. This local_fire

array, which has the size of 1/(local_group_size) of the firing vector, is sent to the host in

every cycle and since it is significantly smaller, the data communication time is

proportionally reduced. On the host, this vector is tested for any firing in the local_fire

array and the full firing vector is only sent to the host if there is a flag set (which

indicates the presence of firing) in the local_fire vector. This technique improves the

performance because a neuron firing occurs in a small fraction of the cycles. The data

communication cost between the host and GPGPU is reduced to about 3% of the total

GPGPU time. This technique is referred to as local memory (LM) and is shown in

Figures 4.1 and 4.2 In Figure 4.1, where the local memory technique is not used, the

entire firing vector is transferred in each cycle. In Figure 4.2, where the local memory

technique is used, the smaller local firing vector (Firing Vector/local_group_size) is

transferred in each cycle, reducing the total data communication.

 48

Figure 4.1. Data transfer without using local

memory

Figure 4.2. Data transfer using local memory

(LO=Logical Operation)

In the naïve implementation, while sending the array from the host to the GPGPU, the

clCreateBuffer() function was used to create a buffer and copy data from the host to the

GPGPU. It is found that if the buffer is created in the initialization part of the application

and then the function clMemWrite() is used inside the execution loop of the host

function, better performance is achieved. This memory optimization is called memory

write (MW).

Instruction Level Optimizations: OpenCL provides native math (NM) functions that

are optimized versions of exponentials, trigonometric, and other complex functions.

These native functions provide improved speed with some loss of precision and are

therefore to be used cautiously so that the errors in precision do not negatively impact the

overall results. Another math optimization technique that OpenCL offers is called unsafe

math (UM). In this optimization, the compiler optimizes the floating-point arithmetic in

the kernel but it may violate IEEE 754 standard and OpenCL numerical compliance

requirements. Thus, this optimization technique is also to be used cautiously. The last

 49

applied optimization is the reduction or elimination of conditional statements (RCS). If

conditional statements are present, the threads in a local work group may be serialized,

which will slow down the kernel execution. Thus, reducing any existing conditional

statements will improve the performance.

4.5 Summary

In this chapter we have discussed the architectural features and peak performance of

various computing architecture that are used in this research. We have also discussed the

implementation basics of the matrix-matrix multiplication and SNN algorithms on these

architectures and the optimization techniques used to improve performance.

 50

Chapter 5

Architecture Performance Analysis

Experimental data was collected with the available multicore and GPGPU

architectures to (a) validate the Fitness performance model and (b) provide data to study

the effects of programming models on performance. The performance analysis of the

Intel Xeon (8-core), AMD Opteron (8-core), IBM PS3, (6-core) and NVIDIA Fermi

including problem size scaling for the matrix-matrix multiplication algorithm and SNN

models is reported. Then the effect of accelerator configuration and optimization

techniques for these architectures is also shown. We also report results for different

programming models that will be studied in more detail in the next chapter. Performance

results for the advanced processors, Intel-32 core, AMD 32-core, and IBM PowerXCell-

based QS22 are also presented with a variation in the number of threads. -

The problem size for the case studies is varied to study the scalability of the

architectures. For the SNN case study, we also investigate the impact of optimization

techniques, and accelerator configuration (number of threads for the multicore and local

work group size for the GPGPU) on performance.

5.1 Performance Results For Matrix-matrix Multiplications

The performance of the architectures (Nvidia Fermi, Intel Xeon, AMD Opteron, and

IBM PS3) for a matrix multiplication algorithm is shown in Figure 5.1. As seen in the

 51

figure, the performance of all the accelerators increases with the increase in problem size.

The Fermi provides the maximum performance of 3370x for a matrix size of 2500x2500,

over a serial implementation on Intel i7. For the same matrix size, the performance of the

IBM PS3, Intel Xeon and AMD Opteron was 175x, 106x and 80.5x respectively. It is

interesting that for smaller problem sizes, the PS3 performance is lower than the two x86

systems, while its performance improves and surpasses the x86 systems with the larger

problem sizes. The thread creation and signaling overhead for the PS3 dominates for the

smaller problem sizes but with the larger problem sizes the overhead becomes negligible.

Figure 5.1: Performance of accelerators for various sizes of matrix multiplication

5.2 Performance Results For SNN models

This section introduces the performance results of the four base architectures for

varying problem (network) sizes. The results are organized based on the SNN models.

1

10

100

1000

10000

0.0E+0 2.0E+6 4.0E+6 6.0E+6 8.0E+6

Sp
e

e
d

u
p

Matrix Size

Nvidia Fermi

Intel Xeon

AMD Opteron

IBM PS3

 52

5.2.1 Izhikevich Model

The performance of the four base architectures for the Izhikevich neuron model is

shown in Figure 5.2. For the Fermi GPGPU implementation, the speedup initially

increases with an increase in the number of neurons (problem size). This architecture

provides only a nominal performance increase beyond 1 million neurons. A maximum

speedup of 18.33x was observed for 5.8 million neurons. Initially, the speedup increases

due to the increasing problem size. Referring to the Table 5.1, since the flop:byte ratio for

this model is only 0.65, the performance improvement cannot be sustained because the

nominal amount of floating-point operations on the GPGPU is unable to amortize the

increased communication time required for larger network sizes. GPGPUs require a

higher flop:byte ratio to overcome data transfer overheads and fully exploit the task and

thread level parallelism.

Figure 5.2. Izhikevich model: Speedup performance of the four

architectures over Intel Core 2 Quad

0

10

20

30

40

50

60

70

0 2 4 6

S
p

e
e
d

u
p

Neurons (millions)

Speedup of Fermi

Speedup of Xeon

Speedup of AMD

Speedup of PS3

 53

Table 5.1. Flops and data transfer for neuron dynamics updates

Models Flops

Memory

Access

per Neuron

(Byte)

flops/byte

ratio

Izhikevich 13 20 0.65

Wilson 38 44 0.86

Morris-

Lecar
132 28 4.71

HH 265 44 6.02

As seen in Figure 5.2, the Xeon performance increases to about 58x for 1 million

neurons and then begins to decrease until it stabilizes at 20x. The performance diminishes

after 1 million neurons because of the increasing amount of data required to update the

neurons cannot be accommodated by the cache, resulting in cache misses. Thus, the

communication time grows faster and dominates the computation time, reducing the

attainable speedup. The performance curve for the AMD Opteron has a similar shape

with the exception that its peak performance was only 36x and begins to fall off sooner.

Though both of the X86 systems are similar in most of the specifications, the Xeon

performs better than the Opteron for almost all of the problem sizes. One of the main

reasons is that the cache size of the Intel Xeon is larger than that of the AMD Opteron so

for larger problem sizes, the Opteron may have more cache misses than the Xeon. We

have further investigated this issue and found that the RAM used by the Opteron is 128-

bits whereas the Xeon has 240-bits. Further, the Opteron uses ECC RAM modules while

the Xeon uses fully-buffered DIMMS. The ECC RAM used by the Opteron imposes a

restriction on the throughput that may also negatively impact the Opteron‘s performance.

The IBM PS3 demonstrates similar performance to the Fermi GPGPU for this model,

showing a speedup of 17.3x for 5.8 million neurons. The PS3 has a regular performance

 54

curve that increases initially and then saturates at around 17x. The initial increase in

speedup can be attributed to the dominance of parallel computation over the fixed

overhead cost (such as thread creation, signaling, and barrier synchronization). When the

problem size is small, the communication and computation both can be parallelized,

improving the performance. But after the initial increase, the performance saturates

because the communication time becomes significant with the increase of problem size

and the memory accesses cannot be fully parallelized as before.

5.2.2 Wilson Model

The performance results of the four architectures with the Wilson model are shown in

Figure 5.3. Performance of the GPGPU increases to 29x at around 1 million neurons and

then begins to saturate. The maximum speedup of the GPGPU is 31.7x at 5.8 million

neurons. The GPGPU performance for this model is better than the Izhikeveich model

because of the larger flop:byte ratio (0.86 vs. 0.65). The GPGPU performance does not

have a maxima as seen in the X86 architectures, because there is no cache-size effect for

the GPGPU. For the GPGPU, the entire required dataset fits in global memory (1.5 GB)

up to the maximum size of the network so there will be no conflict or capacity misses.

The shape of the Xeon performance curve for the Wilson model is similar to that for

the Izhikevich model, reaching a peak at 0.2 million neurons and then falling until it

stabilizes at about 1.4 million neurons. The peak speedup is observed at 0.2 million

neurons, where the data required begins to exceed the cache capacity of the Xeon

architecture. The speedup for the Wilson model reaches this peak earlier than with the

 55

Izhikevich model, because the data required is more than twice that of the Izhikevich

model (see Table 5.1). Thus for the Wilson model, the capacity and conflict misses in the

cache start earlier than were seen for the Izhikevich model. For the same reason, it is

noticed that the peak speedup for the Wilson model cannot grow beyond 23x, whereas for

the Izhikevich model the peak speedup was 58x. The performance curve for the Opteron

with the Wilson model has a similar shape and explanation to that of the Xeon with the

exception that the peak speedup is 15x and falls off earlier.

Figure 5.3. Wilson model: Speedup performance of the four

architectures over Intel Core 2 Quad

The PS3 performance for the Wilson model is very different from the other

architectures. The speedup increases to 9x at about 0.15 million neurons and the speedup

stays at that value until 4.67 million neurons after which it starts to diminish until finally

at 5.8 million neurons there is a slow down instead of a speedup. We have investigated

the cause of the diminishing speedup beyond 4.67 million neurons. There is no capacity

 56

or conflict cache misses involved in this case because the SPUs directly read data from

DRAM through the DMA engine and put the data to its local store. Since the programmer

manages the data transfer between the SPUs and DRAM, cache misses are ruled out. If

the programmer puts more data in the local store than its capacity, the program crashes.

Thus the only reason for the diminishing performance is that the working dataset exceeds

the DRAM size. The network of 4.67 million neurons requires a total of 925 MB of data

whereas the DRAM size is only 512 MB. Thus, this size network uses swap space on the

hard disk to get the required data for updating the neurons. It is well known that the hard

disk bandwidth is lower than the DRAM bandwidth; for this reason, the data

communication time becomes much higher than the case where the working dataset fits

in the DRAM (for example, 512 MB DRAM can accommodate a working dataset of 1.44

million neurons, which requires only 286 MB of data). For 5.8 million neurons, the

speedup is 0.1, which means the parallel code in the PS3 is 10 times slower than the

serial implementation. This speedup is much worse than the previous network sizes

because it requires 1.14 GB of data, which will require more frequent accesses to the hard

disk, degrading the performance.

5.2.3 Morris-Lecar Model

Figure 5.4 shows the speedup of the Morris-Lecar model for the four architectures.

The GPGPU performs the best among all the architectures for this model. The GPGPU‘s

performance initially grows with the network (problem) size until it begins to saturate at

about 169x for a network size of 1.4 million neurons. The peak speedup of the GPGPU is

187.8x, which is higher than that observed for the Izhikevich and Wilson models. The

 57

higher performance is possible because the flop:byte ratio for this model is higher, 4.71.

Additionally, the Morris-Lecar model equations have hyperbolic functions that can be

optimized by using the native math functions.

Figure 5.4. Morris-Lecar model: Speedup performance of the

four architectures over Intel Core 2 Quad

The Xeon performance increases with the network size until it reaches 78x at 1.44

million neurons where it begins to saturate. The peak speedup of the Xeon, 78x, is

significantly higher for the ML model than the Izhikevich or Wilson models because of

the higher flop:byte ratio. There is not a noticeable maxima in the performance like the

Izhikevich and Wilson cases because, though the working dataset for larger networks

with this model exceeds the cache size of the Xeon and increases the number of capacity

and conflict misses, the ML model has enough computation to amortize the increased

data communication time. The Opteron performance initially increases until 65x at 2.8

0

40

80

120

160

200

0 2 4 6

S
p

e
e
d

u
p

Neurons (million)

Speedup of Fermi

Speedup of Xeon

Speedup of AMD

Speedup of PS3

 58

million neurons where it saturates. The Opteron performance curve always stays below

that of the Xeon due to the reasons explained earlier for the Izhikevich model.

The PS3 performance curve for the ML model initially grows to 59x at 0.9 million

neurons and then saturates. The PS3 speedup for this model is larger than that of the

Izhikevich and Wilson models again because of the model‘s higher flop:byte ratio.

5.2.4 Hodgkin-Huxley Model

Performance of the HH model on the four architectures is very different from the

other three models as seen in Figure 5.5. With this model a significant speedup is

achieved and the GPGPU clearly outperforms the other architectures. The peak speedup

of 945x was observed for 5.8 million neurons. A substantial speedup was expected and

seen for the GPGPU implementation since this model involves a significantly higher

flop:byte ratio, 6.02 as shown in Table 5.1. There are several other reasons for achieving

such a significant speedup for this model. First, the working dataset involved for this

model (131 MB data for 5.8 million neurons) fits in the GPGPU global memory (1.5

GB), which means there are no cache or DRAM misses. In the other architectures,

conflict and capacity misses cause the degradation of performance. Second, a significant

and parallelizable number of flops are involved in this model, (265 flops/neuron, 416

Gflops for 5.8 million of neurons), which is the highest of all the models. We have

verified with the CUDA profiler that the kernel execution time accounts for the 98% of

the runtime and the host-to-device data communication time is only 2%. Thus, the

highly-parallel execution model of the GPGPU, (each thread updates each neuron) can

vastly improve the floating-point performance and in turn, the overall performance.

 59

Third, there are math functions, such as exponential functions, in this model that can

benefit from native math optimizations, which in this case improve the performance

without losing noticeable precision. Fourth, all of the other available optimization

techniques (such as fast math optimization, reducing conditional statements) are applied

to this model (as explained elaborately in Section, 6.1) and further improve the

performance.

Figure 5.5. Hodgkin-Huxley model: Speedup performance of the four

architectures over Intel Core 2 Quad

Performance of the Xeon and Opteron initially grows but saturates at 88x and 68x

respectively at 0.5 million neurons. No maxima is observed in the Xeon or AMD speedup

curves for this model; although the working dataset is larger than the cache size causing

capacity and conflict misses, the model has enough parallelizable computation to

amortize the increased communication cost.

As seen in Figure 5.5, the PS3 performance for the HH model has an initial increase

up to 70x at 0.5 million neurons and then saturates until 2.8 million neurons where it

0

200

400

600

800

1000

0 2 4 6

S
p

e
e
d

u
p

Neurons (millions)

Speedup of Fermi

Speedup of Xeon

Speedup of AMD

Speedup of PS3

 60

begins to fall. This behavior is attributed to the main memory size of the PS3, which is

only 512 MB. The network of 0.5 million neurons requires a data size of only 106 MB,

which fits into the main memory. Once the data size increases beyond the capacity of

main memory, which occurs for a network size of 2.8 million neurons (requires 581 MB

data), the performance begins to decline. Network sizes of 2.8 million neurons and larger

will therefore cause page table misses and use the swap space located on the hard-disk.

This abrupt increase in data communication overhead needed to move data in and out of

main memory causes a decrease in performance as seen in Figure 5.5 for networks of 2.8

million neurons and larger. At the maximum size of the network, 5.8 million neurons, we

still see a speedup of 16x, where for the Wilson model a speedup of 0.1x was observed

for this size. Though the HH model and the Wilson model have the same working dataset

size, the HH model has significantly higher flops/neuron than that of the Wilson model

(264 flops as opposed to 37 flops), allowing the computation to amortize the

communication cost.

5.3 Impact of Optimization Techniques

The impact of optimization techniques on performance is useful for parallel program

development for GPGPU and multicore architectures. For each of the multicore

architectures, two network sizes are selected to study the effects of optimizations on

performance. All four base architectures use the maximum network size (5.8 million) and

the second size is selected based on the location of the maxima in the performance graphs

(Figures 5.2-5.5).

 61

5.3.1 Fermi GPGPU

The mapping of the two-level neural network on the GPGPU architecture has been

discussed in detail in Section 4.3 of Chapter 4. As mentioned in Section 4.3, the

computationally dense level 1 neuron dynamics are performed on the GPGPU while the

level 2 neuron dynamics are evaluated by the host processor. In each simulation cycle,

the GPGPU device provides the host processor with the level 1 firing information so that

the level 2 neuron dynamics can be evaluated.

Three primary optimization strategies have been used in this research with the CUDA

programming model: Memory Optimization, Execution Configuration, and Instruction

Optimization [112]. Prior to presenting each of the implementations, we first briefly

describe these primary optimizations.

Several memory optimization strategies can be found in [85]; in this sub-section we

introduce the optimization techniques used in this study. First, frequent host-device

transfers must be reduced since the host-device bandwidth is several orders of magnitude

smaller than the device-device bandwidth. It is highly beneficial to transfer all relevant

data to the device memory for processing and later transfer the data back to host memory

once all operations are finished. Host-device communication can be overlapped with

kernel execution using Zero Copy (Z). Nvidia‘s Fermi architecture with compute

capability 2.0 has a significantly different memory structure from previous GPGPU

devices with the introduction of L1 and L2 caches. The Fermi architecture also allows the

user to configure the amount of L1 cache and shared memory used. From the 64 KB of

on-chip memory, 48 KB can be configured either as L1 cache or shared memory. The

 62

user is also allowed to cache the global memory either in L2 cache alone or both in L1

and L2 caches [85]. Caching the global memory can promote performance improvement

in applications that involve frequent global memory data accesses or those that suffer

from register pressure. Software-Prefetching (SP) is another optimization technique that

can be used to cache the computation variables in on-chip registers, providing faster

access. Alternatively, Shared Memory (SM) can be used instead of registers to alleviate

register pressure. As explained in [112], SM has been used in our research to minimize

the communication between the device and the host.

Execution Configuration Optimization is an effective method to hide latency for

memory bound kernels. Execution configuration is related to the number of threads per

block. Varying the number of threads per block changes the multiprocessor occupancy

(the ratio of the number of warps running on the multiprocessor to the maximum number

of warps that can physically run on the multiprocessor). The CUDA profiler provides

information about the multiprocessor occupancy. The number of threads per block should

remain a multiple of 32 to facilitate coalescing and sufficiently large, typically greater

than or equal to 192.

Instruction-level Optimization involves the use of fast math functions and Reduced

Conditional Statements (RCS). The use of fast math results in fewer clock cycles for the

instruction at the expense of reduced accuracy. The compiler optimization –

use_fast_math forces compiling arithmetic functions as fast math functions. RCS reduces

divergent paths taken within a warp since divergent paths are serialized resulting in

reduced performance.

 63

The three GPGPU implementations presented constitute a hierarchy where

optimization techniques are successively added to the implementation [112]. All of the

implementations in the hierarchy use the execution configuration optimization where a

block-size is chosen that promotes maximum performance. Implementation 1 is the most

basic implementation in the hierarchy that uses direct global memory accesses and

software prefetching (SP).

Implementation 2 further enhances the global memory performance with the use of a

block firing vector [116]. As mentioned in [116], the block firing vector acts as a

collection of flags for a thread block and hence is blocksize magnitude smaller than the

original firing vector (collection of flags for all the threads). If at any time-step the block

firing vector contains information of a firing event, only then will the entire global firing

vector be transferred from the device to host (an improvement over Implementation 1 in

data transfer overhead). This technique avoids unnecessary reads of the global firing

vector by the host thereby reducing the overall application time. Section 4.3 detailed the

concept of the block firing vector. CUDA Implementation 2 also uses Zero Copy (Z) to

overlap host-device communication with the kernel computation and the cache-load

scheme where global memory is cached using both L1 and L2 caches. Implementation 3

adds instruction level optimizations, including RCS and fast math functions.

5.3.1.1 CUDA Results

 64

For each of the four SNN models, we present and contrast the performance of the

three implementations developed by successively adding the common optimization

techniques.

The performance for the Izhikevich model using CUDA is presented in Figure 5.6.

Implementation 1 utilizes simple coherent global memory accesses to the device memory

for computation. As explained earlier in Section 6.1, Implementation 1 requires transfer

of the global firing vector from device to the host in each time-step. Thus this

implementation is the least efficient of the three implementations with a speedup of 7.66x

for the largest network size. Implementation 2 adds the concept of the block firing vector,

which is blocksize order of magnitude smaller than the original firing vector.

Consequently, the size of the data that must be transferred from the device to the host in

each time-step is reduced by the order of blocksize. Additionally, the software time is

reduced since the host is required to read the complete firing vector only if the block

firing vector contains any firing information. Implementation 2 achieves a speedup of

13.2x for the largest network size. Implementation 3 of the Izhikevich model adds

instruction level optimizations to reduce conditional statements and increase performance

of mathematical functions. A maximum speedup of 17.1x was achieved for this

implementation. A detailed study of these results using the profiler counter can be found

in [112].

 65

Figure 5.6. Speedup vs. network size for various

optimizations: Izhikevich model on Nvidia Fermi

using CUDA

Figure 5.7. Speedup vs. network size for various

optimizations: Wilson model on Nvidia Fermi using

CUDA

Imp 1: Multithreading (MT) and Software Prefetching (SP)

Imp 2: Local Memory (LM) and Memory Write (MW)

Imp 3: Unsafe Math (UM), Native Math (NM), Reducing Conditional Statement (RCS)

Performance of the Wilson model using CUDA is presented in Figure 5.7. The

Wilson model is communication bound and has a higher flops/byte ratio (1.52 vs 0.99 for

the Izhikevich model). Implementation 1 of the Wilson model achieved a speedup of

14.7x for the largest network size, 5.8 million neurons, while Implementation 2 again

improves performance with the efficient use of the block firing vector. The detailed study

of this model using the CUDA profiler can be found in [112]. Further investigation with

the CUDA profiler showed an improved instruction throughput, accounting for the

improved performance. Implementation 3 has a performance gain over Implementation 2

due to the instruction level optimizations of the Wilson model.

0

5

10

15

20

9.3E+3 2.3E+5 9.2E+5 1.4E+6 5.8E+6

Sp
e

e
d

u
p

Number of Neurons

Imp 1

Imp 2

Imp 3

0

5

10

15

20

25

9.3E+3 2.3E+5 9.2E+5 1.4E+6 5.8E+6

S
p

e
e

d
u

p

Number of Neurons

Imp 1

Imp 2

Imp 3

 66

Figure 5.8. Speedup vs. network size for various

optimizations: Morris-Lecar model on Nvidia Fermi

using CUDA

Figure 5.9. Speedup vs. network size for various

optimizations: HH model on Nvidia Fermi using

CUDA

Performance results for the three implementations of the Morris-Lecar model using

CUDA are shown in Figure 5.8. Implementation 1 of the ML model achieves a speedup

of 47.6x for the largest network size, while Implementation 2 improves performance and

achieves a speedup of 89x using a block firing vector. Implementation 3 achieves a

significantly higher speedup of 191x due to the increased computational requirements of

the ML model.

The performance results for the three implementations of the Hodgkin-Huxley model

using CUDA are shown in Figure 5.9. The HH model is the most computationally

intensive of the four studied in this research, so it exhibited the largest performance gains

from the various optimizations. Implementation 1 is the most basic of the three

implementations with a speedup of 134x for the largest network size, while

Implementation 2 achieves a speedup of 437x. Implementation 3 of the HH model adds

instruction level optimizations. Since the HH model involves a considerable amount of

computation (247 bytes per neuron update), the kernel extracts significant performance

0

20

40

60

80

100

120

140

160

180

9.3E+3 2.3E+5 9.2E+5 1.4E+6 5.8E+6

Sp
e

e
d

u
p

Number of Neurons

Imp 1

Imp 2

Imp 3

0

200

400

600

800

1000

9.3E+3 2.3E+5 9.2E+5 1.4E+6 5.8E+6

Sp
e

e
d

u
p

Number of Neurons

Imp 1

Imp 2

Imp 3

 67

benefits using RCS and fast math optimizations, giving Implementation 3 a maximum

speedup of 919x.

The above explanations are summarized in Table 5.2. In this table we have

qualitatively compared the performance characteristics of CUDA for the four neuron

models. As seen in the table, the Izhikevich and Wilson models effectively utilize the

memory level optimizations (communication parallelization) because of its low flop/byte

ratio; thus, Implementation 2 provides the most performance gain. On the other hand, for

the same reason, these two models cannot effectively utilize instruction level

optimizations (computation parallelization), for which, Implementation 3 provides lower

performance gain. The opposite is seen for the ML and HH models because of their high

flop/byte ratio.

Table 5.2. Performance summary of CUDA on the Fermi GPGPU

Model
Flops/

Neuron

Byte

/neuron

Flops

/byte
Bound

Utilization of

Communication

Parallelization

/Effectiveness

Utilization of

Computation

Parallelization

/Effectiveness

Izhikevich 13 20 0.99 Memory High/Low Low/Low

Wilson 38 44 1.52 Memory High/Low Low/Low

Morris-

Lecar
147 28 8.65 Computation Low/Low High/High

HH 246 44 9.84 Computation High/Low High/High

5.3.2 Intel Xeon

The Intel Xeon implementation of the Izhikevich model with the largest network, 5.8

million neurons, did not show significant performance improvement with the SSE and SP

optimizations because of the low flop:byte ratio (see Figure 5.10). For the smaller

network size, 0.9 million neurons, the speedup grows significantly as the optimizations

 68

are added one by one. For the Wilson model with both the network sizes, SSE improves

the performance significantly while SP provides only a slight improvement. SP has

nominal effect in the Wilson model because the variables are only accessed a few times;

SP can improve the performance significantly if the variables in a model are frequently

accessed. For both network sizes of the ML model, the SSE techniques provide a

significant speedup on the Intel Xeon architecture whereas SP provides only a nominal

speedup (see Figure 5.11). Similar to the Wilson model, the ML model only accesses the

variables a few times. On the other hand, for the HH model, all of the optimization

techniques provide significant speedup.

Figure 5.10. Intel Xeon speedup (8 cores) with

different optimization techniques applied for the

Izhikevich and Wilson models

Figure 5.11. Intel Xeon speedup (8 cores) with

different optimization techniques applied for the

Morris Lecar and Hodgkin-Huxley models

(pth: POSIX thread, SSE: Streaming SIMD Extension 3, SP: Software Prefetching)

0

10

20

30

40

50

60

Pth Pth_SSE Pth_SSE_SP

Opmization

S
p
e
e
d
u
p

Izhikevich-0.9 million

Izhikevich- 5.8 million

Wilson-0.9 million

Wilson-5.8 million

0

20

40

60

80

100

Pth Pth_SSE Pth_SSE_SP

Optimization

S
p
e
e
d
u
p

ML-0.9 million

ML-5.8 million

HH-0.9 million

HH-5.8 million

 69

Figure 5.12. AMD Opteron speedup (8 cores)

with different optimization techniques applied for

the Izhikevich and Wilson models

Figure 5.13. AMD Opteron speedup (8 cores)

with different optimization techniques applied

for the Morris-Lecar and Hodgkin-Huxley

model

5.3.3 AMD Opteron

For the AMD Opteron, the same optimization techniques used for the Intel Xeon were

applied as shown in Figures 5.12 and 5.13. For the smaller network using the Izhikevich

and Wilson models, all of the optimizations provide significant speedup; while in the

largest network, the improvement is nominal. For the largest network, the effect of cache

misses halts further performance gain and thus, the effect of the optimization is negated.

For the ML and HH models, the pthreading technique and SSE optimization has the

most effect on performance for both network sizes as shown in Figure 5.13. SP does not

have a significant effect because the ML model does not access the variables many times.

5.3.4 Cell BE (PS3)

In Figure 5.14, the performance with available optimization techniques for the PS3

using the Izhikevich and Wilson neuron models is shown. From the figure, we observe

0

5

10

15

20

25

30

35

40

Pth Pth_SSE Pth_SSE_SP

Optimization

S
p
e
e
d
u
p

Izhikevich-0.15 million

Izhikevich- 5.8 million

Wilson-0.15 million

Wilson-5.8 million

0

10

20

30

40

50

60

70

80

Pth Pth_SSE Pth_SSE_SP

Optimization

S
p
e
e
d
u
p

ML-0.15 million
ML-5.8 million
HH-0.9 million
HH-5.8 million

 70

that for the Izhikevich model (for both network sizes of 5.8 million and 2.8 million

neurons), multithreading and SIMD computation techniques contribute the most to the

performance. Other optimization techniques do not have a significant effect on the

performance because the communication time dominates the computation as detailed in

the Section 5.2. For the Wilson model, the effect of optimization is only studied for the

2.8 million neurons. For this size, most of the performance gain comes from the MT and

SIMD computation; other optimization techniques have a nominal effect on the

performance because this implementation is also heavily dominated by the data

communication time. For the largest network (5.8 million neurons), the PS3 did not

provide any speedup and thus we do not report any effect of optimization for this network

size.

Figure 5.14. PS3 speedup (6 SPUs) with

different optimization techniques applied for

Izhikevich and Wilson model (Note: Only 2.8

million is shown for Wilson model as 5.8

million did not produce any speedup)

Figure 5.15. PS3 speedup (6 SPUs) with

different optimization techniques applied for

Morris-Lecar and Hodgkin-Huxley models

(ST: Single Thread, MT: Multithread; SC: SIMD computation, DB: Double Buffering, RCS:

Reduced Conditional Statement, LU: Loop Unrolling, SP: Software Pipelining)

0

4

8

12

16

20

S
T

M
T

M
T

_
S

C

M
T

_
S

C
_
D

B

M
T

_
S

C
_
D

B
_
R

C
S

M
T

_
S

C
_
D

B
_
R

C
S

_
L
U

M
T

_
S

C
_
D

B
_
R

C
S

_
L
U

_

S
P

Optimization

S
p
e
e
d
u
p

Izhikevich-2.8 million

Izhikevich- 5.8 million

Wilson-2.8 million

0

20

40

60

80

S
T

M
T

M
T

_
S

C

M
T

_
S

C
_
D

B

M
T

_
S

C
_
D

B
_
R

C
S

M
T

_
S

C
_
D

B
_
R

C
S

_
L
U

M
T

_
S

C
_
D

B
_
R

C
S

_
L
U

_
S

P

Optimization

S
p
e
e
d
u
p

ML-2.8 million

ML-5.8 million

HH-2.8 million

HH-5.8 million

 71

For the ML model with both network sizes (Figure 5.15), all of the optimization

techniques except SP contribute to the performance. SP does not contribute much to the

performance because the variables are not accessed many times as discussed in Section

5.2. For the HH model with a network size of 2.8 million neurons, the performance

increases with each additional optimization technique. But for 5.8 million neurons, the

loop unrolling (LU) and software pipelining (SP) techniques reduce the speedup, because

for these optimizations, more instructions must be accommodated in the local store of the

SPU resulting in more data transfer (i.e. more communication and overhead). Thus the

speedup improvement achieved by LU and SP is negated by the increased

communication cost. For both the HH and ML models, the speedup for the largest

network is less than the smaller network due to DRAM misses, as discussed in the

architecture performance sub-section.

5.4 Impact of Accelerator Configuration

The impact of accelerator configuration on performance is useful for parallel program

development for GPGPU and multicore architectures. We have investigated the effect of

accelerator configuration, such as the addition of cores or threads, on performance.

Though it is generally expected that the addition of cores to an implementation will

improve performance, cases discussed in the following section prove that this is not

always true.

 72

5.4.1 GPGPU

Changing the threads per block in can alter the execution configuration of the Fermi

GPGPU and as a result, change the multiprocessor occupancy. But a higher occupancy

does not always imply better performance, as the performance is influenced by many

factors. However, higher occupancy can help hide memory latency of the multiprocessor

execution in most cases. We have investigated the performance of the GPGPU

implementation for all possible block sizes. We have only reported the top six performers

with their associated block sizes (128 through 1024) in Table 5.3. The performance seen

in this table is achieved with all of the memory and instruction level optimizations

discussed in the previous section. From this table we see that the block size of 192 or 256

provide better performance. Actually, the effect of the block size is dependent upon the

device architecture, features of the applications, and the optimization techniques applied.

Thus for other GPGPU devices from NVIDIA or ATI and for different applications, the

developer should investigate the best configuration for a particular application.

Table 5.3. Fermi GPGPU: Speedup with varying local work group size for four models with network size

of 5.8 million neurons

Block size Izhikevich Wilson ML HH

128 14.31 19.99 185.79 919.34

192 14.28 20.11 188.31 942.11

256 14.41 20.05 187.84 945.07

512 14.40 20.06 186.12 892.30

960 14.21 19.77 178.86 802.73

1024 14.20 19.81 179.39 813.53

 73

5.4.2 X86 (Intel Xeon And AMD Opteron)

Two network sizes are selected to study the performance while varying the number of

processing cores for the Intel Xeon and AMD Opteron. These network sizes are the same

as those used in the optimization techniques study in the previous Section, 5.2. Figure

5.16 shows the performance variation resulting from the addition of processing cores on

the Xeon for both the Izhikevich and Wilson models. The figure shows that the

performance of the Izhikevich model with a network size of 0.9 million neurons increases

almost proportionally with the addition of processing cores. But for a network size of 5.8

million, the scaling is not proportional and after 2 processing cores, there is essentially no

gain from additional cores. The primary reason for this behavior is the increased

communication time compared to computation time; thus the performance gained by the

addition of processing cores is negated by the increased communication time. For the

Wilson model with the smaller network size, adding processing cores provides noticeable

performance improvement except for the 6th core. This anomaly is due to the increased

data communication for the Wilson model and the use of 6 cores further increases the

communication overhead as information must be exchanged across two separate

processors. On the other hand, the compute intensive ML and HH models (shown in

Figure 5.17) scale well with the addition of processing cores for both network sizes

because these two models have a higher flops/byte ratio than the Izhikevich and Wilson

models. Thus, the flops of the ML and HH models are parallelized more effectively

across all the cores.

 74

Figure 5.16. Intel Xeon speedup for increasing

number of cores for the Izhikevich and Wilson

models

Figure 5.17. Intel Xeon speedup for increasing

number of cores for the Morris-Lecar and

Hodgkin-Huxley models

Figure 5.18. AMD Opteron speedup for

increasing number of cores for the Izhikevich

and Wilson models

Figure 5.19. AMD Opteron speedup for

increasing number of cores for the Izhikevich

and Wilson models

For the AMD Opteron, we have reported results for the Izhikevich and Wilson

models for a network size of 0.15 million, where the best performance occurs, and for the

largest network size, 5.8 million in Figure 5.18. The performance as cores are added is

0

10

20

30

40

50

60

1 2 3 4 6 8

Cores

S
p
e
e
d
u
p

Izhikevich-0.9 million

Izhikevich- 5.8 million

Wilson-0.9 million

Wilson-5.8 million

0

10

20

30

40

50

60

70

80

90

1 2 3 4 6 8

Cores

S
p
e
e
d
u
p

ML-0.9 million

ML-5.8 million

HH-0.9 million

HH-5.8 million

0

5

10

15

20

25

30

35

40

1 2 3 4 6 8

Cores

S
p
e
e
u
p

Izhikevich-0.15 million

Izhikevich- 5.8 million

Wilson-0.15 million

Wilson-5.8 million

0

10

20

30

40

50

60

70

1 2 3 4 6 8

Cores

S
p
e
e
d
u
p

ML-0.15 million

ML-5.8 million

HH-0.9 million

HH-5.8 million

 75

similar to that for the Xeon and the same explanation can be applied. For the ML and HH

models (Figure 5.19), except for the smaller image size with the HH model, we find a

similar trend to that of the Intel Xeon and the same explanation can also be applied. For

the smaller network size with the HH model, the speedup decreases beyond 4 cores due

to the additional communication overhead.

5.4.3 PS3

Figure 5.20 shows the performance variation for the PS3 architecture as the number

of SPUs is varied for the Izhikevich and Wilson neuron models. In this study, the

network sizes are the same as those used in the optimization techniques study for the PS3

(5.2). In the figure we see that the Izhikevich model with network sizes 5.8 million and

2.8 million, moving from 1 SPU to 2 SPUs, the speedup increases significantly; beyond

2 SPUs, the speedup grows marginally. This behavior is attributed to the increased

communication and overhead time for the models, which cannot be parallelized by

adding SPUs. For the Wilson model, the variation of speedup with the cores is only

shown for the case of 2.8 million neurons because the speedup for the other size is very

low and no variation is noticed when adding processing cores. It is found that after 3

cores, the speedup does not increase with of the addition of more cores. This model is

communication bound and the addition of processing cores does not help to reduce the

communication time.

 76

Figure 5.20. PS3 speedup for increasing number of

SPUs for the Izhikevich and Wilson models

Figure 5.21. PS3 speedup for increasing

number of SPUs for the Morris-Lecar and

Hodgkin-Huxley models

For the ML model (Figure 5.21), adding PS3 processing cores provides almost linear

speedup. The ML model requires more flops than the previous two models and has

approximately the same amount of data transfer as the Izhikevich model. For the HH

model with a network size of 2.8 million, it is observed that the addition of SPUs causes

the speedup to grow almost proportionately. For the largest network size, 5.8 million, the

communication time increases more than the computation time and the resulting speedup

is slightly lower than that of the smaller network sizes. It is also notable that the speedup

with 6 SPUs is slightly lower than that for 4 or 5 SPUs. This change most likely occurs

due to the congestion in the EIB of the PS3. The EIB has only four lanes to transfer data

between the SPU and DRAM. So when 6 SPUs issue a DMA request for data from the

DRAM, the request processing time is increased due to the number and size of requests.

Thus, repeated DMA requests will be issued, further increasing the communication time

and eventually negatively impacting the performance.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

SPUs

S
p
e
e
d
u
p

Izhikevich-2.8 million

Izhikevich- 5.8 million

Wilson-2.8 million

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

SPUs

S
p
e
e
d
u
p

ML-2.8 million

ML-5.8 million

HH-2.8 million

HH-5.8 million

 77

5.5 Advanced Multicore and GPGPU Performance

Advanced multicores such as Intel 32-core, AMD 32-core, SUN T2 UltraSparc 32-

core, and IBM PowerXCell based QS22 16-core were also studied in this research. In this

section, we discuss the implementation of the four SNN models on these advanced

architectures and report the performance results. For the advanced multicores, we focus

on the performance variation of the architectures with the number of threads. These

performance results will be used during development of the regression performance

models for the advanced multicore architectures in Chapter 7.

5.5.1 Intel 32 Core

With early access to the Intel 32-core processors at the Intel Many Core Testing Lab,

we have run the four SNN models for a network size of 9.7 million neurons. The

performance of the four models as the number of threads increases is presented in Figure

5.22. The processor supports a multi-threads per core configuration. Thus a maximum of

64 threads were created to accelerate the SNN models. From Figure 5.22, we see that the

performance of all four models increases until the number of threads reaches 32, where

there are more threads than cores.

 78

Figure 5.22. Speedup of Intel 32-core with varying number of threads

for all four models

5.5.2 AMD 32 Core

The performance of the AMD 32-core processor with varying number of cores is

shown in Figure 5.23. The performance of the Morris-Lecar and HH models is higher

than that of the Izhikevich and Wilson models. Also, except for the Wilson model, the

performance increases with an increase in the number of threads until 32, where the

number of threads is equal to the number of cores.

0

50

100

150

200

250

300

1 2 4 6 8 16 32 64

Threads

S
p

e
e
d

u
p

Izhikevich

Wilson

Morris

HH

 79

Figure 5.23. Speedup of AMD 32-core with varying number of threads for all

four models

5.5.3 SUN T2+ UltraSPARC (16 Core)

The performance of the SUN T2+ UltraSPARC with varying number of threads is

shown in Figure 5.24. The performance for the Morris-Lecar and HH models is higher

than that of the Izhikevich and Wilson models. Also, the performance increases with

Figure 5.24. Speedup of SUN 16-core with varying number of threads for all

four models

0

20

40

60

80

100

120

140

1 2 4 6 8 12 16 20 24 28 32 48 64 128

Threads

Sp
ee

d
u

p

Izhikevich

Wilson

Morris

HH

0

5

10

15

20

25

30

35

40

1 2 4 6 8 12 16 20 24 28 32 48 64 128
Threads

Sp
ee

d
u

p

Izhikevich

Wilson

Morris

HH

 80

increasing number of threads until the thread count reaches 128, even though there are

only 16 cores. The maximum speedup achieved from the SUN UltraSparc is 37x, which

is far lower than that of the Intel or AMD many-cores but the performance increases

rather than saturates until the maximum number of threads, 128, which did not happen for

the Intel or AMD many-core architectures.

5.5.4 IBM PowerXCell 8i-based QS22 (16 Core)

Figure 5.25. Speedup of QS22 16-core with varying number of threads for

all four models

The performance of the QS22 with varying number of cores is shown in Figure 5.25.

The performance for the Morris-Lecar and HH models is much higher than that of the

Izhikevich and Wilson models. Also, the performance for the Izhikevich and Wilson

models does not increase with the increase of threads after 2 cores. The reasons for this

observation are similar to those discussed for the PS3. For the Morris-Lecar and HH

models, the performance increases with the increase of threads. The maximum speedup

0

20

40

60

80

100

120

140

1 2 3 4 6 8 12 16
Threads

Sp
ee

d
u

p

Izhikevich
Wilson
Morris
HH

 81

achieved from QS22 is 125x, similar to the Intel or AMD many-core architectures. For

the QS22, threads more than the total number of cores cannot be created. Thus we could

not verify if the performance changes with more threads than cores.

5.6 Summary

In summary, the experimental results in this chapter provide insight on various

aspects of the performance of accelerator architectures. We have analyzed the

performance variation of base set of four accelerators by varying the problem size of the

applications, optimization techniques, and accelerator configurations. The effect of

threading technique on advanced multicore processors is also investigated. The effect of

software tools (such as POSIX-threading vs. OpenCL, OpenCL vs. CUDA) on the

performance of accelerators is discussed next in Chapter 6. The results and analysis from

this chapter and those of Chapter 6 will be used to develop the Fitness model and

regression models for the impact of programming models on performance in Chapter 7.

The performance models are then verified in Chapter 8, based on the data presented in

Chapters 5 and 6.

 82

Chapter 6

Programming Model Impact On Performance

The programming model used in algorithm development for accelerator architectures

can have a positive or negative effect on performance. In this section, we investigate the

effect of a) CUDA and OpenCL for GPGPU implementation, and b) POSIX-threading,

OpenMP, Concurrency Runtime, and OpenCL for multicore implementation. First, we

will describe the GPGPU programming models and then, we will discuss the x86

programming models.

6.1 GPU Programming Models

 Two of the most populare and widely used GPGPU programing models are:

CUDA and OpenCL. We have analyzed the effect of both the programming models on

Nvidia Fermi GPGPU in this section. The resulting performance of the SNN case study

was found to be better with the CUDA implementation than the OpenCL implementation

on the NVIDIA Fermi. A maximum performance of 976.2x was observed for the largest

network size (3120 x 3120) with the CUDA implementation, whereas the OpenCL

implementation only achieved 878.4x for the same network size. Turning ECC off

yielded a speedup of 1095x with the CUDA implementation and 1074x with the OpenCL

implementation, for the largest network size (3120 x 3120).

 83

6.1.1 CUDA

The implementations of SNN using CUDA programming models on Nvidia Fermi is

detailed in Section 5.3.1. The performance analysis of Nvidia with CUDA for various

optimizations is also reported in the same section. Thus, for the description of CUDA

results we refer to that section.

6.1.2 OpenCL

There are minor differences between the CUDA and OpenCL implementations and

optimizations for the SNN models. OpenCL provides several optimization techniques

that can be employed for optimal performance. These techniques can be classified as

Memory-Level and Instruction-Level optimizations. The optimization techniques used in

this study are, a) Multithreading (MT), b) Software Prefetching (SP), c) Local Memory

(LM), d) Memory Write (MW), e) Native Math (NM), f) Unsafe Math (UM), and g)

Reducing Conditional Statement (RCS).

While some of the optimizations for OpenCL are similar to CUDA, some are specific

to the particular programming model. In this study, the Zero Copy technique and cache

preference settings were applied for CUDA implementations but were unavailable with

the OpenCL 1.0 implementation from Nvidia. On the other hand, the use of the MW

optimization is only used with OpenCL. All other optimization techniques for OpenCL

are similar to those used with CUDA.

For OpenCL, the Memory-Level Optimizations include SP, the use of MW, and the

use of LM. The SP technique is similar to that of CUDA. In the OpenCL

 84

implementation, while sending the array from the host to the GPGPU, the

clCreateBuffer() function was used to create a buffer and copy data from the host to the

GPGPU. The MW optimization creates a buffer in the initialization part of the

application and then the function clMemWrite() is used inside the execution loop of the

host function, achieving better performance. The technique of using LM is similar to

using Shared Memory with CUDA as described in the sub-section 4.4.2 and shown in

Figures 4.1 and 4.2.

Instruction-Level Optimizations for OpenCL provide NM functions that are optimized

versions of exponentials, trigonometric, and other complex functions. These native

functions provide improved speed with some loss of precision. These functions are to be

used cautiously so that any errors in precision do not negatively impact the overall

results. Another performance improvement technique used with OpenCL is called UM

optimizations where the compiler optimizes floating-point arithmetic in the kernel, but

this process may violate the IEEE 754 standard and OpenCL numerical compliance

requirements. Therefore, this technique should also be used cautiously. The last applied

optimization is RCS, also used with CUDA.

6.1.2.1 Results

We now discuss the performance of the four SNN models with three OpenCL

implementations developed by successively adding the optimization techniques. In

Implementation 1, MT and SP were applied. Implementation 2 includes two memory-

 85

level optimizations: LM and MW. The three remaining instruction-level optimizations,

UM, NM, and RCS, are used in Implementation 3.

The performance results of the Izhikevich model using OpenCL are given in Figure

6.1. As seen in the figure, all implementations have a significant impact on performance.

Implementation 1 achieves a speedup of 7.3x for the largest network size, while

Implementation 2 adds memory optimizations for a maximum speedup of 10.2x.

Implementation 3, which uses all instruction-level optimizations, shows further

improvement in kernel performance with a speedup of 15.1x. As seen in the graphs, the

maximum speedup (15.1x) for the Izhikevich model with OpenCL is slightly lower than

that for CUDA (17.1x). The maximum performance for the Izhikevich model is the

lowest among all models because it is a computation bound model, as discussed earlier in

this chapter.

The performance results for the Wilson model using OpenCL are presented in Figure

6.2. This model is also communication bound with a flop/byte ratio of 1.52, similar to the

Izhikevich model. Thus the impact of the three implementations for this model is

expected to be similar to the Izhikevich model results. All implementations provide

significant performance improvement. Most notably, the speedup of Implementation 3

for the largest network size is 21.3x, slightly lower than the CUDA speedup for the same

model (23.5x).

 86

Figure 6.1. Speedup vs. network size for

various optimizations: Izhikevich model on

Nvidia Fermi using OpenCL

Figure 6.2. Speedup vs. network size for

various optimizations: Wilson model on Nvidia

Fermi using OpenCL

Impl. 1: Multithreading (MT) and Software Prefetching (SP)

Impl. 2: Local Memory (LM) and Memory Write (MW)

Impl. 3: Unsafe Math (UM), Native Math (NM), Reducing Conditional Statement (RCS)

Performance for the ML model with OpenCL for the ML model is shown Figure 6.3.

As can be seen from the figure, performance for this model is much higher than the

previous two models (145x vs. 21.3x for the Wilson model). Similar to CUDA, this

observation can be attributed to the higher flop/byte ratio of the ML model (Table 5.1 of

Chapter 5). Though all the implementations provide noticeable improvement in

performance, Implementation 3 provides the best performance. This result is expected,

since the ML model uses several transcendental math functions that are optimized and

accelerated using the instruction-level optimizations like UM and NM. Compared to

CUDA, the maximum speedup of OpenCL for the ML model is slightly lower, 145x with

OpenCL vs. 155x with CUDA.

0

2

4

6

8

10

12

14

16

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

0

5

10

15

20

25

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

 87

Figure 6.3. Speedup vs. network size for various

optimizations: Morris-Lecar model on Nvidia

Fermi using OpenCL

Figure 6.4. Speedup vs. network size for various

optimizations: HH model on Nvidia Fermi using

OpenCL

The performance results for the three implementations of the HH model are shown in

Figure 6.5. Significant performance gains with the HH model are achieved with

OpenCL: 884x for the largest network, which is the highest among the four SNN models.

The highest speedup for the HH model with OpenCL, 884x, is however slightly lower

than that with CUDA, 918.6x. Implementation 2 provides the best performance gains

among all implementations. Implementation 2 utilizes mainly LM optimizations that

reduce accesses to global memory and data transfers between host and device. Since the

HH model requires an order of magnitude more simulation cycles than the other models

(roughly 400 cycles compared to about 30 cycles for the Wilson model), reducing the

data transfer in each cycle contributes significantly to performance. Implementation 3

also provides noticeable performance gain because of the acceleration of transcendental

functions in this model. Analysis of the profiler results can be found in [112].

0

20

40

60

80

100

120

140

160

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

0

100

200

300

400

500

600

700

800

900

1000

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

 88

The observations are similar to those summarized in Table 5.2 of Chapter 5 for the

CUDA programming model. We see that the performance gain for Implementation 3 of

the HH model (i.e., instruction-level optimizations) with OpenCL is significantly lower

than that with CUDA. The instruction-level optimizations, specifically NM and FM

optimizations provide more performance gain in CUDA than in OpenCL because

CUDA, a native language for Fermi, takes full advantage of the Fermi math hardware as

opposed to OpenCL, which is a generalized language for multiple GPGPU and CPU

architectures.

6.2 Multicore Programming Models

In this section we will discuss the effect of four multicore-based programming models

on the performance of Intel x86 processor, Intel i7.

6.2.1 POSIX-threading

On Intel architectures, three types of optimizations are applied with POSIX-

threading: 1) POSIX-threading with multiple thread calls (pthread_multiple); 2) POSIX-

threading with a single thread call (pthread_single); and 3) Software Prefetching (SP).

Pthread_multiple is the base optimization that creates threads and distributes the

computations among them. In this optimization technique, the thread creation is invoked

in every cycle of the simulation resulting in an overhead for creating and joining p-

threads. In the second optimization, pthread_single, threads are created only once instead

of every cycle to minimize this overhead, and each thread runs multiple simulation

 89

cycles. Essentially, the loops (one for the cycle and the other for multiple thread creation)

are swapped to reduce the thread overhead. Finally, in the third optimization (SP), data in

arrays that are used multiple times are loaded into the registers, operated on, and stored

back into the array at the end.

6.2.1.1 Results

The performance from POSIX-threading, also referred to as p-threading, for varying

problem (network) sizes and optimization techniques on the Intel i7 processor are

discussed in this sub-section. The results are organized based on the SNN models.

Figure 6.5. Speedup vs. network size for various

optimizations: Izhikevich model on Intel i7 using p-

threading

Figure 6.6. Speedup vs. network size for various

optimizations: Wilson model on Intel i7 using p-

threading

Impl. 1: p-threading with multiple time thread call (pthread_multiple)

Impl. 2: p-threading with single time thread call (pthread_multiple)

Impl. 3: Software Prefetching

Figure 6.5 shows the performance of the Izhikevich model with p-threading on an

Intel i7 system based on problem network size and optimization technique.

0

5

10

15

20

25

30

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

0

2

4

6

8

10

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

 90

Implementation 1 provides increasing speedup with network size but clearly does not

take full advantage of parallelism. Implementation 2 avoids thread creation and joining in

every simulation cycle, which saves significant overhead and provides a large gain over

its predecessor (from a maximum speedup of 17.8x to 27.9x). Implementation 3 does not

provide additional performance for the Izhikevich model because the algorithm requires

only two arrays per neuron, which are reused only a few times, so there is little

advantage to adding SP.

It should be noted that the speedup for the largest image size is 28x, which is more

than 8x improvement with the 8-core Intel i7, i.e., super linear. With additional threads,

the performance increases in two ways: a) data communication is parallelized with the

presence of a level 1 cache in each core and b) computation is parallelized by the

processor in each core. There is also overhead involved with the parallelization of the

application that negatively affects the performance. Therefore speedup results only if the

time saved by the parallelization of communication and computation is greater than the

overhead time of parallelization. For the Izhikevich model, the overhead is negligible

when the problem size is fairly large as seen in Figure 6.5. Additionally, this model is

memory bound with a flop/byte ratio of 0.99, so parallelization of communication

provides the best performance. This improvement mainly comes from the cache structure

of each processing core and thus is difficult to quantify. The achieved performance

depends on many factors such as the memory access pattern of the application, DRAM

characteristics, cache hierarchy, cache size, cache line size, associatively, cache

replacement policy, etc.

 91

Figure 6.6 shows the performance of the Wilson model with p-threading on an Intel

i7 system. The maximum performance for the Wilson model is slightly lower than that of

the Izhikevich model (9.4x vs. 27.9x) due to the data intensive characteristics of the

Wilson model. Though both models are memory bound, the number of memory accesses

is much higher in the Wilson model than the Izhikevich model (44 bytes vs. 20 bytes),

and thus it has more cache misses than the Izhikevich model. Even though the Wilson

model has more computations per neuron (38 flops vs. 13 flops), this does not have a

significant effect on performance. Peak performance is achieved around the network size

of 230 thousand neurons, a result of the cache size effect. Implementation 2 provides the

largest performance impact, just like with the Izhikevich model. Unlike the previous

model, though, Implementation 3 provides slightly better performance for larger problem

sizes. Since the Wilson model utilizes more arrays (five) that are accessed multiple times,

the implementation gains noticeable benefit from SP.

Figure 6.7. Speedup vs. network size for various

optimizations: Morris-Lecar model on Intel i7

using p-threading

Figure 6.8. Speedup vs. network size for various

optimizations: Hodgkin-Huxley model on Intel i7 using

p-threading

0

2

4

6

8

10

12

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

0

1

2

3

4

5

6

7

8

9

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

 92

Figure 6.7 shows the performance of the Morris-Lecar model with p-threading on an

Intel i7 system. As seen in the figure, the maximum performance for the ML model is

much lower than for the Izhikevich model (10.1x vs. 27.9x). Implementation 2 provides a

noticeable improvement over the initial implementation, but Implementation 3 shows

very little difference. The main reason for this lower speedup is that the ML model is

computationally bound with a flop/byte ratio of 8.65, so most performance gain will

come from the parallelization of computation, which is a maximum of 8x from the

processor‘s 8 cores. The parallelization of communication through the cache does

contribute to performance but does not have a significant impact as it did with previous

models.

Figure 6.8 shows the performance of the HH model with p-threading on an Intel i7

system. The maximum performance is lower than the other three models (7.9x vs. 27.9x

for the Izhikevich model) but similar to the ML model. The major difference with the

HH model is the amount of data accessed per neuron is higher than the Izhikevich and

ML models (44 bytes vs. 20 bytes for the Izhikevich model). Thus the HH

implementation cannot exploit the parallelization of communication to the same degree

as the Izhikevich model.

We have summarized the performance trends of the neuron models with p-threading

on the Intel i7 in Table 6.1. As seen from the table, the performance with p-threading is

the highest for the Izhikevich model because of the high effectiveness of communication

parallelization since it is a memory bound model. On the other extreme, the performance

 93

for the HH model is the lowest, though the utilization of computation is high because a

maximum of 8x performance is plausible from the 8-core Intel i7.

Table 6.1. Performance summary of p-threading on the Intel i7 processor

Model
Flops/

Neuron

Byte

/neuron

Flops

/byte
Bound

Utilization of

Communication

Parallelization

/Effectiveness

Utilization of

Computation

Parallelization

/Effectiveness

Izhikevich 13 20 0.99 Memory High/High High/Low

Wilson 38 44 1.52 Memory Medium/Medium High/Low

Morris-

Lecar

147 28 8.65 Computation Medium/Low High/High

HH 246 44 9.84 Computation Low/Low High/High

6.2.2 OpenMP Implementation

Both function-level and data-level parallelism can be achieved using the OpenMP

model depending on the program‘s design. Independent sections of code can be separated

and run concurrently or a single block, most commonly the iterations of a for-loop, can

be divided among multiple threads. OpenMP has provided significant performance

increases in multicore systems running computationally intensive code that can be

partitioned into individual computation threads while sharing a single memory space,

including matrix multiplication and graph matching algorithms.

The SNN models discussed in this paper typically involve a large number of level 1

neuron calculations that are all independent, so this portion of the code was split among 8

threads to parallelize the computation and send the final result to a shared firing vector

with information for each neuron. After each time step of the algorithm, this level 1

neuron firing vector was used to update the set of level 2 neurons. Since the OpenMP

API is based on a shared memory architecture, options for data sharing and

synchronization were used throughout the implementations to control public and private

 94

data. It was necessary for each thread to read in neuron information from shared memory,

maintain its own values for intermediate variables, and then write back to the shared

firing vector for level 2 neuron calculations.

Two optimizations were made to the code to improve the initial performance of the

OpenMP implementation. First, a dynamic thread scheduler directive was used to

improve efficiency and decrease processor idle time. Rather than dividing the entire

section of parallel work initially and waiting for all threads to finish execution, dynamic

load balancing (DLB) allows for the work to be divided into smaller pieces and assigned

to threads as they complete their allotted work. This task division introduces additional

overhead to the program but ensures minimal processor idle time. Second, fast math

(FM) optimizations were introduced at the compiler level to accelerate the mathematical

functions used in each algorithm (most importantly, the exponentiation function). Care

must be taken with this optimization however, because some of the safeguards of the

IEEE floating point standard are removed, resulting in performance improvement under

the assumption that hazardous data is not used as input to the operation.

 95

6.2.2.1 Results

Figure 6.9. Speedup vs. network size for

various optimizations: Izhikevich model on

Intel i7 using OpenMP

Figure 6.10. Speedup vs. network size for

various optimizations: Wilson model on Intel

i7 using OpenMP

Figure 6.11. Speedup vs. network size for

various optimizations: Morris-Lecar model on

Intel i7 using OpenMP

Figure 6.12. Speedup vs. network size for

various optimizations: HH model on Intel i7

using OpenMP

The results show significant speedup when using OpenMP with 8 cores and threads,

particularly with the computationally intensive Morris-Lecar and Hodgkin-Huxley

models. The basic implementation of the Morris-Lecar algorithm exhibited a speedup of

at least 10.8x with a maximum of 11.0x for the largest image size. The Hodgkin-Huxley

0

2

4

6

8

10

12

9.3K 230k 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

BASE

DLB

FM

0

1

1

2

2

3

3

4

4

5

5

9.3K 230k 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

BASE

DLB

FM

0

2

4

6

8

10

12

9.3K 230k 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

BASE

DLB

FM

0

2

4

6

8

10

12

14

9.3K 230k 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

BASE

DLB

FM

 96

model followed a similar pattern with a minimum speedup of 10.2x for the smallest

image size gradually rising to a maximum speedup of 11.6x for the largest image size.

The Izhikevich and Wilson models also exhibited a consistent speedup, but these

models had a lower flop/memory access ratio so the cores were unable to achieve high

efficiencies. The results of the unoptimized Wilson model ranged from 3.2x to 4.7x

while the Izhikevich algorithm exhibited speedup of 9.2x to 11.1x. Synchronization time

and memory sharing constraints were more significant with these models because of their

shorter run-times, so their speedups were lower. Although the largest block of

computationally intensive code was parallelized, any speedup was limited by Amdahl‘s

Law since larger portions of the code are still serial because of data dependencies and

critical sections.

The results from optimizations were mixed overall and very dependent on which

model and image sizes were being used. For the two least computationally intensive

models, Izhikevich and Wilson, DLB actually showed a slight decrease in performance

from a speedup of 10.9x to 10.8x and 4.6x to 4.4x, respectively. These two algorithms do

not appear to have a significant enough issue with load balancing to warrant the

additional overhead of thread scheduling. In the intermediate case of the Morris-Lecar

model, speedup was unchanged at 11.1x. For the Hodgkin-Huxley model, though, there

was an increase of performance for a speedup of 11.7x from 11.6x. It should be noted

that for all models, DLB performance generally improved as the image size grew. This

result is consistent with the goal of thread scheduling since a larger image size allows for

 97

a greater potential disparity between running times if the workload is not balanced

dynamically.

A pattern also emerged in the results for the FM optimizations. For the first three

models, there was virtually no trend or overall improvement of the performance since

these models appear to be more constrained by memory sharing than any other factor.

For the computationally intensive Hodgkin-Huxley model, though, there was a

significant improvement in every image size giving an overall average speedup of 12.0x

compared to 11.2x for dynamic thread scheduling alone. When running tests with an

image size of over 1 million, speedup of 12.3x was achieved.

Table 6.2 provides a summary of the performance of OpenMP for the four SNN

models. The utilization of parallel communication is low for these models while parallel

computation is high. The memory bound models (Wilson and Izhikevich) exhibited some

performance increase but not as significant as others. OpenMP provided its best

performance for the computation bound models (Morris-Lecar and HH), which is

consistent with these findings.

Table 6.2. Performance summary of OpenMP for the four neuron models on an Intel i7 processor

Model
Flops/

Neuron

Byte

/neuron

Flops

/byte
Bound

Utilization of

Communication

Parallelization

/Effectiveness

Utilization of

Computation

Parallelization

/Effectiveness

Izhikevich 13 20 0.99 Memory Low/High High/Low

Wilson 38 44 1.52 Memory Low/Low High/Low

Morris-

Lecar
147 28 8.65 Computation Low/Low High/High

HH 246 44 9.84 Computation Low/Low High/High

 98

6.2.3 Visual Studio Threading Technique (Concurrency Runtime)

The basic parallelization techniques used with the Concurrency Runtime

programming model are similar to the techniques used with OpenMP. A template pattern

provided with the Concurrency Runtime, called parallel_for, was used to parallelize the

loops in both levels of the network. Parallelization of level 1 and level 2 calculations is a

task-level parallelization that also exploits the work-stealing algorithm. Though level 2

computations are less than 5% of the total computation time, the tasks of both levels are

parallelized and balanced with the work-stealing algorithm. With p-threading and

OpenMP, the parallelization of the two levels would hurt performance since the work-

stealing algorithm does not exist with these programming models. Thus Concurrency

Runtime has more potential than the previous two programming models to exploit both

the task-level and data-level parallelism without issues of load balancing.

Four implementations were used to study the performance of Concurrency Runtime

for the four neuron models: a) loop parallelization using a lock b) loop parallelization

without a lock c) software prefetching (SP) d) parallelization of both the level 1 and level

2 neurons. In Implementation 1, loop parallelization using a lock, only the level 1 neuron

computations are parallelized. In this implementation, a lock is used before updating the

count variable for level 1 neuron firing and only the index of a firing neuron is stored in

the firing vector. The lock causes overhead and thus degrades performance.

Implementation 2 uses loop parallelization without a lock, the lock was removed by

altering the algorithm. In this optimization, instead of counting the total number of firing

neurons and storing the index of these neurons, each position of the firing vector is

 99

upgraded with the firing information of each neuron. After this optimization, the amount

of computation increases slightly since the whole firing vector must be checked for firing

information. The need for a lock is removed at the price of an increase in computation. In

Implementation 3, the SP technique is used. The effect of SP in Concurrency Runtime is

similar to that for p-threading. In Implementation 4, the level 1 and level 2 neurons are

computed in parallel as previously described.

6.2.3.1 Results

Figure 6.13. Speedup vs. network size for various

optimizations: Izhikevich model on Intel i7 using

Concurrency Runtime

Figure 6.14. Speedup vs. network size for various

optimizations: Wilson model on Intel i7 using

Concurrency Runtime

Figure 6.13 shows the performance of the Izhikevich model with Concurrency

Runtime on an Intel i7 system. The maximum speedup for this model is 5.8x. Since the

Izhikevich model is memory bound, a programming model that can parallelize the data

communication will provide better performance. Although the Intel i7 provides

individual level 1 cache for each processing core, it is clear from the figure that

Concurrency Runtime cannot take full advantage of this hardware parallelism. In

0

1

2

3

4

5

6

7

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

Impl. 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

Impl. 4

 100

contrast, p-threading was able to take full advantage of cache-level parallelism and

provided a maximum speedup of 27x. Two performance trends are visible in Figure 6.13.

First, the performance declines with the increase in problem size due to the increased

number of cache misses given that the Izhikevich model is a memory bound model.

Second, Implementation 2 and Implementation 4 provide the best performance.

Implementation 2 removes the need for a lock at the cost of an increase in computation;

the lock is significantly expensive in Concurrency Runtime. In Implementation 4, level 1

and level 2 are parallelized together using the Concurrency Runtime work-stealing

algorithm.

Figure 6.14 shows the performance of the Wilson model with Concurrency Runtime.

The maximum performance for this model is about 3x, which is lower than the

Izhikevich model (27x). The reason for lower performance is attributed to the larger byte

transfer requirement (44 bytes per neuron vs. 20 bytes per neuron for the Izhikevich

model). The scheduling algorithm for Concurrency Runtime cannot take full advantage

of the cache-level parallelism and thus the performance is worse than the Izhikevich

model. Two trends can be seen from the figure. First, a maximum in the performance is

seen due to the cache size of the Intel i7. Second, all of the optimizations could not

provide significant performance improvement, which is likely because the Wilson model

is memory bound with a flop/byte ratio of 1.52 and a larger data access requirement. As

discussed earlier with p-threading, the data communication time dominates any

improvement gained by the optimization techniques.

 101

Figure 6.15. Speedup vs. network size for various

optimizations: Morris-Lecar model on Intel i7

using Concurrency Runtime

Figure 6.16. Speedup vs. network size for various

optimizations: Hodgkin-Huxley model on Intel i7 using

Concurrency Runtime

Figure 6.15 shows the performance of the Morris-Lecar model with Concurrency

Runtime. In this case, a maximum speedup of 12x is notably higher than the previous

two models. This model is a computationally bound model (flop/byte ratio of 8.62 vs.

0.99 for the Izhikevich model) and Concurrency Runtime is able to efficiently divide the

computation among the processing cores. There are three noticeable trends in the results.

First, the performance with Implementation 1 decreases with an increase in problem size

due to the overhead associated with the use of a lock. Second, the performance of the

other implementations improve as the problem size grows. Larger problem sizes produce

more computations, which are efficiently mapped onto the computing resources available

in the Intel i7. Third, no maximum is observed in the performance because this model is

computationally bound, and thus does not suffer from the cache size effects seen in the

previous two models.

Figure 6.16 shows the performance of the HH model with Concurrency Runtime. The

maximum performance for this model is 12x. The HH model is the most computationally

0

2

4

6

8

10

12

14

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

Impl. 4

0

2

4

6

8

10

12

14

230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

Impl. 1

Impl. 2

Impl. 3

Impl. 4

 102

intensive model (flop/byte ratio of 9.84) and thus Concurrency Runtime can efficiently

map the computation of the model onto the computing resources. The performance trends

for the HH model are similar to those for the Morris-Lecar model.

The performance of Concurrency Runtime for the four neuron models is summarized

in Table 6.3. As can be seen from the table, the utilization of parallel communication is

low for the memory bound models (Izhikevich and Wilson), which is why the

performance of these models is lower than the performance with p-threading. On the

other hand, the utilization of parallel computation for the computation bound models

(Morris-Lecar and HH) is high, and thus their performances are higher than the

performances of the Izhikevich and Wilson models. However, they are still

approximately the same as with p-threading and OpenMP because the computation

performance is limited by the number of processing cores.

Table 6.3. Performance summary of Concurrency Runtime for the four neuron models on an Intel i7

processor

Model
Flops/

Neuron

Byte

/neuron

Flops

/byte
Bound

Utilization of

Communication

Parallelization

/Effectiveness

Utilization of

Computation

Parallelization

/Effectiveness

Izhikevich 13 20 0.99 Memory Low/High High/Low

Wilson 38 44 1.52 Memory Low/Medium High/Low

Morris-

Lecar
147 28 8.65 Computation Medium/Low High/High

HH 246 44 9.84 Computation Low/Low High/High

6.2.4 OpenCL Implementation

The OpenCL implementation of the SNN models on an Intel i7 system is very similar

to the implementation on an Nvidia Fermi GPGPU with some minor differences. One

optimization, vectorization, was not supported on the GPGPU but was available and

 103

applied on the Intel i7. Another difference is that the OpenCL driver and compiler for the

Fermi GPGPU were provided by Nvidia while for the Intel i7 system, these tools are

provided by AMD.

The optimization techniques used in this work are, 1) Multithreading (MT), 2)

Software Prefetching (SP), 3) Local Memory (LM), 4) Memory Write (MW), 5) Native

Math (NM), 6) Unsafe Math (UM), 7) Reducing Conditional Statements (RCS), and 8)

Vectorization (Vec). Except for Vec, which operates on four variables simultaneously to

improve performance, all other optimizations are similar to those applied for the OpenCL

Nvidia Fermi implementation described in Section 6.1.

6.2.4.1 Results

Figure 6.17 shows the performance for the Izhikevich model with OpenCL using an

Intel i7 system. The optimizations provide noticeable performance improvement as the

problem size grows, with the best incremental performance gain from SM (4.6x to 8.3x

for the largest network size). The SP and UM optimizations showed the least impact

since there are not many computations (only 13 flops/neuron) and the model is memory

bound. Vec yields significant performance gain because of the gains in efficiency

discussed above, providing a maximum speedup of 9.8x.

 104

Figure 6.17. Izhikevich model on an Intel i7 using

OpenCL

Figure 6.18. Wilson model on an Intel i7 using OpenCL

Figure 6.18 shows the performance for the Wilson model with OpenCL. The

optimizations show a trend similar to that of the Izhikevich model and thus the same

explanations can be applied. Using the largest network size, speedup values of 2.8x-7.6x

for the Wilson model were consistently lower than the 4.5x-9.8x achieved with the

Izhikevich model, which can be attributed to the larger data access requirement (44 bytes

vs. 20 bytes) for the Wilson model.

Figure 6.19. Morris-Lecar model on an Intel i7 using

OpenCL

Figure 6.20. Hodgkin-Huxley model on an Intel i7

using OpenCL

0

2

4

6

8

10

12

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

MT

MT_SP

MT_SP_SM_
MW

MT_SP_SM_
MW_UM_RCS

MT_SP_SM_
MW_UM_RCS
_V

0

1

2

3

4

5

6

7

8

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

MT

MT_SP

MT_SP_SM_
MW

MT_SP_SM_
MW_UM_RCS

MT_SP_SM_
MW_UM_RCS
_V

0

5

10

15

20

25

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

MT

MT_SP

MT_SP_SM_
MW

MT_SP_SM_
MW_UM_RCS

MT_SP_SM_
MW_UM_RCS
_V

0

5

10

15

20

25

30

9.3K 230K 922K 1.4M 5.8M

Sp
e

e
d

u
p

Network Size

MT

MT_SP

MT_SP_SM_
MW

MT_SP_SM_
MW_UM_RCS

MT_SP_SM_
MW_UM_RCS
_V

 105

Performance for the Morris-Lecar model with OpenCL, as shown in Figure 6.19, is

better than the previous two models with a maximum of 21.5x. Morris-Lecar is a

computationally intense model as previously discussed, and OpenCL is able to

parallelize the calculations efficiently. Performance increases steadily with added

optimizations and increased problem size. The Vec implementation provides a

substantial performance improvement (from 16.8x to 21.5x speedup for the largest

network size) due to the computational nature of the model, while the other optimizations

had a significantly smaller impact.

Performance for the most computationally intensive HH model with OpenCL is the

highest among the four neuron models, as shown in Figure 6.20. Due to their shared

characteristics, the HH and ML models exhibit very similar performance trends with

consistent improvement as the network size grows and each optimization is added. The

NM and UM optimizations make a notably large impact on performance due to the heavy

computational load of the HH model, providing a maximum speedup of 25.8x and 27.0x

with the addition of Vec.

The results for OpenCL can be summarized similarly to those of Concurrency

Runtime. Table 6.3 also can be applied for the summary of discussion of the OpenCL

implementation.

6.3 Comparative Study of the Programming Models

In this section, a comprehensive comparative analysis of the results is presented. In

Table 6.4, prominent features of the five programming models are summarized. Among

 106

these programming models, OpenMP and Concurrency Runtime do not require any

explicit thread creation. Thus from the developer‘s point of view, the level of abstraction

of these two programming models is high, since the developer does not manage the low-

level APIs. The other three models ,p-threading, CUDA and OpenCL, require explicitly

creating threads along with the function routines executed by these threads. All

programming models studied for the multicore processors except OpenCL support both

SIMD and MIMD types of parallelism, allowing each of the cores in the multicore

processor to run with an independent program counter when desired. Thus in our study,

p-threading, OpenMP, and Concurrency Runtime support both SIMD and MIMD types

of parallel execution and do not require lockstep style execution to be maintained. On the

other hand, the GPGPU-based programming models, OpenCL and CUDA, maintain

strictly lockstep style execution where all GPGPU cores execute instructions following a

single program counter.

Another important feature, vectorization, is only supported by OpenCL. Most

multicore processors, such as the Intel i7, and some GPGPU devices from AMD have

support for vectorization. This feature makes OpenCL suitable for both GPGPU and

multicore systems to take advantage of the vector units available in hardware. The other

four programming models do not support API calls for vectorization. However, although

SSE is not a part of the multicore-based programming models (p-threading, OpenMP,

and Concurrency Runtime), SSE instructions can be used together with these

programming models to exploit vectorization.

 107

The last feature listed in the table is the programming effort required by the developer

for a programming model. Three levels of effort, low, medium, and high, are reported for

the programming models based on the subjective experiences of the authors. As seen in

the table, OpenMP and Concurrency Runtime require low programming effort as explicit

thread creation are not necessary and minimal changes to the serial code are required for

parallelization; thus, they can be considered very developer-friendly programming

models. The p-threading technique requires medium programming effort since it requires

explicit thread creation but not other low-level hardware control such as specifying the

device memory types to use or explicit data transfers between host and device. On the

other hand, OpenCL and CUDA require high programming effort since low level API

calls must be used (for example, explicit data transfer within the memory hierarchy)

along with thread creation while using these programming models.

Table 6.4. Prominent features of programming models

Explicit

thread

creation

Abstraction

level

Parallelization

form

Strictly

lockstep

style

execution

Vector-

ization

Programming

effort

(subjective)

p-threading

(multicore)
Yes Low SIMD, MIMD No No Medium

OpenMP

(multicore)
No High SIMD, MIMD No No Low

Concurrency

Runtime

(multicore)

No High SIMD, MIMD No No Low

OpenCL

(multicore

& GPU)

Yes Low SIMD Yes Yes High

CUDA

(GPU)
Yes Low SIMD Yes No High

The amount of programming effort is hard to measure quantitatively since it is a

qualitative component. However, we have attempted to capture a rough estimate of the

 108

programming effort to compare each of the programming models. In Tables 6.5 and 6.6,

various parameters related to programming effort are listed. Table 6.5 shows the

additional lines of code required to parallelize the application with each of the

programming models. As seen in the table, the rank of the programming models is listed

according to the average additional lines of codes; the smallest number of additional lines

of code corresponds to the lowest rank. Assuming the programming effort is roughly

proportional to the amount of additional lines of codes, OpenMP is the most developer

friendly programming model requiring the least programming effort whereas OpenCL

requires the most programming effort.

To further investigate the programming effort required by the programming models,

additional implementation characteristics of the SNN models are listed in Table 6.6.

Since every programming model requires using its own API in addition to a base

programming language (in this case, C/C++), the number of different API calls used in

the SNN implementation is listed in the table. The OpenCL SNN implementation uses 25

different API calls whereas Concurrency Runtime only requires 2 different API calls.

Further, p-threading and OpenMP required fewer optimizations (only three), whereas

CUDA and OpenCL required seven optimizations to achieve their highest performance.

For OpenMP, it was not necessary to write additional functions as required for other

programming models. The last component listed in the table is Explicit Thread Creation,

which is required for all programming models except OpenMP and Concurrency

Runtime.

 109

Table 6.5. Comparing programming effort in terms of additional lines of code required for the five

programming models

 Izhikevich Wilson
Morris-

Lecar
HH Average Rank

p-threading

(multicore)
39 37 28 23 32 2

OpenMP

(multicore)
26 27 24 17 24 1

Concurrency

Runtime

(multicore)

51 51 58 54 54 3

OpenCL

(multicore

and GPU)

136 187 187 175 171 5

CUDA

(GPU)
117 158 167 110 138 4

Table 6.6. Comparing programming effort in terms of the increase of complexity of the programming

models on Intel i7 and Nvidia GPU

 SNN implementations

Programming model

Different types

of API calls

used

Optimizations
Additional

Functions

Explicit Thread

Creation

p-threading

(Multicore)
6 3 1 Yes

OpenMP

(Multicore)
5 3 0 No

Concurrency Runtime

(Multicore)
2 4 2 No

OpenCL

(Multicore & GPU)
25 7 1 Yes

CUDA (GPU) 12 7 1 Yes

Observing the values that are derived from the four SNN implementations and listed

in Tables 6.5 and 6.6, the qualitative amount of programming effort required for the

multicore architecture can be listed from low to high as: 1) OpenMP 2) p-threading 3)

Concurrency Runtime and 4) OpenCL. Similarly, the ranked list for the GPGPU is 1)

CUDA and 2) OpenCL.

To summarize the performance of the SNN case study with the five programming

models, we have listed the highest speedup values in Table 6.7. As shown in the table

for the Intel i7 multicore processor, p-threading provides higher performance for

 110

applications with a low flop/byte ratio, such as the Izhikevich and Wilson models,

whereas OpenCL provides the highest performance for applications with higher flop/byte

ratios, such as the Morris-Lecar and HH models. The performance of OpenMP and

Concurrency Runtime falls between p-threading and OpenCL. The performance of

OpenMP is better than Concurrency Runtime and consistent across various applications

with a range of low to high flop/byte ratios. Thus, we cannot rank the programming

models in terms of their performance across all types of applications as we did in terms

of programming effort. Therefore to select a programming model for an application on a

given set of hardware, one must consider the application characteristics as well as the

development time. For example, if the time to develop is open-ended and the application

is computationally bound, then OpenCL would be a good choice. On the other hand, if

there is a strict time constraint for parallel application development and the goal is to

achieve moderate application performance, then OpenMP would be the best choice.

For Nvidia‘s Fermi GPGPU, CUDA consistently performs better than OpenCL for all

SNN models in the application study. If code portability is not an issue, CUDA would

always be the best choice for Nvidia GPGPUs since the performance and programming

effort are both in favor of CUDA as shown in Tables 6.5-6.7.

Table 6.7. Comparing application performance for the four programming models on Intel i7 and Nvidia

Fermi

Platform Izhikevich Wilson Morris-Lecar HH

Intel i7

p-threading 27.90 8.99 10.26 7.87

OpenMP 11 4.5 10.8 12.5

Concurrency

Runtime
4.26 3.03 11.92 11.89

OpenCL 9.75 7.55 21.52 27.04

Nvidia

Fermi

CUDA 17.09 22.82 188.26 976.2

OpenCL 12.10 18.04 142.05 878.4

 111

6.4 Summary

In this chapter, we have critically studied four of the most popular programming

models for x86 multicore processors (p-threading, OpenMP, Concurrency Runtime, and

OpenCL) and two of the available GPGPU programming models (CUDA and OpenCL)

for an Nvidia GPGPU. These results will be used to develop multiple regression models

of the performance impact of programming models on accelerators. The programming

models are compared in terms of performance and programming effort using four most

biologically accurate SNN models (HH, ML, Wilson, and Izhikevich). Various

implementations have been developed based on hand-tuned successive optimizations

applied to all the programming models. The effects of optimizations as well as problem

size scaling were critically studied; the advantages and limitations of each programming

model were reported.

With the broad study conducted using a wide range of application complexity,

multiple optimizations, and varying problem size, it was found that the programming

models for the x86 processor cannot be ranked according to their achievable performance

across all applications. For example, p-threading performs the best for one type of

application whereas OpenCL is the best for another type. Thus the achievable

performance with the programming models is found to be dependent on application

characteristics. However, for the Nvidia GPGPU, CUDA implementations were found to

perform consistently better than OpenCL across all SNN models. Conversely,

programming models can be ranked in terms of perceived programming effort. Thus this

study provides insights for a developer attempting to select a programming model for a

 112

given pairing of application to architecture. A proper match among applications,

accelerators, and programming models provides the best performance with minimal to

moderate development effort. In the next chapter we will develop the Fitness model and

multiple regression performance model based on the experimental results of Chapter 5

and 6.

 113

Chapter 7

Performance Models

Many high-performance parallel architectures are available to accelerate scientific

computing applications. These architectures have varying core counts, clock speeds, data

bandwidth, cache hierarchies and sizes, memory sizes, etc. For example, a GPGPU

device has a memory hierarchy with local (shared), texture, constant and global memories

whereas an X86 processor has a cache hierarchy with level 1, 2 and 3 caches and DRAM.

Conversely, the IBM CellBE has a completely different memory hierarchy with a DRAM

and a local store in each SPU. From the application perspective, each has different

computational and data bandwidth requirements. Thus it is very difficult for an

application developer in high-performance computing to select the architecture that will

offer the best performance for a particular application. Thus attempts have been taken by

researchers to propose performance models of computing architectures for predicting

application performance. We have discussed various performance models in Chapter 2

and we now propose a Fitness Performance model that can be used as an efficient way to

predict the performance rank of various accelerators. In this chapter, the Fitness

performance model is developed based on the performance analysis of various

accelerators as discussed in Chapter 5. Then the Fitness model is extended using

statistical regression. We have used multiple regression models to model the runtime of

accelerators and impact of programming models. Along with the proposed Fitness model,

 114

the Roofline model, another visual performance model from the literature, is also

discussed in this chapter for comparison purposes. First, we will discuss the performance

characteristics of architectures based on the projections of the Roofline model. Then we

will develop the Fitness and regression models.

7.1 Performance Prediction With the Roofline Model

In Figure 7.1, the Roofline model of the Nvidia Fermi (C2050) GPGPU is shown.

The position of the matrix multiplication and four SNN models is plotted in the

framework as vertical lines drawn at the theoretical flop:byte ratio of each. As seen from

the figure, the matrix-matrix multiplication, Izhikevich and Wilson models are

communication bound since the corresponding lines intersect the slanted line in the plot.

Conversely, the Morris-Lecar and Hodgkin-Huxley models are computation bound since

their lines intersect the horizontal lines of the plot.

Figure 7.1. Roofline model for the matrix

multiplication and four SNN models on the

Fermi GPGPU

Figure 7.2. Roofline model for the matrix

multiplication and four SNN models on the

Xeon

Flop:byte ratio

A
tt
a

in
a

b
le

 G
fl
o

p
/s

1/8 81/4 4211/2 16

1.0

256.0

128.0

64.0

32.0

16.0

8.0

4.0

2.0

512.0

Peak SP FP

No FMA

w
/o

ut
 m

em
 o

pt
 1w

/o
ut

 m
em

 o
pt

 2

w
/ a

ll
m

em
 o

pt

Iz
h

W
ils

o
n

M
L

H
H

1024.0

2048.0

32 64

M
a

tr
ix

 M
u

lt
.

Flop:byte ratio

A
tt
a

in
a

b
le

 G
fl
o

p
/s

1/8 81/4 4211/2 16

0.5

128.0

64.0

32.0

16.0

8.0

4.0

2.0

1.0

256.0
Peak SP FP

No SIMD

No ILP

No FMA

w
/o

ut
 m

em
 o

pt
 1

w
/o

ut
 m

em
 o

pt
 2

w
/ a

ll
m

em
 o

pt

Iz
h

W
ils

o
n

M
L

H
H

M
a

tr
ix

 M
u

lt
.

 115

Figure 7.3. Roofline model for the matrix

multiplication and four SNN models on the

Opteron

Figure 7.4. Roofline model for the matrix

multiplication and four SNN models on the

PS3

In Figure 7.2, the positions of matrix multiplication and all four SNN models are

shown with the Roofline model for the Intel Xeon. Here it is found that matrix

multiplication and all four models are communication bound as they intersect the slant

ceiling. But the Morris-Lecar and Hodgkin-Huxley models have a higher level of

attainable Gflops than the Izhikevich and Wilson models since they intersect at higher

points on the sloped line. The vertical flop:byte lines that are shown for matrix

multiplication and each SNN model represent the compulsory miss lines. The actual

performance line may be shifted to the left since there will undoubtedly also be capacity

and conflict misses of the cache as the problem size increases. Thus, the actual Gflop/s

performance of all case studies will be lower than the theoretical values, but the relative

achievable performance of the Intel Xeon for all case studies can be seen from the

Flop:byte ratio

A
tt
a

in
a

b
le

 G
fl
o

p
/s

1/8 81/4 4211/2 16

0.5

128.0

64.0

32.0

16.0

8.0

4.0

2.0

1.0

256.0
Peak SP FP

No SIMD

No ILP

No FMA

w
/o

ut
 m

em
 o

pt
 1

w
/o

ut
 m

em
 o

pt
 2

w
/ a

ll
m

em
 o

pt

Iz
h

W
ils

o
n

M
L

H
H

M
a

tr
ix

 M
u

lt

Flop:byte ratio

A
tt
a

in
a

b
le

 G
fl
o

p
/s

1/8 81/4 4211/2 16

0.5

128.0

64.0

32.0

16.0

8.0

4.0

2.0

1.0

256.0
Peak SP FP

No SIMD

No ILP

No FMA

w
/o

ut
 m

em
 o

pt
 1

w
/o

ut
 m

em
 o

pt
 2

w
/ a

ll
m

em
 o

pt

Iz
h

W
ils

o
n

M
L

H
H

M
a

tr
ix

 M
u

lt
.

 116

Roofline model. A similar explanation can be applied for the Roofline model for the

AMD Opteron and IBM PS3 as shown in Figure 7.3 and 7.4.

If we compare the performance prediction of Roofline model among GPGPU, Xeon,

AMD, and PS3 we can easily find a trend. The GPGPU will perform the best for all the

case studies while the other three architectures will have similar performance. The

Roofline model is a coarse visual model that does not account for the problem size of

applications and memory hierarchy of accelerators, on the other hand, the proposed

Fitness model accounts for these characteristics. The Fitness model is detailed in the next

section.

7.2 Fitness Performance Model

To rank the potential performance of a set of selected parallel architectures for an

application or algorithm, we introduce a Fitness model that considers application and

architecture parameters that are important for algorithm performance. In this model, the

application is represented with the vector APP. The vector APP has seven components:

 _ _ _
N

nn
n 1

APP iSP jDP kDBT lHDT Ovfl mHDT Unfl nHDT UCntl o OPT


        (7.1)

Here, SP is the total number of single-precision floating-point operations and DP is

the total number of double-precision floating-point operations in the algorithm. DBT is

the device byte transfer requirement for the algorithm, which represents the total bytes

that must be transferred from device memory to the processing cores. For example, in the

IBM CellBE architecture, it represents the amount of data transferred from the local

stores to the processing cores of the SPU. On the other hand, in the GPGPU architecture,

 117

DBT represents total data transferred from global memory to the individual scalar

processor of the GPGPU device. HDT_Ovfl is the host-to-device data transfer

requirement if the device memory is less than the total data required and HDT_Unfl is the

host-to-device transfer if the device memory is sufficient to hold the total data required.

For example, in the x86 architectures, if the maximum cache size is less than the total

data required for computation, the total data will be HDT_Ovfl, otherwise, the total data

will be HDT_Unfl. If the total data does not fit in the cache, then the data is transferred

from the host to the device and after processing, the data is sent back to the host

(HDT_Ovfl). In the PS3, the device memory (i.e., the local store) is very small (256 KB)

compared to the cache size of x86. Thus instead of compulsory misses, there will always

be capacity misses for any significant problem size. HDT_UCntl accounts for the host-to-

device data transfer if the device memory is greater than total data and the programmer

can manipulate the device memory. This kind of data transfer may happen with the

GPGPU. Typically HDT_UCntl is the smallest among the three data transfers. OPT

represents numerical values for the compute and data transfer optimization techniques

that can be applied to the algorithm. For example, some algorithms can take advantage of

software prefetching, the overlapping of data communication and computation. These

optimization techniques can either reduce the amount of data communication or

computation. Thus OPT represents either the reduced data to be transferred or reduced

computation as a result of an applied optimization technique. Evaluating the numerical

value of OPT requires in-depth analysis of the algorithm and the target accelerators.

 118

Due to the flexibility of the representation, any accelerator can be represented by an

accelerator vector, ACC, which has a one-to-one component with the application vector,

APP. The accelerator vector can be written as:

1

N

n n
n

ACC iSSP jSDP kSDBT lSHDT o SOPT


      (7.2)

Here, SSP represents the time in seconds, taken for an average single-precision

floating-point operation in the accelerator. SSP can be calculated by taking the inverse of

the theoretical single-precision flop/sec of the device. Similarly, SDP, for double-

precision floating-point arithmetic, can be calculated by taking the inverse of the

theoretical peak for double-precision floating-point operations. SDBT represents the time

in seconds to transfer a single byte from the device memory to the processor. Typically,

SHDT is the average byte transfer time for host-to-device and device-to-host data

transfers. SOPT is the time in seconds for each floating-point operation or byte transfer

depending on the optimization technique applied. This term is negatively signed since it

saves time where the other terms increase the execution time.

In this model, the projected performance rank can be found by calculating the

theoretical runtime of each algorithm on each platform. This runtime can be calculated by

the scalar multiplication of an accelerator vector with an application vector. This scalar

multiplication ACC_APP, as shown below in Equation 7.3 represents the projected

performance and allows the user to rank the architecture and assess the match of an

accelerator to application.

 119

_ . . .

(_ _ _). .
N

n n
n 1

ACC APP SP SSP DP SDP DBT SDBT

HDT Ovfl HDT Unfl HDT UCntl SHDT OPT SOPT


   

   
 (7.3)

This ACC_APP represents the theoretical runtime if the algorithm is executed on the

selected accelerator architecture. For an application/algorithm, the best match is the

accelerator for which the value of ACC_APP is the lowest considering all possible

accelerators as shown in Equation 7.4.

(7.4)

The Fitness model makes some assumptions to provide a quick assessment of the

match and therefore has some limitations. For example, it uses the peak value of

hardware performance such as DRAM bandwidth and processor throughput. It also does

not account for DRAM misses. These assumptions and limitations are detailed in Chapter

8.

7.3 Prediction Rank With the Fitness Model

Now we will use the Fitness model to predict the Fitness of architectures for

accelerating all the case studies. First, we will discuss the performance prediction of

matrix-matrix multiplication on the four architectures. Then, we project the performance

of the four SNN models on the same four architectures.

 _ min .
ibest

ACC APP APP ACC

 120

7.3.1 Performance For Matrix-matrix Multiplication

In this section we will use the matrix multiplication algorithm case study to project

the performance on accelerators using the Fitness performance model. Five

representative square matrix sizes are chosen for the validation as shown in Table 7.1.

Total number of flops, device-to-device transfer, and host-to-device transfer sizes for the

five matrix-matrix multiplications are also given in the same table.

Table 7.1. Selected matrix sizes and corresponding characteristics

Matrix Size Total flops
device-to-device

transfer (byte)

host-to-device

transfer (byte)

500×500 2.50E+08 1.00E+09 3.00E+06

1000×1000 2.00E+09 8.00E+09 1.20E+07

1500×1500 6.75E+09 2.70E+10 2.70E+07

2000×2000 1.60E+10 6.40E+10 4.80E+07

2500×2500 3.12E+10 1.25E+11 7.50E+07

To validate the Fitness model with the matrix-matrix multiplication, we utilize the

four accelerators: Nvidia Fermi, Intel Xeon, AMD Opteron, and IBM PS3. The Fitness

model requires the characteristics of accelerators, such as time required for the execution

of floating point operations (SFLOP), device to device transfer (SDBT), and host to

device transfer (SHDT), that are shown in Table A2a.

Table 7.2. Characteristics for the four accelerators

Accelerator
SFLOP

(Sec/flop)

SDBT

(Sec/Byte)

SHDT

(Sec/Byte)

Nvidia Fermi 9.71E-13 6.47E-12 1.16E-10

Intel Xeon 6.71E-12 0 4.43487E-11

AMD Opteron 6.79E-12 0 4.63487E-11

PS3 6.51E-12 1.30208E-11 3.66662E-11

 121

Table 7.1 and 7.2 provide the characteristics of applications and accelerators

respectively that are used in the Fitness model to predict the performance rank of the

architectures based on theoretical runtime. The theoretical runtime is shown in Table 7.3,

and based on this table the predicted rank of the architecture is shown in Table 7.4. These

results will be verified in Chapter 8.

Table 7.3. Predicted runtime (in second) of the accelerator based on Table 7.2

500x500 1000x1000 1500x1500 2000x2000 2500x2500

Fermi 0.007059 0.055078 0.184317 0.435039 0.847505

Xeon 4.6E-02 3.68E-01 1.24E+00 2.95E+00 5.75E+00

Opteron 4.80E-02 3.84E-01 1.30E+00 3.07E+00 6.01E+00

PS3 1.48E-02 1.18E-01 3.96E-01 9.39E-01 1.83E+00

Table 7.4. Fitness Model Predicted rank of the accelerator based on Table 7.3

500x500 1000x1000 1500x1500 2000x2000 2500x2500

Fermi 1 1 1 1 1

Xeon 3 3 3 3 3

Opteron 4 4 4 4 4

PS3 2 2 2 2 2

7.3.2 Performance For SNN

Now we will use the Fitness model to predict the Fitness of architectures for

accelerating all four SNN models. To predict the performance, the theoretical values for

floating-point performance and memory bandwidth are calculated from the architecture

manuals. Table 7.3 in the previous subsection reports the theoretical performance values

 122

for all four architectures as components of the ACC vector (all values are normalized to

seconds).

Tables 7.5-7.7 provide the application vector components of the four SNN models.

Here we use three problem sizes, the smallest network (9216 neurons), largest network

(5.8 million neurons) and an interesting problem size (0.9 million neurons) to validate the

Fitness performance model. The 0.9 million network size was selected because the four

architectures rigorously studied behave uniquely for this network size. For example, the

working dataset starts to exceed the cache size of the X86 for the Wilson and HH models.

Table 4 contains the total single-precision floating-point (FP) operations for each SNN

model, device byte transfer (DBT), and three kinds of host-to-device transfers (HDT) for

9216 neurons. For this problem size, the number of floating-point operations and amount

of data transfer is much less than that for larger problems sizes.

After defining all of the values for the accelerator and application vector components,

we can now predict the Fitness match with the scalar multiplication of the two vectors.

After the scalar multiplication, we rank the matches between the accelerators and

application as shown in Table 7.8. As shown in the table, the Xeon is predicted to

perform the best for the Izhikevich and Wilson model whereas the PS3 is predicted to

perform the worst. For the ML, and HH models the GPGPU is predicted to perform the

best, whereas the PS3 is predicted to perform the worst.

 123

Table 7.5. Application vector components of the four SNN models with a network size of 9216 neurons

Application
FP

(Gflop)

DBT

(MB)

HDT_Ovfl

(MB)

HDT_Unfl

(MB)

HDT_UCntl

(MB)

Izhikevich 0.001 0.18 2.11 0.18 0.18

Wilson 0.010 0.40 11.21 0.39 0.40

Morris-Lecar 0.026 0.20 3.16 0.21 0.20

HH 0.911 3.42 144.25 0.39 3.42

Table 7.6. Application vector components of the four SNN models with a network size of 0.9 million

neurons

Application
FP

(Gflop)

DBT

(MB)

HDT_Ovfl

(MB)

HDT_Unfl

(MB)

HDT_UCtl

(MB)

Izhikevich 0.14 17.58 210.94 17.58 17.58

Wilson 0.99 39.55 1,121.48 560.74 39.55

Morris-Lecar 2.59 20.21 316.41 158.20 20.21

HH 91.10 341.89 14,424.61 7212.3 341.89

Table 7.7. Application vector components of the four SNN models with a network size of 5.8 million

neurons

Application
FP

(Gflop)

DBT

(MB)

HDT_Ovfl

(MB)

HDT_Unfl

(MB)

HDT_UCntl

(MB)

Izhikevich 0.001 0.18 2.11 0.18 0.18

Wilson 0.010 0.40 11.21 0.39 0.40

Morris-Lecar 0.026 0.20 3.16 0.21 0.20

HH 0.911 3.42 144.25 0.39 3.42

 124

Table 7.8. Performance rank using the Fitness model for 9216 neurons

App_Acc match Izhikevich Wilson ML HH

GPGPU 3 3 1 1

Xeon 1 1 2 2

AMD 2 2 3 3

PS3 4 4 4 4

Table 7.9. Performance rank using the Fitness model for 0.9 million neurons

App_Acc match Izhikevich Wilson ML HH

GPGPU 3 1 1 1

Xeon 1 2 2 2

AMD 2 3 3 3

PS3 4 4 4 4

Table 7.10. Performance rank using the Fitness model for 5.8 million neurons

App_Acc

match
Izhikevich Wilson ML HH

GPGPU 3 1 1 1

Xeon 1 2 2 2

AMD 2 3 3 3

PS3 4 4 4 4

For the network of 0.9 million neurons, the total single-precision FP operations,

device data transfer and the three kinds of host-to-device data transfers are reported in

Table 7.6. After the multiplication, we rank the matches between the accelerators and

application as shown in Table 7.9. As shown in the table, the Xeon is predicted to

perform the best for the Izhikevich model whereas the PS3 is predicted to perform the

worst. For the Wilson, ML, and HH models the GPGPU is predicted to perform the best.

Finally, for the largest network, 5.8 million neurons, the total single-precision FP

operations, device data transfer and the three kinds of host-to-device data transfers are

reported in Table 7.7. After the multiplication, we rank the matches between the

 125

accelerators and application as shown in Table 7.10. In this case, the Xeon is predicted to

perform the best for the Izhikevich model whereas the PS3 is predicted to perform the

worst. For the other three models, the GPGPU is predicted to perform the best.

As seen from the rank tables (Tables 7.7-7.10), the ranks follow a trend. For the

communication bound models (Izhikevich and Wilson) the X86 architecture is projected

to be the top performer whereas for the compute intensive models (ML and HH), the

GPGPU is projected to perform the best.

7.4 Extension of Fitness Model: Multiple Regression Model

Regression analysis is a statistical tool to model the relation between variables. When

a range of data is available that represents the variation of a dependent variable with one

or more independent variables, regression analysis can be utilized to determine if a

relation exists between them. The regression analysis also determines the exact relation

between the dependent and independent variables with a degree of confidence. Thus the

process of finding a mathematical model (in the form of an equation) that best fits the

data is a statistical technique known as regression analysis [118].

7.4.1 Background On Multiple Regression Model

Mathematically, regression analysis is concerned with relating a response y to a set of

independent variables, x1, x2, x3, ……. xk. Here, the goal is to build a good mathematical

model, i.e., a prediction equation. After the prediction equation is built, the response y

can be predicted for a particular set of values of x1, x2, x3, ……. xk with a degree of

 126

confidence. For example, if a response dependent variable, y only depends on two

independent variables, x1 and x2, the predicted equation can take the following form:

2 2

1 2 1 3 2 4 1 5 2 6 1 2y x x x x x x             (7.5)

Here, α1, α2, α3, α4, α5, and α6 are the estimates of the model parameters. Meaning of

different terms will be described later in this section. These parameters can be evaluated

by using several statistical methods. In our study we will use least square method for the

regression analysis.

At this stage, any difference between the actual response and the modeled response

for a particular set of independent variables produces errors. The least square method

must satisfy two important properties regarding the errors. First, the sum of error (SE)

should be equal to zero. Second, the sum of squares of the errors (SSE) is the minimum.

Mathematically,

ˆ () = 0i iSE y y  (7.6)

 2ˆ min () i iSSE y y  (7.7)

Where, iy is the actual response and ˆ
iy is the estimated response with the regression

model. Thus, to establish a mathematical model using regression analysis on a set of data,

all ―α‖s of equation (7.5) are to be evaluated satisfying equations (7.6) and (7.7).

 127

In addition to satisfying the properties (7.6) and (7.7) with the regression model, we

will make four basic assumptions about the probability distribution of  . In brief the

assumptions are as follows [118]:

1) The mean of the probability distribution of  is zero

2) The variance of the probability distribution of  is constant for all settings of the

independent variables x‘s

3) The probability distribution of  is normal

4) The error associated with any two different observations are independent

These assumptions help to develop a measure of reliability for the least squares

estimators and a hypothesis tests for the model.

There are two popular types of regression model that are used in many practical

purposes: 1) First-Order Model and 2) Multiple Regression model. The Interaction Model

and Second Order Model are also derivatives of the Multiple Regression model. In our

research, we use both the Interaction model and Second Order model to model the

performance of architectures and programming models.

7.4.1.1 First Order Model

The First Order model is the simplest model and is also called the Straight Line

model since the relationship between the response and dependent variable can be shown

as a straight line. In this model, the response y depends on only one independent variable,

x. Thus the first-order model is:

 128

1 2 1y x     (7.8)

Here, α1 is the y-intercept of the line. Whether this α1 has a physical meaning or

not, depends on the range of data used in the model. Only when x = 0 is within the range

of the x values in the sample, will α1 have a meaningful interpretation. α2 is the slope of

the line, i.e., amount of increase or decrease in the mean of y for every 1-unit increase of

x.

7.4.1.2 Multiple Regression Model

Regression models that include more than one independent variable are called multiple

regression models. The general form of the multiple regression models is

1 2 1 3 2 4 3 k ky x x x x            (7.9)

Where, y is the dependent variable and all x’s are the independent variables. Here any

dependent variable can be higher ordered. For example x2 may represent 2

1x .

If the model includes only terms for quantitative independent variables, it is called

a multiple first-order regression model. This is the most basic multiple regression model.

If the model includes quadratic terms, x
2

, it will enable us to hypothesize the curvature in

the graph.

 129

Moreover, if the effect of change of an independent variable (x1) on the value of

dependent variable (y) is also depends on another variable (x2), then it can be said that x1

and x2 interact. Thus, to model this situation, an interaction term (x1x2) is included in the

model. For example if there are only two independent variables, x1 and x2, and the two

variables interact, then the regression model will be:

1 2 1 3 2 4 1 3y x x x x         (7.10)

Extreme care must be taken when dealing with interaction models. First, as the

independent variables interact, the coefficient of the independent variables may appear to

be negative; though that may not mean that the response decreases with an increase of

that independent variable as the same variable is also present in the interaction term.

Second, the most important parameter in this model is the interaction term. Thus when

we want to perform a hypothesis test (such as H0: α = 0) to evaluate the utility of the

model, we will first evaluate the interaction term (such as H0: α4 = 0). Once the

interaction term is detected to be valid by the hypothesis test, the hypothesis test of other

terms (α1 ,α2 ,α3) are not needed. The presence of an interaction term implies that both x‘s

are important. The application of the regression model with the performance model will

use both the models shown in equation (7.9) and (7.10).

7.4.2 Regression Model For Architectures

As we mentioned in the preceding discussion, we have gathered vast amount of data

on the performance of four baseline accelerators (Intel Xeon, AMD Opteron, PS3, and

 130

Nvidia GPGPU) and four advanced architectures (Intel 32 core, AMD 32 core, Sun 32

core, IBM 16 core). In this section we will apply a regression model using the JMP

software by SAS [119] to the performance results of the architectures. We will first

develop a regression model for the four baseline architectures and then, we will develop

a regression model for the four advanced architectures.

7.4.2.1 Intel Xeon

The runtime results of the Intel Xeon architecture were collected for the four SNN

models. Runtimes for various problem sizes of the neural networks, and also for various

accelerator configurations were collected. A regression model was developed based on

this dataset; in this model, runtime is the dependent variable and there are three

independent variables: total number flops, total number of memory access required, and

the number of cores. To evaluate the reliability of the model we rely on the R-squared

value of the overall model and the p-values of the individual coefficient. The model is

considered reliable if the R-squared value is greater than 0.95 and the individual p-value

is smaller than 0.05. The general model for the Intel Xeon is:

 1 2 3 4 5_R time flops bytes cores flops cores            (7.11)

Where, R_time is the runtime variable (the dependent variable), flops is the total number

of flops, bytes is the total number bytes access in the applications, cores is the number of

cores in the processor, and  is the estimation error. After running the JMP statistical

software using equation (7.11) on the dataset for the Intel Xeon, we obtain the following

equation:

 131

  

8 7

8 10

_ 3033 2.6 10 1.23 10 479.06

 1.41 10 6.37 32 10

R time flops bytes cores

cores flops 

 



      

     
 (7.12)

In equation (7.12), in addition to the three independent variables, flops, bytes, and

cores, one additional term, cores*bytes were included. While experimenting with the

model development, it was found that, without the cores×flops term, the R-squared term

is 0.51 which is far below the desired value of 0.95 and the individual p-values are also

far below the desired value of 0.05, indicating the model is not considered reliable. After

the inclusion of the term, cores×flops, the R-squared becomes 0.915 (slightly smaller

than 0.95), and the individual p-value of the coefficient is less than 0.05. This interaction

term also has a physical meaning: with the addition of processing cores, flops are divided

into smaller parts among the processing cores.

7.4.2.2 AMD Opteron

Four SNN model runtimes on the AMD Opteron architecture for various problem

sizes and with the variation of processing cores are used to build a regression model. As

before runtime is the dependent variable and the total number of flops, total number of

memory access required, and the number of cores are the independent variables. The

regression model for the AMD Opteron is derived similar to that of equation (7.11).

After running the JMP software on the Opteron runtime dataset, the following

regression model is developed:

 132

  

8 7

10

_ 3181.24 4.06 10 1.30 10 495.53

 1.96 6.37 2.6 10

R time flops bytes cores

cores flops 

      

     
 (7.13)

As for the Intel Xeon architecture, the regression model includes the interaction

cores*flop term in addition to the three independent variables. The R-squared value for

the model is 0.99, and the p-values for each of the coefficients are smaller than 0.05,

thus, satisfying the utility criteria of regression model.

7.4.2.3 IBM PS3

Using similar independent and dependent variables, the regression model for IBM

PS3 can be written as shown in equation (7.13). After running the JMP statistical

software using equation (7.13), the following equation is developed:

8 8_ 45.71 2.3041 10 5.1863 10R time flops bytes        (7.14)

For this model, the R-squared value is 0.88 which is slightly smaller than 0.95. The

model can tolerate such value of R-squared if all the p-values satisfy the utility criteria

(i.e., lower than 0.05). Observing the p-values, it is found that other than the p-value for

the coefficient of cores (0.15), all of the p-values of the other coefficients are smaller

than 0.05. Since the p-value for the coefficient of the cores*flop term is smaller than

0.05, the p-value for the coefficient of the cores term does not have to satisfy the utility

criteria [118]. Thus this model is a valid model with sufficient support from both the R-

squared and p-values satisfying the utility criteria.

 133

7.4.2.4 Nvidia GPGPU (Fermi)

The regression model for the Nvidia Fermi GPGPU is different from the previous

three models. In this regression model, runtime is the dependent variable and total

number flops and total number of memory access required are the two independent

variables. Since the number of cores is not varied for the GPGPU, the cores term is not

included in the model. Thus, with two independent variables, the simple regression

model for GPGPU can be presented as:

1 2 3_R time flops bytes       (7.15)

After running JMP software using equation (7.15), it is found that this simple model

does not satisfy the utility criteria. Thus we have added the flop*byte term to the equation

(7.15):

1 2 3 4_R time flops bytes flop bytes          (7.16)

After including this interaction term, the R-squared and the p-value of each of the

coefficients satisfy the utility criteria. The physical meaning of the interaction term

(flop*byte) for the GPGPU model is that the number of flops and number of bytes

required interact, i.e., the time required for GPGU multiprocessor to execute each

floating point operation partially depends on the number of bytes it requires as operands.

After running the JMP software, based on equation (7.16), the following equation, which

satisfies the utility criteria, is developed:

8 8

21 10 9

_ 36.22 1.21 10 8.77 10

 3.41 10 (4.3 10)(7.5 10)

R time flops bytes

flop bytes 

 



    

       
 (7.17)

 134

7.4.2.5 Advanced Multicores

In this section, we will develop regression models for the Intel 32 core, AMD 32 core,

SUN 32 core, and IBM 16 core systems. The runtime experimental runtime data for these

advanced architectures was used to develop a regression model for the architectures; the

general equation for these architectures is shown in equation (7.18). The independent

variables in this equation are same as the regression model for the Intel Xeon discussed

in Section 7.4.2.1.

 1 2 3 4 5_R time flops bytes cores flop cores            (7.18)

After running the JMP software on the relevant datasets, the complete models are given

in equations (7.19) - (7.22)

a) Intel 32 core:

8 8

7 10

_ 31654.39 3.69 10 5.06 10

 33681.7 3.88 10 (8.5 10)(.9446)

R time flops bytes

cores flop cores 

 



    

       
 (7.19)

b) AMD 32 core:

8 7

7 10

_ 43595.43 4.55 10 1.10 10

 46664 5.4 10 (8.5 10)(.93446)

R time flops bytes

cores flop cores 

 



    

       
 (7.20)

c) SUN 32 core

6 7

5 10

_ 786328 1.64 10 9.43 10 841157

 1.73 10 (4.8 10)(.9345)

R time flops bytes cores

flop cores 

 



     

      
 (7.21)

d) IBM 16 core

 135

8 7

7 10

_ 32394 3.67 10 1.11 10 34784

 4.04 10 (8.5 10)(.9283)

R time flops bytes cores

flop cores 

 



     

      
 (7.22)

All of these models satisfy the utility criteria for the R-squared value and p-values.

7.4.3 Regression Model for the Programming Model

The parallel programming models each have their own effect on the performance

capabilities of accelerators as discussed in the previous chapters. In this section we will

develop a regression model for each of programming models. First, we will develop

models for the GPGPU-based programming models: CUDA and OpenCL on the Nvidia

Fermi architectures. Then we will present regression models for the X86-based

programming models: POSIX-threading, OpenMP, Concurrency Runtime, and OpenCL

on Intel i7 system.

7.4.3.1 GPU-based Software Model

Since the Nvidia Fermi GPGPU supports both the CUDA and OpenCL programming

models, it is used as the GPGPU platform for studying and developing while developing

the regression models.

The runtime results with CUDA on the Fermi architecture are used to develop the

regression model shown below, which is similar to equation (7.17). Thus same

explanation for equation (7.17) can be applied here.

8 8

21 10 9

_ 36.22 1.21 10 8.77 10

 3.41 10 (4.3 10)(7.5 10)

R time flops bytes

flop bytes 

 



    

       
 (7.23)

 136

Similarly, for OpenCL on the Fermi architecture, the regression model can be

represented by equation (7.24):

8 8

21 10 9

_ 28.802 1.17 10 8.49 10

 2.17 10 (4.3 10)(7.5 10)

R time flops bytes

flop bytes 

 



    

       
 (7.24)

Both of the regression models shown in equations (7.23) and (7.24), satisfy the utility

criteria for the R-squared and p-values of the coefficients.

7.4.4 X86-based Programming Models

In this section, the performance impact for the four programming models on Intel i7

system is modeled with statistical regression models.

7.4.4.1 POSIX-threading

The runtime dataset for p-threading on the Intel i7 architecture is used to develop a

regression model as shown in equation (7.25):

2

1 2 3 4 5_ ()R time flops bytes bytes flops bytes            (7.25)

In equation (7.25), flops and bytes are used as independent variables; however, a

quadratic term 2()bytes and an interaction term, flops bytes , are present in this model.

Without these terms, the R-squared value and p-values of each coefficient would not

pass the utility criteria. The reason for the 2()bytes term is that the relation between

 137

runtime and bytes has a quadrature component because the p-threading technique creates

explicit threads for each of the cores. Thus each of the threads makes use of the Level-1

cache for each of the cores. This explicit use of the Level-1 cache requires the 2()bytes

term. The interaction term (flops bytes) is also included due to the explicit thread

creation by the p-threading technique. For executing each floating-point operation, p-

threading makes use of the cache structure of each of the cores to make the bytes

available. Thus the runtime for executing each flop also depends on the number of bytes

it requires to execute. After running the statistical software, JMP, based on equation

(7.25), the R-squared value of the model is 0.99 and all the p-values are lesser than 0.05.

The resulting model is shown below:

7 7

17 9 9

18 10 9

_ 111.01 3.13 10 3.27 10

 3.27 10 (7.5 10) (7.5 10)

 5.43 10 (4.3 10) (7.5 10)

R time flops bytes

bytes bytes

flops bytes 

 





    

       

       

 (7.26)

7.4.4.2 OpenMP, Concurrency Runtime, And OpenCL

The general regression model for the remaining three x86 programming models,

OpenMP, Concurrency Runtime, and OpenCL is:

1 2 3_R time flops bytes       (7.27)

 138

Where, R_time is the runtime variable which is the dependent variable, flops is the total

number of flops and bytes is the total number bytes access in the applications, and  is

the estimation error. This regression equation does not have the quadratic term or

interaction term that was found in p-threading model because these three models do not

create threads explicitly for each of the processing cores as explained in Chapter 6.

 After running the JMP software based on equation (7.27), OpenMP, Concurrency

Runtime, and OpenCL, the respective regression models are given in (7.28), (7.29), and

(7.30):

7 7_ 70.34 1.39 10 1.68 10R time flops bytes        (7.28)

7 7_ 214 2.12 10 1.37 10R time flops bytes        (7.29)

7 7_ 70.34 1.39 10 1.68 10R time flops bytes        (7.30)

7.5 Summary

In this chapter we have introduced and described the Roofline model, Fitness model,

and regression models for architectures and performance impact of programming models.

The Fitness and regression models evolved through the lessons learned from the

performance analysis of various multicore and GPGPU architectures and performance

impact of programming modes discussed in Chapter 5 and 6. The Fitness model ranks the

accelerators for an application with a specified problem size. We have ranked four

accelerators for various problem sizes of matrix multiplication and three different

problem sizes for the four SNN models. In this version of Fitness model, we have not

 139

included the performance impact of programming models and threading effects. An

extended version of the Fitness model using multiple regression techniques has been

developed. The multiple regression models include the effect of threading (i.e., number of

processing cores) and programming models on accelerator performance. We have

developed eight regression models for eight accelerators and six regression models for six

programming models. In addition to the Fitness and regression models, we have utilized

the published Roofline model to predict the performance of architectures qualitatively.

The Roofline also provides insights regarding the potential bottlenecks of application

performance on architectures. As seen from the discussion of the Roofline model, it also

does not include the effect of memory hierarchy, problem sizes, software effect, and the

threading effect. The validation of these models using the datasets in Chapters 5 and 6 are

presented in the next chapter.

 140

Chapter 8

Performance Model Validation

There are three accelerator performance models considered in this research. First, is

the published Roofline model [22]; second, our proposed Fitness model; and, the third is

the extended Fitness model, i.e., multiple regression model. We validate the Fitness

model using our performance analysis of the multicore and GPGPU architectures using

the matrix-matrix multiplication and SNN case studies. Next, the multiple regression

models are also verified using the SNN models case study. Finally, we use the Roofline

model to further verify the Fitness model findings by reporting the throughput

performance of the four accelerators implementing the SNN case studies.

8.1 Fitness Model Validation

In this section we will discuss the validation of the Fitness model using the

matrix-matrix multiplication and SNN case studies.

8.1.1 Matrix-matrix Multiplications

In this section we will use the matrix multiplication algorithm case study to validate

the Fitness performance model. Five representative square matrix sizes are chosen for the

validation as shown in Table 8.1. Total number of flops, device-to-device transfer, and

host-to-device transfer sizes for the five matrix-matrix multiplications are also given in

the same table.

 141

Table 8.1. Selected matrix sizes and corresponding characteristics

Matrix Size Total flops
device-to-device

transfer (byte)

host-to-device

transfer (byte)

500×500 2.50E+08 1.00E+09 3.00E+06

1000×1000 2.00E+09 8.00E+09 1.20E+07

1500×1500 6.75E+09 2.70E+10 2.70E+07

2000×2000 1.60E+10 6.40E+10 4.80E+07

2500×2500 3.12E+10 1.25E+11 7.50E+07

Table 8.1 provides the characteristics of applications are used in the Fitness model to

predict the performance rank of the architectures based on the theoretical runtime. The

predicted rank of the architectures is shown in Table 8.2.

Table 8.2. Fitness Model predicted performance rank of the accelerator

500x500 1000x1000 1500x1500 2000x2000 2500x2500

Fermi 1 1 1 1 1

Xeon 3 3 3 3 3

Opteron 4 4 4 4 4

PS3 2 2 2 2 2

The Tables 8.1 and 8.2 were originally developed in Section 7.3 and are repeated

here for convenience.

The actual runtime of the matrix-matrix multiplication for various problem sizes is

reported in Table 8.3 which is extracted from Figure 5.21 of Chapter 5. Based on this

runtime table, the actual performance rank is reported in Table 8.4. Comparing Tables

8.2 and 8.4, we see that all of the predictions match with the actual rank except two

cases: the rank of PS3 for the 500x500 and 1000x1000 matrix sizes. For these two

 142

matrix sizes, the rank of PS3 is predicted to be 2, but, the actual rank is 4. The actual

performance of the PS3 architecture is less than the predicted values for the larger

problem sizes due to the congestion in the EIB of the PS3. The EIB has only four lanes to

transfer data between the SPU and DRAM. So when the problem size is very large, 6

SPUs issue multiple DMA request simultaneously for data from the DRAM, the request

processing time is increased due to the number and size of requests. The DMA requests

that take longer than usual fail because of the time out. Thus, repeated DMA requests

will be issued, further increasing the communication time and eventually negatively

impacting the performance. As this issue is not considered in the Fitness model, the PS3

performance is predicted higher than the actual performance.

Table 8.3. Actual runtime (in second) of the accelerators

500x500 1000x1000 1500x1500 2000x2000 2500x2500

Fermi 0.003435 0.010979 0.0222 0.03884 0.05881

Xeon 0.015864 0.148708 0.410725 0.9353 1.869817

Opteron 0.021199 0.185512 0.544591 1.23107 2.460275

PS3 0.03 0.22 0.33 .6601 1.13

Table 8.4. Actual performance rank of the accelerators

500x500 1000x1000 1500x1500 2000x2000 2500x2500

Fermi 1 1 1 1 1

Xeon 2 2 3 3 3

Opteron 3 3 4 4 4

PS3 4 4 2 2 2

 143

8.1.2 SNN Models

In Chapter 6, we ranked the architectures for the SNN model case studies for three

different network sizes. Now we will use the performance data collected in Chapter 5 to

determine the actual rank and validate the Fitness performance model with this case

study. Starting with the smallest network size, 9216 neurons, the performance ranks

reported in Table 8.5 are based on the measured performance shown in Figures 5.1 - 5.4

of Chapter 5. The predicted ranking shown earlier in Table 7.8 of Chapter 7 is

approximately same as the experimental results shown in Table 8.5, the only difference is

that the rank of the GPGPU and PS3 for the Izhikevich model is interchanged.

Table 8.5. Actual performance rank for 9216 neurons

 Izhikevich Wilson ML HH

GPGPU 4 3 1 1

Xeon 1 1 2 2

AMD 2 2 3 3

PS3 3 4 4 4

In the performance prediction, the effect of optimization techniques was not

considered. For the PS3, the double buffering optimization, which is used to overlap the

computation with communication, improves the performance significantly. The effect of

double buffering on the PS3 can also be seen in Figure 5.1 of Chapter 5. These

optimizations are not available for the GPGPU implementation. Thus we believe, this is

one of the main reasons for the error in the prediction from the actual implementation for

the Izhikevich model.

 144

Table 8.6. Actual performance rank for 0.9 million neurons

 Izhikevich Wilson ML HH

GPGPU 4 1 1 1

AMD 1 2 2 2

Xeon 2 4 3 4

PS3 3 3 4 3

The Fitness rank based on the actual implementation for 0.9 million neurons is

reported in Table 8.6. Comparing this table with the corresponding Fitness projection

table, Table 7.9 of Chapter 7, a couple of differences are noted. For the Izhikevich,

Wilson, and HH models, ranks 3 and 4 are interchanged. For all of the cases, the PS3

performance was predicted to be the worst whereas, in the actual implementation the

rank was slightly better, rank 3. As we discussed for the smallest network, the double

buffering technique was not considered in the Fitness model causing the rank for the PS3

to be predicted lower than its actual implementation. Another reason is that the AMD has

an architectural limitation (as discussed in subsection 5.2) that was not captured in the

Fitness model.

 145

Table 8.7. Actual performance rank for 5.8 million neurons

 Izhikevich Wilson ML HH

GPGPU 4 1 1 1

Xeon 1 2 2 2

AMD 2 3 3 3

PS3 3 4 4 4

The actual performance rank of the four architectures for the largest network, 5.8

million neurons, is given in Table 8.7. Comparing these with the projected ranks in Table

7.10, we again find one difference. For the Izhikevich model, the predicted PS3 rank is 4,

whereas the actual performance rank for PS3 is 3. The same explanation, given in the

previous two cases can be applied.

8.1.3 Fitness Model Validation Summary

From the above discussion, we note that except for some of the cases with the PS3

architecture, the Fitness model projections match the actual implementation. The current

Fitness model only ranks the relative Fitness of an architecture; it does not at this time

predict the actual runtime performance of an architecture. One limitation is that the model

does not account for the cost involved in DRAM misses. Thus, the Fitness model does

not account for the performance variation on the PS3 while implementing the largest

network of the Wilson and HH models. In these cases, the DRAM misses cause a sharp

decline in performance. The Fitness model also does not account for complicated bus

architectures, such as EIB of PS3. For larger problem sizes, the EIB becomes congested

negatively impacting the performance as seen with the matrix-matrix multiplication case

study (Section 8.1.1).

 146

The Fitness model allows for the use of the numeric performance values for the

optimization techniques applied. We have not used these values in this research, since it

requires rigorous study to estimate them, which defeats the purpose of the Fitness model:

to provide a quick estimation of the potential top performing architectures for a given

algorithm. As will be discussed in future work, we plan to reduce these limitations and

apply the Fitness model for other applications.

8.2 Regression Model Validation

In this section we will verify the statistical regression models for accelerators and

programming models developed in Section 5.2.

8.2.1 Regression Model For Accelerators

To verify the regression models for accelerators, we have chosen two representative

accelerators: one x86 processor, Intel Xeon and one GPGPU, Nvidia Fermi. We have

chosen one data point, 1680x1680 for the four SNN models. The total number of flops

and required bytes are shown in Table 8.8. Utilizing these values and the regression

models developed in section 7.4, the predicted runtime for the Intel Xeon and Nvidia

Fermi is calculated and reported in Tables 8.9 and 8.10 respectively.

 147

Table 8.8. SNN model characteristics for verification of Accelerator Regression models

Observation SNN Model Network Size Total Flops Total bytes

1 Izhikevich 1680x1680 4.4E+08 8.13E+08

2 Wilson 1680x1680 3.11E+09 3.60E+09

3 Morris-Lecar 1680x1680 5.59E+09 1.19E+09

4 HH 1680x1680 2.79E+11 4.63E+10

Table 8.9. Predicted runtime from the Intel Xeon regression model

Observa

tion

Intercept

Term
flop term byte term core term

flop*core

term

Predicted

runtime (ms)

1 3033.8719 1.15E+01 1.00E+02 -3832.5272 727.3944066 40.50462

2 3033.8719 8.14E+01 4.44E+02 -3832.5272 665.8559339 392.7348

3 3033.8719 1.46E+02 1.46E+02 -3832.5272 605.6113447 99.41567

4 3033.8719 7.30E+03 5.71E+03 -3832.5272 -5663.18192 6552.802

Table 8.10. Predicted runtime from the Nvidia Fermi regression model

Observation Intercept Term flop term byte term flop*byte term
Predicted

runtime (ms)

1 36.223629 -5.33E+00 7.13E+01 -0.970496517 101.1952119

2 36.223629 -3.77E+01 3.16E+02 -0.530305283 313.8113892

3 36.223629 -6.77E+01 1.04E+02 -0.80557599 71.68442536

4 36.223629 -3.38E+03 4.06E+03 -31.23914143 688.1657636

The predicted runtime from the regression model is compared to the measured results

in Table 8.11. The error rate is reported in the same table. From the table we see that the

error is lower for longer runtimes. The highest error rate is 16.7% for the shortest runtime

(132.21 ms) and the lowest error is 0.27 % for the longest runtime (8517 ms). This error

variation results because a small deviation from the model for shorter runtimes creates a

greater percentage of error, whereas the same deviation for longer runtimes creates a

smaller percentage of error.

 148

Table 8.11. Verification of results for the regression model of two accelerators

Observation

Actual runtime

for Intel Xeon

(ms)

% of Error

for Intel

Xeon

Actual runtime

for Nvidia Fermi

(ms)

% of Error

for Nvidia

Fermi

1 45.19 10.37 105.5568 4.310121

2 406.16 3.30 300.1 -4.36931

3 113.31 12.26 78.6187 9.673279

4 6632.00 1.19 623.98 -9.32703

8.2.2 Regression Model for Programming Models

In this section, the regression model for the programming models will be verified

against the actual runtime results. A data point 1200x1200 for the four SNN models is

used in the verification process. We have chosen two representative programming

models for verification: Concurrency Runtime and CUDA. Table 8.12 provides the total

flops and total bytes required for the four SNN models. Plugging the values from Table

8.12 into the regression model equations developed in Section 7.4 (equation (7.23) and

(7.29)), the individual terms and the calculated predicted runtime is reported in Table

8.13 and 8.14 for CUDA and Concurrency Runtime respectively.

Table 8.12. SNN model characteristics for verification of accelerators regression model

Observation SNN Model Network Size Total Flops Total bytes

1 Izhikevich 1200x1200 2.25E+08 4.15E+08

2 Wilson 1200x1200 1.59E+09 1.17E+09

3 Morris-Lecar 1200x1200 2.85E+09 6.05E+08

4 HH 1200x1200 1.42E+11 2.36E+10

 149

Table 8.13. Predicted runtime from the CUDA regression model

Observation Intercept flop term byte term flop*byte term Predicted runtime

1 36.22 -2.72 36.36 -1.03 68.83

2 36.22 -19.22 102.53 -0.89 118.64

3 36.22 -34.53 53.03 -0.94 53.78

4 36.22 -1723.70 2072.26 -5.46 379.32

Table 8.14. Predicted runtime from the Concurrency Runtime regression model

Observation Intercept flop term byte term
Predicted

runtime

1 214.69 30.78 88.32 333.79

2 214.69 217.40 249.02 681.11

3 214.69 390.61 128.80 734.11

4 214.69 19500.14 5033.18 24748.01

These predictions, are compared with the actual runtime to calculate error and are

reported in Table 8.15. A similar error pattern occurs, high error rate for short runtimes

and lower error rate for the longer runtimes, as was found in the case of accelerator

regression model.

Table 8.15. Verification of results for two programming models

Observation
Actual time for

CUDA

% of Error

for CUDA

Actual time

for

Concurrency

Runtime

% of Error

for

Concurrency

Runtime

1 62.24 -10.59 296.1 12.76497

2 99.86 -18.80 610.43 11.67447

3 60.68 11.36 792.82 -7.4208

4 365.19 -3.86 24724 -0.11818

 150

8.2.3 Verification With Roofline Model

We have evaluated the throughput of the four base architectures for the SNN model.

The throughput and the percentage of peak throughput for the four architectures with the

four SNN models is reported in Tables 8.16 and 8.17. It is clear from Table 8.16 that the

throughput for the Izhikevich and Wilson models with the four architectures is about 6%.

It can be partially explained by examining the Roofline model. These two SNN models

are communication bound and thus can achieve less throughput than a kernel that is

computation bound. For the ML and HH models shown in Table 8.16, the throughput of

the four architectures is higher as shown in the Roofline graphs, Figures 7.1 - 7.4 in

Chapter 7. The maximum throughput, 267 Gflops (77% of the peak Gflop) was achieved

by the GPGPU for the HH model, which was discussed in the architecture performance

sub-section.

Table 8.16. Achieved and % of Peak Gflop/s performance for the Izhikevich and Wilson models

Izhikevich Wilson

2.8 million
5.8

million
2.8 million 5.8 million

Gflop/s

(% of peak)

Gflop/s

(% of peak)

Gflop/s

(% of peak)

Gflop/s

(% of peak)

GPGPU 3 (1%) 3 (1%) 16 (5%) 17 (5%)

Xeon 9 (6%) 4 (3%) 7 (5%) 6 (4%)

AMD 4 (3%) 4 (2%) 3 (2%) 5 (3%)

PS3 4 (3%) 4 (3%) 8 (5%) 0.14 (0.1%)

 151

Table 8.17. Achieved and % of Peak Gflop/s performance for the ML and HH models

Morris-Lecar Hodgkin-Huxley

2.8 million 5.8 million 2.8 million 5.8 million

Gflop/s

(% of peak)

Gflop/s

(% of peak)

Gflop/s

(% of peak)

Gflop/s

(% of peak)

GPGPU 43(12%) 45 (13%) 244 (70%) 267 (77%)

Xeon 33 (21%) 32 (21%) 39 (25%) 39 (25%)

AMD 26 (17%) 28 (18%) 30 (20%) 30 (20%)

PS3 25 (17%) 23 (16%) 33 (23%) 8 (5%)

8.3 Performance Explanation With Fitness And Roofline Model

In this section, we will use the Fitness and Roofline models to analyze and explain

the performance behavior of the four accelerators. In Section 5.2, the performance of the

accelerators was studied by varying the problem sizes for the SNN case studies. In that

section, the performance behavior of the accelerators was explained in terms of the

characteristics of accelerators and algorithms. In this section we will revisit the same

performance results and explain them in terms of the Fitness and Roofline models. The

successful explanations of the performance behavior of accelerators using Fitness and

Roofline models further validate the models.

8.3.1 Izhikevich And Wilson Model

The performance behavior for the Izhikevich and Wilson models on the four

architectures is shown in Figures 8.1 and 8.2 respectively. For the GPGPU

implementation of the Izhikevich model, all of the working datasets fit in global memory

and no maxima is seen in the speedup graph. However, the amount of computation in the

Izhikevich model is very low compared to the required data transfer and the GPGPU

cannot take advantage of its high computation throughput as the problem size increases.

 152

The GPGPU host-to-device bandwidth (1/SHDT=2 GB/s) is the lowest of all the

architectures studied and there is another data transfer required inside the GPGPU

(1/SHDT=1500 GB/s), which together result in the GPGPU having the lowest rank

performance among the architectures. For the Xeon, the working dataset does not fit in

the cache beyond 1 million neurons, therefore in the ACC_APP equation, the required

data transfer value is shifted from HDT2 to HDT1. Since HDT1 is greater than HDT2, it

requires additional time to transfer data resulting in degraded performance as the problem

size increases. For the AMD Opteron, a similar explanation can be applied. For the PS3,

the working dataset is larger than the device memory size (SPU local store size) for even

the smallest problem size. Thus, the equation ACC_APP uses HDT1 for all of the

network sizes and there is no maxima seen in that graph.

A similar explanation applies for the Wilson neuron model on the four architectures

using the Fitness.

Figure 8.1. Izhikevich model: Speedup

performance of the four architectures over Intel

Core 2 Quad

Figure 8.2. Wilson model: Speedup performance of

the four architectures over Intel Core 2 Quad

0

10

20

30

40

50

60

70

0 2 4 6

S
p

e
e
d

u
p

Neurons (millions)

Speedup of Fermi

Speedup of Xeon

Speedup of AMD

Speedup of PS3

 153

With the help of the Roofline model, we see that the Izhikevich neuron model is

communication bound for the x86 architectures. Thus the performance of the Xeon and

Opteron architectures for the Izhikevich neuron model do not grow beyond a peak value.

However, the maxima seen in the x86 performance curve for the Izhikevich model

cannot be completely explained by the Roofline model alone, as the Roofline model does

not consider the variation of performance with the problem size. For the same reason, the

Roofline model does not explain the maxima seen for the Wilson model.

8.3.2 Morris-Lecar And HH Model

The Fitness and Roofline performance models provide insights into the performance

of the Morris-Lecar and HH neuron models on the four architectures as shown in Figures

8.3 and 8.4 respectively. As mentioned, the Morris-Lecar model has a higher flop

requirement and approximately same amount of data transfer compared to the Izhikevich

model as seen in Table 5.1 in Chapter 5. For the GPGPU, the computation term (FP.SFP)

of the ACC_APP equation is smaller, compared to the other architectures, because the

SFP of the GPGPU is much smaller than that of the other architectures. Though, the data

transfer rate for the GPGPU is lower (i.e., SHDT is higher) than that of the other

architectures, the GPGPU has much less data to transfer (HDT3). Thus the

communication term (HDT3.SHDT3) is essentially lower than that of the other

architectures. Moreover, the computation term (FP.SFP) is much lower than the other

architectures, since the SFP is the smallest among all the architectures allowing the

GPGPU to perform better than the other architectures for the Morris-Lecar model. From

 154

the perspective of the Roofline model, we also see that the Morris-Lecar model is

computation bound for all of the architectures. Using the Fitness and Roofline model, a

similar explanation applies for the performance of the HH neuron model.

Figure 8.3. Morris-Lecar model: Speedup

performance of the four architectures over Intel

Core 2 Quad

Figure 8.4. Hodgkin-Huxley model: Speedup

performance of the four architectures over Intel

Core 2 Quad

8.4 Summary

In this Chapter we have validated the Fitness model, multiple regression performance

model, and Roofline model using the two case studies: matrix-matrix multiplication and

SNN neuron models.

The numerical error of the Fitness model as applied to both the case studies can be

calculated. For the SNN case study, there were 48 rank predictions for 3 network sizes (4

architectures × 4 models × 3 network sizes). Among them, five of the predicted ranks for

the PS3 did not match with the experimental result. Thus predicting the ranks in this case

study produces the error rate of (5×100/48), i.e. 10%. On the other hand, for the matrix-

0

40

80

120

160

200

0 2 4 6

S
p

e
e
d

u
p

Neurons (million)

Speedup of Fermi

Speedup of Xeon

Speedup of AMD

Speedup of PS3

0

200

400

600

800

1000

0 2 4 6

S
p

e
e
d

u
p

Neurons (millions)

Speedup of Fermi

Speedup of Xeon

Speedup of AMD

Speedup of PS3

 155

matrix multiplication case study, there are five matrix sizes used, thus, there were 20 rank

predictions (4 architectures × 5 matrix sizes). Two of the predicted ranks for the PS3 did

not match with the experimental results. Thus the error rate is (2×100/20), i.e., 10%. Thus

it can be summarized that the accuracy of the Fitness model is 90% accurate. It is also

noted that all the errors of rank prediction by the Fitness model occurred with PS3. After

further analysis, we find that the limitations of the Fitness model are (1) the model does

not include the effect of optimization techniques and (2) the complicated bus structure of

the PS3, such as EIB congestion, is not included. These limitations of the Fitness model

are responsible for the error in rank predictions of the PS3.

The error rate for the four regression models is calculated in Section 8.2. We have

reported the other six architectures and four programming models in the Appendices B

and C respectively. Among the sixteen cases, the maximum error found was 28% for the

shortest runtime and the minimum error was 0.27% for the longest runtime. The error

varies because a small deviation from the model for shorter runtimes creates a greater

percentage of error, while the same deviation for longer runtimes creates a smaller

percentage of error. This error pattern suggests that if multiple regression techniques are

used on a dataset that has a large range of values for the dependent variable, the

prediction for a low-valued dependent variable should be used cautiously, whereas the

prediction for a high-valued dependent variable can be used with high confidence. This

error pattern is a known limitation of the multiple regression models.

The average error for the sixteen regression models is 11%. The utility of the model

does not depend on the error rate alone, the R-squared value and p-values are also an

 156

important indication of the usefulness of the model. The JMP output of the sixteen

models is reported in the Appendix A. From this information, we find that the R-squared

values are in the range 90% to 99% for all of the models. Thus the R-squared value

satisfies the utility criteria for all sixteen models. The p-values also satisfy the utility

criteria in 95% of the cases. In the remaining 5% of the cases, though the p-values do not

satisfy the utility criteria, the R-squared value does satisfy the utility criteria, and thus we

retain the model. Therefore, the combined support from the R-squared and p-values

together with the average error (11%) of the sixteen models proves that regression

modeling is a very useful technique for projecting the performance of architectures and

programming models. In the future work section of Chapter 9 we will discuss potential

techniques to improve the regression models and reduce the error.

We have also verified the prediction of maximum performance by the Roofline model

after calculating the actual throughput and DRAM bandwidth from the performance

graphs shown in Figures 5.1 - 5.4 of Chapter 5. The prediction of the Roofline model was

found to be correct after comparing the actual throughput and DRAM bandwidth. In

addition to the prediction, the Roofline model also provides information about potential

bottlenecks (memory bound or computation bound) of the implementation.

Therefore, three performance models were validated in this Chapter, each having

their own advantages and limitations. All three models are useful for a developer while

implementing an application using a parallel programming model on an architecture.

 157

Chapter 9

Conclusions And Future Work

The high performance computing community is now experiencing a rapid change in

computing technology both in hardware and software. A range of computing

architectures and programming models are available for use by the community posing

new challenges for the researchers and software developers to select the best hardware

and programming models for their applications. To address this issue, this dissertation

focuses on performance modeling and analysis of two dominating high performance

computing architectures, multicore CPUs and GPGPUs, and the available programming

models for these architectures. Two performance models were developed in this research:

a Fitness model to rank the potential performance of architectures for an application and

multiple regression performance models to predict the runtime of an architecture and the

performance impact of programming models. To facilitate the development and

validation of the performance models, the performance of the multicore and GPGPU

architectures was studied for varying problem sizes, optimization techniques, and

accelerator configurations and experimental data was collected.

9.1 Summary of Research And Findings

The multicore CPU and GPGPU architectures currently used in high performance

computing vary in memory and bus architecture, processing core count, organization, and

 158

clock speed. Thus, performance modeling of these architectures is very useful for the

high performance community to enable estimation of impact of architecture and

application characteristics on performance. In this research we have developed two

performance models for popular multicores and GPGPUs: Fitness performance model

and multiple regression performance models.

This research proposes the Fitness performance model to quickly estimate the

performance of accelerators for an application. The Fitness model accounts for the

architecture characteristics (such as throughput and memory bandwidth) and application

characteristics (such as floating point operations, bytes access required) and estimates the

performance rank of the architectures based on theoretical performance. This

performance rank information can save a substantial amount of development time. For

example, Computed Tomography (CT) scanner is equipment used in healthcare requires

parallelizing and accelerating the CT algorithms to reconstruct images [109]. To select

the best architecture for this algorithm without the aid of a performance model, the

developer must implement and test the algorithm on the available architectures, which

costs a substantial amount of development time and potentially the cost of hardware and

software. Alternately, with the use of the Fitness model, the developer can quickly

analyze and select the best architecture for CT algorithm, saving time and money.

Further, administrators of computing clusters, supercomputers, and computing clouds can

use the Fitness model to select the best computing nodes for their target applications

saving a significant amount of development time and hardware/software costs.

 159

While the Fitness model ranks the performance of accelerators, often estimating the

actual performance (runtime) of an application on a given architecture is required. By

predicting the runtime for an application beforehand, a system administrator can manage

the job queue more efficiently; the developer and scientific researchers can estimate when

the results from the run are expected. For these scenarios, multiple regression models (a

statistical tool) were developed that can predict the actual runtime of an architecture for

an application. We also use the regression models to estimate the performance impact of

programming models on application performance. Combined, these models help the

developer to select the best programming model for a particular combination of hardware

and application characterizes so that substantial time is not invested experimenting with

all available programming models.

The performance data collected in Chapters 5 and 6 were used to validate the

performance models. The dataset includes the impact of problem sizes, optimizations,

accelerator configuration, and programming models on performance. Four popular

architectures, Intel Xeon, AMD Opteron, IBM PS3, NVIDA Fermi, and four advanced

architectures, Intel 32 core, AMD 32 core, IBM 32 core, and SUN 16 core were used.

The programming models used include p-threading, OpenMP, Concurrency Runtime, and

OpenCL for the x86 architectures, and CUDA and OpenCL for Nvidia GPGPU.

Some interesting results were observed while collecting the performance data for the

architecture and programming model combinations. For example, while varying the

problem size, a peak in performance (maxima) for the x86 accelerators and a dramatic

performance decrease in the PS3 performance for larger problem sizes was observed.

 160

These deviations in performance were explained in Chapter 5. Other cases where the

performance of an architecture saturates or decreases as the number of processing cores

increases were documented. Moreover, the performance impact with the increase of

processing cores was found to be dependent on the correlation of the application

characteristics, such as flop/byte ratio, and the architecture characteristics as explained in

Chapter 5.

In Chapter 6, the performance impact of four multicore programming models and two

GPGPU programming models was investigated. We qualitatively rank the programming

models in terms of the required programming effort by the developer. Attempts are also

taken to quantify the programming effort required for the programming models. Thus

together with the regression models for programming models, the above analysis is

helpful for selecting the best programming model in terms of both performance and

programming effort.

9.2 Contributions

This research provides four significant contributions to the paradigm of high

performance computing:

i) Fitness performance model is proposed that predicts the performance rank of

architectures for an application. The Fitness model accounts for the

characteristics of both the architectures and applications and predicts. The

model is validated using experimental performance data collected for two

kinds of applications: matrix-matrix multiplications and four SNN neuron

models.

 161

ii) Multiple regression models for the architectures are proposed that predict the

actual runtime. Multiple regression models for each architecture have been

developed using the experimental performance dataset collected. The

architectures considered include three popular multicore CPUs one GPGPU,

and four advanced multicore processors.

iii) Multiple regression models to predict the performance impact of the

programming models are also developed. Four multicore programming

models and two GPGPU programming models are modeled with multiple

regression techniques. These regression models are validated using the

experimental performance dataset. Additionally, attempts are taken to

qualitatively and quantitatively compare the programming efforts required by

the developer. The programming models are ranked in terms of the

programming effort.

iv) Performance analysis of leading multicore and GPGPU processors. We have

presented and analyzed the performance of Intel Xeon, AMD Opteron, and

IBM PS3, Nvidia Fermi GPGPU for varying problem size, optimization

techniques, processing core count, and flop/byte ratio. The performance of

advanced many-core processors, Intel 32 core, AMD 32 core, IBM 16 core,

and Sun T2+ UltraSparc, is also analyzed. The performance analysis was

conducted to collect experimental data for the development and validation of

the performance models. However, these analyses also provide valuable

 162

insights on the interaction between architecture and application

characteristics.

9.3 Future Work

In future, the following issues can be addressed:

9.3.1 Use of micro-benchmark values with the Fitness model

We have introduced the Fitness model for single-node configuration. While

validating the model we have used theoretical peak values for various performance

metrics, such as throughput and DRAM bandwidth. But to achieve a theoretical peak, all

optimization techniques must be applied, which is not practical for most cases. Thus in

future, we propose to investigate the validation of the Fitness model using micro-

benchmark values such as the STREAM benchmark values.

9.3.2 Validation with others applications and accelerators

In the study of architecture performance and in the validation of Fitness and multiple

regression models we have used a matrix multiplication algorithm and four types of SNN

models as case studies. The computation and communication demand of the case studies

covers a wide range making them good candidates to study the performance of the

architectures. However, we propose to use other applications so that that Fitness model

can be further validated over a wider range of applications. Potential application studies

include but are not limited to: molecular dynamics kernels, bioinformatics kernels, and

optimization problems.

 163

9.3.3 Effect of operating systems

The experimental results presented include the performance impact of programming

models on application performance. Future work will include an investigation of the

performance impact of the operating system, such as Windows and Linux, on application

performance.

9.3.4 Comparison between the two performance models

The basic linear regression model (for which no squared and interaction terms are

present) can be compared with the Fitness model to further validate and rationalize both

models. By setting the intercept term of the regression model (α1) as zero, the two

models can be directly compared if the linear regression model for architecture is

redeveloped. Initial investigations have found that in some cases, one of the coefficients

for the regression model is negative which is physically not possible. There are three

potential reasons for this issue that need further investigation. First, the number of data

points is inadequate compared to the range of values for the dependent variables (0.2

msec. to 15000 ms). Second, additional terms (interaction, squared, cubed) may be

needed to meet the utility critera. Third, some of the data points with extremely low

values for the dependent variable are also negatively affecting the balance of the

regression model. By addressing these three issues, the regression model can be modified

then compared with the respective coefficients of the Fitness model.

The rank prediction capability (i.e. error) of the two models can also be compared.

Initial investigations found that except for the smallest problem size, the regression

 164

model predicts the rank accurately. For the smallest problem size, the regression model

predicts negative values for the Intel Xeon runtime, which is not practical and invalidates

the rank prediction. Similar reasons as described in the previous paragraph are potentially

responsible for this behavior. Thus, by addressing these three issues, the rank prediction

for the smallest problem sizes can potentially be corrected.

An additional reason for the above limitations of the regression model is that it does

not have the required interaction, squared, cubed, or other powered terms. When adding

terms to the model to correct its coefficients and prediction, we also must know when to

stop adding terms. The Akaike Information Criterion (AIC) is a well-known criteria for

discontinuing the addition of terms to the model. By applying this criteria in the future

work, one will know when there is a sufficient number of terms in the regression model.

9.3.5 Modeling of heterogeneous computing nodes

To model the performance of heterogeneous computing nodes (multicore CPU and

GPGPU), extension to the Fitness model are needed. The two architectures in a

heterogeneous system must be modeled separately along with possible other terms for

application load balance, background load, communication between the two

architectures, etc.

 165

Bibliography

[1] http://www.eetimes.com/electronics-products/processors/4091586/Intel-s-teraflops-chip-uses-mesh-

architecture-to-emulate-mainframe

[2] http://www.tilera.com/products/processors

[3] http://www.NVIDA.com/content/global/global.php

[4] http://www.amd.com/us/Pages/AMDHomePage.aspx

[5] http://sc10.supercomputing.org/

[6] http://isscc.org/doc/2011/isscc2011.advanceprogramabstracts.pdf

[7] http://www.amd.com/us/press-releases/Pages/16-core-interlagos-2010nov16.aspx

[8] ―NVIDA CUDA Programming Guide‖, http://developer.download.NVIDA.com/

compute/cuda/3_0/toolkit/docs/NVIDA_CUDA_ProgrammingGuide.pdf

[9] L. Ligowski and W. Rudnicki, ―An Efficient Implementation of Smith Waterman Algorithm on

GPGPU using CUDA, for Massively Parallel Scanning of Sequence Databases.‖ Proceedings of

IPDPS 2009, Rome Italy, May 2009

[10] http://www.ks.uiuc.edu/Research/namd/

[11] http://lammps.sandia.gov/

[12] https://simtk.org/home/openmm

[13] http://www.khronos.org/opencl/

[14] D. Pellerin, and S. Thibault. 2005. Practical FPGA Programming in C. Prentice Hall Press.

[15] SRC Carte C Programming Environment. SRC Computers.

[16] http://www.gidel.com/

[17] http://www.xtremedata.com/

[18] http://www.cray.com/products/Legacy.aspx

[19] http://www.nallatech.com/

[20] Low power hybrid computing for efficient software acceleration.

http://www.mitrion.com/?document=Hybrid-Computing-Whitepaper.pdf

http://www.eetimes.com/electronics-products/processors/4091586/Intel-s-teraflops-chip-uses-mesh-architecture-to-emulate-mainframe
http://www.eetimes.com/electronics-products/processors/4091586/Intel-s-teraflops-chip-uses-mesh-architecture-to-emulate-mainframe
http://www.tilera.com/products/processors
http://www.nvidia.com/content/global/global.php
http://www.amd.com/us/Pages/AMDHomePage.aspx
http://sc10.supercomputing.org/
http://isscc.org/doc/2011/isscc2011.advanceprogramabstracts.pdf
http://www.amd.com/us/press-releases/Pages/16-core-interlagos-2010nov16.aspx
http://developer.download.nvida.com/compute/cuda/3_0/toolkit/docs/NVIDA_CUDA_ProgrammingGuide
http://developer.download.nvida.com/compute/cuda/3_0/toolkit/docs/NVIDA_CUDA_ProgrammingGuide
http://www.ks.uiuc.edu/Research/namd/
http://lammps.sandia.gov/
https://simtk.org/home/openmm
http://www.khronos.org/opencl/
http://www.gidel.com/
http://www.xtremedata.com/
http://www.cray.com/products/Legacy.aspx
http://www.nallatech.com/
http://www.mitrion.com/?document=Hybrid-Computing-Whitepaper.pdf

 166

[21] Agility Design Solutions 2007. Handel-C Language Reference Manual. Agility Design Solutions,

http://www.agilityds.com/literature/HandelC Language Reference Manual.pdf.

[22] S. Williams, A. Waterman, D. Patterson. ―Roofline: An Insightful Visual Performance Model for

Floating-Point Programs and Multicore Architectures,‖ Communications of the ACM (CACM), 65-

76, April 2009.

[23] B. Holland, A. George, H. Lam, and M. Smith, "An Analytical Model for Multi-Level Performance

Prediction of Multi-FPGA Systems," ACM Transactions on Reconfigurable Technology and Systems

(TRETS), to appear.

[24] C. Johansson and A. Lansner, ―Towards Cortex Sized Artificial Neural Systems,‖ Neural Networks,

20(1), 48–61, Jan. 2007.

[25] E. Izhikevich and G. Edelman, "Large-Scale Model of Mammalian Thalamocortical Systems,"

Proceedings of the National Academy of Sciences, 105(9), 3593–3598, Mar. 2008.

[26] E. M. Izhikevich. Dynamical Systems in Neuroscience, MIT press, Cambridge, Massachusetts, 2007.

[27] M. A. Bhuiyan, T. M. Taha, R. Jalasutram, ―Character recognition with two spiking neural network

models on multicore architectures,‖ IEEE Proceedings of CIMSVP, Tennessee, 29-34, March 2009.

[28] A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, R. Vuduc,‖Optimizing and

Tuning the Fast Multipole Method for State-of-the-Art Multicore Architectures,‖ Proceedings of

International Parallel & Distributed Processing Symposium (IPDPS), GA, 1-12, 2010.

[29] S. Williams, J. Carter, L. Oliker, J. Shalf, K. Yelick,‖Optimization of a Lattice Boltzmann

Computation on State-of-the-Art Multicore Platforms,‖ Journal of Parallel and Distributed

Computing (JPDC), 69(9), 762-777, Sep. 2009.

[30] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, K. Yelick, ― Auto-tuning the 27-point

Stencil for Multicore,‖ 4th International Workshop on Automatic Performance Tuning (iWAPT),

2009.

[31] M. Araya-Polo, J. Cabezas, M. Hanzich, M. Pericas, F. Rubio, I. Gelado, M. Shafiq, E. Morancho,

N. Navarro, E. Ayguade, J. M. Cela, M. Valero, ―Assessing Accelerator-based HPC Reverse Time

Migration,‖ IEEE Transactions on Parallel and Distributed Systems, 99, PrePrints, 2010.

[32] A. Khajeh-Saeed, S. Poole, J. B. Perot, ―Acceleration of the Smith–Waterman algorithm using single

and multiple graphics processors,‖ Journal of Computational Physics, 229(11), 4247-4258, Jun.

2010.

[33] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, A. Veidenbaum, ―A configurable simulation

environment for the efficient simulation of large-scale spiking neural networks on graphics

processor,‖ Special issue of Neural Network, Elsevier, 22(5-6), 791-800, July 2009.

[34] S. Williams, N. Bell, J.W. Choi, M. Garland, L. Oliker. R. Vuduc, "Sparse Matrix Vector

Multiplication on Multicore and Accelerators", in Scientific Computing on Multicore and

Accelerators, CRC Press, ISBN: 978-1-4398253-6-5, 2010.

http://www.agilityds.com/literature/HandelC%20Language%20Reference%20Manual.pdf
http://trets.cse.sc.edu/

 167

[35] S. Hong, H. Kim, "An Analytical Model for a GPGPU Architecture with Memory-level and Thread-

level Parallelism Awareness," Proceedings of the 36th International Symposium on Computer

Architecture (ISCA), Austin, TX, June 2009.

[36] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, W. W. Hwu, ―An Adaptive Performance

Modeling Tool for GPGPU Architectures,‖ Proceedings of the 15th ACM SIGPLAN, symposium on

Principles and practice of parallel programming, India, 105-114, 2010.

[37] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, W. W. Hwu, ―An Adaptive Performance

Modeling Tool for GPGPU Architectures,‖ Proceedings of the 15th ACM SIGPLAN, symposium on

Principles and practice of parallel programming, India, 2010.

[38] Xi E. Chen, T. M. Aamodt, ―A First-Order Fine-Grained Multithreaded Throughput Model,‖

Proceedings of HPCA, 329-340, 2009.

[39] D. B. Noonburg and J. P. Shen, "A Framework for Statistical Modeling of Superscalar Processor

Per-formance," International Symposium on High Performance Computer Architecture, pp. 298-309,

1997.

[40] M. C. Smith, ―Analytical Modeling of High Performance Reconfigurable Computers: Prediction and

Analysis of System Performance,‖ Ph. D. Dissertation, The University of Tennessee, Knoxville,

December 2003.

[41] B. Holland, K. Nagarajan, and A. D. George, ―RAT: RC amenability test for rapid performance

prediction,‖ ACM Transactions on Reconfigurable Technology and Systems (TRETS), 1(4), 1–31,

2009

[42] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, ―LogGP: In-corporating long

messages into the LogP model for parallel computation,‖ J. Paral. Distrib.Comput., 44(1), 71-79,

1997.

[43] A. Snavely , L. Carrington , N. Wolter , J. Labarta , R. Badia , A. Purkayastha, ―A framework for

performance modeling and prediction,‖ Proceedings of the ACM/IEEE conference on

Supercomputing, Baltimore, Maryland , 1-17, Nov. 2002.

[44] J. Archuleta, Y. Cao, T. Scogland and Wu-chun Feng, ―Multi-dimensional characterization of

temporal data mining on graphics processors,‖ Presented at 2009 IEEE International Symposium on

Parallel & Distributed Processing (IPDPS). Available:

http://dx.doi.org/10.1109/IPDPS.2009.5161049

[45] O. D. Lampe, I. Viola, N. Reuter and H. Hauser, ― Two-level approach to efficient visualization of

protein dynamics,‖ IEEE Trans. Visual. Comput. Graphics,13(6), pp. 1616-1623. Available:

http://dx.doi.org/10.1109/TVCG.2007.70517

[46] S. Sur, M. J. Koop, Lei Chai and D. K. Panda, ―Performance analysis and evaluation of mellanox

ConnectX InfiniBand architecture with multicore platforms,‖ 15th Annual IEEE Symposium on

High-Performance Interconnects, 125-134, 2007.

[47] S. R. Alam, P. K. Agarwal, S. S. Hampton, Hong Ong and J. S. Vetter, ―Impact of multicores on

large-scale molecular dynamics simulations,‖ IEEE International Symposium Parallel and

Distributed Processing(IPDPS 2008), 1-7, 2008

http://www.cc.gatech.edu/~hyesoon/hong_isca09.pdf
http://www.cc.gatech.edu/~hyesoon/hong_isca09.pdf
http://dx.doi.org/10.1109/TVCG.2007.70517

 168

[48] P. M. Martin, M. C. Smith, S. Alam and P. Agarwal, ―Implementation methodology for emerging

reconfigurable systems,‖ 51st Midwest Symposium Circuits and System (MWSCAS 2008) 169-172,

2008

[49] L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, Carlos Amador-Bedolla, and, Alán Aspuru-Guzik,

―Accelerating Resolution-of-the-Identity Second-Order Moller−Plesset Quantum Chemistry

Calculations with Graphical Processing Units,‖ The Journal of Physical Chemistry A, 112 (10),

2049-2057, 2008.

[50] I. S. Ufimtsev and T. J. Martinez, ―Quantum chemistry on graphical processing units. 1. strategies

for two-electron integral evaluation,‖ J. Chem. Theory Comput, 4(2), 222–231, 2008

[51] I. S. Ufimtsev and T. J. Martinez, ―Quantum Chemistry on Graphical Processing Units. 2. Direct

Self-Consistent-Field Implementation,‖ Journal of Chemical Theory and Computation, vol. 5, no. 4,

pp. 1004–1015, April 2009. [Online]. Available: http://dx.doi.org/10.1021/ct800526s

[52] Y. Allusse, P. Horain, A. Agarwal and C. Saipriyadarshan, ―GPGPUCV: A GPGPU-accelerated

framework for image processing and computer vision,‖ Presented at 4th International Symposium,(

ISVC 2008), Available: http://dx.doi.org/10.1007/978-3-540-89646-3_42

[53] D. Castano-Diez, D. Moser, A. Schoenegger, S. Pruggnaller and A. S. Frangakis, ―Performance

evaluation of image processing algorithms on the GPGPU,‖ Journal of Stuctural Biology, 164(1),

pp. 153-60. Available: http://dx.doi.org/10.1016/j.jsb.2008.07.006

[54] K. Fok, T. Wong and M. Wong, ―Evolutionary computing on consumer graphics hardware‖ IEEE

Intelligent Systems, 22(2), pp. 69-78. Available: http://dx.doi.org/10.1109/MIS.2007.28

[55] H. Markram. The Blue Brain Project, Nature Reviews, Neuroscience, 7, 153-160, 2006.

[56] W. Rall, ―Branching dendritic trees and motoneuron membrane resistivity,‖ Experimental

Neurology, 1, 1959; 503-532.

[57] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha, ―The Cat is Out of the Bag:

Cortical Simulations with 109 Neurons, 1013 Synapses,‖ Proc. of SC, Oregon, Nov. 2009.

[58] M. M. Khan, D. R. Lester, L. A. Plana, A. D. Rast, X. Jin, E. Painkras, and S B. Furber,

‗‗SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor,‘‘ In

International Joint Conference on Neural Networks (IJCNN), 2849-2856, 2008.

[59] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, "The missing memristor found," Nature,

453, 80-83, 2008.

[60] B. Linares-Barranco and T. Serrano-Gotarredona, ―Memristance can explain Spike-Time-

Dependent-Plasticity in Neural Synapses,‖ [Online], Available from Nature Proceedings,

http://hdl.handle.net/10101/npre.2009.3010.1, 2009

[61] C. Gao and D. Hammerstrom. "Cortical Models Onto CMOL and CMOS—Architectures and

Performance/Price," IEEE Transactions on Circuits and Systems, 54(11), 2502-2515, Nov. 2007.

[62] H. Shayani, P.J. Bentley, and A. M. Tyrrell, ―Hardware Implementation of a Bio-plausible Neuron

Model for Evolution and Growth of Spiking Neural Networks on FPGA‖, in NASA/ESA Conference

on Adaptive Hardware and Systems 2008 (AHS ’08), 236-243, Jun. 2008.

http://dx.doi.org/10.1016/j.jsb.2008.07.006
http://hdl.handle.net/10101/npre.2009.3010.1

 169

[63] A. Upegui, C.A. Pena-Reyes, E. Sanchez, ―A hardware implementation of a network of functional

spiking neurons with hebbian learning,‖ in International Workshop on Biologically Inspired

Approaches to Advanced Information Technology 2004 (BioAdit 04), 399-409, Jan. 2004.

[64] E.Izhikevich, ―Which Model to Use for Cortical Spiking Neurons?‖ IEEE Transactions on Neural

Networks, 15(5), 1063-1070, 2004.

[65] M. Rosa, E.Caruso, L. Fortuna, M. Frasca, L. Occhipinti, and F. Rivoli, ―Neuronal dynamics on

FPGA: Izhikevich's model,‖ Proceedings of the SPIE, 5839, 87-94, 2005.

[66] K. L. Rice, M. A. Bhuiyan, T. M. Taha, C. N. Vutsinas, and M. C. Smith, ―FPGA Implementation of

Izhikevich Spiking Neural Networks for Character Recognition‖, Reconfig 09, Cancun, Mexico,

Dec. 2009.

[67] R. K. Weinstein, M. S. Reid, and R. H. Lee, "Methodology and design flow for assisted neural-

model implementations in FPGAs," IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 15(1), 83-93, March 2007.

[68] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, T. Yamazaki, ―Synergistic

Processing in Cell‘s Multicore Architecture,‖ IEEE Micro, 26(2), 10-24, Mar. 2006.

[69] http://www.nvidia.com/object/personal-supercomputing.html

[70] ―ATI Mobility Radeon HD 5870 GPGPU Specifications‖,

http://www.amd.com/us/products/notebook/graphics/ati-mobility-hd-5800/Pages/hd-5870-

specs.aspx

[71] http://www.srccomp.com/

[72] E.M. Izhikevich, "Polychronization: Computation With Spikes," Neural Computation, 1, 8245-282,

2006.

[73] A. L. Hodgkin and A. F. Huxley, ―A quantitative description of membrane current and application to

conduction and excitation in nerve,‖ Journal of Physiology, 117, 500–544, 1952.

[74] C. Morris and H. Lecar, ―Voltage oscillations in the barnacle giant muscle fiber,‖ Biophys. J., 35,

193–213, 1981.

[75] H. R. Wilson, ―Simplified dynamics of human and mammalian neocortical neurons,‖ J. Theor. Biol.,

200, 375–388, 1999.

[76] E. Izhikevich, ―Simple Model of Spiking Neurons,‖ IEEE Transaction on Neural Networks, 14(6),

1569-1572, Nov. 2003.

[77] A. Gupta, L. Long, ―Character Recognition using Spiking Neural Networks,‖ Proceedings of IJCNN,

53-58, Aug. 2007.

[78] M. A. Bhuiyan, V. K. Pallipuram, M. C. Smith, ―Acceleration of Spiking Neural Networks in

Emerging Multicore and GPGPU Architectures,‖ IEEE proceedings of HiCOMB, IPDPS, Atlanta,

GA, 1-8, April 2010.

[79] ―ATI Stream Profiler‖, http://developer.amd.com/GPGPU/StreamProfiler/Pages/default.aspx

http://www.amd.com/us/products/notebook/graphics/ati-mobility-hd-5800/Pages/hd-5870-specs.aspx
http://www.amd.com/us/products/notebook/graphics/ati-mobility-hd-5800/Pages/hd-5870-specs.aspx
http://www.srccomp.com/
http://developer.amd.com/gpu/StreamProfiler/Pages/default.aspx

 170

[80] ―Stream KernelAnalyzer‖, http://developer.amd.com/GPGPU/ska/pages/default.aspx

[81] https://computing.llnl.gov/tutorials/pthreads/

[82] http://openmp.org/wp/

[83] http://msdn.microsoft.com/en-us/library/dd504870.aspx

[84] http://www.khronos.org/opencl/

[85] http://www.nvidia.com/object/cuda_home_new.html

[86] P. J. Cagnard, ―The parallel cellular programming model,‖ 8
th

 Euromicro workshop on Parallel and

Distributed Processing, 2000. DOI: 10.1109/EMPDP.2000.823384

[87] M. Vance, ―A migration-based parallel programming model with architectural support structures,‖

Presented at 2009 DoD High Performance Computing Modernization Program Users Group

Conference.

[88] R. B. Brightwell , M. A. Heroux , Z. Wen , ―J. Wu, Parallel Phase Model: A Programming Model

for High-End Parallel Machines with Manycores,‖ International Conference on Parallel

Processing,, Austria, 2009.

[89] F. E. Fich, The complexity of computation on the parallel random access Machine. Synthesis of

Parallel Algorithms, Morgan Kaufmann Publ., San Mateo, CA, 1993

[90] http://www.lam-mpi.org/

[91] http://www.bsp-worldwide.org/

[92] L. Prechelt, ―A parallel programming model for irregular dynamic neural networks,‖ Presented at

Third Working Conference on Massively Parallel Programming Models, 214-219, 1997.

[93] B. Corda and K. H. Warren, ―PFP: A scalable parallel programming model‖ Presented at Scalable

High Performance Computing Conference, 170-173, 1992.

[94] W. Hwu, S. Ryoo, S. Ueng, J. H. Kelm, I. Gelado, S. S. Stone, R. E. Kidd, S. S. Baghsorkhi, A. A.

Mahesri, S. C. Tsao, N. Nvarro, S. S. Lumetta, M. I. Frank, and S. J. Patel, ―Implicitly parallel

programming models for thousand-core microprocessors‖ In Proceedings of the 44th annual Design

Automation Conference (DAC '07). ACM, New York, NY, USA, 754-759.

DOI=10.1145/1278480.1278669

[95] M. Sawley, J. Tegner, ―A comparison of parallel programming-models for multiblock flow

computations,‖ J Comput Phys, 122(2), 280-90, 1995.

[96] J. A. Keane, A. J. Grant, M. Q. Xu, ―Comparing distributed memory and virtual shared memory

parallel programming models‖ Future Generation Computer Systems, 11(2), 233-43, March 1995.

[97] R. Rabenseifner and G. Wellein, "Communication and optimization aspects of parallel programming

models on hybrid architectures," International Journal of High Performance Computing

Applications, 17(1), 49-62, Feb. 2003

http://developer.amd.com/gpu/ska/pages/default.aspx
https://computing.llnl.gov/tutorials/pthreads/
http://www.lam-mpi.org/
http://www.bsp-worldwide.org/
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BKeane%2C+J.A.%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BGrant%2C+A.J.%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BXu%2C+M.Q.%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr

 171

[98] L. Hochstein, V. R. Basili, U. Vishkin, J. Gilbert, ―A pilot study to compare programming effort for

two parallel programming models,‖ Journal of Systems and Software, 8(11), 1920-1930, Nov. 2008

 [99] A. Marowka, ―Towards high-level parallel programming models for multicore systems,‖

International Conference on Advanced Software Engineering & Its Applications, 226-9, 2008

[100] I. Patel, J. R. Gilbert, "An empirical study of the performance and productivity of two parallel

programming models," Parallel and Distributed Processing, 2008. IPDPS 2008, 14-18 April 2008

[101] SARC European Project, "Parallel Programming Models for Heterogeneous Multicore

Architectures," Micro, IEEE , 30(5), 42-53, Sept.-Oct. 2010

[102] K. Fatahalian, J. Sugerman and P. Hanrahan, "Understanding the efficiency of GPU algorithms for

matrix-matrix multiplication," in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, 133-137, 2004.

[103] R. A. Van De Geijn and J. Watts, "SUMMA: Scalable universal matrix multiplication algorithm,"

Journal of Concurrency and Computation: Practice and Experience, 9, 255-274, 1997

[104] K. Goto and R.A. Geijn, "Anatomy of high-performance matrix multiplication," ACM Transactions

on Mathematical Software (TOMS), 34, 12, 2008

[105] http://software.intel.com/en-us/articles/intel-mkl/

[106] http://developer.amd.com/libraries/acml/pages/default.aspx

[107] http://developer.download.nvidia.com/compute/cuda/1_0/CUBLAS_Library_1.0.pdf

[108] https://www.ibm.com/developerworks/mydeveloperworks/blogs/powerarchitecture/entry/

ibomb_blas_sdk30_2?lang=en

[109] F. Xu and K. Mueller, ―RapidCT: Acceleration of 3D Computed Tomography on GPUs,‖ ACM

Workshop on General-Purpose Computing on Graphics, 2004.

[110] A. Snavely, N.Wolter, and L. Carrington, ―Modeling Application Performance by Convolving

Machine Signatures with Application Profiles. In WWC ’01: Proceedings of the Workload

Characterization, 2001, Washington DC, 149–156, 2001.

[111] L. C. Carrington, X. Gao, N. Wolter, A. Snavely, and R. L. Jr. Campbell, ―Performance Sensitivity

Studies for Strategic Applications,‖ In DOD UGC ’05: Proceedings of the 2005 Users Group

Conference , page 400, Washington DC, 2005.

[112] V. K. Pallipuram, M. A. Bhuiyan, M. C. Smith, ―A Comparative Study of GPU Programming

Models and Architectures using Neural Networks,‖ Journal of SuperComputing, Springer

Publications, DOI 10.1007/s11227-011-0631-3.

[113] G. Khanna and J. McKennon, ―Numerical modeling of gravitational wave sources accelerated by

OpenCL‖, Computer Physics Communications,181(9), 1605-1611, 2010.

[114] K. Karimi, N.G. Dickson, and F. Hamze, ―A Performance Comparison of CUDA and OpenCL‖, The

Computing Research Repository (CoRR), abs/1005.2581, 2010.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BHochstein%2C+L.%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BBasili%2C+V.R.%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BVishkin%2C+U.%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BGilbert%2C+J.%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BMarowka%2C+A.%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://developer.download.nvidia.com/compute/cuda/1_0/CUBLAS_Library_1.0.pdf

 172

[115] P. Du, R. Weber, S. Tomov, G. Peterson, and J. Dongarra, ―From CUDA to OpenCL: Towards a

Performance-portable Solution for Multi-platform GPU Programming‖, Parallel Computing

(Submitted), Elsevier Publications, 2010.

[116] V. K. Pallipuram, ―Acceleration of Spiking Neural Networks on Single-GPU and Multi-GPU

systems‖, Master‘s Thesis, Clemson University, May 2010.

[117] http://threadingbuildingblocks.org/

[118] W. Mendenhall, T. Sincich, A Second Course in Statistics: Regression Analysis, Sixth Edition,

Pearson Education, New Jersey, 2003.

[119] http://www.sas.com/

http://threadingbuildingblocks.org/
http://www.sas.com/

 173

APPENDIX

 174

APPENDIX A

JMP software output for each of the eight accelerators and six programming models

A1. Nvidia Fermi

 175

A2. Intel Xeon

 176

A3. AMD Opteron

 177

A4. PS3

 178

A5. Intel 32 core

 179

A6. AMD 32 core

 180

A7. IBM 16 core

 181

A8. Sun 32 core

 182

A9. CUDA on Fermi

 183

A10. OpeCL on Fermi

 184

A11. POSIX-threading on Intel i7

 185

A12. OpenMP on Intel i7

 186

A13. Concurrency Runtime on Intel i7

 187

A14. OpenCL on Intel i7

 188

APPENDIX B

JMP software runtime predictions and error calculations for accelerators

Table B1. SNN model characteristics for verification of accelerator regression models

Observation SNN Model Network Size Total Flops Total bytes

1 Izhikevich 1680x1680 4.4E+08 8.13E+08

2 Wilson 1680x1680 3.11E+09 3.60E+09

3 Morris-Lecar 1680x1680 5.59E+09 1.19E+09

4 HH 1680x1680 2.79E+11 4.63E+10

Table B2. Predicted runtime for Intel Xeon

Observa

tion

Intercept

Term
flop term byte term core term

flop*core

term

Predicted

runtime (ms)

1 3033.8719 1.15E+01 1.00E+02 -3832.5272 727.3944066 40.50462

2 3033.8719 8.14E+01 4.44E+02 -3832.5272 665.8559339 392.7348

3 3033.8719 1.46E+02 1.46E+02 -3832.5272 605.6113447 99.41567

4 3033.8719 7.30E+03 5.71E+03 -3832.5272 -5663.18192 6552.802

Table B3. Verification of results for Intel Xeon

Observation
Actual runtime

(ms)
% of Error

1 45.19 10.37

2 406.16 3.30

3 113.31 12.26

4 6632.00 1.19

Table B4. Predicted runtime for AMD Opteron

Observa

tion

Intercept

Term
flop term byte term core term

flop*core

term

Predicted

runtime (ms)

1 3181.2476 1.79E+01 1.06E+02 3964.2576 813.626787 154.3034

2 3181.2476 1.27E+02 4.69E+02 3964.2576 728.634583 540.7926

3 3181.2476 2.27E+02 1.54E+02 3964.2576 649.751756 248.3219

4 3181.2476 1.13E+04 6.03E+03 3964.2576 8052.96477 8540.16

Table B5. Verification of results for AMD Opteron

Observation
Actual runtime

(ms)
% of Error

1 132.21 -16.72

2 576.60 6.21

3 227.76 -9.03

4 8517.07 -0.27

 189

Table B6. Predicted runtime for IBM PS3

Observa

tion

Intercept

Term
flop term byte term

Predicted

runtime (ms)

1 45.708842 1.01E+01 4.22E+01 98.0115

2 45.708842 7.17E+01 1.87E+02 304.0732

3 45.708842 1.29E+02 6.17E+01 236.225

4 45.708842 6.43E+03 2.40E+03 8875.405

Table B7. Verification of results for IBM PS3

Observation
Actual runtime

(ms)
% of Error

1 115.01 -14.7726

2 396.7 -23.3493

3 251.20 -5.88645

4 8224.21 7.920778

Table B8. Predicted runtime for Nvidia Fermi

Observation Intercept Term flop term byte term flop*byte term
Predicted

runtime (ms)

1 36.223629 -5.33E+00 7.13E+01 -0.970496517 101.1952119

2 36.223629 -3.77E+01 3.16E+02 -0.530305283 313.8113892

3 36.223629 -6.77E+01 1.04E+02 -0.80557599 71.68442536

4 36.223629 -3.38E+03 4.06E+03 -31.23914143 688.1657636

Table B9. Verification of results for Nvidia Fermi

Observation

Actual runtime

for Nvidia Fermi

(ms)

% of Error

for Nvidia

Fermi

1 105.5568 4.310121

2 300.1 -4.36931

3 78.6187 9.673279

4 623.98 -9.32703

Table B10. Predicted runtime for Intel 32 core

Observation Intercept Term flop term byte term core term flop*core term
Predicted

runtime (ms)

1 31654.395 1.62E+01 4.12E+01 -33781.67 2.15E+03 80.45545

2 31654.395 1.15E+02 1.82E+02 -33781.67 2.08E+03 252.252

3 31654.395 2.06E+02 6.03E+01 -33781.67 2.02E+03 158.7204

4 31654.395 1.03E+04 2.34E+03 -33781.67 -4.93E+03 5584.432

 190

Table B11. Verification of results for Intel 32 core

Observation
Actual runtime

(ms)
% of Error

1 98.52 -18.3359

2 230.69 9.346739

3 131.89 20.34305

4 5231.6 6.744253

Table B12. Predicted runtime for AMD 32 core

Observation Intercept Term flop term byte term core term flop*core term
Predicted

runtime (ms)

1 43595.437 2.00E+01 8.93E+01 -46664.03 2.99E+03 31.76153

2 43595.437 1.42E+02 3.95E+02 -46664.03 2.90E+03 364.892

3 43595.437 2.54E+02 1.31E+02 -46664.03 2.81E+03 125.4121

4 43595.437 1.27E+04 5.08E+03 -46664.03 -6.86E+03 7852.976

Table B13. Verification of results for AMD 32 core

Observation
Actual runtime

(ms)
% of Error

1 41.33 -23.1514

2 356.36 2.394203

3 114.94 9.110942

4 6917.79 13.51857

Table B14. Predicted runtime for IBM 16 core

Observation Intercept Term flop term byte term core term flop*core term
Predicted

runtime (ms)

1 32394.884 1.62E+01 9.03E+01 -34784.94 2.45E+03 168.1952

2 32394.884 1.14E+02 4.00E+02 -34784.94 2.37E+03 498.2801

3 32394.884 2.05E+02 1.32E+02 -34784.94 2.30E+03 249.8729

4 32394.884 1.02E+04 5.14E+03 -34784.94 -5.63E+03 7372.42

Table B15. Verification of results for IBM 16 core

Observation
Actual runtime

(ms)
% of Error

1 139.49 20.5787

2 451.19 10.43686

3 269.39 -7.24491

4 6982.59 5.582892

 191

Table B16. Predicted runtime for Sun 32 core

Observation Intercept Term flop term byte term core term flop*core term
Predicted

runtime (ms)

1 786328.74 7.22E+02 7.67E+02 -841157.7 5.40E+04 708.199

2 786328.74 5.10E+03 3.40E+03 -841157.7 5.10E+04 4682.924

3 786328.74 9.17E+03 1.12E+03 -841157.7 4.82E+04 3658.355

4 786328.74 4.58E+05 4.37E+04 -841157.7 -2.63E+05 183958.6

Table B17. Verification of results for Sun 32 core

Observation
Actual runtime

(ms)
% of Error

1 984.93 -28.0965

2 4223.45 10.87912

3 4101.79 -10.8108

4 187331.3 -1.80039

 192

APPENDIX C

JMP software runtime predictions and error calculations for programming models

Table C1. SNN model characteristics for verification of software regression models

Observation SNN Model Network Size Total Flops Total bytes

1 Izhikevich 1200x1200 2.25E+08 4.15E+08

2 Wilson 1200x1200 1.59E+09 1.17E+09

3 Morris-Lecar 1200x1200 2.85E+09 6.05E+08

4 HH 1200x1200 1.42E+11 2.36E+10

Table C2. Predicted runtime for CUDA (Fermi)

Observation Intercept flop term byte term flop*byte term Predicted runtime

1 36.22 -2.72 36.36 -1.03 68.83

2 36.22 -19.22 102.53 -0.89 118.64

3 36.22 -34.53 53.03 -0.94 53.78

4 36.22 -1723.70 2072.26 -5.46 379.32

Table C3. Verification of results for CUDA (Fermi)

Observation Actual time % of Error

1 62.24 -10.59

2 99.86 -18.80

3 60.68 11.36

4 365.19 -3.86

Table C4. Predicted runtime for OpenCL (Fermi)

Observation Intercept flop term byte term flop*byte term Predicted runtime

1 28.8 2.62E+00 3.53E+01 -6.58E-01 60.77933

2 28.8 1.85E+01 9.94E+01 -5.69E-01 109.1008

3 28.8 3.32E+01 5.14E+01 -6.01E-01 46.37209

4 28.8 1.66E+03 2.01E+03 -3.46E+00 374.7952

Table C5. Verification of results for OpenCL (Fermi)

Observation Actual time % of Error

1 69.53 -12.59

2 93.66 16.49

3 55.73 -16.79

4 362.4991 3.39

 193

Table C6. Predicted runtime for POSIX-threading (Intel i7)

Observation Intercept flop term byte term flop*byte term byte*byte term Predicted runtime

1 111.01574 7.04E+01 -1.36E+02 1.64E+03 -1.64E+03 48.50048

2 111.01574 4.98E+02 -3.82E+02 1.42E+03 -1.31E+03 338.1122

3 111.01574 8.92E+02 -1.98E+02 1.50E+03 -1.55E+03 752.447

4 111.01574 4.44E+04 -7.71E+03 8.65E+03 -8.48E+03 37007.7

Table C7. Verification of results for POSIX-threading (Intel i7)

Observation Actual time % of Error

1 38.20808 26.94

2 298.916 13.11

3 775.5006 -2.97

4 37147.13 -0.38

Table C8. Predicted runtime for OpenMP (Intel i7)

Observation Intercept flop term byte term Predicted runtime

1 70.34 3.12E+01 6.98E+01 171.35085

2 70.34 2.21E+02 1.97E+02 487.6871

3 70.34 3.95E+02 1.02E+02 567.44695

4 70.34 1.97E+04 3.97E+03 23737.864

Table C9. Verification of results for OpenMP (Intel i7)

Observation Actual time % of Error

1 141.11 -17.6485

2 414 -15.0398

3 629.94 11.01302

4 26000.2 9.530537

 194

Table C10. Predicted runtime for Concurrency Runtime (Intel i7)

Observation Intercept flop term byte term
Predicted

runtime

1 214.69 30.78 88.32 333.79

2 214.69 217.40 249.02 681.11

3 214.69 390.61 128.80 734.11

4 214.69 19500.14 5033.18 24748.01

Table C11. Verification of results for Concurrency Runtime (Intel i7)

Observation

Actual time

for

Concurrency

Runtime

% of Error

for

Concurrency

Runtime

1 296.1 12.76497

2 610.43 11.67447

3 792.82 -7.4208

4 24724 -0.11818

Table C12. Predicted runtime for OpenCL (Intel i7)

Observation Intercept flop term byte term
Predicted

runtime

1 89.308168 1.21E+01 5.57E+01 157.057518

2 89.308168 8.53E+01 1.57E+02 331.608508

3 89.308168 1.53E+02 8.12E+01 323.445518

4 89.308168 7.62E+03 3.17E+03 10877.24017

Table C13. Verification of results for OpenCL (Intel i7)

Observation Actual time % of Error

1 127.522575 23.16056

2 277.090734 19.67506

3 364.681648 -11.3074

4 11029.60253 -1.38139

	Clemson University
	TigerPrints
	12-2011

	PERFORMANCE ANALYSIS AND FITNESS OF GPGPU AND MULTICORE ARCHITECTURES FOR SCIENTIFIC APPLICATIONS
	Mohammad Bhuiyan
	Recommended Citation

	PERFORMANCE ANALYSIS AND FITNESS OF GPGPU AND MULTICORE ARCHITECTURES FOR SCIENTIFIC APPLICATIONS

