
© 2014. G. Kasi Reddy & Dr. D Sravan Kumar. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 14 Issue 6 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Measurement and Prediction of Software Performance by Models
 By G. Kasi Reddy & Dr. D Sravan Kumar

 JNTU, India

Abstract- Software Performance Engineering (SPE) provides a systematic, quantitative approach to
constructing software systems that meet performance objectives. It prescribes ways to build
performance into new systems rather than try to fix them later. Performance is a pervasive quality of
software systems; everything affects it, from the software itself to all underlying layers, such as
operating system, middleware, hardware, communication networks, etc. Software Perfor -mance
Engineering encompasses efforts to describe and improve performance, with two distinct
approaches: an early-cycle predictive model-based approach, and a late-cycle measurement-based
approach. Current progress and future trends within these two approaches are described, with a
tendency (and a need) for them to converge, in order to cover the entire development cycle.

Keywords : SPE, performance prediction, performance measurement, UML, debugging.

GJCST-C Classification : H.1

MeasurementandPredictionofSoftwarePerformancebyModels

Strictly as per the compliance and regulations of:

Measurement and Prediction of Software
Performance by Models

 G.Kasi Reddy α & Dr. D Sravan Kumar σ

Abstract- Software Performance Engineering (SPE) provides a
systematic, quantitative approach to constructing software
systems that meet performance objectives. It prescribes ways
to build performance into new systems rather than try to fix
them later. Performance is a pervasive quality of software
systems; everything affects it, from the software itself to all
underlying layers, such as operating system, middleware,
hardware, communication networks, etc. Software Perfor -
mance Engineering encompasses efforts to describe and
improve performance, with two distinct approaches: an early-
cycle predictive model-based approach, and a late-cycle
measurement-based approach. Current progress and future
trends within these two approaches are described, with a
tendency (and a need) for them to converge, in order to cover
the entire development cycle.
Keywords: SPE, performance prediction, performance
measurement, UML, debugging.

I. Introduction

espite rapidly improving hardware, many recent
software systems are still suffering from
performance problems, such as high response

times or low throughputs [1]. Hardware is often not the
limiting factor as powerful multi-core and many core
processors are readily available on the market and
modern software systems may run in huge data centers
with virtually unlimited resources. Performance problems
often stem from software architectures that are not
designed to exploit the available hardware. Instead,
these software architectures ignore the advances of
distributed computing and multi-core and many core
processors.

Systematic approaches for engineering softw-
are systems to achieve desired performance properties
have been proposed [2, 3]. They advocate modeling
software systems during early development stages, so
that performance simulations can validate design
decisions before investing implementation effort.

The advent of multi-core processors results in
new challenges for these systematic software perfor-
mance engineering (SPE) methods. Modeling software
running on thousands of cores requires rethinking of
existing approaches [4]. While techniques and tools for
parallelizing software are evolving [5], novel methods
and tools need to be created to assist software

Author α : Research Scholar, CSE, JNTU Hyderabad, India.
e-mail : gkreddy@mgit.ac.in
Author σ: Principal and Professor of CSE, KITE women’s college of
Professional Engineering Sciences, Hyderabad, India.

in designing systems that can exploit the capabilities for
parallel execution but do not overburden software
developers during implementation [6].

II. Software Performance Engineering

SPE is a software-oriented approach; it focuses
on architecture, design, and implementation choices. It
uses model predictions to evaluate trade-offs in
software functions, hardware size, quality of results, and
resource requirements. The models assist developers in
controlling resource requirements by enabling them to
select architecture and design alternatives with accep-
table performance characteristics. The models aid in
tracking performance throughout the development
process and prevent problems from surfacing late in the
life cycle (typically during final testing).[7] SPE also
prescribes principles and performance patterns for cre -
ating responsive software, performance anti-patterns for
recognizing and correcting common problems, the data
required for evaluation, procedures for obtaining perfor -
mance specifications, and guidelines for the types of
evaluation to be conducted at each development stage.
It incorporates models for representing and predicting
performance as well as a set of analysis methods.[8]

III. Progress in Measurement,
Debugging and Testing

Measurement is used by verification teams to
ensure that the system under test meets its
specifications, by performance modelers to build and
validate models, and by designers to find and fix hot-
spots in the code. Interest in the measurement of the
performance of a computer system ranges back to the
development of the very first systems, described in an
early survey paper by Lucas [9]. Today, the state of
industrial performance measurement and testing techn -
iques is captured in a series of articles by Scott Barber
[7] including the problems of planning, execution,
instrumentation and interpretation. For performance test
design, an important issue is to determine the workload
under which the testing is done. An approach is to run
the performance tests under similar conditions with the
expected operational profile of the application in the
field [9]. Briand and co-workers have pioneered the use
of models to create stress tests for time-critical systems,
by triggering stimuli at strategic instants [10].

D

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
I
 V

er
sio

n
I

17

(
DDDD DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

Performance models are often difficult to
construct, even with a live system, despite the presence
of tools to actually measure performance. In the future,
model building will become much more automated, and
output becomes standardized, and the conversion
process between measurement information and
performance model becomes more practical. Ultimately,
the model and measurement information will be fed
back into design tools, so that performance issues are
brought to the forefront early in the design process.

a) Performance Measurement- Best practices
These are practices for those responsible for

measuring software performance and for performance
testing. [11]

i. Plan Measurement Experiments to Ensure That
Results Are Both Representative And Repro-
ducible

There are two key considerations in planning
performance measurements: They must be repre -
sentative and reproducible. To be representative, meas -
urement results must accurately reflect each of the
factors that affect performance: workload, software, and
computer system environment. The goal is to design
your measurement experiment in a way that balances
the effort required to construct and execute the
measurement experiment against the level of detail in
the resultant data. When unimportant details are
omitted, both the design effort and the overhead
required to collect the data are reduced.

Reproducibility gives you confidence in the
results. In order for a measurement to be reproducible,
the workload, software, and computer system
environment must be controlled so that you can repeat
the measurement and get the same (or very similar)
results each time.

ii. Instrument Software to Facilitate SPE Data
Collection

You instrument software by inserting code
(probes) at key points to measure pertinent execution
characteristics. For example, you might insert code that
records the time at the start and end of a business task
to measure the end-to-end time for that task. There are
at least three reasons for supplementing the standard
tools with instrumentation: convenience, data gran -
ularity, and control.

iii. Measure Critical Components Early and Often to
Validate Models and Verify Their Predictions

Measurements substantiate model predictions,
and confirm that key performance factors have not been
omitted from the models. Occasionally, software exec -
ution characteristics are omitted from a model because
their effects are thought to be negligible. Later, you may
discover that they in fact have a significant impact on
performance, as illustrated in the following anecdote: An
early life cycle model specified a transaction with five

database “Selects.” During detailed design, “Order by”
clauses were added to three of the “Selects.” The
developers viewed the additional clause as “insign-
ificant” because only one to five records would be
sorted for each “Select.” Upon investigation, though, the
performance analyst discovered that over 50,000
instructions were executed for each sort!

The way to detect these omissions is to
measure critical components as early as possible and
continue measuring them, to ensure that changes do
not invalidate the models.

IV. Prediction of Performance by
Models

The special capability of a model is prediction
of properties of a system before it is built, or the effect of
a change before it is carried out. This gives a special
“early warning” role to early-cycle modeling during
requirements analysis. However as implementation
proceeds, better models can be created by other
means, and may have additional uses, in particular

• design of performance tests
• configuration of products for delivery
• evaluation of planned evolutions of the design,

recognizing that no system is ever final.

a) Performance models from scenarios
Early performance models are usually created

from the intended behaviour of the system, expressed
as scenarios which are realizations of Use Cases. The
term “scenario” here denotes a complex behavior
including alternative paths as well as parallel paths and
repetition. The performance model is created by extra -
cting the demands for resource services. Annotated
UML specifications are a promising development.

The annotations include:

• the workload for each scenario, given by an arrival
rate or by a population with a think time between
requests,

• the CPU demand of steps,
• the probabilities of alternative paths, and loop

counts,
• the association of resources to the steps either

impl -icitly (by the processes and processors) or
explicitly.

As an illustration, Figure 1 shows a set of
applications requesting service from a pool of server
threads running on a multiprocessor (deployment not
shown). Part (a) shows the scenario modeled as a UML
sequence diagram with SPT annotations, (b) shows a
graph representing the scenario steps, and (c) shows
the corresponding layered queueing network (LQN)
model. Studies in [12] [13] use such models.

At a later stage, scenarios may be traced from
execution of prototypes or full deployments, giving
accurate behaviour. Models can be rebuilt based on

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
I
 V

er
sio

n
I

18

(
DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

Measurement and Prediction of Software Performance by Models

these experimental scenarios [14], combined with mea -
sured values of CPU demands.

b)

Performance models from objects and components

A performance model can be built based on the
software objects viewed from a performance persp -

ective. A pioneering contribution in this direction defined
a “performance abstract data type” for an object [13],
based on the machine cycles executed by its methods.

Figure 1 : Annotated UML, Scenario Model, and Performance Model

To create a performance model, one traces a
response from initiation at a root object to all the
interfaces it calls, proceeding recursively for each call.
Queueing and layered queueing models were derived
based on objects and calls in [14] and [15]. Model
parameters (CPU, call frequencies) were estimated by
measurement or were based on the documentation plus
expertise. Object-based modeling is inherently compo -
sitional, based on the call frequencies between objects.
This extends to subsystems composed of objects, with
calls between subsystems. In [2] an existing application
is described in terms of UNIX calls, and its migration to
a new platform is evaluated by a synthetic benchmark
with these calls, on the new platform. This study created
a kind of object model, but then carried out composition
and evaluation in the measurement domain. The
convergence of models and measurements is an
important direction for SPE.

The object-based approach to performance
modeling can be extended to systems built with
reusable components. Composition of sub-models for
Component-Based Software Engineering [16] was
described in [17]. Issues regarding performance contr -
acts between components are discussed in [18].
Components or platform layers can be modeled sepa -
rately, and composed by specifying the calls between
them. For example, in [18] a model of a J2EE
application server

is created as a component that offers
a large set of operations; then an application is modeled

(by a scenario analysis) in terms of the number of calls it
made to each operation.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
I
 V

er
sio

n
I

19

(
DDDD DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

Measurement and Prediction of Software Performance by Models

Figure 2 : Simplified domain model for a converged SPE process

The quantitative parameters of the performance
model for the J2EE server - and the underlying operating
system and hardware platform -were obtained by
measurements for two different implementations. The
main challenge regarding performance characterization
of reusable components stem from the fact that the
offered performance depends not only on the
component per se, but also on its context, deployment,
usage and load. It seems obvious that such approaches
apply similarly to Generative techniques [17] and to
Model-Driven Development. The completion of perfo -
rmance models made from a software design, by
adding components that make up its environment but
are outside the design, is also largely based on
composition of sub-models [19]. This is an aspect of
Model-Driven Development.

V. Convergence of the Measurement
and Modeling Approaches

The present state of performance engineering is
not very satisfactory, and better methods would be
welcome to all. One way forward is to combine

knowledge of different kinds and from different sources
into a converged process. Figure 2 outlines such a
process, with the main concepts and their relationships.
The notation is based on the newly adopted OMG
standard Software Process Engineering Meta model
(SPEM) [20]. At the core of SPEM is the idea that a
software process is a collaboration between abstract
active entities called ProcessRoles (e.g., usecase act-
ors) that perform operations called Activities on conc -
rete entities called WorkProducts. Documents, models,
and data are examples of WorkProduct specializations.
Guidance elements may be associated to different
model elements to provide extra information.

Figure 2 uses stereotypes defined in [20].
Concepts related to the model-based approach appear
on the left of Figure 2, and to the measurement-based
approach on the right. A distinction is made between
performance testing measurements (which may take
place in a laboratory setting, with more sophisticated
measurement tools and special code instrumentation)
and measurements for monitoring live production
systems that are deployed on the intended target
system and used by the intended customers. The

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
I
 V

er
sio

n
I

20

(
DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

Measurement and Prediction of Software Performance by Models

domain model from Figure 3 is very generic. For
instance, there is no indication whether different
activities (such as Performance Model Building) are
done automatically through model transformations or
“by hand” by a performance analyst.

In a convergence of data-centric and model-
centric methods, data (including prior estimates)
provides the facts and models provide structure to
organize and to extract significance from the facts. Our
exploration of the future will examine aspects of this
convergence. Models have a key role. They integrate
data and convert it from a set of snapshots into a
process capable of extrapolation. To achieve this
potential we must develop robust and usable means to
go from data to model (i.e., model-building) and from
model to “data” (solving to obtain predictions). We must

also learn how to combine measurement data
interpretation with model interpretation, and to get the
most out of both. Capabilities supported by
convergence include:

• efficient testing, through model-assisted test design
and evaluation

• search for performance-related bugs,
• performance optimization of the design
• scalability analysis
• reduced performance risk when adding new

features,
• aids to marketing and deployment of products.

The future developments that will provide these
capabilities are addressed in the remainder of this
section. A future tool suite is sketched in Figure 3.

Figure 3 : Tools for a Future Converged SPE Process, linked to Software Development Tools

VI. Efficient Model-Building Tools

The abstractions provided by performance
models are valuable, but some way must be found to
create the models more easily and more quickly. For
performance models made early in the lifecycle from
specified scenarios, automated model-building has be -
en demonstrated [6] and is supported by the UML
profiles [21]. The future challenge is to handle every
scenario that a software engineer may need to describe,
and every way that the engineer can express them
(including the implied scenario behaviour of object call
hierarchies, and the composition of models from
component designs).

The multiplicity of model formats hinders tool
development, and would be aided by standards for
performance model representations, perhaps building
on [22]. Interoperability of performance building tools

with standard UML tools is also helpful. For instance, the
PUMA architecture[23] shown in Figure 6 supports the
generation of different kinds of performance models
(queueing networks, layered queueing networks, Petri
nets, etc.) from different versions of UML (e.g., 1.4 and
2.0) and different behavioural representations (sequ -
ence and activity diagrams). PUMA also provides a
feedback path for design analysis and optimization. Mid
and late-cycle performance models should be extracted
from prototypes and implementations. Trace based
automated modeling has been described in [23],
including calibrated CPU demands for operations. Fut -
ure research can enhance this with use of additional
instrumentation (e.g. CPU demands, code context),
efficient processing, and perhaps exploit different levels
of abstraction. Abstraction from traces exploits certain
patterns in the trace, and domain-based assumptions;
these can be extended in future research.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
I
 V

er
sio

n
I

21

(
DDDD DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

Measurement and Prediction of Software Performance by Models

Figure 4 : Architecture of the PUMA toolset [23]

VII. Conclusion

Software Performance Engineering needs
further development in order to cope with market
requirements and with changes in software technology.
It needs strengthening in prediction, testing and
measurement technology, and in higher-level techni -
ques for reasoning and for optimization.

References Références Referencias

1. M.R. Moghal, N. Hussain, M.S. Mirza, M.W. Mirza,
M.S. Choudry, “Performance Evaluation and
Modeling of Web Server Systems”,WSEAS Transa -
ctions on Information Science and Applications 1(1),
July 2004, pp. 658-663.

2. C. U. Smith and L. G. Williams, Performance
Solutions: A Practical Guide to Creating Res -
ponsive, Scalable Software. Addison-Wesley, 2002.

3. M. Woodside, G. Franks, and D. C. Petriu, \The
Future of Software Performance Engineering," in
Proc. Future of Software Engineering (FOSE'07).
IEEE Computer Society, 2007, pp. 171-187.

4. W. Hwu, S. Ryoo, S.-Z. Ueng, J. Kelm, I. Gelado, S.
Stone, R. Kidd, S. Baghsorkhi, A. Mahesri, S. Tsao,
N. Navarro, S. Lumetta, M. Frank, and S. Patel,
\Implicitly parallel programming models for
thousand-core microprocessors," in Proc. 44th
ACM/IEEE Design Automation Conference (DAC
'07), june 2007, pp. 754-759.

5. H. Vandierendonck and T. Mens, \Techniques and
tools for parallelizing software," IEEE Softw., vol. 29,
no. 2, pp. 22-25, 2012.

6. C. A. Schaefer, V. Pankratius, and W. F. Tichy,
\Engineering parallel applications with tunable
architectures," in Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering, Volume 1, ser. ICSE '10. ACM, 2010,
pp. 405-414.

7. S. Barber, “Creating Effective Load Models for
Performance Testing with Incomplete Empirical

Data”, in Proc. 6

th

IEEE Int. Workshop on Web Site

Evolution, 2004, pp. 51-59.

8. Bertolino, R. Mirandola. “Software performance
engineering of component-based systems”, Proc.

Workshop on Software and Performance, WO -
SP’2004, pp 238-242.

9. H. Lucas Jr, “Performance evaluation and monit -
oring”, ACM Computing Surveys, 3(3),

Sept. 1971,

pp 79-91.

10. V. Garousi, L. Briand, Y. Labiche, “Traffic-aware
Stress Testing of Distributed Real-Time Systems
based on UML Models”, Proc. Int. Conference on
Software Engineering,

Shanghai, China, 2006, pp.

391-400.

11. V. Cortellessa, A. Di Marco, P. Inverardi, “Nonfun -
ctional Modeling

and Validation in Model-Driven

Architecture”, Proc 6

th

Working IEEE/IFIP Confer -

ence on Software Architecture

(WICSA 2007),
Mumbai, India, 2007.

12. C. Jittawiriyanukoon, Performance Evaluation of
Parallel Processing Systems Using Queueing
Network Model WSEAS Transactions on Computers

3(5), March 2006, pp. 612-620.

13. D.B. Petriu, C.M. Woodside, “Analysing Software
Requirements Specifications for Performance”,
Proc.

3rd Int. Workshop on Software and Perform -

ance, Rome, 2002.

14. M. Woodside, C. Hrischuk, B. Selic, and S. Bayarov,
“Automated Performance Modeling of Software
Generated by a Design Environment”,

Performance

Evaluation, vol. 45, no. 2-3 pp. 107-124, 2001.

15. J. Xu, M. Woodside, and D.C. Petriu, “Performance
Analysis of a Software Design using the UML Profile
for Schedulability, Performance and Time”, in Proc.
13

th

Int. Conf. Modeling Techniques and Tools for

Computer Performance Evaluation, Urbana, USA,
Sept. 2003

16. C. Szypersky, D. Gruntz, S. Murer, Component
Software: Beyond Object Oriented Programming,
Addison- Wesley, 2002.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
I
 V

er
sio

n
I

22

(
DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

Measurement and Prediction of Software Performance by Models

17. X. Wu and M. Woodside, “Performance Modeling
from Software Components”, in Proc.WOSP’2004,
Redwood Shores, Calif., 2004, pp. 290-301.

18. R. H. Reussner, V. Firus, S. Becker, “Parametric
Performance Contracts for Software Components
and their Compositionality”, in 9th Int. Workshop on
Component- Oriented Programming, Oslo, June
2004.

19. M. Woodside, D.B. Petriu, K. Siddiqui, “Performan -
cerelated Completions for Software Specifications”,
Proc 24th Int. Conf. on Software Engineering,
Orlando, 2002.

20. Object Management Group, Software Process
Engineering Metamodel Specification, formal/05-01-
06, 2006.

21. Object Management Group, UML Profile for
Modeling and Analysis of Real-Time and Embedded
systems (MARTE) RFP, OMG doc. realtime/05-02-
06, 2005.

22. C.U. Smith, C. M. Lladó, V. Cortellessa, A. diMarco,
L. Williams, “From UML models to software
performance results: an SPE process based on
XML interchange formats”, in Proc WOSP’2005,
Palma de Mallorca, 2005, pp. 87-98.

23. M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T.
Israr, J. Merseguer, “Performance by Unified Model
Analysis (PUMA)”, Proc. WOSP’2005, Mallorca, pp
1-12.

24. Erika Corona, Filippo Eros Pani, “A Review of Lean-
Kanban Approaches in the Software Development”,
WSEAS Transactions on Information Science and
Applications, Vol. 10, Issue 1, pp. 1-13, January
2013.

25. Manoj Kumar Tyagi, Srinivasan M., L. S. S. Reddy,
“Design of Traditional/Hybrid Software Project
Tracking Technique: State Space Approach”,
WSEAS Transactions on Information Science and
Applications, Vol. 11, Issue 11, pp. 345-355,
November 2013.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
I
 V

er
sio

n
I

23

(
DDDD DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

Measurement and Prediction of Software Performance by Models

This page is intentionally left blank

3

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V
I
 V

er
sio

n
I

24

(
DDDD

)
Y
e
a
r

20
14

c

© 2014 Global Journals Inc. (US)

Measurement and Prediction of Software Performance by Models

	Measurement and Prediction of Software Performance by Models
	Keywords
	Author
	I. Introduction
	II. Software Performance Engineering
	III. Progress in Measurement,Debugging and Testing
	a) Performance Measurement- Best practices
	i. Plan Measurement Experiments to Ensure That Results Are Both Representative And Reproducible
	ii. Instrument Software to Facilitate SPE Data Collection
	iii. Measure Critical Components Early and Often to Validate Models and Verify Their Predictions

	IV. Prediction of Performance by Models
	a) Performance models from scenarios
	b)Performance models from objects and components

	V. Convergence of the Measurementand Modeling Approaches
	VI. Efficient Model-Building Tools
	VII. Conclusion
	References Références Referencias

