2,186 research outputs found

    Efficient Simulation of Fluids

    Get PDF
    Fluid simulation is based on Navier-Stokes equations. Efficient simulation codes may rely on the smooth particle hydrodynamic toolbox (SPH), a method that uses kernel density estimation. Many variants of SPH have been proposed to optimize the simulation, like implicit incompressible SPH (IISPH) or predictive-corrective incompressible SPH (PC-ISPH). This chapter recalls the formulation of SPH and focuses on its effective parallel implementation using the Nvidia common unified device architecture (CUDA), while message passing interface (MPI) is another option. The key to effective implementation is a dedicated accelerating structure, and therefore some well-chosen parallel design patterns are detailed. Using a rough model of the ocean, this type of simulation can be used directly to simulate a tsunami resulting from an underwater earthquake

    Simulation of flows with violent free surface motion and moving objects using unstructured grids

    Get PDF
    This is the peer reviewed version of the following article: [Löhner, R. , Yang, C. and Oñate, E. (2007), Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int. J. Numer. Meth. Fluids, 53: 1315-1338. doi:10.1002/fld.1244], which has been published in final form at https://doi.org/10.1002/fld.1244. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.A volume of fluid (VOF) technique has been developed and coupled with an incompressible Euler/Navier–Stokes solver operating on adaptive, unstructured grids to simulate the interactions of extreme waves and three-dimensional structures. The present implementation follows the classic VOF implementation for the liquid–gas system, considering only the liquid phase. Extrapolation algorithms are used to obtain velocities and pressure in the gas region near the free surface. The VOF technique is validated against the classic dam-break problem, as well as series of 2D sloshing experiments and results from SPH calculations. These and a series of other examples demonstrate that the ability of the present approach to simulate violent free surface flows with strong nonlinear behaviour.Peer ReviewedPostprint (author's final draft

    Convergence study and optimal weight functions of an explicit particle method for the incompressible Navier--Stokes equations

    Get PDF
    To increase the reliability of simulations by particle methods for incompressible viscous flow problems, convergence studies and improvements of accuracy are considered for a fully explicit particle method for incompressible Navier--Stokes equations. The explicit particle method is based on a penalty problem, which converges theoretically to the incompressible Navier--Stokes equations, and is discretized in space by generalized approximate operators defined as a wider class of approximate operators than those of the smoothed particle hydrodynamics (SPH) and moving particle semi-implicit (MPS) methods. By considering an analytical derivation of the explicit particle method and truncation error estimates of the generalized approximate operators, sufficient conditions of convergence are conjectured.Under these conditions, the convergence of the explicit particle method is confirmed by numerically comparing errors between exact and approximate solutions. Moreover, by focusing on the truncation errors of the generalized approximate operators, an optimal weight function is derived by reducing the truncation errors over general particle distributions. The effectiveness of the generalized approximate operators with the optimal weight functions is confirmed using numerical results of truncation errors and driven cavity flow. As an application for flow problems with free surface effects, the explicit particle method is applied to a dam break flow.Comment: 27 pages, 13 figure

    SPH with the multiple boundary tangent method

    Get PDF
    In this article, we present an improved solid boundary treatment formulation for the smoothed particle hydrodynamics (SPH) method. Benchmark simulations using previously reported boundary treatments can suffer from particle penetration and may produce results that numerically blow up near solid boundaries. As well, current SPH boundary approaches do not properly treat curved boundaries in complicated flow domains. These drawbacks have been remedied in a new boundary treatment method presented in this article, called the multiple boundary tangent (MBT) approach. In this article we present two important benchmark problems to validate the developed algorithm and show that the multiple boundary tangent treatment produces results that agree with known numerical and experimental solutions. The two benchmark problems chosen are the lid-driven cavity problem, and flow over a cylinder. The SPH solutions using the MBT approach and the results from literature are in very good agreement. These solutions involved solid boundaries, but the approach presented herein should be extendable to time-evolving, free-surface boundaries

    A turbulence model for smoothed particle hydrodynamics

    Full text link
    The aim of this paper is to devise a turbulence model for the particle method Smoothed Particle Hydrodynamics (SPH) which makes few assumptions, conserves linear and angular momentum, satisfies a discrete version of Kelvin's circulation theorem, and is computationally efficient. These aims are achieved. Furthermore, the results from the model are in good agreement with the experimental and computational results of Clercx and Heijst for two dimensional turbulence inside a box with no-slip walls. The model is based on a Lagrangian similar to that used for the Lagrangian averaged Navier Stokes (LANS) turbulence model, but with a different smoothed velocity. The smoothed velocity preserves the shape of the spectrum of the unsmoothed velocity, but reduces the magnitude for short length scales by an amount which depends on a parameter Ï”\epsilon. We call this the SPH-Ï”\epsilon model. The effectiveness of the model is indicated by the fact that the second order velocity correlation function calculated using the smoothed velocity and a coarse resolution, is in good agreement with a calculation using a resolution which is finer by a factor 2, and therefore requires 8 times as much work to integrate to the same time.Comment: 34 pages, 11 figure
    • 

    corecore