
Title
Convergence study and optimal weight functions of an explicit
particle method for the incompressible Navier--Stokes
equations

Author(s) Imoto, Yusuke; Tsuzuki, Satori; Nishiura, Daisuke

Citation Computational Particle Mechanics (2019), 6: 671-694

Issue Date 2019-10

URL http://hdl.handle.net/2433/245798

Right

This is a post-peer-review, pre-copyedit version of an article
published in Computational Particle Mechanics. The final
authenticated version is available online at:
https://doi.org/10.1007/s40571-019-00247-y.; The full-text file
will be made open to the public on 23 May 2020 in accordance
with publisher's 'Terms and Conditions for Self-Archiving'.;
This is not the published version. Please cite only the published
version. この論文は出版社版でありません。引用の際には
出版社版をご確認ご利用ください。

Type Journal Article

Textversion author

Kyoto University



Computational Particle Mechanics manuscript No.
(will be inserted by the editor)

Convergence study and optimal weight functions of an
explicit particle method for the incompressible Navier–Stokes
equations

Yusuke Imoto · Satori Tsuzuki · Daisuke Nishiura

Received: date / Accepted: date

Abstract To increase the reliability of simulations by

particle methods for incompressible viscous flow prob-

lems, convergence studies and improvements of accu-

racy are considered for a fully explicit particle method

for incompressible Navier–Stokes equations. The explicit

particle method is based on a penalty problem, which

converges theoretically to the incompressible Navier–

Stokes equations, and is discretized in space by gener-

alized approximate operators defined as a wider class of

approximate operators than those of the smoothed par-

ticle hydrodynamics (SPH) and moving particle semi-

implicit (MPS) methods. By considering an analytical

derivation of the explicit particle method and trunca-

tion error estimates of the generalized approximate op-

erators, sufficient conditions of convergence are conjec-

tured. Under these conditions, the convergence of the

explicit particle method is confirmed by numerically

comparing errors between exact and approximate so-

lutions. Moreover, by focusing on the truncation errors

of the generalized approximate operators, an optimal

weight function is derived by reducing the truncation
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errors over general particle distributions. The effective-

ness of the generalized approximate operators with the

optimal weight functions is confirmed using numerical

results of truncation errors and driven cavity flow. As

an application for flow problems with free surface ef-

fects, the explicit particle method is applied to a dam

break flow.

1 Introduction

Particle methods, such as the smoothed particle hydro-

dynamics (SPH) [6,18,25] and moving particle semi-

implicit (MPS) [14,13,29] methods, discretize partial

differential equations based on particles distributed in

domains and basis functions referred to as weight func-

tions corresponding to each particle. These particle meth-

ods do not require mesh generation; therefore, they are

appropriate for problems that include large deforma-

tions or damages, e.g., collapses [20], brittle solids [3],

and Navier–Stokes equations under free surface effects

[14,16,19,30]. In particular, explicit particle methods

for Navier–Stokes equations have been widely used for

large-scale problems, such as tsunami run-up [4,22], be-

cause of their simple implementation, which can also be

done using parallel computing.

Representative examples of explicit particle meth-

ods for the incompressible Navier–Stokes equations in-

clude the weekly compressible SPH (WCSPH) [19,21]

and the explicit MPS (E-MPS) [23,28] methods. WC-

SPH is characterized as an explicit particle method

that uses approximate differential operators of SPH for

spatial discretization and evaluating pressure given an

equation of state for compressible flow. In contrast, E-

MPS is characterized as an explicit particle method

that uses approximate differential operators of MPS for
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spatial discretization and evaluating pressure given the

local density of a number of particles. In previous stud-
ies [19,21,23,28], both these methods have been vali-

dated by comparing their numerical results with exper-

imental results. However, in order to ensure reliability

for problems on a non-experimental scale or for large-

scale computations such as those involving tsunamis,

numerical analyses of particle methods, such as con-

vergence studies, are indispensable. Although there are

a few mathematical analyses for particle methods or

related methods [1,2,8–10,26], their results do not di-

rectly apply to explicit particle methods. Therefore, we

focus on convergence studies for explicit particle meth-

ods for the incompressible Navier–Stokes equations.

To describe a mathematical convergence for the in-

compressible Navier–Stokes equations, in this study, we

configure an explicit particle method without physi-

cal parameters and assumptions in a manner similar

to previous literature [19,21,28]. Then, we introduce

a penalty problem that theoretically converges to the

incompressible Navier–Stokes equations and derive the

explicit particle method by discretizing the penalty prob-

lem based on mathematical theory alone. In this spatial

discretization, we use generalized approximate opera-

tors, which are defined as a wider class of approximate

operators for particle methods of SPH and MPS. Be-

cause of this discretization, computational procedures

of the explicit particle methods closely resemble that of

E-MPS. Furthermore, for the explicit particle method,

we conjecture sufficient conditions of convergence based

on its analytical derivation and truncation error esti-

mates for the generalized approximate operators. Under

these sufficient conditions, we confirm the convergence

of the explicit particle method by computing errors be-

tween numerical solutions and exact solutions in the

Taylor–Green vortex.

Moreover, to improve the accuracy of the explicit

particle method, we consider an optimization of the

discrete parameters based on the truncation error esti-

mates of the generalized approximate operators [8,11,

12]. In particular, defining the generalized approximate

operators as a wider class of those used in particle meth-

ods enables us to consider an optimization of discrete

parameters without imposed constraint conditions in

each method. Thus, using truncation errors based on

particle distributions as the objective function, we in-

troduce an optimization problem for weight functions

of the generalized approximate operators. The effects

of weight functions obtained as solutions of the opti-

mization problem are confirmed by numerical results of

truncation errors and a driven cavity flow.

Furthermore, to confirm that the explicit particle

method can be applied to more realistic problems, we

develop it for flow problems under free surface effects. In

the case of the original procedure of the explicit particle
method, pressure around a free surface are evaluated as

much lower than that in the inner domain of the fluid,

because of the lack of particles. In addition, clustering

of particles around free surface using pressure gradients

causes unstable motion. Therefore, by modifying the

procedure of evaluating pressure and its gradient, we

ensure stable simulations of flow problems under free

surface effects. Moreover, we apply the explicit particle

method with these modifications to a dam break flow

and compare the obtained numerical and experimental

results.

2 Explicit particle method for incompressible

Navier–Stokes equations

In this section, we present the formulation of the gov-

erning equations and approximate operators, which are

used for spatial discretization in our study; further-

more, we introduce an explicit particle method for in-

compressible Navier–Stokes equations.

2.1 Governing equation

Let R be the set of real numbers. Let Ω be a bounded

domain in Rd (d = 2, 3) with a smooth boundary Γ . We

consider the incompressible Navier–Stokes equations as

follows:

Du

Dt
= −1

ρ
∇p+ ν∆u+ f, (x, t) ∈ Ω × (0, T ), (1a)

∇ · u = 0, (x, t) ∈ Ω × (0, T ), (1b)

u = u0, x ∈ Ω, t = 0, (1c)

u = uΓ , (x, t) ∈ Γ × (0, T ), (1d)

where u : Ω × (0, T ) → Rd, p : Ω × (0, T ) → R,
ρ > 0, ν > 0, f : Ω × (0, T ) → Rd, u0 : Ω → Rd,

and uΓ : Γ × (0, T ) → Rd denote velocity, pressure,

density, kinematic viscosity, body force, initial velocity,

and boundary velocity of the fluid, respectively. Fur-

thermore, D/Dt denotes the material derivative defined

as D/Dt := ∂/∂t + u · ∇. The unknown values are ve-

locity u and pressure p. We assume the uniqueness and

existence of a smooth solution for the incompressible

Navier–Stokes equations (1). Note that we only treat

the Dirichlet boundary condition in (1) for simplicity,

although we will deal with boundaries including the free

surface in an applied example in Section 5.
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Fig. 1 Example of the particle distribution.

2.2 Generalized approximate operators

We introduce approximate operators for spatial dis-

cretization of an explicit particle method. To ensure

generality, we use different formulations from those used

in the specific cases of SPH and MPS.

For a fixed positive number H and domain Ω ⊂ Rd,

an expanded domain ΩH is defined as

ΩH :=
{
x ∈ Rd

∣∣ ∃y ∈ Ω s.t. |x− y| < H
}
. (2)

Let ΓH := ΩH \Ω. Let N be the set of positive integers.

For N ∈ N, we define a particle distribution XN and

particle volume set VN as

XN :=
{
xi ∈ ΩH

∣∣ i = 1, 2, . . . , N, xi ̸= xj (i ̸= j)
}
, (3)

VN :=

{
Vi > 0

∣∣∣∣∣ i = 1, 2, . . . , N,

N∑
i=1

Vi = |ΩH |

}
, (4)

respectively. Here, |ΩH | indicates the volume of ΩH .

We refer to xi ∈ XN and Vi ∈ VN as a particle and

particle volume, respectively. Fig. 1 shows an example

of a particle distribution.

We define a function space W as

W := {w : [0,∞)→ R |
w(r) > 0 (0 < r < 1), w(r) = 0 (r ≥ 1)}. (5)

We refer to w ∈ W as a reference weight function. The

influence radius h is a real number satisfying min{|xi−
xj | | i ̸= j} < h < H. For the reference weight func-

tion w and influence radius h, a weight function wh :

[0,∞)→ R is defined as

wh(r) :=
1

hd
w
( r
h

)
, r ∈ [0,∞). (6)

We refer to the domain {y ∈ Rd; |y − xi| < h} as an

influence domain for particle xi; in addition, we refer to

particles in the influence domain for particle xi as the

neighbor particles of particle xi. For an integer k and

function w : [0,∞)→ R, we define Ck(w) as

Ck(w) :=

∫
Rd

|x|kw(|x|) dx. (7)

Set discrete parameters (XN ,VN , h) and reference

weight functions wΠ , w∇, w∆ ∈ W. Then, for ϕ : XN →
R, we define the interpolant Πh, approximate gradient

operators ∇h, and approximate Laplace operator ∆h as

Πhϕi := CΠ

N∑
j=1

Vjϕjw
Π
h (|xj − xi|), (8)

∇hϕi :=
C∇

h

∑
j ̸=i

Vj(ϕj − ϕi)
xj − xi

|xj − xi|
w∇

h (|xj − xi|), (9)

∆hϕi :=
C∆

h2

∑
j ̸=i

Vj(ϕj − ϕi)w
∆
h (|xj − xi|), (10)

respectively. Here, ϕi := ϕ(xi), CΠ := 1/C0(w
Π), C∇ :=

d/C1(w
∇), and C∆ := 2d/C2(w

∆).

The derivations of these operators are presented in

Appendix B. Moreover, as discussed later in Appendix

C, these operators represent a wider class of approxi-

mate operators for particle methods that those in the

SPH and MPS methods. Thus, we refer to these oper-

ators as generalized approximate operators. Note that

different symbols in reference weight functions wΠ , w∇,

w∆ for each differential operator are used in order to

allow us to choose them arbitrarily. In Section 4.1, we

discuss the optimization of weight functions for these

generalized approximate operators based on truncation

error estimates.

2.3 Computational procedure of the explicit particle

method

We introduce an explicit particle method for the incom-

pressible Navier–Stokes equations. Before introducing

this method, we introduce some notations used in our

study. Let u0, H : ΩH → Rd and uΓ,H : ΓH × [0, T ] →
Rd be expanded functions of the initial and bound-

ary velocities, respectively, that satisfy u0, H |Ω = u0,

uΓ,H |Γ = uΓ , and uΓ,H |t=0 = u0, H |ΓH
. In addition,

let τ > 0 be the time step. Further, let K be the total

number of time steps defined by K := ⌊T/τ⌋, where
⌊a⌋ denotes the greatest integer that is less than or

equal to a; this symbol is known as the Gauss sym-

bol. For k = 0, 1, . . . ,K, the kth time tk is defined as

tk := k τ . Let X k
N and xk

i be a particle distribution and

an ith particle in that distribution at tk, respectively.

Let X ∗, k
N and x∗, k

i be a tentative particle distribution

and a tentative ith particle in that distribution at tk,

respectively. For w ∈ W, we define C0,h(w), which is an

approximation of C0(w), as

C0,h(w) :=
|ΩH |
N

∑
z∈Zd

wh(|ΩH |1/dN−1/d |z|), (11)
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where Z is the set of integers. For S ⊂ Rd, let Λk(S) be

an index set of particles in S:

Λk(S) :=
{
i = 1, 2, . . . , N

∣∣ xk
i ∈ S

}
. (12)

We denote Πh, ∇h, and ∆h by replacing xi ∈ XN with

xk
i ∈ X k

N as Πk
h , ∇k

h, and ∆k
h, respectively. For ϕ :

XN → R, we define a modified interpolant Π̂k
h and an

additional approximate gradient operator ∇k
h,+ as

Π̂k
hϕi :=

N∑
j=1

Vjϕjw
Π
h (|xk

j − xk
i |)

N∑
j=1

Vjw
Π
h (|xk

j − xk
i |)

, (13)

∇k
h,+ϕi :=

C∇

h

∑
j ̸=i

Vj(ϕj + ϕi)
xk
j − xk

i

|xk
j − xk

i |
w∇

h (|xk
j − xk

i |), (14)

respectively. Note that the modified interpolant Π̂k
h cor-

responds to an interpolant used for a Shepard filter [24,

27].

The computational procedure of the explicit parti-

cle method involves the following steps. Set the discrete

parameters as follows: H > 0, initial particle distribu-

tion X 0
N , particle volume set VN , reference weight func-

tion w, influence radius h ≤ H/2, parameter ε > 0,

and time step τ . Set the initial approximate velocity

u0i (i = 1, 2, . . . , N) as u0i = u0, H(x0
i ). Then, for k =

0, 1, . . . ,K−1, the approximate solution (uk+1
i ,pk+1

i ) (i =

1, 2, . . . , N) is solved using the following steps:

Step 1: Compute a predictor of velocity u∗, k+1
i as fol-

lows:u∗, k+1
i − uki

τ
= ν∆k

hu
k
i + f(xk

i , t
k), i ∈ Λk(Ω),

u∗, k+1
i =uΓ,H(xk

i , t
k), i ∈ Λk(ΓH);

(15)

Step 2: Compute a tentative particle position x∗, k+1
i as

follows:{
x∗, k+1
i =xk

i + τ u∗, k+1
i , i ∈ Λk(Ω),

x∗, k+1
i =xk

i , i ∈ Λk(ΓH);
(16)

Step 3: Compute a tentative pressure p∗, k+1
i as follows:

p∗, k+1
i =

ρ

ε2

(
1

C0,h(w)

N∑
j=1

Vjwh(|x∗, k+1
j − x∗, k+1

i |)

− 1

)
, i ∈ Λk(ΩH); (17)

start

end

Compute predictor of velocity

Set expanded functions and discrete parameters

Compute tentative particle position

Compute tentative pressure

Update particle position

Evaluate velocity

Evaluate pressure

k=K
k = k + 1

 Yes

No

Set initial velocity and k = 0

Fig. 2 Flowchart of the explicit particle method.

Step 4: Update the particle position xk+1
i as follows:xk+1

i =x∗, k+1
i − τ2

ρ
∇∗, k+1

h,+ p∗, k+1
i , i ∈ Λk(Ω),

xk+1
i =x∗, k+1

i , i ∈ Λk(ΓH),
(18)

where ∇∗, k+1
h,+ is the gradient operator ∇k+1

h,+ wherein

{xk+1
i } is replaced with {x∗, k+1

i };
Step 5: Evaluate the pressure pk+1

i as follows:

pk+1
i = Π̂k+1

h p∗, k+1
i , i ∈ Λk(ΩH). (19)

Step 6: Evaluate the velocity uk+1
i as follows:uk+1

i − u∗, k+1
i

τ
=−1

ρ
∇k+1

h pk+1
i , i ∈ Λk(Ω),

uk+1
i =uΓ,H(xk+1

i , tk+1), i ∈ Λk(ΓH).

(20)

The flowchart of the explicit particle method is shown

in Fig. 2.

Because the pressure pk+1
i is evaluated based on

the density of neighbor particles, the explicit particle

method is similar to E-MPS [28]. Actually, by regarding

ε−1 as the artificial sound speed, the explicit particle

method is basically equivalent to conventional explicit

particle methods. In the next section, we derive the

explicit particle method and consider its errors; in ad-

dition, we show the convergence of the explicit particle

method numerically.



Convergence study and optimal weight functions of an explicit particle method 5

3 Convergence study

In order to confirm the convergence of the explicit par-

ticle method, we conjecture conditions of convergence

by considering the truncation error estimates of gener-

alized approximate operators and the derivation of the

explicit particle method. Moreover, we show the conver-

gence of the explicit particle method using numerical

results. Note: See Appendix A for computational rules

of the multi-index and definitions of functional spaces

and their norms.

3.1 Truncation errors of generalized approximate

operators

To clarify discrete errors in space, we show the trun-

cation errors of the generalized approximate operators.

Let us consider a truncation error estimate of the gen-

eralized approximate Laplace operator (10). We assume

xi ∈ XN ∩Ω, ϕ ∈ C4(ΩH), and w∆ ∈ W ∩ C1([0,∞)).

We introduce a decomposition of ΩH as σ = {σi}Ni=1

such that

|σi| = Vi (i = 1, 2, . . . , N), (21)

N∪
i=1

σi = ΩH , (22)

σi ∩ σj = ∅ (i ̸= j). (23)

For σ, indicator δσ is defined as

δσ := max
i=1,2,...,N

max
x∈σi

|xi − x| (24)

and indicator δ∞ = δ∞(XN ,VN ) is defined as

δ∞ := inf
σ

δσ. (25)

Then, we obtain

|∆ϕi −∆hϕi| = O(h2 + δ∞h−2). (26)

The proof for which is presented in Appendix D.

Now, we define rmin as rmin := min{|xj − xi|; i, j =
1, 2, . . . , N, i ̸= j}. If δ∞ = O(rmin), we refer to the par-

ticle distribution and particle volume as regular. Based

on the definition of δ∞, in the absence of extremely un-

favorable conditions, such as high density particle dis-

tributions or high variance particle volumes, the par-

ticle distribution and particle volume become regular.

The indicator δ∞ satisfies δ∞ = O(N−1/d) = O(rmin).

By assuming the regularity of the particle distribution

and particle volume, we estimate the truncation error

of the generalized approximate Laplace operator as

|∆ϕi −∆hϕi| = O(h2 + rminh
−2). (27)

3.2 Derivation of the explicit particle method

The explicit particle method is based on the following

penalty problem for the incompressible Navier–Stokes
equations:

Dt,ε uε = −
1

ρ
∇pε + ν∆uε + f,

(x, t) ∈ Ω × (0, T ), (28a)

ε2Dt,ε pε + ρ∇ · uε = 0,

(x, t) ∈ Ω × (0, T ), (28b)

uε = u0, H , x ∈ ΩH , t = 0, (28c)

uε = uΓ,H , (x, t) ∈ ΓH × (0, T ),(28d)

pε = p0, x ∈ Ω, t = 0. (28e)

Here, ε and p0 are a penalty term in R and the ini-

tial pressure, respectively. Furthermore, Dt,ε denotes a

material derivative defined as Dt,ε := ∂/∂t + uε · ∇.
The unknown values include uε : ΩH × [0, T ) → Rd

and pε : Ω × [0, T ) → R. (28a) is the moment equa-

tion, which is the same as (1a). Further, (28b) is based

on the continuity equation for the compressible flow. If

ε = 0, we find that (28b) is equivalent to (1b). There-

fore, the solution (uε, pε) in the penalty problem (28)

coincides with the solution (u, p) in the original incom-

pressible Navier–Stokes equations (1) if ε = 0 formally.

In particular, in the cases of two-dimensional spaces

and partially- or full-periodic boundary conditions, the

convergence of the penalty problem (28) has orders of

velocity and pressure as O(ε2) and O(ε), respectively,
which has been proved in Kreiss et al. [15].

We arbitrarily set k = 0, 1, . . . ,K − 1. Before deriv-

ing the discretized schemes, we define a function p̃kε :

Ω × [tk, tk+1)→ R as

p̃kε(x, t) :=
ρ

ε2
×(

1

C0(w)

∫
ΩH

wh(|Xk
ε (y, t)−Xk

ε (x, t)|) dy − 1

)
, (29)

where w ∈ W and Xk
ε is the solution of the following

differential equation:{
Dt,ε X

k
ε (x, t)=uε(X

k
ε (x, t), t), t ∈ (tk, tk+1),

Xk
ε (x, t)=x, t = tk.

(30)

Then, under the assumption that ∥uε∥C1([0,T ];C3(ΩH)) <

∞, we have

ε2Dt,ε p̃
k
ε(x, t) + ρ∇ · uε(x, t) = O(τh−1 + h2),

x ∈ Ω, t ∈ [tk, tk+1). (31)

The proof for which is presented in the end of this

section. By comparing (28b) and (31), the function p̃kε
yields an approximation of the pressure pε at t ∈ [tk, tk+1).
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Next, we introduce a time-discretized scheme for the

penalty problem (28). For k = 0, 1, . . . ,K, let (uk
ε,τ , p

k
ε,τ )

be a solution of this scheme at t = tk. We set k =

1, 2, . . . ,K − 1 and x ∈ Ω in an arbitrary manner. For

y ∈ Ω, we introduce Xk+1
ε,τ (y) (≈ Xk

ε (y, t
k+1)) as

Xk+1
ε,τ (y) := y + τuk+1

ε,τ (Xk+1
ε,τ (y)). (32)

Because the material derivative is estimated by

Dt,ε ϕ(x, t) =
ϕ(Xk

ε (x, t
k+1), tk+1)− ϕ(x, tk)

τ
+O(τ),

t ∈ (tk, tk+1), (33)

we discretize (28a) as

uk+1
ε,τ (Xk+1

ε,τ (x))− uk
ε,τ (x)

τ

= −1

ρ
∇pk+1

ε,τ (Xk+1
ε,τ (x)) + ν∆uk

ε,τ (x) + f(x, tk). (34)

To evaluate the approximate pressure pk+1
ε,τ , we intro-

duce a tentative velocity u∗, k+1
ε,τ and tentative position

X∗, k+1
ε,τ for x ∈ Ω as

u∗, k+1
ε,τ (Xk+1

ε,τ (x))

:= uk
ε,τ (x) + τ

{
ν∆uk

ε,τ (x) + f(x, tk)
}

(35)

and

X∗, k+1
ε,τ (x) := x+ τ u∗, k+1

ε,τ (Xk+1
ε,τ (x)), (36)

respectively. Using these equations and (29), the ap-

proximate pressure pk+1
ε,τ is obtained as follows:

pk+1
ε,τ (x) =

ρ

ε2

(
1

C0(w)

∫
ΩH

wh(|X∗, k+1
ε,τ (y, t)

−X∗, k+1
ε,τ (x, t)|) dy − 1

)
. (37)

Then, by discretizing the time-discretized scheme

in space, we derive the explicit particle method. Let

i = 1, 2, . . . , N such that xk
i ∈ Ω. First, we discretize

(35) and (36) as

u∗, k+1
i = uki + τ

{
ν∆k

hu
k
i + f(xk

i , t
k)
}

(38)

and

x∗, k+1
i = xk

i + τ u∗, k+1
i , (39)

respectively. Using these, we discretize (37) as

p∗, k+1
i =

ρ

ε2

 1

C0,h(w)

N∑
j=1

Vjwh(|x∗, k+1
j − x∗, k+1

i |)− 1

 . (40)

Then, the particle position is updated as follows:

xk+1
i = x∗, k+1

i − τ2

ρ
∇∗, k+1

h,+ p∗, k+1
i . (41)

In this case, to avoid non-uniform particle distributions

as discussed in Price [25], we use ∇∗, k+1
h,+ as the gradient

operator in (41). Furthermore, to eliminate noise corre-

sponding to the density of particles [24,27], we modify

the pressure calculation as follows:

pk+1
i = Π̂k+1

h p∗, k+1
i . (42)

Then, by using pressure pk+1
i , we discretize (34) as

uk+1
i − uki

τ
= −1

ρ
∇k+1

h pk+1
i +∆k

hu
k
i + f(xk

i , t
k). (43)

Finally, using (38) and (43), we derive (20). The pres-

sure recalculation (42) is essential to obtain stable and

accurate results as shown in numerical experiments in

Section 3.4.

Finally, we derive the order estimate (31). We as-

sume ∥uε∥C1([0,T ];C3(ΩH)) < ∞. We arbitrarily set k =

1, 2, . . . ,K. Let t ∈ [tk−1, tk+1]. Then, by the chain rule,

we have

ε2Dt,ε p̃
k
ε(x, t)

=
ρ

C0(w)

∫
ΩH

Dt,ε wh(|Xk
ε (y, t)−Xk

ε (x, t)|) dy

=
ρ

C0(w)

∫
ΩH

{uε(x, t)− uε(y, t)}

· ∇wh(|Xk
ε (y, t)−Xk

ε (x, t)|) dy. (44)

Further, by Taylor expansion and using our assump-

tions, we get

ε2Dt,ε p̃
k
ε(x, t)

=
ρ

C0(w)

∫
ΩH

{uε(x, t)− uε(y, t)} · ∇wh(|y − x|) dy

+O(τh−1)

= − ρ

C0(w)

∫
ΩH

{(y − x) · ∇}uε(x, t) · ∇wh(|y − x|) dy

− ρ

2C0(w)

∫
ΩH

{(y − x) · ∇}2 uε(x, t)

· ∇wh(|y − x|) dy +O(τh−1 + h2). (45)

Using the multi-indices α and β, we have∫
ΩH

{(y − x) · ∇}uε(x, t) · ∇wh(|y − x|) dy

= −
∑

|α|=1,|β|=1

Dαuε(x, t)
β×

∫
ΩH

(y − x)α+β

|y − x|
y − x

|y − x|
· ∇wh(|y − x|) dy. (46)
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If α = β, then, by the Gauss–Green theorem and con-

sidering

C0(wh) = C0(w), w ∈ W, (47)

we have∫
ΩH

(y − x)α+β

|y − x|
y − x

|y − x|
· wh(|y − x|) dy

=

∫
ΩH

{(y − x)α}2

|y − x|
y − x

|y − x|
· wh(|y − x|) dy

= −1

d

∫
ΩH

(y − x) · ∇wh(|y − x|) dy

=

∫
ΩH

wh(|y − x|) dy

= C0(w). (48)

If α ̸= β, then, by the symmetry of the integrated func-

tion, we have∫
ΩH

(y − x)α+β

|y − x|
y − x

|y − x|
· wh(|y − x|) dy = 0. (49)

Thus, we obtain∫
ΩH

{(y − x) · ∇}uε(x, t) · ∇wh(|y − x|) dy

= C0(w)∇ · uε(x, t). (50)

Moreover, by the symmetry of the integrated function,

the second term on right-hand side in (45) becomes

1

2

∫
ΩH

{(y − x) · ∇}2 uε(x, t) · ∇wh(|y − x|) dy

=
1

2

∑
|α|=2,|β|=1

{Dαuε(x, t)}β (51)

×
∫
ΩH

(y − x)α+β

|y − x|
d

dr
wh(|y − x|) dy

= 0. (52)

Therefore, by (44), (45), (50), and (52), we obtain

ε2Dt,ε p̃
k
ε(x, t) + ρ∇ · uε(x, t) = O(τh−1 + h2),

x ∈ Ω, t ∈ [tk−1, tk+1]. (53)

3.3 Sufficient conditions of convergence

We conjecture the sufficient conditions of convergence

for the explicit particle method by considering the de-

viations and truncation error estimates that were cal-

culated in previous sections. In particular, as sufficient

conditions of convergence, we require h→ 0 and rminh
−2 →

0 from the truncation error estimates (27) calculated

in Section 3.1. In addition, because the convergence or-

ders between the solution of the incompressible Navier–
Stokes equation (1) and that of the penalty problem

(28) are O(ε), we require ε → 0. Moreover, we require

τh−1 → 0 and τ → 0 from the order estimates (31) and

(33) obtained in Section 3.2. Thus, the summary of the

above conditions is as follows: h → 0, rminh
−2 → 0,

ε → 0, τh−1 → 0, and τ → 0. In particular, when the

time step τ satisfies

τ ≤ τmax

:= min

hε

4
,

h1/2

4∥f∥1/2L∞([0,T ];L∞(Ω))

,
h2

8ν

 , (54)

where ∥ · ∥L∞([0,T ];L∞(Ω)) denotes the infinity norm in

space-time, i.e.,

∥ϕ∥L∞([0,T ];L∞(Ω))

:= ess sup{|ϕ(x, t)|;x ∈ Ω, t ∈ (0, T )}; (55)

the conditions for convergence are

ε→ 0, h→ 0, rminh
−2 → 0. (56)

Condition (54) is based on the von Neumann stability

analysis and corresponds to that suggested in Morris

et al. [21] by replacing the sound speed with ε−1. Un-

der the conjectured sufficient conditions, we confirm the

convergence of the explicit particle method numerically;

this is shown in the next subsection.

3.4 Numerical convergence

We confirm the conjectured sufficient condition of con-

vergence using the numerical results for the Taylor–

Green vortex. The Taylor–Green vortex is one of the so-

lutions of the two-dimensional incompressible Navier–

Stokes equations (1) in the absence of body force (f ≡
0). Let Ω = (0, L)×(0, L). The solutions of the Taylor–

Green vortex (u = (u1, u2)
T , p) are given by

u1(x) = −Ue−8π2t/Re cos(2πx(1)/L) sin(2πx(2)/L), (57)

u2(x) = Ue−8π2t/Re sin(2πx(1)/L) cos(2πx(2)/L), (58)

p(x) = −ρ

4
e−16π2t/Re

× {cos(4πx(1)/L) + cos(4πx(2)/L)}. (59)

Here, U is the velocity scale, and Re is the Reynolds

number defined as Re := UL/ν. Moreover, pressure p

is given to satisfy∫
Ω

p(x, t) dx = 0, ∀t ∈ [0, T ]. (60)
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to avoid indeterminacy. Hereafter, we set T = 0.1, ρ =

1, U = 1, L = 1, and ν = 10−1, namely, Re = 10.
By comparing the exact solution and a numerical so-

lution of the Taylor–Green vortex, we investigate the

validity of the accuracy of the pressure recalculation

(19) and convergences of the explicit particle method.

It should be noted that we do not treat a compari-

son of accuracy for approximate operators here because

the Taylor–Green vortex represents an isotopic flow and

disturbances in particle distributions rarely appear in

the case when the explicit particle method is used.

Before performing the numerical experiments for con-

vergence, we confirm the computational stability and

accuracy of the explicit particle method. Because the

Taylor–Green vortex is periodic in space, we consider

a periodic domain. In particular, we consider the fol-

lowing coordinate system: (x(1), x(2)); x(k) ← x(k) + 1

if x(k) ≤ 0 and x(k) ← x(k) − 1 if x(k) ≥ 1 for k = 1, 2.

Then, the particles near the boundary refer to the in-

fluence domain corresponding to the periodic boundary

conditions as shown in Fig. 3. Moreover, if a particle

crosses over the boundary, we let the particle move ac-

cording to the treatment shown in Fig. 4. Because the

boundary condition is not required for the system, we

do not set the parameter H and expanded boundary

condition uΓ,H for it. The initial particle distribution

X 0
N is set as the square lattice with spacing ∆x = 0.04:

X 0
N =

{((
i− 1

2

)
∆x,

(
j − 1

2

)
∆x

)
∈ Ω

∣∣∣∣
i, j = 1, 2, . . . , ⌊1/∆x⌋

}
. (61)

Then, the number of particles is N = (⌊1/∆x⌋)2 = 252.

Furthermore, the particle volume set VN = {Vi}Ni=1 is

set as

Vi =
|Ω|
N

= ∆x2, i = 1, 2, . . . , N. (62)

We consider five sets of reference weight functions (wΠ ,

w∇, w∆);

(G-s) wΠ , w∇, and w∆ are set as

wΠ(r) = w∇(r) = w∆(r) = wspike(r), (63)

where wspike is the spike function given by

wspike(r) =

{
(1− r)2, 0 ≤ r < 1,

0, r ≥ 1;
(64)

(S-c) wΠ , w∇, and w∆ are set as

wΠ(r) = wSPH(r), (65)

w∇(r) = −ẇSPH(r), (66)

w∆(r) = −1

r
ẇSPH(r), (67)

where ẇSPH is the first derivative of wSPH, in

which wSPH uses the cubic B-spline defined as

wcubic(r) :=

acubicd


1− 6r2 + 6r3, 0 ≤ r <

1

2
,

2 (1− r)
3
,

1

2
≤ r < 1,

0, r ≥ 1;

(68)

(S-q) wΠ , w∇, and w∆ are set by (65)–(67) in which

wSPH uses the quintic B-spline defined as

wquintic(r) := aquinticd ×

(3− 3r)
5
+ 6 (2− 3r)

5

+ 15 (1− 3r)
5
,

0 ≤ r <
1

3
,

(3− 3r)
5
+ 6 (2− 3r)

5
,

1

3
≤ r <

2

3
,

(3− 3r)
5
,

2

3
≤ r < 1,

0, r ≥ 1;

(69)

(S-w) wΠ , w∇, and w∆ are set by (65)–(67) in which

wSPH uses the quintic Wendland function (a fifth

positive definite function) defined as

wWendland(r) :=

aWendland
d

{
(1− r)

4
(1 + 4r) , 0 ≤ r < 1,

0, r ≥ 1;

(70)

(M) wΠ , w∇, and w∆ are set as

wΠ(r) = wMPS(r), (71)

w∇(r) =
1

r
wMPS(r), (72)

w∆(r) = wMPS(r), (73)

respectively, where wMPS is the reference weight

function of MPS defined as

wMPS(r) :=


1

r
− 1, 0 < r < 1,

0, r = 0, r ≥ 1.
(74)

Here, acubicd , aquinticd , and aWendland
d are constants that

satisfy the unity condition:∫
Rd

wSPH(|x|)dx = 1. (75)
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Fig. 3 Influence domains near the boundary
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Fig. 4 Periodic movements of particles

As shown in Appendix C, the cases (S-c), (S-q), and

(S-w) correspond to the use of approximate operators

in SPH. Further, case (M) corresponds to the use of

approximate operators in MPS. The influence radius is

set as h = 0.124 (= 3.1∆x). In addition, we set ε = 0.1

and τ = τmax.

Under the computational settings above, for the ex-

plicit particle method and that without the pressure

recalculation (19), we compute the relative errors in

space as:

∥uk − uk∥ℓ2(Ω)

∥uk∥ℓ2(Ω)
,

∥pk − pk∥ℓ2(Ω)

∥pk∥ℓ2(Ω)
, (76)

and the relative errors in space and time as:

∥u− u∥ℓ2([0,T ]; ℓ2(Ω))

∥u∥ℓ2([0,T ]; ℓ2(Ω))
,

∥p− p∥ℓ2([0,T ]; ℓ2(Ω))

∥p∥ℓ2([0,T ]; ℓ2(Ω))
. (77)

Here, the norms are defined as

∥ϕk∥ℓ2(Ω) :=

 N∑
j=1

Vj |ϕk(xk
j )|2

1/2

, (78)

∥ϕ∥ℓ2([0,T ]; ℓ2(Ω)) :=

(
K∑

k=1

τ∥ϕk∥ℓ2(Ω)

)1/2

. (79)

Moreover, p is defined by

pk(xi) := pk(xi)−
N∑
j=1

Vjp
k(xj), i = 1, 2, . . . , N. (80)

Then, p satisfies the following condition:

N∑
i=1

Vjp
k(xj) = 0, k = 1, 2, . . . ,K. (81)

This condition corresponds to the integration condition

of pressure (60). Fig. 5 shows time histories of the rel-

ative errors; in the figure, the vertical axes are plotted

on the logarithmic scale. Table 1 lists the relative errors

in space and time of velocity as well as pressure. In all

the cases except for (M), the errors of pressure, which

first oscillate, are considerably improved with the pres-

sure recalculation compared with the case without the

pressure recalculation. Moreover, the accuracy of veloc-

ity is enhanced by improving the accuracy of pressure.

In the case of (M), the accuracy of pressure is not re-

markably different between the cases with and without

pressure recalculation; nevertheless, the accuracy of ve-

locity is improved with pressure recalculation, which is

clear from Table 1. Consequently, we use the method

involving the pressure recalculation to obtain stable nu-

merical results, though we did not theoretically show

the requirement of the pressure recalculation.
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Fig. 5 Time history of relative errors in space

Table 1 Relative errors in space and time for the cases with and without the pressure recalculation (19)

(a) velocity
without (19) with (19) without/with

(G-s) 0.941 0.022 41.68
(S-c) 0.645 0.030 21.29
(S-q) 164.784 0.034 4704.57
(S-w) 0.686 0.028 24.07
(M) 0.531 0.034 15.30

(b) pressure
without (19) with (19) without/with

1.417 0.520 2.83
4.892 0.479 10.20

2868.820 0.572 5013.38
3.515 0.467 7.51
2.209 1.911 1.16

Next, we investigate the convergence of approxi-

mate solutions for the explicit particle method. We set

the initial particle distributions using (61) with ∆x =

0.04, 0.02, 0.01, 0.005, 0.0025. The particle volume set

and reference weight functions are set as the same in

the previous cases. For m = 1, 2, 3, 4, the influence

radius h is set as h = Cm∆x1/m. Here, Cm can be

obtained by Cm = 3.1 × (0.04)1−1/m, which satisfies

h = 3.1 × 0.04 when ∆x = 0.04 for all m. We set

τ = τmax and ε = 2.5∆x. Then, by assuming that

particles maintain distances proportional to ∆x, i.e.,

rmin = O(∆x), we have ε = O(∆x), h = O(∆x1/m),

and rminh
−2 = O(∆x1−2/m). Therefore, the conditions

(56) are satisfied when ∆x→ 0 in the case that m > 2.

It should be noted that although m = 1 is often used in

practical computing because the average number of par-
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ticles in the influence domain increases exponentially

when m > 1, as shown in Fig. 6, we must set m > 1 to

conduct simulations with convergence.

Under these conditions, we compute the relative er-
rors in space and time. Fig. 7 shows the double log-

arithmic graph of the relative errors versus the influ-

ence radius h. Here, the slopes of the hypotenuse of

the triangle in Fig. 7 (m ≥ 2) are O(h2) for (a) ve-

locity and O(h(m−1)/2) for (b) pressure. Table 2 lists

the convergence rates of velocity and pressure obtained

for ∆x = 0.005 and 0.0025. From Fig. 7 and Table 2,

we can confirm that the convergence orders of veloc-

ity and pressure with respect to the influence radius

h are of the second order and (m − 1)/2th order for

m ≥ 2, respectively, except in case (M). This is be-

cause the approximate solution did not converge in the

case of the approximate operators of MPS; this might

be attributed to the fact that sufficient conditions of

convergence were derived under assumptions of suffi-

ciently smooth and bounded weight functions for the

truncation error estimates.

4 Approaches for reducing truncation errors of

the generalized approximate operators

In order to conduct more accurate simulations, we im-

prove the accuracy of the generalized approximate oper-

ators by considering an optimization problem for weight

functions derived based on their truncation error esti-

mates. Moreover, the accurate results of the explicit

particle methods (i.e., with an optimal weight function

included) are confirmed by numerical truncation errors

and numerical errors of cavity flow.

4.1 Optimization problem for weight functions

We derive an optimization problem of truncation errors

for weight functions and its solutions. As discussed in

Section 3.1 and Appendix D, the truncation error of the

generalized approximate Laplace operator is estimated
by

|∆ϕi −∆hϕi| ≤ |Ẽi|+ |Êi|, (82)

where

Ẽi =
4d

C2(w∆)h2

∫
ΩH

R4,i(y;ϕ)w
∆
h (|y − xi|) dy, (83)

Êi =
2d

C2(w∆)h2

{∫
ΩH

{ϕ(y)− ϕi}w∆
h (|y − xi|) dy

−
N∑
j=1

Vj(ϕj − ϕi)w
∆
h (|xj − xi|)

}
. (84)

We can estimate |Ẽi| using O(h2) independent of par-

ticle distributions. Thus, we can estimate that |Êi| rep-
resents an error based on disturbances of the particle

distribution. In practical computing, it is rare for the

particle distribution to become sufficiently uniform in

each time step; hence, we aim to reduce the error |Êi|.
In Section 3.1, we estimated |Êi| as

|Êi| =
2d

C2(w∆)

{∫
Rd

(
w∆(|y|) + 2

∣∣∣∣ ddrw∆(|y|)
∣∣∣∣) dy

}
× δ∞

h2
|ϕ|C1(ΩH) +O(δ

2
∞h−3) (85)

under the condition w ∈ W ∩C1([0,∞)). Therefore, by

using this term with respect to the weight function in

|Êi| as the objective function, we define the following

optimization problem for the weight functions:∥∥∥∥∥∥∥∥∥∥∥
minimize F (w) =

{∫
Rd

(
w(|y|) + 2

∣∣∣∣ ddrw(|y|)
∣∣∣∣) dy

}
×
{∫

Rd

|y|2|w(|y|)|dy
}−1

subject to w satisfies w ∈ W ∩ C1([0,∞)).

(86)

In order to reduce the computational complexity, we

consider solving the optimization problem within a range

where the reference weight function transforms into a

polynomial function. We give the reference weight func-

tion as the nth polynomial function:

w(r) =

n∑
k=0

akr
k, a0, a1, . . . , an ∈ R. (87)

Because the condition w ∈ W ∩ C1([0,∞)) yields

w(0) > 0, w(1) = 0,
d

dr
w(1) = 0, (88)
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Fig. 7 Graphs of relative errors versus the influence radius

Table 2 Convergence rates of errors obtained when ∆x = 0.005 and 0.0025

(a) velocity
m = 1 m = 2 m = 3 m = 4

(G-s) -1.43 2.13 1.84 1.71
(S-c) -1.73 2.18 1.84 1.69
(S-q) 0.37 2.14 1.84 1.64
(S-w) -0.29 2.07 1.82 1.69
(M) -2.18 -0.42 -0.78 0.79

(b) pressure
m = 1 m = 2 m = 3 m = 4
-3.54 0.35 1.07 1.56
-2.89 0.50 0.98 1.55
-2.94 0.46 0.93 1.49
-1.92 0.48 0.95 1.52
-1.65 -1.65 -2.29 0.08

we have the conditions of the coefficients in (87):

a0 > 0,

n∑
k=0

ak = 0,

n∑
k=1

kak = 0. (89)

Therefore, in the case of a quadratic polynomial n = 2,

the solution of (86) is the spike function (64). When n ≥
3, we consider that the additional condition minimizes

F (w) because we calculate F (w) as

F (w) =

{∫ 1

0

rd−1

(
w(r) + 2

∣∣∣∣ ddrw(r)
∣∣∣∣) dr

}
×
{∫ 1

0

rd+1|w(r)|dr
}−1

=

{∫ 1

0

(
n∑

k=0

akr
k+d−1 + 2

∣∣∣∣∣
n∑

k=1

kakr
k+d−2

∣∣∣∣∣
)
dr

}

×

{∫ 1

0

n∑
k=0

akr
k+d+1dr

}−1

=

(
n∑

k=0

ak
k + d

+ 2

∫ 1

0

∣∣∣∣∣
n∑

k=1

kakr
k+d−2

∣∣∣∣∣ dr
)

×

(
n∑

k=0

ak
k + d+ 2

)−1

(90)

By solving the minimization problem of F (w) for the

coefficients of polynomial functions under the constraint

conditions (89), we can obtain optimal weight functions

for n ≥ 3. However, because the optimal weight func-

tions with n ≥ 3 depend on the spatial dimension, we

use the quadratic spike function (64) to avoid such spa-
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tial dimension dependency in the subsequent numerical

experiments.
Because we optimized the reference weight function

without considering the dependency of influence radius

ratio, we can expect that the reference weight function

is accurate and robust to variation of the influence ra-

dius ratio. We verify the analytical discussions above

by numerical experiments of truncation errors and flow

problems in subsequent sections.

4.2 Numerical results of truncation errors

We compute the numerical truncation errors of approx-

imate Laplace operators when the disturbances of the

particle distribution are changed. Furthermore, the test

function is set as v(x(1), x(2)) = sin(2π(x(1)+x(2))). The

domain is set as Ω = (0, 1) × (0, 1). Let H = 3 × 2−4.

Then, the particle distribution is set as

XN =
{(

(i− 1/2 + ϵ
(1)
ij /2)∆x, (j − 1/2 + ϵ

(2)
ij /2)∆x

)
∈ ΩH | i, j ∈ Z

}
. (91)

Here, ∆x = 2−4 and ϵ
(k)
ij (k = 1, 2) is a random num-

ber satisfying |ϵij | ≤ ϵmax (0 ≤ ϵmax < 1). Fig. 8 shows

examples of the particle distributions with perturba-

tion ϵmax = 0, 0.25, 0.5 in Ω. It should be noted that

this particle distribution becomes a square lattice if

ϵmax = 0. The particle volume set VN = {Vi}Ni=1 is de-

termined by (62). The influence radius is set as h =

2.1∆x, 2.6∆x, 3.1∆x. We consider the following four

reference weight functions:

(G-s) w∆ is set as the quadratic spike function (64);

(S-c) w∆ is set as

w∆(r) = −1

r
ẇSPH(r), (92)

where wSPH is the cubic B-spline (68).

(S-q) w∆ is set as (92) where wSPH is the quintic B-

spline (69);

(S-w) w∆ is set as (92) where wSPH is the quintic Wend-

land function (70).

Note that the cases h = 2.1∆x, 2.6∆x, 3.1∆x are chosen

to approximately coincide with the recommended ratio

[25] of the influence radius for (S-c), (S-w), and (S-q),

respectively.

Fig. 9 shows the graphs for the relative truncation

error

max
xi∈Ω

|∆ϕi −∆hϕi|

max
xi∈Ω

|∆ϕi|
(93)

versus the perturbation ϵmax when h = 2.1∆x, 2.6∆x,

3.1∆x. Table 3 lists the relative truncation errors with
h = 2.1∆x, 2.6∆x, 3.1∆x and ϵmax = 0.0, 0.25, 0.5. From

Fig. 9 and Table 3, we can confirm that the truncation

errors increase as perturbation ϵmax increases and influ-

ence radius rate h decreases. In all the cases, though the

truncation error of the generalized approximate Laplace

operator with the spike function is larger than that of

the conventional Laplace operators for uniform particle

distributions (ϵmax = 0), the truncation error becomes

smaller for general particle distributions (ϵmax > 0).

Therefore, we confirmed that truncation errors can be

effectively reduced for general particle distributions us-

ing the generalized Laplace operator with the spike

function. Later, in Section 4.3, we confirm whether the

generalized approximate operators with the spike func-

tion are also valid for fluid simulations.

4.3 Numerical results of driven cavity flow

In order to investigate whether the generalized approx-

imate operators with the optimal weight function are

also effective for a flow problem, we apply the explicit

particle method to a driven cavity and compare errors

in the cases when five pairs of weight functions are used.

The driven cavity flow is a viscous flow problem in

a rectangular domain with Dirichlet boundary condi-

tions. One side of the boundaries flows in a tangential

direction, while the other sides are wall boundaries. In

the case of a square domain, the driven cavity flow can

be denoted solely on the basis of the Reynolds num-

ber Re = LU/ν, where L and U are the length of one

side of the domain and velocity on the driven bound-

ary, respectively. Hereafter, we consider Re = 100 and

1000.

We consider the driven cavity flow in the square

domain Ω = (0, 1) × (0, 1). We denote the velocity as

u = (u1, u2)
T . The initial conditions are given by

(u1, u2)
T = (0, 0)T , (x, y) ∈ Ω, t = 0 (94)

while the boundary conditions are given by

(u1, u2)
T ={

(1, 0)T in
{
(x, t) ∈ Γ × (0, T ); x(2) = 1

}
,

(0, 0)T in
{
(x, t) ∈ Γ × (0, T ); x(2) < 1

}
.

(95)

Furthermore, zero gravity is assumed (f = 0).

We set the parameters as follows. Set H = 0.1,

u0, H = 0 in ΩH and uΓ,H = (1, 0) in {(x, t) ∈ ΩH ×
(0, T ); x(2) ≥ 1}, = (0, 0) in {(x, t) ∈ ΩH×(0, T ); x(2) <

1} . The initial particle distribution X 0
N is set as a

square lattice with spacing ∆x. Here, ∆x is set as ∆x =
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Fig. 9 Graphs of the relative truncation errors of approximate Laplace operators versus perturbation ϵmax with h = 2.1∆x
(left), h = 2.6∆x (center), and h = 3.1∆x (right).

Table 3 Truncation errors of approximate Laplace operators with h = 2.1∆x, 2.6∆x, 3.1∆x and ϵ = 0.0, 0.25, 0.5.

h = 2.1∆x
ϵmax = 0 ϵmax = 0.25 ϵmax = 0.5

(G-s) 0.0532 0.6609 1.2014
(S-c) 0.0191 1.0407 1.7955
(S-q) 0.0994 1.7798 2.9894
(S-w) 0.0447 1.1538 1.9976

h = 2.6∆x
ϵmax = 0 ϵmax = 0.25 ϵmax = 0.5

(G-s) 0.0409 0.3143 0.6837
(S-c) 0.0306 0.3934 0.8428
(S-q) 0.0296 0.9434 1.5808
(S-w) 0.0607 0.5408 1.0244

h = 3.1∆x
ϵmax = 0 ϵmax = 0.25 ϵmax = 0.5

(G-s) 0.0695 0.1673 0.2731
(S-c) 0.0567 0.2205 0.3589
(S-q) 0.0383 0.5048 0.8656
(S-w) 0.0529 0.3210 0.5537

0.005 and ∆x = 0.0025 when Re = 100 and Re = 1000,

respectively. Note that the particles are distributed in

ΩH = (−H, 1 + H) × (−H, 1 + H), and the particle

distributions outside of the wall boundary correspond

to well-known dummy particles [30]. We consider the

same five pairs of approximate operators used in Sec-

tion 3.4. We consider the same three cases of influence

radii as in the numerical experiments in Section 4.2:

(a) h = 2.1∆x; (b) h = 2.6∆x; (c) h = 3.1∆x. We set

ε = 0.1 and τ = τmax. Under these conditions, we com-

pute the two-dimensional driven cavity flow and com-

pare velocity profiles in the vertical direction on the

lines x = 0.5 with the reference solutions, which are

the numerical results of the higher-order finite differ-

ence method by Ghia et al. [5].

Fig. 10 shows the velocity profiles of the two-dimensional

driven cavity flow at Re = 100 and Re = 1000. The

boxes in Fig. 10 show the vertical velocity uFDM
2 (xFDM

j )

of the observation point xFDM
j in the results of Ghia et

al. [5]. Table 4 lists the errors of velocity measured using
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Fig. 10 Velocity profiles of two-dimensional driven cavity flow at Re = 100 (∆x = 0.005, left column) and 1000 (∆x = 0.0025,
right column). (a) h = 2.1∆x; (b) h = 2.6∆x; (c) h = 3.1∆x.

the following discrete L2 norm in space:
M∑
j=1

∆xFDM
j

∣∣u2(xij )− uFDM
2 (xFDM

j )
∣∣2

M∑
j=1

∆xFDM
j

∣∣uFDM
2 (xFDM

j )
∣∣2



1/2

, (96)

where ∆xFDM
j = xFDM

j − xFDM
j−1 , and

ij = arg min
k

|xFDM
j − xk|. (97)

From the Fig. 10 and Table 4, it is clear that the ve-

locity becomes stable as the influence radius increases.

In particular, because case (G-S) has a solution even in

the case of (a) h = 2.1∆x, the explicit particle method

using the generalized approximate operators with the

spike weight function (64) is more robust to the in-

fluence radius than that with other weight functions.

This result is consistent with that of the generalized

approximate operators with the spike weight function

(64) being more accurate for non-uniform particle dis-

tributions than other operators for the truncation error

estimates, as discussed in Sections 4.1–4.2. However, in

comparison with the accuracy of the cases when stable

solutions are obtained, there is no significant difference

among them. Therefore, we conclude that the general-
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ized approximate operators with the spike function (64)

are effective for flow problems in the sense that they are
more robust with respect to the influence radius than

other reference weight functions.

5 Application for incompressible viscous flow

problems under free surface effects

In order to confirm that the explicit particle method is

applicable to realistic problems, we develop the explicit

particle method for flow problems under free surface

effects. We introduce modifications for pressure evalu-

ation and pressure gradient to avoid clustering of par-

ticles in and around a free surface. Moreover, we apply

the modified explicit particle method to a dam break

flow and compare the numerical results with experi-

mental results.

5.1 Treatment of free surface

Because particles around the free surface do not have

a sufficient number of particles in their influence do-

main, approximate operators on these particles do not

behave appropriately. In particular, particles around

the free surface come close or collide with each other

in the case of the original scheme. For this reason, the

tentative densities on particles around the free surface

are evaluated to be considerably lower than that an

inner particle. Consequently, the tentative pressure on

these particles become negative per (17); then, retrac-

tion forces are experienced owing to the pressure gradi-

ent in (20). In order to solve this problem, we have to

modify evaluations of the tentative density and tenta-

tive pressure. Thus, we modify (17) and (20). In order

to avoid obtaining negative pressures, we modify (17)

as

p∗, k+1
i = max

(
0,

ρ

ε2

( 1

C0,h(w)

N∑
j=1

Vjwh(|x∗, k+1
j − x∗, k+1

i |)− 1
))

. (98)

Moreover, when the original pressure gradient is used

in (20), a non-physical force develops in the tangential

direction of the free surface because of the lack of a

sufficient number of particles in and around the free

surface. Therefore, we modify (20) asuk+1
i − u∗, k+1

i

τ
=−1

ρ
∇k+1

h,+ pk+1
i , i ∈ Λk(Ω),

uk+1
i =uΓ,H(xk+1

i , tk+1), i ∈ Λk(ΓH).

(99)

Only with the modifications above, we attain a stable

and accurate simulation of a dam break flow in the next
section; however, we observe strange particle motions

around the free surface. Therefore, we add the collision

methods [29] used in E-MPS, which modify the particle

distributions to maintain their momentum, and this was

confirmed to solve the problem.

5.2 Dam break flow

The dam break flow is a flow problem in which a wa-

ter column on one side of a tank collapses because of

gravity. Because a considerable amount of experimen-

tal data, including flow tip speeds, wave height history,

and wall pressure distributions, have been collected in

the literature [17,7], changes in free surface geometry

and pressure distributions in the numerical results can

be confirmed.

We consider the hydraulic experiment by Lobovskỳ

et al. [17] as shown in Fig. 11. In this experiment, five

pressure sensors are set on the opposite side of the

water column. As shown in the left part of Fig. 11,

the five pressure sensors labeled as 1, 2, 2L, 3, and

4. In particular, their coordinates are (0, 0.075, 0.003),

(0, 0.075, 0.015), (0, 0.0375, 0.015), (0, 0.075, 0.03), and

(0, 0.075, 0.08), respectively, from the origin o. The height

of the water column Hdam is 0.3 m or 0.6 m.

We set the end time T as T = 1.3. Furthermore,

we set the remaining parameters as follows. The initial

particle distribution in the flow domain is set as a cubic

lattice with spacing ∆x = 3.0 × 10−3 m in the water

column. Moreover, we set particles on a cubic lattice on

the outer domain whose distances from the wall are less

than H = 5.2∆x. Note that the particle distributions

outside of the wall boundary correspond to well-known

dummy particles [30]. The velocity of the particles out-

side the domain are set as zero. Then, we set ε = 0.05,

h = 2.6∆x, and τ = τmax. Under these conditions, we

compute the dam break flow and compare the pressure

at the sensors. Here, the pressures at the sensors are

computed using the pressure of the nearest particle on

the wall boundary from these sensors, i.e., the numeri-

cal pressure of Sensor l at t = tk is computed as

Pl(t
k) = p(xk

il
), il = arg min

k
|Xl − xk|, (100)

where Xl is the position of Sensor l.

Fig. 12 shows the pressure distributions of the ex-

plicit particle method when Hdam = 0.3. Figs. 13–14

show pressure histories of the experimental and numeri-

cal results at each sensor whenHdam = 0.3m and 0.6m.

Table 5 lists relative errors of pressure in a discrete L2
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Table 4 Relative errors between the reference solutions (FDM) and particle methods.

Re = 100 Re = 1000
(a) (b) (c) (a) (b) (c)

(G-s) 0.0667 0.0484 0.0486 0.0975 0.0904 0.0877
(S-c) 0.7546 0.0513 0.0914 0.9987 0.0786 0.1068
(S-q) 1.0000 0.9206 0.0816 0.9987 0.9916 0.9998
(S-w) 0.9809 0.1206 0.0592 1.0002 0.0914 0.0835
(M) 0.1326 0.1299 0.0698 1.0757 0.9397 1.2913
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Fig. 11 Computational model of three-dimensional dam break flow.

norm in time as√∑K
k=1 ∆tk |Pl(tk)− P ex

l (tk)|2√∑K
k=1 ∆tk |P ex

l (tk)|2
(101)

for Sensor l. Here, P ex
l (tk) is the observed pressure for

Sensor l at t = tk. From Fig. 12, we can observe smooth

pressure distributions. Moreover, from Figs. 13–14 and

Table 5, we can obtain the numerical results based on

the experiment results. These numerical results show

that the explicit particle method is applicable for flow

problems under free surface effects.

Table 5 Relative errors between experiments and particle
methods at sensors.

Hdam 1 2 2L 3 4
0.3 0.3829 0.2374 0.2363 0.2161 0.1834
0.6 0.2939 0.2307 0.2275 0.1953 0.1998

6 Conclusion

We conducted a convergence study for an explicit parti-

cle method for the incompressible Navier–Stokes equa-

tions. The explicit particle method is based on a penalty

problem of the incompressible Navier–Stokes equations,

which was derived using the mathematical discretiza-

tion procedure. Moreover, the explicit particle method

uses generalized approximate operators, which was in-

troduced as a wider class of approximate operators than

those used in SPH and MPS for spatial discretization.

By referring to the convergence orders of the penalty

problem and orders of the residual appearing in the

derivation process as well as truncation errors of the

generalized approximate operators, we conjectured suf-

ficient conditions of convergence for the explicit parti-

cle method. The convergence with these sufficient con-

ditions was confirmed using numerical results of the

Taylor–Green vortex; in particular, these numerical con-

vergence orders of velocity and pressure with respect to

the influence radius h wereO(h2) andO(h(m−1)/2) with

m ≥ 2, respectively, where m is a parameter determin-

ing the ratio of increase of neighbor particles in influ-

ence. Since the generalized approximate operators can

describe conventional approximate operators in SPH

and MPS, the conventional explicit particle methods

basically coincide with the proposed method by replac-

ing ε−1 with the the artificial sound speed. Therefore,

the conventional explicit particle methods can be said

as based on the penalty method and it can be expected

that their numerical convergence can be shown by fol-

lowing our study.

Next, we optimized the reference weight functions

considering the decreasing truncation errors of the gen-

eralized approximate operators for non-uniform parti-

cle distributions. Because the generalized approximate

operators were defined as the generalization of those

in conventional particle methods, we could set an op-



18 Yusuke Imoto et al.

Fig. 12 Pressure distributions for three-dimensional dam break flow (Hdam = 0.3 m).

timization problem under wider conditions of parame-

ters than those imposed in conventional particle meth-

ods. Consequently, the reference weight functions that

served as the solution to the optimization problem were

different from reference weight functions typically used

in conventional particle methods; improvements of com-

putational stability for non-uniform particle distribu-

tions were observed through numerical results of the

truncation errors and driven cavity flow.

Finally, we developed the explicit particle method

for incompressible Navier–Stokes equations with free

surface effects. We modified the evaluation of pressure

and approximate gradient operator in the explicit parti-

cle method to prevent the particle concentrations around

the free surface becoming dense. We applied the ex-

plicit particle method with these modifications to the

dam break flow and confirmed a smooth pressure dis-

tribution as well as agreement of the time histories of

pressure with the experimental results.

As future work, we will investigate the stability and

convergence of the particle methods mathematically.

Moreover, we will develop particle methods with con-

vergence under more practical conditions such as a that

involving fixing the number of neighbor particles (m =

1).
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A Notation

First, we summarize the computational rules of the multi-
index. Let α = (α1, α2, . . . , αd) be the dth multi-index. For a
vector x ∈ Rd, we denote the kth element of x as x(k). Then,
that operations for the multi-index are defined by

|α| =
d∑

j=1

αj , (102)

xα =

d∏
j=1

(x(j))αj , x ∈ Rd, (103)

α! =
d∏

i=1

αi!. (104)

Let Dα be the differential operator defined by

Dα =

(
∂

∂x(1)

)α1
(

∂

∂x(2)

)α2

· · ·
(

∂

∂x(d)

)αd

, (105)

where Dαv = v if |α| = 0.
Next, we introduce some functional spaces. For a set S ⊂

Rd (d ∈ N), let C(S) be the space of real continuous functions
defined in S, where S is the closure of S. The norm of C(S)
is defined by

∥ϕ∥C(S) := max
x∈S

|ϕ(x)| . (106)

For an open set S and positive integer k, let Ck(S) be the
space of functions in C(S) with derivatives up to the kth
order. The norm of Ck(S) is defined as

∥ϕ∥Ck(S) := max
|α|≤k

∥Dαϕ∥C(S) . (107)
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Fig. 13 Pressure history at sensors for dam break flow (Hdam = 0.3).

Here, α is the multi-index. For a functional space X(S), let
C([0, T ];X(S)) be the space of functions on S × [0, T ] satis-
fying

∥ϕ∥C([0,T ];X(S)) := max
t∈[0,T ]

∥ϕ(·, t)∥X(S) < +∞. (108)

B Derivation of generalized approximate

operators

We present the derivations of the generalized approximate
operators in Section 2.2. The derivations we will show are
characterized as deriving them uniformly. Let xi ∈ XN ∩ Ω.
Let Br(x) be an open ball with the center at x and radius r:

Br(x) := {y ∈ Rd; |x− y| < r}. (109)

Then, by Taylor expansion, for y ∈ Bh(xi) \ {xi} and v ∈
Cn(ΩH) (n ∈ N), we have

ϕ(y) =
∑

0≤|α|≤n−1

Dαϕi

α!
(y − xi)

α +Rn,i(y;ϕ). (110)

Here, α is a multi-index and Rn,i(y;ϕ) is the residual given
by

Rn,i(y;ϕ) :=
∑

|α|=n

(y − xi)
α |α|
α!

×
∫ 1

0

(1− s)|α|−1Dαv(sy + (1− s)xi) ds. (111)

For k = 1, 2, . . . , d and nonnegative integer l, let βk,l be a
multi-index such that the kth element is l, while the others
are 0. For n = 2, 3, 4 and k = 1, 2, . . . , d, multiplying both the
sides of (111) by

d(n− 2)!

hn−2Cn−2(w)

(y − xi)
βk,n−2

|y − xi|n−2
wh(|y − xi|) (112)

and integrating it over ΩH , we get

d(n− 2)!

hn−2Cn−2(w)

∫
ΩH

ϕ(y)
(y − xi)

βk,n−2

|y − xi|n−2
wh(|y − xi|) dy

=
d(n− 2)!

hn−2Cn−2(w)
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Fig. 14 Pressure history at sensors for dam break flow (Hdam = 0.6).

×
∑

0≤|α|≤n−1

Dαϕi

α!

∫
ΩH

(y − xi)
α+βk,n−2

|y − xi|n−2
wh(|y − xi|) dy

+ Ei,k,n. (113)

Here, Ei,k,n is

Ei,k,n :=

d(n− 2)!

hn−2Cn−2(w)

∫
ΩH

Rn,i(y;ϕ)
(y − xi)

βk,n−2

|y − xi|n−2
wh(|y − xi|) dy

= O(h2). (114)

By considering that

∫
ΩH

(y − xi)
α+βk,n−2

|y − xi|n−2
wh(|y − xi|) dy

=


0,

one or more elements of
α+ βk,n−2 are odd,

hn−2Cn−2(w)

d
, α+ βk,n−2 = βk,2,

C0(w), n = 2, α = 0,

(115)

for (113) with n = 2, 3, we obtain

ϕi =
1

C0(w)

∫
ΩH

ϕ(y)wh(|y − xi|) dy +O(h2) (116)

and

(∇ϕi)
(k) =

d

hC1(w)

∫
ΩH

{ϕ(y)− ϕi}
(y − xi)

(k)

|y − xi|
wh(|y − xi|) dy

+ O(h2). (117)

Moreover, when n = 4, by

d∑
k=1

(y − xi)
βk,2

|y − xi|2
= 1 (118)

and

d∑
k=1

∫
ΩH

(y − xi)
αwh(|y − xi|) dy
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=

0, one or more elements of α are odd,
h2C2(w)

d
,

|α| = 2 and all elements
of α are even,

(119)

we obtain

∆ϕi =
2d

h2C2(w)

∫
ΩH

{ϕ(y)− ϕi}wh(|y − xi|) dy

+O(h2). (120)

By (4), the above integration can be approximated as∫
ΩH

ϕ(y) dy ≈
N∑

j=1

Vjϕj . (121)

Therefore, by (116) and (121), and replacing w with wΠ ∈ W,
we derive the generalized interpolant (8) as follows:

ϕi = CΠ

∫
ΩH

ϕ(y)wΠ
h (|y − xi|) dy +O(h2)

≈ CΠ

N∑
j=1

Vjϕjw
Π
h (|xj − xi|) = Πhϕi. (122)

By (117) and (121), and replacing w with w∇ ∈ W, we derive
the generalized approximate gradient operator (9) as follows:

∇ϕi =
C∇

h

∫
ΩH

{ϕ(y)− ϕi}
y − xi

|y − xi|
w∇

h (|y − xi|) dy +O(h2)

≈
C∇

h

∑
j ̸=i

Vj(ϕj − ϕi)
xj − xi

|xj − xi|
w∇

h (|xj − xi|)

= ∇hϕi. (123)

Moreover, by (120) and (121), and replacing w with w∆ ∈ W,
we derive the generalized approximate Laplace operator (10)
as follows:

∆ϕi =
C∆

h2

∫
ΩH

{ϕ(y)− ϕi}w∆
h (|y − xi|) dy +O(h2)

≈
C∆

h2

∑
j ̸=i

Vj(ϕj − ϕi)w
∆
h (|xj − xi|) =

= ∆hϕi. (124)

The derivations are characterized as to be able to uniformly
derive the generalized approximate operators by utilizing (113).
The generalized approximate operators can be used as ap-
proximate operators of the conventional particle methods such
as SPH and MPS by selecting the parameters of the gener-
alized approximate operators appropriately; this is discussed
further in Appendix C. Therefore, approximate operators of
conventional particle methods can be derived using the above-
mentioned method.

C Description of approximate operators in

SPH and MPS using generalized approximate

operators

We show that the generalized approximate operators (8)–(10)
denote approximate operators in SPH and MPS if their pa-
rameters are selected appropriately. Let wSPH ∈ W be a ref-
erence weight function such that

C0(w
SPH) =

∫
Rd

wSPH(|x|) dx

=

∫
Rd

wSPH
h (|x|) dx = 1, (125)

ẇSPH(r) < 0, 0 < r < 1, (126)

where ẇSPH is the first derivative of wSPH. Then, in SPH,
the interpolant ΠSPH

h , approximate gradient operator ∇SPH
h ,

and approximate Laplace operator ∆SPH
h are defined as

ΠSPH
h ϕi :=

N∑
j=1

mj

ρj
ϕjw

SPH
h (|xj − xi|), (127)

∇SPH
h ϕi :=

∑
j ̸=i

mj

ρj
(ϕj − ϕi)∇wSPH

h (|xj − xi|), (128)

∆SPH
h ϕi :=

2
∑
j ̸=i

mj

ρj

ϕi − ϕj

|xj − xi|
xj − xi

|xj − xi|
· ∇wSPH

h (|xj − xi|), (129)

respectively. Here, mj and ρj are positive parameters referred
to as the particle mass and particle density, respectively. The
particle volume set VN is given by VN = {Vi = mi/ρi | i =
1, . . . , N}. Then, from (125), the generalized interpolant (8)
with wΠ = wSPH is equivalent to the interpolant of SPH
(127). From

−
∫
Rd

|x|ẇSPH(|x|) dx =

∫
Rd

x · ∇wSPH(|x|) dx

=

∫
Rd

(∇ · x)wSPH(|x|) dx

= d

∫
Rd

wSPH(|x|) dx

= d, (130)

the generalized approximate gradient operator (9) with w∇ =
−ẇSPH is equivalent to the approximate gradient operator of
SPH (128). Moreover, from (130), the generalized approxi-
mate Laplace operator (10) with

w∆(r) = −
1

r
ẇSPH(r) (131)

is equivalent to the approximate Laplace operator of SPH
(129).

Let wMPS ∈ W be a reference weight function defined by
(74). A weight function wMPS

h is set by (6). Then, in MPS,
the approximate gradient operator ∇MPS

h and approximate
Laplace operator ∆MPS

h are defined as

∇MPS
h ϕi :=

d

n0

∑
j ̸=i

ϕj − ϕi

|xj − xi|
xj − xi

|xj − xi|
wMPS

h (|xj − xi|), (132)

∆MPS
h ϕi :=

2d

n0λ0

∑
j ̸=i

(ϕj − ϕi)w
MPS
h (|xj − xi|), (133)

respectively. Here, n0 and λ0 are parameters that depend on
both wMPS and h. In general, λ0 is given by λ0 = C2(wMPS

h ).
Then, the particle volume set VN is given by VN = {Vi =
C0(wMPS

h )/n0 | i = 1, . . . , N}. Further, the generalized ap-
proximate gradient operator (9) with

w∇(r) =
1

r
wMPS(r) (134)

is equivalent to the approximate gradient operator of MPS
(132). Furthermore, the generalized approximate Laplace op-
erator (10) with w∆ = wMPS is equivalent to the approxi-
mate Laplace operator of MPS (133) with λ0 = C2(wMPS

h ).



22 Yusuke Imoto et al.

D Truncation error estimates of generalized

approximate operators

We show truncation error (26) of the generalized Laplace op-
erators using their derivations. We have established a more
precise theorem to estimate truncation errors, which have
been reported in the literature [8,11,12]. However, because
the formulations of approximate operators are a little dif-
ferent for that in previous studies, we simplistically show
the proof. We assume xi ∈ XN ∩ Ω, ϕ ∈ C4(ΩH), and
w∆ ∈ W ∩ C1([0,∞)). From the derivation of the gener-
alized approximate Laplace operator (124), we estimate its
truncation error as

|∆ϕi −∆hϕi| ≤ |Ẽi|+ |Êi|. (135)

Here,

Ẽi := 2

d∑
k=1

Ei,k,4

=2
C∆

h2

∫
ΩH

R4,i(y;ϕ)w
∆
h (|y − xi|) dy

=O(h2), (136)

Êi :=
C∆

h2

∫
ΩH

{ϕ(y)− ϕi}w∆
h (|y − xi|) dy

−
C∆

h2

N∑
j=1

Vj(ϕj − ϕi)w
∆
h (|xj − xi|). (137)

Note that the estimate Ẽi = O(h2) is derived from (114).

Now, we estimate the error Êi, which consists of the inte-
gration and the numerical integration, which are the first
and second terms on the right hand side of (137), respec-
tively. For a C1 class function g : ΩH → R and generators
yi ∈ ΩH (i = 1, 2, . . . , N), we assume a numerical integration
for the integration of g over ΩH given by

N∑
i=1

|σi|g(yi). (138)

Here, σ = {σi}Ni=1 is a decomposition of ΩH satisfying

N∪
i=1

σi = ΩH , σi ∩ σj = ∅ (i ̸= j), (139)

where σi is the closure of σi. Then, as an estimate of the
Riemann sum, we can estimate the numerical integration as∣∣∣∣∣∣
∫
ΩH

g(y)dy −
∑

i=1,2,...,N

|σi|g(yi)

∣∣∣∣∣∣
= O

(
max

i=1,2,...,N
rad(σi)

)
. (140)

Here, rad(σi) := sup {|yi − z| | z ∈ σi}. Furthermore, because
σ is arbitrary, we can estimate the numerical integration as∣∣∣∣∣∣
∫
ΩH

g(y)dy −
∑

i=1,2,...,N

|σi|g(yi)

∣∣∣∣∣∣
= O

(
inf
σ

max
i=1,2,...,N

rad(σi)

)
. (141)

Let any σ = {σi}Ni=1 such that (21)–(23). Furthermore,
we assume δ∞ ≤ h. Then, by Taylor’s theorem, we can esti-
mate the following:

|Êi| =
C∆

h2

∣∣∣∣ ∫
ΩH

{ϕ(y)− ϕi}w∆
h (|y − xi|) dy

−
N∑

j=1

Vj(ϕj − ϕi)w
∆
h (|xj − xi|)

∣∣∣∣
≤

C∆

h2

∣∣∣∣ ∫
ΩH

{ϕ(y)− ϕi}w∆
h (|y − xi|) dy

−
N∑

j=1

(ϕj − ϕi)

∫
σj

w∆
h (|y − xi|) dy

∣∣∣∣
+

C∆

h2

∣∣∣∣ N∑
j=1

(ϕj − ϕi)

∫
σj

w∆
h (|y − xi|) dy

−
N∑

j=1

Vj(ϕj − ϕi)w
∆
h (|xj − xi|)

∣∣∣∣
≤

C∆

h2

∣∣∣∣ N∑
j=1

∫
σj

{ϕ(y)− ϕj}w∆
h (|y − xi|) dy

∣∣∣∣
+

C∆

h2

∣∣∣∣ N∑
j=1

(ϕj − ϕi)

∫
σj

{w∆
h (|y − xi|)

− w∆
h (|xj − xi|)}dy

∣∣∣∣
≤

δσ

h2
|ϕ|C1(ΩH)C∆C1(w

∆)

+
h+ δσ

h2
|ϕ|C1(ΩH)C∆

∑
j∈{k; |x

k
−x

i
|<h+δσ}

×
∫
σj

|w∆
h (|y − xi|)− w∆

h (|xj − xi|)| dy

=
δσ

h2
|ϕ|C1(ΩH)C∆C1(w

∆)

+

(
1 +

δσ

h

)
δσ

h
|ϕ|C1(ΩH)C∆

∫
Rd

∣∣∣∣ ddrw∆
h (|y − xi|)

∣∣∣∣ dy
+O(δ2σh

−3)

= C∆

(
C0(w

∆) + 2

∫
Rd

∣∣∣∣ ddrw∆(|y|)
∣∣∣∣ dy)

×
δσ

h2
|ϕ|C1(ΩH) +O(δ2σh

−3) (142)

Because σ is arbitrary, we obtain

|Êi| =

C∆

(
C0(w

∆) + 2

∫
Rd

∣∣∣∣ ddrw∆(|y|)
∣∣∣∣ dy) δ∞

h2
|ϕ|C1(ΩH)

+ O(δ2∞h−3). (143)

Hence, δ∞ ≤ h yields

|Êi| = O(δ∞h−2). (144)

Consequently, by (135) and (136), and (144), we establish

|∆ϕi −∆hϕi| = O(h2 + δ∞h−2). (145)
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