30 research outputs found

    EdgeBOX high-availability

    Get PDF
    Estágio realizado na Critical Links, S. A. e orientado por Nuno FerreiraTese de mestrado integrado. Engenharia Informátca e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    Web conferencing : could it be used to benefit the South Carolina Department of Natural Resources?

    Get PDF
    This document provides details about common applications of Web Conferencing Services at the South Carolina Department of Natural Resources. The goal of this document is to provide an overview of the applications related to common uses of Web Conferencing Service so that readers can become more aware and familiar with the reasons and benefits of the use of the services

    NetIbis: An Efficient and Dynamic Communication System for Heterogeneous Grids

    Get PDF
    Grids are more heterogeneous and dynamic than traditional parallel or distributed systems, both in terms of processors and of interconnects. A grid communication system must handle many issues: first, it must run on networks that are not yet determined when the application is launched, including user-space interconnects; second, it must transparently run on different networks at the same time; third, it should yield performance close to that of specialized communication systems. In this paper, we present NetIbis, a new Java communication system that provides a uniform interface for any underlying intercluster or intracluster network. NetIbis solves the heterogeneity issues posed by Grid computing by dynamically constructing network protocol stacks out of drivers, self-contained building blocks for flexible configuration, with limited functionality per driver. We describe the design and implementation of the major NetIbis drivers for serialization, multicast, reliability, and various underlying networks. We also describe various optimizations for performance, like layer collapsing for the GM driver. We evaluate the performance of NetIbis on several platforms, including a European grid

    SOA-Based Model for Value-Added ITS Services Delivery

    Get PDF
    Integration is currently a key factor in intelligent transportation systems (ITS), especially because of the ever increasing service demands originating from the ITS industry and ITS users. The current ITS landscape is made up of multiple technologies that are tightly coupled, and its interoperability is extremely low, which limits ITS services generation. Given this fact, novel information technologies (IT) based on the service-oriented architecture (SOA) paradigm have begun to introduce new ways to address this problem. The SOA paradigm allows the construction of loosely coupled distributed systems that can help to integrate the heterogeneous systems that are part of ITS. In this paper, we focus on developing an SOA-based model for integrating information technologies (IT) into ITS to achieve ITS service delivery. To develop our model, the ITS technologies and services involved were identified, catalogued, and decoupled. In doing so, we applied our SOA-based model to integrate all of the ITS technologies and services, ranging from the lowest-level technical components, such as roadside unit as a service (RS S), to the most abstract ITS services that will be offered to ITS users (value-added services). To validate our model, a functionality case study that included all of the components of our model was designed

    Voice over IP

    Get PDF
    The area that this thesis covers is Voice over IP (or IP Telephony as it is sometimes called) over Private networks and not over the Internet. There is a distinction to be made between the two even though the term is loosely applied to both. IP Telephony over Private Networks involve calls made over private WANs using IP telephony protocols while IP Telephony over the Internet involve calls made over the public Internet using IP telephony protocols. Since the network is private, service is reliable because the network owner can control how resources are allocated to various applications, such as telephony services. The public Internet on the other hand is a public, largely unmanaged network that offers no reliable service guarantee. Calls placed over the Internet can be low in quality, but given the low price, some find this solution attractive. What started off as an Internet Revolution with free phone calls being offered to the general public using their multimedia computers has turned into a telecommunication revolution where enterprises are beginning to converge their data and voice networks into one network. In retrospect, an enterprise\u27s data networks are being leveraged for telephony. The communication industry has come full circle. Earlier in the decade data was being transmitted over the public voice networks and now voice is just another application which is/will be run over the enterprises existing data networks. We shall see in this thesis the problems that are encountered while sending Voice over Data networks using the underlying IP Protocol and the corrective steps taken by the Industry to resolve these multitudes of issues. Paul M. Zam who is collaborating in this Joint Thesis/project on VoIP will substantiate this theoretical research with his practical findings. On reading this paper the reader will gain an insight in the issues revolving the implementation of VoIP in an enterprises private network as well the technical data, which sheds more light on the same. Thus the premise of this joint thesis/project is to analyze the current status of the technology and present a business case scenario where an organization will be able to use this information

    Experimental design for a next generation residential gateway

    Get PDF
    Puolella eurooppalaisista kotitalouksista on laajakaistaliittymä. Yleensä käyttäjä kytkeytyy ulkoiseen verkkoon kotireitittimen avulla (residential gateway). Internet-yhteyden ja IP-perustaisten palveluiden kuten VoIP- ja IPTV-palveluiden lisäksi kotireititin muodostaa kotiverkon ytimen kodin verkkolaitteiden liittyessä siihen. Kotiverkkojen lukumäärän ja koon kasvun seurauksena kotiverkoissa voidaan tunnistaa kolme ongelmaa. Ensinnäkin kotiverkkojen hallinta on haastavaa kotiverkossa tuettavien verkkotekniikoiden ja laitteiden määrän kasvaessa. Toiseksi sisällönhallinta. on monimutkaistunut käyttäjien luodessa ja kuluttaessa yhä enemmän sisältöä. Kolmanneksi uudet verkkoperustaiset tekniikat kuten sähköisen terveydenhuollon ratkaisut (e-health) integroituvat usein heikosti olemassa olevien kotiverkkolaitteiden kanssa. Tässä diplomityössä edellä mainittuihin ongelmiin pyritään löytämään yhtenäinen ratkaisu kotireititintä apuna käyttäen. Työssä analysoidaan uudentyyppisen kotireitittimen vaatimuksia käyttämällä hyväksi joukkoa käyttötapauksia. Vaativuusanalyysin perusteella luodaan malli, joka sisältää seuraavat pääkomponentit. (i) Virtuaalisointitekniikkaan pohjautuva kotireititinarkkitehtuuri. (ii) Kotireititinperustainen mekanismi yhteisöverkostoiden pystyttämiseen kotiverkkojen välillä. (iii) Hajautettu tiedostojärjestelmä yhteisöverkkojen pystyttämiseksi ja parannetun sisällönhallinnan ja sisällön jakamisen mahdollistamiseksi. (iv) Mekanismeja joiden avulla vierailevat käyttäjät voivat hyödyntää muiden käyttäjien kotireitittimien resursseja. Työssä. toteutetaan em. ydintoimintoja laaditun mallin perusteella ja toteutuksen toimivuus verifioidaan käyttötapauksiin perustuvalla testauksellaToday over half of the European homes have a broadband Internet connection. Typically, this connection is enabled through a residential gateway device at the users' premises. In addition to facilitating triple play services, this gateway also forms the core of users' home networks by connecting their network-enabled devices. While the number and the size of such home networks keep on increasing, three major problems can be identified in current systems. First, home network management is getting increasingly complex, and a growing number of networking technologies and connected devices must be supported and managed. Second, content management has become difficult. Users are generating an increasing amount of content and this content is stored (and sometimes shared) in an almost anarchical manner across different home network devices as well as online. Third, new network-enabled services, such as e-health systems, are emerging, but are typically poorly integrated into existing home networks. There is a clear need for home networking solutions that address these problems. In this thesis, we adopt a gateway-centric approach to address these problems in a unified manner. We concretise the requirements for a next generation residential gateway by analysing a set of future home networking use cases. These requirements serve as input to our gateway system design. In summary, our design includes the following main components. (i) A residential gateway architecture based on virtualization. This enables new features and new ways to implement the other components of our design. (ii) A gateway-based mechanism to set up community networks between different home networks. (iii) A distributed file system to establish community networks and to enable improved content management and sharing. (iv) Mechanisms for visiting gateway users to utilize other users' gateway resources. We implement these core functionalities and develop a proof-of concept prototype. We successfully validate our prototype through use case driven testbed experiments. Finally, we believe that the insights gained from this study and the prototype implementations are important overall contributions that can be used in the future research to further explore the limitations and opportunities of this gateway-centric approach

    An identity based framework for security and privacy in pervasive networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Software acceleration on Xilinx FPGAs using OmpSs@FPGA ecosystem

    Get PDF
    The OmpSs@FPGA programming model allows offloading application functionality to Xilinx Field Programmable Gate Arrays (FPGAs). The OmpSs compiler splits the code (written in C/C++ high level language) in two parts, targeting the host and the FPGA. The first is usually compiled by the GNU Compiler Collection (GCC), while the latter is given to the Xilinx Vivado HLS tool (hereafter HLS) for high level synthesis to VHDL and bitstream used to program the FPGA. OmpSs@FPGA is based on compiler directives, which allow the programmer to annotate the part of the code to automatically exploit all Symmetric MultiProcessor system (smp) and FPGA resource available in the execution platform. This technical report provides both descriptive and hands-on introductions to build application-specific FPGA systems using the high-level OmpSs@FPGA tool. The goal is to give the reader a baseline view of the process of creating an optimized hardware design annotating C-based code with HLS directives. We assume the reader has a working knowledge of C/C++, and familiarity with basic computer architecture concepts (e.g. speedup, parallelism, pipelining)
    corecore