399 research outputs found

    Separating adaptable persistence attributes through computational reflection

    Full text link

    Bridging the Gap between Machine and Language using First-Class Building Blocks

    Get PDF
    High-performance virtual machines (VMs) are increasingly reused for programming languages for which they were not initially designed. Unfortunately, VMs are usually tailored to specific languages, offer only a very limited interface to running applications, and are closed to extensions. As a consequence, extensions required to support new languages often entail the construction of custom VMs, thus impacting reuse, compatibility and performance. Short of building a custom VM, the language designer has to choose between the expressiveness and the performance of the language. In this dissertation we argue that the best way to open the VM is to eliminate it. We present Pinocchio, a natively compiled Smalltalk, in which we identify and reify three basic building blocks for object-oriented languages. First we define a protocol for message passing similar to calling conventions, independent of the actual message lookup mechanism. The lookup is provided by a self-supporting runtime library written in Smalltalk and compiled to native code. Since it unifies the meta- and base-level we obtain a metaobject protocol (MOP). Then we decouple the language-level manipulation of state from the machine-level implementation by extending the structural reflective model of the language with object layouts, layout scopes and slots. Finally we reify behavior using AST nodes and first-class interpreters separate from the low-level language implementation. We describe the implementations of all three first-class building blocks. For each of the blocks we provide a series of examples illustrating how they enable typical extensions to the runtime, and we provide benchmarks validating the practicality of the approaches

    Bridging the Gap between Machine and Language using First-Class Building Blocks

    Get PDF
    High-performance virtual machines (VMs) are increasingly reused for programming languages for which they were not initially designed. Unfortunately, VMs are usually tailored to specific languages, offer only a very limited interface to running applications, and are closed to extensions. As a consequence, extensions required to support new languages often entail the construction of custom VMs, thus impacting reuse, compatibility and performance. Short of building a custom VM, the language designer has to choose between the expressiveness and the performance of the language. In this dissertation we argue that the best way to open the VM is to eliminate it. We present Pinocchio, a natively compiled Smalltalk, in which we identify and reify three basic building blocks for object-oriented languages. First we define a protocol for message passing similar to calling conventions, independent of the actual message lookup mechanism. The lookup is provided by a self-supporting runtime library written in Smalltalk and compiled to native code. Since it unifies the meta- and base-level we obtain a metaobject protocol (MOP). Then we decouple the language-level manipulation of state from the machine-level implementation by extending the structural reflective model of the language with object layouts, layout scopes and slots. Finally we reify behavior using AST nodes and first-class interpreters separate from the low-level language implementation. We describe the implementations of all three first-class building blocks. For each of the blocks we provide a series of examples illustrating how they enable typical extensions to the runtime, and we provide benchmarks validating the practicality of the approaches

    Dynamic Assignment of Scoped Memory Regions in the Translation of Java to Real-Time Java

    Get PDF
    Advances in middleware, operating systems, and popular, general-purpose languages have brought the ideal of reasonably-bound execution time closer to developers who need such assurances for real-time and embedded systems applications. Extensions to the Java libraries and virtual machine have been proposed in a real-time Java standard, which provides for specification of release times, execution costs, and deadlines for a restricted class of threads. To use such features, the programmer is required to use unwieldy code constructs to create region-like areas of storage, associate them with execution scopes, and allocate objects from them. Further, the developer must ensure that they do not violate strict inter-region reference rules. Unfortunately, it is difficult to determine manually how to map object instantiations to execution scopes. Moreover, if ordinary Java code is modified to effect instantiations in scopes, the resulting code is difficult to read, maintain, and reuse. We present a dynamic approach to determining proper placement of objects within scope-bounded regions, and we employ a procedure that utilizes aspect-oriented programming to instrument the original program, realizing the program’s scoped memory concerns in a modular fashion. Using this approach, Java programs can be converted into region-aware Java programs automatically

    Towards a Taxonomy of Aspect-Oriented Programming.

    Get PDF
    As programs continue to increase in size, it has become increasingly difficult to separate concerns into well localized modules, which leads to code tangling- crosscutting code spread throughout several modules. Thus, Aspect-Oriented Programming (AOP) offers a solution to creating modules with little or no crosscutting concerns. AOP presents the notion of aspects, and demonstrates how crosscutting concerns can be taken out of modules and placed into a centralized location. In this paper, a taxonomy of aspect-oriented programming, as well as a basic overview and introduction of AOP, will be presented in order to assist future researchers in getting started on additional research on the topic. To form the taxonomy, over four-hundred research articles were organized into fifteen different primary categories coupled with sub-categories, which shows where some of the past research has been focused. In addition, trends of the research were evaluated and paths for future exploration are suggested

    DACA: arquitetura para implementação de mecanismos dinâmicos de controlo de acesso em camadas de negócio

    Get PDF
    Doutoramento em Ciências da ComputaçãoAccess control is a software engineering challenge in database applications. Currently, there is no satisfactory solution to dynamically implement evolving fine-grained access control mechanisms (FGACM) on business tiers of relational database applications. To tackle this access control gap, we propose an architecture, herein referred to as Dynamic Access Control Architecture (DACA). DACA allows FGACM to be dynamically built and updated at runtime in accordance with the established fine-grained access control policies (FGACP). DACA explores and makes use of Call Level Interfaces (CLI) features to implement FGACM on business tiers. Among the features, we emphasize their performance and their multiple access modes to data residing on relational databases. The different access modes of CLI are wrapped by typed objects driven by FGACM, which are built and updated at runtime. Programmers prescind of traditional access modes of CLI and start using the ones dynamically implemented and updated. DACA comprises three main components: Policy Server (repository of metadata for FGACM), Dynamic Access Control Component (DACC) (business tier component responsible for implementing FGACM) and Policy Manager (broker between DACC and Policy Server). Unlike current approaches, DACA is not dependent on any particular access control model or on any access control policy, this way promoting its applicability to a wide range of different situations. In order to validate DACA, a solution based on Java, Java Database Connectivity (JDBC) and SQL Server was devised and implemented. Two evaluations were carried out. The first one evaluates DACA capability to implement and update FGACM dynamically, at runtime, and, the second one assesses DACA performance against a standard use of JDBC without any FGACM. The collected results show that DACA is an effective approach for implementing evolving FGACM on business tiers based on Call Level Interfaces, in this case JDBC.Controlo de acesso é um desafio para a engenharia de software nas aplicações de bases de dados. Atualmente, não há uma solução satisfatória para a implementação dinâmica de mecanismos finos e evolutivos de controlo de acesso (FGACM) ao nível das camadas de negócio de aplicações de bases de dados relacionais. Para solucionar esta lacuna, propomos uma arquitetura, aqui referida como Arquitetura Dinâmica de Controlo de Acesso (DACA). DACA permite que FGACM sejam dinamicamente construídos e atualizados em tempo de execução de acordo com as políticas finas de controlo de acesso (FGACP) estabelecidas. DACA explora e utiliza as características das Call Level Interfaces (CLI) para implementar FGACM ao nível das camadas de negócio. De entre as características das CLI, destacamos o seu desempenho e os diversos modos para acesso a dados armazenados em bases de dados relacionais. Na DACA, os diversos modos de acesso das CLI são envolvidos por objetos tipados derivados de FGACM, que são construídos e atualizados em tempo de execução. Os programadores prescindem dos modos tradicionais de acesso das CLI e passam a utilizar os dinamicamente construídos e atualizados. DACA compreende três componentes principais: Policy Server (repositório de meta-data dos FGACM), Dynamic Access Control Component (componente da camada de negócio que é responsável pela implementação dos FGACM) e Policy Manager (broker entre DACC e Policy Server). Ao contrário das soluções atuais, DACA não é dependente de qualquer modelo de controlo de acesso ou de qualquer política de controlo de acesso, promovendo assim a sua aplicabilidade a muitas e diversificadas situações. Com o intuito de validar DACA, foi concebida e desenvolvida uma solução baseada em Java, Java Database Connectivity (JDBC) e SQL Server. Foram efetuadas duas avaliações. A primeira avalia DACA quanto à sua capacidade para dinamicamente, em tempo de execução, implementar e atualizar FGACM e, a segunda, avalia o desempenho de DACA contra uma solução sem FGACM que utiliza o JDBC normalizado. Os resultados recolhidos mostram que DACA é uma solução válida para implementar FGACM evolutivos em camadas de negócio baseadas em CLI
    corecore