

 Universidade de Aveiro

 2013

 Departamento de Eletrónica, Telecomunicações e

 Informática

Óscar Narciso
Mortágua Pereira

 DACA: Arquitetura para Implementação de
 Mecanismos Dinâmicos de Controlo
 de Acesso em Camadas de Negócio

 DACA: Architecture to Implement Dynamic
 Access Control Mechanisms
 on Business Tier Components

Programa de Doutoramento em Informática
das Universidades do Minho, Aveiro e Porto

Universidade de Aveiro

Ano 2013

Departamento de Eletrónica, Telecomunicações e

Informática

Óscar Narciso
Mortágua Pereira

DACA: Arquitetura para Implementação de
Mecanismos Dinâmicos de Controlo de Acesso em
Camadas de Negócio.

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Ciências da Computação (MAP-
i), realizada sob a orientação científica do Prof. Doutor Rui L. Aguiar, Professor
Associado com Agregação, do Departamento de Eletrónica, Telecomunicações
e Informática da Universidade de Aveiro em co-orientação com a Prof. Doutora
Maribel Yasmina Santos, Professora Associada com Agregação, do
Departamento de Sistemas de Informação da Universidade do Minho.

Dedico este trabalho:

 ao meu pai, à minha mãe

 à minha família: Lygia, Lia e Nuno

o júri

presidente Prof. Doutor Carlos Alberto Diogo Soares Borrego

 Professor Catedrático da Universidade de Aveiro

 Prof. Doutor Arnaldo Carvalho Martins
Professor Catedrático da Universidade de Aveiro

 Prof. Doutor Marco Paulo Amorim Vieira
Professor Auxiliar da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

 Prof. Doutor João Costa Seco
Professor Auxiliar da Faculdade de Ciências e Tecnologia da Universidade de Lisboa

 Prof. Doutor Rui Luís Andrade Aguiar (orientador)
Professor Associado com Agregação da Universidade de Aveiro

 Prof. Doutora Maribel Yasmina Campos Alves Santos (co-orientadora)
Professora Associada com Agregação da Escola de Engenharia da Universidade do

Minho.

agradecimentos

O modo como se desenvolveu e se concluiu este trabalho deve muito ao apoio
científico prestado e também às condições criadas e proporcionadas pelo Prof.
Doutor Rui Luís Aguiar. Sem a sua colaboração e compreensão, o resultado
seria inevitavelmente diferente. A ele o meu sincero obrigado.

Realço a disponibilidade total, constante e pronta da Prof. Doutora Maribel
Yasmina Santos na colaboração científica que prestou. A ela o meu sincero
obrigado.

Finalmente, realço a contribuição de todos os elementos do grupo ATNoG que
de alguma forma também colaboraram para o sucesso deste meu trabalho.
Não posso deixar de destacar o Prof. Doutor. Diogo Gomes, o Prof. Doutor
João Paulo Barraca e o técnico André Rainho. A todos também o meu sincero
obrigado.

palavras-chave

Controlo de acesso, componentes, arquitecturas de
software, sistemas adaptativos, base de dados
relacionais, camadas de negócio.

resumo

Controlo de acesso é um desafio para a engenharia de software nas
aplicações de bases de dados. Atualmente, não há uma solução satisfatória
para a implementação dinâmica de mecanismos finos e evolutivos de controlo
de acesso (FGACM) ao nível das camadas de negócio de aplicações de bases
de dados relacionais. Para solucionar esta lacuna, propomos uma arquitetura,
aqui referida como Arquitetura Dinâmica de Controlo de Acesso (DACA).
DACA permite que FGACM sejam dinamicamente construídos e atualizados
em tempo de execução de acordo com as políticas finas de controlo de acesso
(FGACP) estabelecidas. DACA explora e utiliza as características das Call
Level Interfaces (CLI) para implementar FGACM ao nível das camadas de
negócio. De entre as características das CLI, destacamos o seu desempenho
e os diversos modos para acesso a dados armazenados em bases de dados
relacionais. Na DACA, os diversos modos de acesso das CLI são envolvidos
por objetos tipados derivados de FGACM, que são construídos e atualizados
em tempo de execução. Os programadores prescindem dos modos
tradicionais de acesso das CLI e passam a utilizar os dinamicamente
construídos e atualizados. DACA compreende três componentes principais:
Policy Server (repositório de meta-data dos FGACM), Dynamic Access Control
Component (componente da camada de negócio que é responsável pela
implementação dos FGACM) e Policy Manager (broker entre DACC e Policy
Server). Ao contrário das soluções atuais, DACA não é dependente de
qualquer modelo de controlo de acesso ou de qualquer política de controlo de
acesso, promovendo assim a sua aplicabilidade a muitas e diversificadas
situações. Com o intuito de validar DACA, foi concebida e desenvolvida uma
solução baseada em Java, Java Database Connectivity (JDBC) e SQL Server.
Foram efetuadas duas avaliações. A primeira avalia DACA quanto à sua
capacidade para dinamicamente, em tempo de execução, implementar e
atualizar FGACM e, a segunda, avalia o desempenho de DACA contra uma
solução sem FGACM que utiliza o JDBC normalizado. Os resultados
recolhidos mostram que DACA é uma solução válida para implementar
FGACM evolutivos em camadas de negócio baseadas em CLI.

keywords

Access control, business tiers, software architecture,

components, adaptive systems, relational databases,

business tiers.

abstract

Access control is a software engineering challenge in database applications.
Currently, there is no satisfactory solution to dynamically implement evolving
fine-grained access control mechanisms (FGACM) on business tiers of
relational database applications. To tackle this access control gap, we propose
an architecture, herein referred to as Dynamic Access Control Architecture
(DACA). DACA allows FGACM to be dynamically built and updated at runtime
in accordance with the established fine-grained access control policies
(FGACP). DACA explores and makes use of Call Level Interfaces (CLI)
features to implement FGACM on business tiers. Among the features, we
emphasize their performance and their multiple access modes to data residing
on relational databases. The different access modes of CLI are wrapped by
typed objects driven by FGACM, which are built and updated at runtime.
Programmers prescind of traditional access modes of CLI and start using the
ones dynamically implemented and updated. DACA comprises three main
components: Policy Server (repository of metadata for FGACM), Dynamic
Access Control Component (DACC) (business tier component responsible for
implementing FGACM) and Policy Manager (broker between DACC and Policy
Server). Unlike current approaches, DACA is not dependent on any particular
access control model or on any access control policy, this way promoting its
applicability to a wide range of different situations. In order to validate DACA, a
solution based on Java, Java Database Connectivity (JDBC) and SQL Server
was devised and implemented. Two evaluations were carried out. The first one
evaluates DACA capability to implement and update FGACM dynamically, at
runtime, and, the second one assesses DACA performance against a standard
use of JDBC without any FGACM. The collected results show that DACA is an
effective approach for implementing evolving FGACM on business tiers based
on Call Level Interfaces, in this case JDBC.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

 Page i

TABLE OF CONTENTS
1 Introduction ... 1

1.1 Problem Definition .. 1
1.2 Solution Proposal ... 4
1.3 Research questions .. 5
1.4 Contributions ... 6
1.5 Computational Tools and Infrastructure .. 8
1.6 Thesis Organization ... 8

2 Background and State of the Art ... 9

2.1 Basic Access Control Concepts ... 9
2.1.1 Access Control Strategies .. 10
2.1.2 Architectures for Access Control Mechanisms ... 12
2.1.3 Dimensions of Access Control Mechanisms ... 16

2.2 Current tools for Building Business Tiers ... 19
2.2.1 O/RM tools and ADO.NET ... 19
2.2.2 Call Level Interfaces ... 21
2.2.3 Other proposals ... 27

2.3 JDBC ... 29
2.3.1 JDBC Overview .. 29
2.3.2 JDBC Approach to Call Level Interfaces Functionalities ... 30
2.3.3 JDBC Class Diagram .. 33

2.4 Current Approaches to Implement Access Control ... 36
2.4.1 Current Techniques ... 36
2.4.2 Related Work .. 41

2.5 Summary ... 52
3 From Call Level Interfaces Towards the DACA ... 53

3.1 Concepts .. 53
3.1.1 CRUD Schema .. 53
3.1.2 Business Schema ... 57
3.1.3 Business Entity .. 58

3.2 Modelization of Call Level Interfaces ... 59
3.2.1 Motivation ... 59
3.2.2 Proposed Approach for the Modelization of CLI .. 62

3.3 Componentization of CLI .. 66
3.3.1 Components... 66
3.3.2 Adaptation Process .. 67

3.4 Access Control... 72
3.5 Summary ... 72

4 DACA: Dynamic Access Control Architecture .. 75

4.1 Fine-grained Access Control Mechanisms .. 75
4.2 General Architecture.. 76

4.2.1 Phases of the DACA ... 76
4.2.2 General Operation of the DACA ... 79

4.3 The DACA Components ... 80
4.3.1 The DACC .. 80
4.3.2 Policy Server ... 88
4.3.3 Policy Manager ... 89

4.4 Summary ... 90
5 Proof of Concept ... 91

5.1 The DACA Platform .. 91
5.1.1 Scenario ... 92
5.1.2 Awareness of FGACM .. 94
5.1.3 Security Configurator .. 96
5.1.4 Security Keeper ... 98

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

 Page ii

5.1.5 DbProof ... 99
5.2 Performance Assessment ... 100

5.2.1 Methodology ... 101
5.2.2 Collected Results ... 105

5.3 Results Evaluation ... 109
5.3.1 Dynamic FGACM on business tiers .. 109
5.3.2 Security ... 110
5.3.3 FGACM awareness ... 110
5.3.4 Preservation of CLI Advantages ... 110

5.4 Summary ... 111
6 Conclusion .. 113

6.1 Overview ... 113
6.2 Contributions ... 114
6.3 Discussion ... 114
6.4 Future Work... 117

6.4.1 Extending DACC to Support Additional Access Modes ... 117
6.4.2 Fine-grained Access Control Policies for the DACA .. 117
6.4.3 Concurrent Approach of Call Level Interfaces.. 117
6.4.4 Multi-function Components .. 118
6.4.5 Extending FGACP to the Runtime Values of CRUD expressions .. 118
6.4.6 Orchestration of Business Entities .. 119
6.4.7 The DACA Based on LINQ .. 119

References ... 121

Annex A – Logical model for metadata of FGACM ... 131

Annex B - Concurrency on CLI .. 135

B.1 CTSA- The Wrapper Approach .. 135

B.1.1 CTSA Presentation .. 135

B.1.3 Proof of Concept ... 138

B.1.4 CTSA Performance Assessment .. 140

B.1.5 Conclusion ... 146

B.2 Embedded Approach .. 146

B.2.1 Presentation ... 146

B.2.2 Architecture ... 147

B.2.2.1 Individual Cache ... 147

B.2.2.2 Shared Cache .. 147

B.2.3 Performance Assessment ... 148

B.3 Conclusion .. 148

Annex C – ABTC: Multi-purpose Adaptable Business Tier Components .. 149

C.1 Introduction .. 149

C.2 ABTC ... 149

C.2.1 Adaptation Process .. 149

C.2.2 Architecture Presentation .. 151

C.3 Proof of Concept .. 153

C.4 Discussion .. 154

C.5 Conclusion .. 155

TABLE OF FIGURES
Figure 1. Typical usage of CLI (JDBC). ... 2

Figure 2. Simplified block diagram of the DACA. ... 4

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

 Page iii

Figure 3. Centralized access control mechanism. ... 13

Figure 4. Mixed architecture.based on PEP and PDP. .. 16

Figure 5. Example based on ADO.NET. ... 20

Figure 6. Example based on JPA. ... 20

Figure 7. Example based on LINQ.. 20

Figure 8. LMS with 5 tuples (rows) and 6 attributes (a till f). .. 24

Figure 9. CLI and DACA access mechanisms. ... 26

Figure 10. Types of JDBC drivers and their dependency on other components. .. 29

Figure 11. Declaration of variables. .. 30

Figure 12. Use of forward-only and read-only statement. ... 31

Figure 13. Use of forward-only and read-only prepared statement. .. 31

Figure 14. Use of scrollable and updatable statement. .. 31

Figure 15. Insert a row using a prepared statement. .. 32

Figure 16. Examples of transaction with JDBC. ... 32

Figure 17. Methods to scroll on LMS. .. 32

Figure 18. JDBC class diagram. .. 33

Figure 19. Connection interface. ... 33

Figure 20. Statement interface. ... 34

Figure 21. PrepareStatement interface. ... 34

Figure 22. ResultSet interface. .. 35

Figure 23. Enforcement of RBAC in Java EE... 51

Figure 24. Enforcement of RBAC in ORBAC. ... 51

Figure 25. Three CRUD expressions with different combinations of CRUD Schemas. ... 55

Figure 26. Two sibling CRUD expressions. ... 55

Figure 27. Partial example of how to implement the permissions of Table 3 on LMS. .. 58

Figure 28. Typical JDBC/CLI drawbacks. .. 61

Figure 29. Business Schema for the modelization of CLI: CRUD-Model. ... 63

Figure 30. Block diagram for the modelization process of CLI. ... 64

Figure 31. Partial view of a Business Entity based on the CRUD-Model. .. 64

Figure 32. Example shown in Figure 28 but based on the CRUD-Model. .. 65

Figure 33. Block diagram for the static approach: a) service composition and b) service allocation. 69

Figure 34. Block diagram for the dynamic service composition. .. 69

Figure 35. Attributes shared by all CRUD expressions. ... 71

Figure 36. Example of one Multiple Business Schema implementation. .. 71

Figure 37. General architecture of the DACA. ... 77

Figure 38. Concept of permission in the DACA. .. 78

Figure 39. Simplified block diagram of DACC. ... 80

Figure 40. Class diagram of DACC. ... 81

Figure 41. Business Entity class diagram. ... 86

Figure 42. ILMS class diagram for LMS. ... 86

Figure 43. Access control Meta-model. .. 89

Figure 44. Block diagram for the proof of concept. .. 92

Figure 45. Hierarchy of roles. ... 93

Figure 46. Role_B2 definition... 96

Figure 47. Programmers awareness about FGACM for Role_B2. .. 96

Figure 48. Application definition. ... 97

Figure 49. Role_B2 definition... 97

Figure 50. Business Schema IPrd_s definition. ... 97

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

 Page iv

Figure 51. IRead definition. .. 97

Figure 52. Definition of all CRUD expressions. ... 98

Figure 53. Security keeper. ... 98

Figure 54. DbProof. .. 99

Figure 55. Business Schemas implemented for user User_A. ... 99

Figure 56. LMS interfaces for Cat_s Business Schema. ... 100

Figure 57. Graphics for scenario SSr. .. 106

Figure 58. Graphics for scenarios SSi, SSu and SSd. ... 107

Figure 59. Graphic for scenarios SI, SU and SD... 108

Figure 60. Wrapping approach to provide the getMet ... 111

Figure 61. DbProof implemented inADO.NET. ... 116

Figure 62. Logical model for the proof of concept. ... 131

Figure 63. CTSA main protocols. ... 137

Figure 64. CTSA class diagram. ... 138

Figure 65. CTSA constructor. ... 138

Figure 66. Partial view of IRead protocol. .. 139

Figure 67. Partial view of IScroll protocol. ... 139

Figure 68. Set and store the execution context. ... 140

Figure 69.CTSA from users’s perspective. ... 140

Figure 70. Std_Student schema. .. 141

Figure 71. E(c-jdbc,p,s) / E(c-ctsa,p,s) chart. .. 144

Figure 72. E(c-jdbc,p,s) / E(c-ctsa,p,s) details. .. 144

Figure 73. E(c-jdbc,p,u) / E(c-ctsa,p,u) chart. ... 145

Figure 74. E(c-jdbc,p,i) /E(c-ctsa,p,i) chart. .. 145

Figure 75. Implemented and tested scenarios. .. 150

Figure 76. Class diagram of ABTC. .. 152

TABLE OF TABLES
Table 1. Access matrix to a table with attributes a, b, c and d. ... 10

Table 2. Main protocols of LMS. .. 26

Table 3. Example of a table of permissions in a LMS (Indirect Access Mode). ... 58

Table 4. Roles and the correspondent permissions for the implemented scenario. ... 94

Table 5. Strategy to collect and compute measurements. ... 101

Table 6. Collected measurements for a) TBS, TBW and for b) RAM in ns. .. 102

Table 7. Scenarios for the Select expression: algorithms and typical component usage. .. 103

Table 8. Scenarios for the Insert, Update and Delete expressions: algorithms and typical component usage. 104

Table 9. Exclusive access mode approaches. .. 136

Table 10. Algorithm for E(c-jdbc,p,γ) assessment. ... 142

Table 11. Algorithm for E(c-jdbc,p,γ) assessment .. 143

Table 12. CRUD expressions and Business Schemas for the implemented scenarios. ... 154

TABLE OF LISTINGS

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

 Page v

Listing 1. Definition of table user in Ur/Web. .. 47

Listing 2. Policy definition in Ur/Web. ... 47

Listing 3. Policy definition in λDB. .. 48

Listing 4. Query rewritten in T-SQL. .. 49

Listing 5. Four examples of CRUD expressions. .. 57

ACRONYMS

ABAC Attribute-Based Access Control

ABTC Adaptable Business Tier Component

ABTC_Dynamic Adaptable Business Tier Component - Dynamic

ABTC_Static Adaptable Business Tier Component - Static

ACP Access Control Policy

API Application Programming Interface

BE Business Entity

BS Business Schema

BW Business Worker

CBAC Credential Based Access Control

CLI Call Level Interfaces

CRUD Create Read Update Delete

CRUD-Model CRUD-Model

CTSA Concurrent Tuple Set Architecture

C-CTSA Component – Concurrent Tuple Set Architecture

C-JDBC Concurrent – Java Database Connectivity

DAC Discretionary Access Control

DACA Dynamic Access Control Architecture

DACC Dynamic Access Control Component

DAM Direct Access Mode

DCA Denial Category Assignment

DDL Data Definition Language

DFMAC Dynamic Fine-grained Meta-level Access Control

DRBAC Dynamic Role Based Access Control

FGAC Fine-grained Access Control

FGACM Fine-grained Access Control Mechanism

FGACP Fine-grained Access Control Policy

JDBC Java Database Connectivity

GUI Guided User Interface

IAM Indirect Access Mode

IDE Integrated Development Environment

IIS Internet Information Server

JIF Java + Information Flow

LMS Local Memory Structure

MAC Mandatory Access Control

MDE Model Driven Engineering

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

 Page vi

ODBC Open Database Connectivity

O/RM Object-o-Relational Model

PAP Policy Administration Point

PCA Permission Category Assignment

PDP Policy Decision Point

PEP Policy Enforcement Point

PEP-PDP PEP PDP

PIP Policy Information Point

RBAC Role Based Access Control

RDBAC Reflective Database Access Control

RDBMS Relational Database Management System

SAC Semantic Access Control

SQL Structured Query Language

TAi Time to execute a method with 10 arguments and returning void

TBS Time to instantiate a Business Session

TBW Time to instantiate a Business Worker

TRi Time to execute a method with no arguments

XACML Extended Access Control Markup Language

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

1 | P a g e

1 Introduction
Fine-grained access control (FGAC) is a critical security issue in many software systems, mainly

when policies evolve over time. Software systems are increasingly involved in all dimensions of our

existence as humans. When operating in critical organizations, such as airports, hospitals, banks

and power plants, they need to be available 24 hours a day and always operating under a high level

of security. They manage data from which all day decisions are taken, many of them critical. To

prevent any security violation, several security measures are taken such as user authentication,

data encryption and secure connections. Another relevant security concern is access control

[Samarati, '01b; Vimercati, '08], which “is concerned with limiting the activity of legitimate users.”

[Sandhu, '94]. Basically, access control is a process to supervise every request to access a protected

resource, in our case data residing inside relational database management systems (RDBMS), by

determining whether the permission should be granted or denied. While access control is enforced

at the table level, fine-grained access control (FGAC) is enforced at the column and row level.

Currently, there isn´t any known solution to automatically build and keep updated, at runtime, fine-

grained access control mechanisms (FGACM) on business tiers of relational database applications

and in accordance with the established fine-grained access control policies (FGACP).

This chapter is organized as follows. Section 1.1 describes the problem being addressed.

Section 1.2 briefly presents a solution to overcome the identified problem. Section 1.3 states the

research questions to be addressed in this thesis. Section 1.4 enumerates and describes the

contributions of this thesis. Section 1.5 presents the tools and infra-structured used during the

thesis development process and, finally, section 1.6 presents the thesis organization.

1.1 Problem Definition

Critical data are mostly kept and managed by database management systems. Among the several

paradigms, the relational paradigm continues to be one of the most successful to manage data and,

therefore, to build database applications. To be useful, data need to be stored, updated and

retrieved from databases. To this end, software architects use software tools to ease the

development process of business tiers. Two groups of software tools are widely accepted in

commercial and academic forums: O/RM tools (Java Persistent API [Yang, '10], LINQ [Erik, '06],

Hibernate [Christian, '04] and Ruby on Rails [Vohra, '07]) and Call Level Interfaces (CLI) [ISO, '03]

(JDBC [Parsian, '05], ODBC [Microsoft, '92], ADO.NET [Mead, '11]). Unfortunately, none of these

tools addresses access control, much less when the policies evolve over time. These tools were

mainly devised and designed to tackle the impedance mismatch issue [David, '90].

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

2 | P a g e

We now leverage the importance of CLI as the perfect choice for building business tiers

whenever performance is considered a key requirement [Cook, '05] in detriment of other

requirements such as productivity, usability and maintainability. Some of the features that

contribute positively for a high performance of CLI are:

Fine tune control

CLI are low level API (Application Programming Interface) that provide programmers with a

fine tune control to manage and optimize the environment in which Create, Read, Update and

Delete (CRUD) expressions are executed.

Use of the native SQL language

Native SQL statements are encoded inside strings, this way keeping the performance and the

full expressiveness of the SQL language.

Multi-access mode to data

CLI support several modes to access to data residing on relational databases. In each situation

programmers are free to choose the access mode that better addresses their needs. Among the

several access modes the use of the native SQL language is the most well-known. Chapter 2

thoroughly describes the access modes used by the DACA.

Figure 1. Typical usage of CLI (JDBC).

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

3 | P a g e

In spite of these key advantages, CLI (as other software tools) do not address access control.

Figure 1 presents a typical usage of CLI in this case based on JDBC. From this example we see that

there is no sign of any FGACP or any FGACM. Programmers are free to write any CRUD expression

encoded inside strings (Figure 1: line 46) and execute them (Figure 1: line 47-50). The presented

CRUD expression is a Select expression and, therefore, it returns a relation. CLI provide protocols

from which programmers read the retrieved data (Figure 1: line 54-55), update the returned data

(Figure 1: line 58-60), insert new data (Figure 1: line 63-66) and delete returned data

 (Figure 1: line 69). There is no possibility to prevent programmers from writing this type of

source-code and therefore there is no possibility to guide programmers to write source code in

accordance with any established FGACP.

To overcome this lack of access control of current software tools, several approaches are

proposed by the commercial and the academic communities. Security experts, instead of exploiting

the advantages of CLI to implement FGACM, build additional security layers specially crafted to

control the access to protected data. These security layers are responsible for evaluating

authorization to perform actions on database objects and also to execute them if permission is

granted. These security layers convey several drawbacks, among them four are emphasized:

Awareness gap about the policies and about the mechanisms

Programmers of business tiers and application tiers are expected to master the established

access control policies at development time. This mastering process is very difficult to be

sustained when the complexity of access control policies increases. Programmers do only get

aware of any security violation after having written the source code. Awareness of any violation

may take place at compile time but in most of the cases it is only obtained at runtime. Before

compiling the source or running the database application, there is no possibility to statically

validate the authorized actions during the development process of business tiers.

Security gap

The SQL language is characterized by its endless expressiveness capacity and programmers of

business tiers and application tiers are not restricted to write any CRUD expression. This

freedom opens the possibility for the existence of security gaps. Current techniques can hardly

guarantee safety for all CRUD expressions [Shi, '09; Wang, '07]. Even if safety is guaranteed,

programmers are always before additional techniques with increased complexity to express the

policies to be enforced [Caires, '11; Chaudhuri, '07; Chlipala, '10; Corcoran, '09; Fischer, '09;

Gary, '07; Hicks, '10; LeFevre, '04; Rizvi, '04; Wang, '07; Yang, '12]. Additional techniques and,

above all, increased complexity frequently leads to the possibility of opening unwanted security

gaps.

Wastage of CLI features

Architecture of current security layers is not based on architecture of CLI, this way preventing

the use of their advantages by business and application tiers.

Maintenance activities

Currently, any modification in the policies implying modifications in the access control

mechanisms forces a maintenance activity on the security layers and/or on the business logic to

be carried out in advance. Currently, there is no way to translate access control policies

automatically into access control mechanisms and/or into the business logic. Maintenance is

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

4 | P a g e

very often a critical activity when modifications are necessary at the client-side of database

applications with a great amount and distant equipment.

1.2 Solution Proposal

To tackle the aforementioned drawbacks of current security layers, we propose a new architecture

herein referred to as Dynamic Access Control Architecture (DACA). Security layers relying on the

DACA are dynamically built at their instantiation time on the client-side of database applications

and are continuously updated to enforce any modification in the established access control policies.

The dynamic adaptation of business tiers may leverage security systems based on

models@run.time [Blair, '09] to continuously keep security layers aligned with the policies they

must enforce. To take advantage of CLI features, the implemented access control mechanisms are

closely aligned with the architecture of CLI and with the services they provide. Among the services

provided by CLI, the DACA makes use of two access modes as it will be described in chapter 4. To

overcome possible security gaps of current solutions, users are restricted to use only the

permissions provided by the FGACM. Among the restrictions, users can only use CRUD expressions

made available by the implemented FGACM. Finally, the DACA provides programmers of business

tiers with a complete awareness about the implemented FGACM this way relieving them from

mastering FGACM while writing source code.

To unveil the proposed architecture, Figure 2 presents a simplified block diagram, though

incomplete, of the DACA. The overall operation is as follows:

 A security layer (business tier relying on CLI – it is a client-side layer) is dynamically built

and kept updated (from an architectural model based on CLI and from the policies kept in a

server) to implement access control mechanisms in accordance with the established

policies. The security layer is composed by typed objects driven by FGACM;

 Client applications access database objects through the security layer;

 Security layer uses standard CLI to interact with database objects.

Se
rv

er
 R

D
B

M
S

DACA

Client Application

Metadata of Policies

Security Layer

+ Model

CLI

Figure 2. Simplified block diagram of the DACA.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

5 | P a g e

There is no reference to FGACP. The DACA is focused on FGACM only. The DACA uses metadata

derived from FGACP relying on any security model. This issue will be thoroughly addressed in

chapter 4.

In order to validate the DACA, a solution based on Java, Java Database Connectivity (JDBC) and

SQL Server was devised, designed and implemented. Two evaluations were carried out. The first

one evaluates the DACA capability to address the announced drawbacks of current solutions,

including the capacity to implement evolving FGACM dynamically, at runtime. The second

evaluation is aimed at assessing its performance against a standard use of JDBC where no policies

are enforced. The collected results show that the DACA is an effective solution to implement

evolving FGACM on business tiers, of relational database applications, based on CLI, in this case

JDBC.

1.3 Research questions

This thesis aims at answering several research questions related to the implementation of dynamic

FGACM on business tiers of relational database applications. The research questions are derived

from the issues described and emphasized in the previous sections.

The main question to be answered by this thesis is: is it possible to implement FGACM on

business tiers dynamically, at runtime, and keep them updated when the policies evolve over time?

If yes, the second level questions are:

Security

Current approaches allow users to write their own CRUD expressions freely. In an unsupervised

context this opens possibilities to security violations. Is there any possibility to supervise the

use of CRUD expressions effectively when protected data is being accessed?

Mastering of FGACP

Current security layers do not give any guidance on the established FGACP neither on the

implemented FGACM. Is it possible to overcome this difficulty by providing programmers with a

complete awareness about the established FGACM?

Use of CLI

The use of CLI to build business tiers presents several advantages. Is it possible to keep those

advantages on the proposed solution to implement FGACM?

To answer these research questions, several steps need to be taken. In a first step, an

architectural model is necessary aimed at addressing the main question of this thesis: the dynamic

implementation of FGACM at runtime. In a second step, the use of CLI needs to be analyzed in order

to implement FGACM. In a third step, a solution is necessary to convey a complete awareness to

programmers about the implemented FGACM. Finally, in a fourth step, the proposed solution is

evaluated to check its compliance with the research questions.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

6 | P a g e

1.4 Contributions

The Dynamic Access Control Architecture is the main contribution of this thesis, exploiting CLI as

the main standard API to be used. CLI are fundamental for the development process of business

tiers whenever both a fine-tune control on the interactions with RDBMS and performance are

considered key requirements. However, CLI do not provide any support for several software

engineering challenges, such as how to implement dynamic FGACM on business tiers.

CLI are low level API and, as such, they convey some additional drawbacks when used for the

building process of business tiers. Two of the most relevant drawbacks are:

CLI are agnostic regarding schemas of database objects

CLI do not incorporate or provide any guidance about schemas of database objects.

Programmers need to completely master schemas of database objects to be able to use CLI. This

drawback deeply affects productivity of programmers during the development process and

during the maintenance process of database applications. This drawback also hampers the

enforcement of access control policies.

CLI do not promote the reuse of software

Inefficiency of CLI to build reusable software is complete. Every business need impels

programmers to write similar source-code to manage each CRUD expression. This drawback

also hampers the development of reusable software for security layers.

Thus, these drawbacks have also a negative impact if security layers based on CLI are needed to

enforce FGACP. FGACM control the access to database objects (formalized by schemas) and the

DACA seeks to provide FGACM continuously updated and aligned with evolving FGACP. To address

both drawbacks of CLI, some research was carried out. In a first step, the research was focused on

defining a model to integrate schemas of relational databases with object-oriented applications

using CLI. In a second step, the research was focused on defining an architecture for reusing

adaptable business tier components relying on CLI. The dynamic implementation of FGACM was

only addressed after the conclusion of these two lines of work. As such, in spite of not being

considered as main contributions, the modelization process of business tiers and the

componentization process of business tiers based on CLI are two cornerstones of the main

contribution of this thesis.

Modelization of business tiers

This research was focused on defining a model to integrate schemas of relational database

objects with object-oriented applications when CLI are used to build business tiers

[Pereira, '10b; Pereira, '11b]. The model defines typed objects aimed at managing the execution

of CRUD expressions. A tool was also presented to ease the development process of typed

objects from native CRUD expressions. Source-code of typed objects is automatically generated

to be used on business tiers. In [Gomes, '11; Pereira, '10a] some research has also been carried

out to evaluate the possibility of devising a high-performance version of the model, based on a

thread-safe implementation.

Modelization of business tiers was the continuation of an earlier research focused on easing

the development process of business tiers based on CLI but using stored procedures instead of

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

7 | P a g e

CRUD expressions [Óscar Mortágua Pereira, '05; Pereira, '06; Pereira, '07a; Óscar Narciso

Mortágua Pereira, '05a; Óscar Narciso Mortágua Pereira, '05b].

Componentization of business tiers

Componentization addressed a key issue of defining an architecture for developing reusable

and adaptable business tier components based on CLI. Several techniques were devised to

address reusability and adaptation of business tier components. Among them, a technique was

devised to deploy CRUD expressions at runtime which is one of the techniques used by the

DACA to address evolving access control policies. The combination between the several

techniques, next presented, led to the possibility of adopting several approaches for the

building process of business tier components.

In [Pereira, '12d; Pereira, '11c; Pereira, '13f] a proposal based on a wide typed object is

presented to support one specific business area at a time. Basically, a component is statically

customized to support a business area, such as accountability, relying on a unique wide typed

object. Then CRUD expressions are deployed at runtime in accordance with users’ needs

(eventually by access control policies). The typed object is said to be wide because it supports a

schema for:

 All foreseen attributes to be returned from the database;

 All runtime values for column lists of all Update and Insert expressions;

 All runtime values for clause conditions of all CRUD expressions.

In [Pereira, '11a; Pereira, '13a] a component is also statically customized to support a

business area but now relying on several typed objects. Each typed object addresses a specific

business need such as implementing the reading process of attributes of a database object.

CRUD expressions are also deployed at runtime in accordance with users’ needs (eventually by

access control policies). Each typed object supports all CRUD expressions whose schemas are in

accordance with its own schema.

In [Pereira, '12b] a new customization process of business tiers is proposed. Here,

customization is dynamically implemented at runtime, unlike the two previous approaches.

Typed objects are dynamically created at runtime, following any of the two previous

approaches. CRUD expressions are also deployed at runtime.

In [Pereira, '13b] an integrated perspective is given for multi-propose components based

on CLI.

Access control

The security perspective is centered on access control and it is closely linked to the previous

researches. In reality, the process to support evolving access control policies also includes the

reusability and adaptability perspectives of business tiers components, which, by their side,

include models.

[Pereira, '12d] presents an approach to address static implementation of FGACM based on

CLI. In [Pereira, '12c] the previous approach was improved to address runtime adaptation of

business tiers to implement FGACM. In [Pereira, '12a; Pereira, '13d] a complete and final

perspective is given for an architecture to implement and keep FGACM updated on business

tiers based on CLI. Additionally, to evaluate the impact of the enforcement mechanisms at the

client side, a performance assessment was carried out. A scenario was defined and

implemented to validate the approach. It is available through the Windows “Remote Desktop

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

8 | P a g e

Connection” at: url: ned.av.it.pt, username: DACA; password: guest (only one user at a time is

allowed to login).

1.5 Computational Tools and Infrastructure

Several computational tools and infrastructures were used since the first research on using stored

procedures and CLI. Publications involving stored procedures, between 2005 and 2007, were based

on the .NET framework and the following tools/technologies were used: Visual Studio 2005 (C#,

ADO.NET, ASP.NET, Web Services), IIS (Internet Information Server) and SQL Server 2005.

Publications since 2010 were based on the NetBeans (Java SE, Java EE, JPA, JDBC), Visual Studio

2010 (C#, ADO.NET, LINQ) and SQL Server 2008. Microsoft Northwind database was used in

several works including the proof of concept of the DACA.

1.6 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 is divided in four main sections. The first, second and third sections provide the

necessary background for a complete understanding of the technical aspects herein addressed. The

fourth section is focused on the state of the art and presents some of the current approaches,

commercial and academic, used to support access control.

Chapter 3 describes the evolution from CLI till the final DACA. It presents the modelization and

the componentization approaches for CLI as key steps towards the DACA. Access control is also

superficially addressed and a very concise presentation is made for the approach that has been

followed.

Chapter 4 is dedicated to the DACA. It presents the methodology followed in this thesis to

devise and design the DACA. It thoroughly presents and describes how the research was conducted.

Beyond the information to convey the believability of the obtained results, this chapter provides the

necessary information to allow other researchers replicate and design accurately solutions based

on the DACA.

In Chapter 5, a scenario based on the DACA is defined and implemented to evaluate the DACA

against the announced research questions. This chapter is divided in three sections. The first

section is aimed at implementing a scenario based on the DACA. The second section is aimed at

assessing the DACA performance against a standard use of CLI but without any FGACM. The third

section is aimed at analyzing the collected results to evaluate if the DACA answers the research

questions of this thesis positively.

Chapter 6, the final chapter, is organized in four sections. The first section is focused on

presenting an overview of this work. The second section is focused on presenting the contributions

of this work. The third section concisely discusses some important issues closely related to this

thesis but out of its scope. Finally, the fourth section presents the future work to be conducted to

continue the work here presented.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

9 | P a g e

2 Background and State of the Art
This chapter is focused on presenting the necessary background and the state of the art in the area

of access control to promote a good understanding on this thesis contents and to make it a self-

contained document for most of the readers. It comprises five sections each one addressing a

particular subject: section 1 presents the basic access control concepts; section 2 presents current

tools for building relational business tiers; section 3 presents JDBC; section 4 presents current

approaches to access control, general techniques and related work and, final, section 5 summarizes

to contents of this chapter.

This chapter is organized as follows. Section 2.1 presents the basic access control concepts.

Section 2.2 presents the current tools that are used for building business tiers. Section 2.3

introduces the JDBC which is the a key API of the DACA. Section 2.4 presents the state of the art and,

finally, section 2.5 summarizes the content of this chapter.

2.1 Basic Access Control Concepts

This section provides the required background to completely understand the fundamental concepts

and techniques of access control and also the one used on the DACA.

Access control is a concept used in several applications and several contexts. It is focused on

preventing unauthorized accesses to protected resources. Access control is enforced by security

layers, which mediates every attempt to access to protected resources. Access control has been

used on several situations, such as to control the access to: XML documents [Bertino, '00; Damiani,

'02; Fundulaki, '04; Iwaihara, '05; Luo, '04], Web Services [Bhatti, '05; Koshutanski, '03; Mecella,

'06; Paci, '11; Sharifi, '09; Wonohoesodo, '04], publish/subscribe systems [Belokosztolszki, '03],

social networks [Anwar, '12; Carminati, '09a; Carminati, '06; Carminati, '09b], pervasive computing

systems [José, '09; Kim, '09; Kulkarni, '08; Vagts, '11; Zhang, '03], content shared in the web

[Tootoonchian, '08], collaborative environments [He, '09; Hildmann, '99; Raje, '12; Tolone, '05], grid

computing system [Oo, '07; Wang, '06; Zhang, '03], cloud computing systems [Zhu, '12], sensor

networks [Garcia-Morchon, '10; Hur, '11; Liu, '10; Vuran, '06; Ye, '04] and mobile communications

[Lawson, '12]. In this thesis we are focused on protecting data residing inside and managed by

RDBMS. In this context, access control is aimed at limiting the activities of legitimate users

(legitimate at the database level) to access sensitive data residing in RDBMS. Authentication and

access control concepts must not be confused. The authentication process is responsible for

identifying database users while access control assumes that a previous authentication of users has

been accomplished before enforcing any security policy. Access control has a specialized branch

dedicated to privacy protection [Shi, '09; Wang, '07], which is generally known as fine-grained

access control (FGAC). Unlike general access control, which is concerned on providing protection to

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

10 | P a g e

data at the table and view level, FGAC is concerned with providing ways to control the access to

protected data at the row and even at the cell level.

2.1.1 Access Control Strategies

Security policies define rules through which access control is governed. Three of the main

strategies for regulating access control policies are [Samarati, '01a; Vimercati, '08]: discretionary

access control (DAC) [Sandhu, '94], mandatory access control (MAC) and Role-based access control

(RBAC) [Ferraiolo, '01; Sandhu, '00]. There are other strategies for regulating access control, such

as attribute-based access control (ABAC) [Kuhn, '10], credential-based access control (CBAC) [Li,

'05; Yu, '03], content driven [Moffett, '91; Staddon, '08], location driven [Decker, '08], public key

driven [Wang, '11] and certificate driven [Samarati, '01b]. Each one addresses specific security

needs for the system under protection. Next follows a description for the three main policies: DAC,

MAC and RBAC.

2.1.1.1 Discretionary Access Control Policies

DAC [Vimercati, '08] is based on the identity of users and on the access rules stating what users are

and are not allowed to do when they request access to a protected resource. DAC is based on a set

of rules, known as authorizations, which state which user can perform which action on which

resource. In the most basic form, an authorization is a triple (s, a, r), stating that subject (user) s can

execute action a on a resource r. The first discretionary access control model proposed in the

literature is the access matrix model [Graham, '72; Harrison, '76; Lampson, '74]. Table 1 shows an

adaptation of the standard access matrix concept assigning an access matrix to two users to access

a database table. This access matrix defines granted and denied permissions for two users (A and

B) to execute actions (Read, Update, Insert and Delete) on a database table with attributes a, b, c

and d. This access matrix defines, for each table attribute (resource) and for each user, which

actions (read, update and insert) each user is authorized and is denied to perform. Delete action is

authorized in a tuple basis and, therefore, it is executed as an atomic action on all attributes as

shown in Table 1.

User Action a b c d

A

Read yes no yes yes

Update no yes no yes

Insert yes yes no no

Delete yes

B

Read no no yes yes

Update yes yes no yes

Insert yes yes no no

Delete no

Table 1. Access matrix to a table with attributes a, b, c and d.

DAC presents several security vulnerabilities. DAC does not separate the concept of User from

the concept of Subject. When using DAC policies, Users are actors authorized to run a system and to

whom permissions are granted. To run any system, processes (subjects) are created on behalf of

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

11 | P a g e

users. As DAC policies do not consider the distinction between Users and Subjects, DAC policies

evaluate permissions of subjects according to permissions of their users. This security gap is used

by malicious programs to exploit the legitimate permissions of users, as it happens with Trojan

Horses [Samarati, '01b].

2.1.1.2 Mandatory Access Control Policies

MAC [Samarati, '01b; Vimercati, '08] enforces access control on the basis of regulations mandated

by a central authority. The access to protected resources is governed on the basis of classification of

subjects and resources on the system where each one has an assigned security level. The security

level assigned to a resource measures its sensitivity. The security level assigned to a user, called

clearance, measures its reliability to access protected resources. The most common form of

mandatory policy is the multilevel security policy. Unlike DAC, MAC policies distinguish users from

subjects and the access control is enforced on processes operating on behalf of users. Each subject

and resource is associated with an access class, usually composed of a security level and a set of

categories. Security levels in the system are characterized by a total order relation, while categories

form an unordered set. As a consequence, the set of access classes is characterized by a partial

order relation, denoted ≥ and called dominance. Given two access classes c1 and c2, class c1

dominates class c2, denoted c1 ≥ c2, if and only if the security level of class c1 is greater than or

equal to the security level of class c2 and the set of categories of class c1 includes the set of

categories of class c2. Access classes together with their partial order dominance relationship form

a lattice [Sandhu, '93].

2.1.1.3 Role-Based Access Control Policies

RBAC is the most popular access control policy to protect data residing in relational databases. As

such, RBAC is described in more detail than DAC and MAC.

RBAC [Ferraiolo, '92; Sandhu, '96] decisions are based on the roles that individual users play on

an organization such as hospital administrator, doctor and nurse. RBAC is attracting increasing

interest particularly of vendors of database management systems, and a standardization was

proposed by NIST (National Institute of Standards and Technology) [Sandhu, '00]. A role is defined

as a set of permissions associated with the subjects (users) playing that role. When accessing the

system, each subject has to specify the role he/she wishes to play and, if he/she is granted to play

that role, he/she can exploit the corresponding permissions. A permission is an authorization to

execute an operation in a protected resource. Thus, permissions are assigned to roles and roles are

assigned to subjects. The access control policy is then defined through two different steps: firstly,

the administrator defines roles and the permissions related to each of them; secondly, each subject

is assigned with the set of roles he/she can play. Roles can be hierarchically organized to exploit the

propagation of access control privileges along the hierarchy. This approach is a natural means for

organizing roles to reflect lines of responsibilities in organizations. Each user may be allowed to

play more than one role simultaneously and more users may play the same role simultaneously,

even if restrictions on their number may be imposed by the security administrator. It is important

to note that roles and groups of users are two different concepts. A group is a named collection of

users and possibly other groups. A role is both a named collection of users on one side and

collection of permissions on the other side. Roles serve as linking entities to bring permissions and

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

12 | P a g e

users together. Furthermore, while roles can be activated and deactivated directly by users at their

discretion, the membership in a group cannot be deactivated. The main advantage of RBAC,

regarding to DAC and MAC, is that it better suits commercial environments. In fact, in a company,

the identity of a person is not important for his/her access to the system, but his/her

responsibilities are. Also, the role-based policy tries to organize privileges mapping the

organization’s structure on the roles hierarchy used for access control.

RBAC is commonly ruled by three security principles: least privilege, separation of duties and

data abstraction. Next follows a description for each security principle.

Least Privilege

The least privilege principle requires that a subject be given no more privilege than

necessary.

Least privilege is used to ensure that only those permissions required to accomplish a task

carried out by subjects of a role are effectively assigned to that role.

Separation of Duties

The separation of duties principle requires that mutually exclusive roles must not be granted to

the same subjects to complete sensitive tasks. For example, the authorization to complete a

task should not be given by who is requesting the authorization to complete the requested task.

Separation of duties is accomplished statically or dynamically. Static separation of duties is

enforced through constraints on the assignment of users to roles. Dynamic separation of duties

is enforced by placing constraints on the roles that can be activated within a user’s session.

Data Abstraction

The data abstraction principle is supported by means of abstract permissions such as credit

and debit for an account rather than the usual low level permissions such as read and write

permissions.

In spite of its importance, RBAC does not solve all access control issues. In situations where

access control is required to deal with sequences of operations, additional access control

mechanisms are often required. For example a purchase requisition may require several

intermediate steps before being a purchase order.

Some of the vendors offering RBAC security environments on their products are: Microsoft,

Cisco Systems, IBM, Siemens, Symantec, Sybase and Oracle.

2.1.2 Architectures for Access Control Mechanisms

Access control is usually implemented in a three phase approach [Samarati, '01b]: security policy

definition, security model to be followed and security enforcement mechanisms. This thesis is

focused on access control mechanisms and, therefore, an overview of the architectures for their

implementation is presented and described in this sub-section.

Access control mechanisms implement the security policy formalized by the security model. In

this thesis we are focused on providing access control to data residing in RDBMS and specially

FGAC. Several architectural approaches are available to implement FGACM to protect data in

RDBMS. Some are provided by the vendors of RDBMS and others have been proposed by the

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

13 | P a g e

research community. Very often, access control mechanisms comprise a runtime procedure, known

as decision evaluation, to evaluate if permissions are granted or denied. Basically there are three

main architectural approaches:

Centralized approach

In the centralized approach decisions about granting or denying access, and access control

 mechanisms are both managed by centralized entities. This is the approach used by vendors of

RDBMS.

Distributed approach

In the distributed approach decisions about granting or denying access, and access control

mechanisms are both locally managed on the client-side applications. The DACA is based on

this approach.

Mixed approach

In the mixed approach decisions about granting or denying access are managed by a

centralized entity but the access control mechanisms are managed on the client-side

applications. The most well-known example is the eXtensible Access Control MarkUp Language

(XACML) [OASIS, '12] where policies are enforced in the client-side by Policy Enforcement

Points (PEP) of database applications but the decision whether to grant or deny access is taken

by centralized Policy Decision Points (PDP).

The following sub-sections present a more detailed description for each architectural approach

just described.

2.1.2.1 Centralized Approach

The centralized approach is based on a security layer developed by security experts and usually

using RDBMS tools and based on RBAC policies. Access control policies vary from RDBMS to RDBMS

but comprise several entities, such as users, roles, database schemas and permissions. They are

directly managed by RDBMS and are completely transparent for software applications. Their

presence is only noticed if some unauthorized access is detected by the security layer. Figure 3

presents a simplified block diagram for the centralized approach. Basically, SQL statements are sent

to the RDBMS (Figure 3: 1) and before being executed they are evaluated by a security layer to

check their compliance with the established access control policies. If any violation is detected, SQL

statements are rejected and an exception is raised, otherwise they are executed (Figure 3: 2).

Business Logic RDBMS

…
executeCRUD
...

Security
Layer

1
2

Figure 3. Centralized access control mechanism.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

14 | P a g e

The centralized approach presents advantages and disadvantages. Among the advantages, the

following are emphasized:

Maintenance

Whenever a maintenance activity is necessary, it is restricted to the entity responsible for the

decisions and the mechanisms. The centralized approach clearly avoids the need to carry out

maintenance activities in several equipment.

Reliable security

If security is correctly defined and implemented, any attempt to violate the system security is

always evaluated against the enforced access control policies.

Among the disadvantages [Lopez, '02b; Valle, '02], the following are emphasized:

Scalability

Access control always conveys an additional processing overhead and, in case of complex

decisions and mechanisms, there may be scalability problems.

Increased latency

Requests to access to data, and the decisions and mechanisms to control those accesses reside

in different computer devices leading to an increased latency when the access is not granted. On

the distributed architectures, decisions and mechanisms are local and, therefore, the latency is

minimized.

Single point of failure

As any centralized architecture the single point of failure may lead to undesirable security

failures. In this unwanted security failure, every request to access protected data may exploit

the security gap.

2.1.2.2 Distributed Architecture

A distributed approach can be characterized by the distributed character of the decisions making

and also on the distributed character of the enforcement mechanisms. Decisions and mechanisms

are implemented and placed in each running client-side application. Not only the mechanisms are

distributed but also the decisions are locally taken. Such distributed architecture approach conveys

some advantages and some disadvantages. Among them, the following advantages are to be

emphasized:

Scalability

The rational to decide upon granting or denying access and the mechanisms are deployed in

each client-side application. This approach clearly delegates in each client the total

responsibility to ensure and to comply with the established access control policies. When the

number of client-side applications increase, there is no effect on the performance and on the

responsiveness of the extended system. If complexity of the decisions and/or mechanisms

increases, the additional power computation that is needed is not cumulative in any centralized

equipment but distributed in each client-side equipment. Therefore, each client-side equipment

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

15 | P a g e

has the responsibility to provide the eventual necessary additional computational power to

avoid any security violation. This issue has an increased relevancy because very often database

servers are bottlenecks in intensive database applications. If beyond the access to data they are

also required to provide access control, then very probably the bottleneck will be more

noticeable. The distributed architecture clearly relieves database servers from the

responsibility of providing access control.

Minimum latency

In the distributed architecture decisions and mechanism are deployed in each client application

and, therefore, the latency for any request to access protected data is minimized. In non-

distributed architectures, latency may be significant when requests to access to data are denied.

While in distributed architectures the decision is made locally, in non-distributed architectures

there is the unavoidable latency for the communication process between client applications and

the centralized security equipment.

Among the disadvantages the following are next emphasized:

Maintainability

Whenever a maintenance activity is carried out on the access control policies, it is potentially

necessary to extend the maintenance activities to all equipment running client-side

applications. If the maintenance activity is not automated then it may convey a huge effort in

systems comprising many and faraway client equipment. However, this potential disadvantage

is not applicable to the DACA as it has already been mentioned. The DACA has an automated

process to keep FGACM updated in all client-side equipment.

Security gap

If policies are not coordinated from a central point, the probability of deploying security gaps is

increased. This potential disadvantage is not applicable to the DACA because the DACA

comprises central systems responsible for ensuring that the implementation of FGACM in all

client-side equipment is in accordance with the established FGACP.

2.1.2.3 Mixed Architecture

A mixed approach splits the responsibilities for the access control between a centralized server and

client-side equipment. The best well-known standard is the XACML. XACML is an access control

language based on XML and defined by the Organization for the Advancement of Structured

Information Standards (OASIS). The basic design of an XACML system has four main components:

PAP (Policy Administration Point), PEP (Policy Enforcement Point), PIP (Policy Information Point)

and PDP (Policy Decision Point). We will be mainly focused on the PEP and PDP components but

PAP and PIP will also be described.

The XACML approach consists in a security software layer with two main functionalities: the

PDP and the PEP, as defined in XACML [OASIS, '12] and used in [Corcoran, '09], see Figure 4. The

PEP are locally inserted in-line with the client-side source code to intercept users requests for

accessing a resource protected by an access control policy (Figure 4: 1) and enforces the decision to

be evaluated by a remote PDP on this access authorization. PDP evaluates requests to access a

resource against the access control policies to decide whether to grant or to deny the access

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

16 | P a g e

(Figure 4: 2). If authorization is granted, PEP uses business logic to perform the authorized action

(Figure 4: 3) and, if no other restriction exists, the action is executed by the RDBMS (Figure 4: 4).

PEP are intentionally inserted in key points of the source code to enforce PDP decisions. PEP-PDP

approach is a mixed approach involving the centralized approach and the distributed

approach. Beyond PEP and PDP components, the basic design of an XACML system has two more

main components: PAP and PIP. PAP is where administration of policies is carried out. PIP is where

information is collected for the PDP to make up decisions. The advantages and disadvantages of the

mixed architecture emanates from the advantages and disadvantages of the centralized and

distributed architectures. Anyway, latency deserves a closer attention. In the centralized approach,

when compared with the distributed approach, the latency is only noticeable if permission to access

the protected resource is not granted. In the mixed approach, the latency is permanent and

independent from the decision process. This means that every request to a protected resource

entails a latency to evaluate if permission is or is not granted.

...
accessGranted =
If (accessGranted) {
 ...

PEP PDP
1 2

3

Business Logic

RDBMS
Optional
RDBMS
Security

Layer

4

Figure 4. Mixed architecture.based on PEP and PDP.

2.1.3 Dimensions of Access Control Mechanisms

In this sub-section a survey is made about the main dimensions that may influence the

implementation of access control mechanisms.

The enforcement of access control policies comprises five orthogonal dimensions: architecture,

granularity, awareability, contextuality and adaptability. The architectural dimension, because of its

visibility and notoriety, has been already presented separately in sub-section 2.1.2. The remaining

four dimensions are now jointly presented and described in this sub-section. Granularity is focused

on characterizing the granularity of the data to be disclosed and also the authorized actions on it.

Awareability is focused on evaluating if access control mechanisms are or are not made available to

programmers while they write source code for client-side applications. Contextuality is focused on

evaluating if access control uses runtime context to decide upon the data to be made available and

the authorized actions. Adaptability is focused on evaluating if access control mechanisms are or

are not automatically updated when access control policies evolve over time. Next follows a

detailed description for each dimension.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

17 | P a g e

2.1.3.1 Granularity

Currently, most of the RDBMS provide access control mechanisms driven by fixed relations

between users, operations and tables leading to a maximum protection of resources at the column-

level [Caires, '11]. This level of protection may be satisfactory in many situations but in many

others it is far from being satisfactory. In situations where the access to data is not controlled at the

column level but is also controlled at the row level, it is considered as being a FGACP. Some RDBMS

vendors support FGACP using different approaches, such as query rewriting in INGRES, Virtual

Private Database [Oracle] in Oracle and label-based in DB2 [Bond, '07]. Very often these features of

RDBMS are not enough and there is the need to provide an increased level of protection. This need

for an increased level of protection has been the motivation for the researches that have been

conducted and also one of the key motivations of this thesis.

2.1.3.2 Awarability

Programmers of client applications can hardly master established access control policies in

database applications with many and complex policies. As such, it is convenient to follow an

approach where the policies are statically checked at development time or at compile time of

applications tiers. This awarability relieves programmers from mastering FGACP and, additionally,

conveys a swift feedback about any policy violation. This approach conveys two important

advantages:

Productivity

The obligation to evaluate the correctness of source-code at runtime induces and additional

overhead at the development process, this way leading to a decrease in productivity. Therefore,

productivity is improved if programmers are relieved from running applications to become

aware of any disconformity with the established access control policies;

Security

Due to the endless SQL expressiveness, difficulties arise to ensure a complete secure access

control. To overcome this fragility, a possible approach is by implementing a fine control on the

set of CRUD expressions that are allowed to be executed to improve the overall security.

Ultimately, CRUD expressions are provided by database administrators and are statically made

available to programmers, this way avoiding the free writing process of CRUD expressions by

programmers of business tiers and application tiers.

The awareness of access control policies follows two approaches, the typed approach and the

untyped approach:

Typed approach

The typed approach is based on typed objects to enforce access control policies so that

programmers become aware of their existence at development time. The awareness at

development time is the approach that improves productivity more. Programmers become

aware of any disconformity while writing the source code, this way avoiding the waste of time

for writing erroneous source code and the waste of time for compiling and re-writing the

source code.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

18 | P a g e

Untyped approach

The untyped approach is based on data structures used by the compiler to check if the accesses

to data are in conformity with the established access control policies. Programmers become

aware of any unconformity only after writing and compiling the source code, which, obviously,

leads to a lower productivity than the typed approach.

The typed approach has the enormous advantage of guiding programmers in the correct

direction while editing source-code. This guidance is automatically provided in current Integrated

Development Environments (IDE), such as NetBeans [Oracle, '12e], Eclipse [Eclipse, '12] and Visual

Studio [Microsoft, '10], through the auto-completion facility. Awareness at compile-time does not

guide programmers during the editing process and postpones the feedback about any unconformity

until the compilation process of source-code is completed.

2.1.3.3 Contextuality

There are situations where access control is governed by contextual information. In these

situations, there is no possibility to know at development time or even at compile time the values to

be used to protect the access to sensitive data. Typical situations are health care organizations and

social networks. In health care organizations, patient data is disclosed only to the people who need

them and have the correspondent authorization. For example, a doctor can access the data only of

those patients he is treating. In social networks, only current friends have access to some data. In

such cases, before being executed, CRUD expressions must comprise the required predicates to

avoid the access to unauthorized data. The predicates may be originally written with CRUD

expressions or later added using any query rewriting technique. The query rewriting technique is

presented and described in sub-section 2.4.1. A concrete case of this approach is the Reflective

Access Control [Olson, '08]. A “…a policy is defined as reflective when it depends on data contained in

other parts of the database” [Olson, '09].

2.1.3.4 Adaptability

Access control policies define which actions each user is authorized to execute on database objects.

Nothing prevents the policies established during a certain period to evolve to a different state.

When this happens, users are allowed to do things they were not allowed to do before, or users are

not allowed to do anymore things they were allowed to do before or users are allowed to do what

they were allowed to do before but in a different way. To guarantee that this process of evolving

policies is supported, it is necessary to guarantee that the associated mechanisms and decisions are

also updated. If we recall the architectural dimension we can see that very probably some

difficulties arise. The centralized architecture requires maintenance activity in the central system,

which does not raise any special concern in a first glance. But the distributed and mixed

architectures entail a maintenance activity in all client equipment where the policies are enforced,

which may raise justified concerns. Two approaches are followed to implement access control

mechanisms, the static approach and the dynamic approach.

Static approach

In the static approach, mechanisms and/or decisions are hard coded and there is no way to

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

19 | P a g e

 automatically modify them in accordance with new policies. Therefore, whenever modifications

are needed, they have to be edited, compiled and manually deployed. This updating process is

not scalable leading to a huge effort when database applications have many client-side

equipment.

Dynamic approach

In the dynamic approach, mechanisms and/or decisions have the ability to be adapted to

evolving policies. While mechanisms are traditionally hard coded, the decisions may also resort

to a database to become adapted more easily. The adaptation process of hard coded components

of mechanisms and decisions may rely on different strategies but always entails two automated

procedures: building/adaptation of source-code and a deployment process. The combination of

these two procedures opens the possibility to opt for two different implementations: 1) policies

are deployed and adapted in each server (decisions) and each client-side system (decisions

and/or mechanisms) or 2) mechanisms and decisions are adapted and then deployed into each

security sever (decisions) and each client-side system (decisions and/or mechanisms). Unlike

the static approach, the dynamic approach follows an automated process for adapting policies,

this way promoting scalability, maintainability and productivity.

2.2 Current tools for Building Business Tiers

Several tools have been devised to improve the development process of business tiers mainly for

tackling the impedance mismatch issue [David, '90]. From them, two categories have had a wide

acceptance in the academic and commercial forums: Object-to-Relational Mapping tools (O/RM)

and CLI. Other solutions, such as embedded SQL [Moore, '91] (SQLJ [Eisenberg, '99]), have

achieved some acceptance in the past but failed to be generally accepted by the research and

commercial communities. Others were proposed but without any general known acceptance: Safe

Query Objects [William, '05] and SQL DOM [Russell, '05]. These tools were all devised mainly to

tackle the impedance mismatch issue not addressing the concept of access control at all. Access

control, whenever implemented, is based on additional security layers. Some examples based on

current tools are shown to demonstrate their inability to deal with access control. Firstly, O/RM

tools are presented because of their importance and their wide acceptance. Then, CLI will be

presented and described because of their undeniable relevance in the DACA.

2.2.1 O/RM tools and ADO.NET

O/RM tools [Keller, '97; Lammel, '06], such as LINQ [Erik, '06], Hibernate [Christian, '04], Java

Persistent API (JPA) [Yang, '10], Oracle TopLink [Oracle], CRUD on Rails [Vohra, '07], and ADO.NET

were designed to create, in the object-oriented paradigm, static representation models of relational

database schemas. The static model is built in a first stage, eventually by a database administrator,

and then programmers start the development process. The basic artifacts of the static

representation models are classes (entities), each one representing a database table. Through these

entities programmers may read data from tables, update data, insert new data and, finally, delete

existing data. To support explicit CRUD expressions, O/RM tools provide proprietary SQL

languages. Despite these advantages, O/RM do not address access control at any level. Additionally,

O/RM tools lead to some drawbacks, such as: 1) they induce an additional overhead when

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

20 | P a g e

Figure 5. Example based on ADO.NET.

Figure 6. Example based on JPA.

Figure 7. Example based on LINQ.

compared to CLI; 2) they were not devised having in mind the frequent use of complex CRUD

expressions and, finally, 3) they rely on static models, this way not promoting an easy process for a

dynamic adaptation at runtime. Moreover, O/RM tools do not promote a clear separation of

application tier developer role from business tier developer role. For example, programmers

may use embedded language extensions and other embedded functionalities to extend pre-built

static models, this way opening possible security gaps. Figure 5, Figure 6 and Figure 7 present a

simplified version of the example presented in Figure 1 but written in ADO.NET, JPA and LINQ,

respectively. Akin to JDBC, programmers are free to write any CRUD expression (Figure 5: line 28,

Figure 6: line 34, Figure 7: line 17) and to execute them. Then, they have no

restrictions to read the attribute productName (Figure 5: line 35, Figure 6: line 37, Figure 7: line 20)

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

21 | P a g e

not even to update it (Figure 5: line 37-39, Figure 6: line 39-40, Figure 7: line 20-21). Beyond

reading and updating the attribute productName, it is also possible to read and update all the

remaining attributes, even to insert new rows and delete existent rows. There is no possibility to

prevent programmers from issuing these accesses. This example clearly shows the unpreparedness

of current O/RM tools to deal with access control policies at any security level.

2.2.2 Call Level Interfaces

CLI are the main API to model one of the most important components of the DACA. The component

is responsible for the implementation of the dynamic FGACM at the client-side of database

applications. As such, a detailed knowledge about the architecture and features of CLI is considered

essential to understand the DACA and also the options made for the implementation of FGACM.

2.2.2.1 Overview of Call Level Interfaces

CLI are an ISO/IEC standard [ISO, '03] for the interaction between RDBMS and client applications.

Two API were initially devised for the C and COBOL programming languages. The most well-known

implementation of CLI is the Open Database Connectivity (ODBC) [Microsoft, '92] specification.

ODBC is a C programming language interface providing a standard for client applications access

data from a variety of RDBMS. “ODBC is a low-level, high-performance interface that is designed

specifically for relational data stores.” [Microsoft, '92]. In this document, the term CLI is used with a

wider scope that the one defined by ISO/IEC. Herein, CLI are used to refer to any API/standard with

identical features and characteristics to the standard emanated from ISO/IEC. In this context, other

related CLI have also been devised, such as JDBC. Other tools/frameworks have also been devised

to ease the development process of business tiers, which, in most of the situations, use CLI as the

underlying technology to interact with RDBMS, such as ADO.NET [Mead, '11], JPA [Yang, '10] and

Hibernate [Bauer, '07]. Some of the main features of CLI that are important for the DACA are now

briefly described:

Building process of CRUD expressions

CRUD expressions are the main entities used by programmers to interact with data residing in

RDBMS. Thus, the key issue of any tool devised to develop business tiers is the definition of how

client applications build and use CRUD expressions. CLI allow CRUD expressions to be written

in the native SQL language and encoded inside strings. There is no layer between the native SQL

language and the services provided by CLI.

Access Modes

CLI provide several access modes to data residing in RDBMS. Programmers are free to select at

any moment the access modes that more effectively address their needs.

Results of CRUD expressions

From the application’s perspective, every CRUD expression has a final result. Insert, Update and

Delete expressions modify the state of databases by affecting a certain number of rows. Select

expressions create a set of rows that must be made available to client applications.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

22 | P a g e

Performance optimization

CLI provide several performance contexts in which CRUD expressions may be executed. Client

applications are called to choose in each situation the context most appropriated.

2.2.2.2 Functionalities

CLI are considered important options for building business tiers whenever a fine tune control on

the interactions with RDBMS is necessary and also when performance is considered a key

requirement [Cook, '05]. This is confirmed in several functionalities of CLI, being the diversity of

access modes just one example. CLI provide several access modes to data residing on RDBMS

among them the possibility to encode CRUD expressions inside strings, this way easily

incorporating the power and the full expressiveness of the SQL language. JDBC [Parsian, '05], for

Java environments, and ODBC [Microsoft, '92], for Windows environments, are two representatives

of CLI. CRUD expressions are executed against the host database and the possible results they

produce (only for Select expressions) are locally managed by local memory structures (LMS) –

(ResultSet [Oracle, '13] for JDBC, RecordSet [Microsoft, '13] for ODBC). CLI provide two main and

key functionalities to access data:

Use of the native SQL language

This functionality has been already described. CLI are suited to the use of the native SQL

language. This way, they are prepared to exploit the performance and the full expressiveness of

the SQL language.

Use of LMS

LMS are containers prepared to help client application to interact with data returned by Select

expressions. They provide services to allow applications to read, insert, update and delete data

from the LMS.

Only services of CLI directly related to the execution of CRUD expressions will be addressed in

this thesis. Services such as those for managing connections to host databases are not here

addressed. Main services of CLI are organized in four main categories: execution, scrollability,

updatability and transactions.

Execution

Execution comprises services related to the execution of native CRUD expressions. Native CRUD

expressions are executed as compiled-on-the-fly or pre-compiled (when they are to be reused).

Pre-compiled CRUD expressions are stored in the database by RDBMS while being used and,

therefore, very often provide a much better performance execution than those compiled-on-

the-fly. Additionally, CLI deal differently with Select expressions from the other three types of

CRUD expressions. Select expressions instantiate LMS, while the other types do not. These latter

types (Insert, Update and Delete) generate a value indicating the number of affected rows in the

database.

Scrollability

Scrollability comprises services related to the scrolling process on LMS. There are several

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

23 | P a g e

different implementations but two are emphasized. They are mutual-exclusive and are herein

known as forward-only and scrollable.

Forward-only

Forward-only LMS restrict the possibility to move cursors one row forward at a time.

Forward-only LMS are used when rows are accessed in a sequential way, one by one, from

 the first one till the last one.

Scrollable

Scrollable LMS do not restrict the movement of cursors. Unlike the forward-only LMS,

programmers are free to select rows not placed next and after the active selected row.

Programmers are free to write source code to jump several rows at a time and in any

direction, forward or backward.

 The choice between forward-only and scrollable LMS not only affects the functionalities of LMS

but also their performance. This issue will be addressed during the performance assessment.

Updatability

Updatability comprises services organized in protocols to interact with data contained in LMS.

There are several implementations but two are herein emphasized. They are mutual-exclusive

and are known as read-only and updatable LMS.

Read-only LMS

Read-only LMS restrict the access to their in-memory data to read operations only.

Applications are prevented from inserting new rows, from updating existent rows and also

from deleting existent rows on LMS.

Updatable LMS

Updatable LMS do not restrict any operation on their in-memory data. Applications are

allowed to read existent rows, insert new rows, update existent rows and to delete existent

rows. The important aspect in these actions is that CLI, internally, create CRUD expressions

to execute the actions performed at the LMS level. Thus, when an update protocol is

committed, CLI create an Update expression to update the updated attributes. Similarly,

when a row is inserted or deleted at the LMS level, CLI create Insert and Delete expressions

to materialize the requested actions, respectively. These additional actions at the LMS level

avoid the need to write native CRUD expressions to perform the equivalent actions on host

databases.

The choice between read-only and updatable LMS not only affects the functionalities of LMS

but also their performance as it will be shown.

Transactions

Transactions comprise a set of services to manage database transactions such as save points,

rollback transactions and commit transactions. CLI provide two mutual-exclusive modes to

manage database transactions: auto-commit mode and normal mode.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

24 | P a g e

Auto-commit mode

The auto-commit mode is used when there is the need to execute each CRUD expression

 atomically and, as such, ruled by an individual transaction. This mode avoids the need to

precede and follow each CRUD expression by a transaction initiation process and by a

transaction commit process.

Normal mode

The normal mode is used when there is the need to process several CRUD expressions as a

single transaction. In this case, the first CRUD expression is preceded by the beginning of a

transaction and the last CRUD expression is followed by the correspondent transaction

commit.

By default, the work mode is the auto-commit mode on which each CRUD expression is

automatically committed when it is completed successfully. Therefore, in this mode, no other

transaction management functions are required. In the normal mode there are functions to deal

with traditional transaction actions, such as begin transactions, commit transactions and

rollback transactions.

2.2.2.3 Local Memory Structures

LMS have been loosely presented and some properties have also been already described. Next

follows a more detailed description about the operation of LMS.

LMS are instantiated to manage the data returned by Select expressions. As such, at this point it

is advisable to discuss some LMS features that are relevant to this research. Figure 8 presents a

general LMS containing 5 tuples (rows, 1 to 5) and 6 attributes (a, b, c, d, e, f). This LMS could have

been instantiated to manage the data returned by the following CRUD expression: Select a, b, c, d, e, f

from Table Where …. In this case, the CRUD expression has returned 5 tuples and the current

selected tuple is tuple number 2. Two representatives of LMS are ResultSet [Oracle, '13] (JDBC) and

RecordSet [Microsoft, '13] (ODBC).

1

2

3

4

5

a b c d e f

Selected tuple

Figure 8. LMS with 5 tuples (rows) and 6 attributes (a till f).

The access to LMS attributes is accomplished by selecting a tuple and then, through an index or

through a label (usually the attribute name), by selecting one attribute at a time. For example, to

execute an action action (read, insert or update) on attribute c of tuple 2:

 Select tuple 2;

 Execute action(index of attribute c) or action(label of attribute c).

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

25 | P a g e

CLI are responsible for providing services to allow applications to scroll on LMS, to read their

contents and to modify (insert, update, delete) their internal contents (other services are also

available but they are not relevant at this point). Services may be split in two categories: basic

services and advanced services. Basic services comprise two groups of protocols: the scrolling

protocols are aimed at scrolling on tuples and the read protocol is aimed at reading the tuples’

attributes. Advanced services are available only if LMS are updatable. In this case applications are

allowed to change the internal state of LMS. Advanced services comprise three protocols: insert

protocol to add new tuples, update protocol to update an existent in-memory tuples and, finally,

delete protocol to delete existent tuples. After being committed, new LMS states are automatically

committed in the host database. To execute any of the previous services it is necessary to know that

the access to LMS is simultaneously tuple oriented and protocol oriented. This has two main

implications. First, at any time only one tuple may be selected as the target tuple. Second, if a

protocol is being executed, applications should not start any other protocol. If this rule is not

fulfilled, LMS may lose their previous states. For example, if an advanced service is being executed

and another protocol is triggered, LMS discard all changes made during the first protocol. Table 2

concisely presents four of the five main LMS protocols. Scroll is not presented because only the

presented protocols are used to interact with data managed by LMS and, therefore, managed by

RDBMS. Additionally, the scroll protocol is orthogonal to the remaining four protocols.

Read Protocol

During the read action, attributes are individually read one by one and always from the current

selected tuple. If a different tuple is selected, the next attribute value will be retrieved from the

new selected tuple.

Update Protocol

During the update action, attributes are individually updated one by one on the current selected

tuple. The protocol may or may not be triggered by invoking a specific method. It ends when a

specific method is invoked to commit the updated attributes. If another tuple or protocol

(except the read protocol) is selected while it is being executed, all previous changes will be

discarded.

Insert Protocol

The insert protocol is triggered by invoking a specific method. Then, each attribute is

individually inserted one by one. After all attributes have been inserted, the protocol ends when

a specific method is invoked to commit the inserted tuple. If another tuple or protocol (except

the read protocol) is selected while it is being executed, all previous changes will be discarded.

Delete Protocol

The delete protocol comprises a single method that removes the current selected tuple from the

LMS. The delete action is also committed in accordance with the established policy.

Table 2 presents the main protocols of LMS and the logic associated with each one.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

26 | P a g e

ID Protocol Id Protocol

1

Point to a tuple

Read attributes
2

Point to a tuple

Start update protocol

Update attributes

Commit update

3

Start insert protocol

Insert attributes

Commit insert

4

Point to a tuple

Delete tuple

Table 2. Main protocols of LMS.

2.2.2.4 Access Modes of CLI to RDBMS

CLI are used, among other purposes, to access data residing in RDBMS. From the descriptions

previously presented in 2.2.2.2 and 2.2.2.3, it is possible to infer that CLI provide two different

modes to access data residing in RDBMS, which are herein referred to as the Direct Access Mode

and the Indirect Access Mode.

Direct Access Mode

The Direct Access Mode is useful when programmers use native SQL to write CRUD expressions

encoded inside strings and then delegate the remaining process to CLI to execute them against

the RDBMS. CRUD expressions are of any type (Insert, Read, Update and Delete).

Indirect Access Mode

The Indirect Access Mode is only available after the execution of a Select expression (using the

Direct Access Mode). CLI instantiate LMS and provide protocols (read, update, insert and

delete) through which programmers are allowed to interact with the in-memory data of LMS.

These protocols belong and constitute the Indirect Access Mode. Whenever an update, insert or

delete protocol is committed, CLI internally create the correspondent CRUD expression to

commit the changes. The read protocol is also included in the Indirect Access Mode.

Current approaches to enforce access control are only based on the Direct Access Mode. But,

unlike current approaches, the DACA implements FGACM at the level of CLI and, as such, it must

implement FGACM not only on the Direct Access Mode but also on the Indirect Access Mode for all

CLI

Direct Access Mode

Indirect Access Mode

DACA FGACM

Figure 9. CLI and DACA access mechanisms.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

27 | P a g e

protocols (read, update, insert and delete). Figure 9 shows a simplified block diagram to slightly

unveil the approach to be followed by the DACA to implement FGACM on CLI. The diagram shows

that the two access modes of CLI are wrapped and hidden by the DACA to support data access ruled

by FGACM only.

2.2.2.5 Performance

Very often, performance is a key requirement and frequently a bottleneck of database applications

when scalability limitations arise. As such, an overview about the issues that influence performance

is an unavoidable aspect of CLI and it must comprise the two described access modes of CLI.

Direct Access Mode

Native CRUD expressions are edited and executed through the Direct Access Mode. The

execution context has two mutual-exclusive possibilities: CRUD expressions are compiled-on-

the-fly or CRUD expressions are pre-compiled. As already explained the pre-compiled approach

compiles and stores CRUD expressions on the RDBMS. Whenever needed, CRUD expressions are

already compiled and their execution plans have been already evaluated. The performance

improvement is mostly noticeable when CRUD expressions use complex execution plans.

Indirect Access Mode

The Indirect Access Mode is available whenever a Select expression is executed. When a Select

expression is executed using a scrollable or an updatable LMS, RDBMS create a server cursor

with all the selected tuples. These tuples are dynamically transferred in blocks, from the server,

to the LMS whenever necessary. This means that at any time LMS may not have all the tuples

but only a sub-set of all selected tuples. When users point to a tuple that is not present in the

LMS, the current content of LMS is discarded and a new set of tuples containing the desired

tuple is transferred to the LMS. This has a deep implication. If threads are always requesting

tuples that are not present in the LMS, RDBMS have to transfer the correspondent block for

each request. In an extreme scenario, each individual action over the LMS could imply a new

transference of tuples. From the previous statements, it is expected that the number of blocks to

be transferred will increase when the number of tuples (inside server cursors) increases and

also when the dispersion of the used policy to select tuples (contained by LMS) increases. Thus,

to optimize the performance two strategies need to be followed [Pereira, '10b; Pereira, '11b;

Pereira, '13c]. The first one and simplest one is to avoid the use of scrollable and/or updatable

LMS. If it is not possible to avoid the use of scrollable or updatable LMS, then access to LMS

should follow a policy aimed at minimizing the transferences of block of tuples.

2.2.3 Other proposals

Beyond O/RM and CLI, several other tools have been launched by the research community and the

commercial community. In his sub-section an overview of the most relevant tools is made.

Embedded SQL [Moore, '91] is a method for writing CRUD expressions in-line with regular

source code of the host programming language inside source files. The CRUD expressions provide

the database interface while the host programming language provides the remaining support

needed for the application to execute. The files are then pre-processed (pre-compiled) in order to

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

28 | P a g e

check the correctness of CRUD expressions namely against the database schema, host language data

type and SQL data type checking, and finally syntax checking of the SQL constructions. SQLJ

[Eisenberg, '99] is an example of an Embedded SQL standard, which provides language extensions

for embedding CRUD expressions in regular Java source files. Some SQLJ disadvantages, which are

common to most Embedded SQL technologies: 1) SQLJ relies on an extra standard; 2) SQLJ does not

decouple CRUD expressions from regular source code; 3) SQLJ does not provide a clean object-

oriented interface to the assisted application; 4) SQLJ does not provide assistance regarding the

maintenance of CRUD expressions; 5) SQLJ requires a JVM (Java Virtual Machine) built in the

database. In practice, embedded SQL has never been widely adopted by end users. Examples of

other languages that support embedded SQL are: C, C++, COBOL and Fortran. Despite the

aforementioned general disadvantages, some embedded SQL features may be considered as

advantages such as: it is based on a single development environment with a strong interconnection

between the two paradigms; unlike other solutions, embedded SQL does not need to be executed to

check the correctness of the SQL syntax. This task is executed by the pre-compiler.

Safe Query Objects [William, '05] combine object-relational mapping with object-oriented

languages to specify queries using strongly-typed objects and methods. They rely on Java Data

Objects to provide strongly-typed objects and also to provide data persistence. Safe Query Objects

are a promising technique to express queries but share most of the aforementioned drawbacks of

O/RM, namely regarding performance and SQL expressiveness.

SQL DOM [Russell, '05] generates a Dynamic Link Library containing classes that are strongly-

typed to a database schema. These classes are used to construct dynamic CRUD expressions

without manipulating any strings. As Safe Query Objects, SQL DOM does not take the full advantage

of SQL expressiveness and also exhibits very poor results regarding its performance.

Static Checking of Dynamically Generated Queries [Gary, '07] presents a solution based on

static string analysis of Java programs to find out where CRUD expressions are being constructed.

The main idea is to find out all possible combinations of distinct CRUD expressions and then

analyze them regarding their syntax and their type mismatch errors. This approach does not affect

system performance but exhibits some drawbacks as: 1) all source code is hand written from string

concatenation till JDBC execution context; 2) it does not provide any object-oriented view of the

CRUD expression execution context.

In [Schmoelzer, '06] Schmoelzer et al. do not present a tool but present a concept for model-

typed interfaces relying on generic interface parameters that may be used to transfer data. The

parameters are characterized as Model-defined Types whose schema is defined by a Data Model.

The authors claim that by this way, complex data structures (based on Data Models) may be

transferred between components in a single method invocation avoiding successive calls to

accomplish the same task. This methodology is very useful when two conditions occur

simultaneously: 1) the involved components do not share the same working address space; 2) the

component playing the client role has full control and knowledge about the amount of data being

transferred. In our case, Business tiers based on the DACA and client applications share the same

address space. Then, the best access method to the returned data (from Select expressions) is

implemented in attribute by attribute and tuple by tuple basis. The DACA could profit from

[Schmoelzer, '06] if systems based on the DACA and client applications ran in different address

spaces.

Data Transfer Objects [Flower, '02] is another concept for the transference of data. It proposes

a design pattern to be used whenever an entity gathers a group of attributes that must be accessed

in a swift way. Accessing those attributes one by one through a remote interface raises several

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

29 | P a g e

disadvantages such as the increase of the network traffic, latency is increased, performance is

negatively affected, demand on server and client processing is increased. Data Transfer Objects are

tailored to address these situations. They are organized in serializable classes gathering the related

attributes and forming a composite value. An entire instance of the serialized object is transferred

from the server to the client. This approach, in its essence, is quite similar to the previous conveying

the same advantages and disadvantages.

Aspect-oriented programming [Gregor Kiczales, '97] community considers persistence as a

crosscutting concern [Laddad, '03]. Several works have been presented but none addresses the

point here under consideration. The following works are emphasized: [Fabry, '06] is focused on

separating scattered and tangled code in advanced transaction management; [Laddad, '03]

addresses persistence relying on AspectJ; [Dinkelaker, '11] presents AO4Sql as an aspect-oriented

extension for SQL aimed at addressing logging, profiling and runtime schema evolution. It would be

interesting to see an aspect-oriented approach for the points herein under discussion.

2.3 JDBC

JDBC is the CLI used in the DACA proof of concept. To provide the necessary background to

completely understand the DACA, JDBC is now presented and described as the representative of

CLI.

2.3.1 JDBC Overview

JDBC is a CLI version for a standard Java specification for database-independent connectivity. There

are four styles of drivers, see Figure 10:

 JDBC-ODBC Bridge plus ODBC Driver – type 1

 native API partly Java technology-enabled driver – type 2

 Pure Java driver for database middleware – type 3;

 Direct-to-database pure Java driver – type 4.

Type 1 Type 2 Type 3 Type 4

JDBC API

JDBC Driver Manager
Or

Databsource object

ODBC Driver

DB Client library

JDBC API

JDBC Driver Manager
Or

Databsource object

Partial JDBC Driver

DB Client library

JDBC-ODBC Bridge

JDBC API

JDBC Driver Manager
Or

Databsource object

Pure JDBC Driver

DB Middleware

JDBC API

JDBC Driver Manager
Or

Databsource object

Pure JDBC Driver

Figure 10. Types of JDBC drivers and their dependency on other components.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

30 | P a g e

JDBC Type 1 driver uses ODBC driver to connect to the database. A database client library is

also necessary if ODBC is not a native driver to the RDBMS.

JDBC Type 2 driver converts JDBC calls into calls on the client side vendor’s API to connect to

the database.

JDBC Type 3 driver converts JDBC calls directly or indirectly into the middleware client side

libraries of the database.

JDBC Type 4 driver converts JDBC calls into the network protocol used to connect to the

database and, as such, is considered the best choice when performance is considered a key

requirement. The proof of concept of DACA uses a Type 4 driver for SQL Server: sqljdbc4.jar.

2.3.2 JDBC Approach to Call Level Interfaces Functionalities

As previously explained, main functionalities of CLI are organized in four main categories:

execution, scrollability, updatability and transactions. Figure 11, Figure 12, Figure 13, Figure 14,

Figure 15 and Figure 16 present typical JDBC usage of the four main functionalities. These figures

will be referred during the next explanations. Figure 11 presents the declaration of the main

variables used in these examples: Statement is an object aimed at executing compiled-on-the-fly

CRUD expressions, PreparedStatement is an object aimed at executing pre-compiled CRUD

expressions and ResultSet is an object responsible for managing LMS. The line numbers in all

figures are not repeated between them, thus, whenever dispensable we will not refer the figures

being used in this sub-section.

Execution

Execution comprises services related to the execution of CRUD expressions. JDBC uses

PreparedStatement [Oracle, '12b] and Statement [Oracle, '12c] for pre-compiled and compiled-

on-the-fly SQL statements, respectively.

Pre-compiled CRUD expressions

Figure 13 and Figure 15 show the usage of pre-compiled CRUD expressions

(PreparedStatement ps). CRUD expressions are written (line 49, 84) and compiled (line 50-

52, 85). This is done only once and then CRUD expressions are re-executed whenever

necessary (line 56, 90).

CRUD expressions compiled-on-the-fly

Figure 12 and Figure 14 show the usage of compiled-on-the-fly CRUD expressions

(Statement st). CRUD expressions are written (line 36, 66), then the context is prepared

(line 37, 67) and finally CRUD expressions are executed (line 39, 69). This process is

repeated from the very beginning whenever any of the CRUD expressions is required to be

executed.

Figure 11. Declaration of variables.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

31 | P a g e

Figure 12. Use of forward-only and read-only statement.

Figure 13. Use of forward-only and read-only prepared statement.

Figure 14. Use of scrollable and updatable statement.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

32 | P a g e

Figure 15. Insert a row using a prepared statement.

Figure 16. Examples of transaction with JDBC.

Additionally, CLI deal differently with Select expressions from the other three types of

CRUD expressions. Select statements instantiate an LMS (line 39, 56, 69), while the other types

do not. These latter types generate a value indicating the number of affected rows in the

database (line 90).

Scrollablity

Scrollability comprises services related to the scrolling process on LMS. There are two mutual-

exclusive possibilities: forward-only (line 37, 51) – in this case it is only possible to move

forward one row at a time, (line 40, 57); scrollable (line 67) – in this case it is possible to move

in any direction and jump several rows at a time (line 79). There are several other methods as

shown in Figure 17. Additional detail can be found in [Oracle, '12c].

+isAfterLast() : bool
+isBeforeFirst() : bool
+isFirst() : bool
+isLast() : bool
+next() : bool

«interface»
ForwardOnly

+absolute(in position : int) : bool
+afterLast()
+beforeFirst()
+first() : bool
+isAfterLast() : bool
+isBeforeFirst() : bool
+isFirst() : bool
+isLast() : bool
+last() : bool
+next() : bool
+previous() : bool
+relative(in rows : int) : bool

«interface»
Scrollable

Figure 17. Methods to scroll on LMS.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

33 | P a g e

Updatability

Updatability comprises services organized in protocols to interact with data contained in LMS.

There are two mutual-exclusive possibilities: read-only (line 38, 52) – the content of the LMS is

read-only and no changes are allowed; updatable (line 68) – changes may be performed on LMS

(insert new rows, update rows (line 75-76) and delete rows). CLI commit these changes into the

host database. The important aspect in these actions is that CLI, internally, create CRUD

expressions to execute the actions performed at the LMS level. Thus, when line 76 is executed

JDBC creates an Update expression to update the modified attribute. Similarly, when a tuple is

inserted or deleted at the LMS level, JDBC creates Insert and Delete expressions to materialize

the requested actions.

Transactions

Transactions comprise a set of services to manage database transactions such as save points,

rollbacks and commits. Figure 16 presents a scenario where the auto-commit mode is changed

into the normal mode (line 110), some CRUD expressions are executed (line 112) and

committed (line 113). If an SQLException is caught, the transaction is rolled back (line 115).

Finally, the auto-commit mode is replaced (line 117).

2.3.3 JDBC Class Diagram

Main functionalities of JDBC are organized around four interfaces: Connection [Oracle, '12a],

Statement [Oracle, '12c], PreparedStatement [Oracle, '12b] and ResultSet [Oracle, '13] as shown in

Figure 18.

«interface»
Connection

«interface»
PrepareStatement

«interface»
Statement

* 1

*

1

«interface»
ResultSet

«interface»
ResultSet

*

1

1 *

Figure 18. JDBC class diagram.

Connection

The root interface is the Connection interface which manages a connection to a database.

+createStatement() : Statement
+createStatement(in scrollability : int, in updatability : int) : Statement
+prepareStatement(in sql : string) : PreparedStatement
+prepareStatement(in sql, in scrollability : int, in updatability : int) : PreparedStatement
+commit()
+rollBack()
+setAutoCommit(in autoCommit : bool) : bool

«interface»
Connection

Figure 19. Connection interface.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

34 | P a g e

Among others, it provides services for transactions management and for creating Statement

and PreparedStatement objects, see Figure 19. Additional detail about the Connection interface

is here provided [Oracle, '12a]

Statement

The Statement interface manages the execution of compiled-on-the-fly CRUD expressions, see

Figure 20. Among others, it provides the following two main services:

 executeQuery: to execute Select expressions, which returns a ResultSet (LMS in JDBC);

 executeUpdate: to execute Update, Insert and Delete expressions, which returns an

integer to indicate the number of affected rows.

+executeQuery(in sql : string) : ResultSet
+executeUpdate(in sql : string) : int

«interface»
Statement

Figure 20. Statement interface.

Additional details about the Statement interface can be found in [Oracle, '12c].

PrepareStatement

The PreparedStatement interface manages the execution of pre-compiled CRUD expressions,

see Figure 21. Among others, it provides the following services:

 executeQuery and executeUpdate: same as in Statement interface;

 others: the remaining services are used to set the runtime values for the parameters of

CRUD expressions. There is one method for each data type.

+executeQuery() : ResultSet
+executeUpdate() : int
+setInt(in parameterIndex : int, in value : int)
+setLong(in parameterIndex : int, in value : long)
+...()
+setString(in parameterIndex : int, in value : string)

«interface»
PrepareStatement

Figure 21. PrepareStatement interface.

Additional details about the PreparedStatement interface is here provided [Oracle, '12b].

ResultSet

The ResultSet interface is the JDBC implementation of LMS, see Figure 22. ResultSet is a plane

interface comprising all services independently from its instantiation context: forward only or

scrollable and, read-only or updatable. This means that programmers must remember the

context in which a ResultSet was instantiated to only use the valid and active services.

Otherwise, exceptions will be raised. One important aspect, as it will be shown, is that

programmers need to master the schema of the returned relation to be able to access the data

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

35 | P a g e

managed by ResultSet. This does not happen with O/RM tools, such as Hibernate, JPA and LINQ.

This is indeed a drawback of CLI regarding their usability. The DACA overcomes this CLI

drawback by providing type safe and database schema-driven methods. Among others,

ResultSet interface provides the following methods, as shown in Figure 22:

+getInt(in colIndex : int) : int
+getInt(in colLabel : string) : int
+...()
+updateInt(in colIndex : int, in value : int)
+updateInt(in colLabel : string, in value : int)
+...()
+updateRow()
+insertRow()
+moveToInsertRow()
+moveToCurrentRow()
+deleteRow()
+next() : bool
+absolute(in position : int) : bool
+previous() : bool
+isFirst() : bool
+...()

«interface»
ResultSet

Figure 22. ResultSet interface.

getInt

The getInt method is used to read data of type integer returned by Select expressions. There

are two methods for each data type. One method uses the column index and the other uses

the column label (example - Figure 12: line 42, 43) to read the data. Only the methods for

the

integer data type are here presented and described. As previously mentioned, programmers

need to master the schema of the returned relation.

updateInt

The updateInt method is used to update columns of data type integer and also to insert

values in columns of data type integer. There are two methods for each data type. One

method uses the column index and the other uses the column label (example - Figure 14:

line 75). Only the methods for the integer data type are here presented. As previously

mentioned, programmers need to master the schema of the returned relation.

updateRow

The updateRow method is used to confirm previously updated values; if operating in auto-

commit mode, the updated columns are committed.

insertRow

The insertRow method is used to confirm previous inserted values; if operating in auto-

commit mode, the updated columns are committed.

moveToInsertRow

The moveToInsertRow method is used to set the cursor used by ResultSet to point to the

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

36 | P a g e

tuple where new tuples are inserted. Thus, this method has to be invoked to start the insert

protocol.

moveToCurrentRow

The moveToCurrentRow method is used to restore set the previous cursor position (before

moveToInsertRow).

deleteRow

The deleteRow method deletes the current selected tuple; if operating in auto-commit

mode, the deleted tuples are committed;

remaining nethods

The remaining methods are used to scroll on the ResultSet to select one of the tuples.

Additional detail about the ResultSet interface can be found in [Oracle, '13].

2.4 Current Approaches to Implement Access Control

In the context of RDBMS, access control is focused on protecting sensitive data managed by RDBMS

from legitimate users. Legitimate users are entities identified with username and password to

access databases. In order to control the access to data, several approaches have been presented

each one with its own characteristics and goals. The diversity of the approaches does not ease their

classification in major groups even if the classification follows the previous presented and

described dimensions of access control: architecture, granularity, awareability, contextuality and

adaptability. As such, the presentation of current approaches is split in two sub-sections. In the first

sub-section current approaches are organized and presented by technological aspects and in the

second sub-section the major research approaches are individually described and presented, and

not grouped under any classification.

As far as we know, no previous work has addressed the key aspects of this thesis. Two of those

key aspects are 1) the implementation of FGACM at the business tier level, built at runtime, and

kept updated when policies evolve and 2) business tiers driven by FGACM and based and exploiting

CLI features such as their multi-access mode: Direct Access Mode and Indirect Access Mode. The

only aspect that has been addressed by some researches is awareness about the established FGACP.

2.4.1 Current Techniques

Several techniques have been devised and used to implement access control. This sub-section

presents and describes some of the most used technical solutions for access control.

Views

Database views may be used as the basis for FGAC. Views are standard database entities that

aggregate selected and filtered data. Then, these data are used to evaluate the disclosing policy

to legitimate users in accordance with the established FGACP. Next follows an example of a view

restricting the access to rows of a table with ids < 100.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

37 | P a g e

 Create view myTable as

 Select * from table

 Where id < 100

From now on, authorization is evaluated against the view and not against the original table. The

most usual implementations prohibits users from issuing the CRUD expression

Select * from table where id < 100

and, instead, they issue the following CRUD expression

 Select * from myTable

Albeit being an easy technique, the use of views presents some disadvantages. For example, the

use of views is not scalable. The number of views increases with the number of policies.

Moreover, users accessing the same table but with different authorizations need different

views. While from the database schema point of view this means an unbounded number of

views, from the business tier point of view this means an unbounded number of CRUD

expressions. These disadvantages may be unsustainable in large databases with complex

schemas and many and complex access control policies. In order to minimize this scalability

drawback, [Rizvi, '04] proposes an approach where users always issue CRUD expressions

against the original tables but the authorizations are evaluated against security views.

 Anyway, views also present one significant advantage. Views are relational entities

supported by the standard SQL language this way avoiding the need to additional tools or

additional techniques. As relational entities, they are kept together with database tables this

way conveying a single point for their development, deployment and maintenance.

Parameterized Views

A parameterized view is an SQL view definition which makes use of runtime parameters like

user-id, time and user-location. The next example shows a simple parameterized view.

 Create view myTable as

 Select * from table

 Where id=SYSTEM_USER

This parameterized view lets the legitimate user to see all rows from table Table where the id

matches his/her user identification. Parameterized views are used to create different

authorization accesses based on a single view and a single CRUD expression, which is a different

and more efficient than the traditional views just presented. Thus, parameterized views convey

the same advantages and disadvantages as traditional views, but positively contribute to

minimize the lack of scalability of traditional views.

Parameterized views is also the approach proposed in [Roichman, '07] to implement FGAC

in Web databases. Basically, each user is identified as belonging to a group to which a set of

parameterized views is assigned.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

38 | P a g e

Query Rewriting

Query rewriting is a technique used to rewrite CRUD expressions before their execution to

avoid unauthorized access to protected data. The rewriting process is usually conducted in a

central server and several techniques have been proposed. Next follows the presentation of

some of the most used techniques.

Addition of predicates

Appending predicates to where clauses is one of the used techniques to rewrite CRUD

expressions. Predicates are used to filter the data to be disclosed, in accordance with the

established FGACP. For example, the CRUD expression

 Select * from table

is replaced by the CRUD expression at runtime

 Select * from table

 Where (some condition)

Tables replaced by views

This technique is used to replace names of tables by names of views representing the

authorized data. For example, the CRUD expression

 Select * from table

is replaced by

 Select * from myTable

where myTable is a view of table Table containing the authorized data.

Masking cells

Masking cells technique rewrites CRUD expressions to mask protected data that is returned

by Select expressions. For example, the CRUD expression

 Select column from …

is replaced by the CRUD expression

 Select column = CASE somePolicy

 When hide

 Then HiddedValue

 Else column

The rewritten CRUD expression uses at runtime a policy, somePolicy, to decide upon

disclosing attitude for the protected column. There are two main approaches to mask cells.

One uses named variables to represent protected data. The other uses the standard SQL

NULL values. Named variable are by far the best choice but named variables are not

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

39 | P a g e

supported by all RDBMS. The NULL value is the alternative and it is easily implemented. The

drawback is that the use of NULL values to protect data prevents the distinction between

real SQL NULL values and a hidden protected value.

Column removal

The column removal technique removes all protected columns from the select list

(projected attributes). For example, if the data contained in column col_B of CRUD

expression

 Select col_A, col_B, col_C from table

is not authorized to be disclosed, the CRUD expression is rewritten as

 Select col_A, col_C from table

This technique effectively hides the protected data but exceptions are raised if client-side

applications try to use the hidden column col_B. Moreover, the same CRUD expression when

used by users with different authorizations returns relations with different schemas. This

situation inevitably raises several difficulties not only during the development process of

client-applications but also during maintenance activities, which are both significantly

hampered.

Query rewriting technique has advantages and disadvantages. Among them, the following

advantages are emphasized:

Transparency

Query rewriting has the advantage of being transparent to database users. Database users

write CRUD expressions as if no security policy is implemented. Then, CRUD expressions

are rewritten in accordance with the established policies.

Scalability

From application tiers point of view there is no need to extend the number of CRUD

expressions to conform with the established FGACP. CRUD expressions are written as if no

policy was defined and then, at runtime, they are automatically rewritten.

Thus, query rewriting overcomes the main disadvantages of views and parameterized

views. Meanwhile, query rewriting conveys some disadvantages and threats. Among them the

following are emphasized:

Unawareness

The query rewriting process is an independent process out of the scope of database users.

Queries violating any security policy are rejected and users are pushed to deal with

corrective activities, very often with no feedback about the causes of the rejection.

Performance decay

The query rewriting process is usually processed by a centralized system and requires a

certain amount of computational resources. In spite of not being mandatory, in most of the

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

40 | P a g e

cases the systems responsible for the query rewriting process are the RDBMS themselves.

Additionally, after being rewritten, the performance of original CRUD expressions very

probably has decay in performance.

Dead lock

Dead locks may occur if policies use data from the tables being queried. These undesirable

situations are caused by non-terminating loops when policies recursively invoke

themselves when the table is queried. To prevent such dead locks additional expressive

power is needed [Olson, '08].

The query rewriting technique is widely used and proposed as solution to address FGACP.

Among them, the following proposals are emphasized: Oracle [Oracle], [LeFevre, '04], [Rizvi,

'04], [Wang, '07] and [Barker, '08].

Extensions to SQL

Currently, the standard SQL only permits limited forms of access control. Some of the forms are

the GRANT, REVOKE and DENY commands. These commands are far from coping with current

security needs. Extensions to the standard SQL have been proposed by several authors to tackle

the current security gap of the standard SQL language. Some contributions have been proposed

to extend the SQL standard, such as in [Chlipala, '10] through the known predicate and

[Chaudhuri, '07] by the generalization for the current SQL authorization mechanisms. Even if

the SQL standard was extended to deal with all security requirements, it would rely in a

centralized architecture conveying all the described advantages and disadvantages.

Language extensions, security languages and tools

Language extensions, security programming languages and tools have been proposed to

address FGACP. Current programming languages are extended and specialized functionalities

are included to address access control. Several researches have been conducted in this

direction. Among them the following are emphasized: SELINKS [Corcoran, '09] extends LINKS to

build secure multi-tier web applications; Jif [Zhang, '12] is a Java extension which uses labels in-

line with the source code to express access control policies; [Fischer, '09] introduces objects-

sensitive types driven by RBAC policies to overcome Java EE @RolesAllowed annotation

approach to RBAC. New programming languages have also been devised. In [Caires, '11], Caires

et al. present a new programming language named as λDB for verifying and for expressing

FGACP. In [Ribeiro, '01], Ribeiro et al. present a security programming language aimed at

integrating heterogeneous security policies. Some tools have also been devised. In [Chlipala,

'10], Chlipala et al. present a tool, Ur/Web, that allows programmers to write statically-

checkable FGACP as SQL queries.

PEP-PDP

Solutions based on PEP-PDP approach are based on the mixed architecture. Basically, PEPs are

included in-line with the source code of client applications to enforce the policies decided by a

PDP placed in a remote server. If authorization is granted, PEP executes the requested action

otherwise the requested action is refused. The best well-known proposal is the XACML [OASIS,

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

41 | P a g e

'12] standard from OASIS but other research proposals have also been presented and based on

this architecture. SELINKS [Corcoran, '09] has also proposed a PEP-PDP approach for multi-tier

web database applications.

Semantic Access Control

Semantic access control (SAC) uses Semantic Web [Berners-Lee, '01] concepts to the access

control area. The main difference to the remainder approaches is that decisions are based on

the semantic of attributes, such as resources and users, and not on stored or hard coded

information. It has been used in several domains such as: to integrate access control between

heterogeneous data repositories [Hu, '11; Pan, '06; Warner, '07], to provide secure content

access and distribution [Lopez, '02a; Valle, '02] and to extend semantic web concepts to RBAC

models [Ao, '04; Kim, '10].

RDBMS Vendors

Access control has been a permanent worry of RDBMS vendors. RDBMS vendors have been

providing embedded tools from which security experts build and maintain access control to the

data to be protected. Granularity of access control in RDBMS started to be at the database object

(tables and views) level. This granularity became inadequate when the claim for more security

increased. To cope with this increased demanding, RDBMS vendors started to support finer-grained

access control. Different approaches were followed. INGRES and Oracle uses a query rewriting

technique while DB2 [Bond, '07] uses a label-based technique. In spite of the diversity of policies,

RDBMS vendors have elected the RBAC as the preferred choice. Each RDBMS vendor provides its

proprietary approach leading to a situation where access control is far from being standardized.

Very often the security features of RDBMS are not enough and there is the need to provide a

different approach to access control. This need has been the motivation for the researches that have

been conducted and also one of the motivations of this thesis. A radical approach is the one

provided by Hippocratic databases [Agrawal, '02; LeFevre, '04].

2.4.2 Related Work

In this sub-section follows the presentation of work related with the enforcement of ACP (Access

Control Policies) and FGACP.

Virtual Private Database

Oracle addressed FGACP by introducing the Virtual Private Database [Oracle] technology. This

technology is based on rewriting CRUD expressions before their execution and in accordance

with the established FGACP. The authorization policy is encoded into functions defined for each

relation, which are used to return where clauses predicates to be appended to CRUD

expressions to limit data access at the row level. This approach provides a per-user view of each

database object (called Truman model in [Rizvi, '04]). Next follows an example based on two

tables:

Doc_Doctor {doc_id doc_name,…}

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

42 | P a g e

Pat_Patient {Pat_id,PatDoc_id,Pat_name,…}.

If doctors are restricted to see only their patients, if the following CRUD expression is issued by

a doctor

Select * from Pat_Patient

it will be automatically rewritten to

Select * from Pat_Patient where PatDoc_id=<id of the doctor logged in>

To set-up the access control, a function is written to compute the predicate to be added to

the CRUD expression and a policy is placed on the table Pat_Patient. The function needs to

select Doc_id from Doc_Doctor for the doctor logged in and then constructs the predicate

automatically.

It is also possible to use Virtual Private Database at the column level to prevent disclosure

of protected data. There are two alternatives: column removal (default behavior) - all cells

containing sensitive data are removed; cell masking - content of cells containing sensitive data

is replaced by NULL value.

Virtual Privacy Database is an alternative to views by avoiding some of their drawbacks

such as the need for an additional view for each policy. With the Virtual Private Database

technique, the same CRUD expression is shared by all users and automatically modified in

accordance with the permission of each user.

Hippocratic databases

In 1974 the United States Privacy Act defined a set of rules for limiting the collection, use and

dissemination of personal data held by Federal Agencies [Agrawal, '02]. The defined concepts

are generally known as Fair Information Practices [Systems, '73] and have been used to develop

important international guidelines for privacy protection [Agrawal, '02]. From these guidelines,

[Agrawal, '02] announces ten principles to characterize Hippocratic databases. Hippocratic

databases aim at integrating privacy policies into database architectures. The ten principles are:

purpose specification (for which the information has been collected), consent (purpose must be

consented by the donor), limited collection (minimum necessary for accomplishing the

specified purpose), limited use (run only those queries that are consistent with the purpose for

which the information has been collected), limited disclosure (information shall not be

communicated outside the RDBMS for purposes other than those consented), limited retention

(only until the fulfillment of the purpose), accuracy (information must be accurate and up-to-

date), safety (information must be protected by security mechanisms), openness (a donor is

able to access to its own information) and compliance (a donor is able to verify compliance with

the principles) [Agrawal, '02; Kirchberg, '10; LeFevre, '04]. Some efforts have been made to

bring those principles into practice, among which the ones of IBM [IBM, '07] and PostgreSQL

[Padma, '09] are emphasized. The following example is based on Hippocratic PostgreSQL

 Select p.productName, p.unitsInStock, p.unitsOnOrder, p.reorderLevel

 From Products p

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

43 | P a g e

 Purpose stockControl

 Recipient stockManager

The result of this Select will be restricted to include only the columns that the combination of

purpose and recipient is allowed to access according to the policy specification. It will be

further restricted to include only data of products to be shared with stockControl. From this

simple example it is clearly seen that databases addressing Hippocratic principles diverge from

traditional RDBMS. Additionally, Hippocratic databases also address data privacy which is a

distinct form of access control. While privacy is concerned with the right of individuals to

determine for themselves when, how and to what extent information about them is

communicated to others, access control is concerned with controlling which legitimate users

are allowed to access protected data.

[LeFevre, '04]

In [LeFevre, '04] LeFevre et al. propose a technique to control the disclosing data process in

Hippocratic databases. The disclosing process is based on the premise that the subject has

control over who is allowed to see its protected data and for what purpose. It is based on the

query rewriting technique. Policies are defined using P3P [W3C, '02] or EPAL [W3C, '03] and

comprise a set of rules that describe to whom the data may be disclosed and how the data may

be used. Two disclosure models are supported for cells: at the table level - each purpose-

recipient pair is assigned a view over each table in the database and prohibited cells are

replaced with null values; at the CRUD expressions level - protected data are removed from the

returned relations of Select expressions, in accordance with the purpose-recipient constraints.

Rules are stored as meta-data in the database. CRUD expressions must be associated with a

purpose and a recipient, and are rewritten to reflect the ACP.

SESAME [Zhang, '03]

SESAME [Zhang, '03] is a dynamic context-aware access control mechanism for pervasive GRID

applications. It relies on a dynamic role based access control model (DRBAC) which extends the

classic RBAC model. Basically, DRBAC assigns default role hierarchies when subjects log in.

Afterwards, context of subjects are monitored and roles are dynamically delegated. SESAME

and DRBAC model have been implemented as part of the Discover [Bhat, '03; Mann, '01]

computational laboratory. Two types of context are considered: object context and subject

context. Object context is concerned about things related to users such as user’s location, time,

local resource and link state. Subject context is concerned with things related to systems, such

as the current load, availability and connectivity for a resource.

An experimental evaluation was carried out in the Discover [Mann, '01; Mann, '02]

computational laboratory to measure the induced overheads. SESAME follows a traditional

approach to enforce access control policies in a central system, conveying all the drawbacks

previously presented.

SELINKS [Corcoran, '09]

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

44 | P a g e

SELINKS [Corcoran, '09] is a programming language in the type of LINQ and Ruby on Rails which

extends LINKS [Cooper, '07] to build secure multi-tier web applications. LINKS aims to reduce the

impedance mismatch between the three tiers. The programmer writes a single LINKS program

and the compiler creates the byte-code for each tier and also for the security policies (coded as

user-defined functions on RDBMS). Through a type system object named as Fable [Swamy, '08],

it is assured that sensitive data is never accessed directly without first consulting the

appropriate policy enforcement function. Policy functions, running in a remote server, check at

runtime what type of actions users are granted to perform. Programmers define security

metadata (termed labels) using algebraic and structured types and then write enforcement

policy functions that applications call explicitly to mediate the access to labeled data. Some of

the security strengths of SELINKS are:

Security

SELINKS is a cross-tier security technique this way ensuring an integrated security context

for the three tiers. Additionally, it uses Fable to ensure that security policies cannot be

avoided, to ensure that security policies are correctly enforced and correctly called

whenever a user tries to access protected data.

Integrated environment

SELINKS is cross-tier security technique relying on a single tool. This environment clearly

eases the development process of database applications based on multi-tier architectures.

Programmers do not need to master several tools and, above all, ensure their integration

and coordination to reach a high level of security.

Optimized latency

User defined functions run on database servers and not on web servers, avoiding the

overhead of needlessly transferring data between the web server and the database server.

Flexibility

Beyond access control, SELINKS allows other variety of security policies to be expressed:

information flow [Denning, '76], provenance [Buneman, '06] and automaton-based policies.

Some of the security weaknesses of SELINKS are:

Additional technique

In spite of its advantage of relying on a single tool, programmers need to master a new tool,

SELINKS, to develop secure applications.

Scope

Security labels specify a group-based access control policy, with separate access restrictions

only for readers and writers of a record. There is no way to separate access restrictions by

identifying inserts, updates and delete operations.

Jif [Zhang, '12]

Jif [Zhang, '12] is a security-typed programming language that extends Java with support for

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

45 | P a g e

 information access control and also for information flow control [Denning, '76]. The access

control is assured by adding labels in-line with the Java source code to express access control

policies. The policy language supports: principals and labels, principal hierarchy, confidentiality

and integrity constraints, robust declassification and endorsement and some language features

such as polymorphism. Jif addresses some relevant aspects such as the enforcement of security

policies at compile time and at runtime. Anyway, at development time, programmers will only

be aware of inconsistencies after running the Jif compiler. In spite of its valuable contribution,

Jif is not tailored to be an end-to-end access control tool to data residing in databases. It is

mostly used to enforce security policies at the application level. As such, whenever used, JIF

needs to be complemented with other techniques to manage the access control to data residing

in RDBMS.

[Olson, '08]

In [Olson, '08], Olson et al. describe a model for Reflective Database Access Control (RDBAC)

based on the semantics of Transaction Datalog [Bonner, '97]. Privileges in the RDBAC model are

expressed as CRUD expressions rather than as static privileges contained in access control lists.

CRUD expressions use current state of databases to decide upon the accesses to be carried out.

In [Olson, '09] a concrete implementation is provided. At the present moment, there is a model

to define RDBAC policies and the CRUD expressions emanated from the policies. This result may

be used as an input to the Direct Access Mode.

[Rizvi, '04]

Rizvi et al. [Rizvi, '04] present a query rewriting technique to determine if a CRUD expression is

authorized but without changing the CRUD expression. It uses security views to filter contents

of tables and simultaneously to infer and check at runtime the appropriate authorization to

execute any CRUD expression issued against the unfiltered table. The user is responsible to

formulate the CRUD expression properly. They call this approach the Non-Truman model. Non-

Truman models, unlike Truman models, do not change the original CRUD expression. The

process is transparent for users and CRUD expressions are rejected if they do not have the

appropriate authorization. The transparency of this technique is not always desirable

particularly when it is important to understand why authorization is not granted so that

programmers can revise their CRUD expressions more easily. This approach has some

disadvantages:

Performance

The inference rules to check at runtime the appropriate authorization are complex and time

consuming.

Productivity

Authorizations are checked against security views and not against original data. The

process is transparent, so programmers do not know that their CRUD expressions are

running against security views. If any syntax error or security violation occurs, the

transparent process turns the debugging process more difficult.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

46 | P a g e

Awareness

Programmers cannot statically check the correctness of CRUD expressions because the

policies and the mechanisms are centralized in a server. Programmers need to write,

compile and run the source code to become aware of any security violation.

Incompleteness

The inference rules are complex and their completeness is not assured by the authors.

[Dwork, '08]

Differential-privacy [Dwork, '08] has had significant attention from the research community. It

is mainly focused on preserving privacy from statistical databases. It really it does not directly

address the point here under discussion. The interesting aspect is Frank McSherry’s [McSherry,

'10] approach to address differential-privacy: PINQ - a LINQ extension. The key aspect is that

the privacy guarantees are provided by PINQ itself not requiring any expertise to enforce

privacy policies. PINQ provides the integrated declarative language (SQL like, from LINQ) and

simultaneously provides native support for differential-privacy for the queries being

written.

[Morin, '10]

Morin et al. [Morin, '10] use a security-driven model-based dynamic adaptation process to

address access control and software evolution simultaneously. The approach begins by

composing security meta-models (to describe access control policies) and architecture meta-

models (to describe the application architecture). They also show how to map (statically and

dynamically) security concepts into architectural concepts. This approach is mainly focused on

how to dynamically establish bindings between components from different layers to enforce

security policies. They did not address the key issue of how to statically implement dynamic

security mechanisms in software artifacts, in our case business tiers based on CLI.

[Roichman, '07]

[Roichman, '07] argues that Web databases are particularly vulnerable to SQL injection attacks

[Gregory, '05]. To overcome this security gap, authors propose an access control based on

databases’ built-in access control mechanisms: parameterized views [Eder, '96]. To address

users’ identification, a Parameter method is presented. Basically, users’ identities are known (or

automatically assigned using one of the proposed methods) and used to dynamically create

parameterized views which gather the relevant data to the user, this way avoiding the access to

unauthorized data. This approach is mainly focused on tackling SQL injection attacks and also

on preventing users of Web databases to access databases without being previously identified.

Users’ identification may be considered a key aspect of access control but insufficient to address

all aspects of access control. The authors themselves recognize that the proposed methodology

is restrictive because it does not address every situations: “The proposed access control

mechanism is capable to prevent many kinds of attacks…”.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

47 | P a g e

[Chlipala, '10]

[Chlipala, '10] presents a tool, Ur/Web, that allows programmers to write statically-checkable

ACP as SQL queries. Basically, each policy determines which data is accessible. Then, programs

are written and checked to assure that data involved in queries is accessible through some

policy. To allow policies to vary by user, queries use actual data and a new extension to the

standard SQL to capture ‘which secrets the user knows’. This extension is based on a predicate

referred to as ´known’ used to model which information users are already aware of to decide

upon the information to be disclosed.

Listing 1 presents a table user and its definition in Ur/Web. The policy expressed in Listing

2, named as sendClient, prevents users from reading data from other users. The predicate

known models the information the user is already aware of. In this case, the user may read data

about any row whose password he knows.

Ur/Web is a promising solution, but beyond introducing a new programming technique, it

presents a key drawback of not checking access control to data of where clauses, allowing

queries to implicitly leak protected data.

Table user: { Id: Int, Name: string, Pass: string }

Listing 1. Definition of table user in Ur/Web.

policy sendClient {

 Select *

 From user

 Where

known(user.pass)

}

Listing 2. Policy definition in Ur/Web.

[Caires, '11]

[Caires, '11] presents a programming language, known as λDB, for expressing and verifying ACP

by means of static type checking. λDB introduces programming structures known as entities

which define database tables and the associated ACP. Then CRUD expressions are validated

against the established ACP (at compile time) and also taking into account contextual

information. Each permission is composed by:

 The granted action (either read or write);

 The list of attributes (entity fields);

 A condition expressed as a logical formula.

Listing 3 shows an entity named as Person. It comprises four attributes. Then ACP are defined

for each attribute:

 Public: is readable in any condition as its associated condition (true) always hold;

 Secret: the content of this attribute in a row is readable only if the current user is the

user identified in that row (userid) and the user is authenticated in the system;

 The write permission applies to all fields.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

48 | P a g e

entity Person [userid: string; public: string; photo: picture; secret:

string]

 read public where true;

 …

 read secret where Auth(uid) and uid=userid;

 …

 write where Auth(userid);

Listing 3. Policy definition in λDB.

Beyond introducing a new programming technique this approach provides a unique action

(write) to authorize update, insert and delete operations on attributes. This limitation clearly

prevents a FGAC at the type of actions being executed. Unlike [Chlipala, '10], this approach

provides access control to data of where clauses.

[Wang, '07]

In [Wang, '07] three criteria are defined for enforcing FGACP. The algorithm should be sound,

secure and maximum. “An algorithm is sound if the answer returned by it is consistent with the

answer when there is no fine-grained access control policy. The algorithm is secure if the returned

answer does not leak information not allowed by the policy. The algorithm is maximum if it

returns as much information as possible, while satisfying the first two properties.” The rational is

presented and the work presented in [LeFevre, '04] is evaluated to conclude that it fails to

satisfy the correctness criteria for FGACP. Authors use a labeling mechanism for cell-level

disclosure policies to specify FGACP. Basically a policy determines whether a cell is viewable or

not. This approach has also been used to work on privacy-centered database systems [Emilin

Shyni, '10; LeFevre, '04]. Additionally, Wang argues that when one conceptual entity is split in

two or more relations linked through foreign keys then the attributes involved in the linking

process should be allowed even if the values of the keys cannot be released for privacy concern.

In order to preserve useful information for query evaluation, two types of variables are defined

to label unauthorized cells, this way avoiding the use of NULL value for protected cells. To prove

the soundness of the algorithm, a query rewriting approach is presented to modify CRUD

expressions in accordance with the established policies. Listing 4 presents a simple case to

demonstrate the approach. The first CRUD expression is ruled by a policy where for each tuple

in Employees, the value of attributes FirstName and HomePhone can be disclosed only when

the disclosure conditions DCFirstName and DCHomePhone do not return 0 (zero), respectively. The

rewritten CRUD expression employs the Case-Statement modification to mask unauthorized

cells. Authors claim the soundness of the technique but some aspects need a further attention:

Applicability

The technique was applied to Select expressions. There is no evidence of its applicability to

the three types of expressions: Insert, Update and Delete.

Performance

Authors conducted a performance evaluation with simple Select expressions and the

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

49 | P a g e

collected results suggest that scalability is compromised when the number of tuples is not

small and efficiency is not a major concern.

-- original CRUD expression

Select FirstName, HomePhone

 from Employees

-- rewritten CRUD expression

Select FirstName =

 case DCFirstName

 when 0

 then NULL

 else FirstName

 end,

 HomePhone =

 case DCHomePhone

 when 0

 then NULL

 else HomePhone

 end

 From Employees

Listing 4. Query rewritten in T-SQL.

[Barker, '08]

In [Barker, '08], Barker et al. provide support for representing, in SQL (DDL), dynamic fine-

grained meta-level access control (DFMAC) policies. Meta-level policy is used to define different

facts of ACP such as open and closed access control. DFMAC policies are presented as being

important when goal-oriented access control requirements need to be represented. In goal-

oriented access control, organizational and individual roles change as a consequence of the

occurrence of events. Policies are represented in four tables:

 Category - to define to which categories users are assigned to;

 Policy – to store meta-level access control to be used by the query rewrite procedure;

 PCA – for permission category assignment and DCA – for denial category assignment.

 From the data contained in these tables, and also from users’ identification, queries are

rewritten to enforce the established ACP.

This approach has the advantage of relying on SQL. Nevertheless, the work lacks of a deep

performance evaluation because the presented examples suggest that the added predicates may

have a significant impact on performance. Authors conducted some performance evaluations

(not sufficiently described) and the collected results have shown an additional overhead of 10-

15%, up to 26% and even “pushed towards a bound of unacceptability”.

[Chaudhuri, '07]

In [Chaudhuri, '07], Chaudhuri et al. propose a generalization for the current SQL authorization

mechanism. The model is based on adding predicates to authorization grants and also on

extending current SQL authorization model to support fine-grained authorization. Next follows

a simple example

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

50 | P a g e

 grant select on Employees

 where (employeeID=userId())

 to public

This authorization specifies that each employee is granted access to its own employee record.

The model also supports nullification to control access at the cell level as shown in next

example

 grant select on Employees (address)

 where (some predicate)

 else nullify to public

This authorization specifies that access to the address attribute of Employees is granted only if

the predicate is satisfied, otherwise a null value is returned.

The model also incorporates other features such as query for user groups and

authorization groups to simplify administration activities.

 The model addresses the following aspects:

 Predicates can be applied on any form of grant: CRUD expressions, functions and stored

procedures;

 Nullification of values based on predicates to allow cell-level security [LeFevre, '04];

 Authorization on aggregates while limiting the access to raw data;

 Mechanisms to ease the administration of large number of application users.

To avoid large number of database users, the notion of user is defined at the application

user level. As such, users of applications must be authenticated and their identity made

available to the database.

Java EE

Java EE supports the enforcement of RBAC policies through the @RolesAllowed annotations

which are placed on methods definitions to control who has permission to invoke them, as

shown in the example presented in Figure 23. In this example only users with either the Seller

or Director roles are allowed to call the method getCustomer. Java EE enforces RBAC

dynamically at runtime by checking if users indeed play one of the specified roles.

 This approach conveys some relevant limitations:

Users identification

There is no control neither on the identification of who is invoking protected methods nor

on the identification of who is being instantiated. This means that any Seller and any

Director are allowed to get access to any Customer.

Awareness

The checking process is only dynamically verified at runtime. This means that programmers

cannot statically verify if application code in fact respects the enforced RBAC policies.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

51 | P a g e

Figure 23. Enforcement of RBAC in Java EE.

[Fischer, '09]

In [Fischer, '09], Fisher et al. introduce Object-sensitive RBAC (ORBAC), an extension of RBAC to

be used with object-oriented programming languages. The goal is to address limitations of

current RBAC model and associated frameworks as the one provided by Java EE. Instead of

controlling access at the class level, ORBAC supports access control at the level of individual

objects, allowing a finer-grained access control than Java EE. Additionally, ORBAC provides a

type system that statically ensures that a program is in accordance with a specified ORBAC

policy, preventing programmers from writing application code not aligned with the established

policies. ORBAC addresses these limitations by allowing roles and privileged operations to be

parameterized by a set of index values which are used to distinguish users of the same role.

Figure 24 presents the case of Figure 23 but now based on ORBAC. The RoleParam annotation

on the cId variable (customer Id) indicates that cId will be used as an index in role annotations

within the class. Requires annotation is equivalent to Java EE @RolesAllowed annotation but

uses additional meta-data to statically allow Seller<customerId> or Director<customerId> to

invoke getCustomer only. @Returns annotation is similar to a post condition asserting that the

returned Customer object has a cId role parameter variable which is equal in value to the

customer identification passed to the method.

Figure 24. Enforcement of RBAC in ORBAC.

[OASIS, '12]

XACML [OASIS, '12], as previously described, comprises two main components, PEP and PDP.

PEP is responsible for enforcing the decisions of PDP. Basically, every PEP comprises some logic

to communicate with PDP and then uses some business logic to accomplish its task whenever

authorization is granted. Therefore, whenever a modification in a policy implies a modification

on the business logic, there is no other solution than update the business logic in advance.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

52 | P a g e

XACML does not give any guidance about any aspect of business logics. Not about how to keep

them updated, not about how to promote the awareness of the implemented mechanisms, etc.

2.5 Summary

This chapter is focused on the required background to easy the reading and the understanding of

this thesis and also on the state of the art. It is organized in four sub-sections, each one addressing a

different issue.

The first section presents some basic concepts such as the most relevant access control

policies, architectures of FGACM and dimensions of FGACM. There are several types of policies but

RBAC is the most used policy to protect sensitive data of relational database applications. The

architecture of FGACM may follow one of three possible approaches: centralized, distributed or

mixed. Each approach presents advantages and disadvantages. Independently from the followed

architecture, FGACM present four additional dimensions, each one with its implications:

granularity, awareability, contextuality and adaptability.

The second section presents current tools that are used to build business tiers. Several tools

have been devised to develop business tiers but none of them addresses access control. Two types

of tools were emphasized: O/RM tools and CLI. From these tools, CLI were chosen as the underlying

middleware to interact with RDBMS. CLI provide powerful features if correctly exploited lead also

to powerful implementations of FGACM. Performance and several access modes to data are two of

the most important features of CLI.

The third section presents JDBC. JDBC is the selected CLI to be used in the proof of concept of

the DACA.

The fourth section describes current approaches addressing FGACP. Several approaches are

presented aimed at providing access control to data residing on RDBMS. Some are provided by

vendors of RDBMS, others have been provided by the academic community and other has been

proposed through a standard emanated from OASIS, XACML. The diversity of needs and the

diversity of possible solutions lead to the current situation where system architects are frequently

pushed to devise their own and specific security solutions. From the presented background and

state of the art, there is the evidence that current approaches to deal with access control are based

on: tools provided by vendors of RDBMS, query rewriting techniques, extensions to the SQL

standard, new programming languages, language extensions and XACML approach. None of the

approaches address the dynamic adaptation of FGACM deployed at the client-side applications. As

previously mentioned, the adaptation of mechanisms is an avoidable activity to be performed in

advance when mechanisms evolve. Moreover, the current research approaches deal mostly with

native CRUD expressions only (do not take advantage of other access modes such the ones provided

by CLI) and some of them do not support other types of CRUD expressions but Select expressions.

Additionally, the freedom provided by current approaches to use any CRUD expression opens the

possibility of leaking security gaps.

The next chapter describes the path that has been followed from the CLI until the DACA.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

53 | P a g e

3 From Call Level Interfaces Towards the DACA
This chapter explains the research that has been conducted to design the DACA from CLI. Basically

three steps were taken. In the first step, the architecture of CLI has been redesigned to define a

model able to incorporate schemas of database objects to tackle the impedance mismatch between

the relational and the object-oriented paradigms [Pereira, '10b; Pereira, '11b]. In the second step,

the model has been adapted to promote the development of reusable business tier components.

Finally, in the third step, the outcome of the previous work was used to link access control on

business tier components. The main outcome of this third step is the Dynamic Access Control

Architecture. The DACA has been devised to implement dynamic FGACM on business tiers based on

CLI. Some concepts are common to the three steps and, therefore, they will be presented

beforehand to avoid unnecessary repetitions of text and descriptions.

The chapter is organized as follows. Section 3.1 introduces some fundamental concepts for the

DACA. Section 3.2 presents the model used to integrate CLI and schemas of relational databases.

Section 3.3 presents the model used for building reusable business tier components form CLI.

Section 3.4 briefly describes the approach that has been followed to enforce dynamic access control

policies at the level of business tiers relying on CLI and, finally, section 3.5 summarizes the present

chapter.

3.1 Concepts

CRUD expressions and LMS are two key entities of CLI. Both are the entities used to access

databases and, therefore, the entities on which FGACM may rely on. To this end, we introduce three

concepts to formalize the execution of CRUD expressions: CRUD Schema to formalize CRUD

expressions, Business Schema to formalize the necessary services to manage the access to data for

the two access modes (Direct Access Mode and Indirect Access Mode) and, finally Business Entity to

formalize the software artifact responsible for implementing a Business Schema to execute CRUD

expressions. These concepts were devised and developed during the two last steps [Pereira, '12d;

Pereira, '11a; Pereira, '11c; Pereira, '12c; Pereira, '12b; Pereira, '13a; Pereira, '13b; Pereira, '13d;

Pereira, '13e] .

3.1.1 CRUD Schema

There are four types of CRUD expressions (Select, Update, Insert and Delete) each one with its own

characteristics. Some characteristics are shared among two or more types but others are not

shared. These observations led to question whether it would be possible to formalize an abstract

representation for CRUD expressions. To start the process, we present the main characteristics of

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

54 | P a g e

 CRUD expressions:

Types of CRUD expressions

There are four types of CRUD expressions conveying different properties. Analyzing their

properties, we see that they may be organized in two major groups. One group, known as

Reading, comprises the Select expression type only and the other group, known as Updating,

comprises the remaining three types of CRUD expressions. This organization is mainly derived

from the fact that Select expressions return relations and the other CRUD expressions do not.

Thus, there is a clear difference on the services to be provided for each group.

Runtime values

Beyond their types and the syntax of the SQL language, applications use other entities during

the building process of CRUD expressions. These entities are a sort of variables whose values

are set at runtime and are used by applications to exchange data with RDBMS. There are three

types of variables: attribute list, column list and clause list.

Attribute set

The attribute set is characteristic only of CRUD expressions of type Select. The attribute set

represents returned values by Select expressions. Attribute set is commonly known as the

attribute list. Attribute sets are not optional on CRUD expressions of type Select. Every

Select expression has one attribute set.

Column set

The column set is characteristic of CRUD expressions of type Insert and Update. They are

used to dynamically define runtime values for column lists. Column lists contain the values

to be inserted or updated on database columns. Columns sets are not mandatory.

Clause set

The clause set is characteristic of CRUD expressions of type Select, Update and Delete. They

are used to dynamically set runtime values of clause conditions. Clause sets are not

mandatory.

Result

Unlike the Select expression, the remaining three types of CRUD expressions modify the state of

databases. Delete expressions delete rows, Update expressions update rows and Insert

expressions insert new rows. After being executed and the database state modified, client

applications are informed about the number of modified rows.

From these characteristics, a simplified formalization for CRUD expressions is now presented.

There are two types of CRUD expressions. The type Reading is formalized by the attribute set and

the clause conditions set. The type Updating is formalized by the column set, the clause condition

set and the number of affected rows, as follows

 Type = {Reading, Updataing}

 Reading = {Att, CC}

 Updating = {Col, CC, Result}

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

55 | P a g e

 Figure 25 shows three CRUD expressions representing the two types of CRUD expressions and

representing different combinations of runtime values. The first CRUD expression is of type

Reading and the correspondent CRUD Schema comprises all attributes of table Categories, one

runtime value for clause conditions. The second CRUD expression is of type Updating and the

correspondent CRUD Schema comprises three runtime values for the attribute set. The third CRUD

expression is of type Updating and the correspondent CRUD Schema comprises one runtime value

for the attribute set and one runtime value for the where clause condition. The relevancy of CRUD

Schema concept is not restricted on being a formalization method of CRUD expressions. Another

relevant aspect derives from the fact that the relationship between CRUD Schemas and CRUD

expressions is 1 to many. An indeterminate number of CRUD expressions may share the same CRUD

Schema. Figure 26 shows an example of two CRUD expressions: both are Select expressions, both

share the same attribute set and both have no values defined at runtime. CRUD expressions sharing

the same CRUD Schema are herein known as sibling CRUD expressions.

Figure 25. Three CRUD expressions with different combinations of CRUD Schemas.

Figure 26. Two sibling CRUD expressions.

The presented concept of CRUD schema confines the scope of CRUD expressions to sibling

CRUD expressions only. This restriction is acceptable and adequate when a tight binding between

services to be provided and CRUD expressions is a requirement. In situations in which this tight

biding is not a key requirement, the CRUD Schema concept is too restrictive preventing the

grouping of similar CRUD expressions that are not siblings. To overcome this situation, the concept

of CRUD Schema is extended to support not one but one or more CRUD Schemas. This approach

may be used in any situation whenever there is the need to optimize the number of CRUD Schemas.

Jayapandian and Jagadish [Jayapandian, '08] have concluded that a large number of CRUD

expressions “can potentially be composed from a given set of related schema elements”. Beyond not

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

56 | P a g e

being CRUD Schemas, Schema elements [Yu, '06] are neither concerned about access control.

Anyway, their approach may be used to optimize the number of CRUD Schemas. Returning to the

main point, depending on the needs and requirements, there are two approaches to formalize

CRUD Schemas, which are herein known as closed approach and open approach.

3.1.1.1.1 Closed approach

In the closed approach, CRUD Schemas are only used to formalize sibling CRUD expressions. The

closed CRUD Schema approach has the advantage of conveying a complete schema awareness of

each CRUD expression. As a disadvantage, each CRUD Schema is not flexible to accommodate CRUD

expressions with different CRUD Schemas. If a CRUD expression is formalized through a different

CRUD Schema a new CRUD Schema is needed.

3.1.1.2 Open approach

Unlike the closed approach, the open approach is designed for managing several CRUD Schemas.

CRUD Schemas supported by the same open CRUD Schema are herein known as sibling CRUD

Schemas. Sibling CRUD Schemas are characterized by sharing their types of CRUD expressions and

their attributes sets. Only runtime parameters may vary from CRUD Schema to CRUD Schema. This

means that the variations between CRUD Schemas are limited to the parameters whose values are

defined at runtime: column set and clause set. The open approach has more flexibility than the

closed approach, this way leading to advantages during the development process of business tiers

and also after their deployment (at runtime). Next follows a description for each advantage.

Development

The flexibility of the open approach increases the opportunity to reuse existent CRUD schemas

when a new CRUD expression is needed. Therefore, the open approach minimizes the number

of the needed CRUD schemas to support a set of CRUD expressions.

Runtime

If the architecture of business tiers supports the deployment of CRUD expressions at runtime,

then the open approach will minimize the maintenance activities at the business tiers level.

In spite of these significant advantages, the open approach also conveys some drawbacks. Among

them, two are emphasized:

Awareness

The flexibility of the open approach is obtained by providing services able to support any

number and any type of runtime parameters. This flexibility requires programmers to master

schemas of runtime parameters. This need is not necessary if the closed approach is used

because the schemas for the runtime parameters are tailored to one CRUD schema only.

Security

The flexibility of the open approach conveys more freedom to use more CRUD expressions.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

57 | P a g e

Whenever security is considered a key aspect, a greater supervision is needed to know which

CRUD expressions are being used.

Listing 5 shows four CRUD expressions none of which is sibling. When using the closed

approach, four CRUD Schemas are required: one for each CRUD expression. When using the open

approach, two CRUD Schemas are required: one for the two first CRUD expressions and another for

the two remaining CRUD expressions.

-- CRUD expression 1

Select *

 from Categories;

-- CRUD expression 2

Select *

 from Categories

 where CategoryId=?;

-- CRUD expression 3

Insert into Categories

 values (?, ?);

-- CRUD expression 4

Insert into Categories

 values (?, ?, ?, ?);

Listing 5. Four examples of CRUD expressions.

Summarizing, a CRUD Schema comprises five independent parts:

 a mandatory type schema - the CRUD type (Reading or Updating);

 the attribute set (only for Select expressions);

 an optional clause set (open or closed approach) – for setting the runtime values for the

conditions used inside SQL clauses, such as the “where” and “having” clauses;

 an optional column set (open or closed approach) – for setting the runtime values for

the column list of Insert and Update CRUD expressions;

 a mandatory result schema for Insert, Update and Delete CRUD expressions – to retrieve

the number of affected rows whenever CRUD expressions are executed.

3.1.2 Business Schema

Business Schema (BS) leverages the CRUD Schema concept to formalize the set of necessary

services to be provided to manage the execution of CRUD expressions organized by CRUD Schemas.

It comprises several services among which are emphasized: 1) access to data through the direct

and indirect access modes and 2) services to manage the scrolling process on LMS. These services

are customized to address specific requirements needs. For example, when dealing with access

control, Business Schemas are driven by access control and, therefore, have to be arranged in order

to be in accordance with the established FGACP.

 When dealing with access control, the Direct Access Mode is concerned with the authorized

CRUD expressions written in the native SQL language and the Indirect Access Mode is concerned

about the actions on LMS. Table 3 shows a possible definition for the permissions on an LMS

derived from the CRUD expression Select a, b, c, d from table. This access matrix [Lampson, '74] like

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

58 | P a g e

representation defines for each attribute of this LMS, which actions (read, update, insert, delete) are

authorized. delete action is authorized in a tuple basis and, therefore, it is executed as an atomic

action on all attributes. In situations where access control is not provided, and when LMS are

updatable, all actions on LMS are available to be used by programmers of application tiers. This

example is access control oriented but the concept of Business Schema is not tied with any specific

purpose. The only purpose of Business Schema is to provide a formalization process to reorganize

the services provided by CLI to access data residing on LMS.

 a b c d

Read yes no yes yes

Update no yes no yes

Insert yes yes no no

delete yes

Table 3. Example of a table of permissions in a LMS (Indirect Access Mode).

3.1.3 Business Entity

Business Entities (BE) are software artifacts (classes) responsible for managing the execution of

Figure 27. Partial example of how to implement the permissions of Table 3 on LMS.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

59 | P a g e

CRUD expressions through the implementation of Business Schemas. Therefore, Business Entity is a

general concept to be used for the building process of software classes. As Business Schemas,

Business Entities are not oriented to address any specific requirement, such as access control. In

each particular context, Business Entities, as Business Schemas, are customized to address the

required needs. Instances of Business Entities are herein referred to as Business Workers (BW).

Figure 27 partially presents an example based on JDBC to show a Business Entity that wraps a

ResultSet (rs - LMS) and enforces the permissions defined in Table 3. Only attributes a, c and d are

readable (line 20-28). Only attributes b and d are updatable (line 31-36). Only attributes a and b are

insertable (line 39-44). Rows are deletable (line 48).

3.2 Modelization of Call Level Interfaces

In spite of their individual successes, the object-oriented and the relational paradigms are simply

too different to bridge seamlessly, leading to difficulties informally known as impedance mismatch

[David, '90]. The diverse foundations of the object-oriented and the relational paradigms are a

major hindrance for their integration, being an open challenge for more than 45 years [Cook, '05].

The challenge derives from the multiplicity of aspects that need to be bridged across both

paradigms: imperative languages versus declarative languages; compilation and execution

performance versus search performance; classes, algorithms and data structures versus relations

and indexes; transactions versus threads; null pointers versus null for the absence of value [Cook,

'05], and finally, inheritance versus specialization. The impedance mismatch thus presents several

challenges for developers of database applications, where often both paradigms are found. These

challenges are especially noticeable in environments where production code is under strict

development deadlines, and where (timely) code development efficiency is a major concern. In

order to cope with the impedance mismatch issue, several solutions have emerged, among them CLI

are herein emphasized. In spite of their relevancy, CLI present several drawbacks as previously

described. The modelization of CLI was the first step to overcome some of the drawbacks and it

was addressed in the following papers [Pereira, '10a; Pereira, '10b; Pereira, '11b; Pereira, '06; Óscar

Narciso Mortágua Pereira, '05a; Óscar Narciso Mortágua Pereira, '05b].

3.2.1 Motivation

This section aims to emphasize common drawbacks regarding the utilization of CLI. The

modelization process is not concerned with access control but mainly with the integration process

of the relational and the object-oriented paradigms. In this context, the main drawbacks of CLI are

organized in four categories [Pereira, '10b; Pereira, '11b]:

 1- The process for editing CRUD expressions;

 2- The process for reading data from returned relations;

 3- The process of updating databases through updatable LMS;

 4- Protocols of LMS regarding their usability.

One again, JDBC is used as a representative of CLI. Figure 28 presents a simple example, which

comprises some of the drawbacks related to categories 1), 2) and 3). This example is used in the

following paragraphs to describe JDBC drawbacks:

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

60 | P a g e

Linkage

There is no easy way to link CRUD expressions and their results to the application they assist.

JDBC provides services to ease the integration of object-oriented applications and relational

databases but relevant issues are not overcome such as string concatenation (Figure 28: line

22-24) and the conversion between relational and object-oriented paradigms (Figure 28: lines

27, 28, 30).

Edit

The editing process of CRUD expressions and access to their results is tricky and error-prone.

CRUD expressions are constructed by concatenating strings and access to their results is

achieved by reading attribute by attribute in a row by row basis. Some of the most usual errors

are:

Concatenation errors

Whenever CRUD expressions are built from concatenated strings there are several types of

errors that are easily made. The most common and very often very difficult to detect are

missing spaces between lines (Figure 28: lines 22, 23) and missing spaces between

substrings as the missing before “and” (Figure 28: line 23).

Type mismatch

Programmers need to master CRUD Schemas to be able to use the correct data type when

accessing attributes of LMS. Any type mismatch error is only detected at runtime leading to

an increased effort to deploy business tiers error free.

Misspelled attribute name

Programmers need to master CRUD Schemas to be able to use the correct attribute name

when accessing attributes of LMS. Any type misspelled name is only detected at runtime

leading to an increased effort to deploy business tiers error free.

Debug

Previous errors cannot be checked for correctness at compile time, addressed in [Gary, '07].

None of the previous errors can be caught at compile time demanding great accuracy while

editing the source code to prevent additional time on testing, debugging and future

maintenance.

Maintenance

CRUD expressions are awkward regarding their maintenance, addressed in [Andy, '08]. CRUD

expressions (building process and execution) depend on many different entities grouped in

three classes: SQL syntax, services of CLI and database schemas. While SQL syntax and services

of CLI can be considered stable, database schemas are dynamic entities. Database schemas

change for many reasons. Some of the most common reasons are:

 An initial error on conceptual model or logical model;

 The emerging of new requirements, which usually happens several times during the

development process and even also after the deployment process of database

applications.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

61 | P a g e

Any simple change in a database schema may involve a huge work on updating not only the

strings that encode the affected CRUD expressions but also the schema of the retuned relations

and, therefore, the name of attributes that are used in the indirect access mode.

SQL injection attacks

CRUD expressions are vulnerable to SQL injection attacks, addressed in [Gregory, '05]. This

issue is not addressed in this thesis.

LMS usability

LMS have dozens of states, dealing with different combinations of LMS instantiations,

directions, accesses, updates, etc. The developer is before a huge task to become aware of how

to use LMS. LMS comprise several distinct protocols not organized in distinct interfaces,

conveying the idea that everything is possible in anytime. For example, ResultSet interface is

composed by more than 200 methods and 10 attributes. Each ResultSet state has its own usage

protocol gathering a subgroup of all methods of the ResultSet interface. While Read and Delete

protocols do not comprise a start and an end instruction, Update and Insert protocols always

have a start instruction (implicitly for Update and explicitly for Insert) and an end instruction.

Besides the starting and the ending instructions, the main issue for Update and Insert protocols

is that the cursor cannot be moved from the current selected row while the protocol is being

executed. If the cursor is moved from the selected row while the protocol is being executed, the

protocol will be aborted and previous changes are discarded from the in-memory of LMS. In

order to overcome some of these difficulties we will present an approach where each protocol

is executed through a dedicated interface this way improving ResultSet usability.

Figure 28. Typical JDBC/CLI drawbacks.

Some of the aforementioned drawbacks have already been individually addressed by other

authors as previously cited. The modelization of CLI proposal in this work constitutes an integrated

and unified alternative to overcome all the aforementioned drawbacks, except for the SQL injection

attack.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

62 | P a g e

3.2.2 Proposed Approach for the Modelization of CLI

The modelization process does not cover all functionalities of CLI but only those directly related

with the execution of CRUD expressions such as those related to the access modes of CLI: the Direct

Access Mode and the Indirect Access Mode. The modelization process aims at tackling the

aforementioned drawbacks of CLI. The approach is based on a model and on a tool from which

Business Entities are automatically built. Figure 29 presents the model to represent CLI, herein

referred to as the CRUD-Model. This model clearly identifies the main sub-functionalities of CLI and

aggregates them in independent interfaces: IExecute, ILMS, IResult and ISet. Next follows a

description for each interface:

IExecute

IExecute interface comprises services to execute CRUD expressions using the Direct Access

Mode. Beyond the execution of CRUD expressions, this interface is responsible for setting the

runtime values of clause conditions for all types of CRUD expressions.

ILMS

ILMS interface is used to access to functionalities of LMS and it is available only when CRUD

expressions are of type Reading. One of its main functionality is the management of the Indirect

Access Mode. ILMS comprises several interfaces:

IReadability

IReadability interface comprises one interface, IRead, to read data from LMS. This interface

is used for read-only and updatable LMS. Methods of IRead are driven by the schema of the

returned relation and, as such, are semantically oriented and type-safe.

IUpdatability

IUpdatability interface comprises several interfaces to manage updatable LMS:

 IDelete: comprises all methods associated with the delete protocol;

 IInsert: comprises all methods that are needed to control the insert protocol;

 IUpdate: comprises all methods that are needed to control the update

protocol;

 IWrite: comprises all the methods associated with the write protocol. These

methods are driven by the schema of the returned relation and, as such, are

semantically oriented and type-safe;

 IRead: comprises all methods associated with the read protocol. These methods are

driven by the schema of the returned relation and, as such, are semantically

oriented and type-safe.

IScrollability

IScrollability interface comprises two interfaces to manage the two possibilities for scrolling

policies:

 IScrollable: comprises all methods associated with scrollable LMS. The methods are

only present if the LMS is scrollable;

 IForwardOnly: comprises all methods associated with forward-only LMS. The

methods are only present if the LMS is forward-only.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

63 | P a g e

ISet

ISet interface is used to set the runtime values for the column set of Insert and Update

expressions.

IResult

IResult interface is used to retrieve the number of affected rows when a CRUD expression of

type Updating is executed.

Figure 30 presents a block diagram for the modelization process of CLI. Basically, the architectural

CRUD-Model accepts as input CRUD expressions and some additional metadata to build

Business Entities responsible for managing CRUD expressions. This implementation is very similar

to the one presented in [Pereira, '10b; Pereira, '11b]. From CRUD expressions and from

complementary metadata (for example, Scrollability policy and the Updatability policy to be used),

the architectural model is responsible for validating the correctness of CRUD expressions, for

inferring the CRUD Schemas and also for building automatically the source code for Business

Entities in accordance with the CRUD-Model.

«interface»
IResult

«interface»
IExecute

+CRUD-Model()

CRUD-Model

«interface»
IUpdatability

«interface»
IRead

«interface»
IUpdate

«interface»
IInsert

«interface»
IDelete

«interface»
ILMS

«interface»
IReadability

«interface»
IRead

«interface»
IForwardOnly

«interface»
IScrollable

Only if LMS is
forward-only

Only if LMS is
scrollable

Only if LMS is
updatable

Only if LMS is
read-only

«interface»
IScrollability

«interface»
IWrite

Only of CRUD expression
is of type Select

«interface»
ISet

Used to set the attribute list.
Only if CRUD expression is
of type Insert or Update

User to execute CRUD
expressions and to set
the runtime values of
clause conditions.

Only if CRUD expression
 is of type Insert,
 Update or Delete

Figure 29. Business Schema for the modelization of CLI: CRUD-Model.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

64 | P a g e

+ - CRUD expression
- Complementary metadata

Business Entity

Architectural CRUD-Model

Figure 30. Block diagram for the modelization process of CLI.

Figure 31. Partial view of a Business Entity based on the CRUD-Model.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

65 | P a g e

Next follows an example to show a real case to implement a Business Entity. Figure 31 presents

a partial view of a Business Entity aimed at managing the CRUD expression

Select * from Products

 Where categoryId=? and unitsInStock<?

The CRUD expression is compiled-on-the-fly (complementary metadata) and LMS is forward-

only and updatable (complementary metadata). To accomplish these requirements, the presented

Business Entity implements the following interfaces: IExecute, IScrollability (IForwardOnly) and

IUpdatability (IRead, IUpdate, IInsert and IDelete).

Now that a Business Entity has been presented, we show, from the application tier point of

view, the use of that Business Entity (see Figure 32). The drawbacks presented in this section for

CLI are clearly overcome by CRUD-Model. The following aspects are emphasized:

CRUD expressions

CRUD expressions are now automatically encoded inside strings after being validated by the

CRUD-Model (Figure 31: line 19-20). Previous errors associated with CRUD expressions are no

longer a concern.

Source code

There is no need to write any source code. From CRUD expressions and from selected metadata,

source code of Business Entities is automatically built in accordance with the CRUD-Model

(Figure 31).

Figure 32. Example shown in Figure 28 but based on the CRUD-Model.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

66 | P a g e

LMS usability

Functionalities of LMS are now organized around interfaces (Figure 32: lines 25-27) and

the access methods are semantically driven and type safe (Figure 32: line 29-32). From the

open pop-up window on line 34 we see that interface IUpdate provides two methods:

updateRow and cancelUpdate.

To achieve these results, there is the need to devise a tool similar to the one used in [Pereira, '10b;

Pereira, '11b]. With this tool, programmers need only to write CRUD expressions and define some

additional metadata to overcome all the presented drawbacks of CLI. Then, the tool automatically

builds Business Entities to manage the execution of CRUD expressions. Each Business

Entity manages its own CRUD expression.

3.3 Componentization of CLI

The componentization process of CLI is mainly concerned with the building process of reusable and

adaptable business tier components. Componentization of CLI was addressed in the following

papers [Pereira, '11a; Pereira, '11c; Pereira, '12b; Pereira, '13a; Pereira, '13b; Pereira, '13e]. Good

programming practices advise the development of database applications relying on a multi-tier

architecture. The three tier architecture is the most widespread one comprising the application tier,

the database tier and the middle tier known as the business tier. The business tier may provide a

clear separation (technological, administrative and organizational) between host databases and

client applications. Database applications of some complexity may comprise hundreds of CRUD

expressions to deal with business requirements. Very often they cannot be inferred from any data

model that may eventually be available (database schema). This leads to situations where the

development and maintenance processes of business tiers are very tedious and exhaustive.

Programmers are pushed to write similar source code for each CRUD expression, mainly for Select

expressions with a long attribute list. There should exist a methodology to relieve programmers

from these tedious, exhaustive and error-prone processes. To address these gaps, a research has

been conducted to devise reusable business tier components based on CLI.

3.3.1 Components

Component-based development is a key topic in software engineering [Bachmann, '00; Heineman,

'01; Szyperky, '02]. Component-based development aims to compose software artifacts from other

pre-built software artifacts [Heineman, '01]. At the end, a final system is not built as a unique block

but as a composite of software artifacts known as components [Kung-Kiu, '07]. A key aspect for the

success of any component is its capability of being reused and adapted [Bracciali, '05]. In reality,

despite the relevancy of the postulates, reutilization and adaptation of components raise several

technological difficulties and, maybe not least important, easily gathers voices against their

adoption. For example, component replacement has some disadvantages conveying an impact on

the overall system. Some of the disadvantages are [Costa, '07]:

Loss state lost

When a component is replaced, its state may be lost. To avoid this situation, the new

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

67 | P a g e

component must be initialized in the state of the replaced component.

System availability

During the replacement process, the component or even system availability may be affected. To

avoid component unavailability, components need to be decoupled from client components,

eventually by using proxies.

Performance decay

Performance decay usually occurs during the replacement process. Components being replaced

need to be deactivated and substituent components need to be activated and initialized.

Performance decay seems to be an unavoidable consequence of the replacement process. An

effort is necessary to minimize the negative interference of the replacement process of

components.

In order to avoid component and system unavailability, several approaches may be followed to

dynamically adapt them at run-time, which is one of the crucial aspects of Component Based

Software Engineering (CBSE) [Bracciali, '05]. The adaptation of components should comprise not

only the configuration process but mainly the replacement of old services and also the definition of

new services in a seamlessly way. Another key issue is the reuse of computation [Elizondo, '10],

which maximizes the reuse of computation to address different computational needs. Among the

several proposed approaches, models@run.time [Blair, '09] is emphasized. Models@run.time are

playing an increased role in software systems of organizations from which critical decisions are

taken, such as airports, power plants and hospitals. These systems have to be available 24 hours a

day and 7 days a week and are expected to safely adapt to varying runtime contexts. Software

models@run.time give the answer to this requirement. In [Blair, '09] says: “Runtime adaptation

mechanisms that leverages software models extend the applicability of model-driven engineering

techniques to the runtime environment.”. In Model Driven Engineering models are used to formalize

and render complex systems in a manageable way for humans and for computers. Software

models@run.time keep these important features and step forward by incorporating the

specification of the systems they formalize, Bran Selic in [Blair, '09]. Through the specification and

through the runtime context software models@run.time support dynamic adaptation. Software

models@run.time may be seen as an important contribution to the field of autonomic computing

[Kephart, '03].

3.3.2 Adaptation Process

The adopted adaptation process uses the same model as the one presented for the modelization

process, CRUD-Model, but with a slight difference. Now CRUD expressions are not statically

compiled on Business Entities but are dynamically deployed and passed to them through their

constructors. This will be explained during the next paragraphs. Thus, the similarity between the

two class diagrams eliminates the need to present a new class diagram. Another difference exists in

the process used to automatically build source code for Business Entities. While in the modelization

process, the source code for each Business Entity was built from one CRUD expression and from

some additional metadata, in the componentization process, the source code for Business Entities is

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

68 | P a g e

automatically built from metadata only. CRUD expressions are dynamically deployed in a later

stage, at runtime.

The differences between the two processes have been described, and now the focus is on the

componentization process of CLI. The adaptation process of business tier components is basically

focused on the capability to support new CRUD expressions. To achieve this goal there are basically

three dimensions to be addressed, which are herein referred to as the Service Allocation, Service

Composition and Service Scope. Service Allocation is mainly concerned with deploying CRUD

expressions at runtime to address new business needs. Service Composition is mainly concerned

about creating Business Entities to address new business needs. Service Scope is mainly concerned

about the extent of the services to be provided by each Business Entity.

3.3.2.1 Service Allocation

Service Allocation proposes the deployment process of CRUD expressions to be accomplished at

runtime. Unlike the approach used for the modelization process, where CRUD expressions are

statically allocated to Business Entities at compile time, the Service Allocation allows the

deployment process of CRUD expressions to be accomplished at runtime this way introducing a

new dimension in the adaptation process: Service Allocation promotes the deployment of CRUD

expressions based on policies. Policies may be used to deploy CRUD expressions driven by

countless possibilities such as users profiles, driven by security policies and driven by the runtime

context.

3.3.2.2 Service Composition

Service Composition is mainly concerned on the building process of Business Entities. Services of

Business Entities are formalized by Business Schemas, which are mainly based on the CRUD-Model

presented for the modelization process. Service Composition may be accomplished following two

different approaches: static approach [Pereira, '11a; Pereira, '11c; Pereira, '13a; Pereira, '13e] and

the dynamic approach [Pereira, '12b].

Static Service Composition

When using the Static Service Composition, Business Entities are statically built before the

deployment process of business tier components. Business tier components built from the

Static Service Composition address a business area, such as accountability or sales. Then, at

runtime, CRUD expressions are deployed following any established policy. Figure 33 presents a

block diagram for the Static Service Composition. In a) business tier components are

statically built from Business Schemas and in accordance with an architectural model based on

the CRUD-Model. In b), after being deployed, the component accepts CRUD expressions in

accordance with any established policy. To be effective, components relying on the Static

Service Composition must provide a variety of Business Entities able to manage all the needed

CRUD expressions in order to minimize or even prevent future maintenance activities.

Dynamic Service Composition

When using the Dynamic Service Composition, Business Entities are dynamically built at

runtime to address any runtime business needs. Similarly to the Static Service Composition,

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

69 | P a g e

CRUD expressions are also deployed at runtime following any established policy. Figure 34

presents a block diagram for the Dynamic Service Composition. Business Engine is the entity

responsible for building Business Entities dynamically at runtime from Business Schemas

deployed by a Monitoring Framework or any other entity skilled to achieve the same result.

a)

Running Platform

Monitoring
Framework

CRUD
Expressions

Running database application

Reusable Component
b)

CRUD expressions are
deployed at runtime

+Architectural
Model

Reusable Component

Business
Schema

Components are statically
built from architectural
model and from scheama data.

Figure 33. Block diagram for the static approach: a) service composition and b) service allocation.

Running Platform

Monitoring Framework

CRUD
Expressions

Running database application

Reusable Component

Business
SchemasBusiness

Engine

CRUD expressions and
Business schemas are
deployedSat runtime

Business Entities are
built at runtime

Figure 34. Block diagram for the dynamic service composition.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

70 | P a g e

3.3.2.3 Service Scope

Service scope concept is based on the CRUD Schema concept to promote two different approaches

for the scope of Business Schemas: Unique Business Schema (based on the open approach of CRUD

Schemas) and Multiple Business Schemas (based on the closed approach of CRUD Schemas). The

Unique Business Schema [Pereira, '11c; Pereira, '13e] is used whenever there is the need to

minimize the number of CRUD Schemas and the Multiple Business Schema [Pereira, '11a; Pereira,

'13a] is used when there is the need to keep CRUD Schemas closely aligned with CRUD expressions.

Unique Business Schema

Business tier components based on the Unique Business Schema approach provide a unique

and fixed set of Business Entities responsible for managing all the necessary CRUD expressions

The Unique Business Schema approach is specially effective when CRUD Schemas are only

known at runtime and the Dynamic Service Composition is not recommended. To address these

constraints, the Static Service Composition process needs to build three unique Business

Entities each one wide enough, based on the open CRUD Schema approach, to support any

foreseen CRUD expression. The three Business Entities to be made available are one for all

Select expressions, one for all Update and Insert expressions and, finally, one for all Delete

expressions.

Select expressions

Each business tier component has its own Business Entity for managing all Select

expressions. The Business Entity is built to address one or more business areas, such as

accountability or sales. IRead and IWrite must comprise all the needed attributes to support

the addressed business area. Thus, the attributes are not proprietary of any Select

expression but in reality they are shared by all CRUD expressions. Each CRUD expression

makes use of the attributes formalized by its CRUD schema. Figure 35 schematically shows

a set of CRUD expressions, each one requesting a subset of the attributes that are made

available through the IRead and IWrite interfaces. Additionally, to support any number and

any type of runtime parameters, the open approach is used for the CRUD schema. Thus, the

method to set the runtime values for clause conditions (IExecute interface) must have as

argument object[] of type Object to support values of any data type and in any quantity.

Insert and Update expressions

Unlike the previous Business Entity, the Business Entity responsible for managing all insert

and update expressions is shared by all business tier components. The CRUD Schema

follows the open approach and is characterized by two main methods. One method to set

the runtime values for clause sets (IExecute interface) having as argument object[] of type

Object to support values of any data type and in any quantity. And another method to set the

runtime values for column sets of Insert and Update expressions (ISet interface) having

object[] as argument to support values of any data type and in any quantity.

Delete expressions

Similarly to the previous Business Entity, the Business Entity responsible for managing all

delete expressions is shared by all business tier components. The CRUD Schema follows the

open approach and is characterized by one main method. To set the runtime values for

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

71 | P a g e

clause conditions (IExecute interface). Similarly to the previous methods, it also has object[]

of type Object as argument to support values of any data type and in any quantity.

IRead/IWrite

attrib 1

attrib 2

attrib 3

attrib 5

attrib 4

attrib (n-2)

attrib (n-1)

attrib n

CRUD

A

CRUD

B

CRUD

?

Figure 35. Attributes shared by all CRUD expressions.

Multiple Business Schemas

The Multiple Business Schema approach is specially effective when CRUD Schemas are known

at development time for the Static Service Composition, or at runtime for the Dynamic Service

Composition. There will be as many Business Schemas as necessary. Each Business Schema

generates one Business Entity able to manage any CRUD expression whose schema is contained

by the implemented Business Schema. Figure 36 shows an example similar to the one shown in

Figure 35 but following the multiple business schema. Here there are several CRUD Schemas for

Select expressions where each CRUD Schema owns its particular Business Entity. Some CRUD

IRead/IWrite A

attrib 1

attrib 2

attrib 3

attrib 4

CRUD

Schema

A

CRUD

Schema

B

CRUD

Schema

?

IRead/IWrite B

attrib 1

attrib 3

attrib 5

attrib 12

IRead/IWrite ?

attrib 8

attrib 15

attrib16)

attrib 17

Figure 36. Example of one Multiple Business Schema implementation.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

72 | P a g e

Schemas may share some attributes, as CRUD Schema A does with CRUD Schema B, but each one

has its own IRead and IWrite interfaces. The Multiple Business Schema approach may also be used

to differentiate other properties of CRUD Schemas, such as runtime values for clause conditions and

runtime values for column lists avoiding this way the need to use Object[] as argument.

3.3.2.4 Business Schema

Business Entities are built from Business Schemas only. As such, Business Schemas need some

additional attention for the componentization process of CLI. Business Schemas comprise several

interfaces as shown in Figure 29. In spite of their complexity, Business Schemas are very easy to be

defined because most of the interfaces are written only once or comprise one method only. For

example, IScroll, IForwardOnly, IResult, IInsert, IUpdate and IDelete are unique and shared by all

Business Schemas. Regarding IExecute and ISet, each one contains one method only. The only

interfaces entailing some complexity are IRead and IWrite. The effort for their definition is required

during the Service Composition phase. These interfaces comprise the getter and setter methods for

the attributes of LMS. But the effort is actually significantly less than it might seemed, because the

methods belonging to each IWrite interface are automatically inferred by the Business Engine from

the correspondent IRead interface. For example, if an IRead interface comprises methods Integer

a() and String b() then the correspondent IWrite interface comprises the methods void a(Integer

value) and void b(String value). Thus, Business Engine relives programmers from the need to write

the IWrite interface.

3.4 Access Control

Modelization and componentization overcome important drawbacks of CLI. Nevertheless, they are

not enough to address access control let alone the implementation of evolving FGACM. FGACM need

a fine tune control on the access to data residing on RDBMS. CLI provide two distinct modes to

access data: the Direct Access Mode and the Indirect Access Mode. Both access modes need to be

governed by FGACM. Access control on the Direct Access Mode is about controlling the authorized

CRUD expressions. Access control on the Indirect Access Mode is about controlling the authorized

actions at the cell level (row – column) of LMS. Access control was mainly addressed in [Pereira,

'12d; Pereira, '12c; Pereira, '13d]. Basically, the access modes of CLI were wrapped by services

driven by FGACM. These issues are thoroughly described in the next chapter.

3.5 Summary

The evolution from CLI concept till the DACA was presented in a three step approach. Initially, the

fundamental concepts were introduced: CRUD Schema, Business Schema and Business Entity.

These concepts are used since the very start till the final definition of the DACA. They define the

basic entities from which drawbacks of CLI are overcome. Regarding the three step approach

towards the DACA, during the first step, a model has been defined to bridge the gap between the

object-oriented and the relational paradigm. During the second step, an architecture has been

defined for the building process of reusable business tier components. These components are built

combining three concepts: Service Allocation, Service Composition and Service Scope. These

concepts, when combined with each other, open several possibilities for the development and

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

73 | P a g e

adaptation processes of business tier components. Another relevant aspect is that IRead and IWrite

interfaces are the only interfaces requiring some effort during the Service Composition phase. They

comprise the getter and setter methods for the attributes of LMS. But the effort is actually

minimized because the methods belonging to each IWrite interface are automatically inferred by

the Business Engine from the correspondent IRead interface. A brief introduction was done to the

access control approach on CLI. Now, the DACA will be main topic of the next chapter.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

74 | P a g e

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

75 | P a g e

4 DACA: Dynamic Access Control Architecture
In this chapter a new architecture, herein known as the DACA, is proposed for building business

tiers, based on Call Level Interface, embedded with FGACM and driven by dynamic adaptation. The

DACA is only focused on FGACM and it does not address policies or even models. The DACA is an

architecture for the implementation of dynamic FGACM, which is completely decoupled from

policies and models. We first introduce an overview of the approach to be followed to implement

FGACM, then follows the general architecture and finally details are given for each main component

of the DACA. The DACA leverages all previous researches conducted around CLI, models and

components, to provide a solution relying on CLI to enforce evolving FGACM on business tier

components. The DACA also leverages and deeply relies on other previous researches [Pereira,

'12d; Pereira, '12c; Pereira, '13d].

This chapter is organized as follows. Section 4.1 introduces the approach followed to

implement FGACM at the level of business tiers. Section 4.2 presents the general architecture of the

DACA. Section 4.3 presents the main components of the DACA and, finally, section 4.4 summarizes

this chapter.

4.1 Fine-grained Access Control Mechanisms

The DACA relies on CLI and, as such, FGACM are implemented at the level of CLI on business tier

components. Hence, the implementation of FGACM on business tier components based on CLI

cannot be disconnected from the services provided by CLI to access data residing in RDBMS. As

previously presented and described, CLI provide several modes to interact with data residing on

RDBMS. Among them, two were emphasized and hereafter recalled:

 Direct Access Mode – through this mode, CLI provide services to allow CRUD expressions to

be encoded inside strings using the native SQL language or eventually the RDBMS SQL

language;

 Indirect Access Mode – through this mode, CLI provide services to allow the execution of

any of the provided protocols at the level of LMS of CLI: read, update, insert and delete

protocol.

These two access modes are the key points from which FGACM are defined and implemented.

FGACM use Business Schemas as the key entities to control the access to data. Business Schemas

wrap and exploit the access modes of CLI to expose a set of access modes driven by FGACM.

Therefore, the concept of Business Schema is redefined to address requirements of FGACM.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

76 | P a g e

4.2 General Architecture

FGACM in the DACA are implemented at the client-side level and specifically at the level of business

tiers based on CLI. The implementation process of FGACM need to cope with one main research

question and three second level research questions previously announced: dynamicity of FGACM,

security, awareness of FGACM and preservation of CLI advantages.

Dynamicity

FGACM need to be dynamically adapted at runtime to address evolving FGACP. This requires

that the client-side systems have the ability to be locally adapted in accordance with the

established FGACP. Moreover, as the FGACM are deployed in each client-system, there is no

other way but provide a central system from which the directive for the FGACM to be

implemented on the client-side systems are issued.

Security

Current tools allow users to write any CRUD expression. Due to the endless expressiveness of

the SQL language this freedom may lead to security violations. Thus, the DACA needs to ensure

that all issued CRUD expressions are in accordance with the established FGACP.

Awareness

FGACM need to be implemented in a way to convey a complete awareness about the established

FGACM during the development process of application tiers. This awareness relives

programmers from mastering the established FGACP and the correspondent FGACM.

Preservation of CLI advantages

To keep CLI advantages, the DACA needs to ensure two aspects. The first one is that the services

of CLI must be kept and provided by the DACA. The second one is that performance of CLI must

also be kept. To cope with these requirements services of the DACA need to be closely aligned

with the services of CLI and, additionally, they must induce a minimum processing overhead.

These requirements will be all addressed in this chapter.

4.2.1 Phases of the DACA

The DACA needs to cope with several requirements, among which the awareness of FGACM at

development time of application tiers and the dynamic implementation of FGACM at runtime are

emphasized. To address these requirements, the DACA operation is split at least in two phases: one

responsible for the static representation of FGACM and the other one for the dynamic adaptation

process of FGACM. The first phase takes place while application tiers are being developed, while the

second phase takes places at runtime. From these two phases a third phase is inferred, which is

concurrent and independent from the other two, during which metadata of FGACM are defined and

updated.

The general architecture of the DACA is presented as a block diagram in Figure 37. Lines

connecting components with small circles on their edges represent socket connections and the

ending arrows identify the components playing the server role. The general architecture may be

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

77 | P a g e

organized and presented using several distinct perspectives. The perspective presented in Figure

37 is based on the three main phases just presented:

Configuration phase

The configuration phase of the DACA is responsible for keeping metadata of FGACM updated in

accordance with the established FGACP. The metadata of FGACM are the source from which

FGACM are automatically built and kept updated.

Extraction phase

During the extraction phase, the DACA creates data structures, which are used to convey to

programmers of application tiers a complete awareness of the established FGACM. These data

structures need to be statically represented while programmers write source code to access

data residing on RDBMS to prevent them from writing source code not aligned with the

established FGACM.

Running phase

During the running phase, metadata of FGACM is used to build the correspondent FGACM

dynamically. Any modification in the metadata leads to an automatic updating process on the

implemented FGACM. Moreover, CRUD expressions are also deployed at runtime in accordance

with the established FGACP. This deployment process is important because it will be used to

relieve programmers from writing CRUD expressions and, therefore, prevent any security

violation.

Configuration phase

Extraction phaseRunning phase

Server Side

Policy
Manager

Client Side
DACC

Business
Manager

Application
Tier

Policy Server

 RDBMS

Business
Logic

1 2

3

9

4

5

6

7

8

Policy
Watcher

Policy Configurator

Policy Extractor

ACP Awareness

ACP
Awareness

Figure 37. General architecture of the DACA.

4.2.1.1 Configuration Phase

The configuration phase is focused on the configuration and maintenance processes of

metadata of FGACM, which are stored in a server, in our case in a RDBMS. This RDBMS may or may

not be the same where the protected data reside. The configuration process may occur at any time

even when database applications are running, after their deployment. The only constraint is that

the definition of FGACM needed during the development and maintenance phases of application

tiers, have to be defined before they are requested and therefore, before the occurrence of the

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

78 | P a g e

Extraction Phase. Then, during the Runtime Phase metadata of FGACM may evolve to address new

security needs.

The configuration process is carried out by using a component herein referred to as the Policy

Configurator. Policy Configurator is used to define and keep metadata of FGACM updated, at any

time, independently from the other two phases. The metadata is stored in the Policy Server and has

its origin on the used policy model (not addressed by this thesis) and on the granted permissions

organized as Business Schemas and the associated CRUD expressions. Figure 38 represents the

permission concept in the DACA. Permission is the authorization to use a Business Schema and a set

of CRUD expressions to be managed by that Business Schema.

Set of
CRUD expressions

Metada
(Business Schema)

Figure 38. Concept of permission in the DACA.

4.2.1.2 Extraction Phase

The extraction phase is focused on formalizing FGACM as programming data structures so that they

can be statically represented by IDE and then used during the development process of application

tiers. These data structures restrict application tier programmers to only use authorized accesses

to RDBMS. This way, programmers become aware of FGACM at development time of application

tiers and not at compilation time or at runtime. Basically, the data structures comprise roles (if a

RBAC policy is used) and the associated permissions. To successfully accomplish this phase,

metadata of FGACM need to be previously defined in the configuration phase.

The extraction phase is carried out by using a component herein referred to as the Policy

Extractor. Policy Extractor is used only during the development process and also on the

maintenance process of application tiers.

4.2.1.3 Running Phase

The running phase is focused on adapting the client-side FGACM in accordance with the established

FGACP. Any modification in the FGACP during the running phase needs to be translated into

metadata of FGACM to be then automatically enforced in the client-side components.

During the running phase, database applications are running. There are two main blocks: a

client side block and a server side block, see Figure 37.

Client side block

The client side block comprises a unique component herein known as the Dynamic Access

Control Component (DACC). The DACC is responsible for providing application tiers with all the

services they need to access data residing in RDBMS and based on the two following principles:

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

79 | P a g e

1) the provided services to access to data are driven by FGACM and 2) the provided services are

closely aligned with the standard services of CLI.

Server side block

The server side block comprises two main components, herein known as the Policy Manager

and the Policy Server. The server side block is mainly focused on managing the metadata of

FGACM and also on making them available to the client side block.

4.2.2 General Operation of the DACA

The DACA comprises three main components: the DACC, the Policy Server and the Policy Manager,

see Figure 37. The DACC is responsible for the adaptation process of business tiers to implement

FGACM, the Policy Manager is a broker between the Policy Server and the DACC and th Policy

Server stores metadata of FGACM and keeps the Policy Manager informed (through the Policy

Watcher) about any modification in the metadata of FGACM. The DACA general operation is as

follows:

 The Policy Server and the Policy Watcher are started. The Policy Server and the Policy

Watcher play server roles and are responsible for managing metadata of the FGACM to be

enforced.

 The Policy Manager is started. It establishes a connection with the Policy Server (Figure 37:

3) and registers itself in the Policy Server. This way, the Policy Server becomes aware of all

running instances of Policy Managers. This is important because in case the Policy Server

goes down and after restarting up, there is the need to know the running instances of Policy

Managers and how to connect to them (see two next points).

 The Policy Manager closes the connection and waits for a connection to be established by

the Policy Watcher.

 The Policy Watcher establishes a connection with the Policy Manager (Figure 37: 9).

 Application tiers create instances of the DACC (Figure 37: 1) and authentication is provided:

username, password and application identification.

 The DACC establishes a connection with the Policy Manager (Figure 37: 2) to become

registered and closes the connection.

 The DACC waits for a connection from Policy Manager.

 The Policy Manager registers the DACC in the Policy Server (Figure 37: 3).

 The Policy Manager establishes a connection with the Business Manager (Figure 37: 4).

 The Policy Manager identifies and selects the metadata of FGACM (Figure 37-3) to be

implemented by the DACC and send them to the DACC (Figure 37: 4).

 The DACC automatically builds a Business Logic (Figure 37: 5).

 Application tiers ask the DACC to manage the execution of CRUD expressions on their behalf

(Figure 37: 6).

 The Business Manager contacts the Business Logic (Figure 37: 7) to manage application

tiers requests. The Business Logic sends CRUD expressions to a RDBMS (Figure 37: 8),

which may be shared or not with the Policy Server, and returns to application tiers the

results of their execution (Figure 37: 7,6).

 Any modification in the established metadata of FGACM is internally managed by the Policy

Server. The Policy Watcher sends them to the Policy Manager (Figure 37: 9) which then

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

80 | P a g e

sends them to the Business Manager (Figure 37: 5) which, finally, adapts the Business Logic

to new FGACM (Figure 37: 5).

4.3 The DACA Components

In this section a more detailed explanation is given for each constituent component of the DACA.

4.3.1 The DACC

To keep advantages of CLI, the DACC relies on and is closely aligned with CLI. It is responsible for

building and maintaining business tiers driven by evolving FGACP. In reality, the DACC are

realizations of business tiers and are the only components of the DACA that application tiers use to

access data residing in RDBMS. As such, the DACC architecture was designed to address two main

requirements:

 The DACC provide an environment to developers of application tiers as similar as possible

to those provided by CLI;

 The DACC are dynamically and continuously adapted at runtime to be kept aligned with

evolving FGACP.

These requirements led to an architecture of the DACC based on two entities loosely coupled:

the Business Manager and the Business Logic. While Business Manager ensures the implementation

of all services shared by all DACC (it is a static component as all the remaining components of

DACA, except Business Logic), the Business Logic is dynamically, at runtime, adapted to build

business tiers driven by FGACP. Basically, the Business Logic comprises a set of Business Entities

built at runtime and on a set of authorized CRUD expressions to be used on Business Entities.

Figure 39 presents a simplified block diagram of the DACC. The main characteristics to be

emphasized are:

DACC

Business Logic

...

Business Manager

BusinessSchema_n

BusinessEntity_n

CRUD 34

CRUD 7

BusinessEntity_2

CRUD 1

CRUD 9

CRUD 29

CRUD 54

BusinessEntity_1

CRUD 12

CRUD 7

CRUD 23

BusinessSchema_2BusinessSchema_1

Figure 39. Simplified block diagram of DACC.

Access to services

The DACC provides an interface through which applications tiers access its services. The

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

81 | P a g e

Business Manager

-Manager()
+getInstance(in un : string, in pw : string, in urlDB : string, in urlPolicyManager : string, in rebuiltBL : bool) : IManager

Manager

BusinessEngine

+businessEntity(in bs : T, in crudId : int) : T
+releaseBusinessSession()

«interface»
ISession

+getBusinessSession() : ISession

«interface»
IUser

ITransaction

+Session(in un : string, in pwd : string, in url : string)

-conn : DbConn

Session

1

*

«interface»
IManager

+addCRUD(in crudId : int, in crud : string, in bs : IBusinessSchema_i)
+removeCRUD(in crudId : int, in bs : IBusinessSchema_i)
+addBusinessSchema(in bs : IBusinessSchema_i)
+removeBusinessSchema(in bs : IBusinessSchema_i)

«interface»
IAdaptation

Business Logic

#BusinessEntity_1(in conn : DbConn, in crud : string)

BusinessEntity_1

IBusinessSchema_1

#BusinessEntity_n(in conn : DbConn, in crud : string)

BusinessEntity_n

IBusinessSchema_n

...

CRUD expressions

1

*

1

*

Figure 40. Class diagram of DACC.

services include the ones related to the access modes and also the ones related to

complementary services such as instantiation of Business Entities.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

82 | P a g e

Access to Business Logic

Business Logic is not directly accessed from the DACC outside. The access to entities contained

in the Business Logic, such as Business Entities, is managed by an entity herein known as

Manager.

Business Logic

The Business Logic is a container where Business Entities and CRUD expressions are kept and

maintained in the client-side of the DACA. Business Entities and CRUD expressions are

dynamically inserted and removed from Business Logic in accordance with the established

permissions and, therefore, in accordance with the FGACP. In association with each Business

Entity there is a set of CRUD expressions that are made available to be executed using the Direct

Access Mode of CLI.

Figure 40 presents the class diagram of the DACC. The Business Manager is the top component

and the Business Logic is the bottom component. These components, as we will show, are loosely

coupled to allow a seamless dynamic adaption process of Business Logic at runtime without raising

any runtime exception. Hereafter, each component is described.

4.3.1.1 Business Manager

The Business Manager, see Figure 40, is a component responsible for providing several services

organized in two main types of functionalities:

 a functionality to implement the adaptation process of Business Logic to implement the

FGACM;

 a functionality to allow application tiers to order the execution of CRUD expressions on

their behalf.

 Next follows a thoroughly description for each entity of the Business Manager.

Manager

From application tiers perspective, the Manager is the entry point of the DACC. The DACC is

instantiated through the getInstance method. This method has as arguments the user

authentication, the url to the host RDBMS (Figure 37: 8), the url to the Policy Manager (Figure

37: 2) and a condition to evaluate if Business Logic is to be rebuilt. This last argument is

important mainly during the development process of application tiers to avoid unnecessary

rebuilding processes of the Business Logic. After the initiation of the instantiation process, the

sequence to be followed is the one described in4.2.2. Manager implements IManager interface,

which implements the IAdapation and the IUser interfaces

IAdaptation

The IAdaptation interface provides services for the adaptation process of DACC or, in other

words, the interface provides services to keep Business Logic aligned with the established

metadata of FGACM. This interface is implemented as a socket (Figure 37: 4) to allow the

adaptation process to be carried out by system processes running in different space memories

even in other computers as shown in Figure 37. addCrud and removeCRUD are used to grant and

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

83 | P a g e

deny permissions to execute CRUD expressions on Business Entities. addBusinessSchema and

removeBusinessSchema are used to build and remove typed objects (Business Entities

implementing Business Schemas) responsible for enabling the execution of CRUD expressions

on Business Schemas.

IUser

The IUser interface provides a single method, getBusinessSession, to create a new session. A

session is mainly characterized by owning a private database connection represented by the

Connection interface described in 2.3.3. Then, through sessions, Business Entities may be

instantiated and CRUD expressions are executed.

ISession

The ISession interface provides two methods – businessEntity and releaseBusinessSession.

businessEntity

The businessEntity is a generic method used to create new instances of any Business Entity.

It is defined as a generic method to promote two important aspects: first, with the

implemented approach, only one method is needed to instantiate any Business Entity;

second, the instantiation process is type-safe. These two aspects are important because

Business Entities are not defined at compile time. businessEntity accepts a Business

Schema and a CRUD expression identification as arguments and returns an instance of a

Business Entity that implements the Business Schema provided as argument. Basically, the

businessEntity operation follows the sequence next described:

 Business Logic is searched to find if there is a Business Entity implementing the

requested Business Schema;

 If it there is not, an exception is raised. It means that the user is not authorized to

use the requested Business Schema;

 Otherwise;

o It is checked if the user has permission to use the requested CRUD expression on

that Business Entity;

o If it has no permission, an exception is raised;

o Otherwise:

 The Business Entity (class) is loaded into memory;

 Through reflection, an instance of Business Entity is created;

 An instance is returned to the application tier.

This strategy clearly implements a loosely coupled dependency between Business Manager

and Business Logic which is an essential issue to allow the dynamic adaptation of Business

Logic. This approach was used for the first time in [Pereira, '12b] and then reused in

[Pereira, '13b; Pereira, '13d]. Beyond the dynamic adaptation, this loosely coupled

dependency also allows the development process of application tiers to be independent

from the implementation of Business Entities. All programmers need are the data structures

built from the metadata of FGACM extracted during the Extraction phase.

releaseBusinessSession

The second method, releaseBusinessSession, is used to release a session being used. There is

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

84 | P a g e

no guide to what to do with the connection object. Anyway, the establishment of

connections with RDBMS is widely known as being non-negligent regarding the time

consuming and the CPU consuming. As such, it is recommended to use a pool of connections

to avoid the overhead induced by the waste of resources when connections are activated

and deactivated. In case of not being possible to develop a manager for the pool of

connections, there are some API providing this type of service, such as [Oracle, '12d;

Waldman, '12].

ITransaction

ITransaction interface provides all the required services to manage database transactions. The

interface is defined at the Session level because transactions are managed at the connection

level. This means that each connection, at any time, may only have one active transaction.

BusinessEngine

The Business Engine is another key component in the DACC. The Business Engine is responsible

for managing the contents of Business Logic: Business Entities and CRUD expressions. For

example, regarding the Business Entities, Business Engine automatically creates the source

code for them from Business Schemas, compiles the source code and stores them inside the

Business Logic. The Business Engine is the entity responsible for keeping Business Logic

updated and in accordance with the established metadata for the FGACM

4.3.1.2 Business Logic

The Business Logic is mainly composed by two types of entities: CRUD expressions to be made

available to application tiers and Business Entities to be made available to application tiers to

manage the execution of CRUD expressions on their behalf. CRUD expressions and Business Entities

are dynamically inserted and removed from the Business Logic at runtime to address evolving

FGACP. The dynamic adaptation and the implementation of FGACM are two fundamental

dimensions of the DACA each one appealing to different needs. While CRUD expressions are

basically Strings, Business Entities are classes and, therefore, are more complex entities. Next

follows a more detailed description of the Business Logic implementation.

4.3.1.2.1 General Approach for the Business Logic

In chapter 2 a description is given for CLI and also for the functionalities of JDBC. JDBC class

diagrams are presented in Figure 18, Figure 19, Figure 20, Figure 21 and Figure 22. Architecture of

JDBC, and CLI in general, clearly does not promote the development of business tiers driven by

dynamic FGACP. Next follows a detailed explanation for the approach that has been used on the

Business Logic sub-component to implement dynamic FGACM

Dynamic Adaptation

When the focus is the implementation of FGACM, dynamic adaptation is about the continuous

updating process of FGACM in accordance with the established metadata of FGACM for each

user. This means that the Business Logic is dynamically built from scratch and thereafter

continuously updated in accordance with the defined FGACM for each user. One of the

possibilities to address this requirement is the use of complementary components addressing

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

85 | P a g e

models@run.time. Components based on models@run.time have the ability to be continuously

adapted at runtime to address evolving needs.

Access modes of CLI

CLI ar not tailored to address any kind of access control. They have a fixed set of services

allowing programmers to freely access data in RDBMS. To tackle this gap, the only possibility to

implement FGACM on CLI is by wrapping and adapting the two access modes of CLI in

accordance with the FGACP.

Thus, the dynamic adaptation of the access modes provided by CLI is the key aspect to be

addressed to promote the implementation of dynamic FGACM.

4.3.1.2.2 Architecture

Architecture of the Business Logic is now described. It is represented by a model and it and some

services are configurable to address FGACM. Figure 41 shows the class diagram for Business

Entities driven by FGACM and Figure 42 shows the class diagram for LMS also driven by FGACM.

These diagrams are clearly derived from the CRUD-Model previously presented. Some adaptations

were enforced to allow the implementation of FGACM.

BusinessEntity

Business Entity is the fundamental software artifact of the Business Logic. Business Entities are

programming classes responsible for the execution of CRUD expressions. They are formalized

through a model represented in Figure 41 and are the entities dynamically built at runtime to

implement FGACM. A Business Entity accepts at instantiation time a connection to the host

database (DbConn) and the CRUD expression to be executed. Each Business Entity implements

one Business Schema. Business Schemas are represented by programming interfaces and are

herein referred to as IBusinessSchema interface.

IBusinessSchema

IBusinessSchema characterizes the services to be provided by Business Entities. There are

three facets:

 one for Select expressions: comprises IExecute and ILMS interfaces;

 one for Insert and Update expressions: comprises IExecute, ISet (optional) and IResult

interfaces;

 one for Delete expressions: comprises IExecute and IResult interfaces.

IExecute

IExecute has two facets:

 one for the closed CRUD Schema approach (only one execute method is implemented

except the last one)

 another for the open CRUD Schema approach (any number of overloaded execute

methods).

The execute methods are responsible for the execution of CRUD expressions and therefore to

control the use of the Direct Access Mode of CLI. The arguments are used for setting the runtime

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

86 | P a g e

values for clause conditions of all types of CRUD expressions. The last method cannot be used in

the closed CRUD Schema approach because it behaves as an unbounded overloaded method. A

method with the signature execute(in params[]: object) allows the caller to pass any number of

parameters and of any data type, this way being in disagreement with the closed CRUD Schema

concept.

IResult

The IResult interface provides a method for retrieving the number of affected rows as a direct

consequence of an Insert, Update or Delete expression execution through the Direct Access

Mode.

ILMS
IResult

+execute()
+...()
+execute(in param_1,...,param_n)
+execute(in params[] : object)

«interface»
IExecute

closed approach: only one method except the last one.
open approach: any number of overloaded methods.

#BusinessEntity(in conn : DbConn, in crud : string)

BusinessEntity

Only if Select

Only if not Select

«interface»
IBusinessSchema

+set()
+...()
+set(in param_1,...,param_n)
+set(in params[] : object)

«interface»
ISet

Only if Insert
or Update

Figure 41. Business Entity class diagram.

«interface»
ILMS

IDelete
IUpdate

IInsert

IRead
IForwardOnly

Only if LMS is readable and
only readable attributes

Only if LMS
is deletable

Only if LMS is updatable and
only updatable attributes

Only if LMS is insertable and
only insertable attributes

Only if LMS is
forward-only

IScrollable

Only if LMS
is scrollable

Figure 42. ILMS class diagram for LMS.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

87 | P a g e

ISet

ISet has two facets:

 one for the closed approach (only one set method is implemented except the last one);

 one for the open approach (any number of overloaded set methods).

The set methods are used to set the runtime time values for column sets of Insert and Update

expressions.

ILMS

ILMS interface is used to implement FGACM on the Indirect Access Mode of CLI and also to

define the scrolling policy, see Figure 42. Unlike the approach followed in the modelization

process and in the componentization process of CLI, each action (read, update, insert and

delete) is individually configured in accordance with the established access control policies, as

the example shown in Table 3. ILMS comprises 6 sub-interfaces, IRead, IUpdate, IInsert, IDelete,

IForwardOnly and IScrollable. Next follows a description for each sub-interface.

IRead

The IRead interface provides methods to only read the authorized attributes. The attributes

that are not authorized to be read cannot belong to the IRead interface.

IUpdate

The IUpdate interface is present only if the update protocol is authorized. IUpdate interface

provides methods to only update the authorized attributes. The attributes that are not

authorized to be updated cannot belong to the IUpdate interface. Additionally, IUpdate

interface comprises the required methods for managing the update protocol – start and

commit updates.

IInsert

The IInsert interface is present only if the insert protocol is authorized. IInsert interface

provides methods to only insert the authorized attributes. The attributes that are not

authorized to be inserted cannot belong to the IInsert interface Additionally, it comprises

the required methods for managing the insert protocol – start and commit insertions.

IDelete

The IDelete interface is present only if the delete protocol is authorized. IDelete interface

provides methods to delete rows of LMS.

IFowardOnly

The IForwardOnly interface comprises all the methods associated with forward-only LMS.

IScrollable

The IScrollable interface comprises all the methods associated with scrollable LMS.

This presentation of ILMS and its sub-interfaces clearly shows that the implemented FGACM is

clearly defined at the attribute level and by each type of operation (read, update, insert and

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

88 | P a g e

delete). Therefore, the authorization is controlled attribute by attribute and operation by

operation on each attribute. This is the finest granularity that could be provided at the level of

LMS. Delete is the only operation that cannot be executed on attribute basis but executed as an

atomic action on all attributes.

4.3.1.2.3 Adaptation process

The architecture of Business Schemas is flexible to allow the implementation of customizable

 FGACM. The FGACM to be implemented in each Business Entity are inferred by the Business

Engine from Business Schemas, following the next rules:

LMS

If any of IForwardOnly, IScrollable, IRead, IUpdate, IInsert or IDelete interface is implemented,

then an LMS must be instantiated. If IResult or ISet is implemented, then LMS cannot be

instantiated.

Updatability

If any of IUpdate, IInsert IDelete or IResult is implemented, then LMS are instantiated as

updatable. Otherwise, LMS are instantiated as read-only.

Scrollability

If the IForwardOnly interface is implemented, then LMS are instantiated as forward-only. If

IScrollable is implementd, then LMS are instantiated as scrollable.

The adaptation process is accomplished using reflection on Business Schemas to analyze the

implemented interfaces and the methods to be made available to be used in the Indirect Access

Mode of CLI.

4.3.2 Policy Server

The Policy Server is responsible for storing metadata for FGACM and for informing other

components about any modification. From DACC description, we see that there is no imposition to

use any specific security policy. The only imposition is a security policy able to create permissions

based on CRUD expressions executed on Business Schemas. From the main strategies for regulating

access control policies, the use of RBAC to manage access control policies in a centralized way is

widely accepted by RDBMS vendors, such as, for example, Microsoft SQL Server, Oracle and

PostgreSQL. Thus, the choice for a security policy fell on an approach based on a RBAC policy. To

that end, a basic security model was devised and is presented in Figure 43. This security model was

devised to provide the basic mechanisms to support metadata of evolving FGACM. Thereby,

important security issues for real applications, such as separation of duties and data abstraction are

not addressed by this model. It may be used in real applications but that is not its goal. The main

entities are: subjects (Sub_Subject), sessions (Ses_Session), client applications

(App_Application), roles (Rol_Role),

Business Schemas (Bus_BusinesSchema), CRUD expressions (Crd_Crud), authorizations

(Aut_Authorization) and delegations (Del_Delegation). The correspondent logic model is presented

in Annex A where a detailed description about the logic model is provided. Basically, a subject

starts an application and a session is created. Then, the subject’s roles are identified and the

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

89 | P a g e

correspondent granted permissions are identified and metadata of FGACM are sent to DACC. DACC

dynamically built the FGACM. A role is activated if and only if:

 the role is assigned to an application that is also assigned to the subject;

 the subject has authorization to play the role or the role has been delegated to him. Roles

are organized in general hierarchies to support the concept of multiple inheritance which

promotes the ability to inherit permissions from several roles.

*

Sub_Subject

App_Application

Rol_Role

Bus_BusinessSchemaCrd_Crud

Aut_Authorization

Del_Delegation

Ses_Session

*

1

11

11

1

1

*

*

*

*

*

*1

1 1

1

*

*

*

1

1

1

*

Figure 43. Access control Meta-model.

4.3.3 Policy Manager

The Policy Manager is a broker between the DACC and the Policy Server. Basically, the Policy

Manager is responsible for sending to the DACC all the required metadata of FGACM to keep

enforcement mechanisms aligned with the established FGACP. Now we discuss and present the

methodology used to keep enforcing mechanisms updated with the established metadata, even

when they evolve. The explanation is mainly based on Figure 37. Basically, the adaptation process

has two moments: initialization and modification.

Initialization

Initialization is triggered when DACC start running. When DACC start running Business Logics

are empty of Business Entities and CRUD expressions. Hence, in a first step, metadata of FGACM

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

90 | P a g e

need to be deployed to DACC. From them FGACM are automatically built, implemented and kept

in Business Logic.

Modification

Modification is related to any modification in the metadata of FGACM kept by Policy Servers.

Modifications in the metadata are captured by database triggers, which notify the Policy

Watcher about the occurrence. The Policy Watcher becomes aware of the new state of the

stored metadata and informs the Policy Manager. The Policy Manager checks all sessions

(DACC) to be updated and, for each one, sends the correspondent metadata through the

IAdaptation interface, see Figure 40. As a final note, DACC are dynamically adapted when

modifications occur on delegations and on authorizations, which are the most frequent cases. If

modifications occur in Business Schemas or CRUD expressions, they will only be reflected

thereafter when their roles are assigned again.

4.4 Summary

The DACA was presented and described in this chapter. The DACA comprises three main

components: the Policy Server, the Policy Manager and the DACC. The Policy Server stores

metadata of FGACM; the DACC is responsible for the dynamic implementation of FGACM in the

client-side applications and the Policy Manager is a kind of proxy placed between the DACC and the

Policy Server. Whenever the metadata of FGACM is updated, the DACA ensures that the

correspondent mechanisms are automatically implemented in all running client-side systems. The

DACA operation is split in three phases: the configuration phase to keep metadata of FGACM

updated, the extraction phase to convey to programmers of application tiers a complete awareness

about the implemented FGACM and, finally, the runtime phase where FGACM are dynamically built

and kept updated in accordance with the established policies. Additionally, the services provided by

the DACC are aligned with those provided by CLI conveying this way a similar user experience

when compared with the CLI one. Another relevant aspect is the deployment process of CRUD

expressions at runtime to DACC. This deployment process prevents programmers from writing

CRUD expressions, which is in accordance with the previously announced security preoccupation.

The next chapter presents a proof of concept for the DACA, based on Java, JDBC, a RBAC model

and a database relying on SQL Server.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

91 | P a g e

5 Proof of Concept
This chapter presents a proof of concept based on Java, JDBC (sqljdbc4), Microsoft Northwind1

database and using a RBAC policy. The proof of concept is available from here 2 and it is based on a

scenario which intends to evaluate DACA against the research questions, identified in section 1.3.

The main research question to be answered is: does DACA dynamically, at runtime, implement

FGACM on business tiers and keep them updated when the policies evolve over time? If the answer

is yes, then there are three additional second level research questions to be answered. The first one

is related to security issues and stresses the need to evaluate if the DACA effectively controls the

CRUD expressions being used. The second one is related to the possibility of providing a complete

awareness about the established FGACM while programmers are writing source code for the

application tiers of database applications. The third one is related to the possibility of keeping the

advantages of CLI when they are used to enforce dynamic FGACM.

To answer these research questions some steps need to be accomplished. In a first step, it is

necessary to build a platform based on DACA. The platform comprises all the basic components of

the DACA and it is used to develop database applications based on DACA. Then, a database

application based on the DACA is built. At this stage it is possible to answer the main research

question and the first and second research questions of the second level. The third research

question of the second level is partially answered but an additional step is needed to evaluate the

decay of performance as consequence of the use of FGACM. To accomplish this task, a performance

assessment is necessary to compare the responsiveness of solutions without access control and the

responsiveness of the same solutions but now with access control based on the DACA. Both

solutions must use standard CLI.

This chapter is organized as follows. In section 5.1 a platform based on the DACA is presented

an the correspondent evaluation is made regarding the main question, the first second level

question and part of the second question of the second level. In section 5.2, a performance

assessment is carried out.

5.1 The DACA Platform

This section presents a platform based on the DACA. It is organized as follows: a scenario is

presented to frame the context in which the proof of concept runs, then a proposal is presented for

1
 http://www.microsoft.com/en-us/download/details.aspx?id=23654

2 Windows remote desktop connection - url: ned.av.it.pt; username: DACA; password: guest

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

92 | P a g e

the awarability of FGACM, then a proposal is presented for Policy Configurator (divided in two sub-

sections) and then a database application based on the DACA is also presented.

5.1.1 Scenario

A scenario based on the DACA, beyond the constituent the DACA components, needs to provide a

context from which the answers to research questions arise. Thus, beyond the constituent DACA

components, the scenario also includes a database application. Some configuration is also defined,

as seen in Figure 44.

Policy Configurator

Security Keeper

Policy Server

Policy
Watcher

Policy
Manager

Security Configurator

Policy ExtractorACP
Awareness

DbProof (User_B)

DACC

DbProof (User_A)

DACC

DbProof (User_C)

DACC

Config.
Files

Figure 44. Block diagram for the proof of concept.

Next follows the description of the implemented scenario.

Policy Configurator

A simple Policy Configurator was built. It is responsible for defining the initial metadata for

FGACM and also to enforce modifications in the metadata of FGACM while database applications

are running. These aspects are essential to evaluate the DACA against the main research

question and against the first research question of the second level. Two components were

built: Security Configurator, to set the initial metadata, and Security Keeper to enforce

modifications on metadata of FGACM.

Policy Extractor

A Policy Extractor was built to extract the necessary metadata for the building process of data

structures responsible for the awareness context of the implemented FGACM. The collected

results will answer the second research question of the second level.

Database application

A database application, herein known as DbProof, relying on Microsoft Northwind database,

was built. DbProof uses a component based on the DACC to dynamically implement the

established FGACM. Users are allowed to ask for the execution of CRUD expressions on Business

Schemas. Whenever a permission is granted, CRUD expressions are executed, otherwise an

error is raised. In order to visualize the granted permissions, an image similar to Figure 45 is

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

93 | P a g e

provided. Basically, whenever a modification in the metadata of FGACM is carried out through

Security Keeper, the image will reflect the new set of permissions.

There are two points from which the main research question may be evaluated:

interactively and through direct observation.

Interactively

Users can modify metadata of FGACM and then evaluate if their permissions have been

updated in the DbProof. The feedback may be obtained by visualizing the state of

permissions graphically presented on DbProof or users may try to execute CRUD

expressions on Business Entity.

Direct observation

Users can modify metadata of FGACM and then visualize the contents of Business Logic.

When the metadata is modified, the contents of Business Logic need to be in accordance

with the established metadata.

A scenario was defined and built. It comprises several entities aimed at creating an

environment where the DACA is evaluated. The main entities are:

Roles

Five roles were defined and organized in an hierarchical structure, as shown in Figure 45.

The hierarchical structure is not essential for the thesis but it will provide feedback about

propagation of permissions. A set of permissions is initially given to each role. This topic is

described in the next paragraph.

Role_A

Role_B1 Role_B2

Role_C21 Role_C22

Figure 45. Hierarchy of roles.

Permissions

Permissions were defined and assigned to roles as shown in Table 4. A permission

comprises a Business Entity that implements a Business Schema and the associated CRUD

expressions. From Table 4 we see that there are five permissions each one identified by its

Business Shema, ICat_i, IPrd_s, IPrdCat_s, ICat_s and ISup_s, and the associated CRUD

expressions. Each CRUD expression is identified by a unique identification (id) and also by a

reference (Ref). These references are used to create the data structures for the awareness

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

94 | P a g e

environment about the implemented FGACM. All LMS, except ICat_s, are read-only. ICat_s is

readable, insertable, updatable and deletable on all attributes.

Users

Three users were defined (user_A, user_B and user_C) to evaluate if FGACM are built and

kept updated by user. As each user may play different roles, FGACM need to be built and

kept updated by the roles assigned to each user. By default, user_A and user_B play Role_B2,

Role_C21 and Role_C22. By default, user_C play Role_B1. Moreover, Role_B1 may be

assigned and unassigned by delegation to User_A and User_B, and may be assigned and

unassigned to User_C by authorization. Role_B2, Role_C21 and Role_C22 may be assigned

and unsigned to User_A and User_B by authorization and assigned and unassigned to User_C

by delegation.

Role BS
CRUD

Id Ref Expression

Role_B1 ICat_i 1 all Insert into Categories

 values(?,?,?)

Role_B2 IPrd_s 2 all Select * from Products

 3 byId Select *

 from Products

 where productId=?

 4 bySupplierId Select *

 from Products

 where supplierId=?

 IPrdCat_s 5 byCategoryId Select p.*, c.categoryName,

 c.Description

 from Products p, Categories c

 where p.CategoryID=c.CategoryID

Role_C21 ICat_s 6 all Select *

 from Categories

 7 byId Select *

 from Categories

 where categoryId=?

Role_C22 ISup_s 8 all Select *

 from Suppliers
Role:

BS:

Id:
Ref:

Expression:

Role reference.

Business Schema reference.

CRUD identification.
CRUD reference.

CRUD expression.

Table 4. Roles and the correspondent permissions for the implemented scenario.

5.1.2 Awareness of FGACM

In this subsection we discuss and present a solution to create in the Integrated Development

Environment (IDE - NetBeans in our case) the data structures to convey a complete awareness of

FGACM to programmers of applications tiers during the development process. The importance of

this aspect is that programmers of application tiers can hardly master access control policies when

schemas of databases and access control policies increase in complexity. This knowledge, when

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

95 | P a g e

integrated in the IDE, eases the development process of application tiers. In a first approach this

stage seems useless because the DACC could eventually be automatically adapted to support all

permissions and, therefore, to support all roles. Unfortunately, this approach cannot be followed

because the DACC is agnostic regarding the adopted access control policy. DACC does not recognize

the concept of roles. To overcome this difficulty, a tool, herein known as the Policy Extractor (see

Figure 44), was designed to automatically extract and create data structures organized by roles and

their permissions for the application under development. There were several options to formalize

the data structures. Among them two were the favorite candidates: XML representation and object-

oriented model representation. In spite of XML advantages, mainly for its technology independence,

we chose to use the second option because it is much easier and faster to implement. The meta-data

is built from the following data retrieved from Policy Servers:

 The supported roles from Rol_Roles;

 The granted permissions for each role from Bus_BusinessSchema and Crd_Crud.

Figure 46 shows the data structures for Role_B2. The data structures for Business Schemas are

not shown but they are pure java interfaces easily inferred from Figure 41 and Figure 42. Basically,

Role_B2 explicitly provides permissions to use two Business Schemas, IPrd_s and IPrdCat_s and to

execute CRUD expressions identified by 2, 3 and 4 on IPrd_s and the CRUD expression identified by

5 on IPrdCat_s. The names used to name roles, Business Schemas and identifications of CRUD

expressions are retrieved from Rol_Role, Bus_BusinessService and Crd_Crud, respectively.

Moreover, inheritance is supported by supporting role hierarchies as foreseen by the RBAC. In case

of Role_B2, it inherits all permissions from Role_C21 and Role_C22 (Figure 46: line 11 – extends

Role_C21, Role_C22). Additionally, programmers of business tiers do not have access to CRUD

expressions, which is a key issue when the schemas of databases are themselves a part of the

information to be protected.

The meta-data defined in Figure 46, in association with the architecture of the DACC, conveys

to programmers of application tiers a complete awareness about the granted permissions for each

role. As an example, Figure 47 shows the source-code for a subject playing the Role_B2. From the

selected role (Figure 47: line 41 - Role_B2), programmers are statically driven to select one of the

supported Business Schemas of Role_B2 (Figure 47: line 41 – RoleB2.icat_s). Then, programmers

are semantically oriented to select one of the CRUD expressions supported by the selected Business

Schema (Figure 47: line 41 - Role_B2.icat_s_byId). Any security violation at the level of Business

Schemas is checked at development time and source-code will not compile if some security

violation is detected. After being deployed, FGACP may evolve and an exception is raised if, for

some security reason, this role is not assigned anymore. The selected CRUD expression is executed

and one runtime parameter is used (Figure 47: line 43). If a row has been selected (Figure 47: line

44), programmers can choose any action supported by the Business Schema to access the contents

of LMS (pop-up window partially shows all actions, from Figure 47: line 45). This pop-up window

also conveys to programmers complete and type-safe awareness about the actions supported on

LMS of ICat_s, independently from the CRUD expression being executed. The pop-window shows

that subjects playing Role_B2 can read, update and insert all attributes of table Categories. To

completely separate methods from IRead, IUpdate and IInsert, we suggest the use of a unique

prefix: ‘r’, ‘u’ and ‘i’, respectively, for each method.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

96 | P a g e

Figure 46. Role_B2 definition.

Figure 47. Programmers awareness about FGACM for Role_B2.

5.1.3 Security Configurator

In this implementation, the Security Configurator has no GUI. It is a component that reads meta-

data from software artifacts (classes and interfaces) to partially fill the Policy Server with the

needed metadata for one database application. We have not addressed the configuration process of

subjects because we consider that the new key concept introduced by the DACA, that deserves

more attention, is the concept of permission which is based on Business Schemas and on CRUD

expressions. Next follows the main software artifacts that were developed for the implemented

scenario.

IApplication

 IApplication, see Figure 48, defines the application name and the implemented root roles. In

this scenario there is only one root role: Role_A.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

97 | P a g e

Figure 48. Application definition.

Role_B2

IRole_B2, see Figure 49, defines all Business Schemas supported by Role_B2: IPrd_s and

IPrdCat_s. Additionally, Role_B2 extends Role_C21 (IRole_C21) and Role_C22 (IRole_C22).

The definition of the remaining roles follows a similar approach.

Figure 49. Role_B2 definition.

IPrd_s

IPrd_s, see Figure 50, defines the Business Schema IPrd_s in terms of the implemented

interfaces and in terms of the supported CRUD expressions. IPrd_s implements LMS

(IExecute, IScrollable and IRead) and supports CRUD expressions 2, 3 and 4. The definition

of the remaining Business Schemas follows a similar approach.

Figure 50. Business Schema IPrd_s definition.

IRead

IRead, see Figure 51, defines the getter methods to read data from the LMS in accordance

with the established FGACP for IPrds_s. In this case all attributes are readable.

Figure 51. IRead definition.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

98 | P a g e

ICrud

ICrud, see Figure 52, defines the CRUD expressions to be supported by all Business

 Schemas. Each CRUD expression is identified by its name (String variable), which has been

defined in Table 4 as being the references of CRUD expressions.

Figure 52. Definition of all CRUD expressions.

Based on this information, Security Configurator automatically fills: App_Application, AppRol,

Rol_Role, RolBus, Bus_BusinessSchema, BusCrd, Crd_Crud and also Aut_Authorization (set to yes by

default). AppRol, RolBus, BusCrd are not represented in Figure 43. These tables are used to

decompose M:N relationships between tables identified by their prefixes.

5.1.4 Security Keeper

The Security Keeper (part of Policy Configurator, see Figure 44) was designed to ease the process of

modifying, at runtime, the granted roles to users which are stored in the Policy Server. To change

role assignment for each one of the three users, a simple GUI application is used, see Figure 53.

Basically roles are automatically granted and denied by checking and unchecking, respectively, the

shown check boxes for each user, in accordance with the established scenario.

Figure 53. Security keeper.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

99 | P a g e

5.1.5 DbProof

The final component is DbProof, see Figure 54. DbProof is a database application based on the

DACA. The business logic is dynamically built and updated at runtime from established metadata of

FGACM. The DbProof and the Security Keeper are simultaneously used to assess if database

applications based on the DACA effectively, in real situations, keep FGACM aligned with evolving

FGACP. From the DbProof, we may choose one of the three supported users. Then Business

Schemas and CRUD expressions are selected to be executed one at a time. If permission is granted,

the CRUD expression is executed, otherwise an error message is shown. Figure 54 is the default

context of user A. Green circles (lighter gray for black and white prints) are for granted roles and

red circles (darker gray for black and white prints) are for denied roles. The colors are updated

whenever the assignment state of roles is modified. It also shows that Business Schema ICat_s and

CRUD expression (allFromCategories) are selected and have been already executed. ILMS of ICat_s

Figure 54. DbProof.

Figure 55. Business Schemas implemented for user User_A.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

100 | P a g e

Figure 56. LMS interfaces for Cat_s Business Schema.

is also updatable, insertable and deletable and, therefore, some additional actions are available at

the bottom of the GUI. The dynamic enforcement of FGACM is directly observable using a common

unzip tool to analyze the contents of the files (Business Logic - Jar file) containing the Business

Entities. Business Entities are inserted and removed in accordance with the granted and denied

roles to users. Figure 55 partially presents the contents for the Business Logic belonging to User_A

when roles Role_B2, Role_C21 and Role_C22 are granted. Business Logic contains four folders, each

one for each Business Schema: ICat_s, IPrdCat_s, ISup_s and IPrd_s. Figure 56 presents the LMS

interfaces of Business Schema ICat_s and also the correspondent Business Entity, Cat_s. The

remaining interface, IScrollable, is used from a pool shared by all Business Schemas and, as such, it

is not present in this folder.

5.2 Performance Assessment

The performance assessment is focused on evaluating and comparing the performance of the DACC

based on the DACA and the performance of solutions based on a standard CLI API and without any

access control mechanism. Java, JDBC and SQL Server 2008 have been chosen as the basic core

technologies to support the assessment. The test-bed relies on a PC Asus-P5K-VM, Intel Duo Core

E6550 @2.33 GHz, 4.00 GB RAM, Windows XP Professional Service Pack 3, Java SE 7 (1.7.0_22-b13),

JDBC(sqljdbc4) and SQL Server 2008. In order to promote an ideal environment, the following

actions were taken:

 The running threads were given the highest priority;

 All non-essential processes/services were cancelled;

 A new database was created for the running tests;

 For each individual measurement a new table with a different name is created from scratch

to avoid SQL Server to take advantage of any optimization process;

 Some default SQL Server database properties were changed, such as Auto Update Statistics

= false and Recovery Model = Simple, to minimize its overhead.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

101 | P a g e

5.2.1 Methodology

The methodology followed to collect the needed measurements was based on measuring how long

a task takes to execute. To achieve this goal, the method system.nanoTime() was used. In spite of

being a very easy methodology to collect measurements, it conveys an error during the

measurement process. To evaluate the impact of the act of measuring, the collected values showed

that the impact is always under 310ns and that the minimum clock tick is 1ns. From these values,

and in order to ensure that errors were always below 1%, all measurements associated with the

performance assessment were collected with a minimum time span of 31,000ns. In several

situations it was necessary to repeat the same code as often as necessary to get a minimum of

31,000ns. To avoid additional errors with the repeating process, the code was sequentially

repeated and not iteratively repeated. Table 5 presents the general strategy followed to collect and

compute each measurement.

1 repeat 5 rounds

1.2 get a new container to keep the collected measurements

1.3 prepare initial conditions

1.4 repeat: 100 cycles

1.4.1 start timer

1.4.2 run scripts (must take at least 31,000ns)

1.4.3 stop timer

1.4.4 keep elapsed time if it is one of the 5 best in this cycle

1.4.5 release all unnecessary objects

1.4.6 garbage collector activation

1.4.7 sleep 100ms (other system processes may need to run)

2 keep the best average time of the 5 rounds

Table 5. Strategy to collect and compute measurements.

From the performance assessment point of view, DACC may be split into two main phases: the

creation phase and the execution phase. The creation phase is related to activities that have no

equivalent on standard CLI. The execution phase comprises the activities that are shared by

standard CLI and by DACC.

Creation phase

This creation phase comprises activities such as the instantiation of DACC, building process of

Business Entities and instantiation of Business Sessions and Business Entities. All activities,

except the instantiation of Business Sessions and Business Entities occur only once or very

sparsely and therefore their impact has not been considered to be evaluated in this research. On

the other hand, instantiation of Business Sessions and Business Entities occur very frequently

conveying an overhead the impact of which must be evaluated. The collected measurements

were obtained using a case study based on a scrollable and updatable LMS. This LMS type is the

one that comprises more methods and more data structures. IRead, IUpdate and IInsert were

defined with 25 methods each. In spite of not being a critical aspect, it is expectable that the

complexity of this Business Schema will be above most of the real Business Schemas. The

collected time to instantiate a Business Session (TBS) and a Business Entity (TBW) is presented

in Table 6 a). Instances of Business Entities are herein known as Business Workers.

Execution phase

The execution phase is mainly focused on evaluating the overhead induced by the invocation of

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

102 | P a g e

Business Entities’ methods. Two main approaches may be followed to carry out the

performance assessment:

 Use a DACC and assess it against a standard JDBC component based on scenarios and

case studies;

 Develop a general environment to evaluate the overhead induced by the wrapping

process implemented by each method of each Business Entity.

After some reflection, it came clear that the latter approach would bring a significant advantage

over the former approach. Methods of Business Entities are general and not tied to any

particular use case. Moreover, their use and their functionalities are clearly stated, leading to

the possibility of developing a mathematical model to express and evaluate its impact on any

possible scenario: the overhead is only dependent on the additional time to call the wrapping

method. Thus, if the overhead is known for all methods of Business Entities in a running context

(CPU, Operating system, etc.), it will be possible to mathematically compute the induced

overhead for any Business Entity running on that context.

The activities related to the execution phase are basically the invocation of Business Entities

methods. Each Business Entity method wraps a block of code of the standard CLI. Thus, the

overhead may be measured by evaluating the time to execute the additional code when using a

Business Entity method. To this end, we introduce the concept of reduced method signature (RMS).

RMS derives from the widespread concept of method signature but it does not include the method

name. All methods of Business Entities are classified in two different groups: methods with a fixed

RMS and methods with a variable RMS. Methods with a fixed RMS are, by far, the major group. The

only method that does not have a fixed RMS is execute with parameters. In order to predict the

overhead induced by every wrapping method, it was decided to measure the finest grain overhead

induced by each possible variation in RMS. Two examples: measure the induced overhead by each

additional argument of any data type and measure the induced overhead by returning any data

type. To achieve this goal, two types of measurements were collected as shown in Table 6 b). TRi

are the collected measurements for methods with no arguments and returning the data types

shown in the column Data type. Examples: void m1() and int m2(). TAi are the collected

measurements for calling a method with 10 arguments of type Data type and returning void. The

contribution of each individual argument is computed as (collectedMeasurement-TR1)/10. This

approach was validated by carrying out some additional tests using less than 10 and more than 10

arguments and with and without a returning value. From Table 6 it is possible to compute the

absolute overhead induced by any RMS running on the same context and, therefore, of any method

of each Business Entity.

In spite of being important, the data shown in Table 6 do not give any insight about their

TBS TBW Data type TRi TAi I Data type TRi TAi i

1023 387 void 14 - 1 string 27 98 6

a) byte 26 89 2 float 45 132 7

 short 26 114 3 double 45 132 8

 int 26 91 4 boolean 26 89 9

 long 42 129 5 char 28 103 10

 b)

Table 6. Collected measurements for a) TBS, TBW and for b) RAM in ns.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

103 | P a g e

S Description Algorithm Typical DACA usage Overheads
S
S

r(
R

,A
,L

) Assess SSr. All

attributes from

all rows are

read from the

LMS.

Create new table(*)

Insert R rows

Start timer

Select all rows

For each row

 Read all attributes

Stop timer

[SQL: Select * from table]

// create business session

// instantiation of business worker a

a.execute();

while (a.moveNext()) {

 id1 = a.id1();

 // more attributes

}

//release business session

TBS+

TBW+

TR1+

(TR9+

 TR4
 *nAtt)

*nRows

S
S

i(
R

,A
,{

F
o

U
p
,S

cU
p
})

Assess SSi. All

attributes of all

rows are set

one by one in

the LMS and

committed to

the database.

Create new table(*)

Start timer

Select all(0) rows

For each new row

 Insert all attributes

 Commit

Stop timer

[SQL: Select * from table]

// create business session

// instantiation of business worker a

a.execute();

while (a.moveNext()) {

 a.beginUpdate();

 a.id1(id1);

 // more attributes

 a.updateRow();

}

//release business session

TBS+

TBW+

TR1+

(TR9+

 TR1+
 (TR1+TA4)

 *nAtt+

 TR1)

*nRows

S
S

u
(R

,A
,{

F
o

U
p
,S

cU
p
})

Assess SSu. All

attributes of all

rows are

updated one by

one in the LMS

and committed

to the database.

Create new table(*)

Insert R rows

Start timer

Select all rows

For each row

 Update all attributes

 Commit

Stop timer

[SQL: Select * from table]

// create business session

// instantiation of business worker a

a.execute();

while (a.moveNext()) {

 a.beginInsert();

 a.id(id);

 // more attributes

 a.insertRow();

}

//release business session

TBS+

TBW+

TR1+

(TR9+

 TR1+

 (TR1+TA4)

 *nAtt+

 TR1)
*nRows

S
S

u
(R

,A
,{

F
o

U
p
,S

cU
p
})

Assess SSd. All

rows are

deleted one by

one from the

LMS and

committed to

the database.

Create new table(*)

Insert R rows

Start timer

Select all rows

For each row

 Delete row

 Commit

Stop timer

[SQL: Select * from table]

// create business session

// instantiation of business worker a

a.execute();

while (a.moveNext()) {

 a.deleteRow();

}

//release business session

TBS+

TBW+

TR1+

(TR9+

 TR1+)

*nRows

Note: (*) in case of join, the second table is also created with 5 attributes and

with the same number of rows as the main table.

Table 7. Scenarios for the Select expression: algorithms and typical component usage.

relative impact on real cases. The impossibility to assess all cases led to a survey to define some

scenarios that could be representative of common situations and, above all, that could give a

perspective about DACC behaviour regarding its impact on the overall performance. To this end,

we needed to identify the relevant aspects directly related and controlled by application tiers that

could influence a business tier performance based on DACA. Based both on empirical experiences

and on knowledge about DACC, the aspects considered relevant (and confirmed in Figure 57, Figure

58 and Figure 59) were: types of CRUD expressions (Select, Insert, Update, Delete), types of LMS

(Forward-Only and Read-only (FR), Forward-only and Updatable (FU), Scrollable and Read-only

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

104 | P a g e

 Description Algorithm Typical DACA usage Overheads
S

I

Assess SI.

Rows are

inserted one by

one in the

database

through the

execution of a

parameterized

Insert

statement.

Create a new table

Start timer

Create statement

for each row

 insert all attributes

Stop timer

[SQL: Insert into table values

(att…)]

// create business session

// instantiation of business worker b

b.execute(att1, att2, …, attn.);

// more inserts

//release business session

TBS+

TBW+

(TR1+TA4)*

 nAtt*nRows

S
U

Assess SU.

Rows are

updated one by

one in the

database

through the

execution of a

parameterized

Update

statement.

Create a new table

Insert R rows

Start timer

Create statement

For each row

 Update all attributes

Stop timer

[SQL: update table set (…) where

pk=?]

// create business session

// instantiation of business worker c

c.execute(pk,att2,…,attn);

// more updates

//release business session

TBS+

TBW+

(TR1+TA4)*

 nAtt*nRows

S
D

Assess SD.

Rows are

deleted one by

one through the

execution of a

parameterized

Delete

statement.

Create a new table

Insert R rows

Start timer

Create statement

For each row

 Delete row

Stop timer

[SQL: delete from table where pk=?]

// create business session

// instantiation of business work d

d.execute(pk);

// more deletes

//release business session

TBS+

TBW+

(TR1+TA4)

*nRows

Table 8. Scenarios for the Insert, Update and Delete expressions: algorithms and typical component usage.

(SR), Scrollable and Updatable (SU)), the number of rows to be processed, the number of attributes

of each row and the query complexity. Tests with pre-compiled and compiled-on-the-fly CRUD

expressions were also carried out. Only measurements relative to the pre-compiled CRUD

expressions will be presented because the collected results with compiled-on-the-fly CRUD

expressions were so close that their presentation would not bring any novelty to the final

conclusions. Exogenous aspects such as hardware architecture, hardware components, operating

systems, database servers, middleware software and communication infrastructures were not

considered because their impact is not directly or indirectly dependent on DACC. To address all the

presented aspects, seven main scenarios were defined as presented and described in Table 7: SSr,

SSi, SSu, SSd, SI, SU and SD. Then, for each main scenario, two facets were created to handle different

number of rows, R 𝜖 {1, 5, 10, 25, 50, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000}, and tables

with different number of attributes, A 𝜖 {5, 10, 20}. These facets were defined from empirical

experiences that were carried out to delimit the range of values that could forecast the behaviour of

other scenarios. Additionally, to have an idea about the impact of increasing queries complexity for

the SSr, two queries were defined: one with no joins (NJ - select table.* from table) and another with

a simple join (on their primary keys) comprising two tables (WJ - Select table.* from table, table1

where table.id=table1.id). In this case table1 had a fixed number of 5 attributes. The attributes of all

tables were all defined as being of type integer and not null. They could be of any other data type or

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

105 | P a g e

any combination of several data types. There was no reason to accept or refuse any possibility. All

tables are created with a primary key on the first attribute. A formalization of a general scenario

may be expressed as S(R,A,L) where S is the scenario, A the number of attributes, R the number of

rows and L the type of LMS.

For each scenario, Table 7 and Table 8 present a concise description for the algorithm used to

collect measurements, the source code for the DACC and, finally, the total absolute overhead

induced by each method (nAtt is for the number of attributes, nRows for the number of rows).

Check Table 6 to remember the meanings of acronyms used in column Overheads on Table 7 and

Table 8.

5.2.2 Collected Results

Figure 57, Figure 58 and Figure 59 present the graphics for all scenarios. Three types of

information were selected to be presented: the induced % overhead by DACC, the absolute induced

overhead by DACC (in milliseconds) and the % contribution of each component to the total %

induced overhead (CBS for TBS, CBW for TBW and CSR for the execution phase). The importance of

this information is: 1) the induced overhead cannot be completely understood if only the % values

or only the absolute values are given. They complement each other. 2) The overhead analysis in

components give an insight about its composition opening the opportunity to evaluate the

possibility of taking measures to lessen its impact. Graphics for components overheads do not

present the range 150 till 2000 rows because CSR is practically the only relevant component in that

range, as it may be easily inferred. Additionally, in these graphics, the number of rows is clustered

by the number of attributes.

To completely understand the presented results, some additional information about the

collected measurements is essential:

 Performance decreases from forward-only (Fo) to scrollable (Sc) and from read-only (Ro)

to updatable (Up) LMS. This derives from the fact that database servers create server

cursors, for other LMS than FoRo, with increased management complexity to control client

operations on LMS.

 Performance increases (number of selected rows/second) when the number of selected

rows increases.

 Performance decreases (number of selected rows/second) when the number of attributes

increases.

 Performance decreases (number of selected rows/second) when select statements include

a join.

Another relevant issue is the fact that the absolute overhead value has been formalized for each

scenario, see Table 7 column Overheads. It does not depend on the LMS type even not on the query

complexity: it only depends on the methods used during the execution phase.

To discuss the collected measurements for each scenario, the scenarios were aggregated in

three main groups: 1) SSr; 2) SSu, SSi SSd and 3) SI, SU and SD.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

106 | P a g e

5.2.2.1 Scenario SSr

The graphics for SSr are shown in Figure 57. Figure 57 a), b), c) and d) show the % overhead.

Columns are for Select expressions with no join (NJ) and lines are for Select expressions with a join

(WJ). Each Select expression is executed on tables with 5, 10 and 20 attributes. The behaviour

shows that the % overhead increases from ScUp->FoUp->ScRo->FoRo, when the number of rows

increases, when the number of attributes increases and when Select expressions do not include a

join. The % overhead is minimum for very few number of rows but it may rise till 7% for SSr (2000,

20, FoRo) with no join. We may conclude that the percentage impact of DACC may not be negligible

for some marginal SSr, mainly for FoRo LMS with thousands of rows, conveying the need to proceed

with a previous assessment. Figure 57 e) shows the absolute overhead. It increases with the

number of rows and with the number of attributes reaching about 1.1ms for 2,000 rows and 20

attributes.

a)

b)

c)

d)

e)

f)

Figure 57. Graphics for scenario SSr.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

107 | P a g e

Figure 57 f) shows the overhead components. In critical situations, when the overhead must be

minimized, programmers may also use the individual components. The same instance of Business

Sessions and Business Workers may very often be used over and over, this way avoiding its

correspondent overhead. For example, with 5 attributes the overhead may be reduced from 90%

for 1 row till 50% for 10 rows, which may be considered very significant.

5.2.2.2 Scenarios SSi, SSu and SSd

The graphics for these scenarios are shown in Figure 58. Figure 58 a), c) and e) show the absolute

(columns) and the percentage overhead (lines). The lines represent the combination between each

LMS type (only FoUp and ScUp are allowed) and each possible number of attributes. The general

behaviour

a)

b)

c)

d)

e)

f)

Figure 58. Graphics for scenarios SSi, SSu and SSd.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

108 | P a g e

shows that: 1) the percentage overhead is practically independent of the LMS type; 2) the number

of attributes is only relevant in SSi and SSu; 3) all percentage overheads tend to be stabilized when

the number of rows reaches a certain threshold; 4) the maximum percentage overhead is much

lower than in SSr: maximum 0.2%, 0.16% and 0.02% for SSi, SSu and SSd, respectively; 4) as

expected, the absolute overhead raises with the number of rows and with the number of attributes.

In spite of its low impact, programmers may still act at the level of the overhead components, see

Figure 58 b), d) and f). CBS and CBW together, for low number of rows, spend most of the overhead,

indicating that the overhead, in this range, may be practically eliminated for all SSi, SSu and SSd.

5.2.2.3 Scenarios SU, SI and SD

The graphics for these scenarios are shown in Figure 59. In these scenarios, CRUD expressions

(insert, update, delete) are not executed through an LMS but directly on the database server

Figure 59. Graphic for scenarios SI, SU and SD.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

109 | P a g e

through parameterized CRUD expressions. Figure 59 a), c) and e) show the absolute (columns) and

the % overheads (lines). The general behaviour is not aligned with the previous ones. The %

overhead does not increase when the number of rows increases but converges to a constant value

in each scenario. Collected measurements range from 0.3% till 0.03%. In critical situations, the

maximum values may be reduced from 75% till 98% if CBS and CBW are carefully used, see Figure

59 b), d) and f).

5.3 Results Evaluation

This section is focused on evaluating the obtained results to verify how the research questions have

 been fulfilled. The main research question is verified at the first place and then the second level

research questions are also verified.

5.3.1 Dynamic FGACM on business tiers

The main research question to be answered was defined as: “is it possible to dynamically, at runtime,

implement FGACM on business tiers and keep them updated when the policies evolve over time?”

To answer this question a platform was devised. It comprises two main components: a server

component where metadata of FGACM are stored and kept updated and a client component

deployed in every client system responsible for implementing the FGACM at runtime. To evaluate if

FGACM are dynamically implemented and updated at runtime a platform based on the DACA was

built and a scenario was defined and implemented. The scenario included three users and a set of

hierarchized roles and their associated permissions. The scenario provided a tool to allow the

dynamic modification of assigned roles to each individual user. Whenever a role was assigned or

unassigned, it was confirmed that FGACM are dynamically updated at runtime at the client side

systems. The confirmation was verified in three different ways:

1) The devised DbProof component explicitly shows for each user, through a graphic, the

hierarchized roles and their assignment state, see Figure 54. The assignment state indicates

for each role if a role is assigned or unassigned. It was confirmed that the assignment state

was updated whenever a modification was enforced at the level of the metadata of FAGCM.

2) The DbProof provides an interface where permissions (Business Entities and CRUD

expressions) are selected to be executed, see Figure 54. It was confirmed that the success to

execute any permission was always in accordance with the state assignment of each role.

3) A material verification was also conducted. The material verification consists in looking

inside the Business Logic to check its contents. The contents of Business Logic of each user

was inspected using a common unzip tool, see Figure 55 and Figure 56. The contents of

each Business Logic confirmed that it was in accordance with the assigned permissions.

Before these multi-verifications, there no is doubt that DACA positively answers the main

research question of this thesis.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

110 | P a g e

5.3.2 Security

This sub-section evaluates how the first research question of the second level is answered by the

DACA. The research question is: “Is there any possibility to supervise the use of CRUD expressions

effectively when protected data is being access to protected data?”. As previously shown, current

approaches allow users to write any CRUD expression freely. The endless expressiveness of the SQL

language opens the possibility to existence of security gaps. In order to overcome this situation, the

DACA does not allow users to write any CRUD expression. Instead of writing CRUD expressions,

users are only allowed to use CRUD expressions that are defined by security experts and put at

their disposal by the DACA, see Figure 46 and Figure 47 Additionally, the DACA has the ability to

identify the permissions granted to each user and make them dynamically available to be used. This

way, users have no possibility to issue their own CRUD expressions.

5.3.3 FGACM awareness

This sub-section evaluates how the second research question of the second level is answered by the

DACA. The research question is: “Is it possible to overcome this difficulty by providing programmers

with a complete awareness about the established FGACM?”. Current approaches do not give any

guidance on the established FGACP neither on the implemented FGACM.

To answer this question, a tool was devised to specifically address this issue – Policy Extractor,

see Figure 37. Policy Extractor reads the metadata of FGACM and automatically builds static data

structures, see Figure 46, to be used during the development process of application tiers, see Figure

47. The data structures convey to programmers a clear awareness about the FGACM to be

dynamically implemented at runtime. The awareness is achieved while programmers write source

code not at compilation time as many other research alternatives do. These assertions were verified

and confirmed while source code for DbProof was being written.

5.3.4 Preservation of CLI Advantages

This sub-section evaluates how the third research question of the second level is answered by the

DACA. The research question is: “Is it possible to keep those advantages (of CLI) on the proposed

solution to implement FGACM?”. The use of CLI to build business tiers presents several advantages.

The advantages may be classified in two major groups: the set of services provided by CLI and

performance of CLI.

CLI are used at the DACC level only and there is no other component between CLI and RDBMS.

Thus, the answer to the research question has to be found inside the DACC.

Preservation of CLI Services

The DACC provide a wide set of services. Some of them are geared to address the dynamicity of

FGACM but others are geared to allow application tiers to execute CRUD expressions. The latter

services are specified through DACC and are the services to be compared with those provided

by CLI. As previously mentioned, DACC ensures the two of the access modes provided by CLI.

The remaining access modes were not implemented but may easily be included in a future

version of the DACC and the DACA. The remaining main CLI services are practically mapped one

by one into the DACC: all scrolling services are available, different instantiations contexts of

LMS are available, transactions are available, etc. Services such as access to metadata of

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

111 | P a g e

returned relations are not addressed because in the context of the DACA they are not relevant.

If any other additional service is considered relevant it will certainly have an easy

implementation in the DACC. The simplest approach is to wrap the intended service/method as

shown in Figure 60. Figure 40, Figure 41 and Figure 42 show that relevant services for the

execution of CRUD expressions are all available in the DACA.

Figure 60. Wrapping approach to provide the getMet

Preservation of CLI Performance

To prove that the performance advantage of CLI is kept, a performance assessment has been

carried out. Results have shown that the DACC impact may be considered irrelevant for all

scenarios but SSr. Regarding SSr, in the worst situation (2000 rows and no join), the % overhead

is 7.0%, 3.6%, 2.5% and 2.0% for FoRo, FoUp, ScRo and ScUp, respectively. These results may

be considered significant but a closer analysis shows that the % overhead has a deep

dependency on many factors as it may be inferred from the graphics, namely on CRUD

expressions complexity. A CRUD expression with a simple join led to a decay of about 50% in

the % overhead. Thus, in real database applications, where most of the CRUD expressions are

more complex than those herein used and tables are populated with thousands of rows, the %

overhead will have an irrelevant impact on the overall performance.

When compared with other approaches, it is our opinion that the overhead induced by

DACA is very probably lower than theirs, even for those approaches that use static enforcement

mechanisms. The authors of these approaches argue that their solutions induce no overhead at

all, just because policies are directly translated into CRUD expressions. This argument should

only be used if they had compared their approaches with solutions with no access control, as it

was done in this thesis. Only comparing with solutions with no access control it is possible to

evaluate the impact of the access control on the overall performance. Moreover, the latency of

the DACA is minimum because the decisions and the mechanisms are both located at the client

application level.

5.4 Summary

This chapter was focused on presenting the DACA proof of concept and it is organized in three

sections: the presentation of the implemented platform, the performance assessment and, finally,

the results evaluation.

The implemented platform is based on the DACA and includes a database application based on

the Microsoft Northwind database. Some users and roles were defined and implemented.

Additionally, roles are assigned and unassigned at runtime to convey a context of evolving FGACM.

The Security Configurator was split in two different components to ease its development process.

All DACA components were successfully implemented.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

112 | P a g e

The performance assessment compared a solution based on the DACA and an equivalent

solution but without any access control mechanisms. The collected results show that the induced

overhead for the Direct Access Mode is marginal. Even for the Indirect Access Mode, only the read

protocol induces measurable overhead values. The overheads are measurable because the running

conditions were favorable to the existence of overheads. In real situations, where databases include

thousands of rows and CRUD expressions are more complex, the induced overhead will become

residual again.

The results evaluation proved that the DACA answered all the research questions of this thesis

positively.

The next chapter presents the final conclusions.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

113 | P a g e

6 Conclusion
This chapter is organized in four topics. First, a review about the work performed is presented.

Second, the main contributions are highlighted. Third, a discussion about some adjacent aspects is

taken and presented. Four, a perspective is presented for future work.

6.1 Overview

This thesis presents an architecture to enforce FGACP dynamically at the level of business tiers

based on CLI, herein known as the DACA. The evolution from CLI towards DACA followed a three

step approach: modelization of CLI, componentization of CLI and, finally, dynamic access control on

CLI. The modelization of CLI lead to an effort to devise a model based on CLI to represent schemas

of database objects [Pereira, '10b; Pereira, '11b]. The componentization of CLI lead to an effort to

devise an architecture for components based on CLI [Pereira, '11a; Pereira, '11c; Pereira, '12b;

Pereira, '13d; Pereira, '13e]. The dynamic access control on CLI leverages all previous work to

devise the DACA [Pereira, '12d; Pereira, '12c; Pereira, '13d]. This three step approach was very

important to successfully and separately overcome the distinct dimensions of CLI drawbacks.

Without a model perspective and without a component perspective of CLI, the DACA, and mainly

DACC, could hardly have been devised. The DACA comprises three main components: a server

component where metadata about FGACM are maintained, a client component responsible for the

implementation of dynamic FGACM and a proxy component placed between the server and the

client components. Basically, programmers no longer have access to CLI but instead they have

access to a component providing a similar set of services as CLI do. This component, DACC, is able

to adapt itself dynamically, at runtime, when policies evolve over time. A proof of concept was

designed and a performance assessment was carried out to evaluate the DACA against the research

questions.

Finally, the DACA was evaluated against the research questions. The results show that the

DACA answers to all the research questions positively: 1) Solutions based on the DACA are able to

implement FGACM dynamically built and updated at runtime; 2) the DACA completely controls the

CRUD expressions that users are authorized to issue this way preventing any security gap; 3) From

the metadata of FGACM it is possible to build data structures to convey a complete awareness of

FGACM to programmers of application tiers and, finally, 4) the DACC rely on and keep advantages of

CLI.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

114 | P a g e

6.2 Contributions

The outcome of this thesis is divided in one main contribution and four second level contributions.

The main contribution is the DACA. The DACA is an architecture able to address and overcome

some aspects still not addressed by current commercial and academic proposals. The main aspect is

the implementation of dynamic FGACM on business tiers of relational database applications based

on CLI. Solutions based on the DACA are able to implement FGACM dynamically, at runtime, and

keep them updated even if policies evolve over time. Additionally, some other relevant aspects have

also been addressed and overcome by the DACA such as the exploitation and preservation of CLI

features, increased secure mechanisms and awareness of FGACM at development time of

application tiers. Additionally, the DACA is the result of a continuous research that started on

modelization of CLI, followed to the componentization of CLI and only then the DACA was devised

and designed. Modelization and componentization of CLI are also two second level contributions of

this thesis.

The remaining two second level contributions are also related to CLI. One is focused on a

proposal to increase the performance of CLI whenever concurrency is needed on LMS, which is

presented in the Annex B. Two approaches were designed. One based on standard JDBC [Pereira,

'07b] and the other based on a new JDBC with embedded concurrent services [Gomes, '11]. The last

contribution [Pereira, '13b], presented in the Annex C, is focused on an architecture to implement

multi-propose components from CLI. Multi-propose components are able to address different

organizational and different runtime needs .

6.3 Discussion

The DACA was evaluated against the research objectives initially defined. There are other issues

that also deserve a brief reflection, in spite of not being key aspects of this thesis. As such, a brief

description is presented about seven different aspects: FGACP, scalability of the DACA,

maintainability of the DACA, autonomic computing and the DACA, configurability of the DACA,

usability of the DACA and applicability of other technologies than CLI.

FGACP

This work is about how to implement FGACM on components relying on CLI and not about

FGACP. The DACA is independent from the policies to be applied. In practice, FGACP can be

defined using some of the approaches presented by other authors. The only constraint is that

from the established FGACP, the DACA requires Business Schemas as input and the associated

CRUD expressions.

Scalability

Unlike some approaches to implement access control mechanisms, such as those based on the

centralized and mixed architectures, their implementation in the DACA is completely

distributed. Each client application is responsible for two fundamental aspects: to decide upon

granting or denying the access to protected data and to enforce the decision. There is no central

system interfering in this process. It is completely distributed. Regarding the Policy Server, if

for some reason, it exceeds an established threshold of loading, the Policy Server may be

deployed using any common horizontal scalability approach.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

115 | P a g e

Maintainability

Business Logic and the correspondent FGACM are automatically built and updated at runtime.

This feature clearly eliminates the need to carry out maintenance activities at the Business

Logic and at the FGACM level. Moreover, any maintenance activity, at the level of the policies, is

deployed and implemented automatically in all client applications. This is clearly different from

what happens in all implementations of other authors as presented and described in sub-

section 2.4.2.

Autonomic Computing

An autonomic system is characterized by making decisions on its own. It permanently checks

the context and, based on policies, it automatically adapts itself. The DACA is not an autonomic

system but systems based on the DACA are easily integrated in autonomic systems. An

autonomic system prepared to detect situations where FGACP need to be dynamically adapted,

can use the DACA to dynamically adapt the mechanisms.

Configurability

In this thesis we presented an approach for a partial configuration process of FGACM metadata.

The process is substantially automated if an enhanced tool similar to the one presented in

[Pereira, '11b] is used. The new tool would create Business Schemas automatically from CRUD

expressions and would also aggregate sibling CRUD schemas. Moreover, the tool could also

automate the process to obtain the basic set of Business Schemas and CRUD expressions to

access databases on a table basis as O/RM tools and LINQ do.

Usability

CLI are very poor regarding their usability. The DACA overcomes some of the most relevant

aspects of their lack of usability:

 Whenever CLI are being used, programmers need to master database schemas to deal

with each retrieved attribute of each CRUD expression. With DACA, IRead, IInsert and

IUpdate interfaces provide schema-driven getter and setter methods, avoiding the need

to master database schemas for each CRUD expression.

 Whenever CLI are being used, programmers need to know the instantiation context of

LMS. With the DACA, only the valid methods are available, this way avoiding runtime

exceptions.

 Whenever CLI are being used, there is no easy way to link CRUD expressions and the

applications they assist. With the DACA, the linkage is provided by schema-driven and

type safe methods.

 The DACA, unlike CLI, transform runtime errors into compile errors. If the name of an

attribute is modified, then the associated Business Schemas (IRead, IUpdate and IInsert

interfaces) are also modified. Then, when the application tier is re-compiled, the

compiler will detect all errors where the source-code of application tiers was not

updated. With CLI, names of attributes are encoded inside strings, this way preventing

any disconformity from being detected at compile time.

Applicability

JDBC was the main API used to build DACC. While the Policy Server and the Policy Manager do

not rely on any specific architecture, the DACC completely relies on the architecture of CLI. In

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

116 | P a g e

order to evaluate the possibility of using other tools than CLI to build the DACC, a successful

attempt was achieved with ADO.NET. The implementation in ADO.NET was mainly done to

evaluate if the main architectural aspects of the DACC are flexible enough to be used with

different architectural paradigms. There were some technical aspects that needed some

adjustments, but the final result is a DACC based on ADO.NET. The adjustments were mainly

related with:

 scrolling policies on LMS – ADO.NET uses an index to choose the selected row.

 functionalities of LMS – scrollability and updatability concepts are restricted to

scrollable and updatable.

The only difference between the DACC used on the proof of concept and the one based on

ADO.NET is that it was assumed that the building process of Business Entities at runtime is also

possible in the .NET framework. Thus, the ADO.NET version defines all the Business Schemas

and CRUD expressions presented in Table 4 at development time. The behavior of the

component is dynamically updated whenever a role is assigned or unassigned but the

automatic building process of Business Entities is not implemented.

A DbProof based on ADO.NET is also available from here (url: ned.av.ia.it.pt; username:

DACA; password: guest) and the main GUI, correspondent to the DbProof, is presented in Figure

61.

Figure 61. DbProof implemented inADO.NET.

From my background, I foresee that DACC may rely on any CLI or even on any technologic

paradigm used for building business tiers. Regarding O/RM tools, they should not be

considered as an option because they are mostly oriented to handle database tables as entity

classes which is too restrictive to most database applications. CRUD expressions may also be

handled by O/RM tools but that is not their focus. Additionally, O/RM tools use CLI as the

underlying middleware, this way behaving as an additional layer in the DACA. Regarding LINQ,

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

117 | P a g e

due to the static syntax validation of the SQL at writing time, it would be interesting to evaluate

how to adapt DACA to rely on LKINQ instead on CLI.

6.4 Future Work

Future work is organized around seven main objectives. The first one aims at extending the actual

DACC to support additional access modes of CLI. The second one aims at devising a FGACP and the

correspondent tool to validate accesses based on the access modes of CLI. The third one aims to

deepen the research already started to provide a thread-safe implementation of the DACC. The

fourth one aims at deepen the research already started to provide a multi-function propose for

components based on CLI. The fifth one is focused on extending the FGACP to the runtime values

that are used on CRUD expressions. The sixth is focused on devising a model to allow orchestration

of Business Entities. The seventh and last one is focused on re-designing to be based on LINQ

instead on CLI.

6.4.1 Extending DACC to Support Additional Access Modes

The DACC supports the Direct Access Mode and the Indirect Access Mode of CLI. However, CLI

support other additional access modes, such as access to stored procedures and execution of CRUD

expression in batch mode. Thereby, extending the DACC to support the other access modes is

considered an important step to cover all the access modes provided by CLI. The batch mode uses a

buffer to store CRUD expressions. Whenever required, the stored CRUD expressions are processed

as batch job. Stored procedures are software units stored in a RDBMS and available to client

applications. Stored procedures may execute any task but are mainly used to access to stored data.

6.4.2 Fine-grained Access Control Policies for the DACA

The presented work does not cover FGACP. To address this aspect, future work can be organized in

two complementary steps: model definition and FGACP definition.

The model herein presented for the implementation of FGACM on CLI, shown in Figure 43,

needs to be improved to be usable in real database applications. Beyond the model, an improved

Security Configurator is needed to keep the configuration process as easy as possible.

Regarding the FGACP definition, DACA is not dependent on any FGACP, which is considered a

key advantage. Regarding the Direct Access Mode, this independency potentially allows the use of

any of the proposed approaches that have as output authorized CRUD expressions. Regarding the

Indirect Access Mode, current approaches do not provide any solution. Eventually, the use of the

Indirect Access Mode could also be inferred from the authorized FGACP. This is an open issue

deserving a thoroughly research to devise a complete model for FGACP to be dynamically enforced

on CLI.

6.4.3 Concurrent Approach of Call Level Interfaces

CLI do not provide any mechanism to support concurrency. This may be considered another

drawback of CLI if several threads need to access data using the same database connection. In order

to evaluate the impact of implementing a thread-safe version of CLI, two researches were carried

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

118 | P a g e

out, both having promising results as outcome. The first research evaluated the implementation of

thread-safe services at the level of CLI [Pereira, '10a]. The second research evaluated the

implementation of thread-safe services at the JDBC driver level (TDS - Tabular Data Stream)

[Gomes, '11] [Microsoft, '12], see Figure 10. Several threads share one LMS to execute read, update,

insert and delete actions.

 The collected results show that significant performance improvement is achieved for both

approaches when compared with the traditional approach where each thread manages and

interacts with its own database connection. Annex B describes the results that have been achieved

for both approaches.

The research already undertaken needs to be continued to deepen and also to validate the

collected results. Then, the knowledge gained from the research should be used to devise a thread-

safe implementation of the DACC.

6.4.4 Multi-function Components

In [Pereira, '13b] a new architecture is presented to address a new research challenge: business

tiers components aimed at addressing different organizational and runtime needs. Organizational

needs may include separation of roles for the development processes of business tiers and

application tiers. Runtime needs may include the need to support new business requirements at

runtime. Annex C describes the results that have been achieved for both approaches.

6.4.5 Extending FGACP to the Runtime Values of CRUD expressions

The runtime values that are used on CRUD expressions are critical because they are dynamically

defined by users at runtime, this way enabling users to request the access to different data in each

execution cycle. We present three examples to justify our claims. The first one is based on a native

Select expression, the second one is based on a native Update expression and, finally, the third one

is based on modifying the contents of a record set containing data retrieved by a Select expression

(in these cases the modifications are also committed to the host database). The following example

is a simple Select expression.

 Select t1.* from table1 t1, table2 t2

 Where t1.id = t2.t1_id and

 t1.value > pValue

The parameter (runtime value) pValue plays a key role to decide which data are retrieved from

table1. In each individual execution cycle, the parameter may have a different value, this way

retrieving a different set of records from table1. To overcome this source of possible security gaps,

two approaches are used to implement the access control mechanisms: centralized approach and

distributed approach. Regarding the centralized approach, the most common technique is the use of

views (with [Rizvi, '04] or without query rewriting techniques). This technique conveys several

drawbacks among which the lack of scalability is emphasized [Lopez, '02b; Valle, '02]. Regarding

the distributed approach, two techniques were proposed: in [Chlipala, '10] is proposed a new

predicate, identified as known, to model which information users already know, this way covering

the points here under discussion but only superficially; in [Caires, '11] the policies are statically

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

119 | P a g e

enforced at the table columns level and not at the CRUD expressions level, leading to lack of

flexibility.

The following example is the second example, which is a simple Update expression:

 Update table1 t1

 set t1.value=pValue

 Where t1.id=pId

Similarly to the Select expression, this Update expression also uses parameters. The parameter

pValue updates the attribute value of table1 of a record identified by another parameter pId. Once

again, parameters are user defined and play a key role on Update expressions to decide the data to

be updated. The current techniques and their limitations, previously described for Select

expressions, are also applied to Update expressions. The remaining types of CRUD expressions,

Insert and Delete, convey similar limitations.

The last example is a very common situation on current tools that are used to develop business

tiers, such as JDBC [Parsian, '05], Hibernate [Christian, '04], ADO.NET [Pablo, '07] and LINQ [Erik,

'06]. The example shows that beyond the use of CRUD expressions, databases are also modifiable by

executing protocols on data retrieved by Select expressions. The example shows that after

retrieving data from a database, it is kept in record sets (recordSet) and then applications are

allowed to update their content through an update protocol. In this case the attribute

attributeName was updated to value and then the modification was committed. This case is

different from the two previous ones because there is no evidence of any CRUD expression and

users are modifying data they have been previously authorized to retrieve. Even so, we cannot

despise the need to control the runtime values being used to modify the contents of those record

sets and, therefore, used to modify the contents of databases. Beyond the update protocol, current

tools also provide an insert protocol where users are also allowed to use runtime values.

 recordSet=executeSelectExpression(sql)

 recordSet.update(“attributeName”, value)

 recordsSet.commit()

Currently, there isn´t any known access control technique to enforce policies at the business

tier level and able to statically control the provenance of runtime values that are used on actions

issued against databases. To overcome this situation a first approach has been presented [Pereira,

'13g] where parameters are statically driven by access control policies enforced at the business tier

level.

6.4.6 Orchestration of Business Entities
The DACA does support orchestration of Business Entities, this way preventing FGACM to be
implemented also at a higher level. For example, a role may comprise a specific task where the
execution of CRUD expressions must follow a specific sequence.

6.4.7 The DACA Based on LINQ
As already mentioned, the DACA may be easily based on other tools beyond the CLI. This is true if
the tool is not LINQ. LINQ is a C# language extension aimed at editing SQL statements whose syntax
is statically validated at editing time. This powerful feature cannot be removed from LINQ and, thus,

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

120 | P a g e

it seems to be a significant challenge to simultaneously enforce FGACP while the SQL statements
are being edited.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

121 | P a g e

References
[Agrawal, '02] Agrawal, Rakesh, Kiernan, Jerry, Srikant, Ramakrishnan and Xu, Yirong: "Hippocratic

databases." 28th Int. Conf. on Very Large Data Bases, VLDB Endowment, Hong Kong, China
(2002), 143-154.

[Andy, '08] Andy, Maule, Wolfgang, Emmerich and David, S. Rosenblum: "Impact analysis of database
schema changes." 30th Int. Conf. on Software Engineering, ACM, Leipzig, Germany (2008), 451-
460.

[Anwar, '12] Anwar, Mohd and Fong, Philip W. L.: "A visualization tool for evaluating access control
policies in facebook-style social network systems." 27th Annual ACM Symposium on Applied
Computing, ACM, Trento, Italy (2012), 1443-1450.

[Ao, '04] Ao, Xuhui and Minsky, Naftaly H.: "On the role of roles: from role-based to role-sensitive access
control." Proceedings of the ninth ACM symposium on Access control models and technologies,
ACM, Yorktown Heights, New York, USA (2004), 51-60.

[Bachmann, '00] Bachmann, Felix, Bass, Len, Buhman, Charles, Comella-Dorda, Santiago, Long, fred,
Robert, John E., Seacord, Robert C. and Wallnau, Kurt C. (2000). Volume II: Technical Concepts of
Component-Based Software Engineering.
http://www.sei.cmu.edu/library/abstracts/reports/00tr008.cfm, CMU/SEI.

[Barker, '08] Barker, Steve: "Dynamic Meta-level Access Control in SQL." 22nd Annual IFIP WG 11.3
Working Conf. on Data and Applications Security, Springer-Verlag, London, UK (2008), 1-16.

[Bauer, '07] Bauer, Christian and King, Gaving: "Java Persistence with Hibernate"; Manning, (2007).
[Belokosztolszki, '03] Belokosztolszki, András, Eyers, David M., Pietzuch, Peter R., Bacon, Jean and

Moody, Ken: "Role-based access control for publish/subscribe middleware architectures." 2nd
Int. Workshop on Distributed Event-based Systems, ACM, San Diego, California (2003), 1-8.

[Berners-Lee, '01] Berners-Lee, Tim, Hendler, James and Lassila, Ora (2001) "The Semantic Web."
Scientific American.

[Bertino, '00] Bertino, Elisa, Castano, Silvana, Ferrari, Elena and Mesiti, Marco: "Specifying and enforcing
access control policies for XML document sources." World Wide Web, 3, 3 (2000), 139-151.

[Bhat, '03] Bhat, Viraj and Parashar, Manish (2003). A Middleware Substrate for Integrating Services on
the Grid. HiPC - High Performance Computing. T. Pinkston and V. Prasanna, Springer Berlin,
Heidelberg. 2913: 373-382.

[Bhatti, '05] Bhatti, Rafae, Bertino, Elisa and Ghafoor, Arif: "A Trust-Based Context-Aware Access Control
Model for Web-Services." Distributed and Parallel Databases, 18, 1 (2005), 83-105.

[Blair, '09] Blair, G., Bencomo, N. and France, R. B.: "Models@ run.time." Computer, 42, 10 (2009), 22-
27.

[Bond, '07] Bond, Rabecca, See, Kevin Yeung-Kuen, Wong, Carmen Ka Man and Chan, Yuk-Kuen Henry:
"Understanding DB2 9 security", (2007).

[Bonner, '97] Bonner, Anthony: "Transaction datalog: a compositional language for transaction
programming." Intl Workshop on Database Programming Languages, Springer, LNCS(1997),
373-395.

[Bracciali, '05] Bracciali, Andrea, Brogi, Antonio and Canal, Carlos: "A formal approach to component
adaptation." Journal of Systems and Software, 74, 1 (2005), 45-54.

http://www.sei.cmu.edu/library/abstracts/reports/00tr008.cfm

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

122 | P a g e

[Buneman, '06] Buneman, Peter, Chapman, Adriane and Cheney, James: "Provenance management in
curated databases." ACM SIGMOD Int. Conf. on Management of Data, ACM, Chicago, IL, USA
(2006), 539-550.

[Caires, '11] Caires, Luís, Pérez, Jorge A., Seco, João Costa, Vieira, Hugo Torres and Ferrão, Lúcio: "Type-
based access control in data-centric systems." 20th European conference on Programming
Languages and Systems: part of the joint European conferences on theory and practice of
software, Springer-Verlag, Saarbrucken, Germany (2011), 136-155.

[Carminati, '09a] Carminati, Barbara, Ferrari, Elena, Heatherly, Raymond, Kantarcioglu, Murat and
Thuraisingham, Bhavani: "A semantic web based framework for social network access control."
14th ACM Symposium on Access Control Models and Technologies, ACM, Stresa, Italy (2009a),
177-186.

[Carminati, '06] Carminati, Barbara, Ferrari, Elena and Perego, Andrea (2006). Rule-Based Access Control
for Social Networks On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops.
R. Meersman, Z. Tari and P. Herrero, Springer Berlin / Heidelberg. 4278: 1734-1744.

[Carminati, '09b] Carminati, Barbara, Ferrari, Elena and Perego, Andrea: "Enforcing access control in
Web-based social networks." ACM Trans. Inf. Syst. Secur., 13, 1 (2009b), 1-38.

[Chaudhuri, '07] Chaudhuri, S., Dutta, T. and Sudarshan, S.: "Fine Grained Authorization Through
Predicated Grants." IEEE 23rd ICDE - Int. Conf. on Data Engineering, Istanbul, Turkey (2007),
1174-1183.

[Chlipala, '10] Chlipala, Adam: "Static checking of dynamically-varying security policies in database-
backed applications." 9th USENIX Conf. on Operating Systems Design and Implementation,
USENIX Association, Vancouver, BC, Canada (2010), 1-14.

[Christian, '04] Christian, Bauer and Gavin, King: "Hibernate in Action"; Manning Publications Co., (2004).
[Cook, '05] Cook, William and Ibrahim, Ali (2005) "Integrating programming languages and databases:

what is the problem?".
[Cooper, '07] Cooper, Ezra, Lindley, Sam, Wadler, Philip and Yallop, Jeremy: "Links: Web Programming

Without Tiers." 5th Intl Conf on Formal Methods for Components and Objects, Springer-Verlag,
Amsterdam, The Netherlands (2007), 266-296.

[Corcoran, '09] Corcoran, Brian J., Swamy, Nikhil and Hicks, Michael: "Cross-tier, Label-based Security
Enforcement for Web Applications." 35th SIGMOD Int. Conf. on Management of Data, ACM,
Providence, Rhode Island, USA (2009), 269-282.

[Costa, '07] Costa, Cristóbal, Pérez, Jennifer and Carsí, José (2007). Dynamic Adaptation of Aspect-
Oriented Components. Component-Based Software Engineering. H. Schmidt, I. Crnkovic, G.
Heineman and J. Stafford, Springer Berlin / Heidelberg. 4608: 49-65.

[Damiani, '02] Damiani, Ernesto, Vimercati, Sabrina De Capitani di, Paraboschi, Stefano and Samarati,
Pierangela: "A fine-grained access control system for XML documents." ACM Trans. Inf. Syst.
Secur., 5, 2 (2002), 169-202.

[David, '90] David, Maier (1990). Representing database programs as objects. Advances in Database
Programming Languages. F. Bancilhon and P. Buneman. N.Y., ACM: 377-386.

[Decker, '08] Decker, Michael: "Requirements for a location-based access control model." 6th Int. Conf.
on Advances in Mobile Computing and Multimedia, ACM, Linz, Austria (2008), 346-349.

[Denning, '76] Denning, Dorothy E.: "A lattice model of secure information flow." Commun. ACM, 19, 5
(1976), 236-243.

[Dinkelaker, '11] Dinkelaker, Tom: "AO4SQL: Towards an Aspect-Oriented Extension for SQL." 8th
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE'11), Zurich,
Switzerland (2011), 1-5.

[Dwork, '08] Dwork, Cynthia: "Differential Privacy: A Survey of Results." 5th Intl. Conf. on Theory and
Applications of Models of Computation, Springer-Verlag, Xi'an, China (2008), 1-19.

[Eclipse, '12] Eclipse. (2012). "Eclipse " Retrieved 2012 Jul, from http://www.eclipse.org/.
[Eder, '96] Eder, Johann: "View Definitions with Parameters." 2nd Intl Workshop on Advances in

Databases and Information Systems, Springer-Verlag(1996), 170-184.

http://www.eclipse.org/

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

123 | P a g e

[Eisenberg, '99] Eisenberg, Andrew and Melton, Jim (1999). Part 1: SQL Routines using the Java (TM)
Programming Language. American National Standard for Information for Technology Database
Languages - SQLJ,, International Committee for Information Technolgy.

[Elizondo, '10] Elizondo, Perla Velasco and Lau, Kung-Kiu: "A Catalogue of Component Connectors to
Support Development with Reuse." Journal of Systems and Software, 83, 7 (2010), 1165-1178.

[Emilin Shyni, '10] Emilin Shyni, C. and Swamynathan, S.: "Purpose Based Access Control for Privacy
Protection in Object Relational Database Systems." Data Storage and Data Engineering (DSDE),
2010 International Conference on, (2010), 90-94.

[Erik, '06] Erik, Meijer, Brian, Beckman and Gavin, Bierman: "LINQ: Reconciling Object, Relations and
XML in the .NET framework." ACM SIGMOD Intl Conf on Management of Data, ACM,
Chicago,IL,USA (2006), 706-706.

[Fabry, '06] Fabry, Johan and D'Hondt, Theo: "KALA: Kernel Aspect Language for Advanced
Transactions." Proceedings of the 2006 ACM Symposium on Applied Computing, ACM, Dijon,
France (2006), 1615-1620.

[Ferraiolo, '01] Ferraiolo, David F., Sandhu, Ravi, Gavrila, Serban, Kuhn, D. Richard and Chandramouli,
Ramaswamy: "Proposed NIST Standard for Role-based Access Control." ACM Trans. Inf. Syst.
Secur., 4, 3 (2001), 224-274.

[Ferraiolo, '92] Ferraiolo, David, Kuhn, D. Richard and Chandramouli, Ramaswamy: "Role-based access
control." 15th National Computer Security Conference, Baltimore - Maryland - USA (1992), 554-
563.

[Fischer, '09] Fischer, Jeffrey, Marino, Daniel, Majumdar, Rupak and Millstein, Todd: "Fine-Grained
Access Control with Object-Sensitive Roles." 23rd ECOOP - European Conference on Object-
Oriented Programming, Springer-Verlag, Italy (2009), 173-194.

[Flower, '02] Flower, Martin: "Patterns of Enterprise Application Architecture"; Addison-Wesley, (2002).
[Fundulaki, '04] Fundulaki, Irini and Marx, Maarten: "Specifying access control policies for XML

documents with XPath." 9th ACM Symposium on Access Control Models and Technologies,
ACM, Yorktown Heights, New York, USA (2004), 61-69.

[Garcia-Morchon, '10] Garcia-Morchon, Oscar and Wehrle, Klaus: "Modular context-aware access
control for medical sensor networks." 15th ACM Symposium on Access Control Models and
Technologies, ACM, Pittsburgh, Pennsylvania, USA (2010), 129-138.

[Gary, '07] Gary, Wassermann, Carl, Gould, Zhendong, Su and Premkumar, Devanbu: "Static checking of
dynamically generated queries in database applications." ACM Transansactions on Software
Eng. Methodology, 16, 4 (2007), 14:01-14:27.

[Gomes, '11] Gomes, Diogo, Pereira, Óscar Mortágua and Santos, Wilson (2011). JDBC (Java DB
connectivity) concorrente. MSc Dissertation, University of Aveiro.

[Graham, '72] Graham, G. Scott and Denning, Peter J.: "Protection: Principles and Practice." Spring Joint
Computer Conference, ACM, Atlantic City, New Jersey (1972), 417-429.

[Gregor Kiczales, '97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes
Videira, Jean-Marc Loingtier, Joh Irwin: "Aspect-Oriented Programming." ECOOP,
Jyvaskyla,Finland (1997), 220-242.

[Gregory, '05] Gregory, Buehrer, Bruce, W. Weide and Paolo, A. G. Sivilotti: "Using parse tree validation
to prevent SQL injection attacks." 5th Intl. Workshop on Software Engineering and Middleware,
ACM, Lisbon, Portugal (2005), 106-113.

[Harrison, '76] Harrison, Michael A., Ruzzo, Walter L. and Ullman, Jeffrey D.: "Protection in operating
systems." Commun. ACM, 19, 8 (1976), 461-471.

[He, '09] He, Daisy Daiqin, Compton, Michael, Taylor, Kerry and Yang, Jian: "Access control: what is
required in business collaboration?"; 20th Australasian Conference on Australasian Database -
Volume 92, Australian Computer Society, Inc., Wellington, New Zealand (2009), 105-114.

[Heineman, '01] Heineman, George T. and Councill, William T.: "Component-Based Software
Engineering: Putting the Pieces Together"; Addison-Wesley, (2001).

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

124 | P a g e

[Hicks, '10] Hicks, Boniface, Rueda, Sandra, King, Dave, Moyer, Thomas, Schiffman, Joshua, Sreenivasan,
Yogesh, McDaniel, Patrick and Jaeger, Trent: "An architecture for enforcing end-to-end access
control over web applications." 15th ACM symposium on Access Control Models and
Technologies, ACM, Pittsburgh, Pennsylvania, USA (2010), 163-172.

[Hildmann, '99] Hildmann, Thomas and Barholdt, Jorg: "Managing trust between collaborating
companies using outsourced role based access control." 4th ACM workshop on Role-based
Access Control, ACM, Fairfax, Virginia, United States (1999), 105-111.

[Hu, '11] Hu, Yuh-Jong and Yang, Jiun-Jan: "A semantic privacy-preserving model for data sharing and
integration." Proceedings of the International Conference on Web Intelligence, Mining and
Semantics, ACM, Sogndal, Norway (2011), 1-12.

[Hur, '11] Hur, Junbeom: "Fine-grained data access control for distributed sensor networks." Wirel.
Netw., 17, 5 (2011), 1235-1249.

[IBM, '07] IBM (2007). Hippocratic Database (HDB) Technology Projects. IBM Research.
[ISO, '03] ISO. (2003). "ISO/IEC 9075-3:2003." Retrieved [2011 May, from

http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134.
[Iwaihara, '05] Iwaihara, Mizuho, Chatvichienchai, Somchai, Anutariya, Chutiporn and Wuwongse, Vilas:

"Relevancy based access control of versioned XML documents." 10th ACM symposium on
Access Control Models and Technologies, ACM, Stockholm, Sweden (2005), 85-94.

[Jayapandian, '08] Jayapandian, Magesh and Jagadish, H. V.: "Automated creation of a forms-based
database query interface." Int. Conf. on Very Large Database, 1, 1 (2008), 695-709.

[José, '09] José, Filho, Bringel and Martin, Hervé: "A generalized context-based access control model for
pervasive environments." 2nd SIGSPATIAL ACM Int. Workshop on Security and Privacy in GIS
and LBS, ACM, Seattle, Washington (2009), 12-21.

[Keller, '97] Keller, Wolfgang: "Mapping Objects to Tables - A Pattern Language." European Conference
on Pattern Languages of Programming Conference (EuroPLoP), Irsse, Germany (1997), 1-26.

[Kephart, '03] Kephart, J. O. and Chess, D. M.: "The vision of autonomic computing." Computer, 36, 1
(2003), 41-50.

[Kim, '09] Kim, Kyu II, Choi, Won Gil, Lee, Eun Ju and Kim, Ung Mo: "RBAC-based access control for
privacy protection in pervasive environments." 3rd Int. Conf. on Ubiquitous Information
Management and Communication, ACM, Suwon, Korea (2009), 255-259.

[Kim, '10] Kim, Kyu Il, Kim, Won Young, Ryu, Joon Suk, Ko, Hyuk Jin, Kim, Ung Mo and Kang, Woo Jun:
"RBAC-based access control for privacy preserving in semantic web." Proceedings of the 4th
International Conference on Uniquitous Information Management and Communication, ACM,
Suwon, Republic of Korea (2010), 1-5.

[Kirchberg, '10] Kirchberg, M. and Link, S.: "Hippocratic Databases: Extending Current Transaction
Processing Approaches to Satisfy the Limited Retention Principle." System Sciences (HICSS),
2010 43rd Hawaii International Conference on, (2010), 1-10.

[Koshutanski, '03] Koshutanski, Hristo and Massacci, Fabio: "An access control framework for business
processes for web services." ACM workshop on XML security, ACM, Fairfax, Virginia (2003), 15-
24.

[Kuhn, '10] Kuhn, D. Richard, Coyne, Edward J. and Weil, Timothy R.: "Adding Attributes to Role-Based
Access Control." Computer, 43, 6 (2010), 79-81.

[Kulkarni, '08] Kulkarni, Devdatta and Tripathi, Anand: "Context-aware role-based access control in
pervasive computing systems." 13th ACM Symposium on Access Control Models and
Technologies, ACM, Estes Park, CO, USA (2008), 113-122.

[Kung-Kiu, '07] Kung-Kiu, Lau and Zheng, Wang: "Software Component Models." IEEE Trans. on Soft.
Eng., 33, 10 (2007), 709-724.

[Laddad, '03] Laddad, Ramnivas: "AspectJ in Action: Practical Aspect-Oriented Programming"; Manning
Publications, /Greenwich,CT,USA, (2003).

http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

125 | P a g e

[Lammel, '06] Lammel, Ralf and Meijer, Erik: "Mappings Make data Processing Go 'Round: An Inter-
paradigmatic Mapping Tutorial." Generative and Transformation Techniques in Soft. Eng., LNCS-
Springer-Verlag, Braga, Portugal (2006), 169-218.

[Lampson, '74] Lampson, Butler W.: "Protection." SIGOPS Operating Systems Review, 8, 1 (1974), 18-24.
[Lawson, '12] Lawson, Curt and Zhu, Feng: "Sentential access control." 50th Annual Southeast Regional

Conference, ACM, Tuscaloosa, Alabama (2012), 303-308.
[LeFevre, '04] LeFevre, Kristen, Agrawal, Rakesh, Ercegovac, Vuk, Ramakrishnan, Raghu, Xu, Yirong and

DeWitt, David: "Limiting disclosure in hippocratic databases." 30th Int. Conf. on Very Large
Databases, VLDB Endowment, Toronto, Canada (2004), 108-119.

[Li, '05] Li, Jiangtao, Li, Ninghui and Winsborough, William H.: "Automated trust negotiation using
cryptographic credentials." 2th ACM Int. Conf. on Computer and Communications Security,
ACM, Alexandria, VA, USA (2005), 46-57.

[Liu, '10] Liu, Donggang: "Efficient and distributed access control for sensor networks." Wirel. Netw., 16,
8 (2010), 2151-2167.

[Lopez, '02a] Lopez, Javier, Mana, Antonio, Pimentel, Ernesto, Troya, José M. and Valle, Mariemma
Inmaculada Yague e del: "Access Control Infrastructure for Digital Objects." Proceedings of the
4th International Conference on Information and Communications Security, Springer-
Verlag(2002a), 399-410.

[Lopez, '02b] Lopez, Javier, Mana, Antonio and Valle, Mariemma Inmaculada Yague del: "XML-Based
Distributed Access Control System." Proceedings of the Third International Conference on E-
Commerce and Web Technologies, Springer-Verlag(2002b), 203-213.

[Luo, '04] Luo, Bo, Lee, Dongwon, Lee, Wang-Chien and Liu, Peng: "QFilter: fine-grained run-time XML
access control via NFA-based query rewriting." 13th ACM Int. Conf. on Information and
Knowledge Management, ACM, Washington, D.C., USA (2004), 543-552.

[Mann, '01] Mann, V., Matossian, V., Muralidhar, R. and Parashar, M.: "DISCOVER: An environment for
Web-based interaction and steering of high-performance scientific applications." Concurrency
and Computation: Practice and Experience, 13, 8-9 (2001), 737-754.

[Mann, '02] Mann, Vijay and Parashar, Manish: "Engineering an interoperable computational
collaboratory on the Grid." Concurrency and Computation: Practice and Experience, 14, 13-15
(2002), 1569-1593.

[McSherry, '10] McSherry, Frank: "Privacy Integrated Queries: An Extensible Platform for Privacy-
preserving Data Analysis." Commun. ACM, 53, 9 (2010), 89-97.

[Mead, '11] Mead, Ged and Boehm, Anne: "ADO.NET 4 Database Programming with C# 2010"; Mike
Murach & Associates, Inc., /USA, (2011).

[Mecella, '06] Mecella, Massimo, Ouzzani, Mourad, Paci, Federica and Bertino, Elisa: "Access control
enforcement for conversation-based web services." 15th Int. Conf. on World Wide Web, ACM,
Edinburgh, Scotland (2006), 257-266.

[Microsoft, '92] Microsoft. (1992). "Microsoft Open Database Connectivity." Retrieved Jul, 2012, from
http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx.

[Microsoft, '10] Microsoft. (2010). "Visual Studio 2010." Retrieved 2012 Jul, from
http://www.microsoft.com/visualstudio/en-us.

[Microsoft, '12] Microsoft. (2012). "[MS-TDS]: Tabular Data Stream Protocol Specification." Retrieved
Jul, 2012, from http://msdn.microsoft.com/en-us/library/dd304523(v=prot.13).aspx.

[Microsoft, '13] Microsoft. (2013). "RecordSet (ODBC)." Retrieved Jun, 2012, from
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx.

[Moffett, '91] Moffett, Jonathan D. and Sloman, Morris S.: "Content-dependent access control." SIGOPS
Oper. Syst. Rev., 25, 2 (1991), 63-70.

[Moore, '91] Moore, James W.: "The ANSI binding of SQL to ADA." Ada Letters, XI, 5 (1991), 47-61.
[Morin, '10] Morin, Brice, Mouelhi, Tejeddine, Fleurey, Franck, Traon, Yves Le, Barais, Olivier and

Jézéquel, Jean-Marc: "Security-Driven Model-based Dynamic Adaptation." IEEE/ACM Int. Conf.
on Automated Software Engineering, ACM, Antwerp, Belgium (2010), 205-214.

http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx
http://www.microsoft.com/visualstudio/en-us
http://msdn.microsoft.com/en-us/library/dd304523(v=prot.13).aspx
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

126 | P a g e

[OASIS, '12] OASIS. (2012). "XACML - eXtensible Access Control Markup Language." Retrieved Feb,
2012, from http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

[Olson, '09] Olson, Lars E., Gunter, Carl A., Cook, William R. and Winslett, Marianne: "Implementing
Reflective Access Control in SQL." 23rd Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, Springer-Verlag, Montreal, P.Q., Canada (2009), 17-32.

[Olson, '08] Olson, Lars E., Gunter, Carl A. and Madhusudan, P.: "A formal framework for reflective
database access control policies." 15th ACM Int. Conf. on Computer and Communications
Security, ACM, Alexandria, Virginia, USA (2008), 289-298.

[Oo, '07] Oo, May Phyo and Naing, Thinn Thu: "Access Control System for Grid Security Infrastructure."
IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent Technology - Workshops,
IEEE Computer Society(2007), 299-302.

[Oracle] Oracle. "Oracle TopLink." Retrieved Oct, 2011, from
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html.

[Oracle] Oracle. "Using Oracle Virtual Private Database to Control Data Access." Retrieved Mar, 2013,
from http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm#CIHBAJGI.

[Oracle, '12a] Oracle. (2012a). "Connection." Retrieved 2012 Jul, from
http://docs.oracle.com/javase/6/docs/api/java/sql/Connection.html.

[Oracle, '12b] Oracle. (2012b). "Interface PreparedStatement." Retrieved 2012 Jul, from
http://docs.oracle.com/javase/6/docs/api/java/sql/PreparedStatement.html.

[Oracle, '12c] Oracle. (2012c). "Interface Statement." Retrieved 2012 Jul, from
http://docs.oracle.com/javase/6/docs/api/java/sql/Statement.html.

[Oracle, '12d] Oracle. (2012d). "JDBCConnectionPool." Retrieved 2012 Jul, from
http://docs.oracle.com/cd/E13222_01/wls/docs81/config_xml/JDBCConnectionPool.html.

[Oracle, '12e] Oracle. (2012e). "NetBeans." Retrieved 2012 Jul, from http://netbeans.org/.
[Oracle, '13] Oracle. (2013). "ResultSet." Retrieved Jul, 2012, from

http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html.
[Pablo, '07] Pablo, Castro, Sergey, Melnik and Atul, Adya: "ADO.NET entity framework: raising the level

of abstraction in data programming." ACM SIGMOD International Conference on Management
of Data, ACM, Beijing,China (2007), 1070-1072.

[Paci, '11] Paci, Federica, Mecella, Massimo, Ouzzani, Mourad and Bertino, Elisa: "ACConv -- An Access
Control Model for Conversational Web Services." ACM Trans. Web, 5, 3 (2011), 1-33.

[Padma, '09] Padma, J., Silva, Y. N., Arshad, M. U. and Aref, W. G.: "Hippocratic PostgreSQL." ICDE '09.
IEEE 25th Int. Conf. on Data Engineering, (2009), 1555-1558.

[Pan, '06] Pan, Chi-Chun, Mitra, Prasenjit and Liu, Peng: "Semantic access control for information
interoperation." Proceedings of the eleventh ACM symposium on Access control models and
technologies, ACM, Lake Tahoe, California, USA (2006), 237-246.

[Parsian, '05] Parsian, Mahmoud: "JDBC Recipes: A Problem-Solution Approach"; Apress, /NY, USA,
(2005).

[Pereira, '10a] Pereira, Oscar M, Aguiar, Rui L and Santos, Maribel Yasmina: "Assessment of a Enhanced
ResultSet Component for Accessing Relational Databases." ICSTE-Int. Conf. on Software
Technology and Engineering, Puerto Rico (2010a), V1:194-201.

[Pereira, '10b] Pereira, Oscar M, Aguiar, Rui L and Santos, Maribel Yasmina: "CRUD-DOM: A Model for
Bridging the Gap Between the Object-Oriented and the Relational Paradigms." ICSEA 2010 - Int.
Conf. on Software Engineering and Applications, Nice, France (2010b), 114-122.

[Pereira, '11a] Pereira, Oscar M., Aguiar, Rui L and Santos, Maribel Yasmina: "An Adaptable Business
Component Based on Pre-defined Business Interfaces." 6th ENASE: Evaluation of Novel
Approaches to Software Engineering, Beijing, China (2011a), 92-103.

[Pereira, '11b] Pereira, Oscar M., Aguiar, Rui L and Santos, Maribel Yasmina: "CRUD-DOM: A Model for
Bridging the Gap Between the Object-Oriented and the Relational Paradigms - an Enhanced
Performance Assessment Based on a case Study." International Journal On Advances in
Software, 4, 1&2 (2011b), 158-180.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm#CIHBAJGI
http://docs.oracle.com/javase/6/docs/api/java/sql/Connection.html
http://docs.oracle.com/javase/6/docs/api/java/sql/PreparedStatement.html
http://docs.oracle.com/javase/6/docs/api/java/sql/Statement.html
http://docs.oracle.com/cd/E13222_01/wls/docs81/config_xml/JDBCConnectionPool.html
http://netbeans.org/
http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

127 | P a g e

[Pereira, '11c] Pereira, Oscar M., Aguiar, Rui L. and Santos, Maribel Yasmina: "A Reusable Business Tier
Component with a Single Wide Range Static Interface." ECSA: 5th European Conference on
Software Architecture, Springer Verlag - LNCS, Essen, Germany (2011c), 216-219.

[Pereira, '12a] Pereira, Óscar Mortágua, Aguiar, Rui L. and Figueiral, Diogo Jorge Rolo (2012a).
Arquitetura Dinâmica de Controlo de Acesso. Msc Dissertation, University of Aveiro.

[Pereira, '12b] Pereira, Óscar Mortágua, Aguiar, Rui L. and Santos, Maribel Yasmina: "ORCA: Architecture
for Business Tier Components Driven by Dynamic Adaptation and Based on Call Level
Interfaces." 38th Euromicro Conf. on Software Engineering and Advanced Applications, Cesme,
Izmir, Turkey (2012b), 183-191.

[Pereira, '13a] Pereira, Óscar Mortágua, Aguiar, Rui L. and Santos, Maribel Yasmina (2013a). ABC
Architecture - A New Approach to Build Reusable and Adaptable Business Tier Components
Based on Static Business Interfaces. Evaluation of Novel Approaches to Software Engineering. L.
A. Maciaszek and K. Hang, Springer-Verlag, Communications in Computer and Information
Science. 275: 114-129.

[Pereira, '13b] Pereira, Óscar Mortágua, Aguiar, Rui L. and Santos, Maribel Yasmina: "ABTC: Multi-
propose Adaptable Business Tier Components Based on Call Level Interfaces." JPRIT - Journal of
Research and Practice in Information Technology, (2013b), (submited).

[Pereira, '13c] Pereira, Óscar Mortágua, Aguiar, Rui L. and Santos, Maribel Yasmina: "A Concurrent Tuple
Set Architecture for Call Level Interfaces." ICIS - 12th IEEE/ACIS International Conference on
Computer and Information Science, Springer - Computer and Information Science Niigata,Japan
(2013c), 143-158.

[Pereira, '13d] Pereira, Óscar Mortágua, Aguiar, Rui L. and Santos, Maribel Yasmina: "DACA: Distributed
Dynamic Access Control Architecture Based on Call Level Interfaces." IET Information Security,
(2013d), (submited).

[Pereira, '13e] Pereira, Óscar Mortágua, Aguiar, Rui L. and Santos, Maribel Yasmina: "Reusable Business
Tier Architecture Driven by a Wide Typed Service." 12th IEEE/ACIS - International Conference
on Computer and Information Science, Niigata, Japan (2013e), (accepted).

[Pereira, '13f] Pereira, Óscar Mortágua, Aguiar, Rui L. and Santos, Maribel Yasmina: "Reusable Business
Tier Architecture Driven by a Wide Typed Service." ICIS 2013 - 12th IEEE/ACIS International
Conference on Computer and Information Science, Niigata,Japan (2013f), 135-141.

[Pereira, '13g] Pereira, Óscar Mortágua, Aguiar, Rui L. and Santos, Maribel Yasmina: "Runtime Values
Driven by Access Control Policies Statically Enforced at the Level of the Relational Business
Tiers." SEKE 2013 - Intl. Conf. on Software Engineering and Knowledge Engineering, Boston, USA
(2013g), (accepted).

[Pereira, '12c] Pereira, Óscar Mortágua, Aguiar, Rui L: and Santos, Maribel Yasmina: " ACADA - Access
Control-driven Architecture with Dynamic Adaptation." SEKE - 24th Intl. Conf. on Software
Engineering and Knowledge Engineering, Knowledge Systems Institute Graduate School, San
Francisco, CA, USA (2012c), 387-393.

[Pereira, '12d] Pereira, Óscar Mortágua, Aguiar, Rui and Santos, Maribel: "BTA: Architecture for
Reusable Business Tier Components with Access Control." ICCSA - 12th Int. Conf. on Computer
Systems and Applications, Springer Berlin / Heidelberg, Salvador, Bahia, Brazil (2012d), 682-697.

[Pereira, '05] Pereira, Óscar Mortágua, Pinto, Joaquim Sousa and Anjo, António Batel (2005). abcNet -
Alfabetização na NET. MSc Dissertation, University of Aveiro.

[Pereira, '06] Pereira, Óscar Narciso Mortágua and Pinto, Joaquim Manuel Henriques Sousa:
"Maintainability Assessment of an Enhanced Object-Oriented Approach for Wrapping Stored
Procedures." Int. Conf. on Databases and Applications, Innsbruck-Austria (2006), 26-31.

[Pereira, '07a] Pereira, Óscar Narciso Mortágua and Pinto, Joaquim Manuel Henriques Sousa:
"Performance Assessment of an Enhanced Object-Oriented Approach for Wrapping Stored
Procedures." IEEE Eurocon 2007 - Internation IEEE Conference on Computer as a Tool, Warsow-
Poland (2007a), 473-477.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

128 | P a g e

[Pereira, '05a] Pereira, Óscar Narciso Mortágua and Pinto, Joaquim Sousa: "Wrapping Stored
Procedures: an Enhanced Object Oriented Approach." IEEE EUROCON 2005-Int. Conf. on
“Computer as a Tool”, IEEE, Belgrade-Serbia and Montenegro (2005a), 740-743.

[Pereira, '07b] Pereira, Óscar Narciso Mortágua and Pinto, Joaquim Sousa: "Performance Assessment of
an Enhanced Object-Oriented Approach for Wrapping Stored Procedures." IEEE Eurocon - Int.
Conf. on Computer as a Tool, Warsow, Poland (2007b), 473-477.

[Pereira, '05b] Pereira, Óscar Narciso Mortágua, Pinto, Joaquim Sousa and Anjo, António José Batel:
"Object Oriented Platform to RDBMS Stored Procedure." IADIS- Int. Conf. on Applied
Computing, Carvoeiro-Algarve-Portugal (2005b), 99-106.

[Raje, '12] Raje, Satyajeet, Davuluri, Chowdary, Freitas, Michael, Ramnath, Rajiv and Ramanathan, Jay:
"Using ontology-based methods for implementing role-based access control in cooperative
systems." 27th Annual ACM Symposium on Applied Computing, ACM, Trento, Italy (2012), 763-
764.

[Ribeiro, '01] Ribeiro, Carlos, Zúquete, André, Ferreira, Paulo and Guedes, Paulo: "SPL: An Access Control
Language for Security Policies with Complex Constraints." Network and Distributed System
Security Symposium, San Diego,CA,USA (2001), 89-107.

[Rizvi, '04] Rizvi, Shariq, Mendelzon, Alberto, Sudarshan, S. and Roy, Prasan: "Extending Query Rewriting
Techniques for Fine-grained Access Control." ACM SIGMOD Int. Conf. on Management of Data,
ACM, Paris, France (2004), 551-562.

[Roichman, '07] Roichman, Alex and Gudes, Ehud: "Fine-grained access control to web databases." 12th
ACM symposium on Access Control Models and Technologies, ACM, Sophia Antipolis, France
(2007), 31-40.

[Russell, '05] Russell, A. McClure and Ingolf, H. Kruger: "SQL DOM: compile time checking of dynamic
SQL statements." 27th Int. Conf. on Software Engineering, ACM, St. Louis, MO, USA (2005), 88-
96.

[Samarati, '01a] Samarati, Pierangela and Vimercati, Sabrina De Capitani di: "Access Control: Policies,
Models, and Mechanisms." Revised versions of lectures given during the IFIP WG 1.7
International School on Foundations of Security Analysis and Design on Foundations of Security
Analysis and Design: Tutorial Lectures, Springer-Verlag(2001a), 137-196.

[Samarati, '01b] Samarati, Pierangela and Vimercati, Sabrina De Capitani di: "Access Control: Policies,
Models, and Mechanisms." Foundations of Security Analysis and Design (LNCS), 2171, (2001b),
137-196.

[Sandhu, '94] Sandhu, R. S. and Samarati, P.: "Access Control: Principle and Practice." Communications
Magazine, IEEE, 32, 9 (1994), 40-48.

[Sandhu, '00] Sandhu, Ravi, Ferraiolo, David and Kuhn, Richard: "The NIST Model for Role-based Access
Control: Towards a Unified Standard." 5th ACM Workshop on Role-based Access Control, ACM,
Berlin, Germany (2000), 47-63.

[Sandhu, '93] Sandhu, Ravi S.: "Lattice-Based Access Control Models." Computer, 26, 11 (1993), 9-19.
[Sandhu, '96] Sandhu, Ravi S., Coyne, Edward J., Feinstein, Hal L. and Youman, Charles E.: "Role-Based

Access Control Models." Computer, 29, 2 (1996), 38-47.
[Schmoelzer, '06] Schmoelzer, G., Teiniker, E., Kreiner, C. and Thonhauser, M.: "Model-typed

Component Interfaces." Software Engineering and Advanced Applications, 2006. SEAA '06. 32nd
EUROMICRO Conference on, (2006), 54-63.

[Sharifi, '09] Sharifi, Mahdi, Movahednejad, Homa, Tabatabei, Sayed Gholam Hassan and Ibrahim,
Suhaimi: "An effective access control approach to support web service security." 11th Int. Conf.
on Information Integration and Web-based Applications & Services, ACM, Kuala Lumpur,
Malaysia (2009), 529-535.

[Shi, '09] Shi, Jie, Zhu, Hong, Fu, Ge and Jiang, Tao: "On the Soundness Property for SQL Queries of Fine-
grained Access Control in DBMSs." 8th IEEE/ACIS Intl. Conf. on Computer and Information
Science, IEEE Computer Society(2009), 469-474.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

129 | P a g e

[Staddon, '08] Staddon, Jessica, Golle, Philippe, Gagn, Martin and Rasmussen, Paul: "A content-driven
access control system." 7th Symposium on Identity and Trust on the Internet, ACM,
Gaithersburg, Maryland (2008), 26-35.

[Swamy, '08] Swamy, N., Corcoran, B. J. and Hicks, M.: "Fable: A Language for Enforcing User-defined
Security Policies." IEEE Symposium on Security and Privacy, (2008), 369-383.

[Systems, '73] Systems, Secretary’s Advisory Committee on Automated Personal Data (1973). Records,
computers and the Rights of Citizen: Report of the Secretary’s Advisory Committee on
Automated Personal Data Systems, U.S. Department of Health, Education, and Welfare.

[Szyperky, '02] Szyperky, Clemens, Gruntz, Dominik and Murer, Stephan: "Component Software -
Beyond Object-Oriented Programming"; Addison-Wesley/ACM Press, (2002).

[Tolone, '05] Tolone, William, Ahn, Gail-Joon, Pai, Tanusree and Hong, Seng-Phil: "Access control in
collaborative systems." ACM Comput. Surv., 37, 1 (2005), 29-41.

[Tootoonchian, '08] Tootoonchian, Amin, Gollu, Kiran Kumar, Saroiu, Stefan, Ganjali, Yashar and
Wolman, Alec: "Lockr: social access control for web 2.0." 1st Workshop on Online Social
Networks, ACM, Seattle, WA, USA (2008), 43-48.

[Vagts, '11] Vagts, Hauke, Krempel, Erik and Fischer, Yvonne: "Access controls for privacy protection in
pervasive environments." 4th Int. Conf. on PErvasive Technologies Related to Assistive
Environments, ACM, Heraklion, Crete, Greece (2011), 1-8.

[Valle, '02] Valle, Mariemma Inmaculada Yague del, Mana, Antonio, Lopez, Javier, Pimentel, Ernesto and
Troya, José M.: "Secure Content Distribution for Digital Libraries." Proceedings of the 5th
International Conference on Asian Digital Libraries: Digital Libraries: People, Knowledge, and
Technology, Springer-Verlag(2002), 483-494.

[Vimercati, '08] Vimercati, S. De Capitani di, Foresti, S. and Samarati, P. (2008). Recent Advances in
Access Control - Handbook of Database Security. M. Gertz and S. Jajodia, Springer US: 1-26.

[Vohra, '07] Vohra, Deepak (2007). CRUD on Rails - Ruby on Rails for PHP and Java Developers, Springer
Berlin Heidelberg: 71-106.

[Vuran, '06] Vuran, Mehmet C. and Akyildiz, Ian F.: "Spatial correlation-based collaborative medium
access control in wireless sensor networks." IEEE/ACM Trans. Netw., 14, 2 (2006), 316-329.

[W3C, '02] W3C. (2002). "The Platform for Privacy Preferences 1.0 (P3P1.0) Specification." Retrieved
Aug, 2012, from http://www.w3.org/TR/P3P/.

[W3C, '03] W3C. (2003). "Enterprise Privacy Authorization Language (EPAL 1.2)." Retrieved Aug, 2012,
from http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/.

[Waldman, '12] Waldman, Steve. (2012). "c3p0 - JDBC3 Connection and Statement Pooling." Retrieved
2012 Jul, from http://www.mchange.com/projects/c3p0/index.html.

[Wang, '06] Wang, Chengwei: "Dynamic Access Control Prediction for Ordered Service Sequence in Grid
Environment." IEEE/WIC/ACM Int. Conf. on Web Intelligence, IEEE Computer Society(2006), 145-
151.

[Wang, '11] Wang, Haodong, Sheng, Bo, Tan, Chiu C. and Li, Qun: "Public-key based access control in
sensornet." Wirel. Netw., 17, 5 (2011), 1217-1234.

[Wang, '07] Wang, Qihua, Yu, Ting, Li, Ninghui, Lobo, Jorge, Bertino, Elisa, Irwin, Keith and Byun, Ji-Won:
"On the correctness criteria of fine-grained access control in relational databases." 33rd Int.
Conf. on Very Large Data Bases, VLDB Endowment, Vienna, Austria (2007), 555-566.

[Warner, '07] Warner, Janice, Atluri, Vijayalakshmi, Mukkamala, Ravi and Vaidya, Jaideep: "Using
semantics for automatic enforcement of access control policies among dynamic coalitions."
Proceedings of the 12th ACM symposium on Access control models and technologies, ACM,
Sophia Antipolis, France (2007), 235-244.

[William, '05] William, R. Cook and Siddhartha, Rai: "Safe query objects: statically typed objects as
remotely executable queries." 27th Int. Conf. on Software Engineering, ACM, St. Louis, MO, USA
(2005), 97-106.

[Wonohoesodo, '04] Wonohoesodo, R. and Tari, Z.: "A role based access control for Web services." IEEE
Int. Conf. on Services Computing, (2004), 49-56.

http://www.w3.org/TR/P3P/
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
http://www.mchange.com/projects/c3p0/index.html

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

130 | P a g e

[Yang, '10] Yang, Daoqi: "Java Persistence with JPA"; Outskirts Press, (2010).
[Yang, '12] Yang, Jean, Yessenov, Kuat and Solar-Lezama, Armando: "A language for automatically

enforcing privacy policies." SIGPLAN Not., 47, 1 (2012), 85-96.
[Ye, '04] Ye, Wei, Heidemann, John and Estrin, Deborah: "Medium access control with coordinated

adaptive sleeping for wireless sensor networks." IEEE/ACM Trans. Netw., 12, 3 (2004), 493-506.
[Yu, '06] Yu, Cong and Jagadish, H. V.: "Schema summarization." 32nd Intl Conf on Very large data

bases, VLDB Endowment, Seoul, Korea (2006), 319-330.
[Yu, '03] Yu, Ting, Winslett, Marianne and Seamons, Kent E.: "Supporting structured credentials and

sensitive policies through interoperable strategies for automated trust negotiation." ACM Trans.
Inf. Syst. Secur., 6, 1 (2003), 1-42.

[Zhang, '12] Zhang, Danfeng, Arden, Owen, Vikram, K., Chong, Stephen and Myers, Andrew. (2012). "Jif:
Java + information flow (3.3)." Retrieved Aug, 2012, from http://www.cs.cornell.edu/jif/.

[Zhang, '03] Zhang, Guangsen and Parashar, Manish: "Dynamic Context-aware Access Control for Grid
Applications." 4th Int. Workshop on Grid Computing, IEEE Computer Society(2003), 101-108.

[Zhu, '12] Zhu, Yan, Hu, Hongxin, Ahn, Gail-Joon, Yu, Mengyang and Zhao, Hongjia: "Comparison-based
encryption for fine-grained access control in clouds." 2nd ACM Conf. on Data and Application
Security and Privacy, ACM, San Antonio, Texas, USA (2012), 105-116.

http://www.cs.cornell.edu/jif/

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

131 | P a g e

Annex A – Logical model for metadata of FGACM

This annex presents the logical model that was used in the DACA proof of concept. This model

derives from the conceptual model presented in Figure 43.

Sub_Subject

PK Sub_id INTEGER

U1 Sub_username CHAR(25)
U1 Sub_password CHAR(25)

App_Application

PK App_id INTEGER

U1 App_reference CHAR(25)
 App_description VARCHAR(100)
 App_BusinessSchemas VARBINARY(0)

SubApp

PK SubApp_id INTEGER

FK1,U1 SubAppSub_id INTEGER
FK2,U1 SubAppApp_id INTEGER

Rol_Role

PK Rol_id INTEGER

U1 Rol_reference CHAR(10)
 Rol_description VARCHAR(100)
FK1 RolRol_id INTEGER

AppRol

PK AppRol_id INTEGER

FK1,U1 AppRolApp_id INTEGER
FK2,U1 AppRolRol_id INTEGER

Bus_BusinessSchema

PK Bus_id INTEGER

 Bus_reference VARCHAR(100)
 Bus_url VARCHAR(100)

Crd_Crud

PK Crd_id INTEGER

U2 Crd_crud VARCHAR(1000)
U1 Crd_reference VARCHAR(100)

BusCrd

PK BudCrud_id INTEGER

FK1,U1 BusCrdBus_id INTEGER
FK2,U1 BusCrdCrd_id INTEGER

RolBus

PK RolBus_id INTEGER

FK1,U1 RolBusRol_id INTEGER
FK2,U1 RolBusBus_id INTEGER

Del_Delegation

PK Del_id INTEGER

FK1 DelSubApp_id INTEGER
FK2 DelAppRol_id INTEGER

Aut_Authorization

PK Aut_id INTEGER

 Aut_code INTEGER
FK1,U1 AutSubApp_id INTEGER
FK2,U1 AutRol_id INTEGER

Ses_Session

PK Ses_id INTEGER

FK1 SesSubApp_id INTEGER
 Ses_clientIP CHAR(16)
 Ses_clientPort INTEGER

Mgr_Manager

PK Mgr_IP CHAR(25)

 Mgr_port INTEGER

Figure 62. Logical model for the proof of concept.

Next follows a description of the main tables of the logical model: tables and attributes.

Mgr_Manager

Table Mgr_Manager stores the required information to restore connections with Policy

Managers whenever necessary.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

132 | P a g e

Mgr_IP – Policy Managers IP.

Mgr_port –listening port.

Sub_Subject

Table Sub_Subject stores information to identify all the legitimate users.

Sub_id – surrogate primary key.

Sub_username – legitimate users’ username.

Sub_password – legitimate users’ password.

App_Application

Table App_Application stores information about the legitimate applications.

App_id – surrogate primary key.

App_reference – application reference.

App_description – application description.

App_BusinessSchemas – file containing all the Business Schemas for this application. The

value 0 (zero) should be replaced by MAX or any other adequate

value able to hold the used business schemas.

Ses_Session

Table Ses_session stores information about subjects running applications and their associated

Policy Manager.

Ses_id – surrogate primary key.

Ses_SubApp_id – subject running an application.

Ses_clientIP – associated Policy Manager IP.

Ses_clientPort – associated Policy Manager port.

Rol_Role

Table Rol_Role stores definitions of roles. Roles are hierarchized.

Rol_id – surrogate primary key.

Rol_reference – role reference.

Rol_description – role description.

RolRol_id – parent Rol_id.

Bus_BusinessSchema

Table Bus_BusinessSchema about Business Schemas.

Bus_id – surrogate primary key.

Bus_name – name to be used when data structures are built to convey awareness of FGACM.

Bus_url – url for the Business Schema in App_BusinessSchemas.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

133 | P a g e

Crd_Crud

Table Crd_Crud stores information about the supported CRUD expressions.

Crd_id – surrogate primary key.

Crd_reference – name to be used when data structures are built to convey awareness of

FGACM.

Crd_crud – CRUD expression.

Aut_Authorization

Table Aut_Authorization stores the information about authorizations to subjects running

applications to play roles.

Aut_id – surrogate primary key.

Aut_code – authorization codes. In this case there are two possibilities: authorization

granted or denied.

AutSubApp_id – assignment of applications to subjects.

AutRol_id – assignment of roles to subjects running applications.

Del_Delegation

Table Del_Delegation stores information about roles delegated to subjects running applications.

Del_id – surrogate primary key.

DelSubApp_id – assignment of applications to subjects.

DelAppRol – assignment of roles to subjects running applications.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

134 | P a g e

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

135 | P a g e

Annex B - Concurrency on CLI

Actions on LMS are tuple and protocol oriented and, while being executed, cannot be preempted to

start another protocol. This restriction leads to several difficulties when applications need to deal

with several tuples and several protocols at a time. The most paradigmatic case is the impossibility

to cope with concurrent environments where several threads need to access to the same LMS

instance, each one pointing to a different tuple and executing its own protocol. In order to evaluate

the possibility of implementing a thread safe version of CLI, two approaches were followed:

wrapper approach and the embedded approach.

Wrapper approach

The wrapper approach uses standard CLI with native RDBMS protocols. Basically, the wrapper

approach wraps LMS and exposes a set of services which are protocol-oriented to provide a

thread-safe access to LMS. A paper has been published with the preliminary results [Pereira,

'10a]. Some additional research has been done and published [Pereira, '13c]. The final results

are herein presented in this annex.

Embedded approach

The embedded approach is a more ambitious approach than the wrapper approach. The

embedded approach uses modified RDBMS protocols, in our case Tabular Data Stream (TDS)

[Microsoft, '12], to support concurrency on LMS. The work done in [Gomes, '11] showed that

significant improvements are achieved if concurrency is applied directly on internal LMS data

structures, even when compared with those obtained in the wrapper approach.

B.1 CTSA- The Wrapper Approach

To deepen the research initiated in [Pereira, '10a] some additional work was done. The

methodology to implement concurrency was tuned and a much more detailed performance

assessment has been carried out. The outcome is a Concurrent Tuple Set Architecture (CTSA) to

manage concurrency on LMS.

B.1.1 CTSA Presentation

CTSA wraps CLI and provides thread safe services to access LMS. CTSA takes LMS as the main input

entity hides its methods and exposes a new interface, which is thread-safe and, above all, is

designed to improve concurrency between concurrent threads. In order to characterize LMS, their

protocols may be organized in two orthogonal groups:

Scrollability

Scrollability defines the policies to scroll on the returned tuples. There are two mutual-

exclusive possibilities: forward-only (move one tuple forward at a time) and scrollable (move

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

136 | P a g e

backward or forward any number of tuples).

Updatability

Updatability defines the policies to interact with the tuples kept inside LMS. There are two

mutual-exclusive possibilities: read-only (only read protocol is supported) and updatable (read,

insert, update and delete protocols are supported).

 These different types of functionalities, scrollability and updatability, raise an important

question: is it necessary to provide concurrency for all types of LMS? Regarding scrollability,

forward-only LMS are very restrictive because they would oblige all threads to simultaneously

point to the same tuple which could hardly happen in real scenarios. Regarding updatability,

concurrency makes sense for both types: read-only and updatable. Read-only LMS always provide a

subset of the functionalities of updatable LMS and, hence, in order to address and assess the most

general case, we chose to implement a concurrent version for scrollable and updatable LMS. CTSA

introduces the concept of execution context as the information needed to characterize, at any time,

the interaction between a thread and a component based on the CTSA. The execution context of

each thread comprises the protocol that is being executed and the current selected tuple. This

concept is very important because it is the basis for the concurrent implementation of LMS. In

concurrent environments, each thread must have a complete control on the tuple and on the

protocol it is executing. If this is not ensured, a running thread may be preempted by another

thread that changes the execution context. The first thread will never be aware about this situation

and when it becomes the running thread it will execute its protocol in a different execution context.

In order to keep full control on the execution context, each thread needs to access the LMS in

exclusive mode and also to be able to assure that it runs on its own execution context. The former

condition ensures that other threads are not allowed to change the execution context of protocols

that are being executed. The latter condition ensures that at the beginning of any protocol, if

necessary, every thread is able to restore its execution context. To decide upon which strategy to

follow to implement both conditions, several possibilities were considered and tested. They may be

classified in two distinct groups:

 method oriented: execution context is managed method by method;

 protocol oriented: execution context is managed at the protocol level.

 Table 9 briefly shows the logic associated to each approach. To evaluate the implication of each

approach, an assessment has been carried out. Results have shown that for the same scenarios,

Method oriented Protocol oriented

1. get exclusive access

2. set execution context

3. execute method

4. store execution context

5. release exclusive access

1. get exclusive access

2. set execution context

3. while protocol is not over

 execute method

4. store execution context

5. release exclusive access

Table 9. Exclusive access mode approaches.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

137 | P a g e

performance and concurrency improvement depend on the same variable but in opposite ways.

They depend on the number of times that threads are preempted by other threads. Every time this

occurs, a change in the execution contexts must be performed. When this number increases

performance tends to decrease and concurrency tends to increase. When this number decreases,

performance tends to increase and concurrency tends to decrease. Taking this into account, it

would not be possible to carry out a detailed assessment for all scenarios. Thus, a structure was

defined that would typify real scenarios:

while there is next tuple { // method oriented action
 execute a general block of code and/or a method oriented
 execute a protocol oriented action
 execute a general block of code and/or a method oriented action
 execute a protocol oriented action
 …

}

In this structure the scrolling process takes place at an outer level, which is the most common

practice, and it is performed by a single scrolling method. In the inner level, programmers are

encouraged to avoid the execution of general code and/or method oriented actions while any

protocol oriented action is being performed. General code inside protocol oriented actions extends

the locking period, this way increasing the possibility to occur a request for a switching in the

execution context. This request would not succeed and the thread would have to wait for the

protocol to end. This leads to two unwanted situations: decay in performance and decay in

concurrency, derived by the unsuccessful switching in the execution context only. Thus, the

presented structure leads to the following options for the access mode:

 Implemented as method oriented for all actions that could be completely and undoubtedly

accomplish with a single method;

 Implemented as protocol oriented for the remaining actions. Thus, access mode for Delete

and Scroll protocols were considered as method oriented and access mode for Read, Insert

and Update protocols were considered as protocol oriented.

+moveNext() : bool

+moveFirst() : bool

+moveAbsolute(in position : int) : bool

+isFirst() : bool

+...()

«interface»

IScroll

+beginRead()

+endRead()

+getInt(in idx : long(idl)) : long(idl)

+getString(in idx : long(idl)) : string(idl)

+...()

«interface»

IRead

+beginUpdate()

+endUpdate()

+cancelUpdate()

+setInt(in idx : long(idl), in value : string(idl))

+setString(in idx : long(idl), in value : string(idl))

+...()

«interface»

IUpdate

+beginInsert()

+endInsert()

+cancelInsert()

+setInt(in idx : long(idl), in value : string(idl))

+setString(in idx : long(idl), in value : string(idl))

+...()

«interface»

IInsert

+delete()

«interface»

IDelete

Figure 63. CTSA main protocols.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

138 | P a g e

Figure 63 presents the interfaces for the five main protocols: IRead, IInsert, IUpdate, IDelete and

IScroll. Only the main methods of IRead, IUpdate, IInsert and IScroll protocols have been

presented in order to not overcrowd the class diagrams. Exclusive access mode based on the

protocol oriented strategy needs a start event (beginRead, beginUpdate and beginInsert) to start

the protocol and an end event (endRead, endUpdate and endInsert) to end the protocol. Exclusive

access mode based on the method oriented strategy does not need any additional event but the

methods themselves.

Figure 64 presents a simplified CTSA class diagram for a scrollable and updatable LMS. Each

thread receives a new instance of a component based on the CTSA where all instances share the

same LMS instance. lms is for the LMS instance, currentTuple is the index of the current selected

tuple, protocol is the protocol being executed (if any) and lock is the object being used to grant the

exclusive access mode to the LMS. setExecutionContext restores the execution context for the

access mode just started and storeExecutionContext saves the current execution context just ended.

+CTSA(in lms : LMS, in lock : LOCK)

-setExecutionContext()

-storeExecutionContext()

-lms : LMS

-currentTuple : long(idl)

-protocol : long(idl)

-lock : LOCK

CTSA

IRead
IUpdate

IInsert

IDelete IScroll

Figure 64. CTSA class diagram.

B.1.3 Proof of Concept

This section evaluates CTSA using a proof of concept implemented in Java and JDBC. The ResultSet

interface of JDBC API is used as a representative of LMS.

Figure 65 presents the CTSA constructor, its arguments and the initialization steps: rs is the

LMS and lock is the object used to grant the exclusive access mode. After its instantiation, the

execution context points to the tuple immediately before the first one, as happens with CLI (LMS

use before first and after last tuple positions. Immediately after the execution of a Select statement,

by default, the current selected tuple is the tuple before the first one).

Figure 65. CTSA constructor.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

139 | P a g e

Figure 66 partially presents the read protocol. beginRead gets the exclusive access mode for the

read protocol and then sets the execution context for the active thread. From now on, the thread

may read the attributes of its current selected tuple. In Figure 66 it is only shown one method

(getInt) to read attributes of type Integer. The IRead interface comprises all other necessary

methods to support the additional data types. The protocol ends after the execution of endRead

method which saves the current execution context and then releases the exclusive access mode.

From now on, other protocols may be executed. The update and insert protocols, of which exclusive

access mode is also protocol oriented, may be easily inferred from the read protocol. Thus their

code will not be shown.

Figure 66. Partial view of IRead protocol.

Figure 67 shows the method moveNext which belongs to the scrolling protocol. Exclusive access

mode of Scroll protocol is method oriented and, thus, all methods execute a lock and an unlock

process. It is also necessary to set the execution context before moving the cursor one tuple

forward to ensure the correct positioning. After moving the cursor, the execution context must also

be saved. Method next() returns a boolean, indicating if in the current position it is or it is not After

Last tuple.

Figure 67. Partial view of IScroll protocol.

Figure 68 presents the process used to set and to store the execution context. The concepts

Before First tuple and After Last tuple are used to define the position immediately before and

immediately after the first and the last tuple, respectively. These concepts are common in CLI and

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

140 | P a g e

need a special treatment regarding the execution context. In JDBC the first tuple is indexed by 1. In

storeExecutionContext, isBeforeFirst (equal to -1) and isAfterLast (equal to -2) say if the cursor is

pointing to the position immediately before or after the first or last tuple, respectively.

Figure 69 shows CTSA usage from users’ perspective. The thread receives a CTSA instance in

the constructor and accesses its LMS through the provided protocols. moveNext belongs to the

scrolling protocol and therefore the exclusive access is method oriented. Before reading any

attribute, it is necessary to get the exclusive access mode and set the execution context, which is

achieved through the method beginRead. After reading all the attributes, the exclusive access is

released through the method endRead.

Figure 68. Set and store the execution context.

Figure 69.CTSA from users’s perspective.

B.1.4 CTSA Performance Assessment

Performance assessment was carried out comparing two entities known as the Component CTSA

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

141 | P a g e

(C-CTSA) and the Concurrent JDBC (C-JDBC). C-CTSA is responsible for evaluating components

relying on the CTSA architecture and it is based on a component derived from the proof of concept

here presented. C-JDBC is responsible for evaluating a concurrent approach based only on the

standard JDBC API. The evaluation of both entities comprises a single façade: performance. The

impossibility to assess all scenarios, led to a survey to define some scenarios that could be

representative of common situations. To this end, we needed to identify the relevant aspects

directly related and controlled by users of CTSA that could influence CTSA performance. Based both

on empirical experiences and knowledge about CTSA, the aspects considered relevant were: the

protocol being executed, the number of rows to be processed and the number of simultaneous

running threads. Thus, three scenarios were defined for the three main types of protocols for both

components: Select (s), Update (u) and Insert (i). Each scenario comprises a set of several numbers

of tuples to be processed [nr] and a set of several numbers of simultaneous running threads [nt]. In

order to formalize the entities’ representation we define E(α,p,γ) ([nt], [nr]) where α{c-ctsa,c-jdbc},

p is for performance façade and γ{s,u,i}. To simplify, E(α,p,γ) ([nt], [nr]) is represented by default as

E(α,p,γ). To get a threshold for the performance of each entity, it was decided to create a favorable

environment to C-JDBC and an unfavorable environment to C-CTSA to execute the scenarios. This

way, the minimum performance of real scenarios should be delimited by the collected

measurements. This issue will be addressed in more detail mainly after explaining the SQL Server

behavior about LMS.

The test-bed comprises two computers: PC1 - Dell Latitude E5500, Intel Duo Core P8600

@2.40GHz, 4.00 GB RAM, Windows Vista Enterprise Service Pack 2 (32bits), Java SE 6,

JDBC(sqljdbc4); PC2 – Asus-P5K-VM, Intel Duo Core E6550 @2,33 GHz, 4.00 GB RAM, Windows XP

Professional Service Pack 3, SQL Server 2008. C-JDBC and C-CTSA are executed on PC1 and SQL

Server runs on PC2. In order to promote an ideal environment the following actions were taken: the

running threads were given the highest priority and all non-essential processes/services were

cancelled in both PCs; a direct and dedicated network cable connecting PC1 and PC2 has been used

in exclusive mode and performing 100MBits of bandwidth. Transactions were not used and

auto-Commit has been always enabled (changes to LMS are automatically committed to the host

database when protocols are ended). A new database was created in conformance with the schema

presented in Figure 70 to assess both entities.

Figure 70. Std_Student schema.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

142 | P a g e

 In order to avoid some overhead added by SQL Server, some default SQL Server database

properties were changed as, Auto Update Statistics = false and Recovery Model = Simple. Some

important aspects are out of the scope of this study. Aspects as database server performance,

network delays and memory consumption are not individually addressed but considered as part of

the overall environment. This has been assumed because both entities share the same

infrastructure. It is essential to recall SQL Server behavior, which is similar to most of other

relevant relational database management systems, to completely understand the collected

measurements of each scenario. When a Select statement is executed using a scrollable or an

updatable LMS, SQL Server creates a server cursor with all the selected tuples. These tuples are

dynamically transferred in blocks, from the server, to LMS whenever necessary. This means that at

any time LMS may not have all the tuples but only a sub-set of all tuples. When users point to a

tuple that is not present in the LMS, the Tabular Data Stream (TDS) [Microsoft] protocol discards

the current LMS’s content and fetches the block containing the desired tuple. This has a deep

implication. If threads are always requesting tuples that are not present in the LMS, SQL Server has

to transfer the correspondent block for each requested tuple. In an extreme scenario, each

individual action on an LMS may imply the transference of a new block of tuples. From the previous

statements, it is expected that the number of blocks to be transferred will increase when the

number of tuples increases and also when the probability of a thread to request tuples that are not

present in an LMS increases. Thus, to create different environments for both entities, the following

decisions were taken:

C-JDBC (favorable environment): each thread has its own LMS and will always access tuples

sequentially from the first one till the last one.

C-CTSA (unfavorable environment): three conditions were implemented: 1) all threads share

the same LMS; 2) after accessing a tuple, each thread will give the opportunity to other threads to

become the running thread by voluntarily leaving the running state - this will maximize the number

of changes in the execution context; 3) each thread will have its own set of tuples, not shared with

any other thread - this will maximize the number of blocks of tuples to be transferred from server

cursors to LMS.

Table 10 shows the algorithm for the assessment of E(c-ctsa,p,γ). The same ResultSet is shared by

all [nt] threads. Each thread executes its scenario for a group ψ=[nr] adjacent tuples and auto-

suspends itself after accessing each tuple. The intersection of all ψ= .

Table 11 shows the algorithm for the assessment of E(c-jdbc,p,γ). Each thread creates its own

ResultSet (LMS) containing/inserting a group of ψ=[nr] adjacent tuples. The intersection of all

ψ= .

1. Delete all rows from Std_Student

2. Fill Std_Student with [nr]*[nt] rows (zero rows for insert)

3. Start counter

4. Select all rows from Std_Student into one single ResultSet

5. Create all threads.

6. Each thread (ψ tuples)

 6.1 for each tuple

 6.1.1 read/update/insert (tuple)

 6.1.2 suspend thread

 6.2 dies

7. Wait all threads to die

8. Stop counter

Table 10. Algorithm for E(c-jdbc,p,γ) assessment.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

143 | P a g e

1. Delete all rows from Std_Student

2. Fill Std_Student with [nr]*[nt] rows (zero rows for insert)

3. Start counter

4. Create all threads.

5. Each thread:

 5.1 select ψ tuples into its own ResultSet

 5.2 for each tuple

 5.2.1 read/update/insert a tuple

 5.3 dies

6. Wait all threads to die

7. Stop counter

Table 11. Algorithm for E(c-jdbc,p,γ) assessment

To contextualize the performance assessment environment some initial measurements were

carried out to delimit the range of [nt] and [nr] to be used. In order to emphasize concurrency

mechanisms, priority was given to the range of [nt] in detriment of [nr]. Values for these metrics

were collected by empirical experimentation based on an iterative process. The idea is to gather a

set of values for [nt] and [nr] that may be used to assess and compare the performance of both

E(α,p,γ) entities. To accomplish this, both entities, E(c-ctsa,p,γ) and E(c-jdbc,p,γ) were executed under several

combinations of [nt] and [nr] until the collected measurements comprise a range of behaviors

considered satisfactory to accurately assess and compare the performance of both entities. After

several iterations it was decided that the execution environment should be defined as:

[nt]={1,5,10,25,50,75,100,150,200,250,350,500}

[nr]={5,10,25,50,75,100}

In accordance with the requirements, this execution environment evaluates the performance

by maximizing the number of simultaneous running threads in detriment of the number of tuples.

With 500 threads and 100 tuples it was possible to accurately assess and foresee the performance

behavior of both entities. This was the main reason for their acceptance. The intermediate collected

measurements showed to be enough to obtain well defined charts for the behaviors of both entities.

Just as a final note, some scenarios took some minutes to setup and to process the highest values of

[nt] and [nr]. This knowledge was also considered to delimit the two top values (nr=100 and

nt=500), this way avoiding any risk to successfully accomplish the collecting process of all

necessary measurements. For the assessment, 100 raw measurements were collected for each

E(α,p,γ)([nt],[nr]) leading to (2x3x12x6)x100=43,200 raw measurements. Intermediate

measurements were computed from the average of the 5 best measurements of each

E(α,p,γ)([nt],[nr]) leading to a total of 2x3x12x6=432 measurements. The final measurements used in

the next charts represent the ratios between E(c-jdbc,p,γ) and E(c-ctsa,p,γ) for each ([nt],[nr]). In all charts

the vertical axis is for the ratios and the horizontal axis is for the [nt].

Select scenario

The chart for the select scenario is shown in Figure 71. From it, it is clear that the ratios decrease

whenever the number of tuples increases and whenever the number of threads increases (for most

nt). This derives from the fact that E(c-jdbc,p,γ) have [nt] server cursors and each thread sequentially

reads its own tuples from the first one till the last one. Thus, the transference of block of tuples only

happens when a thread tries to read the next tuple that is after the last one contained in its own

ResultSet. The probability for this to happen increases with the number of rows. Regarding E(c-ctsa,p,γ)

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

144 | P a g e

there is only one server cursor shared by all threads. The implemented Read scenario significantly

increases the possibility of each thread to be requesting a tuple that is not present in the ResultSet

and, therefore, to trigger a new transference of block of tuples. With other different strategies, for

example where threads read shared sets of tuples, the block transference rate should be much

lower leading to an increase on its performance. Another relevant issue is that the Select scenario is

a light scenario mainly because the Select statement and Read protocol are very efficient when

compared with the other protocols. Thus, the overhead induced by the blocks transference have a

deeper impact in the overall performance. The impact increases with the number of tuples and the

number of threads. Figure 72 presents a detailed view of all results. The ratio is greater or equal to

1 in 35 situations and less than 1 in 37 situations. It also shows that the highest ratio is 3.44 (nr=5,

nt=10) and the lowest one is 0.8 (nr=25, nt=100). These results show that despite the unfavorable

conditions for C-CTSA, it still achieves significant results. For example, the relative highest gain in

performance (3.44) is much more significant than the relative highest lost in performance (0.8) and

the average value is 1.21.

Figure 71. E(c-jdbc,p,s) / E(c-ctsa,p,s) chart.

Figure 72. E(c-jdbc,p,s) / E(c-ctsa,p,s) details.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

145 | P a g e

Update scenario

The chart for the update scenario is shown in Figure 73. The comments made to the Select scenario

are also applied to the Update scenario, regarding the transference rate of block of tuples. The most

significant differences are: 1) the update protocol is a heavy protocol and, thus, its overhead has a

deep impact on both entities and in the collected measurements; 2) the E(c-jdbc,p,γ) entity has [nr]

server cursors each one competing with the others to update the requested values while E(c-ctsa,p,γ)

entity has only one server cursor and the competition is performed at the client side. Despite the

unfavorable conditions for C-CTSA, in this scenario, the ratio is always significantly greater than 1.

It increases in the range 1 < nt < 10 and for nt > 10 the ratios are practically stable for each

individual [nr] (except for nr=5). Another relevant issue is that the ratios decrease when [nr]

increases for every [nt].

Figure 73. E(c-jdbc,p,u) / E(c-ctsa,p,u) chart.

Insert scenario

The chart for the insert scenario is shown in Figure 74. The most relevant aspect is the slight but

Figure 74. E(c-jdbc,p,i) /E(c-ctsa,p,i) chart.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

146 | P a g e

constant ratios increase with [nt] for each [nr], except for nr=5. In the initial stage, ResultSets empty

and tuples are sequentially inserted and committed one by one in the host database table. In this

scenario, in opposite to the others, all E(c-ctsa,p,γ) threads insert adjacent tuples this way minimizing

the number of blocks to be transferred. In spite of being a very heavy scenario for both entities, the

differences between C-CSTA and C-JDBC are enough to be noticed in the ratios. It is always greater

than 1 and higher values of [nr] cause a decreasing in the ratios.

B.1.5 Conclusion

An architecture for a concurrent LMS of CLI, herein known as CTSA, has been presented. A proof of

concept has also been presented based on a standard JDBC API. In order to assess CTSA

performance in a concurrent environment and to compare it with an equivalent environment based

on a standard JDBC solution, a test-bed has been defined and implemented with two concurrent

entities: C-JDBC and C-CTSA. The measurements were collected using 3 scenarios. The scenarios

were modeled to create favorable conditions to C-JDBC and unfavorable conditions to C-CTSA. This

approach gives a much more secure perspective about the minimum expected gain in performance

when using real scenarios. Thus, it is expected that when used in real scenarios, the gain in

performance should be higher than the ones here presented and clearly bounded at the lower level

by the ratios here presented. In spite of these adverse conditions, C-CTSA always gets better scores

for the update and for the insert scenarios. In the Select scenario, C-CTSA obtained significant

scores in the range of lower values of [nr] and [nt]. Anyway, for higher values of [nr] and [nt] the

minimum ratio did not go below 0.8 which is still a remarkable score, considering the unfavorable

conditions under which the assessment of C-CTSA took place.

The outcome of this research should encourage programmers of concurrent applications that

use LMS of CLI, to implement a CTSA to improve the overall performance. Moreover, CLI providers

should be encouraged to release CLI with embedded concurrency. Embedded concurrency should

have the advantages of accessing the LMS’s internal data structures to optimize the implementation

of the different protocols. Very probably their results should be much better than the ones obtained

through components derived on the CTSA as proved from the results obtained in [Gomes, '11].

B.2 Embedded Approach

The embedded approach herein presented is based on a re-writing process of some parts of the

original source-code of the ResultSet interface in order to make them thread-safe. The final

document is available here [Gomes, '11] and, therefore, it will not be thoroughly described here.

Only the key aspects are herein described and emphasized.

B.2.1 Presentation

Whenever a scrollable or updatable LMS is instantiated, RDBMS create a database cursor. This one

to one relationship between LMS and server cursors is not a scalable solution let alone in situations

where many threads need to share the same data of the same Select expression. Thus, the basic idea

is to transform the one to one relationship into a many to one relationship, that is, several LMS

instances use the same server cursor. Another key issue is the internal operation of LMS. LMS have

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

147 | P a g e

an internal cache with a pre-defined size where the tuples are kept in memory. Whenever a client

requests access to a tuple that is not in memory, LMS request the RDBMS to send the requested

row. The RDBMS send a set of tuples, in accordance with the cache size, containing the requested

tuple. This approach is efficient whenever the tuples are sequentially accessed but it is critical

whenever the tuples are accessed randomly. The latter case means that, in an extreme scenario,

whenever a tuple is requested, a new access to the server cursor is necessary.

B.2.2 Architecture

Two solutions were implemented to address two common situations of concurrency between

threads: each thread owns its private cache (individual cache) and all threads share the same cache

of a LMS (shared cache).

B.2.2.1 Individual Cache

The individual cache implementation provides several separated caches, each one containing a set

of tuples accessible to one thread only. From the internal implementation point of view, this

implementation does not promote concurrency but it is thread-safe.

Advantages

The individual cache presents two main advantages. Firstly, only one thread accesses the cache

and, therefore, no concurrent mechanisms are necessary. The second advantage derives from

the fact that when each thread needs no more tuples than those initially cached, the number of

accesses to the server cursor is minimized.

Disadvantages

The individual cache presents three disadvantages. The first disadvantage has its origin on the

need to copy tuples to each individual cache. The second disadvantage derives from the first

and it is related to the existence of duplicated tuples. The third disadvantage also derives from

the first and it is relevant when modifications occur in caches. The modified content is not

immediately visible in other caches.

B.2.2.2 Shared Cache

Unlike the individual cache, the shared cache implementation uses one cache only, which is shared

by all threads. The shared cache has advantages and disadvantages next described:

Advantages

There are three main advantages which are the counterpart of the disadvantages of the

individual cache implementation.

Disadvantages

Two main disadvantages are emphasized. The first one is the need to a thread-safe

implementation of shared caches. The second disadvantage is the need for a new server cursor

whenever a thread accesses a tuple not contained in the cache.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

148 | P a g e

B.2.3 Performance Assessment

The performance assessment was carried out to compare:

 the individual and shared caches;

 individual and shared caches against implementations based on a C-JDBC and also against

the previous CTSA approach.

 Several contexts were defined to see their impact on the overall performance. The tested

contexts were:

 variable number or rows;

 variable number of threads;

 induced processing delays to simulate real scenarios - two scenarios were tested:

o variable induced processing delays between consecutive attribute accesses

following the next algorithm

Access attribute 1

Induced processing delay

Access attribute 2

….

o Variable induce processing delays between consecutive row accesses following the

next algorithm

Next row {

 Access attribute 1

 Access attribute 2

 …

 Induced processing delay

}

 Variable fetch size (number of fetched rows from server cursor to LMS). Were tested: 10%,

20%, 50%, 75% and 100%.

B.3 Conclusion

The collected results have shown that the embedded approach leads to better performance results

than the C-JDBC approach and the C-CTSA approach, see [Gomes, '11]. Thus, the embedded

approach is a promising approach to implement a thread-safe LMS. The collected results would be

even better if there was a deeper knowledge about the operation of server cursors at the time the

work was done. As a final remark, providers of CLI should be encouraged to deploy thread-safe

versions of their products.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

149 | P a g e

Annex C – ABTC: Multi-purpose Adaptable Business Tier
Components

This research leverages previous work on Modelization, Componentization and Access Control of

business tiers based on CLI Only the relevant aspects will be detailed to avoid the repetition of

previously discussed and presented aspects.

C.1 Introduction

CLI are general low level API that do not provide any high level assistance to address organizational

and runtime needs. Three examples are provided:

Organizational needs

Some organizations decouple the development process of business tiers from the development

process of application tiers. They are developed by different actors (people playing different

roles). Unlike these organizations, others do not follow this separation of roles. The same

person may be elected to play both roles.

Runtime needs

In some database applications, business tiers need to be dynamically adapted at runtime to

address runtime needs. For example, to address evolving security needs or evolving business

needs.

This gap is mainly derived from technical aspects of CLI previously addressed:

 source-code of business and application tiers is tangled and, therefore, the roles of

programmers cannot be decoupled;

 CLIdo not provide any means to adapt software to support different business needs, even if

the CRUD expression is the same. Programmers have to re-write the same CRUD expression

and re-write similar source code for the business tier part. This situation is critical in large

database applications with many and complex CRUD expressions;

 CLI do not provide any access control mechanism.

To overcome these drawbacks of CLI, an architecture referred to as the Adaptable Business

Tier Component (ABTC) is presented.

C.2 ABTC

This section, in a first stage, presents and describes the architecture of ABTC. In a second stage, a

proof of concept is also presented.

C.2.1 Adaptation Process

The adaptation process of business tiers is basically focused on the capability to support new CRUD

expressions. It comprises two dimensions: the capacity to automatically build, when necessary, new

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

150 | P a g e

Business Entities and the capacity to accept and manage CRUD expressions. The first dimension is

herein known as the service composition and the second is herein known as the service allocation.

Beyond this, to address different adaptation needs, namely organizational and runtime needs, ABTC

needs to support two lines: dynamic (ABTC_Dynamic) and static (ABTC_Static) versions.

ABTC_Dynamic is used when there is the need to carry out an adaptation process. ABTC_Static is

used when the adaptation process took place at an earlier stage and, therefore, there is no need to

be carried out again. This approach conveys the need to persist the business logics involved in the

adaptation process, whenever they are required in later stages. Persisted business logics are kept in

independent components herein known as Business Logic. Thus, in this adaptation context

(ABTC_Dynamic, ABTC_Static and Business Logic), three scenarios are presented to address

organizational and runtime requirements, see Figure 75:

ABTC_Dynamic

BusinessLogic_2

App. Tier ABTC_Static

BusinessLogic_2

App. Tier

ABTC_DynamicApp. Tier ABTC_Dynamic

BusinessLogic_4

App. Tier

ABTC_Static

BusinessLogic_1

App. Tier ABTC_Static

BusinessLogic_1

App. TierABTC_Dynamic

BusinessLogic_1

ADM

RuntimeDeveloperADM

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3

BusinessLogic_3

Figure 75. Implemented and tested scenarios.

Scenario 1

The adaption process is carried out by database administrators (ADM), or someone on their

behalf. ABTC_Dynamic is used to build a persistent business logic (BusinesLogic_1). Then,

developers of application tiers (Developers) use the persisted business logic (BusinessLogic_1)

and ABTC_Static for the development process of application tiers and also for the database

applications to be deployed (Runtime). This approach is used when business tier developer role

(ADM) and application tier developer role (Developer) are played by different actors.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

151 | P a g e

Scenario 2

The adaptation process takes place during the development process of application tiers

(Developer). It uses ABTC_Dynamic to build a persistent business logic (BusinessLogic_2). Then,

database applications are deployed with the persisted business logic (BusinessLogic_2) and

ABTC_Static. This approach is used when application tier developer role (Developer) and

business tier developer role (Developer) are played by the same actor.

Scenario 3

If necessary, business logics (BusinessLogic_3) are built during the development process of

application tiers (Developer) but are not used afterwards. Then, the adaptation process

(BusinessLogic_4) takes place after the deployment process of database applications and at

runtime. This approach is used, for example, whenever the adaptation process is dynamic,

eventually driven by security policies [Morin, '10] or eventually to accept CRUD expressions

defined at runtime and already supported by existent CRUD schemas.

C.2.2 Architecture Presentation

The architecture for ABTC is presented in this sub-section. The architecture is quite similar to the

one presented for DACC. ABTC shares many concepts of DACA such as Business Schema, Business

Entity, Service Composition and Service Allocation. Figure 76 presents the architecture for ABTC

and only the differences for DACC are described.

IServiceAllocation

IServiceAllocation comprises services to manage the service allocation process. The first two

methods are used to manage the deployment process of CRUD expressions, CRUD by CRUD. The

third method is used to deploy a set of CRUD expressions. While CRUD expressions deployed by

the two first methods are not persisted within business logics, CRUD expressions deployed by

the last method are persisted and replace all persisted CRUD expressions contained within the

business logic.

IService Composition

IServiceComposition comprises services to manage the service composition. The first two

methods are used to manage the deployment process Business Schema by Business Schema.

The third method is used to deploy a set of Business Schemas. In both cases, Business Services

are persisted within Business Logics. The main difference is that Business Schemas deployed by

the last method replace all previous Business Services within the business logic.

IManager

IManager gathers services to provide one of the two supported versions: dynamic (1) or static

(2) versions, ABTC_Dynamic and ABTC_Static, respectively. The dynamic version, beyond

extending IServiceAllocation and IServiceComposition, comprises an additional method to

define the repository for the persistent Business Logic.

Manager

Manager provides two services:

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

152 | P a g e

-Manager()
+getInstance(in un : string, in pw : string, in urlDB : string, in rebuiltBL : bool) : IManager

Manager

BusinessEngine

+businessEntity(in bs : T, in crudId : int) : T
+businessEntity(in bs : T, in crudId : int, in srollability : int, in updatability : int) : T
+releaseBusinessSession()

«interface»
ISession

+addBusinessSchema(in bs : IBusinessSchema_i)
+removeBusinessSchema(in bs : IBusinessSchema_i)
+addBusinessSchemas(in set : object)

«interface»
IServiceComposition

+addCRUD(in crudId : int, in crud : string)
+removeCRUD(in crudId : int)
+addCRUDs(in set : object)

«interface»
IServiceAllocation

+getBusinessSession() : ISession

«interface»
IUser

ITransaction

+Session(in un : string, in pwd : string, in url : string)

Session

-conn : DbConn

1
*

Business Logic

#BusinessEntity_1(in conn : DbConn, in crud : string)

BusinessEntity_1

IBusinessSchema_1

#BusinessEntity_n(in conn : DbConn, in crud : string)

BusinessEntity_n

IBusinessSchema_n

...

«interface»
IManager (2)

+repository(in file : string)

«interface»
IManager (1)

Only if dynamic
version

IManager:
(1) only if dynamic version
(2) only if static version

CRUD expressions

1

*

1

*

Figure 76. Class diagram of ABTC.

 a static method (getInstance) to create instances of ABTC;

 implements one of the two versions of IManager interface.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

153 | P a g e

Business Logic

Business Logic (at the bottom of the diagram) is an independent and persistent container to

 keep adapted business logics. Its content is updated through IServiceAllocation and

IServiceComposition (only with the ABTC_Dynamic).

ISession and Session

ISession and Session, similarly to DACC, are responsible for managing the instantiation process

of Business Entities. They provide three methods. The first two (businessEntity) instantiate

Business Entities: the first one is only for Insert, Update and Delete expressions and the second

one is only for Select expressions. They are generic methods that, among other arguments,

accept a Business Schema and return an instance of a Business Entity that implements the

requested Business Schema. To instantiate Business Entities, they need to be loaded into

memory at runtime and, then, instances are created using reflection. This process ensures that

Business Entities may be dynamically created and removed at runtime, without raising any

runtime error. The second method opens the possibility to define functionalities of LMS at

runtime (read-only or updatable and, forward-only or scrollable). This possibility cannot be in

contradiction with the functionalities provided by the Business Entities being instantiated. For

example, if a Business Entity is prepared to instantiate an updatable LMS, then the instantiated

LMS may be used as read-only. The opposite, an LMS used as updatable but instantiated as

read-only, raises a runtime exception. Sessions are released when not needed any more

(releaseBusinessSession).

C.3 Proof of Concept

This section presents the work carried out to prove that ABTC is a reliable architecture to overcome

the presented drawbacks of CLI. As mentioned before, two components were built: ABTC_Dynamic

and ABTC_Static. ABTC_Dynamic implements the dynamic version and ABTC_Static implements the

static version.

Three demos are presented, one for each scenario, Figure 75, which will be herein used as the

proof of concept. Demo1 is for scenario 1, Demo2 for scenario 2 and Demo3 for scenario 3. Demos

are divided in two or three steps as shown in Figure 75: ADM, Developer and Runtime. Each demo

comprises the same set of CRUD expressions and the same set of Business Schemas, presented in

Table 12 (bottom line presents additional details to understand the table contents).

Tests were carried out with the three demos to evaluate if ABTC copes with the presented

drawbacks of CLI. From the collected results, in the three demos, it is clear that ABTC completely

addresses the goals defined for the three scenarios. ABTC_Dynamic automatically builds Business

Logic from Business Schemas and CRUD expressions. The Business Logic building process may be

driven by any policy, being business needs and security policies only two different possibilities.

ABTC_Static uses Business Logic previously built with ABTC_Dynamic.

 These conclusions may be confirmed by accessing the public demos through the Windows

Remote Desktop Connection (url: ned.av.it.pt; username: ABTC; password: guest).

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

154 | P a g e

ID CRUD expressions

Business Schemas

LMS Closed Open

IPrd_s ICat_s ISup_s ICat_i IOpen_s

1 Select * from Products Y N N Y Y FR

2 Select * from Products where ProductID=10 Y N N Y Y FR

3 Select * from Products where SupplierID=2 Y N N Y Y FR

4 Select * from Categories N Y N Y Y FU

5 Select * from Categories where CategoryID=1 N Y N Y Y FR

6 Select * from Suppliers N N Y Y Y FR

7

Select p.*, c.categoryName, c.Description

 from Products p, Categories c

 Where p.CategoryID=c.CategoryID

N N N Y Y FR

8 Insert into Categories values (?,?,?,?) N N N Y N

ID: CRUD expression identification (1-allFromProducts, 2-fromProducts_productId,

 3-fromSuppliers_supplierId, 4-allFromCategories,

 5-fromCategories_categoryId, 6-allFromCategories,

 6-allFromSuppliers, 7-fromProductsCategories,

 8-InsertInCategories

CRUD expressions: supported CRUD expressions.

Business Schemas: supported Business Schemas.

LMS: updatability of LMS (F: forward-only, S:scrollable, R:read-only, U:updatable)

User Perm.: permission for each user to use CRUD expression.

Table 12. CRUD expressions and Business Schemas for the implemented scenarios.

A proof of concept is available through Windows Remote Desktop at: url: ned.av.it.pt,

username: ABTC, password: guest. The three scenarios based on Figure 75 were implemented and

Business Logic is defined from the contents of Table 12.

C.4 Discussion

In this section a discussion is taken on the following aspects: 1) ABTC beyond JDBC; 2) IRead

interface and 3) additional advantages of ABTC over CLI.

The proof of concept here presented is based on Java, JDBC and SQL Server 2008. An ABTC has

also been built with C#, ADO.NET and SQL Server 2008. The component was manually built. The

achieved success proved that the presented architecture is flexible enough to be used with different

technologies. From our previous experience with O/RM tools, namely Java Persistence API, it is our

belief that the architecture may also be used. However, it is so easy to be used with CLI that it would

only bring disadvantages if used with O/RM, namely because of their induced overhead.

IRead interface is defined from schemas returned by Select expressions. Very often, these

schemas derive directly from database schemas. This situation may raise several difficulties when a

Select expression joins two or more tables having attributes with the same name, as it happens with

Northwind. In this situation it is recommended to rename one of the attributes using ALIAS. Alias

are useful, they increase the possibility of differentiating equal projected names from different

tables. To avoid or minimize the usage of ALIAS, in order to minimize maintenance activities on

IRead, we suggest the use of unique names for each attribute. If necessary, this may be achieved by

using a technique based on a unique identification prefix for each table name and, then, using the

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

155 | P a g e

prefix to build attributes names in order to identify the source of each attribute. Example:

Prd_Products.Prd_ProductId (table Products and one attribute ProductId).

In spite of not being key aspects of this research, we stress some additional CLI drawbacks

which are also partially overcome by the reference architecture:

 With CLI, programmers need to master database schemas to deal with each retrieved

attribute of each CRUD expression. With ABTC, IRead and IWrite interfaces provide schema-

driven getter and setter methods, avoiding the need to master database schemas for each

CRUD expression.

 With CLI, there is no easy way to link CRUD expressions and the applications they assist.

With ABTC, the linkage is provided by schema-driven and type safe methods.

 ABTC, unlike CLI, transform runtime errors into compile errors. If the name of an attribute

is modified (IRead is modified), new Business Services are built. Then, when the application

tier is re-compiled, the compiler will detect all errors where the source-code of application

tiers was not updated. With CLI, names of attributes are encoded inside strings, this way

preventing any disconformity from being detected at compile time.

C.5 Conclusion

CLI are used to build business tier components whenever performance is a key requirement.

Regardless this advantage, they present some important drawbacks. To overcome the drawbacks, a

multi-purpose architecture for ABTC is presented. Two versions of ABTC were defined to address

different organizational and runtime needs. Three scenarios were defined and implemented as the

proof of concept. It proved, among other issues, that ABTC address different organizational and

contextual runtime needs. The adaptation process of ABTC is flexible to meet a wide set of different

needs. The adaptation process relies on a two phase approach: the service composition, which

takes place at runtime to dynamically build typed objects, and the service allocation, which also

takes place at runtime to deploy CRUD expressions. This approach promotes the definition of

different scenarios to address different needs. We have implemented three scenarios to address

some organizational and contextual runtime needs. Other scenarios could be implemented, as for

example, to address security needs. Basically, to address security needs, the deployment process of

CRUD Schemas and CRUD expressions should be driven by access control policies. To promote the

reuse of computation, Business Services manage not one but several CRUD expressions (closed and

open approach).

