31 research outputs found

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results

    Enhancing Real-time Embedded Image Processing Robustness on Reconfigurable Devices for Critical Applications

    Get PDF
    Nowadays, image processing is increasingly used in several application fields, such as biomedical, aerospace, or automotive. Within these fields, image processing is used to serve both non-critical and critical tasks. As example, in automotive, cameras are becoming key sensors in increasing car safety, driving assistance and driving comfort. They have been employed for infotainment (non-critical), as well as for some driver assistance tasks (critical), such as Forward Collision Avoidance, Intelligent Speed Control, or Pedestrian Detection. The complexity of these algorithms brings a challenge in real-time image processing systems, requiring high computing capacity, usually not available in processors for embedded systems. Hardware acceleration is therefore crucial, and devices such as Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. These devices can assist embedded processors by significantly speeding-up computationally intensive software algorithms. Moreover, critical applications introduce strict requirements not only from the real-time constraints, but also from the device reliability and algorithm robustness points of view. Technology scaling is highlighting reliability problems related to aging phenomena, and to the increasing sensitivity of digital devices to external radiation events that can cause transient or even permanent faults. These faults can lead to wrong information processed or, in the worst case, to a dangerous system failure. In this context, the reconfigurable nature of FPGA devices can be exploited to increase the system reliability and robustness by leveraging Dynamic Partial Reconfiguration features. The research work presented in this thesis focuses on the development of techniques for implementing efficient and robust real-time embedded image processing hardware accelerators and systems for mission-critical applications. Three main challenges have been faced and will be discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time performances, (ii) enhancing algorithm robustness, and (iii) increasing overall system's dependability. In order to ensure real-time performances, efficient FPGA-based hardware accelerators implementing selected image processing algorithms have been developed. Functionalities offered by the target technology, and algorithm's characteristics have been constantly taken into account while designing such accelerators, in order to efficiently tailor algorithm's operations to available hardware resources. On the other hand, the key idea for increasing image processing algorithms' robustness is to introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve, the quality of results for a wide range of input conditions, that are not always fully predictable at design-time (e.g., noise level variations). This has been accomplished by measuring at run-time some characteristics of the input images, and then tuning the algorithm parameters based on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGA have been extensively exploited in order to integrate run-time adaptivity into the designed hardware accelerators. Tools and methodologies have been also developed in order to increase the overall system dependability during reconfiguration processes, thus providing safe run-time adaptation mechanisms. In addition, taking into account the target technology and the environments in which the developed hardware accelerators and systems may be employed, dependability issues have been analyzed, leading to the development of a platform for quickly assessing the reliability and characterizing the behavior of hardware accelerators implemented on reconfigurable FPGAs when they are affected by such faults

    Energy Harvesting and Sensor Based Hardware Security Primitives for Cyber-Physical Systems

    Get PDF
    The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. Although cyber-physical systems can offer numerous advantages to society, their large scale adoption does not come without risks. Internet of Things (IoT) devices can be considered a significant component within cyber-physical systems. They can provide network communication in addition to controlling the various sensors and actuators that exist within the larger cyber-physical system. The adoption of IoT features can also provide attackers with new potential avenues to access and exploit a system\u27s vulnerabilities. Previously, existing systems could more or less be considered a closed system with few potential points of access for attackers. Security was thus not typically a core consideration when these systems were originally designed. The cumulative effect is that these systems are now vulnerable to new security risks without having native security countermeasures that can easily address these vulnerabilities. Even just adding standard security features to these systems is itself not a simple task. The devices that make up these systems tend to have strict resource constraints in the form of power consumption and processing power. In this dissertation, we explore how security devices known as Physically Unclonable Functions (PUFs) could be used to address these concerns. PUFs are a class of circuits that are unique and unclonable due to inherent variations caused by the device manufacturing process. We can take advantage of these PUF properties by using the outputs of PUFs to generate secret keys or pseudonyms that are similarly unique and unclonable. Existing PUF designs are commonly based around transistor level variations in a special purpose integrated circuit (IC). Integrating these designs within a system would still require additional hardware along with system modification to interact with the device. We address these concerns by proposing a novel PUF design methodology for the creation of PUFs whose integration within these systems would minimize the cost of redesigning the system by reducing the need to add additional hardware. This goal is achieved by creating PUF designs from components that may already exist within these systems. A PUF designed from existing components creates the possibility of adding a PUF (and thus security features) to the system without actually adding any additional hardware. This could allow PUFs to become a more attractive security option for integration with resource constrained devices. Our proposed approach specifically targets sensors and energy harvesting devices since they can provide core functions within cyber-physical systems such as power generation and sensing capabilities. These components are known to exhibit variations due to the manufacturing process and could thus be utilized to design a PUF. Our first contribution is the proposal of a novel PUF design methodology based on using components which are already commonly found within cyber-physical systems. The proposed methodology uses eight sensors or energy harvesting devices along with a microcontroller. It is unlikely that single type of sensor or energy harvester will exist in all possible cyber-physical systems. Therefore, it is important to create a range of designs in order to reach a greater portion of cyber-physical systems. The second contribution of this work is the design of a PUF based on piezo sensors. Our third contribution is the design of a PUF that utilizes thermistor temperature sensors. The fourth contribution of this work is a proposed solar cell based PUF design. Furthermore, as a fifth contribution of this dissertation we evaluate a selection of common solar cell materials to establish which type of solar cell would be best suited to the creation of a PUF based on the operating conditions. The viability of the proposed designs is evaluated through testing in terms of reliability and uniformity. In addition, Monte Carlo simulations are performed to evaluate the uniqueness property of the designs. For our final contribution we illustrate the security benefits that can be achieved through the adoption of PUFs by cyber-physical systems. For this purpose we chose to highlight vehicles since they are a very popular example of a cyber-physical system and they face unique security challenges which are not readily solvable by standard solutions. Our contribution is the proposal of a novel controller area network (CAN) security framework that is based on PUFs. The framework does not require any changes to the underlying CAN protocol and also minimizes the amount of additional message passing overhead needed for its operation. The proposed framework is a good example of how the cost associated with implementing such a framework could be further reduced through the adoption of our proposed PUF designs. The end result is a method which could introduce security to an inherently insecure system while also making its integration as seamless as possible by attempting to minimize the need for additional hardware

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Secure Physical Design

    Get PDF
    An integrated circuit is subject to a number of attacks including information leakage, side-channel attacks, fault-injection, malicious change, reverse engineering, and piracy. Majority of these attacks take advantage of physical placement and routing of cells and interconnects. Several measures have already been proposed to deal with security issues of the high level functional design and logic synthesis. However, to ensure end-to-end trustworthy IC design flow, it is necessary to have security sign-off during physical design flow. This paper presents a secure physical design roadmap to enable end-to-end trustworthy IC design flow. The paper also discusses utilization of AI/ML to establish security at the layout level. Major research challenges in obtaining a secure physical design are also discussed

    Error Detection and Diagnosis for System-on-Chip in Space Applications

    Get PDF
    Tesis por compendio de publicacionesLos componentes electrónicos comerciales, comúnmente llamados componentes Commercial-Off-The-Shelf (COTS) están presentes en multitud de dispositivos habituales en nuestro día a día. Particularmente, el uso de microprocesadores y sistemas en chip (SoC) altamente integrados ha favorecido la aparición de dispositivos electrónicos cada vez más inteligentes que sostienen el estilo de vida y el avance de la sociedad moderna. Su uso se ha generalizado incluso en aquellos sistemas que se consideran críticos para la seguridad, como vehículos, aviones, armamento, dispositivos médicos, implantes o centrales eléctricas. En cualquiera de ellos, un fallo podría tener graves consecuencias humanas o económicas. Sin embargo, todos los sistemas electrónicos conviven constantemente con factores internos y externos que pueden provocar fallos en su funcionamiento. La capacidad de un sistema para funcionar correctamente en presencia de fallos se denomina tolerancia a fallos, y es un requisito en el diseño y operación de sistemas críticos. Los vehículos espaciales como satélites o naves espaciales también hacen uso de microprocesadores para operar de forma autónoma o semi autónoma durante su vida útil, con la dificultad añadida de que no pueden ser reparados en órbita, por lo que se consideran sistemas críticos. Además, las duras condiciones existentes en el espacio, y en particular los efectos de la radiación, suponen un gran desafío para el correcto funcionamiento de los dispositivos electrónicos. Concretamente, los fallos transitorios provocados por radiación (conocidos como soft errors) tienen el potencial de ser una de las mayores amenazas para la fiabilidad de un sistema en el espacio. Las misiones espaciales de gran envergadura, típicamente financiadas públicamente como en el caso de la NASA o la Agencia Espacial Europea (ESA), han tenido históricamente como requisito evitar el riesgo a toda costa por encima de cualquier restricción de coste o plazo. Por ello, la selección de componentes resistentes a la radiación (rad-hard) específicamente diseñados para su uso en el espacio ha sido la metodología imperante en el paradigma que hoy podemos denominar industria espacial tradicional, u Old Space. Sin embargo, los componentes rad-hard tienen habitualmente un coste mucho más alto y unas prestaciones mucho menores que otros componentes COTS equivalentes. De hecho, los componentes COTS ya han sido utilizados satisfactoriamente en misiones de la NASA o la ESA cuando las prestaciones requeridas por la misión no podían ser cubiertas por ningún componente rad-hard existente. En los últimos años, el acceso al espacio se está facilitando debido en gran parte a la entrada de empresas privadas en la industria espacial. Estas empresas no siempre buscan evitar el riesgo a toda costa, sino que deben perseguir una rentabilidad económica, por lo que hacen un balance entre riesgo, coste y plazo mediante gestión del riesgo en un paradigma denominado Nuevo Espacio o New Space. Estas empresas a menudo están interesadas en entregar servicios basados en el espacio con las máximas prestaciones y el mayor beneficio posibles, para lo cual los componentes rad-hard son menos atractivos debido a su mayor coste y menores prestaciones que los componentes COTS existentes. Sin embargo, los componentes COTS no han sido específicamente diseñados para su uso en el espacio y típicamente no incluyen técnicas específicas para evitar que los efectos de la radiación afecten su funcionamiento. Los componentes COTS se comercializan tal cual son, y habitualmente no es posible modificarlos para mejorar su resistencia a la radiación. Además, los elevados niveles de integración de los sistemas en chip (SoC) complejos de altas prestaciones dificultan su observación y la aplicación de técnicas de tolerancia a fallos. Este problema es especialmente relevante en el caso de los microprocesadores. Por tanto, existe un gran interés en el desarrollo de técnicas que permitan conocer y mejorar el comportamiento de los microprocesadores COTS bajo radiación sin modificar su arquitectura y sin interferir en su funcionamiento para facilitar su uso en el espacio y con ello maximizar las prestaciones de las misiones espaciales presentes y futuras. En esta Tesis se han desarrollado técnicas novedosas para detectar, diagnosticar y mitigar los errores producidos por radiación en microprocesadores y sistemas en chip (SoC) comerciales, utilizando la interfaz de traza como punto de observación. La interfaz de traza es un recurso habitual en los microprocesadores modernos, principalmente enfocado a soportar las tareas de desarrollo y depuración del software durante la fase de diseño. Sin embargo, una vez el desarrollo ha concluido, la interfaz de traza típicamente no se utiliza durante la fase operativa del sistema, por lo que puede ser reutilizada sin coste. La interfaz de traza constituye un punto de conexión viable para observar el comportamiento de un microprocesador de forma no intrusiva y sin interferir en su funcionamiento. Como resultado de esta Tesis se ha desarrollado un módulo IP capaz de recabar y decodificar la información de traza de un microprocesador COTS moderno de altas prestaciones. El IP es altamente configurable y personalizable para adaptarse a diferentes aplicaciones y tipos de procesadores. Ha sido diseñado y validado utilizando el dispositivo Zynq-7000 de Xilinx como plataforma de desarrollo, que constituye un dispositivo COTS de interés en la industria espacial. Este dispositivo incluye un procesador ARM Cortex-A9 de doble núcleo, que es representativo del conjunto de microprocesadores hard-core modernos de altas prestaciones. El IP resultante es compatible con la tecnología ARM CoreSight, que proporciona acceso a información de traza en los microprocesadores ARM. El IP incorpora técnicas para detectar errores en el flujo de ejecución y en los datos de la aplicación ejecutada utilizando la información de traza, en tiempo real y con muy baja latencia. El IP se ha validado en campañas de inyección de fallos y también en radiación con protones y neutrones en instalaciones especializadas. También se ha combinado con otras técnicas de tolerancia a fallos para construir técnicas híbridas de mitigación de errores. Los resultados experimentales obtenidos demuestran su alta capacidad de detección y potencialidad en el diagnóstico de errores producidos por radiación. El resultado de esta Tesis, desarrollada en el marco de un Doctorado Industrial entre la Universidad Carlos III de Madrid (UC3M) y la empresa Arquimea, se ha transferido satisfactoriamente al entorno empresarial en forma de un proyecto financiado por la Agencia Espacial Europea para continuar su desarrollo y posterior explotación.Commercial electronic components, also known as Commercial-Off-The-Shelf (COTS), are present in a wide variety of devices commonly used in our daily life. Particularly, the use of microprocessors and highly integrated System-on-Chip (SoC) devices has fostered the advent of increasingly intelligent electronic devices which sustain the lifestyles and the progress of modern society. Microprocessors are present even in safety-critical systems, such as vehicles, planes, weapons, medical devices, implants, or power plants. In any of these cases, a fault could involve severe human or economic consequences. However, every electronic system deals continuously with internal and external factors that could provoke faults in its operation. The capacity of a system to operate correctly in presence of faults is known as fault-tolerance, and it becomes a requirement in the design and operation of critical systems. Space vehicles such as satellites or spacecraft also incorporate microprocessors to operate autonomously or semi-autonomously during their service life, with the additional difficulty that they cannot be repaired once in-orbit, so they are considered critical systems. In addition, the harsh conditions in space, and specifically radiation effects, involve a big challenge for the correct operation of electronic devices. In particular, radiation-induced soft errors have the potential to become one of the major risks for the reliability of systems in space. Large space missions, typically publicly funded as in the case of NASA or European Space Agency (ESA), have followed historically the requirement to avoid the risk at any expense, regardless of any cost or schedule restriction. Because of that, the selection of radiation-resistant components (known as rad-hard) specifically designed to be used in space has been the dominant methodology in the paradigm of traditional space industry, also known as “Old Space”. However, rad-hard components have commonly a much higher associated cost and much lower performance that other equivalent COTS devices. In fact, COTS components have already been used successfully by NASA and ESA in missions that requested such high performance that could not be satisfied by any available rad-hard component. In the recent years, the access to space is being facilitated in part due to the irruption of private companies in the space industry. Such companies do not always seek to avoid the risk at any cost, but they must pursue profitability, so they perform a trade-off between risk, cost, and schedule through risk management in a paradigm known as “New Space”. Private companies are often interested in deliver space-based services with the maximum performance and maximum benefit as possible. With such objective, rad-hard components are less attractive than COTS due to their higher cost and lower performance. However, COTS components have not been specifically designed to be used in space and typically they do not include specific techniques to avoid or mitigate the radiation effects in their operation. COTS components are commercialized “as is”, so it is not possible to modify them to improve their susceptibility to radiation effects. Moreover, the high levels of integration of complex, high-performance SoC devices hinder their observability and the application of fault-tolerance techniques. This problem is especially relevant in the case of microprocessors. Thus, there is a growing interest in the development of techniques allowing to understand and improve the behavior of COTS microprocessors under radiation without modifying their architecture and without interfering with their operation. Such techniques may facilitate the use of COTS components in space and maximize the performance of present and future space missions. In this Thesis, novel techniques have been developed to detect, diagnose, and mitigate radiation-induced errors in COTS microprocessors and SoCs using the trace interface as an observation point. The trace interface is a resource commonly found in modern microprocessors, mainly intended to support software development and debugging activities during the design phase. However, it is commonly left unused during the operational phase of the system, so it can be reused with no cost. The trace interface constitutes a feasible connection point to observe microprocessor behavior in a non-intrusive manner and without disturbing processor operation. As a result of this Thesis, an IP module has been developed capable to gather and decode the trace information of a modern, high-end, COTS microprocessor. The IP is highly configurable and customizable to support different applications and processor types. The IP has been designed and validated using the Xilinx Zynq-7000 device as a development platform, which is an interesting COTS device for the space industry. This device features a dual-core ARM Cortex-A9 processor, which is a good representative of modern, high-end, hard-core microprocessors. The resulting IP is compatible with the ARM CoreSight technology, which enables access to trace information in ARM microprocessors. The IP is able to detect errors in the execution flow of the microprocessor and in the application data using trace information, in real time and with very low latency. The IP has been validated in fault injection campaigns and also under proton and neutron irradiation campaigns in specialized facilities. It has also been combined with other fault-tolerance techniques to build hybrid error mitigation approaches. Experimental results demonstrate its high detection capabilities and high potential for the diagnosis of radiation-induced errors. The result of this Thesis, developed in the framework of an Industrial Ph.D. between the University Carlos III of Madrid (UC3M) and the company Arquimea, has been successfully transferred to the company business as a project sponsored by European Space Agency to continue its development and subsequent commercialization.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidenta: María Luisa López Vallejo.- Secretario: Enrique San Millán Heredia.- Vocal: Luigi Di Lill

    CBM progress report 2011

    Get PDF

    CBM Progress Report 2011

    Get PDF

    Reconfigurable acceleration of Recurrent Neural Networks

    Get PDF
    Recurrent Neural Networks (RNNs) have been successful in a wide range of applications involving temporal sequences such as natural language processing, speech recognition and video analysis. However, RNNs often require a significant amount of memory and computational resources. In addition, the recurrent nature and data dependencies in RNN computations can lead to system stall, resulting in low throughput and high latency. This work describes novel parallel hardware architectures for accelerating RNN inference using Field-Programmable Gate Array (FPGA) technology, which considers the data dependencies and high computational costs of RNNs. The first contribution of this thesis is a latency-hiding architecture that utilizes column-wise matrix-vector multiplication instead of the conventional row-wise operation to eliminate data dependencies and improve the throughput of RNN inference designs. This architecture is further enhanced by a configurable checkerboard tiling strategy which allows large dimensions of weight matrices, while supporting element-based parallelism and vector-based parallelism. The presented reconfigurable RNN designs show significant speedup over CPU, GPU, and other FPGA designs. The second contribution of this thesis is a weight reuse approach for large RNN models with weights stored in off-chip memory, running with a batch size of one. A novel blocking-batching strategy is proposed to optimize the throughput of large RNN designs on FPGAs by reusing the RNN weights. Performance analysis is also introduced to enable FPGA designs to achieve the best trade-off between area, power consumption and performance. Promising power efficiency improvement has been achieved in addition to speeding up over CPU and GPU designs. The third contribution of this thesis is a low latency design for RNNs based on a partially-folded hardware architecture. It also introduces a technique that balances initiation interval of multi-layer RNN inferences to increase hardware efficiency and throughput while reducing latency. The approach is evaluated on a variety of applications, including gravitational wave detection and Bayesian RNN-based ECG anomaly detection. To facilitate the use of this approach, we open source an RNN template which enables the generation of low-latency FPGA designs with efficient resource utilization using high-level synthesis tools.Open Acces

    A Framework for Facilitating Secure Design and Development of IoT Systems

    Get PDF
    The term Internet of Things (IoT) describes an ever-growing ecosystem of physical objects or things interconnected with each other and connected to the Internet. IoT devices consist of a wide range of highly heterogeneous inanimate and animate objects. Thus, a thing in the context of the IoT can even mean a person with blood pressure or heart rate monitor implant or a pet with a biochip transponder. IoT devices range from ordinary household appliances, such as smart light bulbs or smart coffee makers, to sophisticated tools for industrial automation. IoT is currently leading a revolutionary change in many industries and, as a result, a lot of industries and organizations are adopting the paradigm to gain a competitive edge. This allows them to boost operational efficiency and optimize system performance through real-time data management, which results in an optimized balance between energy usage and throughput. Another important application area is the Industrial Internet of Things (IIoT), which is the application of the IoT in industrial settings. This is also referred to as the Industrial Internet or Industry 4.0, where Cyber- Physical Systems (CPS) are interconnected using various technologies to achieve wireless control as well as advanced manufacturing and factory automation. IoT applications are becoming increasingly prevalent across many application domains, including smart healthcare, smart cities, smart grids, smart farming, and smart supply chain management. Similarly, IoT is currently transforming the way people live and work, and hence the demand for smart consumer products among people is also increasing steadily. Thus, many big industry giants, as well as startup companies, are competing to dominate the market with their new IoT products and services, and hence unlocking the business value of IoT. Despite its increasing popularity, potential benefits, and proven capabilities, IoT is still in its infancy and fraught with challenges. The technology is faced with many challenges, including connectivity issues, compatibility/interoperability between devices and systems, lack of standardization, management of the huge amounts of data, and lack of tools for forensic investigations. However, the state of insecurity and privacy concerns in the IoT are arguably among the key factors restraining the universal adoption of the technology. Consequently, many recent research studies reveal that there are security and privacy issues associated with the design and implementation of several IoT devices and Smart Applications (smart apps). This can be attributed, partly, to the fact that as some IoT device makers and smart apps development companies (especially the start-ups) reap business value from the huge IoT market, they tend to neglect the importance of security. As a result, many IoT devices and smart apps are created with security vulnerabilities, which have resulted in many IoT related security breaches in recent years. This thesis is focused on addressing the security and privacy challenges that were briefly highlighted in the previous paragraph. Given that the Internet is not a secure environ ment even for the traditional computer systems makes IoT systems even less secure due to the inherent constraints associated with many IoT devices. These constraints, which are mainly imposed by cost since many IoT edge devices are expected to be inexpensive and disposable, include limited energy resources, limited computational and storage capabilities, as well as lossy networks due to the much lower hardware performance compared to conventional computers. While there are many security and privacy issues in the IoT today, arguably a root cause of such issues is that many start-up IoT device manufacturers and smart apps development companies do not adhere to the concept of security by design. Consequently, some of these companies produce IoT devices and smart apps with security vulnerabilities. In recent years, attackers have exploited different security vulnerabilities in IoT infrastructures which have caused several data breaches and other security and privacy incidents involving IoT devices and smart apps. These have attracted significant attention from the research community in both academia and industry, resulting in a surge of proposals put forward by many researchers. Although research approaches and findings may vary across different research studies, the consensus is that a fundamental prerequisite for addressing IoT security and privacy challenges is to build security and privacy protection into IoT devices and smart apps from the very beginning. To this end, this thesis investigates how to bake security and privacy into IoT systems from the onset, and as its main objective, this thesis particularly focuses on providing a solution that can foster the design and development of secure IoT devices and smart apps, namely the IoT Hardware Platform Security Advisor (IoT-HarPSecA) framework. The security framework is expected to provide support to designers and developers in IoT start-up companies during the design and implementation of IoT systems. IoT-HarPSecA framework is also expected to facilitate the implementation of security in existing IoT systems. To accomplish the previously mentioned objective as well as to affirm the aforementioned assertion, the following step-by-step problem-solving approach is followed. The first step is an exhaustive survey of different aspects of IoT security and privacy, including security requirements in IoT architecture, security threats in IoT architecture, IoT application domains and their associated cyber assets, the complexity of IoT vulnerabilities, and some possible IoT security and privacy countermeasures; and the survey wraps up with a brief overview of IoT hardware development platforms. The next steps are the identification of many challenges and issues associated with the IoT, which narrowed down to the abovementioned fundamental security/privacy issue; followed by a study of different aspects of security implementation in the IoT. The remaining steps are the framework design thinking process, framework design and implementation, and finally, framework performance evaluation. IoT-HarPSecA offers three functionality features, namely security requirement elicitation security best practice guidelines for secure development, and above all, a feature that recommends specific Lightweight Cryptographic Algorithms (LWCAs) for both software and hardware implementations. Accordingly, IoT-HarPSecA is composed of three main components, namely Security Requirements Elicitation (SRE) component, Security Best Practice Guidelines (SBPG) component, and Lightweight Cryptographic Algorithms Recommendation (LWCAR) component, each of them servicing one of the aforementioned features. The author has implemented a command-line tool in C++ to serve as an interface between users and the security framework. This thesis presents a detailed description, design, and implementation of the SRE, SBPG, and LWCAR components of the security framework. It also presents real-world practical scenarios that show how IoT-HarPSecA can be used to elicit security requirements, generate security best practices, and recommend appropriate LWCAs based on user inputs. Furthermore, the thesis presents performance evaluation of the SRE, SBPG, and LWCAR components framework tools, which shows that IoT-HarPSecA can serve as a roadmap for secure IoT development.O termo Internet das coisas (IoT) é utilizado para descrever um ecossistema, em expansão, de objetos físicos ou elementos interconetados entre si e à Internet. Os dispositivos IoT consistem numa gama vasta e heterogénea de objetos animados ou inanimados e, neste contexto, podem pertencer à IoT um indivíduo com um implante que monitoriza a frequência cardíaca ou até mesmo um animal de estimação que tenha um biochip. Estes dispositivos variam entre eletrodomésticos, tais como máquinas de café ou lâmpadas inteligentes, a ferramentas sofisticadas de uso na automatização industrial. A IoT está a revolucionar e a provocar mudanças em várias indústrias e muitas adotam esta tecnologia para incrementar as suas vantagens competitivas. Este paradigma melhora a eficiência operacional e otimiza o desempenho de sistemas através da gestão de dados em tempo real, resultando num balanço otimizado entre o uso energético e a taxa de transferência. Outra área de aplicação é a IoT Industrial (IIoT) ou internet industrial ou Indústria 4.0, ou seja, uma aplicação de IoT no âmbito industrial, onde os sistemas ciberfísicos estão interconectados a diversas tecnologias de forma a obter um controlo de rede sem fios, bem como fabricações avançadas e automatização fabril. As aplicações da IoT estão a crescer e a tornarem-se predominantes em muitos domínios de aplicação inteligentes como sistemas de saúde, cidades, redes, agricultura e sistemas de fornecimento. Da mesma forma, a IoT está a transformar estilos de vida e de trabalho e assim, a procura por produtos inteligentes está constantemente a aumentar. As grandes indústrias e startups competem entre si de forma a dominar o mercado com os seus novos serviços e produtos IoT, desbloqueando o valor de negócio da IoT. Apesar da sua crescente popularidade, benefícios e capacidades comprovadas, a IoT está ainda a dar os seus primeiros passos e é confrontada com muitos desafios. Entre eles, problemas de conectividade, compatibilidade/interoperabilidade entre dispositivos e sistemas, falta de padronização, gestão das enormes quantidades de dados e ainda falta de ferramentas para investigações forenses. No entanto, preocupações quanto ao estado de segurança e privacidade ainda estão entre os fatores adversos à adesão universal desta tecnologia. Estudos recentes revelaram que existem questões de segurança e privacidade associadas ao design e implementação de vários dispositivos IoT e aplicações inteligentes (smart apps.), isto pode ser devido ao facto, em parte, de que alguns fabricantes e empresas de desenvolvimento de dispositivos (especialmente startups) IoT e smart apps., recolham o valor de negócio dos grandes mercados IoT, negligenciando assim a importância da segurança, resultando em dispositivos IoT e smart apps. com carências e violações de segurança da IoT nos últimos anos. Esta tese aborda os desafios de segurança e privacidade que foram supra mencionados. Visto que a Internet e os sistemas informáticos tradicionais são por vezes considerados inseguros, os sistemas IoT tornam-se ainda mais inseguros, devido a restrições inerentes a tais dispositivos. Estas restrições são impostas devido ao custo, uma vez que se espera que muitos dispositivos de ponta sejam de baixo custo e descartáveis, com recursos energéticos limitados, bem como limitações na capacidade de armazenamento e computacionais, e redes com perdas devido a um desempenho de hardware de qualidade inferior, quando comparados com computadores convencionais. Uma das raízes do problema é o facto de que muitos fabricantes, startups e empresas de desenvolvimento destes dispositivos e smart apps não adiram ao conceito de segurança por construção, ou seja, logo na conceção, não preveem a proteção da privacidade e segurança. Assim, alguns dos produtos e dispositivos produzidos apresentam vulnerabilidades na segurança. Nos últimos anos, hackers maliciosos têm explorado diferentes vulnerabilidades de segurança nas infraestruturas da IoT, causando violações de dados e outros incidentes de privacidade envolvendo dispositivos IoT e smart apps. Estes têm atraído uma atenção significativa por parte das comunidades académica e industrial, que culminaram num grande número de propostas apresentadas por investigadores científicos. Ainda que as abordagens de pesquisa e os resultados variem entre os diferentes estudos, há um consenso e pré-requisito fundamental para enfrentar os desafios de privacidade e segurança da IoT, que buscam construir proteção de segurança e privacidade em dispositivos IoT e smart apps. desde o fabrico. Para esta finalidade, esta tese investiga como produzir segurança e privacidade destes sistemas desde a produção, e como principal objetivo, concentra-se em fornecer soluções que possam promover a conceção e o desenvolvimento de dispositivos IoT e smart apps., nomeadamente um conjunto de ferramentas chamado Consultor de Segurança da Plataforma de Hardware da IoT (IoT-HarPSecA). Espera-se que o conjunto de ferramentas forneça apoio a designers e programadores em startups durante a conceção e implementação destes sistemas ou que facilite a integração de mecanismos de segurança nos sistemas préexistentes. De modo a alcançar o objetivo proposto, recorre-se à seguinte abordagem. A primeira fase consiste num levantamento exaustivo de diferentes aspetos da segurança e privacidade na IoT, incluindo requisitos de segurança na arquitetura da IoT e ameaças à sua segurança, os seus domínios de aplicação e os ativos cibernéticos associados, a complexidade das vulnerabilidades da IoT e ainda possíveis contramedidas relacionadas com a segurança e privacidade. Evolui-se para uma breve visão geral das plataformas de desenvolvimento de hardware da IoT. As fases seguintes consistem na identificação dos desafios e questões associadas à IoT, que foram restringidos às questões de segurança e privacidade. As demais etapas abordam o processo de pensamento de conceção (design thinking), design e implementação e, finalmente, a avaliação do desempenho. O IoT-HarPSecA é composto por três componentes principais: a Obtenção de Requisitos de Segurança (SRE), Orientações de Melhores Práticas de Segurança (SBPG) e a recomendação de Componentes de Algoritmos Criptográficos Leves (LWCAR) na implementação de software e hardware. O autor implementou uma ferramenta em linha de comandos usando linguagem C++ que serve como interface entre os utilizadores e a IoT-HarPSecA. Esta tese apresenta ainda uma descrição detalhada, desenho e implementação das componentes SRE, SBPG, e LWCAR. Apresenta ainda cenários práticos do mundo real que demostram como o IoT-HarPSecA pode ser utilizado para elicitar requisitos de segurança, gerar boas práticas de segurança (em termos de recomendações de implementação) e recomendar algoritmos criptográficos leves apropriados com base no contributo dos utilizadores. De igual forma, apresenta-se a avaliação do desempenho destes três componentes, demonstrando que o IoT-HarPSecA pode servir como um roteiro para o desenvolvimento seguro da IoT
    corecore