
Error Detection and Diagnosis for
System-on-Chip in Space Applications

by

Manuel Peña Fernández

A dissertation submitted by in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in

Electrical Engineering, Electronics and Automation

Universidad Carlos III de Madrid

Advisors:

Dra. Almudena Lindoso Muñoz
Dr. Luis Alfonso Entrena Arrontes

Tutor:

Dr. Luis Alfonso Entrena Arrontes

June 2022

This Thesis is distributed under license “Creative Commons Attribution - Non
Commercial - Non Derivatives”.

A mi familia

AGRADECIMIENTOS

En primer lugar, quisiera aprovechar estas líneas para expresar mi agradecimiento a
todos aquellos que me han acompañado y ayudado durante el desarrollo y escritura de esta
Tesis. Gracias especialmente a mis directores, Almudena y Luis, por su gran dedicación
en este trabajo. Vuestra ayuda, orientación y experiencia han enriquecido los resultados
obtenidos y me han empujado a dar de mí lo mejor.

Gracias a todos mis compañeros de universidad, por su compañerismo y amistad
durante toda esta etapa. En especial a mis amigos Jorge Plaza, Dragos Andrei Poiana, Jorge
Rodríguez, Alejandro Ruiz y Carlos Romero. Sé que compartís mi entusiasmo por haber
finalizado este trabajo.

Gracias a todos los profesores que he tenido, por sembrar en mí la inquietud por lo
desconocido y demostrarme la satisfacción que se puede obtener del trabajo bien hecho.

Gracias a la Universidad Carlos III de Madrid, en cuyo seno he realizado mi formación
superior, incluida esta Tesis.

Mi sincero agradecimiento a todas las personas de Arquimea, que me aceptaron para
desarrollar esta investigación como un Doctorado Industrial dentro de una prestigiosa
empresa del ámbito espacial. Estoy muy agradecido a todos los compañeros con los que he
tenido el placer de trabajar, por su profesionalidad y amabilidad. Estoy seguro de que he
aprendido muchas cosas de cada uno de vosotros. Gracias en especial a Daniel González,
como mi tutor dentro de la empresa, y a Francisco Álvarez y a José Ángel Domínguez por
su continuo apoyo en este trabajo durante estos años.

Además, me gustaría agradecer a la Comunidad de Madrid por financiar públicamente
la investigación doctoral. Este trabajo ha sido financiado en parte por la Comunidad de
Madrid mediante una beca, con número de expediente IND2017/TIC-7776, concedida en
2017 dentro de una convocatoria de ayudas para la realización de doctorados industriales.

A todos mis amigos, por seguir ahí, entusiasmándonos aún más con nuestros logros.
Formáis parte también de esta historia.

A mi familia, por creer siempre en mí y apoyarme incondicionalmente durante esta
etapa.

A Patricia, por quererme tantísimo.

PUBLISHED AND SUBMITTED CONTENT

1st-author journal articles

[J1] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, S. Philippe, Y.
Morilla, and P. Martin-Holgado, “PTM-based hybrid error-detection architecture for
ARM microprocessors”, Microelectronics Reliability, vol. 88-90, pp. 925–930, Sep.
2018. doi: 10.1016/j.microrel.2018.07.074 (JCR Q3). This article has been
wholly included in this Thesis in Chapter 4.

[J2] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Morilla,
and P. Martín-Holgado, “Online error detection through trace infrastructure in
ARM microprocessors”, IEEE Transactions on Nuclear Science, vol. 66, no. 7,
pp. 1457–1464, Jul. 2019. doi: 10.1109/TNS.2019.2921767 (JCR Q2). This
article has been wholly included in this Thesis in Chapter 5.

[J3] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. García-Valderas, L. Entrena,
A. Martínez-Álvarez, and S. Cuenca-Asensi, “Dual-core lockstep enhanced with
redundant multithread support and control-flow error detection”, Microelectronics
Reliability, vol. 100-101, no. 113447, Sep. 2019. doi: 10.1016/j.microrel.
2019.113447 (JCR Q3). This article has been wholly included in this Thesis in
Chapter 6.

[J4] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “The use of
microprocessor trace infrastructures for radiation-induced fault diagnosis”, IEEE
Transactions on Nuclear Science, vol. 67, no. 1, pp. 126–134, Jan. 2020. doi: 10.
1109/TNS.2019.2956204 (JCR Q2). This article has been wholly included in this
Thesis in Chapter 7.

[J5] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “Error
detection and mitigation of data-intensive microprocessor applications using SIMD
and trace monitoring”, IEEE Transactions on Nuclear Science, vol. 67, no. 7,
pp. 1452–1460, Jul. 2020. doi: 10.1109/TNS.2020.2992299 (JCR Q2). This
article has been wholly included in this Thesis in Chapter 8.

[J6] M. Peña-Fernandez, A. Lindoso, L. Entrena, I. Lopes, and V. Pouget,
“Microprocessor error diagnosis by trace monitoring under laser testing”, IEEE
Transactions on Nuclear Science, vol. 68, no. 8, pp. 1651–1659, Aug. 2021. doi:
10.1109/TNS.2021.3067554 (JCR Q2). This article has been wholly included in
this Thesis in Chapter 9.

https://doi.org/10.1016/j.microrel.2018.07.074
https://doi.org/10.1109/TNS.2019.2921767
https://doi.org/10.1016/j.microrel.2019.113447
https://doi.org/10.1016/j.microrel.2019.113447
https://doi.org/10.1109/TNS.2019.2956204
https://doi.org/10.1109/TNS.2019.2956204
https://doi.org/10.1109/TNS.2020.2992299
https://doi.org/10.1109/TNS.2021.3067554

[J7] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, S. Cuenca-Asensi, L. Entrena,
Y. Morilla, P. Martín-Holgado, and A. Martínez-Álvarez, “Hybrid lockstep technique
for soft error mitigation”, IEEE Transactions on Nuclear Science, 2022. doi: 10.
1109/TNS.2022.3149867 (JCR Q2). This article has been partly included in this
Thesis in Chapter 3.

1st-author conference articles

[C1] M. Peña-Fernandez, A. Lindoso, and L. Entrena, “IP to detect and diagnose errors
in COTS microprocessors through the Trace Interface”, presented at the 2nd
European Workshop on On-Board Data Processing (OBDP2021), Jun. 2021. doi:
10.5281/zenodo.5521538. This article has been wholly included in this Thesis
in Chapter 10.

Whenever material from any of these sources is included in this Thesis, it is singled
out with typographic means and an explicit reference.

https://doi.org/10.1109/TNS.2022.3149867
https://doi.org/10.1109/TNS.2022.3149867
https://doi.org/10.5281/zenodo.5521538

OTHER RESEARCH MERITS

Participation in specialized forums

• Poster communication at 29th European Conference on Radiation and its Effects on
Components and Systems (RADECS), held in Gothenburg, Sweden on September
16-21, 2018.

• Attendance and oral presentation at 29th European Symposium on Reliability of
Electron Devices, Failure Physics and Analysis (ESREF), held in Aalborg, Denmark
on October 1-5, 2018.

• Attendance to 14th international School on the Effects of Radiation on Embedded
Systems for Space Applications (SERESSA), held at ESA ESTEC Campus in
Noordwijk, The Netherlands on November 12-16, 2018.

• Poster communication at 56th IEEE Nuclear and Space Radiation Effects Conference
(NSREC), held in San Antonio, Texas, United States on July 8-12, 2018.

• Attendance to RADECS 2019 Short Course, held in Montpellier, France on
September 16th, 2019.

• Attendance and oral presentation at 30th European Conference on Radiation and
its Effects on Components and Systems (RADECS), held in Montpellier, France on
September 16-20, 2019.

• Attendance and oral presentation at 30th European Symposium on Reliability of
Electron Devices, Failure Physics and Analysis (ESREF), held in Toulouse, France
on September 23-26, 2019.

• Attendance and oral presentation at 31st European Conference on Radiation and
its Effects on Components and Systems (RADECS), held online on October 19th -
November 20th, 2020.

• Attendance to NSREC 2020 Short Course, held online on November 29-30, 2020.

• Attendance to the 57th IEEE Nuclear and Space Radiation Effects Conference
(NSREC), held online on December 01-30, 2020.

• Attendance and oral presentation at the 2nd European Workshop on On-Board Data
Processing OBDP 2021 held online on June 14-17, 2021.

• Attendance and oral presentation at the 32nd European Conference on Radiation
and its Effects on Components and Systems (RADECS), held in Vienna, Austria on
September 13-17, 2021.

RESUMEN NO TÉCNICO

Los componentes electrónicos comerciales, comúnmente llamados componentes
Commercial-Off-The-Shelf (COTS) están presentes en multitud de dispositivos habituales
en nuestro día a día. Particularmente, el uso de microprocesadores y sistemas en chip (SoC)
altamente integrados ha favorecido la aparición de dispositivos electrónicos cada vez más
inteligentes que sostienen el estilo de vida y el avance de la sociedad moderna. Su uso se
ha generalizado incluso en aquellos sistemas que se consideran críticos para la seguridad,
como vehículos, aviones, armamento, dispositivos médicos, implantes o centrales eléctricas.
En cualquiera de ellos, un fallo podría tener graves consecuencias humanas o económicas.
Sin embargo, todos los sistemas electrónicos conviven constantemente con factores internos
y externos que pueden provocar fallos en su funcionamiento. La capacidad de un sistema
para funcionar correctamente en presencia de fallos se denomina tolerancia a fallos, y es
un requisito en el diseño y operación de sistemas críticos.

Los vehículos espaciales como satélites o naves espaciales también hacen uso de
microprocesadores para operar de forma autónoma o semi autónoma durante su vida útil,
con la dificultad añadida de que no pueden ser reparados en órbita, por lo que se consideran
sistemas críticos. Además, las duras condiciones existentes en el espacio, y en particular
los efectos de la radiación, suponen un gran desafío para el correcto funcionamiento de los
dispositivos electrónicos. Concretamente, los fallos transitorios provocados por radiación
(conocidos como soft errors) tienen el potencial de ser una de las mayores amenazas para
la fiabilidad de un sistema en el espacio.

Las misiones espaciales de gran envergadura, típicamente financiadas públicamente
como en el caso de la NASA o la Agencia Espacial Europea (ESA), han tenido
históricamente como requisito evitar el riesgo a toda costa por encima de cualquier
restricción de coste o plazo. Por ello, la selección de componentes resistentes a la radiación
(rad-hard) específicamente diseñados para su uso en el espacio ha sido la metodología
imperante en el paradigma que hoy podemos denominar industria espacial tradicional, u
Old Space. Sin embargo, los componentes rad-hard tienen habitualmente un coste mucho
más alto y unas prestaciones mucho menores que otros componentes COTS equivalentes.
De hecho, los componentes COTS ya han sido utilizados satisfactoriamente en misiones
de la NASA o la ESA cuando las prestaciones requeridas por la misión no podían ser
cubiertas por ningún componente rad-hard existente.

En los últimos años, el acceso al espacio se está facilitando debido en gran parte a la
entrada de empresas privadas en la industria espacial. Estas empresas no siempre buscan
evitar el riesgo a toda costa, sino que deben perseguir una rentabilidad económica, por
lo que hacen un balance entre riesgo, coste y plazo mediante gestión del riesgo en un
paradigma denominado Nuevo Espacio o New Space. Estas empresas a menudo están
interesadas en entregar servicios basados en el espacio con las máximas prestaciones y el

vii

mayor beneficio posibles, para lo cual los componentes rad-hard son menos atractivos
debido a su mayor coste y menores prestaciones que los componentes COTS existentes.

Sin embargo, los componentes COTS no han sido específicamente diseñados para su uso
en el espacio y típicamente no incluyen técnicas específicas para evitar que los efectos de
la radiación afecten su funcionamiento. Los componentes COTS se comercializan tal cual
son, y habitualmente no es posible modificarlos para mejorar su resistencia a la radiación.
Además, los elevados niveles de integración de los sistemas en chip (SoC) complejos
de altas prestaciones dificultan su observación y la aplicación de técnicas de tolerancia
a fallos. Este problema es especialmente relevante en el caso de los microprocesadores.
Por tanto, existe un gran interés en el desarrollo de técnicas que permitan conocer y
mejorar el comportamiento de los microprocesadores COTS bajo radiación sin modificar
su arquitectura y sin interferir en su funcionamiento para facilitar su uso en el espacio y
con ello maximizar las prestaciones de las misiones espaciales presentes y futuras.

En esta Tesis se han desarrollado técnicas novedosas para detectar, diagnosticar y
mitigar los errores producidos por radiación en microprocesadores y sistemas en chip
(SoC) comerciales, utilizando la interfaz de traza como punto de observación. La interfaz de
traza es un recurso habitual en los microprocesadores modernos, principalmente enfocado
a soportar las tareas de desarrollo y depuración del software durante la fase de diseño. Sin
embargo, una vez el desarrollo ha concluido, la interfaz de traza típicamente no se utiliza
durante la fase operativa del sistema, por lo que puede ser reutilizada sin coste. La interfaz
de traza constituye un punto de conexión viable para observar el comportamiento de un
microprocesador de forma no intrusiva y sin interferir en su funcionamiento.

Como resultado de esta Tesis se ha desarrollado un módulo IP capaz de recabar
y decodificar la información de traza de un microprocesador COTS moderno de altas
prestaciones. El IP es altamente configurable y personalizable para adaptarse a diferentes
aplicaciones y tipos de procesadores. Ha sido diseñado y validado utilizando el dispositivo
Zynq-7000 de Xilinx como plataforma de desarrollo, que constituye un dispositivo COTS
de interés en la industria espacial. Este dispositivo incluye un procesador ARM Cortex-A9
de doble núcleo, que es representativo del conjunto de microprocesadores hard-core
modernos de altas prestaciones. El IP resultante es compatible con la tecnología ARM
CoreSight, que proporciona acceso a información de traza en los microprocesadores ARM.
El IP incorpora técnicas para detectar errores en el flujo de ejecución y en los datos de la
aplicación ejecutada utilizando la información de traza, en tiempo real y con muy baja
latencia. El IP se ha validado en campañas de inyección de fallos y también en radiación con
protones y neutrones en instalaciones especializadas. También se ha combinado con otras
técnicas de tolerancia a fallos para construir técnicas híbridas de mitigación de errores.
Los resultados experimentales obtenidos demuestran su alta capacidad de detección y
potencialidad en el diagnóstico de errores producidos por radiación.

El resultado de esta Tesis, desarrollada en el marco de un Doctorado Industrial entre
la Universidad Carlos III de Madrid (UC3M) y la empresa Arquimea, se ha transferido

viii

satisfactoriamente al entorno empresarial en forma de un proyecto financiado por la
Agencia Espacial Europea para continuar su desarrollo y posterior explotación.

Palabras clave: Fiabilidad, Tolerancia a fallos, Fallos transitorios, Radiación,
Detección de errores, Diagnóstico de errores, Mitigación de errores, SoC, COTS, ARM,
Microprocesador, CoreSight, Interfaz de traza.

ix

NON-TECHNICAL SUMMARY

Commercial electronic components, also known as Commercial-Off-The-Shelf (COTS),
are present in a wide variety of devices commonly used in our daily life. Particularly, the
use of microprocessors and highly integrated System-on-Chip (SoC) devices has fostered
the advent of increasingly intelligent electronic devices which sustain the lifestyles and the
progress of modern society. Microprocessors are present even in safety-critical systems,
such as vehicles, planes, weapons, medical devices, implants, or power plants. In any of
these cases, a fault could involve severe human or economic consequences. However, every
electronic system deals continuously with internal and external factors that could provoke
faults in its operation. The capacity of a system to operate correctly in presence of faults
is known as fault-tolerance, and it becomes a requirement in the design and operation of
critical systems.

Space vehicles such as satellites or spacecraft also incorporate microprocessors to
operate autonomously or semi-autonomously during their service life, with the additional
difficulty that they cannot be repaired once in-orbit, so they are considered critical systems.
In addition, the harsh conditions in space, and specifically radiation effects, involve a big
challenge for the correct operation of electronic devices. In particular, radiation-induced
soft errors have the potential to become one of the major risks for the reliability of systems
in space.

Large space missions, typically publicly funded as in the case of NASA or European
Space Agency (ESA), have followed historically the requirement to avoid the risk at any
expense, regardless of any cost or schedule restriction. Because of that, the selection of
radiation-resistant components (known as rad-hard) specifically designed to be used in
space has been the dominant methodology in the paradigm of traditional space industry,
also known as “Old Space”. However, rad-hard components have commonly a much higher
associated cost and much lower performance that other equivalent COTS devices. In fact,
COTS components have already been used successfully by NASA and ESA in missions
that requested such high performance that could not be satisfied by any available rad-hard
component.

In the recent years, the access to space is being facilitated in part due to the irruption
of private companies in the space industry. Such companies do not always seek to avoid
the risk at any cost, but they must pursue profitability, so they perform a trade-off between
risk, cost, and schedule through risk management in a paradigm known as “New Space”.
Private companies are often interested in deliver space-based services with the maximum
performance and maximum benefit as possible. With such objective, rad-hard components
are less attractive than COTS due to their higher cost and lower performance.

However, COTS components have not been specifically designed to be used in space
and typically they do not include specific techniques to avoid or mitigate the radiation

x

effects in their operation. COTS components are commercialized “as is”, so it is not
possible to modify them to improve their susceptibility to radiation effects. Moreover,
the high levels of integration of complex, high-performance SoC devices hinder their
observability and the application of fault-tolerance techniques. This problem is especially
relevant in the case of microprocessors. Thus, there is a growing interest in the development
of techniques allowing to understand and improve the behavior of COTS microprocessors
under radiation without modifying their architecture and without interfering with their
operation. Such techniques may facilitate the use of COTS components in space and
maximize the performance of present and future space missions.

In this Thesis, novel techniques have been developed to detect, diagnose, and
mitigate radiation-induced errors in COTS microprocessors and SoCs using the trace
interface as an observation point. The trace interface is a resource commonly found
in modern microprocessors, mainly intended to support software development and
debugging activities during the design phase. However, it is commonly left unused
during the operational phase of the system, so it can be reused with no cost. The trace
interface constitutes a feasible connection point to observe microprocessor behavior in a
non-intrusive manner and without disturbing processor operation.

As a result of this Thesis, an IP module has been developed capable to gather and
decode the trace information of a modern, high-end, COTS microprocessor. The IP is highly
configurable and customizable to support different applications and processor types. The
IP has been designed and validated using the Xilinx Zynq-7000 device as a development
platform, which is an interesting COTS device for the space industry. This device features a
dual-core ARM Cortex-A9 processor, which is a good representative of modern, high-end,
hard-core microprocessors. The resulting IP is compatible with the ARM CoreSight
technology, which enables access to trace information in ARM microprocessors. The IP is
able to detect errors in the execution flow of the microprocessor and in the application data
using trace information, in real time and with very low latency. The IP has been validated
in fault injection campaigns and also under proton and neutron irradiation campaigns in
specialized facilities. It has also been combined with other fault-tolerance techniques
to build hybrid error mitigation approaches. Experimental results demonstrate its high
detection capabilities and high potential for the diagnosis of radiation-induced errors.

The result of this Thesis, developed in the framework of an Industrial Ph.D. between the
University Carlos III of Madrid (UC3M) and the company Arquimea, has been successfully
transferred to the company business as a project sponsored by European Space Agency to
continue its development and subsequent commercialization.

Keywords: Reliability, Fault-tolerance, Soft errors, Radiation, Error detection, Error
diagnosis, Error mitigation, SoC, COTS, ARM, Microprocessor, CoreSight, Trace
interface.

xi

RESUMEN TÉCNICO

La miniaturización de las tecnologías de fabricación de circuitos integrados y el
asociado aumento de sus prestaciones han favorecido en los últimos años un desarrollo
sin precedentes de los sistemas electrónicos. Los componentes electrónicos comerciales,
comúnmente llamados componentes Commercial-Off-The-Shelf (COTS) están presentes
en multitud de dispositivos habituales en nuestro día a día. Particularmente, el uso de
microprocesadores y sistemas en chip (SoC) altamente integrados ha favorecido la aparición
de dispositivos electrónicos cada vez más inteligentes que aceleran el avance de nuestra
sociedad. Su uso se ha generalizado incluso en aquellos sistemas que se consideran críticos
para la seguridad, como vehículos, aviones, armamento, dispositivos médicos, implantes
o centrales eléctricas. En cualquiera de ellos, un fallo podría tener graves consecuencias
humanas o económicas, por lo que la tolerancia a fallos se convierte en un requisito para
su diseño y operación.

La tolerancia a fallos es una disciplina especialmente relevante en la industria espacial,
ya que los vehículos y naves espaciales generalmente no pueden ser reparados en órbita
y hacen uso extensivo de sistemas electrónicos para su funcionamiento. En el espacio, la
radiación afecta a los componentes electrónicos mediante mecanismos acumulativos como
la dosis ionizante total (Total Ionizing Dose, TID) o la dosis de deterioro por desplazamiento
(Displacement Damage Dose, DDD), que deterioran los parámetros funcionales de los
circuitos integrados progresivamente hasta que finalmente dejan de funcionar. Sin embargo,
la radiación también produce efectos aleatorios conocidos como efectos de evento único
(Single-Event Effects, SEE), por los cuales una única partícula incidente en el dispositivo
puede producir fallos permanentes (conocidos como hard errors), o transitorios (conocidos
como soft errors). Los efectos que produce la radiación en los componentes electrónicos
se han estudiado detalladamente desde la carrera espacial y se han desarrollado técnicas
de endurecimiento cada vez más eficientes para evitar, reducir o mitigar su impacto en el
funcionamiento de los sistemas espaciales.

Durante la segunda mitad del siglo XX, la industria espacial estaba formada
mayoritariamente por grandes agencias gubernamentales, como la NASA o la Agencia
Espacial Europea (ESA), que desarrollaban programas espaciales de gran envergadura que
tenían como objetivo evitar el riesgo a toda costa, por encima de cualquier consideración
de plazo o coste. Esta metodología pretendía evitar el fracaso de la misión, que podría
comprometer no solo vidas humanas, sino también inversiones millonarias en el caso
de misiones no tripuladas y afectar a la imagen y el apoyo social de los programas
espaciales. Por ello, seleccionaban preferentemente componentes resistentes a la radiación,
conocidos como rad-hard, específicamente diseñados para su uso en el espacio mediante
técnicas de endurecimiento y capaces de funcionar correctamente bajo condiciones de
radiación. Sin embargo, debido a su pequeño nicho de mercado y la dificultad añadida

xii

en su desarrollo, los componentes rad-hard tienen habitualmente un coste mucho más
alto y ofrecen prestaciones mucho menores que sus equivalentes COTS. De hecho, los
componentes COTS ya han sido utilizados satisfactoriamente en misiones de la NASA o la
ESA cuando las prestaciones requeridas por la misión no podían ser cubiertas por ningún
componente rad-hard existente.

En los últimos años se está viviendo un cambio de paradigma en la industria espacial,
propiciado por la entrada masiva de empresas privadas que está facilitando el acceso
al espacio. Estas empresas persiguen generalmente objetivos de rentabilidad y buscan
maximizar el beneficio como proveedores de servicios basados en el espacio. En este
contexto, se busca un balance entre riesgo, coste y plazo mediante la gestión del riesgo, en
una tendencia que se conoce como Nuevo Espacio o New Space. Los componentes COTS
resultan más atractivos para las empresas del New Space, que buscan diferenciarse en un
mercado cada vez más competitivo ofreciendo las prestaciones más avanzadas posibles y
la reducción de los costes de operación. Estos objetivos en la mayoría de las ocasiones no
son alcanzables mediante el uso exclusivo de componentes rad-hard, por lo que existe un
interés creciente por el uso de COTS en el espacio.

Sin embargo, los componentes COTS no han sido diseñados teniendo en cuenta su
posible uso en el espacio, por lo que típicamente apenas integran recursos o técnicas
para hacer frente a los efectos de la radiación. Además, factores relacionados con
la miniaturización de las tecnologías del silicio como el incremento de la densidad
de integración, la reducción de las tensiones de alimentación, y el estrechamiento
de los márgenes de ruido, así como el aumento en la frecuencia de funcionamiento
de los dispositivos electrónicos, los ha hecho cada vez más vulnerables a los fallos
transitorios producidos por radiación (soft errors). Estos fallos, que en el pasado estaban
principalmente asociados con la industria espacial, son actualmente un desafío para los
sistemas electrónicos que desempeñan funciones críticas para la seguridad en aviónica o
incluso en aplicaciones en tierra. Se considera que los fallos transitorios producidos por
radiación tienen el potencial de ser una de las mayores amenazas para la fiabilidad de un
sistema en el espacio y su mitigación es de gran interés para permitir un mayor uso de
componentes COTS en futuras misiones.

Existen numerosas técnicas de endurecimiento para proteger los dispositivos
electrónicos contra la radiación, o mitigar sus efectos. La gran mayoría de estas técnicas
utilizan esquemas redundantes que consisten en repetir la misma estructura u operación
en múltiples instancias y comparar los resultados proporcionados por cada réplica. Los
dispositivos rad-hard típicamente utilizan redundancia hardware para enmascarar o mitigar
fallos transitorios de forma transparente al usuario. Sin embargo, no es posible aplicar esta
metodología en componentes COTS, ya que se comercializan tal cual son y su arquitectura
no puede ser modificada para mejorar su resistencia a los efectos de la radiación. Además,
los detalles de su arquitectura interna son en muchas ocasiones desconocidos, ya que
los fabricantes los mantienen en secreto para proteger su ventaja competitiva. Por tanto,
existe un gran interés en el desarrollo de técnicas que permitan conocer y mejorar el

xiii

comportamiento de los componentes COTS bajo radiación sin modificar su arquitectura y
sin interferir en su funcionamiento para facilitar su uso en el espacio y con ello maximizar
las prestaciones de las misiones espaciales presentes y futuras.

El desarrollo de técnicas de tolerancia a fallos para microprocesadores COTS es
un desafío. Históricamente se han utilizado los buses de memoria como punto de
observación, pero esto puede no resultar viable sobre todo en el caso de microprocesadores
hard-core implementados en sistemas monolíticos altamente integrados como es el caso
de los sistemas en chip (System-on-Chip, SoC). Habitualmente, este tipo de dispositivos
presentan una cantidad limitada de interfaces disponibles para observar el comportamiento
del procesador. La observabilidad es una característica fundamental para conocer el
comportamiento de cualquier dispositivo de cara a poder detectar comportamientos
anómalos y eventualmente ser capaz de aplicar técnicas de tolerancia a fallos de forma
eficaz. La observabilidad de un microprocesador disminuye generalmente conforme
aumentan su complejidad así como su nivel de integración monolítica en sistemas SoC.

En esta Tesis se han desarrollado técnicas novedosas para detectar, diagnosticar y
mitigar los errores producidos por radiación en microprocesadores y sistemas en chip
(SoC) comerciales, con el objetivo de mejorar su tolerancia a fallos. Como principal
novedad, las técnicas desarrolladas utilizan la interfaz de traza como punto de observación,
obteniendo una alta compatibilidad con sistemas SoC altamente integrados. La interfaz de
traza es recurso habitual en los microprocesadores modernos, principalmente enfocado
a soportar las tareas de desarrollo y depuración del software durante la fase de diseño,
realizando tareas como pruebas de planificabilidad o cobertura de código. Sin embargo,
una vez el desarrollo software ha concluido, la interfaz de traza típicamente no se utiliza
durante la fase operativa del sistema, por lo que puede ser reutilizada sin coste. La interfaz
de traza constituye un punto de conexión viable para observar el comportamiento de un
microprocesador de forma no intrusiva y sin interferir en su funcionamiento.

Como resultado de esta Tesis se ha desarrollado un módulo IP capaz de recabar
y decodificar la información de traza de un microprocesador COTS moderno de altas
prestaciones. El IP es altamente configurable y personalizable para adaptarse a diferentes
aplicaciones y tipos de procesadores. Ha sido diseñado en lenguaje VHDL y validado
utilizando el dispositivo SoC Zynq-7000 de Xilinx como plataforma de desarrollo, que
constituye un dispositivo COTS de interés en la industria espacial. Este dispositivo incluye
un procesador de doble núcleo ARM Cortex-A9, que es representativo del conjunto de
microprocesadores hard-core modernos de altas prestaciones. El IP resultante es compatible
con la tecnología ARM CoreSight, que proporciona acceso a información de traza en los
microprocesadores ARM. El IP desarrollado es capaz de decodificar la información de
traza producida por la macrocelda de traza de programa (Program Trace Macrocell, PTM)
y la macrocelda de traza de instrumentación (Instrumentation Trace Macrocell, ITM),
ambas presentes en el dispositivo Zynq-7000. Utilizando la información obtenida mediante
el puerto de traza (Trace Port Interface Unit, TPIU), el IP es capaz de detectar errores en
el flujo de ejecución del procesador, incluyendo ambos núcleos presentes en el dispositivo

xiv

Zynq-7000, así como en los datos de la aplicación ejecutada, en tiempo real y con muy baja
latencia. El IP incluye todas las técnicas de detección y diagnóstico de errores diseñadas
en esta Tesis, que se han desarrollado, probado, evaluado e incorporado progresivamente:

• Técnicas de detección de errores de control de flujo de ejecución:

– Comprobación de rango de direcciones: El IP es capaz de obtener los valores
sucesivos del contador de programa (PC) a partir de la información de traza
para evaluar en todo momento si el microprocesador se encuentra ejecutando
código dentro de una zona de memoria previamente definida como válida.
Esta zona es configurable por el usuario mediante registros de configuración
en el IP, que delimitan los rangos de direcciones válidas. En caso de que
el IP detecte que el microprocesador ejecuta alguna instrucción fuera de la
zona permitida, este es capaz de detectarlo con muy baja latencia e indicarlo
mediante una señal de error. El IP puede realizar esta comprobación por cada
uno de los microprocesadores o núcleos existentes en el dispositivo de forma
independiente.

– Comprobación temporal de direcciones: Utilizando la información del contador
de programa (PC), el IP es capaz de determinar si el procesador está ejecutando
la aplicación correctamente desde un punto de vista temporal. Mediante
registros configurables, el usuario indica un valor de PC cíclico dentro del
programa, que puede estar asociado con el bucle principal del mismo. Si el
IP detecta que ha pasado un tiempo excesivo, configurable, desde la última
vez que el microprocesador hizo un ciclo completo del bucle principal, este lo
indica con una señal de error. Esta técnica es muy útil para detectar con baja
latencia situaciones en las que el microprocesador ha perdido el control como
consecuencia de un error o una excepción no prevista. El IP puede realizar esta
comprobación por cada uno de los microprocesadores o núcleos existentes en
el dispositivo de forma independiente.

• Técnicas de detección de errores de datos:

– Comprobación de rango de datos: El IP es capaz de obtener el valor de
las variables del programa a partir de la información de traza para evaluar
en cualquier momento su validez dentro de la aplicación. El usuario puede
configurar distintos rangos de valores como válidos para ciertas variables
utilizando registros de configuración. El IP comprueba automáticamente si el
valor de las variables deseadas se encuentra dentro del rango permitido, y en
caso negativo lo indica mediante una señal de error.

– Comprobación de consistencia de datos: Utilizando la información del valor de
las variables del programa, el IP puede hacer comprobaciones de consistencia
para datos duplicados o triplicados, contribuyendo a una mejora de prestaciones
del sistema ya que descarga al microprocesador de realizar esta tarea. El IP

xv

puede comprobar automáticamente relaciones de comparación entre grupos de
dos y tres valores de datos para indicar mediante una señal de error el momento
en el que cualquiera de las relaciones no se cumple.

• Técnicas de diagnóstico de errores:

– La riqueza de la información de traza trasciende el mero propósito de detección
de errores ya que, una vez detectados, permite contextualizarlos con el resto del
funcionamiento del dispositivo simplemente comprobando la información de
traza inmediatamente anterior al error. Mediante el análisis de esta información
de traza y el acceso a otros datos relevantes de la ejecución como la pila o la
memoria del procesador, se ha demostrado la capacidad de la información de
traza para el diagnóstico de errores.

El IP se ha combinado con otras técnicas de tolerancia a fallos para construir técnicas
híbridas de mitigación de errores:

• En primer lugar, se ha demostrado su uso en una implementación de ejecución
simétrica en doble núcleo (dual-core lockstep) mediante la colaboración con la
Universidad de Alicante, por la cual los dos núcleos de microprocesador ARM
Cortex-A9 presentes en el dispositivo Zynq-7000 son configurados para ejecutar
la misma aplicación y comparar sus resultados. El IP desarrollado en esta Tesis
participa en esta técnica híbrida con la misión de comprobar que ambos procesadores
ejecutaban el código en la región correcta de la memoria y con el comportamiento
temporal adecuado. En el caso de que cualquiera de los dos núcleos muestre un
comportamiento anómalo que ponga en riesgo la sincronización entre ambos, el IP
lo indica mediante una señal de error de control de flujo.

• Por otra parte, el IP se ha utilizado para complementar una técnica de triplicación de
datos mediante aceleración hardware utilizando la unidad NEON SIMD presente
en el dispositivo Zynq-7000. El IP desarrollado en esta Tesis participa en esta
técnica con la misión de comprobar que el microprocesador ejecuta el código en la
región correcta de la memoria y con el comportamiento temporal adecuado. Además,
también apoya al microprocesador realizando comprobaciones de consistencia sobre
los datos triplicados para detectar errores.

Para validar el correcto funcionamiento del IP, se han seleccionado aplicaciones
(benchmarks) representativas de distintas cargas de trabajo, como multiplicación de
matrices, rutinas de ordenación o algoritmos de encriptación. El IP se ha validado mediante
campañas de inyección de fallos mediante la técnica Code Emulated Upset (CEU) y
también en radiación con protones de baja energía en el Centro Nacional de Aceleradores
(CNA, Sevilla) y con neutrones en el Laboratorio Nacional de los Álamos (LANL, Estados
Unidos). Adicionalmente, se han realizado campañas de inyección de errores mediante

xvi

láser para profundizar en la investigación en el diagnóstico de errores y complementar los
resultados asociados en colaboración con la Universidad de Montpellier. Los resultados
experimentales obtenidos en las distintas campañas de inyección y radiación demuestran
su alta capacidad de detección y potencialidad en el diagnóstico de errores producidos por
radiación.

Los resultados de esta Tesis han sido comunicados progresivamente a las conferencias
más relevantes del sector: RADECS, NSREC y ESREF. Asimismo, se han logrado un
total de siete publicaciones en revista, siendo cinco de ellas en la revista más prestigiosa
del sector IEEE Transactions on Nuclear Science (TNS), JCR Q2; y dos más en la revista
Microelectronics Reliability de Elsevier, JCR Q3.

Finalmente, el IP ha sido presentado en la conferencia On-Board Data Processing
2021 (OBDP 2021), un foro de orientación industrial dentro del ámbito de la industria
espacial organizado por la Agencia Espacial Europea. En esta conferencia, el IP fue
presentado como un producto disponible para ser introducido en el diseño de sistemas de
procesamiento de aplicación espacial para incrementar su observabilidad y tolerancia a
fallos.

El IP resultante de esta Tesis, desarrollada en el marco de un Doctorado Industrial entre
la Universidad Carlos III de Madrid (UC3M) y la empresa Arquimea, se ha transferido
satisfactoriamente al entorno empresarial en forma de un proyecto financiado por la
Agencia Espacial Europea (ESA) para continuar su desarrollo y posterior explotación.

Palabras clave: Fiabilidad, Tolerancia a fallos, Fallos transitorios, Radiación,
Detección de errores, Diagnóstico de errores, Mitigación de errores, SoC, COTS, ARM,
Microprocesador, CoreSight, Interfaz de traza.

xvii

TECHNICAL SUMMARY

The miniaturization of the manufacturing technologies of integrated circuits and the
associated increase in their performance have fostered in the last years an unprecedented
development of electronic systems. Commercial electronic components, also known as
Commercial-Off-The-Shelf (COTS) are present in a wide variety of devices commonly
used in our daily life. Particularly, the use of microprocessors and highly integrated
System-on-Chip (SoC) devices has fostered the advent of increasingly intelligent electronic
devices which accelerate the progress of modern society. Microprocessors are present even
in safety-critical systems, such as vehicles, planes, weapons, medical devices, implants,
or power plants. In any of these cases, a fault could involve severe human or economic
consequences, so the fault-tolerance becomes a requirement in their design and operation.

Fault-tolerance is a relevant subject in the space industry, as space vehicles such
as satellites or spacecraft extensively integrate electronic systems and generally cannot
be repaired once in-orbit. In space, radiation affect electronic components through
cumulative effects such as Total Ionizing Dose (TID) or Displacement Damage Dose
(DDD), which progressively deteriorate the functional parameters of integrated circuits
until they eventually stop working properly. However, radiation also produces random
effects known as Single-Event Effects (SEE), by that a single incident particle in the device
can produce permanent faults (hard errors) or transient faults (soft errors). The effects
produced by radiation in electronic devices have been investigated in detail since the space
race and increasingly efficient hardening techniques have been developed to avoid, reduce,
or mitigate their impact in the operation of systems in space.

During the second half of the 20th century, the space industry was mainly composed
by publicly funded government agencies, such as NASA or the European Space Agency
(ESA), who developed large space programs with the objective to avoid the risk at any
expense, regardless of any cost or schedule restriction. This methodology intended to
avoid the failure of the mission, which could compromise not only human lives, but also
huge investments in the case of unmanned missions, and deteriorate the perception and the
social support to space programs. Because of that, they only selected radiation-resistant
components (known as rad-hard), specifically designed to be used in space through
hardening techniques, capable to perform correctly under radiation. However, given
their low market size and the associated extra development effort, rad-hard components
have commonly a much higher associated cost and much lower performance that other
equivalent COTS devices. In fact, COTS components have already been used successfully
by NASA and ESA in missions that requested such high performance that could not be
satisfied by any available rad-hard component.

In the recent years, a paradigm shift has been taking place in the space industry,
fostered by the massive irruption of private companies that is facilitating the access to

xviii

space. Such companies generally seek objectives such as profitability and maximum
benefit as providers of space-based services. In this context, the traditional methodology
has been replaced by a new trend that pursues a trade-off between risk, cost, and schedule
through risk management, in a paradigm known as “New Space”. COTS components are
more attractive for New Space companies, which are aimed to stand out in an increasingly
competitive market, delivering the highest possible performance and reducing operational
cost. Such objectives are generally not attainable through the solely use of rad-hard
components, so there is an increasing interest in the use of COTS in space.

However, COTS components have not been specifically designed to be used in space
and typically they include few specific techniques or resources to deal with the radiation
effects in their operation. In addition, other factors related with the miniaturization of
silicon technologies, such as the increase in integration density, the reduction of power
supply voltages, and the shrinkage of noise margins, as well as the increment of the
operating frequencies of electronic devices have led them to a higher vulnerability to
radiation-induced soft errors. Such problem was in the past mainly associated to the space
industry but has become a challenge for electronic systems performing safety-critical
functions in avionics or even in terrestrial applications. Radiation-induced soft errors are
considered to have the potential to become one of the major risks for the reliability of
systems in space, and there is an increasing interest in their mitigation to extend the use of
COTS components in future missions.

There is a wide range of existing hardening techniques to protect electronic devices
against radiation or to mitigate its effects. Most of these techniques make use of redundancy
schemes that consist in replicating the same structure or operation in multiple instances
and comparing the results obtained by each replica. Rad-hard devices typically introduce
hardware redundancy to mask or mitigate soft errors transparently to the user. However, it is
not possible to apply this methodology in COTS components, as they are commercialized
“as is”, so they cannot be modified to improve their susceptibility to radiation effects.
Moreover, the details about their internal architecture are usually unknown since the
manufacturers do not reveal this information to protect their competitive advantage. Thus,
there is a growing interest in the development of techniques allowing to understand and
improve the behavior of COTS components under radiation without modifying their
architecture and without interfering with their operation. Such techniques may facilitate
the use of COTS components in space and maximize the performance of present and future
space missions.

The development of fault-tolerance techniques for COTS microprocessors is a
challenge. Historically, the memory buses have been used as an observation point,
but this approach may not be feasible for hard-core microprocessors implemented in
highly-integrated monolithic systems, as in the case of System-on-Chip (SoC) devices.
This kind of devices generally present a limited number of available interfaces to observe
the processor behavior. Observability is a key feature to understand the behavior of a device

xix

in order to apply fault-tolerance techniques in an effective manner. The observability of a
microprocessor is commonly reduced as its complexity and integration level increase.

In this Thesis, novel techniques have been developed to detect, diagnose, and mitigate
radiation-induced errors in COTS microprocessors and SoCs with the objective of
improving their fault-tolerance capabilities. As a main novelty, the developed techniques
make use of the trace interface as an observation point, obtaining high compatibility with
highly-integrated SoC devices. The trace interface is a resource commonly found in
modern microprocessors, mainly intended to support software development and debugging
activities during the design phase. Common tasks typically supported by the trace
interface are code planning and code coverage checks. However, it is generally left
unused during the operational phase of the system, so it can be reused with no cost. The
trace interface constitutes a feasible connection point to observe microprocessor behavior
in a non-intrusive manner and without disturbing processor operation.

As a result of this Thesis, an IP module has been developed capable to gather and
decode the trace information of a modern, high-end, COTS microprocessor. The IP is
highly configurable and customizable to support different applications and processor types.
It has been designed in VHDL language and validated using the Xilinx Zynq-7000 device
as a development platform, which is an interesting COTS device for the space industry.
This device features a dual-core ARM Cortex-A9 processor, which is a good representative
of modern, high-end, hard-core microprocessors. The resulting IP is compatible with
the ARM CoreSight technology, which enables access to trace information in ARM
microprocessors. The IP is able to decode the trace information produced by the Program
Trace Macrocell (PTM) and the Instrumentation Trace Macrocell (ITM), both present in the
Zynq-7000 device. Using the information obtained through the Trace Port Interface Unit
(TPIU), the IP can detect errors in the execution flow of the microprocessor, including both
cores present in the Zynq-7000 device, and in the application data, in real time and with
very low latency. The IP includes every error detection and diagnosis techniques designed
in this Thesis, which have been developed, tested, evaluated and integrated progressively:

• Control-flow error detection techniques:

– Address range checking: The IP is capable of obtaining the successive program
counter (PC) values from the trace information. The obtained PC values
are continuously checked to assess whether the microprocessor is executing
code inside a region of memory previously defined as valid. This region is
configurable by the user through the configuration registers of the IP, used
to delimit the allowed address ranges. In the case that the IP detects that the
microprocessor is executing any instruction outside the allowed region, it is
capable to detect it with very low latency and indicate it through an error
signal. The IP can perform this check independently for each of the available
microprocessor cores in the device.

xx

– Address timing checking: Using the obtained program counter (PC) values, the
IP can determine whether the processor is executing the application correctly
in a timely manner. Using configuration registers, the user indicates a cyclic
PC value in the program, which can be associated to its main loop. Whenever
the IP detects than an excessive time, configurable by the user, has elapsed
since the last complete execution of the main loop, it is indicated through an
error signal. This technique is useful to detect with low latency any situation in
which the processor may have lost control as a consequence of an error or an
unexpected exception. The IP can perform this check independently for each
of the available microprocessor cores in the device.

• Data error detection techniques:

– Data range checking: The IP is capable of obtaining the value of the program
data variables from the trace information. The obtained data values can be
checked in any moment to evaluate whether they are valid inside the application
according a predefined value range. The user can configure diverse value ranges
as valid for certain variables using the configuration registers of the IP. Then,
the IP checks automatically whether the value of the selected variables lies
inside the allowed range and, if not, it indicates it through an error signal.

– Data consistency checking: Using the obtained variable values of the program,
the IP can check the consistency on duplicated or triplicated data. With this
technique, the IP contributes to a performance improvement in the system as
it offloads the microprocessor from performing this task. The IP can check
automatically any comparison relation between groups of two and three data
and indicates through an error signal the moment in which any of the expected
relations is not met.

• Error diagnosis techniques:

– The richness of the trace information goes beyond the sole purpose of error
detection since, once the errors are detected, they can be also contextualized
with the rest of the system operation. The contextualization consists in
checking the observed error against the trace information which was generated
immediately before it was detected. By analyzing this trace information and
other relevant data about execution such as the processor stack or the memory
contents, we have demonstrated the potential of the trace information for error
diagnosis.

The IP has been combined with other fault-tolerance techniques to build hybrid error
mitigation techniques:

• In one approach, we have demonstrated the use of the IP in a dual-core lockstep
implementation, in collaboration with Alicante University. The two ARM Cortex-A9

xxi

microprocessor cores available in the Zynq-7000 device were configured to execute
the same application and compare between their results. The IP developed in this
Thesis was integrated in a hybrid technique to check the correct execution of both
cores using address range checking and address timing checking. In the case that
any of the cores showed a wrong behavior which could affect the synchronization
between them, the IP indicated it with a control-flow error signal.

• In other approach, the IP was used to complement a data triplication technique
which leveraged the NEON SIMD unit present in Zynq-7000 device to accelerate
the replicated computations. The IP developed in this Thesis was integrated in a
hybrid technique to check the correct execution of the microprocessor using address
range checking and address timing checking. Additionally, the IP also supported
the microprocessor by checking the consistency on the triplicated data to detect data
errors.

To validate the correct operation of the IP, representative benchmarks of different
workloads have been selected, such as matrix multiplication, sorting routines or encryption
algorithms. The IP has been validated through fault injection campaigns, following the
Code Emulated Upset (CEU) approach, and also under proton and neutron irradiation
campaigns, performed in Centro Nacional de Aceleradores (CNA, Seville, Spain) and Los
Alamos National Laboratory (LANL, EEUU). Additional laser fault injection campaigns
have been performed in collaboration with the University of Montpellier to deepen in
the error diagnosis research and complement the associated results. The experimental
results obtained in the different fault injection and irradiation campaigns demonstrate
the high detection capabilities of the developed IP and its potential in the diagnosis of
radiation-induced errors.

The outcomes of this Thesis have been communicated progressively to the most relevant
conferences in the field, namely RADECS, NSREC and ESREF. In addition, a total of
seven journal publications have been attained, being five of them in the most renowned
journal in the field, namely IEEE Transactions on Nuclear Science (TNS), JCR Q2; and
two in the Microelectronics Reliability journal, by Elsevier, JCR Q3.

Finally, the IP has been presented in the On-Board Data Processing 2021 (OBDP 2021)
conference, which is an industry-oriented forum in the space sector, organized by the
European Space Agency. In this conference, the IP was presented as a product available
to be introduced in the design of space-oriented processing systems, to increment their
observability and fault-tolerance capabilities.

The resulting IP of this Thesis, developed in the framework of an Industrial Ph.D.
between the University Carlos III of Madrid (UC3M) and the company Arquimea, has
been successfully transferred to the company business as a project sponsored by European
Space Agency to continue its development and subsequent commercialization.

xxii

Keywords: Reliability, Fault-tolerance, Soft errors, Radiation, Error detection, Error
diagnosis, Error mitigation, SoC, COTS, ARM, Microprocessor, CoreSight, Trace
interface.

xxiii

LIST OF ABBREVIATIONS

AES Advanced Encryption Standards
AI Artificial Intelligence
ALU Arithmtic Logic Unit
AP All Programmable
API Application Programming Interface
ARM Advanced Risc Machines
ASIL Automotive Safety Integrity Level
AVF Architectural Vulnerability Factor
AXI Advanced eXtensible Interface

BB Basic Block
BER Backward Error Recovery
BFI Branch-Free Interval
BIST Built-In Self Test
BOX Buried OXide
BSP Board Support Package

CCA Control flow Checking approach using Assertions
CEDA Control-flow Error Detection through Assertions
CEU Code Emulated Upset
CFC Control-Flow Checking
CFCSS Control Flow Checking by Software Signatures
CFE Control-Flow Error
CFG Control-Flow Graph
CMOS Complementary Metal-Oxide-Semiconductor
CMP Chip Level Multiprocessor
CNA Centro Nacional de Aceleradores
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CUT Code Under Test

DA Data Abort
DCLS Dual-Core LockStep
DDD Displacement Damage Dose
DDR Double Data Rate
DE Data Error
DfT Design for Test

xxiv

DICE Dual Interlocked storage CEll
DM Data Memory
DMA Diseño Microelectrónico y Aplicaciones
DMR Dual Modular Redundancy
DMT Duplex Multiplexed in Time
DRAM Dynamic Random Access Memory
DT2 Dual Duplex Tolerant to Transients
DUE Detected Unrecoverable Error
DUT Device Under Test

ECCA Enhanced High level Control flow checking approach using Assertions
EDAC Error Detection And Correction
EDDI Error Detection by Duplicated Instructions
EE Exception Error
ELDRS Enhanced Low Dose Rate Sensitivity
EMIO Extended Multiplexed Input-Output
ESA European Space Agency
ESREF European Symposium on Reliability of Electron Devices, Failure Physics

and Analysis
ESTEC European Space Research and Technology Centre
ETB Embedded Trace Buffer
ETM Embedded Trace Macrocell

FER Forward Error Recovery
FF Flip Flop
FIFO First-In, First-Out
FMC FPGA Mezzanine Card
FP Frame Pointer
FPGA Field Programmable Gate Array
FTM Fabric Trace Macrocell

GCR Galactic Cosmic Rays
GPIO General Purpose Input Output

HDL Hardware Description Language
HETA Hybrid Error-Detection Technique Using Assertions
HPSC High-Performance Spaceflight Computing

I/O Input / Output
IEEE Institute of Electrical and Electronics Engineers

xxv

IES Institut d’Electronique et des Systèmes
IP Intellectual Property
ITM Instrumetntation Trace Macrocell

JCR Journal Citation Report
JPL Jet Propulsion Laboratory
JTAG Joint Test Action Group

LANL Los Alamos National Laboratory
LANSCE Los Alamos Neutron Science Center
LED Light Emitting Diode
LEO Low Earth Orbit
LET Linear Energy Transfer
LR Link Register
LUT Look-Up Table

MBU Multiple Bit Upset
MCA Machine Check Architecture
MCU Multiple Cell Upset
MCU MicroController Unit
MIO Multiplexed Input-Output
MMU Memory Management Unit
MOS Metal-Oxide-Semiconductor
MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
MP Multiprocessor
Mth Master thread

NASA National Aeronautics and Space Administration
NMOS Negative-channel Metal-Oxide-Semiconductor
NMR N-Modular Redundancy
NSREC Nuclear and Space Radiation Effects Conference

OBDP On-Board Data Processing
OCD On-Chip Debugging
OCM On Chip Memory
OS Operating System
OSIP Open Space Innovation Platform

PA Prefetch Abort
PC Program Counter

xxvi

PDTC Program and Data Trace Checker
PFT Program Flow Trace
PL Programmable Logic
PM Program Memory
PMOD Peripheral MODules
PMOS Positive-channel Metal-Oxide-Semiconductor
POSIX Portable Operating System Interface
PS Processing System
PTM Program Trace Macrocell
PUM Processor Under Monitoring

rad radiation absorbed dose
RADECS Radiation and its Effects on Components and Systems
RHA Radiation Hardness Assurance
RHBD Radiation-Hardening by Design
RHBP Radiation-Hardening by Process
RMT Redundant MultiThreading

SAA South Atlantic Anomaly
SB Static Block
SBC Single-Board Computer
SD Secure Digital
SDC Silent Data Corruption
SDK Software Development Kit
SEB Single-Event Burnout
SECDED Single Error Correction, Double Error Detection
SEE Single-Event Effect
SEFI Single-Event Functional Interrupt
SEGR Single-Event Gate Rupture
SEL Single-Event Latchup
SEM Soft Error Mitigation
SER Soft Error Rate
SERESSA School on the Effects of Radiation on Embedded Systems for Space

Applications
SES Single-Event Snapback
SET Single-Event Transient
SEU Single-Event Upset
SFI Statistical Fault Injection
SIHFT Software Implemented Hardware Fault Tolerance
SIMD Single-Instruction Multiple Data

xxvii

SMT Simultaneous Multithread
SoC System-on-Chip
SoI Silicon on Insulator
SoR Sphere of Replication
SPCD Selective Procedure Call Duplication
SPENVIS SPace ENVironment Information System
SPI Serial Peripheral Interface
SPMD Single Program Multiple Data
SRAM Static Random Access Memory
Sth Shadow thread
STI Shallow Trench Isolation
STM System Trace Macrocell
SW SoftWare
SWaP Size, Weight and Power
SWIFT SoftWare-Implemented Fault-Tolerance
SWIT SoftWare Instrumentation Trace

TCLS Triple-Core LockStep
TID Total Ionizing Dose
TMR Triple Modular Redundancy
TNS Transactions on Nuclear Science
TPIU Trace Port Interface Unit
TRL Technology Readiness Level

UC3M University Carlos III of Madrid
UI Undefined Instruction
USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

YACCA Yet Another Control Flow Checking Approach

ZYBO ZYnq BOard

xxviii

CONTENTS

AGRADECIMIENTOS . iii

PUBLISHED AND SUBMITTED CONTENT . iv

OTHER RESEARCH MERITS . vi

RESUMEN NO TÉCNICO . vii

NON-TECHNICAL SUMMARY . x

RESUMEN TÉCNICO . xii

TECHNICAL SUMMARY . xviii

ABBREVIATIONS . xxiv

CONTENTS . xxix

LIST OF FIGURES. xxxv

LIST OF TABLES . xxxvii

1. INTRODUCTION. 1

1.1. Motivation . 1

1.2. Industrial Ph.D. supported by the Community of Madrid 3

1.3. Objectives. 3

1.4. Document structure . 5

2. DEPENDABILITY UNDER RADIATION IN COTS MICROPROCESSORS . . 7

2.1. Dependability in space applications . 7

2.1.1. Dependability attributes . 7

2.1.2. Faults, errors, and failures . 8

2.1.3. Dealing with faults . 9

2.1.4. Dependability threats in spacecraft . 11

2.2. Radiation effects on electronics . 12

2.2.1. The space environment . 12

2.2.2. Cumulative effects . 14

2.2.3. Single-event effects . 16

2.3. Addressing radiation effects . 20

2.3.1. Radiation hardening . 20

xxix

2.3.2. Component testing . 26

2.3.3. Component qualification . 34

2.4. Trends in space industry . 35

2.4.1. Background: the so-called "traditional space" 35

2.4.2. New Space trends . 36

2.4.3. Use of COTS in space applications . 37

2.4.4. COTS testing and qualification . 38

2.5. Microprocessors under radiation . 41

2.5.1. Microprocessor errors . 41

2.5.2. Microprocessor testing. 42

2.6. Microprocessor fault-tolerance . 46

2.6.1. Fault-tolerance techniques for microprocessors 46

2.6.2. Fault-tolerance techniques for COTS microprocessors 56

3. MATERIALS AND METHODS. 70

3.1. Resources . 70

3.1.1. Vehicle of study . 70

3.1.2. Facilities . 72

3.1.3. Fault injection tool . 75

3.1.4. Other equipment . 75

3.2. Methodology . 76

3.2.1. Chronology . 78

3.2.2. Development . 78

3.2.3. Validation . 81

3.2.4. Industrialization . 83

3.2.5. Dissemination . 84

4. PTM-BASED HYBRID ERROR-DETECTION ARCHITECTURE FOR ARM
MICROPROCESSORS. 86

Abstract . 86

4.1. Introduction. 86

4.2. Related work . 88

xxx

4.3. Hybrid architecture. 90

4.3.1. Hardware monitor . 90

4.3.2. Data error detection . 92

4.4. Experimental results . 92

4.4.1. Experimental setup. 92

4.4.2. Proton irradiation. 93

4.4.3. Fault injection . 94

4.5. Conclusions and future work . 95

Acknowledgements . 96

References . 96

5. ONLINE ERROR DETECTION THROUGH TRACE INFRASTRUCTURE IN
ARM MICROPROCESSORS . 99

Abstract . 99

5.I. Introduction . 99

5.II. Related work . 101

5.III. Trace-Based Error Detection Approach. 103

5.III-A. CoreSight Subsystem . 104

5.III-B. Program and Data Trace Checker. 105

5.IV. Experimental results . 107

5.IV-A. Experimental setup. 107

5.IV-B. Radiation results . 108

5.IV-C. Trace information analysis . 111

5.V. Conclusion . 113

Acknowledgement . 113

References . 114

6. DUAL-CORE LOCKSTEP ENHANCED WITH REDUNDANT
MULTITHREAD SUPPORT AND CONTROL-FLOW ERROR DETECTION . . . 117

Abstract . 117

6.1. Introduction. 117

6.2. Proposed lockstep approach . 119

6.2.1. Architecture. 119

xxxi

6.2.2. Data error detection . 120

6.2.3. Control-flow error detection. 122

6.3. Experimental results . 123

6.4. Conclusions. 126

Acknowledgements . 126

References . 126

7. THE USE OF MICROPROCESSOR TRACE INFRASTRUCTURES FOR
RADIATION-INDUCED FAULT DIAGNOSIS . 129

Abstract . 129

7.I. Introduction . 129

7.II. Microprocessor Fault Diagnosis . 131

7.III. Fault Diagnosis Approach . 132

7.III-A. Trace Analysis . 135

7.III-B. Memory and Stack Analysis . 136

7.IV. Experimental Results . 136

7.IV-A. Common Experimental Setup. 136

7.IV-B. Neutron Irradiation Results . 137

7.IV-C. Proton Irradiation Results . 140

7.V. Conclusion . 145

Acknowledgement . 146

References . 146

8. ERROR DETECTION AND MITIGATION OF DATA-INTENSIVE
MICROPROCESSOR APPLICATIONS USING SIMD AND TRACE
MONITORING . 149

Abstract . 149

8.I. Introduction . 149

8.II. Background and Related Work . 151

8.III. Proposed Approach . 153

8.III-A. Data Hardening With NEON SIMD Coprocessors 153

8.III-B. Trace Monitoring. 157

8.IV. Experimental Results . 159

8.IV-A. Performance Comparison . 161

xxxii

8.IV-B. Neutron Radiation Results. 162

8.V. Conclusion . 164

Acknowledgement . 165

References . 165

9. MICROPROCESSOR ERROR DIAGNOSIS BY TRACE MONITORING
UNDER LASER TESTING . 168

Abstract . 168

9.I. Introduction . 168

9.II. Related Work. 169

9.III. Evaluation Methodology . 171

9.III-A. Device under test. 171

9.III-B. Software case study . 172

9.III-C. Trace monitoring approach . 172

9.III-D. Laser fault injection . 173

9.III-E. Relation to previous work . 176

9.IV. Experimental Results and Discussion . 176

9.V. Conclusion . 184

Acknowledgement . 184

References . 184

10. IP TO DETECT AND DIAGNOSE ERRORS IN COTS MICROPROCESSORS
THROUGH THE TRACE INTERFACE . 187

Abstract . 187

10.1. Introduction . 187

10.2. Microprocessor Error Detection and Diagnosis 188

10.3. Error Detection and Diagnosis IP . 191

10.3.1. Interface description . 192

10.3.2. Functional description . 193

10.3.3. Checking resources . 194

10.3.4. Error diagnosis . 196

10.4. Applications . 196

10.5. Conclusions . 198

xxxiii

Acknowledgements . 199

References . 199

11. CONCLUSIONS AND FUTURE WORK. 202

11.1. Conclusions . 202

11.2. Future work . 207

BIBLIOGRAPHY. 209

xxxiv

LIST OF FIGURES

3.1 Experimental setup at CNA . 73

3.2 Experimental setup at LANSCE . 74

3.3 Experimental setup at Montpellier University 75

3.4 RaspberryPi connected to ZYBO board for test campaigns 82

4.1 Proposed system overview . 90

4.2 Experimental setup overview . 92

4.3 Errors by register . 96

5.1 General trace-based error detection architecture 103

5.2 Code instrumentation examples and data checker operation 106

6.1 Dual-Core LockStep architecture . 120

6.2 Redundant threaded matrix multiplication 122

6.3 Register sensitivity to errors . 125

7.1 Trace generation and processing architecture 134

7.2 Trace simulation test bench . 135

7.3 Bar graph of diagnosed addresses for 128×128 matrix size under neutron
irradiation . 138

7.4 Bar graph of diagnosed addresses for 32×32 matrix size under neutron
irradiation . 139

7.5 Bar graph of diagnosed addresses for 32×32 matrix size under proton
irradiation . 141

7.6 Exception Errors versus Data Errors . 142

7.7 Memory errors causing Data Errors . 143

7.8 Memory errors captured by the trace . 144

7.9 Computation errors captured by the trace 145

8.1 NEON register file and instruction example 154

8.2 SIMD-based hardened data . 154

xxxv

8.3 Code example of data hardening using NEON data types 156

8.4 PDTC architecture . 159

8.5 Experimental setup . 160

8.6 Cross section bar graph . 164

9.1 Experimental setup detail . 174

9.2 Infrared microphotograph of the processing system of the DUT showing
the fault injection zones . 174

9.3 Block diagram of the experiment . 175

9.4 Error histogram for Z1 (CUT1) - L1 Data Cache 177

9.5 Error histogram for Z2 (CUT1) - L1 Instruction Cache 178

9.6 Error histogram for Z4 (CUT1) - L2 Cache 178

9.7 Error histogram for Z5 (CUT3) - OCM 179

9.8 Error histogram for Z3 - unidentified registers region 180

9.9 Last instructions before Data Aborts related to L2 Cache (CUT1) 182

9.10 Error geometrical distribution (CUT1) 183

9.11 Error geometrical distribution by category (CUT1) 183

10.1 Top level view of the IP and interfaces 192

10.2 Internal architecture view of the IP . 194

10.3 IP integrated in a) binary and b) ternary architecture configuration 198

xxxvi

LIST OF TABLES

4.1 Experimental results of proton irradiation 94

4.2 Experimental results of fault injection 95

5.I Synthesis Results . 106

5.II Radiation Results: Observed Errors . 109

5.III Radiation Results: Cross Section . 111

6.1 Injection campaign results . 124

7.I Detailed Address Contents . 138

7.II Data Error Diagnosis . 139

8.I Performance Overhead . 161

8.II Neutron Radiation Results . 163

9.I Zones used for laser fault injection . 175

9.II PC Progression to Invalid Value . 180

9.III Detailed Address Contents . 181

10.1 IP specifications . 196

xxxvii

1. INTRODUCTION

Improvements in silicon-based technologies have fostered a great development in
electronics industry. Throughout the last years, electronic devices and, particularly,
microprocessors, have become smaller, faster, more powerful and more efficient, resulting
attractive for an increasing number of applications. Integration density has also reached
unprecedented levels, allowing to implement heterogeneous systems including multiple
processor cores, mixed-signal peripherals and programmable logic in a single chip,
conforming which is known as System-on-Chip (SoC) devices.

Microprocessors are widely used in everyday commercial appliances, as in smartphones,
tablets or personal computers. However, they are also increasingly common in systems
performing critical tasks, such as automated fabrication, personal data management,
financial operations, or even safety-critical applications like emergency systems, avionics,
or autonomous driving. Electronics are extensively used in space-oriented systems, and
microprocessor-based applications are commonly introduced in spacecraft and payload
control and management.

Users may expect that systems continuously operate correctly. However, any system is
subject to have faults. Faults in space systems must be minimized as spacecraft are mostly
unfeasible to repair. Once a fault occurs, detection and diagnosis are desirable capabilities
to minimize consequences and perform efficient corrective actions. Dealing with faults is
important to maximize the lifespan of a system, however, doing it at a minimal cost is a
challenge. Methodologies are constantly evolving to efficiently reduce the impact of faults
in systems in a cost-effective manner. This is particularly relevant to maximize benefit in
an increasingly competitive space industry.

1.1. Motivation

Faults may affect the operation of any system, undesirably compromising the quality
of the delivered service. When affecting microprocessor operation, faults may result
in a degraded user experience in commercial electronic appliances. However, when
affecting safety-critical systems, the presence of faults can produce severe consequences
that ultimately may produce damages, involve economic losses or endanger human lives.
In space, radiation is a major source of faults in electronic integrated circuits and, if not
properly handled, may derive in partial or complete mission loss.

Systems performing critical applications must typically satisfy high reliability and
availability requirements, even when operating in harsh environments. The quality of a
system to perform correctly in the presence of faults is called fault tolerance, and it is a
desirable feature of critical systems. In the case of space-oriented systems, maintenance

1

after deployment is commonly unfeasible or completely unavailable. Moreover, the space
environment is challenging for electronics to operate in due to radiation exposure and its
various undesirable effects on integrated circuits. For that reason, fault tolerance becomes
a crucial issue to be addressed when developing successful space missions.

In the last decades, the space industry has developed technologies and techniques
to deal with radiation effects in electronics and to test their effectiveness. Integrated
circuits capable of operating correctly in the presence of radiation are commonly known as
radiation hardened or rad-hard and can be qualified for their use in space through radiation
testing. However, radiation hardened integrated circuits typically present disadvantages
such as higher power consumption, higher cost and lower performance than non-hardened
counterparts. Regarding rad-hard microprocessors, they commonly lag two or three
generations behind commercially available ones, known as Commercial-Off-The-Shelf,
(COTS). In fact, available radiation hardened solutions for space applications present
excessive cost and lack of performance to enable the next generation of space missions.

Size, weight and power are key design drivers in space missions, as they are restricted
throughout the mission, and electronic components are selected accordingly. Additional
considerations such as radiation hardness and performance are also taken into account
to fulfill mission requirements and achieve mission objectives. In the case that no
available rad-hard device would meet the requirements of a space mission, the entire
mission could be affected, introducing planning delays and other deviations. This is not
uncommon, as space mission designers tend to seek for high computational on-board
capabilities in spacecraft that may enable ambitious scientific, exploration or commercial
purposes. In the last years, new actors such as research entities and private companies
have irrupted in the space industry, which was traditionally composed by government
agencies, configuring a new tendency which is known as New Space. New Space introduces
complementary requirements on traditional spacecraft design such as limited budgets and
constrained schedules, typically combined with low power, reduced weight and high
performance features. In the case that available rad-hard devices do not provide the
expected performance or are not affordable for a given mission, the use of COTS may be
considered, given that protection against radiation effects can be provided.

Commercial-Off-The-Shelf devices are those conceived to be used in ground-based
applications, such as domestic devices. They sometimes present a reduced set of built-in
fault-tolerance mechanisms, mainly in the case of devices designed for industrial and
autonomous driving applications. However, COTS devices are not designed for its use in
space, so they have not deliberately been radiation-hardened and, commonly, present an
unknown susceptibility to radiation effects. Nevertheless, the suitability of a COTS device
for a space mission can be evaluated through radiation testing and, if it is found to fulfill
mission requirements, it would be included in the design. If necessary, a COTS device
could be hardened by introducing additional features at device, circuit or system level.
For microprocessors, techniques can be applied both on the software and the hardware.
However, hardware techniques present limitations as hardware typically cannot be modified

2

since the architecture of COTS devices is commonly unknown. This process is usually
only performed when the required performance is unattainable by any available rad-hard
component as the COTS qualification process is usually long, complex and expensive.
For this reason, new techniques to harden COTS under radiation are continuously under
research to deal with COTS observability, testability and hardening challenges.

This work explores new ways to facilitate the use of SoCs based on COTS
microprocessors in space, by providing radiation-induced error detection and diagnosis
capabilities in a non-intrusive way using externally available resources and interfaces.
A high-performance, multi-core commercial SoC based on ARM processor architecture
was used as a vehicle of study of the proposed techniques. ARM devices present deep
penetration in commercial electronics industry and are also of interest in space industry.
Obtained results would be applicable in almost any high-reliability area and, with special
relevance, in space applications.

1.2. Industrial Ph.D. supported by the Community of Madrid

This Thesis was developed in the framework of an industry-academia collaboration
between the aerospace company Arquimea and University Carlos III of Madrid (UC3M).

The designation of Industrial Ph.D. applies to programs whose candidates participate
in industrial experimental development or research work projects connected to their theses.
Industrial Ph.D. programs involve effective collaboration between a company and a research
entity to promote technology transfer and industrial applications of research results.

This work has been supported in part by the Community of Madrid under Grant
IND2017/TIC-7776 awarded in 2017 within a call for supporting the realisation of
Industrial Ph.D. programs.

1.3. Objectives

The fundamental objective of this work is to explore new error mitigation solutions
for Sytems-on-Chip (SoCs) based on Commercial-Of-The-Shelf (COTS) microprocessors
to enable the use of higher-performance and lower-cost processing systems in space
applications. In this kind of devices it is usually not feasible to modify the hardware to
implement fault tolerance techniques, so they must be achieved by other means. For this
purpose, it is considered essential in this work to leverage existing infrastructures and
interfaces already available in microprocessors. Such infrastructures and interfaces may be
used to externally check correct circuit operation and harden it in a non-intrusive manner.
This work focuses in non-intrusiveness and simplicity to minimize negative impacts of
error mitigation in area and performance, to obtain a low-footprint solution to harden the
processor without disturbing it.

3

It is remarkable the case of trace and debug infrastructures among others to be used
for error mitigation purposes and, particularly, the trace interface. Trace and debug
infrastructures are designed to support application debug during software development
phase, and are provided by most modern processors for this purpose. Once the application
has been deployed, such infrastructures are no longer needed and are left unused, so
it is possible to reuse them for a different purpose. In particular, the trace interface
provides traceability of the executed code and associated program data, observing processor
behavior without interfering in execution. Information provided by the trace interface
can be used to detect errors in processors and has already been used for that purpose
on soft-core processors by the advisors of this Thesis at the Diseño Microelectrónico y
Aplicaciones (Microelectronic Design and Applications, DMA) research group in UC3M
[1]–[8]. However, such approach has not been yet attempted in more complex, high
performance, hard-core processors.

The ARM technology used as a vehicle of study presents relevant elements in its
architecture commonly found in high-end processing systems that are attractive for this
work. The Zynq-7000 device family provided by Xilinx has been selected as development
platform as it includes multiple hard-core high-performance ARM processors as well
as programmable logic in a single chip. This SoC configuration provides flexibility and
conveniently supports the development and testing of both the processors and the checking
techniques.

More specifically, the objectives of this work are the following:

I Development of non-intrusive error mitigation techniques for COTS processors
based on the trace interface, focusing in both control-flow errors and data errors.

II Development of diagnosis techniques for processor errors based on the information
provided by the trace infrastructures.

III Validation of the designed techniques by fault injection and irradiation campaigns.
Fault injection is considered the most suitable approach for reliability evaluation
during the preliminary steps. Nevertheless, radiation experimental results are
essential for the acceptance of results by the scientific and technical community,
as they can accurately reproduce radiation effects. This objective is devoted
to demonstrate the suitability of the proposed techniques in a representative
environment.

IV Implementation of the developed techniques for space application circuits. As
an Industrial Ph.D., the ultimate objective of this work is to obtain a technology
susceptible to commercialization and identify how to industrialize it.

This work is ultimately oriented to increase the market penetration of Arquimea
company. Arquimea is currently a European reference in the design, manufacturing and
testing of space-oriented integrated circuits. Through this work, the company will make

4

available a proprietary technology for robust SoC design that provides a competitive
advantage in the sector.

1.4. Document structure

This Thesis document has been elaborated by compendium of publications modality.
The structure of the document is as follows:

• Chapter 2 introduces the relevant concepts within this document and summarizes
the state of art for this work.

• Chapter 3 reviews the materials and methods used in this work.

• Chapter 4 contains the publication [J1]. In this publication a hardware module is
proposed as a preliminary proof of concept for control-flow error detection through
the trace interface, and is validated by fault injection and irradiation campaigns,
initiating the accomplishment of objectives I and III.

• Chapter 5 contains the publication [J2]. In this publication, the proof of concept
module is extended for both control-flow and data error detection and is validated by
irradiation campaigns, going deeper in objectives I and III. Error diagnosis is firstly
proposed in this publication, settling the basis for attaining objective II.

• Chapter 6 contains the publication [J3]. In this publication, the developed
fault detection techniques are applied to a more complex fault-tolerant system
implementing hardware redundancy by using both available cores in the Zynq-7000
platform in lockstep configuration. By the combination of a set of software
and hardware techniques in collaboration with Alicante University, including the
developed hardware module, a hybrid fault-tolerant system is proposed and tested
under fault injection, accomplishing objectives I and III.

• Chapter 7 contains the publication [J4]. In this publication, the error detection
capabilities of the hardware module are explored for the purpose of error diagnosis.
The proposed system is evaluated under fault injection and irradiation campaigns,
demonstrating fine granularity at error classification and richness of information to
perform error diagnosis, accomplishing objective II.

• Chapter 8 contains the publication [J5]. In this publication, the hardware module is
used to detect control-flow errors combined with a data error mitigation technique
using existing SIMD hardware acceleration resources in the processor architecture.
The resulting hybrid approach is validated under irradiation campaigns, showing up
to 99.9% error coverage. With the work presented in chapters 6 and 8, the objective
I is considered fully accomplished.

5

• Chapter 9 contains the publication [J6]. In this publication, the error diagnosis
approach is tested under laser fault injection in collaboration with Montpellier
University, providing additional information about fault location and timing. Results
demonstrate high potential in diagnosis capabilities through the trace information
using the proposed hardware module. With the work presented in chapters 7 and 9,
the objective II is considered fully accomplished.

• Chapter 10 contains the publication [C1]. In this publication, the developed hardware
module is presented as a commercially available IP product at an industrial forum
in the European space sector. This work demonstrates the efforts performed by
Arquimea for the effective transference and commercialization of the developed
technology, accomplishing objective IV.

• Chapter 11 outlines the conclusions of this Thesis and proposes future developments
based on this work. Not only the main achievements in this work are remarked,
but also a new project with European Space Agency (ESA) based on this Thesis to
further develop and test the IP is announced in this chapter. With the achievement of
this contract, the objective IV is considered fully accomplished.

6

2. DEPENDABILITY UNDER RADIATION IN COTS
MICROPROCESSORS

In this chapter, an overview of the basic concepts addressed in this Thesis is included.
Despite chapters 4 to 10 have each one their own dedicated sections for state of the art and
related work, the present chapter is willing to unify them in a single entity and to provide a
complete landscape of the state of the art related to the whole work in a comprehensive
manner. This chapter also presents general concepts that are not described in further
chapters to ease understanding of this work by readers that are not familiar with either of
the topics, and to better contextualize this work in the current research trends.

2.1. Dependability in space applications

Critical applications are built around systems that must not fail, which is the case of
space applications. In the case of unmanned space missions, most of them cannot be
repaired once in-orbit, so an unexpected failure would lead to mission loss. Dependability
is a key attribute in critical systems design, and is associated with the quality of service
that a particular system provides [9]–[11].

Dependability is defined as "the ability of a system to deliver service that can justifiably
be trusted" [12]. As it is defined in broad terms, there is not a unique approach to attain
dependability, but different approaches are valid depending on the circumstances. Finding
the proper implementation of this concept is key to support advanced society in many
fields. In particular, space applications rely on dependability concepts to survive and
protect valuable information from the harsh conditions of outer space.

This section will introduce a basic overview of dependability concepts and illustrate
their application to the space challenges.

2.1.1. Dependability attributes

The justification of trust is crucial to effectively attain the dependability requirements
of a system. Trust can be defined as accepted dependence from the point of view of a
system in a context in which the dependability of other system can affect the dependability
of the first one. Consequently, dependability can also be defined as the ability of a system
"to avoid service failures that are more frequent and more severe than is acceptable" by
other systems [10].

Dependability is usually described as a combination of attributes, including the
following [9]:

7

• Reliability is considered the "continuity of correct service" [10]. It is defined as the
probability that a system delivers the correct service throughout a complete interval
of time [11].

• Availability is the "readiness for correct service" [10]. It is defined as a statistical
parameter as the probability that a system is capable to correctly provide service at
the moment it is requested [11].

• Maintainability is the "ability to undergo modifications and repairs" [10]. It is
defined as a statistical parameter as the probability that a system can be restored to
provide correct service once it has failed [11].

• Testability is "the ability to test for certain attributes within a system" [9]. A system
with high testability will provide easy means to identify the causes of failures, as for
example automated testing.

• Performability can be considered as "performance-related measures of
dependability" [12]. It is defined as a statistical parameter as the probability that
a system will perform at some certain level (or above) at a given instant of time.
Performability differs from availability and reliability in that those are measures for
all system functions to be performed correctly, while performability only considers
a certain subset of functions to be performed correctly. Performability is linked to
the concept graceful degradation, which "is the ability of a system to automatically
decrease its level of performance to compensate for hardware and software faults"
[9]. In most applications, and especially in space missions, the option to lose some
non-critical features and maintain the important ones available, as communication
subsystems, is more attractive than the option to get the whole system unavailable,
that would lead to mission loss.

• Safety is the "ability of a system to show a safe behavior in the presence of a
fault that would lead to an unacceptable failure" [11]. It is defined as a statistical
parameter as the probability that a system will either perform its functions correctly
or, alternatively, will discontinue its functions in such a way that does not disrupt the
operation of other systems or compromise the health of any people associated with
the system [9]. A system is safe as long as it guarantees that its operation will not
present catastrophic consequences to the user and the environment [10].

• Finally, survivability is the "capability of a system to fulfill its mission in a timely
manner" [12]. In other words, is the capability of a system to remain operational and
perform its function during the required amount of time.

2.1.2. Faults, errors, and failures

The words fault, error and failure have similar meanings. However, these terms must be
very well established when concerning dependability as they represent different concepts.

8

A fault is "a physical defect, weakness, imperfection, or flaw that occurs within some
hardware or software component" [9] that may be the "adjudged or hypothesized cause
of an error" [10]. Faults can be categorized according to different criteria [10], [12], to
identify their origin (internal or external to the system), their domain (affect the software
or the hardware of the system), or their persistence (as can be permanent, intermittent or
transient).

"An error is the manifestation of a fault" [9]. Specifically, an error is the "deviation
of the internal state of a system from the expected" [11] "that may lead to its subsequent
service failure" [10]. When the presence of an error is indicated by a signal or a message,
it is said that it is detected. Errors that are present but undetected are called latent errors
[10]. In the dependability analysis, an error is considered an intermediate, but necessary,
step between a fault and a failure.

"A failure occurs when an error is propagated to the service interface and unacceptably
alters the service delivered by the system" [12]. Failures can be categorized according to
different criteria [10], [12] to determine their extent (a subset or all provided services are
affected), their domain (the service is affected in the delivered content and/or the delivered
timing that is provided), their controlability (the behavior of the failed system is according
to the specification or is unexpected) or their consequences (that may be minor, when their
cost is comparable to the benefit of correct service or catastrophic, when their cost is much
higher than the benefit).

Consequences of failures drive the development of risk analysys to determine the
hazards and consequent accidents that can occur during system operation. "Risk is a
measure of the dangerousness of an accident. It is given by the product of the frequency
(or probability of occurrence) and the severity of an accident, commonly termed risk
probability and risk severity" [11].

A system can fail in different ways, which are called failure modes. The consequences
and risks associated to each failure mode are different and can be classified according
to failure severities. The severity of a failure is quantified by evaluating its impact on
dependability attributes, such as the failure duration or the threats to human lives [10].

It is remarkable that the cause-effect relation between faults, errors and failures is not
finished when a failure occurs. Not only faults provoke errors and errors provoke failures,
but also failures can trigger new faults on other systems by interaction or interference
processes [10].

2.1.3. Dealing with faults

Faults are intrinsic in any system development and operation. The contribution of faults
to the behavior of a system is a risk that must be accepted and tackled at the beginning
of the design process. A widely accepted view about the influence of faults in systems is
the so-called bathtub curve [13], [14] . The curve presents steep sides and a flat bottom,

9

forming the shape a bathtub. The bathtub curve describes the failure probability of a system
during its lifetime by the sum of contributions of three failure functions, producing three
different phases. The first part of the graph comprises the failures which appear early in the
system lifetime, known as early failures, produced mostly by faults that were not detected
by quality tests. As the units presenting early failures can be identified and discarded,
the amount of early failures decreases with the time, this situation is also referred to as
infant mortality. The second part of the curve is a flat probability of failures over time
representing the contribution of random, difficult to predict effects, which are known as
random failures. The duration of the second phase is related to the expected lifetime of the
system. Finally, the third part of the graph introduces the effects of aging and wear-out in
the materials or other components of the system that produce an increment of the failure
rate with the time, known as wear-out failures.

By providing means to identify and analyze the risks associated to a system, approaches
can be implemented to mitigate them and, eventually, attain dependability requirements
with high trust [9]. Mainly, four mitigation approaches can be considered: fault forecasting,
fault prevention, fault removal and fault tolerance:

• "Fault forecasting means to estimate the present number, the future incidence, and the
likely consequences of faults" [10]. The result is "qualitative evaluation to identify,
classify and rank failure modes and calculate the probability to satisfy dependability
attributes" [12].

• "Fault prevention, also called fault avoidance, means to prevent the occurrence or
introduction of faults" [10] in the system. "Fault prevention is typically attained by
quality control techniques" [12] that are applied across the design process. Such
techniques include "design reviews, component screening, testing, and other quality
control methods"[9]

• "Fault removal means to reduce the number and severity of faults" [10]. It "can be
applied during development in three steps: verification, diagnosis, correction; or
during operation with corrective or preventive maintenance" [12].

• "Fault tolerance means to avoid service failures in the presence of faults" [10]. "Fault
tolerance is an attribute that is designed into a system to achieve some design goal,
just as a design must meet many functional and performance goals" [9]. "The factor
that distinguishes fault tolerance from maintenance is that maintenance requires the
participation of an external agent" [10] while fault tolerance is a built-in capability.
Two strategies [10] are commonly followed to attain fault-tolerance exploiting the
introduction of redundancy in the system that can be active and passive [11]:

– Error detection and recovery. Once a fault, or an error, has been identified in
the system, it is located and an action is performed to either remove the fault to
continue normal operation, or to contain its consequences, usually by reducing
the system performance [11].

10

– Fault masking: the redundancy previously introduced in the system prevents
the fault to produce errors. In other words, the fault is masked and the recovery
step is not needed [9], [11].

2.1.4. Dependability threats in spacecraft

Spacecraft are complex systems composed of different subsystems tightly coupled
together to fulfill a mission. Not only electronic devices are included in spacecraft, but also
mechanical, electric or fluid-based subsystems are involved. Examples of those subsystems
are communications, power management, thermal management, orientation management,
propulsion, instrumentation and payloads.

Spacecraft systems "use microelectronics for command and control functions, for
signal acquisition and processing functions, and for data storage" [15]. Microelectronics
aboard spacecraft experiences and adverse and extreme environment, which becomes a
threat due to different factors [16]:

• Mechanical stress, including extremely intense vibration and high acceleration
during launch and, eventually, landing phases. The different gravity conditions in
other planets or celestial bodies may involve an additional challenge for mission
designers.

• Thermal stress, including extremely wide temperature cycles which can require the
electronics to survive to temperatures from -55ºC to +125ºC or beyond in a repetitive
manner.

• Radiation-rich environment, including charged particles such as protons, electrons
or heavy ions, but also neutrons, X-rays or Gamma rays produced inside or outside
the solar system. Radiation may degrade the performance of materials used to build
spacecraft, including electronic devices.

• Geometry limitations. Most satellites are currently launched in a folded configuration
due to volume limitations imposed by launch vehicles. However, these satellites
must be unfolded once in-orbit to reach their operating configuration. The unfolding
process involves a high dependability challenge as an error can be catastrophic for
the mission.

• Distance to Earth. Most missions are unavailable or extremely expensive to be
repaired in orbit, and communications with missions going beyond Earth orbit
may be affected by delays associated to the distance. For that reason, autonomous
behaviors are commonly built in space missions, especially to deal with situations
that need to be tackled in a short period of time, such as emerging problems but also
programmed behaviors such as landing on another planet.

11

2.2. Radiation effects on electronics

Among others, one of the most distinguishing challenges faced by space missions is
the exposure to radiation. As a consequence, it has been addressed by the space industry
since the space race on the 1950s. From that point in space history, the nature of radiation
phenomena and its consequences to electronic devices have been continuously investigated
[17], [18]. The growing understanding of radiation threats has been a permanent driver to
develop increasingly dependable, ambitious and successful space missions.

Radiation presents many risks for spacecraft, we now focus on the radiation effects that
impact the most on electronics reliability in space.

2.2.1. The space environment

The most relevant radiations concerning electronic devices and circuits in space are
photons, electrons, protons, neutrons and heavy ions. The origin of these radiations
are energetic episodes or locations occurring in the universe, such as stars, supernova
explosions, star collisions or even the Big Bang [18]. The natural abundance of diverse
radiation types is different as they are produced in different quantities by different radiation
sources. Moreover, radiation is not equally spread across the universe, as it is affected
by the proximity to the radiation source and also to other factors such as the presence of
magnetic fields or other radiation sources, so the radiation context is dependent on the
location and the moment of exposure to space.

Space environment is defined as "the conditions of the space radiation for a given
location or orbit" [18].

The radiation environment in the solar system is strongly influenced by the sun, which
acts at the same time as a source and a modulator of radiation. The sun is a source of
electrons, protons and heavy ions. Two different processes are responsible for radiation
emission from the sun: electromagnetic emissions (irradiance and solar flares) and mass
emissions (solar wind and coronal mass ejections). Coronal mass ejections and solar
flares are the most hazardous events for electronics in space as they produce high fluxes of
energetic particles (around 106 particles/cm2s with > 10MeV energy). The solar activity
has a cyclic intensity, repeating every 11 years consisting in 7 years of solar maximum,
when emission processes are more frequent and more intense, followed by 4 years of solar
minimum, in which the number and the intensity of such processes is lower [18]. The
cyclic variability in solar activity acts as a modulator for the radiation environment in the
solar system as discussed later.

Nevertheless, not all the radiation in the solar system comes from the sun, as radiation
coming from more distant sources can also reach the solar system. High-energy charged
particles originated at diverse sources outside the solar system are often referred to as
galactic cosmic rays (GCRs). GCRs are composed by 90% ionized hydrogen (protons),

12

9% ionized hellium (alpha particles) and 1% heavier ions, including all naturally occurring
elements, but the abundance of each type of ion is different and drops significantly for
atoms heavier than iron. Heavy ions produced at extreme energetic events in the universe
can reach the solar system with energies up to 1020eV , much higher than previously
described solar particles. However, the flux of GCRs in the solar system is just about
1 − 10particles/cm2s, wich is much lower than solar particles flux. Thus, GCRs can be
much more energetic, but are much less common than solar particles. Despite their low
flux, ultra highly energetic particles represent a hazard for electronics in space as a single
impact may trigger an error. The sun cyclic activity modulates the flux of GCRs in the
solar system in an anticorrelated way: at solar maximum periods, the GCR flux is reduced
by almost 20% respect to GCR flux levels at solar minimum periods [18].

In addition to the sun and GCRs as the two main radiation sources in the solar
system, an additional phenomenon must be considered as it is highly relevant in the
radiation environment surrounding planet Earth: the charged particles trapped by Earth’s
magnetosphere. The geomagnetic field on Earth can be approximated as a dipole that
interacts with moving charged particles resulting in a perpendicular Lorentz force which is
proportional to the particle velocity and field strength. As a result, Earth’s magnetic field
prevents charged particles to enter Earth’s atmosphere by repelling, diverting or capturing
them. Once captured, particles cannot escape and conform a set of toroidal regions around
the Earth known as Van Allen belts. Two Van Allen belts are typically considered: the
inner Van Allen belt and the outer Van Allen belt; both are thicker at the equator, where
the magnetic field is more intense. The inner belt goes in the range of 1200-6000 km of
altitude and is mainly composed of electrons and protons. The outer belt is located in the
range of 13000-60000 km of altitude ans is mainly composed of electrons. Geomagnetic
field of Earth is not perfectly centered nor aligned with Earth rotation axis, so the shape
of radiation belts is not perfectly symmetrical, but has irregularities. The most relevant is
the South Atlantic anomaly (SAA), that produces an increment on the flux for electrons
and protons at low altitudes over the South Atlantic ocean and South America. The high
flux and energy of particles in the radiation belts are a hazard to electronics experiencing
such conditions as the the probability of receiving a particle strike on a critical part of the
circuit increases and the amount of radiation dose accumulated may also lead to failure.
Solar activity modulates the radiation present at the radiation belts as it interacts with both
affecting their composition (inner belt losses protons at solar maximum periods) and shape
(belts get compressed when the solar wind is more intense; outer belts gets thicker at solar
maximum periods) [18]. Trapped particles belts are naturally produced by the magnetic
field of planets; in the solar system, not only planet Earth, but also other planets present
trapped radiation environments around them, being Jupiter the most intense in the solar
system.

Finally, not every particle arriving the vicinity of Earth is prevented to enter Earth’s
atmosphere by the magnetic field. As a consequence, some space radiation also reaches
ground. When entering the atmosphere, charged particles interact with atoms present

13

on it, producing secondary particles that trigger a chain of nuclear reactions which is
commonly known as shower of particles [19]. Typically, from a single original particle
entering Earth’s atmosphere, many nuclear reactions occur, resulting in a continuous flux
of elementary particles. In the range between ground to 20km altitude, the atmospheric
flux is composed mainly by neutrons (also protons, electrons, muons and pions in minor
quantities). Atmospheric radiation can affect electronics on Earth and is especially relevant
for air transport dependability; atmospheric flux at typical commercial flight altitude
is in the order of 10particles/cm2s. At sea level, atmospheric flux decreases to about
0.1particles/cm2s, which is much lower, but still can affect electronics operating on
ground. In addition, neutron atmospheric flux is more intense at the poles, where the
geomagnetic protection is less effective, than at the equator [20].

Effects produced by radiation are different according to the nature and the abundance
the radiation in each case and mission duration. For spacecraft, short missions on low
Earth orbit (LEO) are the most benign since they stay below Van Allen belts, reducing
experienced irradiation from trapped particles and being protected from most particles
by magnetosphere at the same time. Missions going further must take into consideration
the adverse environment described in this section. Along the years of space exploration,
models have been developed to represent the harsh conditions of outer space. Models
help to define the radiation dependability requirements for spacecraft by knowing basic
mission parameters as launch date, mission duration and orbit or trajectory [17]. The Space
Environment Information System (SPENVIS) web interface [21], created by European
Space Agency (ESA), provides access to available models to forecast the radiation
experienced by a given mission.

Next subsections give an overview of the most common radiation effects considered in
space electronics.

2.2.2. Cumulative effects

Exposure to radiation causes damage to electronic systems that can get accumulated
over prolonged time, limiting system endurance [17]. Cumulative effects are driven by
the total exposure to radiation, which is called the fluence [17]. Degradation is caused by
the energy transferred from the radiation particles to the materials forming the system. If
the energy is transferred by the particle interaction with electrons in the material atoms,
electrons gain energy and electron-hole pairs are created along particle trajectory, this
is called ionization. In contrast, if the particle interacts directly with the atomic nucleus
of the material, it can transfer kinetic energy and modify its original position or even
trigger a nuclear reaction. Since atomic nucleus represent a small portion of the atomic
size, particle to nucleus interaction has low probability resulting that ionization is the
dominating interaction process.

Two main cumulative damage effects can be differentiated depending on the interaction
type: total ionizing dose (TID) and displacement damage dose (DDD).

14

2.2.2.a Total ionizing dose

Total ionizing dose is the amount of radiation energy transferred to a material through
ionization. Ionization can occur for photons and charged particles (electrons, protons
and heavier ions). In the space environment, charged particles, particularly electrons and
protons, are the most relevant concerning TID effects. The required energy to create
an electron-hole pair (Ep) depends on the material, being Ep = 3.6eV for silicon and
Ep = 17eV for silicon dioxide, which is a very common insulator material in electronic
devices. Radiation can create electron-hole pairs in materials as long as it has higher
energy than Ep. Typically, the energy of a single particle may be orders of magnitude
higher than Ep son it can create thousands of electron-hole pairs in the material along its
path. Total ionizing dose can be measured by quantifying the amount of energy deposited
in the material by ionization. The official unit is the Gray (Gy), which equals to 1J of
energy deposited in 1kg of matter. However, in the space community is more common to
use the rad (for radiation absorbed dose) unit to express TID. Conversion between Gy and
rad is given by 1Gy = 1J/kg = 100rad.

Total ionizing dose degrades electronic devices performance mainly by altering the
properties on insulating materials. Upon electron-hole pairs creation, a portion of them
will recombine producing a zero net effect. However, in silicon dioxide, electrons mobility
is much higher than holes, so after ionization, some electrons will sweep out the oxide
avoiding recombination. Recombination is highly dependent on the applied field to the
oxide during ionization; if an electric field is present, it will pull electrons and holes apart,
reducing the number of recombined holes. Non-recombined holes will remain relatively
immobile in the oxide (oxide traps) causing a positive net charge that is proportional to the
accumulated dose. External fields and temperature may lead holes to move through
the oxide and reach the interface with silicon, remaining there (interface traps). In
Metal-Oxide-Semiconductor (MOS) devices, positive charge on gate oxides produces
a negative shift in voltage threshold that alters response times, reduces switching speed
and increases leakage current. In an extreme situation, the threshold voltage shift may
result that most common negative-channel MOS (NMOS) transistors cannot be turned off
and positive-channel MOS (PMOS) cannot be turned on [22]. Due to MOS technologies
miniaturization, gate oxides are now much narrower than some years ago, so the impact of
TID in gate oxides is now lower and resulting devices are more robust. However, oxides
are not only present in gates, but also in other isolation structures, which size is larger than
gate oxides such as silicon on insulator or shallow trench isolation technologies, that can
also induce TID degradation. In bipolar technologies, passivation oxides can also become
positively charged, degrading transistor gain and increasing base leakage. An additional
effect is particularly relevant in bipolar transistors as total ionizing dose degradation is not
only dependent on the dose but also on the dose rate, resulting in higher degradation when
the exposed radiation dose rate is low: this is called enhanced low dose rate sensitivity
(ELDRS) [23].

15

2.2.2.b Displacement damage dose

Displacement damage dose is produced by the accumulation of successive interactions
between incident particles and the nucleus of the atoms in the material. This is the main
interaction process in the case of neutrons, as they have neutral charge and cannot interact
with the electrons of an atom, but also can be caused by electrons, protons and heavier ions.
Upon an incident particle collides with the nucleus of a semiconductor in an integrated
circuit, it may displace it from its position as long as it has enough energy. Interaction can
occur by any of the following processes: Rutherford (i.e., Coulomb) scattering, nuclear
elastic scattering and nuclear inelastic scattering. Upon first displacement, the displaced
atom may have enough energy to provoke new interactions and the original particle
may produce them as well. The simplest DDD damage mechanism is the creation of
vacancies (empty places in the crystalline lattice) and interstitials (atoms that are placed
in a non-lattice position). However, collisions may also provoke nuclear reactions that
originates new atoms, ions and neutrons as subproducts, degrading the quality of the
material. Defects may be created far apart one from another, which are known as isolated
or point defects, but also may be concentrated in localized regions with many defects,
which are called clusters. The interaction process and the provoked defects depend on the
original particle type and energy. Typically, isolated defects are created by particles with
lower energies while highly energetic particles usually creates both isolated and cluster
defects.

Displacement damage dose degrades electronic devices mainly by creating defects on
the crystalline structure. Nevertheless, DDD effects occur in very low proportion compared
to TID effects so the damage is only relevant in those devices for which low defect count
may lead to erroneous behavior. It is typically considered that bipolar technologies, solar
cells and optoelectronic devices are the most sensitive to DDD efects [24], while they are
considered irrelevant in MOS technologies. However the continuous miniaturization in
MOS technologies can produce that defects produced by DDD may be large enough to
provoke faults.

2.2.3. Single-event effects

As described in previous section, ionizing radiation mostly produces electron-hole
pairs in materials by ionization process. When the material is an insulator, then charge
trapping is produced, leading to TID effects described above. However, electron-hole
pairs can also be generated in conductor or semiconductor materials, including silicon.
In this case "transient effects can be produced from individual particles that can disrupt
system operation" [17], known as single-event effects or SEEs. Single-event effects are
not time dependent, as they can occur at any moment since just one single particle hit may
trigger them. The driving parameter considering SEEs is the amount of particle hits, with
enough energy, per time unit, which is called the flux [17]. The higher rate of particle hits,
the higher the probability of experiencing SEEs by one of them. Ionization process can

16

be produced directly by an incident particle across the material or by indirect ionization
produced by secondary particles generated after nuclear interaction between the incident
particle and the atoms of the material [25].

Ionizing particles deposit energy in the semiconductor material along the path by
creating electron-hole pairs. Particles may be able to get through the material or they
may be stopped and remain inside the device structure, attending to energy considerations.
Electron-hole pairs are generated at expense of energy transfer from the incident particle
to the material, until the particle energy gets below the minimum energy to produce more
electron-hole pairs (Ep = 3.6eV for silicon), when it stops. This process depends on the
initial energy of the particle, the length of the path along the material and the ratio of
energy transferred by length unit, which is known as linear energy transfer, or LET. The
total distance travelled by the particle inside the material is called the range. Linear energy
transfer value is not constant along the range, but it increases along the path until reaching
the Bragg Peak, when the LET is maximum and suddenly drops just before the particle is
stopped by the material. LET is dependent on ion mass and energy; different ions with
different energies can have the same LET. Linear energy transfer is given in MeVcm2/mg,
which equals to energy deposition per path length in MeV/cm normalized to material
density in mg/cm3 [25].

Not all particle strikes may produce observable single-event effects in integrated circuits,
even if the energy deposited is high. SEE occurrence is also affected by the part of the
circuit being hit, the angular orientation of the path with respect to the device and the
existing field on the vicinity of the track, among others. It is considered that a SEE may be
produced if the particle "strikes a sensitive region of the microelectronic circuit" [25], that
is a part of the circuit in which the sudden appearance of free electron-hole pairs may lead
to an error. Extensive research have been carried out since the 1960s to model, characterize,
predict and prevent the occurrence of single-event effects in integrated circuits [25].

Single-event effects can be categorized attending to the affected region of the device
and also to their consequences on its operation. Destructive and non-destructive SEEs are
typically considered.

2.2.3.a Destructive single-event effects

When a particle hits an electronic circuit, it may “result in permanent degradation or
even destruction of the device, provoking so-called hard errors" [26]. Four types of hard
errors due to SEEs are the most common, namely single-event latchup (SEL), single-event
burnout (SEB), single-event gate rupture (SEGR) and single-event snap-back (SES) [26].

• Single-event latchup (SEL) is a potentially catastrophic effect that leads an electronic
device into a sustained state of high current consumption that, if not reverted, can
lead to device destruction by thermal runaway. Such high-current state is called
latchup and is characterized by a low resistance path between the power supply

17

and the ground of the device that remains, latches, after the triggering event is
removed. Latchup condition may not only be triggered by radiation, but also by
electric or electromagnetic interactions. However, radiation-induced latchup (SEL)
is an issue since devices that do not exhibit latchup in normal operating conditions
may experience latchup due to radiation.

• Single-event burnout (SEB) is a potentially destructive effect that affects power
bipolar transistors and N-channel power MOSFETs by producing an internal
excessive current. The electron-hole pairs generated by the incident particle may
trigger a bipolar parasitic structure that produces avalanche multiplication, resulting
in a high current state that, if not limited, may damage the device by self-heating
leading eventually to thermal runaway, or burnout.

• Single-event gate rupture (SEGR) is a destructive effect that leads the gate
dielectric of power electronics MOSFETs to break under an excessive electric
field. Electron-hole pairs produced in the body of the device may diffuse under a
moderate electric field in such a way that the holes are accumulated under the gate
dielectric, provoking a transient increment of the electric field in that region. Even
if the power device is operating in a system according to specification limits, the
electric field increment due to radiation can provoke that the dielectric is locally
exposed to an excessive field that leads to dielectric rupture.

• Single-event snap-back (SES) is a "stable regenerative condition similar to latchup"
[26], causing an excessive current in NMOS transistors that can permanently damage
or even destroy the device. Electron-hole pairs created by radiation near the drain
junction of the NMOS transistor may trigger avalanche multiplication in a parasitic
bipolar structure. For very energetic radiation strikes, avalanche condition may
persist in time long enough to become self sustained and producing a high current
state that can damage the device. An additional necessary condition for sustained
snap-back is that an external circuit must drive enough current to the device, which
is typical for I/O circuits. Single-event snap-back can be removed by turning on the
NMOS transitor to reduce the drain voltage, or by removing power to the device.
SES is not produced in PMOS devices as the avalanche multiplication is much lower
for holes than for electrons.

2.2.3.b Non-destructive single-event effects

When ionization effects produced by the impact of a particle provoke a malfunction
with no permanent damage on an integrated circuit, then it is called a soft error. Free
electron-hole pairs generated by an ionizing particle strike on an integrated circuit may
be effectively collected by the presence of an electric field, resulting in a transient current
pulse that alters device operation but does not produce direct damage. In semiconductor
integrated circuits, most sensitive regions to this effect are the reverse-biased junctions.

18

This is for example the case of the drain area in a bulk NMOS transistor, which may be
reverse biased to act as an open switch. In the event of a particle hit, the charge collected
by the electric field may appear as a short current spike at the drain during a process called
charge collection [25].

The transient current pulse generated by a particle striking an integrated circuit can
become a soft error if it alters device operation. Four types of soft errors are commonly
considered according to the way they affect the behavior of the device, namely single-event
transient (SET), single-event upset (SEU), single-event multiple-cell upset (MCU) and
single-event functional interrupt (SEFI) [25], [27].

• Single-event transient (SET) is an illegitimate signal value produced by radiation
transmitted throughout an integrated circuit. It is typically considered when the
particle strikes a transistor which is part of a combinational logic path, producing
an erroneous change on a signal value. The current pulse provoked by the particle
may result in a voltage transient that mimics a legitimate signal on the device, and
thus it may be propagated throughout the circuit and be stored on one on more
registers. For that propagation to occur, the pulse must be wide enough to survive
to technology propagation delays and parasitic capacitance. As the SET pulse
propagates through the combinational circuit, its shape can be modified by gate
transition times and capacitive effects. When reaching a storage element, the pulse
must be wide enough and arrive at the correct time to be eventually captured. As
newer devices are scaling down sizes and increasing clock speeds, they are more
prone to experience SET effects. A fault in an integrated circuit due to an SET may
or may not provoke an error, for example, if the erroneous signal is masked before
being stored. Masking may be produced due to electrical, logical or timing factors
related to device operation.

• Single-event upset (SEU) is the faulty alteration of one bit of stored information
produced by a particle strike. In this case, the particle may strike a transistor that
is part of a storing element in a circuit, such as a flip-flop or a memory cell. If the
charge collected by the circuit is enough, the stored value may flip from logic ’1’ to
’0’ or vice-versa, which is called a bit-flip. A fault in an integrated circuit due to a
SEU may or may not provoke an error as if, for example, the wrong stored data is
overwritten with correct data before affecting device behavior.

• Single-event multiple-cell upset (MCU) is produced when a single particle hit
produces more than one faulty bit in an device. Device miniaturization produces
that transistors are built very close one from another, so the charge deposited by
a single particle may be shared between two or more storage elements, provoking
the alteration of more than one bit. MCUs are more likely in modern technologies
with reduced transistor sizes and higher densities, and become an increasing concern
because error mitigation techniques are usually designed to cope with single errors
(SEUs). The energy and orientation of the trajectory of the particle with respect to

19

the electronic device also affects the probability of experiencing MCUs. A particular
case of MCU is the single-event multiple-bit upset (MBU), where multiple bits in
the same memory word are affected by a single particle. Faults due to MCUs, as
SEUs, may or may not provoke errors in integrated circuits as if, for example, the
corrupted data is never used by the device.

• Single-event functional interrupt (SEFI) occurs when the particle strike produces
a device to lose functionality. It is an error mode that mainly affects complex
devices in which the affected region is intended to control device operation, and
the alteration can turn the device into an unexpected or forbidden operational mode.
SEFI condition can be typically recovered by system reconfiguration, resetting or
power cycling the device. Unlike previous effects, that may or may not provoke
a device malfunction, SEFI conditions are a serious problem in complex circuits
such as on-board microprocessors that control other parts of the system, because
may remain inoperative for a period of time, which can be crucial for the correct
development of the mission.

Despite soft errors do not directly trigger a technology-intrinsic potentially destructive
mechanism in the device, as hard errors do, the behavior of an affected device may be
altered as a result of ionization and the consequences of this alteration may be catastrophic
depending on the overall system design. Increasing miniaturization of devices bring
higher incidence of SEEs and soft errors, introducing challenges that must be overcome to
fulfill dependability needs of current and further developments [28]. "Left unchallenged,
soft errors have the potential for inducing the highest failure rate of all other reliability
mechanisms combined" [29].

2.3. Addressing radiation effects

Sensitivity of a system to radiation effects may determine its suitability for a specific
space mission. Performance of a device or a system under radiation is affected by its
constituent materials, device design, fabrication and packaging processes and, if applicable,
system implementation and integration. Electronics technology has evolved to overcome
the radiation threats of space environment and develop devices and systems that can survive
and perform properly in such extreme conditions. Several tests are conducted to prove that
they will perform as expected under radiation before actually being considered to be sent
to space.

2.3.1. Radiation hardening

Introducing specific actions to improve dependability of electronic systems under
radiation is called radiation hardening. A wide range of techniques to achieve radiation
hardening have been developed since the beginning of the space industry, and they can

20

be applied at various development levels. Devices implementing radiation hardening
techniques are called radiation hardened, or "rad-hard" devices.

Radiation Hardening By Process (RHBP) [30], [31] is considered when the hardening is
obtained by optimizing the device fabrication process to minimize negative radiation effects.
RHBP includes techniques such as device doping modifications, insulator optimizations
and the use of specialized materials. As an example, transistor isolation trough the buildup
of oxide structures such as Shallow Trench Isolation (STI) and/or buried oxides (BOX)
in Silicon on Insulator (SoI) technology can reduce SEE sensitivity. However, by adding
more insulation structures, the device may be more affected by TID. To minimize that,
special materials, such as high-k materials, are used at the insulators, and they are doped
according to specific profiles. Other techniques such as triple- or quadruple-well structures
and epitaxial substrates can be used to isolate transistors and reduce SEE sensitivity.

However, the production of RHBP devices is a very small portion of the global
electronics market and so it has two major associated drawbacks: the cost and the
performance. Very few RHBP manufacturing sites, or rad-hard foundries, are available
around the globe, and the investment on the development of a radiation hardened fabrication
process is high, which result in a high cost per device. RHBP also means that, once a
fabrication process has been first developed for commercial applications, it must be then
modified to comply with radiation requirements. The modification itself can take years and
the introduced changes may negatively affect device size, speed or power consumption in
comparison to non-hardened devices. As a result, when a new RHBP technology becomes
available its performance typically lags behind two or three generations compared to the
state of the art commercial technologies. Nevertheless, RHBP effectiveness is limited and
devices manufactured according to RHBP standards are still sensitive to radiation effects.
The aim to achieve very high figures of dependability and performance require to identify
the most efficient manner to apply radiation hardening not only at device fabrication, but
also at higher hierarchical levels [15].

Radiation Hardening By Design (RHBD) [15], [31] is the term given to the hardening
achieved by introducing modifications on the circuit topology, layout or system architecture.
Unlike RHBP, which only affects device fabrication, RHBD can be applied to a wider
range of hierarchical levels such as the transistor level, the component level and the system
level. By using innovative design and layout methods, RHBD can effectively mitigate
radiation effects on components manufactured at commercial microelectronic foundries
using completely standard commercial processes, although RHBD techniques can also be
used at rad-hard foundries.

RHBD techniques are not aimed to reduce nor eliminate TID-induced degradation or
SEE appearance, but they mitigate their effects instead. At component design, transistors
or larger cells can be redesigned to overcome radiation effects. As an example, transistor
geometry can be modified to avoid undesirable TID effects as radiation-induced edge
leakage. If a transistor is built in a way that the gate completely surrounds the source (or

21

the drain) inside it, the resulting transistor has no edges and thus, is not affected by TID
induced edge leakage. That type of transistor may present some drawbacks compared
to an equivalent transistor with standard linear geometry, such as increased area and
increased parasitic capacitance resulting in higher power consumption and higher delays.
Nevertheless, those penalties can be equivalent to approximately one generation, instead
of the two to three generation penalty of RHBP techniques. Other RHBD techniques to
mitigate TID effects include the use of enclosed source transistors or doped diffusion rings.

RHBD techniques can also be applied to mitigate SEE effects at transistor level by,
for example, increasing the width of the transistors that, with higher node capacitance
and drive current, may reduce its sensitivity to SET and SEU although they may increase
power consumption. At circuit level, introducing excess capacitors and resistors in data
lines may mitigate SET and SEU by filtering short pulses, although they may increase
propagation delay and reduce operation frequency of the circuit. At cell level, the dual
interlocked storage cell (DICE) [32] introduce spatial redundancy in a more efficient
manner, compared to other redundancy forms, by reducing SEU incidence with just 2x
area penalty. Such solutions increase power consumption and area as the hardened cells
require more transistors to be implemented than the unhardened ones. At system level,
information redundancy can provide error detection and correction (EDAC) and scrubbing
capabilities in memories to mask SEUs and cell interleaving can be applied at layout to
minimize MBUs. An additional technique to mitigate SETs at circuit level is to artificially
introduce controlled propagation delays on lines. At circuit level, SETs can be mitigated
by avoiding long combinational chains that may induce pulse broadening. At system level,
SETs can be mitigated by increasing the device power supply voltage, although it may
increase sensitivity to SEL. Regarding SEL mitigation, it can be efficiently achieved by
using RHBP techniques, such as SoI, but it can also be accomplished using RHBD at
layout level by adding geometrical distance between well edges and active regions and
at system level by lowering the power supply voltage. These techniques have drawbacks
such as area increments and lower device operating speeds, respectively.

Finally, at device level, the packaging of the device also plays a role in shielding the
sensitive parts of the device from the effects of radiation. In some cases, some components
are covered with layers of protective materials, which is called spot shielding. Shielding is
a commonly used way to enhance electronic devices behavior against radiation, especially
for low-energy particles. However, the interaction of radiation with shielding materials may
also create undesired secondary radiation products, becoming a new source of radiation.

Redundancy is a RHBD technique that deserves special attention because of its
effectiveness and versatility. Redundancy can be defined as the "addition of information,
resources, or time beyond what is needed for normal system operation" [9]. Redundancy
can improve the dependability of a system not only against radiation, as introduced
previously, but also against other types of faults. Any form of redundancy is needed to
implement fault detection and fault tolerance capabilities, which are desirable attributes of
dependable systems. However, the introduction of extra resources may inevitably carry

22

important penalties in terms of size, weight and power consumption (SWaP), performance
or others. The redundancy concepts and applications are addressed in this document
regarding radiation hardening purposes. The concept of redundancy can be applied in
different ways:

• Hardware redundancy, introduces physical replication of the circuit to increase
dependability. It is the most common redundancy form in electronic devices
and systems fostered by the miniaturization and cost reduction in semiconductors.
Hardware redundancy can be implemented using passive, active or hybrid approaches
[9].

– Passive hardware techniques rely upon the concept of fault masking through
replication and voting mechanisms. With this approach faults are prevented to
become errors without any action performed by the system operator, resulting
in an inherent fault tolerant system. The typical implementation of passive
redundancy is triple modular redundancy (TMR) which basically triplicates the
hardware and performs majority voting on the triplicated results to determine
the correct output. If one of the three replicas has a fault, the other two will
still be correct and the faulty result will be discarded by the voter. The voter
is the major difficulty to implement TMR as if the voter fails, then the output
may be incorrect and the whole redundant system would fail. Any component
that, experiencing a fault, may lead to a whole system failure is called a single
point of failure and great efforts must be put on its design to minimize error
probability. The triple modular redundancy approach can mask one fault, and it
can be generalized to extend its capabilities as N-modular redundancy (NMR).
Being N odd, 2 faults can be masked using 5 replicas and a voter; 3 faults can
be masked with 7 replicas, and so on.

– Active hardware techniques are designed to detect and remove faults from
the redundant system before provoking undesired errors. Active approaches,
however, do not mask faults so erroneous results may temporally appear at
system output. Thus such errors must be acceptable on the system as long they
can be removed. Instead of fault masking, faults are detected and corrected
by reconfiguration process, providing fault detection, location and recovery
mechanisms. The most basic form of fault detection is duplication with
comparison scheme. In this case, two hardware replicas are used and the
result of each replica is compared. If the comparison reveals that the replicated
results mismatch, then a fault has occurred within any of the replicas. The
comparator is again a single point of failure as, if it fails, correct results may
be interpreted as errors or, even worse, faulty results may be considered valid.
Fault location accuracy would be given by the granularity of the replication
and comparison implementation, but it is not possible to identify the faulty
replica. In the case that any of the hardware replicas has a permanent fault,

23

then a system failure would occur unless additional redundancy is provided. To
overcome this situation, standby replacement, or cold sparing, can be applied
by providing additional replicas that are not used nor powered until needed.
In the event of a fault, standby replicas can replace faulty ones, restoring the
capabilities of the system. Cold sparing can have similar area overhead as
NMR but it presents less power overhead as not all the replicas are active at
the same time, although it consumes time for switching between replicas.

– Hybrid hardware redundancy techniques combine the attractive features of
passive and active hardware techniques. The basic approach is to combine the
concepts of N-modular redundancy (NMR) and cold sparing. The objective is
to achieve a fault masking system and, at the same time, to be able to identify
faulty replicas on the redundant system and replace them with spares to extend
overall dependability with lower overheads than using just a passive or active
approach.

• Information redundancy, is the addition of extra information to data to enable fault
detection, fault masking and ultimately fault tolerance. Common implementations
of information redundancy are error detecting and error correcting codes, in which
redundant information is added to data values, or even data values are redefined with
new representations that contain redundant information. The basic approach is the
parity code, in which one extra bit is added to a binary value to always produce an
even number of ones in the case of even parity, or odd if odd parity is used. In the
case that a single error exist in the binary value, the parity will change and the error
would be detected. However, two drawbacks arise: the first is that it is not possible
to recover the correct value and the second is that multiple-bit errors may be left
undetected. Parity codes approach can be generalized to cover a wider range of faults
in the form of Hamming codes, which adds redundant information to perform error
detection and correction (EDAC) in an efficient manner. Typical implementation
of Hamming codes is single error correction, double error detection (SECDED)
approach which, if combined with scrubbing and interleaving, can efficiently reduce
error sensitivity in electronic memories [15].

• Time redundancy, is used to overcome the limitations of previous redundancy
approaches that need to add extra hardware to the system to achieve fault tolerance.
As hardware is a physical entity, it produces size, weight, power and cost overheads
that may be unacceptable for some compact, low power, low cost, applications.
However, using extra time can be an inexpensive option for systems that experience
idle periods. A basic form of time redundancy is duplication with re-computation,
which mimics the duplication with comparison active hardware approach. In this
case, the same operation is performed two consecutive times and then compared, if
the results mismatch due to a single error, an additional computation is performed to
identify the correct result. Time redundancy approaches, however, may have a single
point of failure in the hardware that, if not replicated, may compute the replicas in

24

an equally wrong manner due to a permanent fault, giving identical wrong results
that would be identified as valid. To overcome this limitation, specific checks can
be programmed on the system to periodically check hardware correctness before
performing critical computations.

• Software redundancy, can be applied in systems that integrate computers to delegate
fault tolerance capability implementation on the software. The hardware overhead
for software redundancy techniques can be minimal, but additional software and
associated time overhead may be substantial, ranging from a few extra lines to an
entirely replicated program. A basic software approach are consistency checks,
that leverages some previous knowledge about the computed data to check whether
is correct or not. For example, the magnitude of a value can be detected to be
incorrect if it is outside an expected range. That approach can be also valid to
check the correctness of memory access in computers. Another form of software
redundancy are capability checks, in which different parts of the system are checked
to verify correct functionality. For example, the software can check if different
pieces of the hardware are working properly, as the memories or the ALU, or even
the whole processor by performance measurements. Despite software does not break
as hardware does, software faults can appear as a result of incorrect design, being a
potential single point of failure. To overcome this limitation, several programs may
be developed by different design teams under the same specification, which is called
N-version programming. Even if each program version has faults, they can expected
to be different as they have been committed by different designers. If N programs
are available, they may be executed in a voting scheme, in a similar way as NMR
hardware approach.

As seen above, RHBD paradigm goes beyond device level. At board level, protection
circuitry can be added to prevent faults to propagate between components and even to
mitigate SEL by introducing extra circuitry that power cycles the affected device. At
mission level, spacecraft geometry affects the exposition of each component to radiation,
and the structure of the spacecraft introduces shielding for all components inside it.

Nowadays, space missions demand high performance and dependability for space
electronics producing that not a single hardening method can meet the desired requirements
in radiation environments. Ultimately, a combination of RHBP and RHBD techniques
are typically applied to electronics in space applications attending to desired performance,
cost and availability considerations, and size, weight and power (SWaP) requirements.

By the combination of hardening techniques, it is possible to obtain highly dependable
electronic systems, but such techniques also increment system complexity that may
negatively impact dependability. Thus, to obtain dependable systems it is not needed
to apply every existing hardening technique, but to select the more convenient ones
attending to the application. Finally, testing is required to check whether the resulting
system is compliant with dependability requirements for the mission.

25

2.3.2. Component testing

To determine and quantify the contribution of radiation hardening techniques to the
performance of a device or system under radiation, it is commonly needed to evaluate it
by recreating conditions as similar as possible to the ones present throughout the mission.
However, it is not possible to recreate the very same space mission environment on Earth for
several reasons. First, a space mission typically last for years, but it is unfeasible to perform
such a long test on Earth before launching the spacecraft to space. In addition, vacuum and
absence of gravity conditions are expensive to recreate. Finally, the radiation environment
in space is too diverse, especially attending to particle nature and energy ranges, while
on Earth it is only possible to recreate radiation conditions for a subset of particles and
energies. Nevertheless, methods have been developed to obtain a representative prediction
of the behavior of an electronic system in space by a combination of tests. As a result, a test
may obtain whether a hardened system is dependable enough for the mission requirements
and so the hardening process is complete. If the test results are deficient, the hardening
process must be resumed or reoriented to enhance the radiation hardness of the system.
The reason for testing is to increase the knowledge about components performance under
specific radiation conditions and quantify their dependability, thus reducing the risk of
failure of the mission [33].

To check the radiation hardness of a device, typically a standard method or guideline is
followed. Several test standards are available depending on the type of device under study
and the radiation effects to be evaluated. Standards are built based on available evidence
and revised periodically. Standardization allows to design tests that can be repeatable
and comparable by pointing the different aspects that must be considered. As a result,
others may replicate similar test conditions and obtain similar results. Testing is usually
performed on a single device but, in most cases, other components and devices are needed
for the device under test (DUT) to operate properly. Because of that, a test setup or test
fixture is commonly required to exercise the component providing at least clock and bias.
To check for correct operation it is also needed to write device inputs and read from
device outputs. The setup may consist on diverse components as power supplies, signal
generators, FPGAs, oscilloscopes or even computers, that must be protected from radiation.
It is recommended that the test is as much automated as possible to avoid human errors, as
most tests are very repetitive and can last for long time. Automatic logging is also strongly
recommended to record all test data, that will depend on the type of DUT and the type
of test, for example input and output signals, power consumption, signal waveforms or
timing of the test among others. After the test is finished, test results can be obtained from
analyzing collected data, and reported according to standardized metrics [33].

Standardization of tests removes the need for designers to test all components used
in a space system, but first they must research whether they have been previously tested
and there is available data. Available data must be reviewed and can be leveraged as long
as it suits the requirements of the target mission. By knowing mission parameters such

26

as the orbit and mission duration, the radiation environment can be forecasted [21] and
then, radiation requirements may be established to meet the dependability target. Systemic
analysis can also help to determine the most critical components in the design to prioritize
testing. To obtain representative results, it is crucial to design a testing approach that
represents as much as possible the targeted mission [33].

Electronic devices testing can be performed by directly exposing them to radiation,
which is called radiation testing, or by recreating the faults by other methods, which is
known as fault injection.

2.3.2.a Radiation testing and facilities

The most widely accepted method for radiation hardness testing and qualification of
electronic devices is the validation in radiation testing facilities on Earth. There is a limited
number of radiation testing facilities around the globe. Such facilities have sources of
radiation available for research purposes, not only for testing electronic devices but also
others like physics, chemistry, biology or medical applications. Attending to space industry
needs, there is no facility that can fully mimic the space radiation environment, so the
approach is to mimic the degradation induced by the radiation environment using different
test types for each type of radiation effect. Total ionizing dose (TID) and single-event effects
(SEE) are the most common types of testing, but also displacement damage dose (DDD)
and prompt dose testing can be made [33]. Radiation facilities are usually very demanded
for research or industrial applications so the cost and the availability are important drivers
when selecting one for testing.

It is remarkable that it is not needed to test all components for all radiation effects.
As discussed on previous section, some effects are intrinsic of a particular technology or
family of devices. Hence, for example there is no need to test a CMOS device for ELDRS
effects and DDD will only be tested for photodetectors, solar cells and other optoelectronic
components [33].

The radiation source must be selected according to the objectives of the test and
the characteristics of the device. As stated before, the radiation source ideally should
closely match the expected mission environment. Despite the chosen radiation source,
the dosimetry is a key of every radiation hardness assurance test. The dosimetry is the
measurement of how much radiation the device under test (DUT) has received, and it is
used to interpret the test results. Hence the accuracy of the dosimetry will directly impact
on the accuracy of the test results [34].

2.3.2.a.1 Total ionizing dose testing

TID testing allows to know about the degradation of the electrical and functional
parameters of a device while exposed to ionizing radiation until it eventually fails. In

27

space, TID effects are mainly produced by trapped protons and electrons. On Earth, there
are laboratories with available sources of both protons and electrons, but the cost of such
facilities is high. As an alternative, gamma and low-energy x-ray testing, that are much
more cost-efficient methods to produce TID degradation, are used instead. The most
common source of gamma rays used for TID testing of electronic devices is Cobalt-60
(Co-60) artificial radioactive isotope decay [34]. The source is commonly placed inside
a radiation-shielded room and the electronics are placed in front of it to be exposed to
radiation.

The main parameters of TID testing are the total dose absorbed by the device and the
dose rate as well, which is how quickly the dose is absorbed [34]. Commonly available
Co-60 radiation sources can provide dose rates which are orders of magnitude higher than
typical dose rate at space environments. The goal is to characterize the several mission
years TID degradation suffered by an electronic component in the minimum amount of
test time. Available test standards used in the United States [35] and Europe [36] set the
recommended dose rate between 50 and 300rad(Si) per second for accelerated, high-dose
rate tests, to obtain representative results. The total dose accumulated by the device under
test will be the product of the exposure time multiplied by the dose rate, that should be
precisely given by dosimetry.

During TID tests, electrical measurements such as current consumption or leakage
currents and operational checks must be performed on the DUTs. The guidelines allow the
devices to be taken out of the irradiation chamber for a limited time of two hours to perform
measurements before resuming the irradiation. Standards state that the devices should
be all measured before starting the test, and also at least at five intermediate irradiation
points before reaching the target dose for the test. Other non-radiated devices must also
be measured at the same times that the radiated ones to serve as control. That way it is
possible to notice the evolution of the degradation in the parameters and functionality. By
measuring circuit parameters at several dose intervals it is possible to determine a safe
level of accumulated dose at which the device will operate correctly.

Due to the cumulative nature of effects, performing TID testing is destructive for
radiated devices that, even if they already operate correctly after the test, have accumulated
so much dose that make them unusable in any mission. Because of that, TID testing
is highly statistical and care must be taken at selecting the samples to be tested as they
should be representative of the non-radiated parts. Data obtained from TID testing must be
collected as data points and plotted as a function of total dose. Such plots shall reveal the
evolution of parameters such as current, timing or functionality along the test [33].

The main objective of TID radiation testing is to determine how much dose a component
can be exposed to before the accumulated degradation affects its dependability. Typically,
components first experience parametric failure at moderate doses, observing that some of
the electrical, timing or functional parameters degrade beyond catalog specifications but
the components can still perform their function. Functional failure commonly happens at

28

higher doses, when the components partially or totally lose their functionality [33]. With
this information, maximum levels of TID can be established for the device to operate
correctly. When designing a mission, maximum TID levels can be contrasted with radiation
environment models and mission length to reveal whether the component will fulfill mission
needs.

2.3.2.a.2 Single-event effects testing

SEE testing is used to determine the sensitivity of electronic components to different
types of SEEs when exposed to ionizing particles. In space, all types of SEEs are triggered
by the ionization (direct or indirect) produced by individual incoming particles that generate
electron-hole pairs in the active regions of the device. On Earth, several particle accelerators
exist where electronic devices can be irradiated using protons or heavy ions, whose nature
and energy depends on the specific facility. Particle accelerators can produce a beam of
particles that is wide enough to irradiate the whole component at the same time, which
is called broad beam testing. Broad beam testing also involves temporal and spacial
randomness in the particles hitting the device, which is also representative of the space
environment. Broad beam testing is a well established method to recreate space particle
radiation conditions for electronic components evaluation [34].

The main parameters of broad beam SEE testing are particle species, energy, flux and
fluence. Ion species, characterized by mass number, and energy, given in MeV, are directly
related with particle LET and range inside device material, which are of high relevance
when designing SEE tests and interpreting the results. Particle flux is the amount of
particles per second and per square centimeter (particles/cm2s) in the beam and affects the
error rate observed during the test. In most facilities, the flux can be set to be constant and it
is precisely measured by dosimetry. The fluence is the total amount of particles per square
centimeter (particles/cm2) , given by the flux integrated over a given time, or simpler the
product of the flux and the test time if the flux is constant. Fluence determination is crucial
to obtain accurate test results [33].

Commonly available broad beam facilities are composed by three radiation-shielded
rooms. Two of them are for the particle accelerator and the beam line. A shutter is placed
between the particle accelerator and the beam line to remove radiation from be beam line
room and let access to place the DUTs in front of the beam. An additional room is provided
for people to control the beam and the test setup. Heavy ion energies in space can reach
several orders of magnitude above that the highest available energies at Earth facilities.
Because of that, ion energy is not used as the parameter but the LET in the active volume
of the device is used instead. For illustrative purposes, available facilities can provide
ions with LET up to 95MeVcm2/mg. To allow low range ions to penetrate deep enough
to the active volume of the device, heavy ion testing is typically performed in vacuum
to remove air interference. In addition, tested devices need to be de-packaged, de-lidded

29

and even thinned to reduce the amount of material that the particles have to travel through
before reaching the active volume. Attending to proton testing, proton facilities available
on Earth have energies up to 500MeV, which is enough to cover the entire range of proton
energies in natural space environment. In the case of proton testing, the lower interaction
of protons with air, package and device materials allow to perform tests without the need
of vacuum and/or device de-packaging. In both cases, proton and heavy ion testing, the
beams are highly directional so other devices put away from the beam direction will be
protected from radiation effects. Because of that, it is possible to introduce equipment in
the beam line room to perform measurements during the test. Beam tuning is needed for
any broad beam facility to guarantee relevant test features such as beam uniformity and
energy uniformity, which is that particles are equally spread throughout the whole beam
spot and that all particles have a similar energy [33], [34].

Regardless of the type of SEE to be tested, all SEE tests share common characteristics.
The most important feature is that SEE testing is not governed by test time as it is TID
testing, but it is based on events. An event in this context are referred to the occurrence of
an SEE. The test setup must account each event and register the type of associated SEE.
The flux of particles in the beam must be adjusted to keep an affordable event rate. If the
flux is too high, the event rate may be so fast that the setup is unable to record all the events.
It is also possible that the events may accumulate and be accounted as a multiple errors, for
example multiple SEU being accounted as an MBU. If the flux is too low, then the event
rate may be too low to obtain a sufficient number of events, or the test time would become
too long and increase the cost of the test. The number of collected events is important to
provide confidence in results. If the number of events is too low, the uncertainty will be
too high so the conclusions to be drawn from the results may be weak and/or wrong [33].
Uncertainty is related to the natural random distribution of particles in broad beam testing.
If possible, a minimum number of 100 events is generally considered as a good reference
as it is associated to a statistical uncertainty of 20% with a two-sigma (95%) confidence
level established by convention [34]. The error intervals associated to each measurement
obey a Poisson distribution and must be included when reporting radiation test results [37].

The main result of broad beam SEE testing is the measurement of the sensitive
cross-section (σ) of a device against the evaluated SEE types. The cross section has
units of cm2 and is a representation of the total area of the device which is sensitive to a
certain type of SEE for a given set of conditions. To obtain the cross-section value, the
number of events are accounted for each type of SEE and divided by the particle fluence of
the test. The cross section has to be calculated for each tested LET in the case of heavy
ion testing or for each energy in the case of proton testing. In addition to changing the
energy or ion species, there is an additional way to change the LET introduced in electronic
devices under heavy ion testing, by modifying the beam incidence angle on the device
[34].

Several test methods and guideline documents apply for SEE testing both in the US [38],
[39] and in Europe [37]. However, they share most considerations and recommendations to

30

conduct SEE tests. All guidelines state that more than one piece of the same device must
be tested, while keeping at least one non-radiated part as control. The sample selection
must be representative of the non-tested parts, especially for destructive analysis, in which
the behavior of the untested parts must be inferred from the test results. While not all SEE
guidelines require that the component is actively used when the beam is on, such condition
may affect the test results. For most devices, static testing may underestimate the device
vulnerability to different SEEs as the parts of the circuit not being used may hide additional
error mechanisms. To provide full error characterization, components should be tested in
the same operating conditions that they are going to operate in the deployed mission [33],
[34].

The main objective of broad beam SEE testing is to determine the cross section value
as a function of LET, information that can be used to predict error rates in orbit. Typically
components present low cross section values, or even no events at all, at low LET and then
the cross section increases suddenly at a specific LET value known as the threshold LET.
In the case that no errors are collected during a test, it is assumed that the next ion would
cause the effect, so a minimum of one event must be considered. When the error count is
zero, it can be due to the component being almost immune to a certain type of effect, but
it must also be considered to review the dosimetry and the setup to discard any problem
in the experiment. There is a threshold LET for each device and effect. For higher LET
values, the cross section increases until reaching a saturation value. Cross section as a
function of ion LET or proton energy is represented in log-linear plots by convention, and
adjusted using the weibull fit. Device tilting is often used to increment the number of tested
LET values and precisely determine the threshold LET value. From the fitted weibull
curves, available tools allow to perform error-rate predictions for deployed missions by
providing mission parameters such as the orbit or the solar cycle. Typical result from error
rate prediction is the Soft Error Rate (SER), which is the amount of soft errors expected
per time unit in a given mission [33].

Apart from heavy ion and proton testing, which are the most used broad beam tests, it
is also possible to irradiate electronic devices with neutrons. Neutrons are of increasing
interest since they are naturally present in the atmosphere and can provoke SEE by
indirect ionization on avionic systems or even computer systems on Earth. Due to the low
interaction of neutrons with matter, devices can be tested without modifying the package
and even more than one device may be tested at the same time [33], [40].

2.3.2.b Fault injection

Fault injection refers to techniques that assess the hardness of electronic devices without
exposing them to radiation. Several methods to introduce faults in electronic designs have
been developed in the last years essentially to bring designers the ability to evaluate designs
or hardening techniques in a more convenient and cost-effective way than using radiation
sources. Especially, for any device implementing RHBD techniques, ensuring that they

31

are performing correctly is essential. When testing a device under radiation, the random
nature in the produced effects may cause that some rare fault mechanisms are uncovered.
A common advantage of fault injection methodologies above radiation testing is that the
position and the instant of the fault being created inside the evaluated component or system
can be precisely controlled, so it is possible to correlate it with the subsequent errors and
analyze the underlying mechanisms. Additionally, most fault injection methods are much
less expensive than radiation testing, allowing for exhaustive analysis that would become
prohibitively costly if performed in radiation facilities. Fault injection has been adopted by
companies and researchers to augment the capabilities of radiation testing methodologies
[41].

An additional degree of freedom in fault injection is that the level of abstraction for
injecting the fault can be selected from the transistor level to the subsystem level. Thus it
is possible to evaluate the effects of faults within a device but also in complex systems with
many devices to determine how the faults in one component reverberate in the dependability
of the system. The test coverage is a remarkable aspect of fault injection and determines
what percentage of the design is tested. For example it is possible to test only a portion of
the device, or to test the whole device but only for a particular effect.

Two approaches are generally considered regarding fault injection: fault emulation and
fault simulation [41]:

• Fault emulation methodologies rely on hardware-in-the-loop techniques to mimic
the behavior of the fault inside the tested device. Sometimes the actual device under
test is directly used, but sometimes a different hardware is used to emulate the first
to ease fault injection process.

• Fault simulation methodologies require models of the system or device being tested
and apply analytical methods to evaluate radiation hardness. Circuit modeling tools
are commonly used for this purpose and test benches are created to exercise the
model introduce the faults and check for resulting errors. An advantage of fault
simulation is that the circuit can be abstracted so there is no need for the circuit to
be completely designed to perform a simulation, bringing the ability to check the
radiation hardness of the design sooner.

Fault injection approaches can be conducted using ad-hoc implementations to evaluate
a particular effect on a particular part of the design. However, it is also possible to develop
general purpose fault injection tools to systematically test designs for the most common
types of faults. Despite the selected approach, fault injection results must be validated with
radiation testing to ensure their accuracy. The similarity in the results of fault injection and
radiation testing will be higher as the fault injection approach represents better the device
under study. Fault injection can facilitate the path to radiation hardness, but radiation
testing is mandatory to evaluate the dependability of any device under radiation before
considering to use it in a space application.

32

Additionally to fault emulation and fault simulation, additional approaches exist for
injecting faults by directly creating electron hole pairs in devices while controlling time
and location parameters: focused ion beam testing and pulsed laser testing. Focused ion
beam testing uses mechanical or magnetic methods to focus the beam from a particle
accelerator in a specific location of the device. Also, the number of particles can be
effectively controlled even to use one single particle for each injection. However, focused
ion beam testing still requires for a particle accelerator facility, which are costly and have
limited availability. Conversely, pulsed laser testing uses the light from a laser source
to generate electron-hole pairs in the device in a controlled fashion. This approach is of
special interest in the radiation effects community and is discussed below.

2.3.2.c Laser testing

In addition to broad beam testing, it is also possible to study SEE phenomena on
electronic devices by the use of pulsed laser. Pulsed lasers inject light (photons) in
the sensitive volume of the component that creates free carriers when the electrons in
the valence band of the semiconductor absorb the photons and excite to the conduction
band. This mechanism to generate electron-hole pairs is very different than the Coulomb
interaction produced by particle strikes in radiation environment, however, it has been
proven to accurately reproduce similar effects. Two approaches are used to produce SEE in
electronic devices using laser, either using only one photon to produce electron excitation,
called single photon absorption; or two photons, known as two photon absorption [42].

Laser testing is considered as a form of fault injection, also called laser fault injection.
However, it has deserved much attention and become a complementary tool to broad beam
testing which has huge acceptance among the radiation effects community.

The main advantages of laser fault injection is the possibility to inject faults one by one
and to accurately determine the position and the moment that each fault was injected. This
feature contrast with the random spatial and temporal nature of broad beam testing and
provides a complementary tool to investigate the origins and mechanisms leading to SEE
without radiation damage. In addition, the cost of laser facilities is commonly lower than
radiation facilities, and their availability is usually higher, allowing SEE investigations in a
more cost-effective way than particle accelerators. The only requisite for laser testing is
that the active volume of the device can be optically accessed by the laser beam, so device
de-packaging, de-lidding and even thinning and polishing may be needed.

Laser test equipment include automatic positioning of the laser beam in the three x-y-z
dimensions, and also a microscope camera to actually see the shape of the device internal
structures for reference. While the z dimension is used to adjust the focus and the depth of
the injected light, the x and y dimensions can be used to position the laser in any point of
the device surface. Laser tests can be designed in such a way that the laser injects faults in
the whole device area or in predefined portions of the device to characterize the behavior
of particular structures. The laser beam can be focused to a spot with diameter of 1µm or

33

less and the x-y steps can be set as low as the spot size to allow for an exhaustive scan.
At each location, the response of the circuit is recorded with the injection position and,
by correlating that with the device layout provided by the designer, the zones which are
sensitive to different effects can be identified.

The capacity to precisely associate some portion of the device circuit to the occurrence
of a specific SEE helps to investigate the mechanism under these effects and brings the
opportunity to improve the designs to eliminate them. An additional feature of laser testing
equipment is to synchronize the injection with the operation of the device, for example the
clock, thus allowing the study of time-dependent effects. Moreover, the energy delivered
by laser pulses can be much higher than the maximum LET for particle accelerators,
replicating the effects of highly-ionizing cosmic rays for worst-case analysis. The pulse
duration of lasers can be in the range of picoseconds, however it has been proved that its
duration does not impact on the results of the tests as long as it is shorter than the response
time of the circuit. Depending on the effect being evaluated, multiple pulses can be injected
on each x-y location to obtain an averaged result. Additionally, some time may be needed
for the injected fault to manifest as an error so it is recommended that the injection system
waits a certain time between injections [41].

Pulsed laser testing has been proven to recreate almost all types of SEEs observed with
heavy ions. The results from laser testing are generally used to identify SEE mechanisms
and weak points in the circuit design to implement mitigation and improve the components
design. Additionally, laser testing can be used to validate a SEE hardening approach that
has been implemented after finding a weakness in a previous design.

2.3.3. Component qualification

Qualification testing is, according to NASA instruction EEE-INST-002, a set of
"mechanical, electrical, and environmental inspections intended to verify that materials,
design, performance, and long-term reliability of the part are consistent with the
specification and intended application, and to assure that manufacturer processes are
consistent from lot to lot" [43]. The qualification process can be considered destructive, as
even the parts completing qualification may still be functional, they have probably been
exposed to such extreme conditions that forbid their use in space. Because of that, devices
shall be justifiably sampled to be representative of the non tested parts [43]. Most radiation
testing standards include specific guidelines for qualification testing [36], [37] including
the number of samples to be taken, the test conditions and how to control the sampling
uncertainties.

Qualification of electronic components is part of radiation hardness assurance activities.
Radiation hardness assurance (RHA) is a quality methodology that comprises the activities
to evaluate whether a system operation will be correct in a given radiation environment
during a given mission. RHA is a key part of a successful space mission by reducing the
risk of radiation-induced failures in deployed systems. The gold standard to determine the

34

RHA of a system is through radiation testing, allowing to understand how radiation affects
the design and also to determine whether the applied hardening to the device is enough to
fulfill mission requirements [41].

Qualification activities are typically carried out by manufacturers of high reliability
products and qualification results are included in product specification documents, along
with the conditions under those results are valid. Qualified products are typically meant to
be commercialized for general use in space. However, components may also be qualified by
users when no radiation data is available or re-qualified if the available data is incomplete
or not applicable to the target application. If providing non-qualified components, RHA
activities correspond to the user.

2.4. Trends in space industry

The space industry has evolved since its beginning last century. Electronics technology
innovations along with continuous research on radiation effects and hardening techniques
have led to a sustained improvement in spacecraft performance and mission success.
However, the increasingly affordable access to space has favoured new players to enter the
space sector with different interests, questioning the established methods for spacecraft
development, which are no longer the only way to mission achievement. The space industry
is experiencing significant changes, that are discussed in this section.

2.4.1. Background: the so-called "traditional space"

The space exploration started in the context of the cold war in the 1950s and 1960s,
driven by the competition to develop the associated technology, known as the space race.
On those times, the ability to deliver spacecraft to orbit had the additional purpose of
demonstrating intercontinental missile capability to the world. Due to size, weight and
power (SWaP) constraints, the first spacecraft of human history were made up of the
transistors that were just becoming commercially available, instead of most widely used
vacuum tubes. The space methodologies were developed in a highly politicized and
strategic scenario in which missions were supported entirely with government funding
awarded to large commercial contractors. Missions were commonly developed for years
and most of them consisted in a single or few large-scale spacecraft intended for scientific
or strategic purposes. As a matter of national pride and for security reasons, risk balance
against profitability was not a priority and missions were designed in such a way that
failure was not an option and had to be avoided at any cost; this approach is known as risk
avoidance [44].

To that end, every component in the mission, humans included, were rigorously
tested under extreme conditions to ensure quality and reliability throughout the mission,
increasing confidence and minimizing the risk of failure. Military and space assurance

35

protocols evolved at the same time as new missions were developed, fed by lessons
learned from previous experiences and failure analysis. In general, they tended to pursue
mission success by the use of conservative assumptions, which included the requirement
for the use of radiation hardened (rad-hard) components whenever available, or rigorously
screened military parts when not. Specifications regarding devices building materials and
the traceability of lots and devices by strict manufacturing protocols were also considered.
Additionally, parts exhibiting any destructive single-event effect were commonly prohibited.
Years after, the guidelines were relaxed to allow the use of commercial parts just in case
the required functionality and/or performance is not available neither in rad-hard nor
military parts, as long as RHA could be assured by extensive lot-based testing and enough
mitigation features were introduced. As a result, most missions developed under traditional
space guidelines lasted largely beyond their initial mission length requirements, as for
example the Voyager I and II, which have been operating for more than 40 years, and still
they are.

The traditional space approach has demonstrated to conform a reliable methodology for
more than 40 years, based on documented experience and requiring that the manufacturers
provide access to exhaustive device data [45]. Traditional space methods are still used and
valid in missions today, however, different trends have arisen, driven by a new context in
space industry.

2.4.2. New Space trends

The global context in which the traditional space started has evolved through decades,
becoming a very different situation in which governments and public agencies have much
lower budgets available for space and science in general. A new movement, known as
"New Space" was initiated at the end of the 1990s mostly by small research groups that
produced small satellites barely following the traditional space methods. Such small
satellites were focused as technological feasibility projects or educational platforms.
Commercial-Off-The-Shelf (COTS) components were mainly used regardless of reliability
or radiation effects, expecting high failure rates. The most representative trend for small
satellite missions are the so-called CubeSat systems, that are based on a fixed form factor
of 10 × 10 × 10cm, which is called 1U. Larger satellites can be formed by stacking
1U cubes together known as 2U, 3U, etc. Small satellites have become very popular
in the last decade mainly due to the reduced launch costs and especially the increasing
capabilities of microelectronics that provide high performance functionalities with lower
SWaP requirements than ever before [44].

New Space missions are usually associated with limited budgets and narrow
development schedules, putting restrictions on the decision making, allowed lead times,
and afforded test campaigns. In such scenario, failures may arise due to undetected
development errors, but the risk may be justified by the associated reduction in cost and
development time. The approach of risk avoidance at high costs from traditional space

36

is then converted into risk management [46] at adjusted costs, whereby the resulting
system has to be good enough for the mission. Spacecraft failure may be an allowed
mission parameter as long as system redundancy can be achieved by launching multiple
identical spacecraft to form a constellation providing spare units, allowing that if any
one fails, then another one can replace it. This New Space vision of mission profitability
have attracted private companies to offer space-based products, such as communications
services, beginning an era of space commercialization [44].

2.4.3. Use of COTS in space applications

Within this document, the term Commercial-Off-The-Shelf (COTS) is associated to
assemblies or parts "designed for commercial applications for which the item manufacturer
or vendor solely establishes and controls the specifications for performance, configuration,
and reliability (including design, materials, processes, and testing) without additional
requirements imposed by users and external organizations" [45]. COTS are available
through manufacturer catalogs and are distributed "as is", without any additional testing
after delivery. "The performance of COTS parts are guaranteed only against the contents
of the vendor’s datasheet and not to a customer controlled specification. In general, COTS
parts are intended for the commercial marketplace and terrestrial, non-high reliability
applications. For these reasons, special NASA and Military assurance requirements such
as lot traceability, lot-based destructive qualification testing and radiation testing are
usually not met" [47]. Using COTS devices in spacecraft, instead of rad-hard ones, may
increase the risk of failure of the mission, as the radiation hardness is not assured by the
manufacturer and probably has not been considered within device development.

However, COTS have been successfully used in space applications for decades [48],
not only under the New Space paradigm but also in traditional space missions. Even the
NASA developed a methodology [46] in 1998 to support the use of COTS components in
its missions. Initially the reasons were to bring ultimate performance of newest devices to
space, which were not yet available in rad-hard electronics. It is common that rad-hard
devices lag two or more generations behind COTS counterparts, influenced by their
respective market sizes. To use newest devices is part of the motivation for the use of
COTS in New Space missions, but the main driver are budget and schedule constraints:
rad-hard devices are commonly prohibitively expensive and present long lead times that
New Space missions cannot deal with. In each case, both traditional and New Space
paradigms, the parts selection must be made to fulfill mission requirements, especially
mission duration and orbit [45]. If requirements accurately capture mission needs, then
some risks may be assumed by selecting certain COTS devices with limited confidence
levels, while others can be identified to lead to catastrophic consequences requiring high
reliability rad-hard devices, or heavily tested and screened COTS components.

COTS should not be considered as an homogeneous set of devices, as they may
be targeted to a wide range of different commercial applications each one demanding

37

particular requirements. The number of manufacturers and technologies associated to
COTS devices are also diverse so it is important to deal with each component individually.
The paradigm of commercial electronics seeks to maximize benefit by continuously
improving manufacturing processes, including die revisions, process changes and/or
device shrinking without notifying the user as long as the devices still comply with
the datasheet. Because of that, it is common that even two parts of the same device may
behave differently under radiation because they are physically different. Additionally,
requirements and hazards must be evaluated for each component assuming that COTS and
especially emerging technologies may be more vulnerable to radiation effects, or even
exhibit new effects, than older devices. Existing guidelines about COTS usage in space
claim to develop a risk analysis to identify the critical components, which are essential
to the mission, and the ones that are not, for example status indicators, components with
redundant backups or components that are only needed at the beginning of the mission
[43], [46]. Determining how critical is each component in a system may help to manage
the risk at device selection. However, when considering COTS there are commonly too
many unknowns to perform an accurate quantitative risk analysis [46].

COTS parts must be used very carefully in space missions and, when radiation data
is not available, radiation testing should be performed to gather as much knowledge
as possible. Since access to detailed information about device architecture is generally
limited, users have to generate their own information based on test data [45]. The challenge
increases when considering complex devices such as microprocessors, which are commonly
crucial components in spacecraft systems. Any limitations in understanding the architecture
and failure modes of such components may lead to unpredictable behaviors that may be
difficult or impossible to mitigate. "Although radiation testing is expensive, the cost is far
lower than that of premature in-flight failures or last minute hardware changes" [46].

2.4.4. COTS testing and qualification

COTS offer great computational performance, functionality, cost, size, weight and
power features. In addition COTS are already used for high reliability, critical applications
on Earth like in the case of automotive sector. However, COTS manufacturers don’t
characterize parts against radiation, which is one of the largest challenges for space
missions discussed previously. Considering the high effort and cost to send hardware into
space, the mission success probability must be maximized.

Radiation hardness assurance methodologies seek that systems behave as expected
once exposed to space radiation environment. This is also applicable to COTS, however,
the RHA efforts are higly dependent on the mission [43]. The greater difference between
COTS and rad-hard parts is that in the case of COTS the radiation testing is not performed
by the component manufacturer, but has to be performed by the user. Considering the
higher complexity of modern commercial components, integration levels and processing
speed, testing commercial components becomes more challenging than testing rad-hard

38

devices, especially due to lack of information about component architecture. Commonly,
COTS exhibit complex response to radiation, introducing issues in the RHA process [46].
COTS suitability has to be evaluated for each space mission instead of looking for a space
grade COTS that could be used for any mission.

COTS have been successfully used in space missions, even for critical applications,
by NASA when equivalent space or military grade parts are not available [45]. COTS
selection, qualification, derating and screening were performed attending to the mission
parameters and the purpose of the component, according to existing NASA guidelines [43].
However, radiation testing cannot bring quality in devices, but only determines if their
quality satisfies the mission requirements [43].

Radiation testing introduces cost and time penalties in the development of a space
system, reducing the benefits of using COTS parts [47]. Not having to wait for test results
may reduce costs and time to market, as COTS parts are commonly affordable and readily
available, however it may introduce unacceptable risks. Testing a COTS device to qualify it
for a given space mission is called upgrading, and depending on the mission it may become
more expensive and less effective than choosing an already qualified part if available [43].
An exception is the recurring use of a specific COTS component, for example the need
for many identical devices in one mission, in different missions or a in set of satellites
for a constellation. In such cases, the COTS qualification costs can be spread among all
component units, resulting in a more cost effective solution than purchasing a high amount
of rad-hard devices [44].

Nevertheless, qualification testing is not all what is required to obtain COTS
components ready for space missions. As an statistical, and typically destructive process,
qualification needs for providing an homogeneous sample of devices to obtain data from
the tested ones to be representative of the untested portion. Unfortunately, the case of
COTS introduces issues in the qualification process due to uncertainties and changes in
the manufacturing process [43]. Die revisions or die shrinking may affect parts behavior
under radiation due to changes in the microelectronic architecture that does not negatively
affect datasheet parameters. It is common that manufacturers fabricate parts in more
than one location around the world, each one using non identical processes. In addition,
parts manufactured in one location may be packaged in other facility which may difficult
the traceability of the devices, and manufacturers usually do not provide lot, wafer or
facility information [44]. When radiation qualification testing and screening is performed
to understand the risks associated to a COTS component, it is important to be sure that
the device sample is as homogeneous as possible, to reduce uncertainties introduced by
manufacturing variability [47].

COTS market size is huge, and many manufacturers and industries are involved so,
as mentioned before, each component must be treated individually. Among all COTS a
subset of them can be established attending to those providing additional data to support
RHA activities, which NASA denominates COTS Plus: "COTS Plus is a part supported by

39

test data available to end users establishing random failure rate assumptions, performance
consistent with the manufacturers data sheet and methods to exclude infant mortal parts,
parts with latent defects, weak parts, or counterfeit parts" [45]. It is common that
manufacturers offer a subset of their products targeted to high reliability applications
such as medical or automotive ones by providing a controlled production process with
good traceability at fabrication assembly and test, which may reduce uncertainties in
qualification results, increasing the confidence on the upgrading process.

For COTS components which no associated radiation performance data, testing
is highly recommended. To determine the suitability of a COTS component for a
space mission, temperature cycling and radiation testing is performed, and performance
characteristics are measured. The type of testing must be decided to estimate SEE rates,
TID-sensitive parameters and overall circuit degradation. Parts that exhibit parameters
outside datasheet specifications or excessive parameter drift are declared failing and, if
an excessive number of parts from a given lot fail, the entire lot is discarded. Also, a life
test must be passed by all flight candidate samples. Due to the high cost associated to
SEE testing, it is usually first performed at proton beams since they are more accessible
and only if the devices pass the test they are considered for heavy ion testing. Despite
such considerations, testing applicability is limited since the circuit architecture of the
device is unknown, introducing risks that must be managed. The common approach is to
characterize the behavior of the device in a specific radiation environment, that must be
representative of the targeted mission. [46]

In some cases, board level or box level testing is considered for missions willing to
accept high risk. However, it can be difficult to replicate the accelerated failure factors
that are usually considered for part level testing. Additionally, several parameters will be
hard to measure and in the case that something fails it may be difficult to understand what
happened [44].

When radiation testing is performed on a COTS component to qualify for a space
mission, it can happen that the component does not pass the test and cannot be used in the
flight system. In such a case, the cost increases: not only the supply of the device samples
and the price of the radiation facility, but also the time spent and the need to search for
another component to perform the required function. To mitigate that, several candidates
are often selected and qualification process is performed on all at the same time. However,
it could happen that all of them fail. Fortunately, there is an additional consideration to
maximize success on COTS qualification, by attending to the known risks associated to
each technology. Continuous innovation in CMOS technology brings smaller devices
and lower power supply levels, which contribute to reduce radiation effects such as TID
or SEL, though increasing SEU susceptibility. The use of a device manufactured in SoI
technology would definitely provide SEL immunity, while using a bipolar device may
introduce ELDRS susceptibility. The targeted commercial application for a given COTS
device can also guide the selection process: while components for consumer electronics are
usually optimized to perform well under the life cycle of personal devices under ambient

40

conditions, their operation under extreme temperature conditions may be quickly degraded.
Conversely, a component targeted to industrial, medical or automotive equipment may resist
adverse environmental conditions without failures. By carefully choosing the candidate
devices, the success of COTS qualification process can be maximized. It is recommended
to select components from intermediate levels of performance and reliability instead of the
highest-performance ones, as long as are suitable for the application [44].

It is also possible to introduce mitigation at system level to reduce the risk associated
to the use of COTS components in spacecraft like reducing the operating frequency
and voltage to mitigate SEEs and controlling the operating temperature of the device to
maximize device lifetime. Powering down devices when they are not used contributes to
reduce TID degradation and the chance of experience destructive SEEs. Architecture level
mitigation can be used to introduce redundant circuits in such a way that if a COTS fail in
orbit, it could be replaced by another identical component. SEL protection circuits are also
used for devices with risk of experiencing latchup [44].

2.5. Microprocessors under radiation

Microprocessors, as any other integrated circuits, may be susceptible to the basic
radiation effects. Single-event effects (SEEs), such as single-event upsets (SEUs) and
single-event transients (SETs) are of high relevance as they can trigger varied and often
complex errors and failure modes [40].

2.5.1. Microprocessor errors

Errors in microprocessors can be classified as control-flow errors if they provoke an
incorrect execution flow of instructions, or data errors if they only affect program data.
Such categories are linked to the classic processor architecture divided in control path and
data path, in which the data path performs arithmetic and logic operations while the control
path executes the algorithm described in the program. However, there is no direct link
between the fault location and the subsequent error, as data may be used in the program
flow to take decisions and the control path is constantly loading and exercising the data
computation units. For that reason, an error in the data path can end as a control flow
error, if the wrong data was used to perform a branch instruction. Similarly, an error in the
control path can result in a bad data result if the wrong value is loaded on the arithmetic
and logic unit (ALU) or if the wrong operation is commanded. Additionally, modern
microprocessors include additional features to the classic architecture that increase the
complexity of the fault effects, such as multi-level pipeline, branch prediction unit, out of
order execution capabilities, floating point unit or cache memories.

SEUs and SETs may result in varied failure modes depending on the affected
microprocessor subsystem. Errors affecting the registers or the cache contents may corrupt

41

program data, but also the operation code of a program instruction or even a pointer.
As a result, wrong computation results, known as silent data corruption (SDC) can be
produced. However, more severe consequences may appear, such as program exception
or even program crash may appear. In the case that the fault affects the control logic of
the processor, instructions or data operations may be incorrectly performed despite the
executed instruction and input data are correct, leading in most cases to an interrupt on the
provided service (SEFI) [49].

2.5.2. Microprocessor testing

Testing microprocessor devices is particularly challenging as they can become very
complex, by including a wide variety of resources as multiple input / output interfaces,
several memory levels, more than one processor core and multiple processing modes.
Additionally, the executed software, including the operating system, if present, determines
the behavior of the hardware.

The main challenges for microprocessor testing, are recognized to be the "limited
understanding of the internal architecture organization and the limited observability of the
internal state" [33].

By analyzing the different processor resources, it is possible to identify sources for
different types of errors, such as the cache or the core registers for SEUs. However, there
can be memory or registers inside other resources such as the ALU. The combinational logic
design of ALUs makes them prone to experience SETs. But there is more combinational
logic inside a processor, such as the control logic of the pipeline or the out of order engine.
This analysis can be helpful to determine the type of testing regarding which resources and
effects must be tested.

2.5.2.a Microprocessor radiation testing

Test methods for microprocessors and SoCs have been proposed by NASA Jet
Propulsion Laboratory (JPL) in [50] and [51]. According to them, the registers, the
peripherals and the cache memories should be tested to understand the basic sensitivity of
the device. Since some software is needed to test a microprocessor, it is also recommended
to test the flight software if possible to replicate the flight conditions and understand how
the basic sensitivity of the microprocessor affects the flight application. If not possible, it
is recommended to test a representative software with the most similar workload as the
flight application. This recommendation matches the classic approach "test as you fly and
fly as you test".

It is not well understood how software affects the impact of SEEs on a microprocessor.
When the flight software is not available or the testing is performed to generally characterize
the response of a microprocessor under radiation, it can be difficult to obtain representative

42

results, as generally a software is needed to test a microprocessor. In fact, it is not
straightforward to translate the individual cross section of microprocessor resources to the
global cross section of a particular application, as only faults in active resources may affect
execution. It is possible that some faults only impact in performance but do not produce
wrong results, like in the case of a wrong branch prediction or an erroneous cache miss.
Since the software does not generally use all the resources at the same time, the cross
section of a given application is generally lower than the sum of the cross sections of each
internal resource of a microprocessor. In addition, the order and timing in the use of the
different resources in the application with respect to the fault instant may impact on the
cross section as some faults can remain silent in unused resources and other can be masked
or overwritten before becoming errors. The problem is that the use of some resources such
as the cache or the registers by the processor is not completely understood [33].

Software benchmarks have been historically used to compare different
microprocessor-based architectures or compiler technologies in terms of performance by
the computer architecture community. When using benchmarks, two main features are
pursued: (1) that the benchmarks accurately represent the operations and the workload of
real applications, and (2) that the results can be compared between different organizations
or research groups who are using the same benchmarks. A similar benchmarking approach
may be highly beneficial when evaluating hardening techniques or error mitigation
approaches in microprocessors working under radiation environments [52].

Common approaches intended to quantify the radiation hardness of circuit layouts or
manufacturing processes may be used to evaluate the radiation hardness of any device,
including microprocessors. However, when post-manufacturing mitigation techniques
are introduced (such as RHBD techniques), it becomes necessary to quantify how
these techniques impact on the overall system reliability, performance, size and power
consumption, compared to the baseline version without mitigation. Unfortunately, test
standards for microprocessors are still evolving and there is no available standard set of
benchmarks for the evaluation of mitigation techniques. As a result, it becomes difficult to
share or compare results between devices or organizations [52].

In [52], a set of software benchmarks for reliability evaluation, as well as a methodology
for performing the tests, is proposed and evaluated. The main objective is to provide a set of
different benchmarks representing different application workloads enabling the evaluation
of different mitigation methods, which may be focused in a particular operation. Provided
benchmakrs have a reduced footprint to enable implementation in a wide range of devices.
Several benchmarks have been selected, focusing in realistic algorithms that may provide
actual insight into the radiation effects on a spacecraft application. Some of the proposed
benchmarks in [52] have become very commonly used in the microprocessor radiation
effects community, such as Advanced Encryption Standard (AES), matrix multiplication,
and Quicksort.

43

According to [52], when using software benchmarks to evaluate the radiation
susceptibility of microprocessors, the reporting of the results must include reporting
not only the reliability improvement between the mitigated and the unmitigated version of
the benchmarks, but also the used algorithm, the input data sets, the compilation settings,
the design tools and the runtime environment.

Applications run on baremetal implementation are directly executed on the processor
hardware, however it is not uncommon to use operating systems (OS) in microprocessors
for space applications. Operating systems are complex pieces of software that put an
additional layer between the application and the processor resources, controlling scheduling
and resource management. The impact of SEEs on the execution of an OS-based application
may negatively affect the processor susceptibility to errors, even leading to extremely high
error rates [50].

Complexity can also be increased in the hardware of a microprocessor, as in the case
of the modern multicore SoC implementations, in which more than one processor instance
is integrated in the same chip. While each core is capable of executing an independent
application, in most cases there are shared resources between the processors such as the
memories, peripherals or control logic that can provoke shared failure modes. Testing
multicore SoCs is a challenge because the problem scales as more processor cores are
tested as they must be simultaneously observed [33].

The most common approach to test microprocessor devices under radiation is to use
evaluation systems rather than making custom boards or setups to reduce the effort and
allow a cost-effective and reproducible evaluation of the component. Standard interfaces
are typically used to input and output data from the processor during the test, but accessing
to the internal processor state is a challenge. Boundary scan ports based on JTAG or
other standards provide access to the pins and flip-flops of the device, however the
implementation of such access is dependent on the manufacturer and may be difficult to
use them for processor observation under radiation. Moreover, this approach is commonly
asynchronous with the application, as it requires to stop the processor to gather all the
required information, altering the execution timing and slowing down the test [33].

The analysis of microprocessor test results can be envisaged to obtain the cross section
of a particular application or a given processor resource, depending on the software used
during testing. Microprocessor errors are typically classified in silent data corruption
(SDC) or detected unrecoverable errors (DUEs). SDC refers to erroneous data outcomes
which have not been corrected nor detected by mitigation techniques and DUE refers to
errors that, even being detected, cannot be corrected. In the case of multicore processor
testing, it is important to identify the results of each processor to determine individual
error rates and to pay attention on the error timing to identify shared failure modes that
may occur in the same time frame [33].

44

2.5.2.b Microprocessor fault injection

Fault injection is commonly used to determine the vulnerability of microprocessors to
faults in a cost-efficient way. However, the complexity of processing systems and executed
applications makes almost impossible to cover the whole test space in terms of memory
and register locations and clock cycles. For that reason, the test space can be reduced
by only injecting faults in random locations and instants, which is called statistical fault
injection (SFI), thus reducing the test time and computational effort. As a drawback, the
accuracy of SFI results decreases as the test space is reduced.

A systematic approach commonly based on intensive fault injection campaigns intends
to quantify the probability that a fault in a specific circuit location provokes a visible
system error [41], which is known as the Architectural Vulnerability Factor (AVF). The
AVF metric is commonly used to infer the response under radiation of a non-tested device
by knowing the vulnerability of each module in the device and a normalized response
under radiation of the manufacturing technology given by radiation testing on other devices
manufactured with the same technology. In [53], a processing architecture is evaluated to
obtain the error probability of different processor sub-modules under single bit upset fault
model to orientate and optimize the hardening effort. In [54], a similar approach is extended
to multi-bit upsets, revealing that the vulnerability of some circuit modules is considerably
higher under such double- and triple-bit faults. To refine the correspondence between
the estimated error rate given by AVF analysis and the real response of a device under
radiation, a mathematical model is proposed in [55] to combine results from real proton
and neutron broad beam radiation campaigns with simulated fault injection experiments,
demonstrating high precision in the obtained model.

Diverse fault injection techniques can be proposed. As a general feature, techniques
can only test faults in resources which can be accessed. One approach to inject faults in
microprocessors is to use HDL descriptions of the circuit and instrument it to insert faults
in the desired locations and moments, as for example the operation codes on the instruction
memory or the variable or pointer values in the registers or the data memory [41], [56].
With this approach, the entire processor architecture is accessible to inject faults. However,
HDL descriptions of processor cores are commonly unavailable, especially in hard-core
processing systems. Another approach is to use a microprocessor software simulator for
the fault injection, but the number of processors supporting this capability is also limited.
In addition, software simulations are more time-consuming than hardware simulations
and also the accuracy of fault injection results is quite limited because the model used
for simulation may not be able to mimic the fault behavior of the actual processor [56].
The use of boundary scan, JTAG or similar debugging resources can also be used for fault
injection [41]. In this case, the execution of the processor must be stopped to introduce the
faults in the architecture, which makes this approach time-consuming. Additionally, the
available resources for fault injection are limited to the ones accessible by the available
interfaces.

45

Code Emulated Upset (CEU) [56] is a fault injection technique specially designed
for microprocessors, by which faults are injected through the executed software.
CEU approach consist in injecting bit-flips in the memory, the registers or any other
software-accessible processor resource, during a simple software routine triggered by
an interrupt. The processor must save its state before the interrupt and then execute the
necessary code to introduce the fault in the desired location, and then return again to normal
execution, when the effects of the injected fault can be observed. The main advantage of
this approach is that it can be applied to any processor regardless of the complexity of the
hardware or the application, with minimum impact on the circuit operation. As a limitation
of this technique, faults can only be injected on the software accessible resources, leaving
some other resources sensitive to faults untested. In addition, time resolution for fault
injection is also limited to the execution of each instruction.

2.6. Microprocessor fault-tolerance

Microprocessors, as any integrated circuit, can benefit from generic purpose RHBP and
RHBD techniques applied at transistor, device and system level to introduce fault avoidance
and fault masking strategies. However, generic purpose radiation hardening techniques are
generally applied systematically to the whole circuit and their effectiveness is limited as
they are only intended to reduce basic radiation effects. In fact, microprocessors, as other
complex integrated circuits, present a wide variety of internal subsystems and features
that may lead to more complex error modes, especially when affected by SEE. Generic
purpose hardening techniques may have limited effectiveness in preventing complex error
modes, particularly due to the high number of transistors integrated in such devices. To
deal more efficiently with errors in microprocessors and enhance radiation hardening,
it is needed to determine how radiation can affect their operation and develop specific,
microprocessor-oriented, fault-tolerance techniques.

2.6.1. Fault-tolerance techniques for microprocessors

Particular features common to microprocessors allow that specific hardening techniques
can be developed to deal with faults. Microprocessor-specific hardening techniques are
typically classified regarding the scope of application in software, hardware or hybrid
techniques.

2.6.1.a Software fault-tolerance techniques

Software techniques derive from the concepts of software redundancy, information
redundancy and time redundancy, conforming a design paradigm known as Software
Implemented Hardware Fault Tolerance (SIHFT). Software techniques introduce changes in
the executed code of microprocessor-based systems to improve their overall dependability

46

while maintaining original functionality. Most existing software techniques have been
conceived to be systematically implemented in order to be used in different applications.
Since the manual introduction of software techniques can be prone to mistakes, the most
convenient approach is to develop a method to automatically implement the techniques
in the code, commonly at software compilation time. Typically, software modifications
introduced by these techniques are not specifically needed to perform any system service,
but only to detect errors produced in the execution and, eventually, perform corrective
actions. As a result, the code size and complexity is commonly higher compared to what is
strictly needed to comply with functionality requirements, but these techniques contribute
to lower the error rate and comply with dependability requirements. As a result, the
software becomes a critical part of the system, as it must be effective in coping with errors.
Software techniques are effective, versatile, and can be implemented at very low cost, since
they do not need to modify the system design nor the hardware. However, they commonly
introduce penalties in terms of higher memory use, and lower efficiency and performance
due to the usage of additional, non strictly needed code. In addition, software-based
techniques are limited as they can only detect error in the microprocessor resources that
can be accessed by software. To overcome such limitations, different software techniques
can be combined, even with other kinds of techniques, to tackle different types of errors.
Software techniques are generally classified according to whether they are focused in
dealing with control-flow errors or data errors [57].

2.6.1.a.1 Software control-flow checking techniques

Microprocessors are designed to manage information by executing a sequence of
instructions one after another. However, to allow performing more complex tasks, some
instructions may trigger branches in the execution when evaluating a condition or running
in a loop. At the branches, the sequential execution flow can be altered and the processor
may not execute the instruction after the branch instruction, but another one pointed
by it. Software control-flow checking (CFC) techniques are devoted to check that the
instructions are executed by a processor in the correct order. A control-flow error (CFE) is
produced when the processor executes an incorrect sequence of instructions due to a fault.
Control-flow errors represent a threat for the dependability of critical microprocessor-based
systems since they can result in erroneous outcomes or even for the processor to lose the
control of the system.

Since branches are the points in which the sequential execution flow is modified, most
CFC techniques are devoted to check that branches in a software execution are correctly
performed and that no unexpected branches occur. Control-flow checking techniques
generally consider the application software as a sequence of branch-free intervals (BFIs),
also called basic blocks (BBs). A basic block is an instruction or a group of consecutive
instructions that are always executed sequentially in the absence of errors. In other
words, none of the instructions within a basic block is allowed to execute a branch except,

47

eventually, the last instruction; and none of the instructions within a basic block is allowed
to be the destination of a branch except, eventually, the first instruction [57].

To be applied, CFC techniques rely on the creation of a graphical representation of
the control flow, called control flow graph (CFG), in which basic blocks are represented
as nodes that are connected by arrows representing allowed branches according to the
execution flow of the program in the absence of faults. Legal branches are those represented
in the CFG, and illegal branches are those which are not. However, not every legal branch
may be correct, such as the case in which a conditional branch is taken due to a fault in
the evaluation of the condition. In addition, it could happen that faulty branches occur not
only between different BBs but inside the same BB [57].

Most relevant software techniques for control-flow checking are CCA [58], ECCA [59],
CFCSS [60], YACCA [61], and CEDA [62]. All of them introduce new dedicated data into
the original program to track the control flow, usually named signature. Signature value is
updated during execution by instructions added for that purpose. Checking instructions,
also called assertions, are introduced to determine whether the values are correct in specific
points in execution. This common practice is known as signature monitoring and can be
implemented in different ways.

In the case of the high-level control-flow checking approach using assertions (CCA)
[58], two data values are used to track and check control-flow correctness: the block
identifier is updated at the beginning of each BFI and checked at the end to detect illegal
branches from or to the middle of a BFI; and the control flow identifier is updated at the
end of a BFI and checked at the beginning of the following BFI to detect illegal branches
between BFIs. However, it can happen that illegal branches between BFIs are not detected
in the case that those BFIs are children of parent BFIs with another common child due to
aliasing in the control flow identifier [59]. Additionally, erroneous conditional branches
and illegal branches within the same BFI are not covered by this technique. The authors
use a pre-processor to analyze the syntactic structure of a program written in C language
and to insert the data and instructions to check the control flow. As an advantage of this
technique is its simplicity and portability between different microprocessors since it is
directly applied on the source code. Nevertheless, CCA technique involves high memory
and time overheads since the amount of identifier values increases for large and complex
programs and the instructions to update and check the identifiers can become long when
inserted in small blocks, thus increasing the probability of the program to get control-flow
errors.

Enhanced Control-Flow Checking Using Assertions (ECCA) [59] is an improved
technique based on CCA. Similarly to CCA, it features high portability by using a
pre-processor to introduce new data and instructions in the high-level C program source
code, although it can be also applied at a lower level by modifying the compiler. ECCA
can be applied to different levels of granularity by grouping BFIs into blocks containing
more than one BFI given that the block has a single entry point and a single exit point.

48

The size of the block may impact on the error detection latency and also the performance
and memory overhead, so for maximal coverage a block may contain only one BFI, that
will be associated with maximum overhead. Unlike CCA, ECCA introduces only one
variable to be updated according to prime number rules: each block is assigned with
a prime number identifier and its value is updated throughout execution. The set of
identifiers of allowed destination blocks are multiplied at pre-process time so a division of
that number by the block identifier will identify legal and illegal branches by divisibility
rules. ECCA technique overcomes the limitation of CCA by avoiding aliasing and is
recognized by its high CFE coverage. However, ECCA is still not capable of detecting
erroneous conditional branches nor illegal branches within blocks. Moreover, despite
ECCA concept and implementation is not complex, identifier management instructions
and memory requirements for storing identifier values can produce high performance and
memory overheads.

The technique called Control Flow Checking by Software Signatures (CFCSS) [60]
also makes use of a special value, called signature, which is stored in a dedicated processor
register to track the control-flow during execution. For that purpose, arbitrary numbers are
assigned to each BFI at compile time and new instructions are introduced at assembly level
at the beginning of each BFI to update and check the value of the signature in each BFI. In
the absence of faults, the value of the computed signature must match the value assigned
to the BFI which is being executed. The problem of aliasing is tackled in the technique
by adding an additional value to compute the signature in those BFIs that have multiple
parents and at least one of the parents has multiple children. Although the problem of
aliasing is reduced it is still possible that aliasing occurs for BFIs sharing parents with
other BFIs with multiple parents. Errors involving faulty conditional branches, or illegal
branches within a BFI are not handled by this technique. An important advantage of
this technique is that, once a CFE is produced, the signature value becomes invalid for
the rest of the execution, so the amount of signature checks can be reduced to minimize
performance overhead at the expense of a higher error detection latency. The performance
overhead introduced is lower than other techniques since the operations with signatures are
fast, but for programs with lots of short BFIs, the program size can be affected considerably.
Moreover, the memory needs for storing all node signatures can also become an issue.

The Yet Another Control-Flow Checking using Assertions (YACCA) technique [61]
analyzes the software to build a program graph and identify all BFIs on it. A global variable
is used to store a signature value which is updated during execution. New instructions
are introduced at the C source code to check the signature value and determine if the
current BFI has been reached from a legal BFI and also to update the signature according
to the current BFI. The novelty of the YACCA technique is that the new instructions are
introduced both at the beginning and at the end of each BFI increasing fault coverage.
In addition, faulty conditional branches can be detected through the introduction at the
beginning of each target BFI a replica of the same condition that was evaluated before
reaching it. If the two evaluations of the same condition produce different results, then a

49

control flow error is detected. The YACCA technique optimizes signature evaluation by
avoiding division operations and performing multiple comparisons instead. To update the
signature value during execution, the technique proposes the use of two constant masks,
whose value depend on the signatures of possible parent BFIs and the signature of the
current BFI. The YACCA method was found to achieve higher error coverage than ECCA
and CFCSS techniques, despite it introduces higher memory and performance overheads
than CFCSS.

Control Flow Error Detection Through Assertions (CEDA) [62] follows the path of
previous techniques and uses a run-time calculated signature which is checked and updated
by new instructions introduced automatically by a modified C language compiler. The main
novelty of this method is to introduce a set of rules to assign signature values, allowing
to reduce the check and update instructions to just one instruction with no aliasing. Two
constant signatures and two constant parameters are assigned to each BFI. The run-time
calculated signature is updated at the beginning of the BFI and at the end of the BFI by
using the node parameters according to the rules of the technique. Signature values can
be checked afterwards to detect control-flow errors, however, it is possible to reduce the
number of checkpoints to reduce performance overhead at the expense of higher detection
latency. CEDA technique has high relevancy due to a very high efficiency delivering
high error detection capabilities with very low performance overhead compared to other
techniques. However, CEDA is not capable of detecting erroneous conditional branches
nor illegal branches within nodes.

Inverted Branches, as referred in [63], is a software technique for control flow checking
derived from [64]. This technique is different from the previous ones in the sense that it
does not introduce additional data in the program to check branch correctness, since it is
only devoted to check for control flow errors related to faulty evaluation of conditional
branches. To achieve that, this technique consists in replicating the conditional branch
instruction by adding additional conditional branch instructions either in the true and the
false control-flow path. The term inverted comes from the idea of introducing the new
conditional branch instructions with the evaluation of the complementary condition so,
if both branches are taken, the risk of faulty evaluation of the condition is minimized. It
could be similar to YACCA in the sense of checking twice the conditional branches, but in
the case of this technique, the checking is performed before taking the branch, while in
YACCA the second evaluation is performed after taking the branch.

Several control flow checking SW techniques have been introduced, remarking benefits
and limitations of each one. Signature monitoring techniques are effective to detect a
wide range of control flow errors, but they introduce memory and performance overheads.
Efficiency can be achieved by performing an optimal selection of signature values and
checking instructions, by reducing the number of checkpoints at the expense of higher
detection latency, or by reducing the complexity of the technique at the expense of lower
error coverage.

50

2.6.1.a.2 Software data checking techniques

Microprocessors perform operations on data as part of the information management
process in any SW application. In the presence of faults, data contents may become
wrong and produce erroneous results, even in the case that the execution flow has suffered
no changes. Data checking techniques are generally based on information and time
redundancy combined with consistency checks that are additional instructions introduced
to evaluate redundant results. These techniques are able to detect and eventually recover
from data errors. However, they usually introduce significant performance and memory
overheads.

In [64], a set of rules is defined to transform the high-level source code, achieving
a highly general and portable solution with high error detection potential regardless
of the target hardware. The rules are conveniently defined to allow a straightforward
implementation that can even be automated [65], thus reducing the user effort and avoiding
mistakes. The transformation rules require to duplicate every variable in the source code,
so every write operation to any variable must be duplicated and performed in both copies.
Additionally, consistency checks must be added after every read operation to any variable
to verify that both copies hold the same value and call an error routine in the case of any
inconsistency. It is remarkable that read operations correspond also to the evaluation of the
value of the variable in conditional expressions. Variables that are no longer read further in
the program are not checked anymore, since a faulty value on them cannot produce errors.
This technique achieves a very low error detection latency and minimizes error propagation
through the program. However, it introduces high memory overhead by a factor of 3 and
similar performance reduction [65].

However, not all data managed by a microprocessor is equally relevant in the
dependability of the resulting application. In [66], all variables in the program are
duplicated, as in [65], but they are then classified into two categories as intermediate
variables or final variables according to whether they are used to compute other variables
or not. An automated tool is developed to analyze dependencies between variables and
to introduce code transformations according to technique rules. Final variables are the
only ones which are checked for consistency as they are considered the outcomes of the
program, thus reducing the performance overhead with respect to [65] at the expense of
increasing error detection latency. The work developed in [67] address the replication of
only specific data inside a software program by the use of an automatic tool that analyzes the
high-level source code to reorder instructions and selectively duplicate variables to increase
dependability while minimizing overheads and preserving the original functionality. The
automated tool automatically detects the variables and code regions that may more critically
affect the program dependability, and allow the user to adjust a trade-off between amount
of duplication and performance and memory overhead, maximizing duplication benefits.
In [68], microprocessor core registers are selectively duplicated by using an automatic tool
at assembly code level. The importance of register selection is assessed by evaluating the

51

error coverage and performance degradation when duplicating each register individually.
With the obtained information, an optimal selection of registers to be duplicated can be
performed according to dependability requirements. Authors demonstrate that high error
detection rates can be achieved by protecting a reduced portion of registers, given that they
are the most critical on the application.

The Error Detection by Duplicated Instructions (EDDI) technique [69] is based on
similar concepts than previous techniques, but exploits instruction-level parallelism existing
in modern processor architectures to minimize performance overheads. In this technique,
variables and registers are duplicated at assembly code and new instructions are carefully
scheduled to be executed using idle processor resources as much as possible. As a
result, EDDI achieves low error detection latency with high fault coverage and medium
performance overhead.

The SWIFT (SoftWare Implemented Fault Tolerance) technique [70], is based on EDDI
technique for data error detection. As in EDDI, variables and registers are duplicated
and replicated instructions are scheduled to reuse idle resources and reduce overheads
by instruction-level parallelism. Checking instructions are also introduced to verify
correctness of results. However, SWIFT optimizes EDDI technique by eliminating the
need for data memory duplication, since it assumes that the memories are protected by
EDAC, as they commonly are in modern processor architectures, so data is only duplicated
when loaded from memory. It is remarkable that SWIFT still increases significantly
the program memory size due to the additional replicated instructions and checks. In
addition, SWIFT also introduces CFCSS [60] technique for control-flow error detection.
Additional optimizations on the implementation of SWIFT allow very high error coverage
with reduced overheads when compared to other techniques. The SWIFT-R technique [71]
extends SWIFT to provide not only error detection but also error recovery capabilities.
By SWIFT-R technique, variables and registers are triplicated, instead of just duplicating
them. In the presence of single faults, correct results can be obtained by simply performing
majority voting of the three obtained results.

While previous techniques focus only on replicating instructions, it is also possible to
introduce replication at higher abstraction levels, such as procedure level. The Selective
Procedure Call Duplication (SPCD) technique [72] achieves error detection by duplicating
the calls to procedures with the same parameters and comparing between results. Among
various advantages, this approach has very low impact on code size since the procedure
code is untouched and it only adds the duplicated call and one consistency check. With
such small code modifications, this technique is able to detect a wide range of faults that
may impact on the result of the procedure without affecting error detection capabilities,
but at the expense of higher detection latency. The SPCD technique also supports the user
to tune the detection latency against overhead to automatically apply the duplication at
procedure or instruction level, or a combination of both. The Trikaya technique [49] uses a
similar approach to SPCD and additionally introduces error correction by triplicating data
and procedure calls, instead of just duplicating them. Every procedure in the program is

52

called three times, each one with a different set of triplicated parameters and variables, and
majority voting is performed between the obtained results to mask any single fault that
may have occurred. The Trikaya technique has been evaluated under radiation experiments
and have been found to decrease error rates by up to one order of magnitude.

At higher abstraction levels, the complete program can be replicated in processors
supporting Simultaneous Multithreading (SMT) [73], [74], by executing two redundant
copies of the program simultaneously in different threads and comparing between results,
which is known as Redundant Multithreading (RMT) [75]. While SMT executes both
redundant threads in the same processor, it is also possible to execute each thread in a
different processor exploiting modern Chip Level Multi Processing (CMP) architectures
[76], however this approach present challenges such as inter-processor communication to
compare between results at checkpoints. Additionally, RMT and CMP can be combined as
in [77] to achieve a triplicated redundant execution including recovery capabilities with
only two processors.

The program duplication techniques have an interesting variation in the techniques
based on data diversity. Data diversity techniques are based on running two program copies
with the same functionality but using different data. In particular, the data used by the
redundant copy is the same as the original one, but multiplied by a constant factor. At
the end of the execution of both redundant program copies, the result of the redundant
copy is checked to be the same of the original multiplied by the factor. This approach is
especially interesting to detect not only transient faults but also permanent faults that can
be masked when computing a particular data value but revealed when computing a different
one, although it may produce overflow in calculations if the factor value is too high. The
work on [78] demonstrates that different factor values maximize error detection in different
functional units of the processor. It is remarkable that this approach is only suitable for
programs performing arithmetic operations but not logic operations or exponential or
logarithmic functions.

While all the previously explained techniques in this section rely on duplication of
code and data to detect data errors, this is not the only valid approach. Techniques based
on Executable Assertions, such as the one presented in [79], can also detect data errors
in software programs without introducing duplicated instructions or data, but only by
performing checks on computed values according to a set of rules. To achieve error
detection, variables are classified among several categories such as discrete, continuous,
random, monotonic or dynamic and, for each variable, instructions are introduced in the
program to check whether its value is valid or not. Such checks can be boundary values
or rate limitations for the value of the different variables in the program. Authors in [79]
demonstrate that a very high error coverage can be achieved with this technique. However,
the use of assertions to perform data error detection is highly application-dependent,
as each application may have different constraints for each variable, and requires deep
knowledge on the system to be correctly implemented.

53

2.6.1.b Hardware fault-tolerance techniques

Hardware techniques rely on hardware redundancy concepts to increase the
dependability of a microprocessor by modifying the original circuit and/or adding new
hardware to it. Hardware redundancy can be introduced at transistor level by applying
traditional TMR to mask errors as in any integrated circuit. However, systematic hardware
replication introduce notable impact in circuit area, cost and power consumption, that
possibly could not be afforded by cost- or power-constrained applications. In such
cases, trade-offs should be posed to determine the optimal amount of replication for
maximum error coverage with minimum penalties. In that scenario, the techniques based
on Partial TMR [80] could be particularly interesting by selectively replicating the most
critical processor resources or functional blocks [6]. Approximate TMR [81] is a recently
introduced extension of Partial TMR in which the hardware is replicated with circuits
that perform a similar function to the original one, but requiring a lower amount of area,
looking for an optimal balance between error coverage and overheads.

Despite fine grain TMR-based techniques can provide convenient fault detection and
masking in microprocessor-based systems, all of them require the user to have detailed
knowledge about the architecture, which is not commonly available, and access to the
hardware design to modify it, which is also expensive. To overcome this limitations, it is
also possible to implement coarse grain redundancy at processor level by using more than
one redundant processors executing the same application simultaneously in a synchronized
manner, which is called lockstep. Outputs from two processors can be then compared in
a cycle-by-cycle basis to detect errors with a Dual Core LockStep (DCLS) configuration
and restore the system back to a previously saved error-free state [82]. However, system
restoration can introduce performance overheads in systems with strict time constraints. In
this case, Triple Core LockStep (TCLS) can be applied, in systems where three processors
are available, to mask single errors by adding majority voting and synchronization hardware
[83].

Redundancy schemes cited above need either access to the processor architecture to
introduce modifications or the hardware to already embed redundant resources such as
multiple processors to configure error detection or correction schemes. In the case that the
user cannot introduce redundancy in the processor due to technical constraints or budget
limitations, it is also possible to increase the dependability of a processing system by
adding external hardware modules, which are often referred to as watchdog processors.
Watchdog processors must be connected to pre-existent processor architectures through
available connection points which are critical to determine the amount and type of accessed
information, and thus the error checking capabilities of the watchdog processor. Watchdog
processors may work in parallel with the main processor to perform four monitoring
approaches: (1) check memory accesses, (2) check data consistency, (3) check program
control-flow, or (4) detect symptoms of faults [84]. The operation of watchdog processors
can be intrusive if they are capable of interfering the processor operation, or non-intrusive

54

if their functionality does not affect the processor execution. Typical implementations of
watchdog processors are listed below:

• Program timer: The simplest form of watchdog processor is a watchdog timer [33]
capable to detect whether the executed application has an error which impedes its
finalization. Watchdog timers are typically included in processing systems and are
designed to count down in every clock cycle of the processor. If the processor is
executing properly, then the application may reset the count of the timer before
it reaches zero. When the processor fails in a manner that loses control of the
application, then the application shall not reset the count and the watchdog timer
will reach zero, becoming the symptom of a fault. In that instant, the watchdog
may automatically perform a reset of the entire processing system to put it back in a
working state.

• Memory checker: A very typical connection point for watchdog processors is the
memory bus, either the program memory, the data memory, or both, whenever
they are available. In [63] a watchdog processor is implemented to check that
the processor is accessing allowed memory regions, the consistency of given data
variables in the executed program is correct or even that the branch instructions
are correctly executed. In [85] and [86], the watchdog processor creates a shadow
copy of the data in the program in a local memory to update or check it whenever is
written or read, respectively, and additionally it monitors the control control flow
of the program by calculating static signatures of executed instructions inside each
BFI and also by validating the order or execution of BFIs according to the Program
Graph.

Generally, hardware techniques can provide high error coverage, which is linked to
their access to the processor architecture, or in the case that it is not possible to the amount
and quality of information available at their connection point. Additionally, hardware
techniques are usually associated to low performance overheads since the redundant
hardware performs concurrently with processor execution.

2.6.1.c Hybrid fault-tolerance techniques

Hybrid techniques combine the approach of both software- and hardware-based
techniques to optimize the achieved hardening level by leveraging the best qualities
of them. Typically, the most attractive features of software techniques are their low
implementation cost, flexibility and their suitability to deal with data errors. However, pure
software techniques have been found to have high memory and performance overheads
and also present low detection rates on control-flow errors [87]. Conversely, hardware
techniques are appreciated by their low impact on system performance and their concurrent
performance, resulting convenient for detecting control-flow errors [63]. Nevertheless,
techniques based on external watchdog processors are limited to the available information

55

at the connection point, so errors occurring in a region that cannot be checked could be left
undetected [88].

The approach presented in [84] is oriented to detect data errors by the combination of
both software modifications on the high-level code to duplicate data and instructions and
the introduction of a dedicated hardware module connected to the system bus to check
data consistency. In addition, new instructions are added to the application to allow the
external module to identify the values for checking using a checksum value. In the case
that the checksum value is found to be incorrect by the external module, it signals this
condition to the processor to activate a recovery procedure, in which the faulty variable is
located and corrected, allowing the application to continue without errors. This approach
was tested under fault injection and was able to detect and correct a high amount of faults
while maintaining low memory and performance overheads.

In [88], a hybrid approach called HETA (Hybrid Error-Detection Technique Using
Assertions) is used. HETA combines the use of software modifications and an external
hardware module is used to detect control-flow errors in a processor. The overall technique
derives from CEDA technique [62] and is intended to reduce its performance overhead
while increasing its error detection capabilities by introducing checks in the software
side for the errors that cannot be detected by the original technique, such as incorrect
conditional branches through the application of the Inverted Branches technique. The
software control flow checking technique is complemented by duplicating variables and
instructions and introducing consistency checks to detect data errors. The hardware module
provides detection of additional error types such as incorrect branches to unused memory
addresses and infinite control-flow loop conditions. Additionally, the external module
performs consistency checks in the software control-flow signature value. HETA was
evaluated under fault injection and exhibited full control-flow error coverage as well as
reduced size and performance overheads.

2.6.2. Fault-tolerance techniques for COTS microprocessors

The use of COTS-based processing systems in space applications has been an evolving
topic for decades due to the constantly driving needs for higher computing performance
at lower power consumption levels, resulting in more capable, more powerful, more
autonomous and more efficient spacecraft [89]. In fact, radiation hardened (rad-hard)
processors have been found to lag several generations behind the processing capabilities of
emerging COTS processors [6], [90], [91]. However, to safely introduce COTS devices
in space missions, their inherent susceptibility to radiation-induced faults needs to be
mitigated [89], [92].

In [93], three strategies are presented to overcome the limitations of currently available
processing systems for space:

56

• Developing and building a completely new processor for space use using RHBD and
RHBP techniques.

• Building a RHBP version of an existing COTS processor by migrating the processor
design from the commercial technology to a radiation hardened technology.

• Hardening existing COTS processors at board and/or software levels.

However, the first and the second approaches would be affected by development and
qualification processes that may impact their time to market. Moreover, the outcome of such
strategies may get outdated as new generations of commercial devices arise [6]. Conversely,
the latter approach can be oriented in a more general manner to develop techniques that,
once applied to unmodified COTS processors may improve their performance under
radiation. Such techniques would then be applicable to a wider range and even successive
generations of COTS devices, remaining relevant over time.

Nevertheless, hardening unmodified COTS devices introduces limitations in the fault
mitigation possibilities. As the device cannot be modified, RHBP and RHBD at device
level cannot be applied. Considering that COTS devices are not commonly produced
with specific methods to reduce their susceptibility to radiation, the application of fault
avoidance approaches is limited to device screening to handle manufacturing variability and
checking device susceptibility through radiation testing [48]. However, COTS devices must
be considered to be susceptible to radiation effects and user-introduced fault tolerance must
be considered to cope with them. Given that the device cannot be modified, fault-tolerance
approaches for COTS processors are usually based on software techniques or external
hardware modules (watchdog processors).

COTS processors have already been successfully introduced in space missions. In
[94], a COTS-based computer was introduced in a spacecraft in combination with another
radiation hardened processor, both performing similar tasks. The performance of both
processing systems was evaluated and compared in orbit. It was observed that the
COTS-based computer experienced a higher amount of faults than the rad-hard one.
However all observed faults could be mitigated with software error detection techniques
(EDDI and CFCSS) and a basic recovery mechanism consisting on a processor reset.

Fault detection and recovery is a common approach to introduce fault tolerance in
devices not supporting fault masking nor fault avoidance techniques, such as COTS-based
processing systems whose hardware cannot be modified.

2.6.2.a Microprocessor fault detection and recovery approach

Fault detection and recovery is a process by which the system needs to recognize that
a fault has occurred in order to trigger a subsequent action to mitigate the fault before
it becomes an error. In a successful fault detection and recovery implementation, faults
should be detected, located, isolated and removed from the system before producing errors,

57

obtaining a fault tolerant system [9]. The effectiveness of the recovery step would then
strongly depend on the amount of available information about the error to take the most
convenient corrective action.

Fault detection alone cannot reduce the amount of errors in a system, but plays a critical
role in reducing the risks associated to the error as it can be signaled to other systems
and mitigated at higher level. Undetected errors, conversely, cannot provide any risk
information to the system, leaving it completely vulnerable [41]. It is widely accepted
that fault detection is the first step to fault tolerance [3], [70], [74], [84], [95]–[97]. Error
detection should pursue to have high coverage, to leave almost no undetected errors, and
low latency, to detect errors shortly after they are produced, thus leaving few time to
produce undesirable effects and enabling straightforward mitigation strategies [95].

Fault detection techniques can be classified into four main categories [96]:

• Periodic built-in self-test approaches, leveraging internal self-test mechanisms
already available in processors, which are traditionally devoted for manufacturing
testing. These tests are envisioned to detect permanent faults since they are not
executed concurrently with the user application.

• Dynamic verification approaches consist on the application of consistency checks,
typically through dedicated hardware to verify execution correctness.

• Anomaly detection approaches intend to detect anomalies in execution, or symptoms
of faults, that are observable with simple monitors, such as program crashes.

• Redundant execution approaches, which exploit the replication capabilities of
processors in multi-core or multi-threaded architectures to execute two or more
copies of the same program and compare results.

A detailed and extensive review of fault detection techniques can be found in Section
2.6.1 in this document.

The rich variety of fault detection approaches and fault models makes it necessary to
develop appropriate fault recovery strategies in each case. Fault recovery techniques can
be classified into two broad categories [96]:

• Backward Error Recovery (BER), in which the state of the system is periodically
saved in an error-free execution, creating checkpoints representing correct system
states. In the case that an error is found, the system state is restored from a correct
checkpoint in a process known as rollback.

• Forward Error Recovery (FER), by that the error detection and correction are
performed through redundancy schemes, such as TMR, without requiring any
checkpointing nor rollback actions.

58

The most simple error recovery technique is just to restart the faulty program from the
beginning, as implemented in [94], typically by a system reset, to remove all faults and
put the system back to an initial error-free state. This technique would be able to remove
every detected error with low development effort. However, the main drawback of this
technique is the decrease of performance and system availability due to the time required
for the system to recover the intended functionality after a restart is made.

When the system is required to have high availability, the optimal option is to use a
triplicated schema, such as the presented in [83]. In it, a commercial ARM Cortex-R5
processor is implemented in triple core lockstep (TCLS) architecture, achieving global
fault tolerance without rollback even when each individual core is susceptible to faults.
Fault tolerance is achieved by the implementation of a majority voter, hardware error
detection and specific-purpose synchronization logic to restore state of the faulty core
with the state of the two fault-free cores. The main advantage of this approach is that
the recovery action is transparent to the user, however it requires to use a specific device
supporting the mentioned architecture.

In the case that the available processing system has less than three cores and/or it lacks
of error detection, voting and synchronization built-in logic, then the recovery schemes
have to be customized and developed according to the target system and requirements.
An additional precaution is to avoid the fault-tolerant system to output any data or action
before checking the correctness in the data and /or the execution flow [74], [76], [97]–[99]
to prevent failures.

Combined checkpoint and rollback strategy is a commonly used approach to deal with
both data and control-flow errors. Data errors can be recovered by duplicating data, in any
single- or multi-threaded systems, and to create checkpoints after successful consistency
checks. The control-flow of a program can be typically validated in single-threaded systems
by the use of signature checking [99], [100] and by comparing the execution-flow of
multiple program instances in multi-threaded systems [74], [76]. In both cases, checkpoints
may be generated after each successful check. In the case of a failed consistency check,
the system may be rolled back to the previous checkpoint before resuming operation. For
this approach to be successful, it is needed that not only processor state is saved at the
checkpoint but also all program data relevant to execution. Data protection can be applied
extensively to the whole program [84], [96], [99] or selectively to only certain critical
points [97], [98]. The main advantage of Checkpoint and rollback strategy is that it can
be adapted to a broad range of systems with low to moderate performance overheads,
provided that the frequency for recovery actions is low, and still achieve a good error
coverage.

An alternate solution is to artificially recreate the Triple Modular Redundancy (TMR)
behavior in a system that does not include it by default. The SWIFT-R [71] technique
achieves high error coverage in single-threaded systems with low user effort, at the
expense of significant performance reduction. Alternatively, the approach presented

59

in [77] leverages a multi-threaded system to perform duplicated program execution and
trigger a third execution of the last program segment upon an error. With the three program
outputs, voting and synchronization routines are performed to mask the fault and continue
execution.

2.6.2.b Microprocessor error diagnosis

Error diagnosis, as referred in this section, is the process of determining the
circumstances, mainly time and location, in which the causes of a subsequent error occurred.
A successful diagnosis process should match most errors and causes correctly, however,
the diagnosis process cannot start until errors are initially detected. As a consequence, a
very high error detection coverage is needed to achieve high standards of diagnosis. In fact,
error diagnosis can be seen as an intermediate step between error detection and recovery
[96], as it can provide valuable information to the error recovery process about the faulty
event to apply an efficient recovery strategy. However, error diagnosis in microprocessors
typically becomes a high uncertainty process due to the inherent complexity and low
observability of processing architectures.

A common approach for error diagnosis is to detect errors based on their consequences
and then try to perform a deduction of the fault that caused it. The main drawback of this
approach is that a fault in different locations may produce similar consequences, which is
known as fault aliasing [101], [102], limiting the accuracy of diagnosis approaches based
on cause-effect analysis. To cope with this problem, researchers have proposed to study
the behavior of systems under intentionally provoked and controlled faults, to retrieve
information that may be used afterwards to diagnose uncontrolled errors [103], [104].
For such purpose, broad beam radiation testing is not a suitable option, since it provokes
faults at random locations and instants. Instead of that, techniques such as software-based
fault injection [56], hardware-based fault injection [105], laser testing [42] or micro-beam
techniques [106], [107] may be used as they provide good control on the location and the
time that the fault is provoked.

Error diagnosis for microprocessors has been a matter or research since long time [108],
but it was mainly devoted to identify permanent errors associated with manufacturing or
device wear-out. However, soft errors are becoming more frequent due to the progressive
miniaturization of electronic devices, and there is a growing interest in developing diagnosis
techniques addressing them.

A common approach for error diagnosis is the creation of error dictionaries [101], [104],
[109] based on device responses under extensive fault injection sets. The error dictionary
is built to relate the effects of the error to its possible causes, so when a faulty device
behavior is found, it could be associated to a set of possible causes using the information
at the dictionary. A common problem with error dictionaries is that they can become very
big for an exhaustive set of injected faults in a complex device. In [110] manufacturing
defects on a chip are diagnosed through the creation of an error dictionary that relates fault

60

locations with circuit responses based on the results of extensive fault injection, and an
associated computational tool is developed to optimize the diagnosis process. The work
in [104] performs an extensive hardware-based fault injection in two different circuits
and introduces a compression technique to the circuit responses to reduce the dictionary
size. This work is continued in [101] by developing metrics to identify the set of input
vectors that minimizes the aliasing introduced by compression and applying them to an
error dictionary obtained from hardware-based fault injection on a microprocessor unit.

Other important approach for error diagnosis is the use of device self-testing strategies,
which fall in the Design for Testability (DfT) paradigm. DfT techniques are commonly
implemented to check the health status of a particular unit in different scenarios, from
manufacturing acceptance tests to capability checks while on operation. In this context,
diagnosis is also relevant to improve maintainability of systems, as it can reduce the time
required to determine the cause of the error. In [111], a processor is designed to be capable
of self-diagnosing and self-repairing from hard-faults by a reconfiguration strategy in
which internal modules accumulating a high number of faults in a short period of time are
automatically turned off. The processor used in [112] include an embedded mechanism
called Machine Check Architecture (MCA) which enables detection, location, isolation
and correction of soft errors and, ultimately, error diagnosis. In [102], scan-based Built-In
Self-Test hardware available in the device is used to diagnose faults on chip through the
generation of automatic test patterns and checking circuit responses with a fault dictionary.

However, the use of dedicated hardware to diagnose errors in a circuit presents, two
main drawbacks: first, that the diagnosis hardware can be vulnerable to faults, which may
be left undiagnosed; and second, that it produces area overhead so it is required to be
very compact. To overcome these limitations, software-based self-test approaches can be
proposed. Such tests are commonly used in critical systems to check the health status
of the overall system before committing a critical task. In [108], diagnostic software
programs are proposed to be run on a microprocessor to check the correct operation of
internal units. In [113], a set of systematic techniques is presented to identify faults present
in different processor sub-modules. The approach presented in [114], is able to diagnose
and repair permanent faults on a microprocessor on the field through a mixed approach
combining an initial hardware-based self-test to check basic processor functionalities and
two software-based self-test procedures to check the processor slots and the register file.

Artificial intelligence methods have also been proposed to address the problem of
relating the detected wrong behaviors with the parts of the device affected by faults. A
review of these methods, such as expert systems, Petri nets, neural networks and fuzzy
logic is presented in [115].

2.6.2.c Trace interface-based fault-tolerance

Among the diverse fault-tolerance techniques applicable to processors, two main
general drawbacks can be identified:

61

• Software techniques generally introduce undesirable performance overheads.

• Some hardware techniques require to modify the device, which cannot be applied to
COTS.

In such context, providing effective fault-tolerance techniques against soft errors
with low impact in performance and minimal intrusiveness in the device is a challenge,
which has become an important research topic. The main approach is to develop
hardware modules, also known as watchdog processors, that can be connected to existing
processing architectures through suitable interfaces to monitor the processor operation
in a non-intrusive manner. Hardware monitoring approaches commonly introduce low
or even no performance penalty in the system, as they run at high speed in dedicated
hardware concurrently with the processor. The main objective is to observe the internal
processor behavior to identify the errors before they manifest externally and become
failures. However, the connection point for the hardware module to the processor is an
outstanding issue, as it may become invasive and interfere with the normal behavior of
the circuit. The most convenient observation point could be the memory interface, as it is
the same that the processor uses to fetch instructions or store data, but it is not commonly
available in modern and complex COTS processors with integrated On-Chip Memory
(OCM) and cache memories. Moreover, for microprocessors with complex pipelines,
the information available at the memory interface may not accurately reflect the actual
processor behavior, as fetched instructions may not be executed due to speculation [1].

It is worth noting that processor observation and monitoring capabilities are also
crucial features during software developing and debugging processes at early production
phases. Such functionalities are supported by On-Chip Debugging (OCD) interfaces, which
have become mainstream in modern devices. While debugging interfaces provide useful
information about processor operation, they are generally left unused once the application
development is complete [2], so they can be reused for hardware monitoring purposes in an
inexpensive way. Among different resources associated to OCD infrastructures, the trace
interface is particularly suitable for processor observation. It is commonly conceived as a
read-only interface used for software debugging and application profiling and can provide
information about processor execution without affecting it or provoking any disturbance.
Unlike the memory interface, the trace interface accurately reflects the actual processor
behavior, by only exporting information about the executed instructions. A wide overview
on the use of the trace interface for microprocessor observation is presented in [1].

Hardware monitoring through the trace interface can solve the observability challenges
related to complex processing architectures [33], especially when the access to the internal
resources is limited. Trace interface implementations in different processors tend to be
comparable, as they are built for the same purpose, and provide similar information that
can be used for fault detection and diagnosis. Typically, it may contain information
about the executed instructions, program counter, status flags, or memory accesses [1].

62

Fault-tolerance approaches based on the trace interface may increase the dependability of
microprocessor-based systems while being general for different types of microprocessors

The development of watchdog processors for hardware monitoring through the trace
interface has been mainly oriented to detect control-flow errors on soft-core processors
[1]–[5], [7]. The focus on control-flow errors can be justified in the sense of need, by the
challenges presented by software techniques to deal with this type of errors and, at the
same time opportunity by the fact that the most common information available at the trace
interface is related to program execution, particularly, to the instruction address of the
processor. Data checking techniques can be then efficiently added by software if needed,
conforming a hybrid approach. The preference for soft-core processors lies in the richer
possibilities for connecting the hardware modules and developing a custom solution, while
in the case of using commercial hard-core processors, the system design and the access to
the trace interface information may be more complex due to the existence of proprietary
interfaces or encoding protocols.

Hardware monitoring through the trace interface was proposed in [2]. In this work, two
LEON3 processors executed the same software asynchronously. A watchdog processor
module was developed and connected to the trace interface of both processors to receive
execution information, composed by the values of the program counter, the operation code,
the instruction data and processor flags. The information obtained from each processor
is compressed by the module to compute a signature for each processor. Every time
that a processor finishes a task, the task signature is saved so when the other processor
finishes the same task, both can be compared. In a fault-free scenario, both signatures
should be equal since the trace information generated by each processor should be the
same. In the case that the signatures are found to be different, an error is signaled to start
a recovery procedure, which can consist in the repetition of the faulty task. The main
advantage of this approach is that it does not impact on performance and does not need to
modify the executed software. As a disadvantage, two identical processors are required.
Authors performed a fault injection campaign in the HDL netlist of the whole system and
demonstrated high error detection capabilities with very low latency.

The work in [3] is based on [2] and describes more general applicability considerations
of the method, by applying it to different system topologies. A hardware module, similar to
the one introduced in [2] is described and used to observe the execution of processor tasks
through the trace interface and compute a signature based on the obtained information.
When the hardware module is introduced in a system with two processors, then it may be
able to detect faults when the obtained signatures of the same task differs, as in [2]. But the
approach is also extended to the case with three or more processors, in which the hardware
module may gain not only error detection capabilities but also error correction with the help
of a voting scheme. In the opposite case that the module is implemented in a system with
only one processor, then the approach may also be feasible by replicating the execution of
the tasks in different instants of time and comparing at the end. Additionally, authors also
explore the impact produced by applying the same approach to two different processing

63

architectures: a soft-core LEON3 and a hard-core ARM7TDMI, each of them presenting a
different trace interface. In the case of the LEON3, the module can be directly connected
to the trace bus in a System-on-Chip configuration thanks to its soft-core implementation.
Conversely, the ARM7TDMI devices is a hard-core that only allows access to a trace
buffer through an external trace port. The authors tested the presented technique only for a
system with two LEON3 processors through fault injection in the HDL netlist observing
high fault coverage capabilities under fault injection campaigns.

In [7] a hardware module is developed for signature monitoring through the trace
interface. The application code is divided into Basic Blocks (BBs) and the trace interface
continuously provides the values of the Program Counter (PC) and Instruction Register. A
memory block is included in the hardware module to store a table with the addresses of
each BB in the application along with their signature, which can be computed at compile
time. The module receives the trace information on the fly and computes the signature of
the BBs under execution with low latency. When the module detects the end of a basic
block, then it checks the signature value against the expected one stored on the memory and
raises an error signal in the case of a mismatch. Additionally, the module can also detect
the correct execution flow during a BB or in between BBs by comparing the incoming PC
address with the expected one based on the previous instruction in a way similar to [4].
This technique, as any other signature-based technique, presents a disadvantage related
to the memory size needed to store the signature, which can become unmanageable for
complex applications. In a first approach, authors propose to select a subset of the BBs to
be stored in the table by considering the size of the BB and the number of times that each
BB is executed. This way, the technique may maintain most fault coverage capabilities
while reducing the memory requirements by discarding those BBs which are infrequently
used or that are extremely small. However, it could happen that the available memory is
significantly smaller than the amount of BBs to be stored. In this case, the authors propose
to let the hardware monitor the capability to dynamically determine which BBs should be
stored in the memory. Thus, the memory shall start empty, and the module will introduce
each BB as soon as it is executed. BBs may remain in the memory using a Least Recently
Used policy, so the most frequently used BBs will remain in the memory while the least
shall be overwritten, thus optimizing memory usage. In the case that a BB is executed
and is already present in the memory, its signature could be checked and an error detected.
Authors report that this approach may initially miss to detect some faults but still achieves
a good error coverage and removes the need of pre-computing the signatures at compile
time. The mentioned approaches were tested in two different processors, miniMIPS and
LEON3, with fault injection campaigns.

The trace interface is also used in [4] to monitor the execution of a LEON3 processor
from an external hardware module which implements a Program Counter (PC) prediction
technique to detect illegal changes in the execution flow. The approach does not require
any additional information to be stored or configured in the module, providing a general
solution independently of the executed application. The external module is capable to

64

predict the next PC value based on the operation code of the currently executed Instruction
Register value and the current PC value, both retrieved through the trace interface. If the
operation code is a branch instruction, then the following PC value shall be incremented by
the branch offset, otherwise the PC value shall be incremented by the size of the instruction.
Additionally, the module is also capable of maintaining a replica of the processor stack
to support the checking of the subroutine call and return statements. If at any time, the
value of the PC predicted by the module and the one provided by the trace interface differ,
a control-flow error is detected. The control-flow checking (CFC) technique is combined
with two alternative software-based data protection techniques presented in [71] and [72],
depending on the global required detection latency and introduced overheads, to conform
a global hybrid technique. The complete hybrid technique achieves high fault coverage
capabilities.

The technique presented in [5] is an evolution of the one introduced in [4] to overcome
the limitations of the latter to detect errors in highly pipelined processor architectures. In
such processors, a corruption of the PC or the Instruction Register inside the processor
pipeline may not be detected by just performing PC prediction, since the faulty values
shall be output by the trace interface and the processor operation based on such values may
be interpreted as correct by the hardware module. To detect such errors, [5] introduces a
technique called Dual Control-Flow Monitoring by that the execution flow is monitored by a
hardware module both at the memory interface and at the trace interface. By comparing the
instructions at both observation points the module is able to detect any discrepancy between
instructions before and after they are executed, provoked by faults inside the pipeline.
Authors claim that the combination of the Dual Control-Flow Monitoring technique with
the PC prediction technique presented in [4] is capable of detecting all control-flow
errors in a LEON3 microprocessor with no hardware modification and no performance
degradation. A timeout detector is also included in the hardware module to the system
to detect situations in which the processor becomes irresponsive due to a program crash.
The hardware monitoring approach is complemented by software techniques consisting
data duplication [64], [65] and inverted branches [63], [64], conforming a global hybrid
technique. The hybrid approach was tested under fault injection and demonstrated a 100%
control-flow error detection and high coverage on data errors with low overheads. The
main drawback of this approach is that the required access to the memory interface may
not be available in highly integrated System-on-Chip COTS devices.

The work in [8] demonstrates that a system based on [5] is capable to detect errors and
improve substantially the fault-tolerance of a soft-core LEON3 microprocessor under fault
injection and also neutron irradiation while running on a commercial device.

2.6.2.d ARM CoreSight Trace and Debug subsystem

This Thesis has been focused on the CoreSight trace subsystem, which is a common
resource in ARM-based SoCs [116]. CoreSight combines a wide set of technologies and

65

architectures developed by ARM for trace and debugging purposes in high-complexity
SoC designs, and is compatible with almost every processor developed by ARM [117].
In this context, debugging is associated to the observation or modification of the state of
a design by directly accessing to register values and eventually halting the execution. In
contrast, trace allows for collection of execution information as a continuous data stream
for ulterior analysis in a non-invasive manner. The wide range of CoreSight components
[118] cover several trace and debug functionalities, providing flexibility to adapt each
system to a particular need leveraging a modular design. In addition, documentation is
available for designers to extend CoreSight capabilities with custom new designs.

CoreSight components can be categorized into three types:

• Trace sources, are components directly connected to the processor core, devoted
to organize the trace data from the processor state and generate normalized trace
packets.

• Trace links, are the components devoted to gather, merge and transmit trace data
generated at the trace sources.

• Trace sink components may add format to the trace data and allow it to be accessed
by users on-chip or off-chip.

The CoreSight subsystem implemented in Xilinx Zynq-7000 AP SoC device family
[119] can be used to illustrate the modular and flexible implementations supported by the
CoreSight architecture. This device includes a dual-core ARM Cortex-A9 processor, and
each core has an associated trace source, called Program Trace Macrocell (PTM) [120] to
trace execution flow of instructions. An additional trace source, called Instrumentation
Trace Macrocell (ITM) [118] is provided to trace application data values. Each macrocell
produces trace data as a stream of normalized packets according to a protocol specification.
The trace streams are merged and tagged by a trace link component, called Funnel, and
transmitted to two different trace sinks. One trace sink is the Embedded Trace Buffer
(ETB) implemented on-chip to store the most recent trace information. The other trace sink
is the Trace Port Interface Unit (TPIU), which allows trace data to be exported off-chip
through the pins.

However, not all ARM devices including CoreSight technology share the same
implementation. In the case of the Xinlinx Zynq UltraScale+ MP SoC device family
[121], a more powerful processing system is provided comprising a quad-core ARM
Cortex-A53 along with a dual-core ARM Cortex-R5. Each of the ARM Cortex-A53 cores
has an associated trace source, called Embedded Trace Macrocell version 4 (ETMv4)
capable of tracing the instruction flow. In contrast, each of the ARM Cortex-R5 processors
include an associated Embedded Trace Macrocell version 3 (ETMv3), which also provides
execution flow information, although it uses a different trace protocol. Another difference
between ETM implemenations is that the ETM modules for ARM Cortex-R5 processors
can also trace load and store accesses of data values in memory while the ETM modules

66

for the ARM Cortex-A53 processors cannot. The CoreSight subsystem of the Zynq
UltraScale+ devices is complemented with the System Trace Macrocell (STM), which is a
more capable extension of the Instrumentation Trace Macrocell, also devoted to trace data
values. Finally, the Funnel, the TPIU and a trace buffer are also included.

The ARM CoreSight trace interface has been used in the literature for different
purposes.

The work in [3] already analyzes the possibilities of using the ARM CoreSight
Embedded Trace Macrocell (ETM) trace source for transient fault detection and proposes
an approach for hardware monitoring. However, the approach is not tested with the ARM
trace interface, but with the soft-core LEON3 processor instead.

In [122], a hardware module is proposed to monitor the trace information generated
by the Program Trace Macrocell (PTM) on a Xilinx Zynq-7000 device. In this approach,
the trace information is used to increase the observability of a processing system during
system tests and especially focusing to power-on self-test routines. Authors designed
an IP-core to be implemented in an FPGA as a processor module capable of reading
the trace from the Trace Port Interface Unit, while being configurable through memory
mapped registers. The trace information generated by the PTM is processed to extract the
different packets and discard a subset of them which are not deterministic. The remaining
information is introduced in a multiple input shift register to generate a signature of the
self-test routine, which is checked at the end to detect anomalies in the system. However,
authors didn’t test the proposed approach in the Zynq-7000 device, as they were not able
to appropriately simulate the faults. As a result, a soft-core MIPS processor producing
similar trace information was used for the tests, and the proposed approach was tested with
fault simulation on the processor netlist, showing a good error coverage. It is remarkable
that this approach does not need to correctly interpret the information contained in the
trace data, but only that the received trace data matches the expected signature.

The work in [123] describes the development of a complex hardware module intended
to improve the security of a processing system against malicious software attacks trying to
retrieve critical information. While common techniques in this field are based on software
and introduce very high overheads, authors propose to reuse the information provided
by the trace interface to drastically reduce the impact in performance. The presented
approach is developed for a Xilinx Zynq-7000 device and leverages the information about
Program Counter (PC) values provided by the Program Trace Macrocell (PTM) in the
CoreSight trace subsystem. Authors also introduce software instrumentation and static
analysis to complement trace information to perform dynamic information flow tracking.
As a result the technique can successfully detect and prevent unauthorized system accesses
with reduced overheads.

In [124] and [125], authors propose to reuse the CoreSight trace interface available
on a Xilinx Zynq-7000 device to protect the system against malicious attacks trying to
manipulate the control-flow of a victim processing system. Authors developed a hardware

67

monitor capable to detect Code Reuse Attacks, in which attackers may be able to reuse
existing code to perform arbitrary computations, and Code Injection Attacks, in which
attackers may be able to introduce or modify the code to change the system behavior. The
detection is performed by leveraging the branch information provided by the Program
Trace Macrocell (PTM) source available in the system.

In [126], a complex, reconfigurable hardware monitor is developed to process trace
information from the dual-core processing system of a Xilinx Zynq-7000 device in real
time. The module can be reconfigured by the user by specifying the correct operation of
the program executing in the processor, and produces an output that allows to debug or
refine the implementation of the application. In [127] an extension of the previous module
is described to be applied in a more generic manner. The module can be first configured
with the Control-Flow Graph (CFG) of the executed application and is then capable of
reconstructing the program execution based on the information received from the trace.
Reconfigurable modules allow to recognize events in the execution, allowing to perform
tasks such as code coverage measurement, worst-case execution time estimation, or finding
functional or timing violations. Once the module has retrieved enough events, the generated
information can be downloaded to a PC to allow further examination or post-processing
of the results. The proposed approach may overcome the limited observability of modern
SoCs to support application debugging and validation tasks with fast reconfiguration
capabilities, achieving high efficiency.

Works such as [128]–[130], propose to store the trace generated on a buffer, such as
the Embedded Trace Buffer (ETB), analyze it afterwards from the software and detect
malicious attacks compromising security. This approach is limited in terms that the
checking software must be protected [128]. Additionally the checking process cannot be
performed online with application execution [129], increasing latency and performance
overheads, although this limitation could be partially overcome by using a multi-core
system and checking the trace of one core from another core [130].

The work in [131] introduces a hardware module to perform trace monitoring on Xilinx
Zynq UltraScale+ device [121] and identify security-threatening attacks such as code
reuse attacks. The hardware monitor leverages the instruction information provided by the
Embedded Trace Macrocell version 4 (ETMv4) in the device along with the Control-Flow
Graph of the executed application to compute and identify the signatures of correctly and
incorrectly executed branches. The module was able to successfully detect all of the attacks
performed by the author in three application cases representing different attack types.

In [132], the design of a hardware module capable of decoding ETMv4 trace protocol
for both instruction and data is described with detail. Such design is later used by the
same authors to develop a hardware monitor for data transfers [133] providing increased
observability for online verification and debugging purposes.

The approach in [134] exports the trace information, produced by the processing system
of a Xilinx Zynq-7000 device associated to an executed application, to an external host.

68

The host is a computer which is able to compare the branch sequence against the expected
Control-flow Graph of the application to detect faults produced by environmental effects
such as radiation. Authors identify that additional analysis on the trace information may
allow more insight about the events, such as the type of exception that conducted to an
execution timeout, or the fault detection latency. A fault injection campaign is performed
in the register file of the processor and detailed error rates are given per each register while
running different applications. Authors recognize that the trace analysis capabilities could
be implemented on a dedicated hardware module to speed up the fault detection process.
The module is then presented in [135], which is capable of decoding the trace information
received from the dual-core processing system. A configuration memory in the module
stores the valid sequences of branch addresses conforming the Control-Flow Graph, to
evaluate the correctness of the values of the Program Counter received from the trace.
The effectiveness of the hardware module under radiation is only analyzed through AVF
methods, and tested under a limited fault injection campaign.

Despite the previously described works could be partially applied to the objectives
of this work, almost none of them has been specifically conceived for the detection of
radiation induced errors, and none of them include radiation testing results. Additionally,
it must be noted that some of them have been published later than the start of this work
[127], [130]–[132], [134], [135].

This Thesis is devoted to develop new error detection and diagnosis techniques for
hard-core high-end COTS processors leveraging the information available at the trace
interface. The ARM CoreSight trace and debug subsystem has been identified as a target
technology to apply the developed techniques. It must be noted that very few documentation
about the use of ARM CoreSight trace interface for custom processor observation purposes
was available at the beginning of this Thesis. In fact, the most relevant documentation used
during the development of the work were the catalog and data sheet documents from the
manufacturers [117]–[120]. In addition, this is the first work intended to perform detection
and diagnosis for both data and control-flow errors in hard-core microprocessors through
the trace interface. Moreover, this work has been pioneer to provide radiation results on the
developed error mitigation techniques based on the trace interface for hard-core processors.

69

3. MATERIALS AND METHODS

This chapter describes the material resources and the research methodology followed
during this work. Due to the compendium of publications modality of this Thesis,
chapters 4 to 10 already include materials and methodology considerations. However,
some features are common to more than one publication and details are spread among
different chapters. This chapter is devoted to integrate all relevant materials and methods
to improve contextualization between them, give the reader a cohesive point of view and
provide more detailed descriptions where possible.

3.1. Resources

The development of this work has been supported by the use of specific electronic
devices and tools, access to specialized facilities and other auxiliary equipment.

3.1.1. Vehicle of study

3.1.1.a Zynq-7000 AP SoC

Zynq-7000 is a modern product line of devices manufactured by Xilinx. Launched
in 2012 with Zynq-7000 family [119] and extended in 2016 with Zynq Ultrascale+
family [121], they conform a set of devices which Xilinx denominates All Programmable
System-on-Chip (AP SoC). As a common feature, they all integrate a hard-core processing
system (PS) composed by one or more ARM microprocessor cores and a FPGA
programmable logic (PL) region in the same chip. The AP SoC denomination refers
to that both the processing system and the programmable logic can be programmed by the
user.

Zynq-7000 family has been extensively used within this work as a development
platform and vehicle of study. It has been selected due to the following reasons:

• Dual-core ARM Cortex-A9 hard-core processing system (PS). This is a high-end
processing architecture which presents representative elements common to other
modern, high-performance processors.

• Fast and large FPGA programmable logic (PL) region, in which additional hardware
modules can be implemented.

• Trace and debug CoreSight subsystem [118] including Program Trace Macrocell
(PTM) and Instrumentation Trace Macrocell (ITM).

70

• Flexible and versatile Extended Multiplexed Input Output (EMIO) interconnection
signals between PS and PL.

• Device novelty, although not immaturity at the date that this Thesis started, with
high interest by the radiation effects and space communities.

• Available and affordable evaluation and development boards supporting various
devices belonging to the Zynq-7000 family.

• Previous experience using these devices in the Diseño Microelectrónico y
Aplicaciones (Microelectronic Design and Applications, DMA) research group
at University Carlos III of Madrid UC3M, where the advisors of this Thesis had
carried related works.

Not only the Zynq-7000 device family, but also The Zynq Ultrascale+ device family
was also considered for this work and presents attractive features such as a more powerful
processing system and more advanced programmable logic technology. However, it was
discarded because it was a very recently launched product with expensive and scarce
available development boards at the date that this Thesis started. Additionally, by that time
the radiation effects community had already identified that these devices were susceptible
to single-event latchup (SEL) effects [136]–[138], which made them unattractive for space
applications. Given the higher availability and maturity of Zynq-7000 family, and its good
observed behavior under radiation [139], it was selected instead.

3.1.1.b ZYBO development board

Zynq-7000 devices must be mounted on an electronic board to conveniently support
development and testing activities. In this work, commercial ZYBO boards [140],
manufactured by Digilent have been extensively used for the development of the error
detection and diagnosis techniques, fault injection campaigns, and proton and neutron
irradiation campaigns. The ZYBO board mounts the XC7Z010-1CLG400C device of
the Xilinx Zynq-7000 family. ZYBO board provides attractive features for application
development in a cost-effective product with a compact form factor. The following features
have been mainly used in this work:

• Micro SD memory card slot. The board has the capability to boot the Zynq-7000
SoC from a configuration file in this memory. This feature has been extensively used
in fault injection and radiation testing.

• PMOD connectors for functionality expansion and connection to other devices.
PMOD connectors have been used in testing campaigns to collect data from the
device.

• Convenient USB connection for power supply, programming and communications
for application development.

71

• Buttons, LEDs and switches to support application development.

3.1.1.c PicoZed development board

Additionally to the ZYBO boards, a PicoZed development board [141], manufactured
by AVNET, was also used to support laser testing campaigns. PicoZed board was mounted
on a carrier board, called FMC board to provide connections with the rest of the test
setup. The PicoZed 7Z030 was used because it mounts a XC7Z030-1SBG485C device
of the Xilinx Zynq-7000 family with the peculiarity that it has not plastic cover so it is
very convenient for laser fault injection. Despite the different device part marking, it is
functionally equivalent to the one used with the ZYBO boards, as both belong to the Xilinx
Zynq-7000 family. PicoZed FMC board provides USB communication, buttons, switches
and LEDs for application development and also supports Micro SD system boot and
PMOD connectivity. However, the power supply and the programmer are not integrated
and must be connected externally.

3.1.2. Facilities

Radiation testing facilities have already been introduced in general terms in Chapter 2.
In this section, only the facilities used during the development of this Thesis and its relevant
features are discussed.

3.1.2.a Centro Nacional de Aceleradores (CNA), Seville, Spain

The Centro Nacional de Aceleradores (CNA) is a user-oriented accelerator facility in
Seville, Spain [142] with various radiation facilities and accelerators. The 18 MeV proton
Cyclotron has been extensively used in this work. It is an IBA 18/9 Cyclotron accelerator,
capable of accelerating proton up to 18 MeV energy. The cyclotron is installed inside a
radiation-shielded room and is remotely controlled by an operator. Several beam lines
are installed in this accelerator and most of them are used for radiopharmacy purposes.
However, an external line is provided in an adjacent radiation-shielded room to perform
experiments in Nuclear Physics. The particle beam passes through a thin window and goes
to the air before impacting on the target. This arrangement is very convenient as there is
no need to perform vacuum to conduct the experiments and also the space available for the
installation of the setup is not limited. A remotely controlled motorized table with step
motors allows the positioning of the targets with accuracy of 10µm. The facility provides
versatile connections to allow remote control of the experimental setup from the control
room. The DMA group at UC3M has a long history of partnership with CNA, pioneering
the use of this facility for electronics testing. Fig. 3.1 includes a picture of the setup used
at CNA during the tests performed for [J2] in this Thesis. In the picture, the external beam

72

line of the facility can be observed at the back and the ZYBO board containing the DUT is
placed in front of it.

Fig. 3.1. Experimental setup at CNA.

3.1.2.b Los Alamos Neutron Science Center (LANSCE), New Mexico, United
States

LANSCE [143] is a National User Facility at Los Alamos National Laboratory (LANL)
with one of the most powerful linear accelerators in the United States. It produces energetic
protons and neutrons for nuclear physics, material science, national security research and
fundamental science. Access to LANSCE radiation facility can be obtained by invitation.
The LANSCE experiments reported in this Thesis were performed after submitting a
proposal which was accepted by LANSCE’s evaluation board. A convenient feature
of the neutron facility is that several Devices Under Test (DUTs) can be irradiated at
the same time, given the low interaction of neutrons with matter. As a result, different
electronic boards with different DUTs can be arranged in line to simultaneously obtain
radiation-induced errors in all of them [33], [40]. Fig. 3.2 includes a picture of the setup
used at LANSCE during the tests performed for [J5] in this Thesis. In the picture, the
aligned arrangement of several DUTs one after the other can be observed.

73

Fig. 3.2. Experimental setup at LANSCE.

3.1.2.c University of Montpellier

The Institut d’Electronique et des Systèmes (IES) of the University of Montpellier has
broad experience performing laser fault injection testing. In its facilities, it is possible
to perform Single Photon Absorption or Two Photon Absorption injection techniques
[42]. Laser injection campaigns accomplished in this work have been performed on
the single-photon absorption microscope of IES laser testing facility. The test control
equipment allows to configure the laser wavelength, laser energy and the duration of the
laser pulses. The beam can be focused down to reduced spot sizes in the micrometer
range using magnification lenses. The laser source and optical elements are static and the
device is positioned on a motorized stage to allow precise positioning and scanning with
micrometer resolution. Additionally the test setup allow to obtain microphotograph images
from the surface of the device under test (DUT) to identify determine the areas for fault
injection.

The collaboration with University of Montpellier appeared as an synergy opportunity
after the presentation of developed error diagnosis techniques at NSREC 2019 conference.
Fig. 3.3 includes a picture of the setup used at Montpellier University during the tests
performed for [J6] in this work. In the picture, the board is placed on the motorized stage
under the laser magnification lenses.

74

Fig. 3.3. Experimental setup at Montpellier University.

3.1.3. Fault injection tool

This Thesis extensively uses fault injection to conveniently evaluate the developments
at desktop level in an inexpensive manner. The DMA group at UC3M has a long experience
in fault injection and has contributed key works in this topic. A specific software fault
injection methodology was developed for this Thesis based on the Code Emulated Upset
(CEU) approach [56]. The developed methodology consist in configuring a timer interrupt
in the processing system at a random instant during the execution of the application
software. When the interrupt takes place, the content of all processor registers is saved
on the stack in the processor memory. During the interrupt, a random bit is changed in
a random register in the stack content. When the interrupt is finished, the content of the
stack is restored on the processor registers, including the value with the injected error.
Alternatively, it is possible to inject an error in a random memory position instead of a
register. This mechanism can be easily applied in any type of software, with or without
operating system (OS). The described fault injection technique has been developed, with
participation of the author, as a code library written in C programming language to be
included in any application of interest with low effort.

3.1.4. Other equipment

In addition to the vehicle of study and the access to test facilities, other resources were
used during the development of this work.

75

3.1.4.a Xilinx Vivado and SDK development environment

To develop applications for the Zynq-7000 AP SoC, a programming environment is
used. Vivado is the tool provided by Xilinx for FPGA and SoC design and SDK is the
software development kit to develop software applications running in the SoC processors.

3.1.4.b Modelsim simulation engine

Modelsim simulator tool provided by Mentor has been used for VHDL simulation. It
has been selected due to a convenient command-based interface that supports automation
through Python scripting.

3.1.4.c Python scripting language

Python is an interpreted high-level general-purpose programming language with
powerful standard libraries and wide open-source community support. It has been used as
an scripting language for the automation of data collection task during testing campaigns
and also to post-process collected data to extract error counts, statistics and other metrics.

3.1.4.d RaspberryPi

RaspberryPi [144] is a common name for single-board computers (SBCs) developed
by the RaspberryPi Foundation that has gained high popularity because of its low cost,
modularity, and open design. In this Thesis, RaspberryPi computers have been used to
control test setups, oversee the behavior of the devices under test (DUTs) and collect test
data during test campaigns. The Department of Electronics Technology of the University
Carlos III of Madrid developed a custom test system based on RaspberryPi in combination
with electric relays to provide capability to power cycle and control up to four ZYBO
boards at the same time. This development was carried out in the frame of this Thesis with
the participation of the author. A variation of that development was performed to control
the PicoZed board.

3.2. Methodology

Provided that this work has been done under the framework of an Industrial Ph.D.
program, the methodology guidance is shared by both the university and the company.
Following the applicable regulation, the company designated a tutor to coordinate the
activities. As a key organization point, periodic meetings between the academic advisors,
the company tutor and the author were carried out. The main points addressed in such
meetings were:

76

• Analysis of partial and final results for each task.

• Revision of schedule and objectives according to the evolution of the activities.

• Look for possible industrial applications of this work.

The development of this work can be divided in four main tasks:

• Development. Control-flow and data error detection and diagnosis techniques have
been proposed, developed and implemented on an IP core in VHDL capable of
detecting and diagnosing errors using information from the trace interface. This task
has been the backbone of the work, and the rest are derived from it.

• Validation. In the radiation effects scientific community it is essential to perform
radiation testing for new techniques to be evaluated and the results to be accepted.

• Dissemination. During the development of this work, partial results have been
communicated to conferences and published in articles. This Thesis document is the
final documentation of the whole work.

• Industrialization. As an Industrial Ph.D. program, the research work has been
oriented to produce a result susceptible for industrialization and specific activities
have been performed in that way.

Additionally to the main tasks, other activities such as the participation on doctoral
meetings, seminars or training courses have been carried out by the author.

In general lines, it can be considered that the activities have been divided between the
university and the company as follows:

• University: Proposal, design, development and evaluation of error detection and
diagnosis techniques, including radiation testing.

• Company: Look for the application of the developed techniques in other projects of
the company and in the space industry.

• Both: Dissemination of results by participation on international conferences and
article publications, increasing the visibility of both parties in technical forums
related to the topic of this Thesis.

During the development of this Thesis, it was encouraged the contact with other
research entities, which was realized through up to three collaborations:

• Collaboration with Centro Nacional de Aceleradores: started in March, 2018, it
involved a close interaction to develop a test setup and methodology for this Thesis.

77

• Collaboration with Alicante University: started in February 2019 with the objective
of hardening multicore systems. It allowed the extension of the developed
techniques to multicore systems and involved injection and radiation campaigns.
This collaboration resulted in two conference communications as oral presentations
and two JCR journal articles to date.

• Collaboration with University of Montpellier: started in December 2019 with the
objective of aumenting the knowledge on the proposed error diagnosis techniques
by the use of laser fault injection. It has allowed deeper understanding of detection
and diagnosis capabilities and limitations by means of two laser injection campaigns
and has resulted in one conference communication as oral presentation and one
published article at IEEE TNS.

Globally, both the university and the company were thoroughly compromised with the
development of this Thesis and to closely collaborate in the development of complementary
activities to obtain the best possible results from this work.

A the end of each task, outcomes were analyzed and the planning could be updated if
needed. Obtained results and associated discussion and conclusions were reflected in a
report that could be replaced by a publication with the same purpose.

3.2.1. Chronology

The research work started in January, 2018 and were carried out in four years. In
general lines, during the first year, error detection techniques were developed, tested and
published. During the second year, the detection capabilities were combined with error
diagnosis techniques, resulting in more complex tests and additional publications. Finally
the industrialization and the development for this document were done during the the third
and fourth year. It is remarkable that the Covid-19 pandemic impacted on the schedule,
forcing to move forward some activities of the third year to an additional fourth year. The
availability of radiation facilities was also affected by the pandemic, which obliged to
modify the planned test campaigns and associated developments.

3.2.2. Development

The developed techniques have been implemented in an IP module designed in VHDL
hardware description language. Development activities included:

• Study of the application

• Definition of operation and interfaces

• Trace interface protocol review

78

• Codification of the IP module in VHDL

• Functional tests

• Design revisions and identification of areas for improvement

• Inclusion of selected improvements in the design

• Documentation of the last version of the design to offer to space industry

The development of the work performed in this Thesis has been a progressive task
which is reflected in the evolution of the different published articles included in the
compendium in this document. Two linked developments can be distinguished: error
detection and error diagnosis techniques.

3.2.2.a Error detection

The error detection techniques were firstly developed addressing control-flow errors.
For that purpose, the Program Trace Macrocell (PTM) trace specification [120] was
reviewed and implemented in the VHDL IP module. Validation was performed on
the first time by VHDL simulation and, after that, the module was implemented in the
programmable logic of the Zynq-7000 device on a ZYBO board and debugged against the
real trace interface of the processing system.

Hardware debugging was performed by connecting the IP directly to the trace port and
checking whether the IP was able to decode and interpret properly the trace information.
In the beginning of tests, design mistakes were identified thanks to a dedicated signal in the
IP indicating that a decoding error had been produced. In the absence of radiation or any
other disturbance, a design mistake was the most probable cause for it. To better analyze
the problem, the system was configured to collect the trace data in a buffer and print it at
the moment of the error. The collection of the trace at that moment allowed to replicate the
same problem on simulation and identify the design mistake. This approach also allowed
to obtain high amounts of real trace data to improve the knowledge about the protocol, in a
more straightforward and reliable manner than generating artificial trace data manually.
With this approach, the IP was quickly debugged.

After the design was stable on the test bench, control flow error detection techniques
were tested under fault injection and irradiation campaigns, and published in [J1], becoming
a pioneer work in the detection of radiation-induced faults through the trace interface in a
hard-core processor.

When the initial implementation of control-flow error detection techniques had been
validated, the same methodology was applied to data error detection techniques, which were
introduced in the IP by supporting the trace information from the Instrumentation Trace
Macrocell (ITM) [118]. VHDL simulations, hardware debugging, trace collection, fault
injection and radiation testing activities were also performed. The effective simultaneous

79

detection of control-flow and data error capabilities of the IP was demonstrated under fault
injection and proton irradiation and presented in RADECS 2018. In addition, an extended
version of that work was published in [J2]. To the best of our knowledge, this was the first
work aiming to detect both data and control-flow errors through the trace interface.

The selection of the software benchmarks running on the processing system during
the validation tests is a main key of this process. In the first hardware tests, simple
benchmarks were used to deliberately provoke the processor and the trace to generate
particular trace packets, for example conditional and unconditional branches of different
lengths, or exceptions. However, such custom made benchmarks are not representative
of real applications and particular cases may be omitted. For that reason, more complex
benchmarks were used later to finish the validation of the design and for fault injection and
radiation testing. In this Thesis, the matrix multiplication, quicksort and AES algorithms
were selected for the tests as they are very commonly used in this field [52]. The use
of common benchmarks also used by other authors in the microprocessor radiation
effects community is a remarkable consideration when evaluating and comparing for
the effectiveness of different error mitigation techniques [52].

Published results in [J1] and [J2] showed a big potential of the developed error detection
techniques both for research purposes, but also as candidates to be integrated in an industrial
application. For that reason, it was decided to extend the design activities to enhance
IP capabilities. With learned lessons from the first tests, techniques were improved and
refined leading to more complex designs. In [J3], a hybrid technique was proposed to
leverage the dual-core processing system in the Zynq-7000 device and execute a software
application in lockstep with data error detection provided by the replicated execution and
control-flow error detection performed by the developed IP simultaneously in both cores.
This approach was tested under fault injection showing good error detection capabilities
and was later tested under proton irradiation in [J7] also with high detection rates. In
[J5], the NEON SIMD coprocessor existing in Zynq-7000 processing system was reused
to optimize redundant computations and reduce the overheads of repeated operations in
replicated data, while data consistency and control-flow error detection were checked by
the developed IP. This work showed a very high error detection rates under proton and
neutron irradiation.

As a result, new error detection techniques for control-flow and data errors in
microprocessors have been obtained and integrated in a non-intrusive IP that operates
online with the processor with low latency.

3.2.2.b Error diagnosis

As an opportunity derived from the development of error detection techniques and
particularly due to the collection of trace data for IP design debugging, an error diagnosis
approach was envisaged. It turned out that, once the design was debugged, the collected
trace data became useful to get a snapshot of the the moments immediately before the error

80

occurred, both in fault injection and irradiation campaigns. With that information, it was
possible to discriminate a wide range of error types and also to contextualize each error in
a particular moment in the execution of the application code.

This new feature was first proposed in [J2] to diagnose the cause of radiation-induced
errors, which is one of the current main challenges in microprocessor testing and
hardening [33]. Diagnosis capabilities would allow to evaluate vulnerabilities of different
microprocessor components. Despite error diagnosis was not initially planned, it was
found promising and the development was undertaken in parallel with the enhancement
of the error detection techniques. Error diagnosis development included the identification
of the most relevant trace information to perform error diagnosis and to include in the IP
the capabilities to gather such information and provide it in the moment of an error. The
culmination of this work was presented in NSREC 2019, gaining high relevance, and an
extended version was published in [J4]. After that, an additional evaluation of the diagnosis
approach was performed with laser fault injection and published in [J6].

3.2.3. Validation

Developed techniques implemented in the designed IP have been progressively
validated throughout the performed activities. Simulation testing was initially performed to
validate the implementation of the trace protocol. However, that was only for development
purposes. For the radiation effects scientific community to accept new error mitigation
techniques, irradiation campaigns must be carried out.

Radiation testing was generally planned to be performed in the first or the last quarter
of each year to obtain and analyze data in advance to be communicated to the most relevant
conferences in this sector. Conferences generally fix the deadline for communications, so
it is important to have the results ready to be communicated in time.

The number of facilities suitable for radiation testing around the globe is limited, and
they are highly demanded so the tests must be planned in advance. The main risk of
radiation testing is on the availability of radiation facilities and the high cost. To reduce
the risk of unavailability, reservation was performed in as much advance as possible and
contingency plans were proposed with alternative facilities to minimize the impact in the
work schedule.

In this Thesis, six main radiation campaigns were performed: three in CNA with low
energy protons, one in LANSCE with neutrons and two in Montpellier University with
laser fault injection.

An additional risk of performing radiation testing is to find issues during the test which
affect the quality of the obtained data. To maximize success of radiation campaigns, fault
injection was performed before each radiation campaign, and using the most similar setup
as possible.

81

The test vehicle for radiation campaigns was mainly the ZYBO board for fault injection,
proton and neutron irradiation tests. For these tests, several boards were needed as they
became generally damaged by the radiation. Additionally it was necessary to design
custom boards or cabling to connect to the vehicle and obtain the information.

The setup used for fault injection and radiation testing was almost similar. The ZYBO
test vehicle was equipped with a Micro SD card for automatic boot and connected to
a RaspberryPi with a USB cable to provide serial communication. The RaspberryPi
also controlled the power supply of the test vehicle to perform a power cycle whenever
necessary. Additionally, the RaspberryPi constantly monitored dedicated error signals on
the PMOD port of the test vehicle through GPIO to determine whether the IP had detected
an error or not.

When performing fault injection tests, the RaspberryPi was used to provide a random
number to the application running at the ZYBO board to allow the fault injection to occur
in a different moment and location in each execution.

A basic test setup is shown in Fig. 3.4 with a RaspberryPi controlling a single ZYBO
board. It was used during fault injection campaigns and at CNA and LANSCE campaigns
as can be observed in Fig. 3.1 and Fig. 3.2 respectively, where the RaspberryPi devices are
placed next to the DUT, outside the beam.

Fig. 3.4. RaspberryPi connected to ZYBO board for test campaigns.

During the tests, the DUT was constantly sending a message to the RaspberryPi
indicating its error status according to software checks. The RaspberryPi was executing
a Python script to automatically control the experiment and log the messages from the
DUT in its internal storage for further analysis. In the case that the RaspberryPi stopped
getting the status message, then a SEFI could be assumed. Similarly, in the case that the
software-implemented detection techniques on the benchmark detected any error, the status

82

message was modified to identify the problem. Finally, the state of the dedicated error
signals of the IP was also monitored by the RaspberryPi. The RaspberryPi logged any
error situation and performed a power cycle on the DUT whenever necessary.

Upon the detection of an error by the IP, the application in the DUT entered in a
special function to print the most recent trace data through the serial port. The RaspberryPi
collected the trace data and saved it on a dedicated file in its internal storage for further
analysis before performing the power cycle.

After the experiments, log files were analyzed and processed with the help of PC-based
tools as office programs and custom-developed python scripts for automated generation of
results.

3.2.4. Industrialization

The industrialization can be considered as the final step of the development process.
However, the whole design was performed with industrial orientation from the beginning.
The IP was oriented as a saleable product. By this task, this Thesis wanted to enhance
the capabilities and available technologies at Arquimea in the field of microprocessors for
space as a competitive advantage. For that purpose, meetings with potential users were
carried out to explain industrial applications and gather their interests.

The main task of the industrialization was the proposal of the IP as a product
commercialized by Arquimea to be used in space applications. For that purpose, the
IP design was documented and refined to obtain a version ready for industrialization.
Additionally, potential applications were been identified and proposed. The IP was
proposed the European Space Agency (ESA) as a project in an open call for ideas, and it
was accepted for contract.

As a result, a new project for the European Space Agency (ESA) involving Arquimea
and University Carlos III of Madrid (UC3M) started in the last quarter of 2021. The project,
which is out of the scope of this Thesis, has three main objectives:

• To expand the capabilities of the IP developed in this Thesis to support a wider range
of ARM devices, by introducing new decoding capabilities for more trace sources.

• To review and document the resulting IP developed to be offered to third-party
customers that may be interested in explore opportunities to integrate it in new
applications.

• To test the new developments under heavy ion irradiation to obtain new results
relevant for the space community to consider the use of the new IP in future missions.

83

3.2.5. Dissemination

The research performed in this work was communicated to the scientific community
by the participation in international conferences and publication in research journals.

It is remarkable that the outcomes of this Thesis were communicated and accepted
in four consecutive editions at the most relevant radiation effects conference in Europe,
namely RADECS (Radiation and its Effects on Components and Systems). In 2018, a
poster communication was presented, and oral presentations were performed by the author
in 2019, 2020 and 2021. One communication was also accepted as poster for the most
relevant radiation effects conference in America, namely NSREC (Nuclear and Space
Radiation Effects Conference). Another relevant European conference in the reliability
topic is the European Symposium on Reliability of Electron Devices, Failure Physics and
Analysis (ESREF), where the author has performed two oral presentations in 2018 and
2019. The developed techniques and test results were presented as they were developed
and obtained in a progressive manner.

Given the industrial orientation of this Thesis, the developed work was also presented
at the OBDP (On Board Data Processing), industrially-oriented conference organized
by ESA in 2021. In this case, the developed IP along with its capabilities was globally
presented in an oral presentation as a new building block to be integrated in the processing
system of a space application:

[C1] M. Peña-Fernandez, A. Lindoso, and L. Entrena, “IP to detect and diagnose errors in
COTS microprocessors through the Trace Interface”, presented at the 2nd European
Workshop on On-Board Data Processing (OBDP2021), Jun. 2021. doi: 10.5281/
zenodo.5521538

Regarding publications, the most relevant research journal in the radiation effects topic
is IEEE Transactions on Nuclear Science (JCR Q2), in which the author published five
articles in the framework of this Thesis. Additionally, Microelectronics Reliability by
Elsevier (JCR Q3) is another important journal in the reliability field, in which two more
articles were published. The complete journal publication list is as follows:

[J1] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, S. Philippe, Y.
Morilla, and P. Martin-Holgado, “PTM-based hybrid error-detection architecture for
ARM microprocessors”, Microelectronics Reliability, vol. 88-90, pp. 925–930, Sep.
2018. doi: 10.1016/j.microrel.2018.07.074 (JCR Q3)

[J2] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Morilla,
and P. Martín-Holgado, “Online error detection through trace infrastructure in
ARM microprocessors”, IEEE Transactions on Nuclear Science, vol. 66, no. 7,
pp. 1457–1464, Jul. 2019. doi: 10.1109/TNS.2019.2921767 (JCR Q2)

84

https://doi.org/10.5281/zenodo.5521538
https://doi.org/10.5281/zenodo.5521538
https://doi.org/10.1016/j.microrel.2018.07.074
https://doi.org/10.1109/TNS.2019.2921767

[J3] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. García-Valderas, L. Entrena,
A. Martínez-Álvarez, and S. Cuenca-Asensi, “Dual-core lockstep enhanced with
redundant multithread support and control-flow error detection”, Microelectronics
Reliability, vol. 100-101, no. 113447, Sep. 2019. doi: 10.1016/j.microrel.
2019.113447 (JCR Q3)

[J4] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “The use of
microprocessor trace infrastructures for radiation-induced fault diagnosis”, IEEE
Transactions on Nuclear Science, vol. 67, no. 1, pp. 126–134, Jan. 2020. doi: 10.
1109/TNS.2019.2956204 (JCR Q2)

[J5] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “Error
detection and mitigation of data-intensive microprocessor applications using SIMD
and trace monitoring”, IEEE Transactions on Nuclear Science, vol. 67, no. 7,
pp. 1452–1460, Jul. 2020. doi: 10.1109/TNS.2020.2992299 (JCR Q2)

[J6] M. Peña-Fernandez, A. Lindoso, L. Entrena, I. Lopes, and V. Pouget,
“Microprocessor error diagnosis by trace monitoring under laser testing”, IEEE
Transactions on Nuclear Science, vol. 68, no. 8, pp. 1651–1659, Aug. 2021. doi:
10.1109/TNS.2021.3067554 (JCR Q2)

[J7] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, S. Cuenca-Asensi, L. Entrena,
Y. Morilla, P. Martín-Holgado, and A. Martínez-Álvarez, “Hybrid lockstep technique
for soft error mitigation”, IEEE Transactions on Nuclear Science, 2022. doi: 10.
1109/TNS.2022.3149867 (JCR Q2)

85

https://doi.org/10.1016/j.microrel.2019.113447
https://doi.org/10.1016/j.microrel.2019.113447
https://doi.org/10.1109/TNS.2019.2956204
https://doi.org/10.1109/TNS.2019.2956204
https://doi.org/10.1109/TNS.2020.2992299
https://doi.org/10.1109/TNS.2021.3067554
https://doi.org/10.1109/TNS.2022.3149867
https://doi.org/10.1109/TNS.2022.3149867

4. PTM-BASED HYBRID ERROR-DETECTION
ARCHITECTURE FOR ARM MICROPROCESSORS

Abstract

This work presents a hybrid error detection architecture that uses ARM PTM trace
interface to observe ARM microprocessor behaviour. The proposed approach is suitable
for COTS microprocessors because it does not modify the microprocessor architecture
and is able to detect errors thanks to the reuse of its trace subsystem. Validation has
been performed by proton irradiation and fault injection campaigns on a Zynq AP SoC
including a Cortex-A9 ARM microprocessor and an implementation of the proposed
hardware monitor in programmable logic. Experimental results demonstrate that a high
error detection rate can be achieved on a commercial microprocessor.

This chapter has been published as an article.

[J1] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, S. Philippe, Y.
Morilla, and P. Martin-Holgado, “PTM-based hybrid error-detection architecture for
ARM microprocessors”, Microelectronics Reliability, vol. 88-90, pp. 925–930, Sep.
2018. doi: 10.1016/j.microrel.2018.07.074

4.1. Introduction

Microprocessors are commonly used in a wide variety of applications, including
safety-critical and high availability missions. In these applications, meeting the reliability
requirements in an effective manner is a challenge. Among the multiple factors that may
affect reliability, radiation-induced soft errors have the potential to cause the highest failure
rate of all other reliability mechanisms combined [27]. Therefore, they are a primary
concern in applications working in extreme environments, such as space, and a growing
concern also at the ground level.

Although there are radiation-hardened microprocessors specifically developed for these
type of environments, they are generally expensive and have high power consumption.
Moreover, their performance generally lags behind commercial processors. As a
consequence, there is a growing interest in the use of COTS (Commercial Off-The-Shelf)
microprocessors even for space applications [6]. In this case, error detection or mitigation
must be provided taking into account that the hardware cannot be modified.

Software fault-tolerance techniques [145] introduce redundancy in the code in order
to detect or correct errors. These techniques have been widely studied and are the basic
solution for COTS microprocessors. However, they are limited because processors contain

86

https://doi.org/10.1016/j.microrel.2018.07.074

many sensitive resources that cannot be directly accessed through software. In addition,
they introduce significant performance penalties. These limitations are particularly relevant
in the case of control-flow error mitigation [87].

To overcome these limitations, the use of hardware monitoring has been proposed
[1]. Hardware monitoring uses an additional piece of hardware that can observe the
execution flow of the processor through a suitable interface. Debug resources, which
are commonly available in most microprocessors to facilitate system development and
software debugging, can be reused for this purpose. These resources are useless during
normal operation, so they can be reused for on-line monitoring in an inexpensive way. On
the other hand, they can provide internal access to the microprocessor without disturbing
it. In particular, the use of program trace interfaces has been proposed and demonstrated
for soft cores [1], [5], [122]. In a soft core, it is possible to use a low-level or custom
trace interface that provides great flexibility and performance. However, in the case of
commercial cores, trace interfaces are usually complex and require trace information to be
decoded and synchronized for the application.

In this work we propose and evaluate a hybrid error-detection architecture for ARM
processors. ARM is currently one of the most popular choices for embedded systems and
supports debug and trace functions through the CoreSight™ subsystem [118]. CoreSight
is actually a family of IP (Intellectual Property) modules. In this paper, we focus on the
Program Trace Macrocell (PTM), a CoreSight component that provides program-flow trace
information. The PTM is the basic program flow trace macrocell for the ARM Cortex-A9
architecture [120].

In the proposed hybrid approach, the code is hardened for data errors, using duplication,
while control-flow errors are detected by a hardware monitor attached to the PTM through
the trace port. The hardware monitor continuously receives and decodes trace packets
along the execution of the application program, extracts the control-flow information and
checks it on-line.

Validation of the proposed hybrid architecture has been performed with fault injection
and proton irradiation campaigns. Fault injection is a widely used approach to evaluate
the effects of faults in an inexpensive way, but it is limited to user accessible components.
Additionally, a proton irradiation campaign has been performed to test the proposed hybrid
architecture in a more realistic way. Both tests provided very similar results. We show
how the combination of data duplication and hardware monitoring provides a good error
detection capability. We also evaluate the contribution of each part of the system to the
error detection rate.

The remaining of this paper is as follows. Section 4.2 summarizes related work
and introduces some concepts about hybrid architectures based on the trace interface.
Section 4.3 describes the proposed hybrid architecture. Section 4.4 shows the experimental
results. Finally, Section 4.5 presents the conclusions of this work.

87

4.2. Related work

Microprocessor hardening techniques are usually divided into software, hardware, and
hybrid techniques [145]. The type of detected errors by all these techniques is commonly
divided into errors affecting control- flow and errors affecting data. Control-flow errors
modify the execution flow causing the microcontroller to execute a different instruction
than the one that had to be executed. Data errors affect exclusively to program data.

Software techniques modify the application software to detect or correct errors. The
main advantages of software techniques are flexibility and ease of implementation.
Generally, software techniques require larger execution time and increase memory
usage (due to the software modifications and required additional storage for comparison
information). Software techniques can be also divided into data and control-flow
techniques.

Data techniques are commonly based in duplication. Data duplication consists in
duplicating all variables used in a program. Original data and duplicated data must perform
the same operations. During program execution, duplicated and original data must be
checked. Errors are detected when a difference in both data sets is found. In [65] a set of
rules are defined to modify the software for this purpose. This work achieves a very good
error coverage but with a high impact in area and execution time. In order to solve these
limitations, duplication can be applied at different levels, looking for a trade-off between
error coverage and performance penalty. Duplication can be performed at instruction,
function or even program level. Other possibilities that are present in the literature to
decrease the performance and size penalties are based in reducing the number of data
checkpoints or limiting the duplicated data. In [67] instead of duplicating all data, specific
variable sets are duplicated. Ref. [66] evaluates the relevance of variables and applies a set
of rules for selective duplication in order to reduce the impact of duplication.

The most common software control-flow techniques are based on assertions or
signatures. Signature-based techniques commonly divide the program code into basic
blocks. A basic block is a set of instructions with no branches except for possibly the
last one. At compilation time a signature is assigned to every basic block. At execution
time, the signatures are computed and checked at the end of every basic block. It must
be noted that compilation time signatures require additional storage that may introduce
a significant memory size penalty. Examples of these techniques are CEDA [62], ECCA
[58] and YACCA [61]. Assertion- based techniques modify the code by inserting special
statements (assertions) that check the data-flow correctness. In this case, error coverage
can be affected by the assertion location and also by the information included in it, so that
they are application-dependent. An example of the use of assertions can be found in [79].

Hardware techniques modify the circuit architecture to harden it. A well-known
example of these techniques is TMR (Triple Modular Redundancy). In the case of COTS
microprocessors, the architecture is not commonly available. In addition, a new device

88

has to be manufactured to include the hardware modifications. These drawbacks make the
application of this kind of techniques unfeasible for COTS in most cases.

Alternatively, error detection in microprocessors can be accomplished by connecting
additional external hardware modules to observe the system behaviour. The error coverage
usually depends on the capacity of observation through the feasible connections. Several
works have used this approach, proposing hardware modules [85], [86], [146] that range
from simple circuits to very complex ones that could be considered similar in complexity
to the observed microprocessor. These hardware modules are commonly named watchdog
processors. Watchdog processors can also be classified into active and passive. Passive
watchdog processors can be used to check signatures or assertions inserted in the software
executed by the microprocessor. They commonly require additional memory to store
the values for comparison. Active watchdog processors decrease the memory needs but
increase the complexity and the required area. These processors are able to execute a
simplified version of the program executed by the microprocessor. Examples of these
processors are proposed in [86], [146].

Hybrid techniques combine both software and hardware techniques taking advantage
of their individual benefits. The most common approach is to apply software techniques for
data-flow hardening, as data is more complex to observe externally, and use the hardware
monitor to detect control-flow errors. For instance, in [88] a hardware module is used to
monitor the control flow while software fault tolerance techniques are used to detect errors
in the data-flow.

Microprocessors are commonly observed through memory buses or through the trace
interface. A trace subsystem is commonly included in most microprocessors to support
software debugging. When the debugging process is finished, this part of the circuit is not
used. In [1], an extensive overview of the use of the trace interface for microprocessor
observation is presented. The use of the trace subsystem for on-line monitoring was first
proposed in [2] to observe a LEON3 microprocessor. In this work, several microprocessors
were executing the same software at different times. During execution, signatures were
generated from the available trace information. The coverage can vary depending on the
selected information that is used to obtain the signatures. An extended approach was
proposed in [3], where critical tasks are replicated (in the same microprocessor or in
different microprocessors) and the information provided by the trace interface is compared
for both executions. The comparison is accomplished by an external hardware module that
computes a signature based on trace information. Other approaches have been proposed
that make a more elaborated use of the trace information. In [4], a hybrid technique
is proposed using the trace interface to harden the execution flow while data errors are
handled with SWIFT-R technique. A new technique was proposed in [5] that compares
the program flow information retrieved from two different points: the trace interface and
the memory bus. This technique was able to detect all control-flow errors in a LEON3
microprocessor.

89

4.3. Hybrid architecture

4.3.1. Hardware monitor

In this paper we present a hardware monitor that observes the execution of an ARM
Cortex-A9 core through its trace interface. The hardware monitor is capable of decoding
and checking program trace information. It has been developed as an IP core that can
be configured as a system peripheral. A Xilinx Zynq-7010 [119] All Programmable
System-on-Chip (AP SoC) device, including a dual-core ARM Cortex-A9 processing
system, has been chosen as the test platform for the proposed system. An overview of the
complete system is shown in Fig. 4.1.

Fig. 4.1. Proposed system overview.

The trace interface provided by the ARM Cortex-A9 is based on the CoreSight™
technology. CoreSight [118] is a family of IP modules intended to support the needs
for debug access, instruction tracing, cross-triggering and time-stamping. Some of the
most common CoreSight components are represented on the left side of Fig. 4.1 as the
Instrumentation Trace Macrocell (ITM), the Fabric Trace Monitor (FTM), the Funnel, or
the Trace Port Interface Unit (TPIU). In this work, we focus on one specific CoreSight
component, called Program Trace Macrocell (PTM). The PTM is a real-time module that
provides instruction tracing of a processor. It is a CoreSight component of the trace source
class based on the ARM Program Flow Trace (PFT) architecture specification [120]. Two
PTM units are provided in the Zynq-7010 AP SoC, called PTM0 and PTM1, one for each
core.

The PTM produces useful information to understand the operation of the processor
in a format designed to optimize bandwidth. This is achieved by generating compressed
data, which contains just the minimum information required to reconstruct the processor
execution flow. To enable correct interpretation of core execution, ARM PFT architecture
also provides full information about exceptions, the instruction set state, security state and
current Context ID of the processor. The information is formatted in packets. Each packet
is composed of a variable, but bounded, number of 8-bit words. To distinguish between

90

different packet types, the first word of each packet, called the header, must be checked and
decoded. The ARM PFT architecture specification ensures a unique header for each packet
type to guarantee the correct interpretation of the enclosed information. With respect
to this protocol, it is important to note that all packets must be correctly identified and
delimited to prevent the monitor from getting lost, regardless of their relevance for the
checking process.

A hardware monitor has been developed based on the ARM PFT architecture
specification to decode and extract the trace packets generated by the PTM. This monitor
has been implemented in the programmable logic of a ZYNQ-7010 and connected to the
ARM Processing System through the CoreSight Trace Port Interface Unit (TPIU) using
Zynq EMIO (Extended Multiplexed I/O) interface. Trace information is produced by the
PTM and driven through the Funnel to the TPIU, so the corresponding Funnel input must
be enabled. All involved CoreSight components are configured and enabled by software
during the microprocessor initialization.

During operation, the hardware monitor receives and decodes trace packets. In
the ARM PFT protocol, the amount of words in each packet is variable and only by
identifying the last word in one packet it is possible to identify the header of the next
packet. Also, data contained in each word may be relevant to interpret the next ones.
For these reasons, a pipelined architecture has been implemented to reliably extract trace
information irrespective of the length of the received packets or their order. This way, each
packet can be correctly identified and delimited, making the hardware monitor continuously
aware of the type of packet which is currently being decoded.

Once the hardware monitor is able to identify and delimit all packet types, any further
functionality can be implemented using information available in the received packets.
In our application, the available information is used to obtain and monitor the Program
Counter (PC) of the ARM processor. The PC value is obtained using information from
three main types of packets: I-sync packet, Branch Address packet and Waypoint Update
packet. With this method, the PC value can be updated periodically, in every waypoint.
ARM PFT architecture specification defines a waypoint as a point where an instruction
might involve a change in the program flow. The described functionality is called a PC
follower and provides updated PC value information that can then be used to determine
the processor behaviour during execution and detect if it is correct or not.

To detect control-flow errors, a range checking method has been implemented. The
hardware monitor has been designed to allocate up to eight configurable PC ranges, each
of which can be configured through the AXI peripheral interface. These ranges have been
named confidence ranges, and they determine allowed PC values during execution. In
practice, a user must configure confidence range values with the addresses where the user
application functions are stored. Any time the hardware monitor detects that actual PC
value is not within any of the valid confidence ranges, an error signal is asserted.

91

4.3.2. Data error detection

The error detection capabilities provided by the hardware monitor are complemented
by conventional software techniques based on data duplication. Basically, all variables are
duplicated and all operations are also duplicated on the variable copies. Data consistency
checks are also included in the software. They are performed just after variable modification
to minimize error detection latency. As mentioned in Section 4.2, variable duplication can
be optimized to reduce the overheads. However, in the implementation used in this work
all variables were duplicated for the sake of completeness.

4.4. Experimental results

The proposed approach has been tested with proton irradiation and fault injection
campaigns. A common experimental setup was used for both experiments in order to make
the results as coherent as possible. The experimental setup is described in Section 4.4.1.
Then, Sections 4.4.2 and 4.4.3 describe the performed experiments and the results obtained
in each case.

4.4.1. Experimental setup

For the experiments we used commercial boards, namely Zybo boards. Zybo contains
a XC7Z010 device from Zynq-7000 AP SoC family of Xilinx, which includes a dual core
ARM Cortex™-A9 processor. One single core of the device was used, running at the
nominal 650 MHz clock frequency. The device also includes a Programmable Logic (PL)
part which was used to implement the proposed hardware monitor.

Fig. 4.2 shows a picture of the experimental setup. The Device Under Test (DUT) is
included in the Zybo board. The control of the experiment is performed by an external
control board that collects and records all the information about the errors that occur during
the experiment. The control board can also restart and reset the DUT when non-recoverable
errors are observed.

Fig. 4.2. Experimental setup overview.

92

All the necessary configuration data, including the boot program, the PL configuration
bitstream and the application software program are stored in an SD card that is copied
to OCM (On Chip Memory) when the device is turned on. As our proposed hardware
monitor is located in the programmable logic of the device, it can also be affected by errors.
To mitigate these errors, the Xilinx Soft Error Mitigation (SEM) Controller IP was used.
Xilinx SEM IP can detect, correct and classify SEUs in the configuration memory of the
PL. During the experiments, the SEM is connected to the control board to send all the
information about SEU detection, correction and classification. Errors in programmable
logic that cannot be corrected by the SEM trigger a reprogramming of the device by the
external control board.

We have used a matrix multiplication application software benchmark for the
experiments. Following the proposed hybrid solution, the software benchmark was
modified to implement data duplication, as described in Section 4.3.2. The benchmark
was compiled with Xilinx SDK environment and minimum optimization effort (-O0) in
order to prevent the compiler from eliminating duplicated variables. The benchmark is
running an infinite loop computing the matrix multiplication of 32×32 elements arrays.
The complete software size is approximately 111 kB.

Errors were classified according to the following categories:

• Hang error: Microprocessor cannot continue normal execution and requires the
system to be restarted and reconfigured. This category takes into account Hang
errors that are detected only by the external control board.

• Detected Hang error (Det Hang): Hang errors that are detected by the proposed
hardware monitor and the external control board.

• Detected data error (Det. SW): Software data duplication has detected a discrepancy
in duplicated data. These data errors are detected by the software checks and reported
to the external control board.

• Communication error (Comm): Communication between the FPGA and the external
control board is experiencing a malfunctioning.

4.4.2. Proton irradiation

In order to test the proposed approach we have performed a proton irradiation
experiment that took place in March of 2018 at CNA (Centro Nacional de Aceleradores),
Spain. The experiments were performed using the external beam line installed in the 18/9
IBA compact cyclotron. The DUT was irradiated in open air with 15 MeV protons. The
energy of incident protons in the silicon active area is in the order of 10 MeV, which is
enough to produce events for the used technology of 28 nm without the need for thinning
the devices [147]. The total fluence was 1.6 × 1012 p/cm2.

93

Table 4.1 shows the number of observed errors and their percentage with respect to the
total number of errors for each error category.

Table 4.1. EXPERIMENTAL RESULTS OF PROTON IRRADIATION.

Error type #Errors %Errors

Hang 7 2.30%
Comm 3 0.98%
Det. SW 236 77.38%
Det Hang 59 19.34%
Total 305 100.00%

Experimental results show that the proposed approach presents a high capacity of error
detection and is able to detect 96.72% of the observed errors. Considering the errors that
can be observed by the external hardware monitor, it can detect 89.39% of the observed
Hang errors.

The total cross section is 1.91×10−10cm2 with a 95% confidence interval between 1.69×
10−10cm2 and 2.12 × 10−10cm2. When only undetected errors are considered (categories
Comm and Hang from Table 4.1), the cross-section reduces to 6.25 × 10−12cm2 (3.0 ×
10−12cm2 - 1.15 × 10−11cm2), which is more than 30 times smaller.

4.4.3. Fault injection

Complementarily to the proton irradiation experiment, we tested our proposed approach
with fault injection. We injected faults in the registers in the microprocessor to evaluate
the microprocessor behaviour in a more detailed way. For the injection we have used the
very same experimental setup that was utilized in the radiation experiments.

The implemented fault injection approach is based on the Code Emulation Upset
technique [56]. This approach is summarized as follows. A timer is configured to trigger
an interrupt at a random instant. Upon interruption, the full set of registers of the ARM
microprocessor is saved on the stack, so that they are available for fault injection. Then, a
bit-flip is injected in a randomly selected bit of one of the registers. When the processor
returns from the interrupt, the registers are restored from the stack and the single bit
injected fault becomes effective. The execution is resumed and is let running for several
iterations of the tested application software.

A preliminary run of the application software is used to measure its execution time,
which is used as the maximum range for random generation of injection instants. The
injected register and bit are also randomly selected. Random seeds are generated externally
and provided to the device when it is restarted in order to ensure that random values are
generated without bias.

94

The ARM processor contains a large set of registers. In particular, it uses banked
copies of some registers, with the current register selected by the execution mode. In
addition, the Single-Instruction Multiple Data (SIMD) and floating-point coprocessors
have their own set of registers, which can also be saved in the stack. Faults can be injected
in any register using our approach. However, fault injection was performed only on the
ARM core registers at the application level view to avoid unnecessarily injecting faults
in registers which were not used. Some registers need to be treated in a specific way
considering their behaviour. Especially, fault injection in the Program Counter (PC) was
actually implemented through the Link Register (LR), because the PC takes the contents
of the LR upon return from interrupt.

The results of the fault injection campaign are summarized in Table 4.2. We injected a
total of 53,488 faults, of which 12,040 (23.46%) produced observable errors. The proposed
approach detected 95.94% of the errors with a 95% confidence interval of ±1.71%. The
external monitor detected 89.65% of the Hang errors, with a 95% confidence interval of
±2.65%. These results are in line with those obtained in the proton irradiation experiment,
which are within the calculated 95% confidence intervals. The only significant difference
is that Hang errors occurred more frequently under fault injection, which is due to the
narrower focus of the fault injection experiment. However, the hardware monitor was able
to detect a similar amount of errors in both experiments.

Table 4.2. EXPERIMENTAL RESULTS OF FAULT INJECTION.

Error type #Errors %Errors

Hang 509 4.06%
Comm 0 0.00%
Det. SW 7631 60.81%
Det Hang 4409 35.13%
Total 12549 100.00%

Fig. 4.3 shows a comparison of errors on a register basis. Fault injection was performed
in the complete register file, but only a subset of registers was really used due to the
compilation options. For clarity, only the registers that produce at least one error are
reported. The frame pointer (FP) and the program counter (PC) are the most critical
registers and provoke an error for almost every bit-flip injected in them. For the rest of the
registers, error sensitivity may vary depending on their usage.

4.5. Conclusions and future work

This work presents a hybrid architecture that can monitor ARM microprocessor
execution thanks to the observation of the program flow trace provided by PTM trace
module. This solution presents a feasible and non-intrusive way of detecting errors in

95

Fig. 4.3. Errors by register.

ARM-based COTS with reduced impact in area. Experimental results demonstrate the high
error detection capabilities of the proposed approach.

The proposed approach has been tested with proton irradiation and fault injection.
Notably, the results of both tests were very similar, although fault injection was limited to
the ARM core registers. Future work is oriented to enhance the error detection capabilities
based on the trace information.

Acknowledgements

This work was supported in part by the Spanish Ministry of Economy and
Competitiveness under project ESP2015-68245-C4-1-P and by the Community of Madrid
under grant IND2017/TIC-7776.

References

[1] L. Entrena et al., “Fault-tolerance techniques for soft-core processors using the
trace interface”, in FPGAs and Parallel Architectures for Aerospace Applications.
Soft errors and Fault-Tolerant Design, Springer, 2016, pp. 293–306.

[2] M. Grosso, M. S. Reorda, M. Portela-Garcia, M. García-Valderas, C. López-Ongil,
and L. Entrena, “An on-line fault detection technique based on embedded debug
features”, Proc. 16th IEEE International On-Line Testing Symposium, pp. 167–172,
2010.

[3] M. Portela-García et al., “On the use of embedded debug features for permanent and
transient fault resilience in microprocessors”, Microprocessors and Microsystems,
vol. 36, no. 5, pp. 334–343, 2012.

[4] L. Parra et al., “Efficient mitigation of data and control flow errors in
microprocessors”, IEEE Transactions on Nuclear Science, vol. 61, no. 4,
pp. 1590–1596, 2014.

96

35% 28,79% - 26,-43%
Vl 30% 0

19,16%
.... 25% (I)

ro 20% 14,60% +-'
0 15% +-'
Vl 10%
0

5% 0~06%-....
LU

0%
rO rl r2 r3 FP r12 PC

Register

[5] L. Parra et al., “A new hybrid nonintrusive error-detection technique using dual
control-flow monitoring”, IEEE Transactions on Nuclear Science, vol. 61, no. 6,
pp. 3236–3243, 2014.

[6] L. Entrena et al., “Flexible approaches to fault-tolerant microprocessors for space
applications”, Proc. Data Systems in Aerospace (DASIA), ESA Special Publication
SP-732, May 2015.

[27] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies”, IEEE Transactions on Device and Materials Reliability, vol. 5,
no. 3, pp. 305–316, Sep. 2005.

[56] R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting error rate for
microprocessor-based digital architectures through C.E.U. (Code Emulating
Upsets) injection”, IEEE Transactions on Nuclear Science, vol. 47, no. 6,
pp. 2405–2411, Dec. 2000.

[58] V. Nair, H. Kim, N. Krishnamurthy, and J. Abraham, “Design and evaluation
of automated high-level checks for signal processing applications”, Proc. SPIE
advanced algorithms and architectures for signal processing conference, Aug.
1996.

[61] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante, “Soft-error
detection using control flow assertions”, Proc. 18th IEEE Symposium on Defect
and Fault Tolerance in VLSI Systems, pp. 581–588, 2003.

[62] R. Vemu and J. A. Abraham, “CEDA: Control-flow error detection through
assertions”, Proc. 12th IEEE International On-Line Testing Symposium (IOLTS),
pp. 151–158, 2006.

[65] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda, and
M. Violante, “Experimentally evaluating an automatic approach for generating
safety-critical software with respect to transient errors”, IEEE Transactions on
Nuclear Science, vol. 47, no. 6, pp. 2231–2236, 2000.

[66] B. Nicolescu and R. Velazco, “Detecting soft errors by a purely software approach:
Method, tools and experimental results”, Design, Automation and Test in Europe
Conference, pp. 57–62, 2003.

[67] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A C/C++ source-to-source
compiler for dependable applications”, IEEE International Conference on
Dependable Systems and Networks, pp. 71–78, 2000.

[79] M. Hiller, “Executable assertions for detecting data errors in embedded control
systems”, Proc. International Conference on Dependable Systems and Networks,
pp. 24–33, 2000.

[85] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “A watchdog processor to
detect data and control flow errors”, in 9th IEEE On-Line Testing Symposium,
2003, pp. 144–148.

97

[86] S. Bergaoui and R. Leveugle, “IDSM: An improved control flow checking approach
with disjoint signature monitoring”, roc. 24th Conference on Design of Circuits
and Integrated Systems (DCIS), 2009.

[87] J. Azambuja, S. Pagliarini, L. Rosa, and F. Kastensmidt, “Exploring the limitations
of software-only techniques in see detection coverage”, Journal of Electronic
Testing, vol. 27, no. 4, pp. 541–550, 2011.

[88] J. R. Azambuja, M. Altieri, J. Becker, and F. L. Kastensmidt, “HETA: Hybrid
error-detection technique using assertions”, IEEE Transactions on Nuclear Science,
vol. 60, no. 4, pp. 2805–2812, 2013.

[118] ARM Inc, CoreSight Components – Technical Reference Manual. 2009.

[119] Xilinx Inc, Zynq-7000 All Programmable SoC: Technical Reference Manual,
UG585. 2016.

[120] ARM Inc, CoreSight Program Flow Trace Architecture Specification. 2011.

[122] B. Du, E. Sanchez, M. S. Reorda, J. P. Acle, and A. Tsertov, “FPGA-controlled
PCBA power-on self-test using processor’s debug features”, IEEE International
Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS),
2016.

[145] M. Nicolaidis, Soft Errors in Modern Electronic Systems. Springer, 2011.

[146] T. Michel, R. Leveugle, and G. Saucier, “A new approach to control flow
checking without program modification”, Proc. 21th International Symposium on
Fault-Tolerant Computing (FTCS-21), pp. 334–341, 1991.

[147] A. Lindoso, M. García-Valderas, L. Entrena, Y. Morilla, and P. Martín-Holgado,
“Evaluation of the suitability of NEON SIMD microprocessor extensions under
proton irradiation”, IEEE Transactions on Nuclear Science, vol. 65, no. 8,
pp. 1835–1842, Aug. 2018.

98

5. ONLINE ERROR DETECTION THROUGH TRACE
INFRASTRUCTURE IN ARM MICROPROCESSORS

Abstract

This paper presents a solution for error detection in ARM microprocessors based on
the use of the trace infrastructure. This approach uses the Program and Instrumentation
Trace Macrocells that are part of ARM’s CoreSight architecture to detect control-flow and
data-flow errors, respectively. The proposed approach has been tested with low-energy
protons. Experimental results demonstrate high accuracy with up to 95% of observed errors
detected in a commercial microprocessor with no hardware modification. In addition, it is
shown how the proposed approach can be useful for further analysis and diagnosis of the
cause of errors.

This chapter has been published as an article.

[J2] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Morilla,
and P. Martín-Holgado, “Online error detection through trace infrastructure in
ARM microprocessors”, IEEE Transactions on Nuclear Science, vol. 66, no. 7,
pp. 1457–1464, Jul. 2019. doi: 10.1109/TNS.2019.2921767

URI: http://hdl.handle.net/10016/32697

99

https://doi.org/10.1109/TNS.2019.2921767
http://hdl.handle.net/10016/32697

6. DUAL-CORE LOCKSTEP ENHANCED WITH REDUNDANT
MULTITHREAD SUPPORT AND CONTROL-FLOW ERROR

DETECTION

Abstract

This work presents a new Dual-Core LockStep approach to enhance fault tolerance in
microprocessors. The proposed technique is based on the combination of software-based
data checking and trace-based control-flow checking through an external hardware module.
The hardware module is connected to the trace interface and is able to observe the execution
of all the processors in the architecture. The proposed approach has been implemented
for a dual core commercial processor. Experimental results demonstrate that the proposed
technique has a high error detection capability with up to 99.63% error coverage.

This chapter has been published as an article.

[J3] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. García-Valderas, L. Entrena,
A. Martínez-Álvarez, and S. Cuenca-Asensi, “Dual-core lockstep enhanced with
redundant multithread support and control-flow error detection”, Microelectronics
Reliability, vol. 100-101, no. 113447, Sep. 2019. doi: 10.1016/j.microrel.
2019.113447

6.1. Introduction

Microprocessors are the backbone of digital electronic systems. The progress of
manufacturing technologies and the reduction of the transistor feature size have made
microprocessors cheap and suitable for a huge variety of applications. At the same
time, the susceptibility to soft errors, mainly caused by ionizing particles, has grown to
become a concern [27] in an increasing number of cases. For high reliability applications,
microprocessors are required to be fault-tolerant, i.e., to be able to continue operation
in the event of failure. In the past, fault-tolerant microprocessors were required for
systems working in harsh environments, such as aerospace, but today they are increasingly
demanded even at ground level.

Techniques to protect microprocessors against soft errors can be classified into software
and hardware techniques. Software techniques are very flexible, but they are inherently
limited [87]. Hardware techniques that require modifying the microprocessor are often not
feasible because the design and manufacturing of a microprocessor is a costly process that
can only be afforded for high volume production. In contrast, Dual Modular Redundancy
(DMR) is an attractive solution with high error detection capabilities. As microprocessors

117

https://doi.org/10.1016/j.microrel.2019.113447
https://doi.org/10.1016/j.microrel.2019.113447

are today rather cheap, duplication is not expensive. In fact, multicore devices have
become very common even for low-end devices, and state-of-the art Micro Controller
Units (MCUs) are starting to introduce safety features, which are becoming more relevant
to automatic control, such as in the autonomous automotive industry and aerospace [154].

Dual-Core Lockstep (DCLS) [82], [155]–[157] is a DMR fault-tolerant technique
that can exploit the availability of multicore devices. It consists in two processors
simultaneously running the same set of operations, syncing their output each cycle and
triggering a recovery routine in case of discrepancy. This architecture is described in
the white paper ISO 26262, where the DCLS processors are also referred as “ASIL-D
MCUs”. Despite the safety features introduced, ASIL-D MCUs do not eliminate the need
to implement other safety measures at software and system level. Several MCU’s and
processors have successfully implemented this feature, for instance, Freescale MPC5643L
[158], PPC405 Lockstep System on ML310 and the ARM Cortex-M33, Cortex-R4,
Cortex-R5 and Cortex-R7 [83], [154]. The ARM Cortex-R5, has been integrated in several
platforms, such as TI Hercules TMS570 microcontrollers and in the Xilinx UltraScale
MPSoCs. However, it has been reported that the recovery process presents high overheads,
around x1000 compared to a Triple Core Lock-Step [83].

Software DCLS divides the processing into steps, ranging from individual instructions
to a set of functions. After each step, the results of the computations produced by each
processor are compared. If they do not match, a rollback mechanism is triggered to restore
the system back to a consistent state. The comparison of the computation results provided
by the two processors is the key aspect of DCLS. Generally, only output data are checked
for errors [82], [156]. However, control-flow errors may cause one of the processors to lose
synchronization and eventually hang or get lost. Control-flow errors are not easy to detect
as they may not have an immediate observable effect in the computed data. Moreover,
it is common in dual cores that one of the processors acts as a master and the other as a
slave. In such a case, the hang of the master can lead to the crash of the entire system. A
possible solution to this problem is to use timeout watchdog monitors to detect unusually
long computation times [82]. However, this approach is weak and results in a high error
detection latency. Moreover, control-flow errors may produce latent effects that may remain
in the system after it is restored even though the output data are correct.

In this work we propose an enhanced DCLS approach that uses two complementary
mechanisms: observation of information provided by the trace subsystem to monitor the
execution control flow and a multithread software-based scheme to detect and recover from
data inconsistencies.

Most microprocessors today provide a trace subsystem for debugging purposes which
is able to report the microprocessor control flow in a seamless and non-intrusive manner
without affecting the execution. Under normal operation, the trace subsystem can be reused
to monitor the control flow of the processor [1], [3]. Errors that affect the control flow

118

in any of the processors can be detected by on-line decoding the corresponding program
traces and checking the obtained information [J1].

Modern processor architectures and Operating Systems (OS) commonly support
the parallel execution of different threads and processes. Those capabilities have been
exploited in different approaches by executing several replicas of the code on the same
processor (SMT-Simultaneous Multithread) [74], on separate cores (CMP-Chip Level
Multiprocessor) [76] or using a mixture of them [77]. All those approaches rely on complex
software stacks that include, in addition to the OS, different support libraries in order to
reduce the development time and ease the management of the replicated threads/processes
[159]–[161]. However, every software layer added introduces new vulnerabilities that
degrade the overall reliability of the applications.

In our approach, a CMP scheme has been adopted for bare metal applications (without
OS) which renders a reduced number of race conditions and lower control overhead
compared to traditional solutions. The redundant threads execute on different cores and,
eventually, check their outputs. In case of discrepancies, threads are forced to re-execute
the critical regions as recovery mechanism. The proposed approach can be considered a
relaxed lockstep execution where protection may be applied with different granularity, from
the whole application to just some critical regions of the code. Therefore, a suitable trade
off can be established between the number checkpoints and the time overhead produced in
case of recovery.

The proposed approach has been implemented and evaluated on a dual-core ARM
Cortex-A9 [162]. The microprocessor is a hard core in a Zynq FPGA [119]. The proposed
trace monitor has been implemented in the programmable logic. The proposed technique
has been tested with an injection campaign of 871,837 faults that resulted in 43,769 errors.
Experimental results show that the proposed approach shows excellent error detection
capabilities with a percentage of detected errors of up to 99.63%.

This paper is organized as follows: Section 6.2 describes the proposed lockstep
approach, Section 6.3 presents the experimental results and finally Section 6.4 summarizes
the conclusion of this work.

6.2. Proposed lockstep approach

6.2.1. Architecture

Contrarily to other approaches that propose new hardware structures to extend the
architecture of CMP processors, our solution is intended to be directly applied to modern
multicore processors. The architecture uses redundant multithread support for data error
detection combined with trace monitoring for control-flow error detection.

Fig. 6.1 shows the architecture of the proposed DCLS approach. It is divided in three
main blocks: multicore microprocessor (Multicore), ARM Trace subsystem (Coresight)

119

and Control Flow Monitor. The Control-Flow Monitor is a small piece of hardware that
can be embedded in a FPGA. Data error detection is implemented in the Multicore block
and is described in Subsection 2.2. The remaining blocks (Coresight and Control-flow
monitor) are described in Subsection 2.3.

Fig. 6.1. Dual-Core LockStep architecture.

6.2.2. Data error detection

A pure software mechanism has been developed for data error detecting and recovering.
It is based on modular redundancy strategy and relies on the parallel execution of redundant
threads on separate cores. This way it could be easily adapted to Dual or Triple Modular
Redundancy depending on the number of available cores [163].

Similar to traditional threads supported by OS like Linux (POSIX Threads API) or
specialized libraries (OpenMP API), in our model the two threads, named master thread
(Mth) and shadow thread (Sth) respectively, share instructions (see PM on Fig. 6.1) and
data memories (see DM on Fig. 6.1). However, as a key difference, each thread has its own
stack (i.e. the memory region for storing temporary and automatic variables and function
output variables) which allows holding the replicas of the data. In addition, a third stack
memory region is reserved to store the Context (Fig. 6.1: Ctx). Since Mth is in charge of
checking the Context and output variables of every region under consideration, this thread
has access to the three stacks.

The application is divided into several Critical Regions of code. Each one is
characterized by the input or Context variables (i.e. global and local variables) and
output variables. For the sake of completeness, in this work the Context contains all the
information needed to define the status of the execution, i.e. the input variables to the
region. As a limitation of the current implementation of our approach, we are not able to
save the status of the processor’s cache, and therefore we assume it is disabled. As a side
effect of this choice, the application should be written in such a way that input variables are
not modified during the execution of the code within a region, so that in case of recovery,
the integrity of those variables is preserved.

120

Critical regions are delimited by annotation primitives in C or C++ and follow the
concept of Sphere of Replication (SoR) established in [73]. To this end, the code section is
instrumented to check the correctness of the variables and to synchronize the execution
using barriers and mutex (mutual exclusion). The SoR defines the code regions where
thread replication and parallel execution will take place. When the instruction flow reaches
the SoR (critical region), a Context Check is performed by the Mth. If there are no
discrepancies, the Context variables are saved to the Context Stack by the Mth. Every time
the instruction flow goes out the SoR boundaries, consistency checks are automatically
carried out by the Mth on the data stored on both stacks. A recovery procedure, i.e. the
re-execution of the critical region, is executed if any discrepancy is found.

Depending on the boundaries and the situation of the critical regions within the code,
the protection can be applied at different levels of granularity to get the best trade-off
between performance overhead and latency to recover from a fault.

Fig. 6.2 shows an example of annotated pseudocode for the Matrix Multiplication
algorithm. As can be seen, SYNC and CHECK annotations enclose the inner-most loop
and define a region. Also, this mechanism provides synchronization for each thread and
automatic check over Context variables i,j and output variable acc respectively. The
localization of the region defines a lockstep execution with NxN checkpoints (steps) and
the recovery latency is equivalent to the execution time of the inner loop (lines 9–13) plus
an additional assignment (line 9). A finer granularity could be obtained by including just
the inner loop body in the critical region. As a result, the recovery latency decreases to
just the execution of a line of code, at the cost of increasing the number of checkpoints up
to NxNxN. Note that by removing the 8th and 12th lines (which are responsible for the
automatic code instrumentation) we obtain the original unprotected code. It is remarkable
that both SYNC and CHECK functions can be compiled along with the software application
as they are written in C. Thus, to protect an application, the user is just required to manually
introduce both functions enclosing the critical sections in the source code. In the future,
a tool to insert automatically the calls for these functions is planned to be developed to
enhance the scalability of this solution.

In addition to the code annotation, other software tweaks were implemented to endow
the dual core system with the ability of running redundant threads on bare metal. In first
place, it was necessary to modify the Board Support Package (BSP) in order to initialize
the platform and start up all cores presented in the architecture. It is common that, in bare
metal environments, the BSP provides the minimal files to boot up the platform. However,
BSPs only cover a little subset of the most common ways to boot a system. The default
boot sequence is controlled by CPU0 while the other CPU gets into an infinite busy-waiting
loop. This default initialization code was changed to allow a boot in SPMD mode (Single
Program Multiple Data). In second place, the memory map and the associated linker
scripts were modified to support separate stack sections for each core. Finally, a spin-lock
mechanism was added to allow the synchronization of the cores.

121

Fig. 6.2. Redundant threaded matrix
multiplication.

6.2.3. Control-flow error detection

The control flow of both cores is observed through an external hardware IP
(Control-flow Monitor), which is connected to the trace interface. The proposed approach
is a multicore extension of the technique presented in [J1].

The dual-core ARM Cortex-A9 presented in the selected device contains a trace
subsystem based in CoreSight modules [118]. Of the available CoreSight modules in
the selected device, our system uses only the PTM (Program Trace Macrocell) [120].
PTM is a trace source CoreSight subtype. A PTM cell is associated to a single core of the
architecture. Thus, for this work two PTM instances, PTM0 and PTM1, are used, which are
linked respectively to core 0 and core 1 (Fig. 6.1). Both trace sources are multiplexed and
sent through the trace interface. The external IP decodes the trace information and checks
the correctness of the execution-flow by controlling the PC addresses of the executed
instructions in both cores.

Two techniques are used to detect incorrect execution: confidence range checking and
address watchdog checking. The former consists in configuring the external IP to treat
some instruction-memory address ranges as valid. While the instruction addresses of a
core are within its own confidence ranges, no error is assumed. The latter is also related
with the core instruction address, but in this case only one specific address is configured to
be checked periodically, namely the first instruction of each step. It the required instruction
address is not received within a configurable time, a timeout is asserted. In the case an
unexpected instruction or timeout is detected in any of the two cores, an error signal is
triggered. The IP works on-line with very small latency. No additional information is
required or stored before execution takes place, and the required configuration register
values can be determined at compilation time. The external IP can be configured from
software as an AXI peripheral.

122

Algorithm 1:

1 : NT= 2 //Number of threads
2: A Matrix[N] [N]
3 : B = Matrix [N] [N]
4 : C = Mat rix [N] [N]
5: procedure MxM
6: for i = Oto N-1 do
7: for j = O to N-1 do

//Start of region
8 : SYNC(i, j;NT)
9: ace= O
10: for k =O to N-1 do
11: ace+= A [i] [kl· B [k] [j]
1 2 : CHECK (acc;NT)

//End of region
1 3 : C [i][j] =acc

To ease the use of the external IP, all user-defined application functions have been
targeted to a specific region of memory defined by the programmer in the linker script, so
most of the code is inside the same confidence interval. Some native or library functions
that cannot be targeted to this region have also been protected using three more confidence
intervals. The first instruction of the main loop of the code has been selected as the
instruction address to be checked by the watchdog. As the application is hardened with
DCLS, the external IP has been configured to check both CPUs with the very same
parameters.

6.3. Experimental results

A fault injection campaign has been performed to test the proposed technique. Faults
were injected only in one of the two cores in the selected architecture. The Mth core have
been selected for injection as it is the most critical considering that it performs context and
data checking.

Faults were injected in the register file adapting the technique presented in [J1]. This
technique generates bit-flips randomly in the register file. An external controller has
been used in order to determine, classify and collect the observed and detected errors.
In radiation environments, errors can also affect memories which are not covered by the
utilized technique. Memories that are exposed to radiation are usually protected with
redundancy techniques such as EDAC. In previous radiation campaigns [J1], we have
validated the fault injection approach with quite accurate error detection match between
radiation and injection results even though we only injected faults in the register file.

The control-flow monitor is located in the FPGA and radiation can affect its behaviour.
Xilinx SEM IP [152] can be used to protect the FPGA and the circuit it contains.

The experiments have been carried out on commercial ZYBO boards featuring a Xilinx
Z7010 Zynq [119] as the device under test (DUT). Both ARM Cortex-A9 cores in the
DUT are clocked at 650 MHz frequency. At the beginning of the application, the external
controller generates a random seed which is used to generate the injection parameters (time
instant, register number and bit index) and the initialization values of program data. When
the DUT has received the seed, the execution starts, and the injector as well. A fault is
injected every five iterations of the application main loop. In the case no error appears in
these five iterations, a silent error is assumed, and a new injection is produced. In the event
of an error, the external controller registers the results and power cycles the DUT to start a
new injection.

The results of the fault injection campaign are summarized in Table 6.1. Two
experiments were accomplished with two versions of a matrix multiplication benchmark:
unoptimized (-O0: column 2 of Table 6.1) and optimized with maximum effort (-O3,
column 3 of Table 6.1). Both benchmarks use matrices of 32×32 32-bit integer elements.

123

Table 6.1. INJECTION CAMPAIGN RESULTS.

Error type -O0 -O3

errors % errors # errors % errors

Det. Hang 15,462 77.27% 15,879 66.84%
Hang 23 0.11% 64 0.27%
Det. Only IP 75 0.37% 135 0.57%
Det. Data 4338 21.68% 6725 28.31%
SDC 50 0.25% 940 3.96%
Comm 63 0.31% 15 0.06%
Total 20011 100.00% 23758 100.00%

For -O0 benchmark 591,821 faults were injected resulting in 20,011 (3.38%) errors.
For -O3 benchmark 280,016 faults were injected resulting in 23,758 (8.48%) errors.

The error categories reported in Table 6.1 are:

• Det. Hang: The fault has produced a functional interrupt in the system, which has
been detected by the external IP.

• Hang: The fault has produced a functional interrupt in the system, which has not
been detected.

• Det. Only IP: The external IP has reported a control-flow error while no functional
interrupt has been produced.

• Det. Data: The fault has produced a data error which has been detected by the
software.

• SDC: Silent Data Corruption, the fault has produced a data error which has not been
detected.

• Comm: Communications malfunction between the DUT and the external controller
that makes impossible to classify the error.

• Total: Total number of errors

Table 6.1 shows the high error detection capability of the proposed approach, with
99.63% errors detected for the unoptimized version and 95.77% for the optimized one. For
this metric we have not considered Comm errors, as it is not possible to categorize them.

Regarding control-flow errors, it is noticeable that most of them are related with
system functional interrupts, which are mainly caused by exceptions or loss of lockstep
synchronization. However, few of them (Det. Only IP) have not produced this effect.

124

These can be associated with control-flow errors that do not produce a hang on the system,
for example, an error that causes a branch to a wrong, but valid, code region or an error in
a loop index causing an unexpectedly bigger execution time. Although these errors can be
false positives, it is highly recommendable to consider them as real errors for preventive
reasons. Code optimization produces a small reduction on control-flow error detection
rates.

With respect to data errors, there is a small portion of SDCs. These errors are caused
by faults that are injected after the software check. Note that fault injection is non-stop, so
data may be corrupted at any time and therefore an error may appear at the final check of
the test used to categorize the results. Nevertheless, such errors could be detected if the
final check is also made in lockstep. Anyhow, SDC errors represent a very small portion,
particularly when executing unoptimized code. This effect increases when optimization is
introduced because the compiler changes the order in which some operations are made
to achieve higher throughput. Also, as the optimized code gets shorter, the probability to
inject an error after the software check gets higher. It is remarkable that optimization has
been introduced on the very same code that produced the unoptimized version, meaning
that no further effort has been done to enhance error detection for the optimized version,
so there is room for improvement. Even so, the data detection penalty is restrained and
could be affordable for some applications.

In relation to error rates, optimized code has higher susceptibility to errors: 8.48% of
injected faults produced errors while in the unoptimized version only 3.38% of injected
faults resulted in error. Furthermore, data has demonstrated to be more prone to errors
in the optimized version as 32.27% of total errors were data errors contrasting with the
21.93% of the unoptimized code. These two effects are related to a much higher use of
registers in the case of the optimized version. Considering these results, it is interesting to
go deeper on how registers are related to errors, extracting the injector information when
the error occurs. Fig. 6.3 presents a comparison of the register sensitivity distribution in
both code versions.

Fig. 6.3. Register sensitivity to errors.

Results in Fig. 6.3 demonstrate the more extensive usage of registers in the case of
optimized (-O3) code, as all core registers except r12 produce errors. In the case of

125

unoptimized code, only four general purpose registers, r0 to r3, are used so faults injected
on r4 to r10 have no impact on errors. Frame pointer (fp) and program counter (pc) are
strongly related to the execution control-flow and have the highest error rates in both cases.

6.4. Conclusions

This work presents a Dual-Core Lockstep approach enhanced with redundant
multithread support and control-flow error detection. Data error detection and recovering is
based on the parallel execution of redundant threads on separate cores and a pure software
technique that checks the correctness of the data and synchronizes the execution checks.
Control-flow protection is accomplished by an external hardware IP that monitors the
execution trace of the two cores in a non-intrusive way with small latency.

Experimental results demonstrate that control-flow errors are very likely, so that both
data and control-flow checking are needed for effective error detection. The proposed
approach achieves a high error detection rate (up to 99.63% error coverage) with low
latency.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported in part by the Spanish Ministry of Economy and
Competitiveness under projects ESP2015-68245-C4-1-P, ESP2015-68245-C4-3-P and by
the Community of Madrid under grant IND2017/TIC-7776.

References

[J1] M. Peña-Fernandez et al., “PTM-based hybrid error-detection architecture for
ARM microprocessors”, Microelectronics Reliability, vol. 88-90, pp. 925–930,
Sep. 2018. doi: 10.1016/j.microrel.2018.07.074.

[1] L. Entrena et al., “Fault-tolerance techniques for soft-core processors using the
trace interface”, in FPGAs and Parallel Architectures for Aerospace Applications.
Soft errors and Fault-Tolerant Design, Springer, 2016, pp. 293–306.

[3] M. Portela-García et al., “On the use of embedded debug features for permanent and
transient fault resilience in microprocessors”, Microprocessors and Microsystems,
vol. 36, no. 5, pp. 334–343, 2012.

126

https://doi.org/10.1016/j.microrel.2018.07.074

[27] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies”, IEEE Transactions on Device and Materials Reliability, vol. 5,
no. 3, pp. 305–316, Sep. 2005.

[73] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via simultaneous
multithreading”, Proceedings of 27th International Symposium on Computer
Architecture (IEEE Cat. No. RS00201), pp. 25–36, 2000.

[74] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault recovery using
simultaneous multithreading”, Proc. 29th Annual International Symposium on
Computer Architecture, pp. 38–87, 2002.

[76] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz, “Transient-fault
recovery for chip multiprocessors”, Proc. 30th Annual International Symposium
on Computer Architecture, pp. 98–109, 2003.

[77] K.-H. Chen, G. von der Brüggen, and J.-J. Chen, “Reliability optimization on
multi-core systems with multi-tasking and redundant multi-threading”, IEEE
Transactions on Computers, vol. 67, no. 4, pp. 484–497, Apr. 2018.

[82] F. Abate, L. Sterpone, and M. Violante, “A new mitigation approach for soft errors
in embedded processors”, IEEE Transactions on Nuclear Science, vol. 55, no. 4,
pp. 2063–2069, Aug. 2008.

[83] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step (TCLS) ARM®
cortex®-R5 processor for safety-critical and ultra-reliable applications”, 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshop (DSN-W), pp. 246–249, 2016.

[87] J. Azambuja, S. Pagliarini, L. Rosa, and F. Kastensmidt, “Exploring the limitations
of software-only techniques in see detection coverage”, Journal of Electronic
Testing, vol. 27, no. 4, pp. 541–550, 2011.

[118] ARM Inc, CoreSight Components – Technical Reference Manual. 2009.

[119] Xilinx Inc, Zynq-7000 All Programmable SoC: Technical Reference Manual,
UG585. 2016.

[120] ARM Inc, CoreSight Program Flow Trace Architecture Specification. 2011.

[152] Xilinx Inc, Soft error mitigation controller v4.1 Product guide, PG036. 2014.

[154] X. Iturbe, B. Venu, and E. Ozer, “Soft error vulnerability assessment of
the real-time safety-related ARM cortex-R5 CPU”, 2016 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pp. 91–96, 2016.

[155] N. S. Bowen and D. K. Pradham, “Processor-and memory-based checkpoint and
rollback recovery”, Computer, vol. 26, no. 2, pp. 22–31, Feb. 1993.

[156] Á. B. de Oliveira et al., “Lockstep dual-core ARM A9: Implementation and
resilience analysis under heavy ion-induced soft errors”, IEEE Transactions on
Nuclear Science, vol. 65, no. 8, pp. 1783–1790, Aug. 2018.

127

[157] M. Violante, C. Meinhardt, R. Reis, and M. S. Reorda, “A low-cost solution for
deploying processor cores in harsh environments”, IEEE Transactions on Industrial
Electronics, vol. 58, no. 7, pp. 2617–2626, Jul. 2011.

[158] V. Bernon-Enjalbert, M. Blazy-Winning, R. Gubian, D. Lopez, J.-P. Meunier,
and M. O’Donnell, “Safety integrated hardware solutions to support ASIL D
applications”, 2013.

[159] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors, “PLR: A
software approach to transient fault tolerance for multicore architectures”, IEEE
Transactions on Dependable and Secure Computing, vol. 6, no. 2, pp. 135–148,
Apr. 2009.

[160] H. Mushtaq, Z. Al-Ars, and K. Bertels, “Efficient software-based fault tolerance
approach on multicore platforms”, Design, Automation & Test in Europe
Conference & Exhibition, pp. 921–926, 2013.

[161] G. S. Rodrigues, F. Rosa, Á. B. de Oliveira, F. L. Kastensmidt, L. Ost, and R. Reis,
“Analyzing the impact of fault-tolerance methods in ARM processors under soft
errors running Linux and parallelization APIs”, IEEE Transactions on Nuclear
Science, vol. 64, no. 8, pp. 2196–2203, Aug. 2017.

[162] ARM Inc, Cortex-A9 MPCore Technical Reference Manual. 2011.

[163] A. Serrano-Cases, F. Restrepo-Calle, S. Cuenca-Asensi, and A. Martínez-Álvarez,
“Softerror mitigation for multi-core processors based on thread replication”,
Proceedings of 20th IEEE Latin American Test Symposium, Mar. 2019.

128

7. THE USE OF MICROPROCESSOR TRACE
INFRASTRUCTURES FOR RADIATION-INDUCED FAULT

DIAGNOSIS

Abstract

This work proposes a methodology to diagnose radiation-induced faults in a
microprocessor using the hardware trace infrastructure. The diagnosis capabilities of
this approach are demonstrated for an ARM microprocessor under neutron and proton
irradiation campaigns. The experimental results demonstrate that the execution status in
the precise moment that the error occurred can be reconstructed, so that error diagnosis
can be achieved.

This chapter has been published as an article.

[J4] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “The use of
microprocessor trace infrastructures for radiation-induced fault diagnosis”, IEEE

Transactions on Nuclear Science, vol. 67, no. 1, pp. 126–134, Jan. 2020.

doi: 10. 1109/TNS.2019.2956204

URI: http://hdl.handle.net/10016/32699

129

http://hdl.handle.net/10016/32699
http://hdl.handle.net/10016/32699
https://doi.org/10.1109/TNS.2019.2956204

8. ERROR DETECTION AND MITIGATION OF
DATA-INTENSIVE MICROPROCESSOR APPLICATIONS USING

SIMD AND TRACE MONITORING

Abstract

This article proposes a software error mitigation approach that uses the single
instruction multiple data (SIMD) coprocessor to accelerate computation over redundant
data. In addition, an external IP connected to the microprocessor’s trace interface is used to
detect errors that are difficult to cover with software-implemented techniques. The proposed
approach has been implemented in an ARM microprocessor, and an irradiation campaign
with neutrons has been carried out at Los Alamos National Laboratory. Experimental
results demonstrate the high error coverage (more than 99.9%) of the proposed approach.
The neutron cross section of errors that were not corrected nor detected was reduced by
more than three orders of magnitude.

This chapter has been published as an article.

[J5] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “Error
detection and mitigation of data-intensive microprocessor applications using SIMD
and trace monitoring”, IEEE Transactions on Nuclear Science, vol. 67, no. 7,
pp. 1452–1460, Jul. 2020. doi: 10.1109/TNS.2020.2992299

URI: http://hdl.handle.net/10016/32701

149

https://doi.org/10.1109/TNS.2020.2992299
http://hdl.handle.net/10016/32701

9. MICROPROCESSOR ERROR DIAGNOSIS BY TRACE
MONITORING UNDER LASER TESTING

Abstract

This work explores the diagnosis capabilities of the enriched information provided
by microprocessors trace subsystem combined with laser fault injection. Laser fault
injection campaigns with delimited architectural regions have been accomplished on an
ARM Cortex-A9 device. Experimental results demonstrate the capability of the presented
technique to provide additional information of the various error mechanisms that can
happen in a microprocessor. A comparison with radiation campaigns presented in previous
work is also discussed, showing that laser fault injection results are in good agreement
with neutron and proton radiation results.

This chapter has been published as an article.

[J6] M. Peña-Fernandez, A. Lindoso, L. Entrena, I. Lopes, and V. Pouget,
“Microprocessor error diagnosis by trace monitoring under laser testing”, IEEE

Transactions on Nuclear Science, vol. 68, no. 8, pp. 1651–1659, Aug. 2021. doi:
10.1109/TNS.2021.3067554

URI: http://hdl.handle.net/10016/35163

168

https://doi.org/10.1109/TNS.2021.3067554
http://hdl.handle.net/10016/35163

10. IP TO DETECT AND DIAGNOSE ERRORS IN COTS
MICROPROCESSORS THROUGH THE TRACE INTERFACE

Abstract

This work presents an error detection and diagnosis IP for space applications to enable
fault tolerance by error detection and recovery on COTS processors. Its low-latency error
detection capabilities and richness of trace information allow to perform effective fault
diagnosis.

This chapter has been published as an article.

[C1] M. Peña-Fernandez, A. Lindoso, and L. Entrena, “IP to detect and diagnose errors in
COTS microprocessors through the Trace Interface”, presented at the 2nd European
Workshop on On-Board Data Processing (OBDP2021), Jun. 2021. doi: 10.5281/
zenodo.5521538

10.1. Introduction

Microprocessors are commonly used in all kinds of applications, such as commercial
appliances, industrial controllers, communications, and embedded systems. They are
becoming more common also in safety-critical applications. When operating in harsh
environments, as in presence of radiation, microprocessors can be affected by faults, which
may alter their intended behavior producing undesirable errors [27].

Nowadays, there are diverse techniques to design or build integrated circuits and
microprocessors to be intrinsically resilient to radiation-induced errors, as Radiation
Hardening By Design (RHBD) or Radiation Hardening By Process (RHBP). However,
these hardening techniques usually lead to expensive solutions which cannot be afforded
in cost-constrained applications. Moreover, by applying such techniques, resulting
systems commonly require higher power and provide lower performance than commercial
counterparts. In fact, the available rad-hard integrated circuits lag two or more generations
behind commercial equivalent components [90].

In the last years, the interest in Commercial Off-The-Shelf (COTS) components for
safety critical and even for space applications has increased, as they are attractive due
to their higher performance and lower power consumption compared to their hardened
counterparts. Nevertheless, when using COTS components, is the task of the system
designer to assess the fault tolerance capabilities are at an acceptable level, transforming
the traditional risk avoidance paradigm into risk management [46].

187

https://doi.org/10.5281/zenodo.5521538
https://doi.org/10.5281/zenodo.5521538

The use of COTS cutting-edge processing systems in space applications has received
much attention due to an increasingly competitive commercial space sector. Such
components would increment the processing capabilities on orbit to unprecedented levels,
bringing a great competitive advantage. However, assuring reliability under the harsh space
conditions is a challenge [92].

Single-event effects (SEEs) are a major concern in processors [145]. When using COTS
components, available SEE protections are limited and the knowledge about the behavior of
the device under radiation is poor. Error detection and diagnosis in modern microprocessors
is a challenge, particularly due to the limited observability of the microprocessor internal
resources. Typically, limited actions can be performed on the hardware to enhance radiation
hardness. For that reason, COTS processors usually introduce software-level hardening, by
modifying the code to increment robustness, but paying significant performance penalties.
Moreover, software hardening can only protect software-accessible resources, but other
processor resources may be left unprotected [87].

To achieve fault tolerance, processing systems based on COTS must be designed to
implement error detection and recovery capabilities. However, few details are typically
available about the internal architecture or implementation of COTS components, and the
observability of the processor internal state is usually low. In addition, different failure
modes presented by complex processing systems may need for diverse mitigation strategies,
especially when considering different criticality levels [33].

Providing new solutions for COTS processors hardening may expand their usage in
space missions and the associated on-board processing capabilities. In addition, subsequent
cost and time reductions would make the space a more accessible market.

In this work we present an IP module to detect and diagnose errors in microprocessors
working under radiation environments. The IP uses the information provided by the trace
interface of the processor to check execution flow and data correctness with low latency
and no performance penalty. The IP has been developed within an industry-academia
collaboration as part of a Ph.D. Thesis and is currently available at Arquimea.

The paper is organized as follows. Section 10.2 summarizes the related work in the field.
Section 10.3 describes the proposed technique. Section 10.4 illustrates some application
cases. Finally, section 10.5 presents the conclusion of this work.

10.2. Microprocessor Error Detection and Diagnosis

Hardening techniques for microprocessors are usually classified into hardware or
software techniques. Hybrid hardening techniques are considered when both hardware
and software are addressed to harden the device [145]. Such techniques are designed to
address errors that can be classified into two main categories: those affecting execution
flow, called control-flow errors, and those only affecting program data, called data errors.

188

Software data hardening techniques usually rely on data replication and performing the
same computations independently in each set of replicated data. The results of different
computed data sets are then compared to stablish whether an error is present or not [65].
Data duplication techniques can effectively detect errors although data triplication is
needed to perform error correction. As more data is replicated, associated performance
and memory penalties are more severe, so tradeoffs must be considered to optimize error
coverage against performance [68].

Software control-flow hardening techniques rely on signatures or assertions [79] to
detect incorrect jumps in execution. Signatures are invariant results that are computed and
checked during execution time. Assertions are special statements inserted in the application
code to check the correctness of the executed code [145]. Extensive computation and
checking of signatures and assertions may introduce significant performance and memory
overheads.

A common problem for all software approaches is that their coverage is limited to the
resources which are accessible from software. Internal microprocessor resources, such as
the pipeline registers, can exhibit critical fault modes which may be left unprotected by
software techniques [87].

Hardware techniques commonly modify the architecture to introduce redundancy,
being Triple Modular Redundancy (TMR) the most representative case. However, in
COTS it is not possible to replicate or even to modify the hardware. As an alternative,
external hardware can be used to determine the correctness of the processor behavior. The
complexity and operation of the external hardware ranges from simple watchdog timers to
bigger modules that may become as complex as the observed processor. Complex observer
modules may increase power consumption and area requirements and may also introduce
new faults on the system [67]. Besides, the connection point for the external hardware is a
critical issue that has impacts on performance, error detection latency and observability
limitations.

An alternative approach for hardware redundancy is the replication of the entire
processor, having two or more processors within a system. As processors become
increasingly affordable, designers are leveraging the increasing availability of multicore
processors in a single chip. Several approaches based on COTS multicore processors have
been proposed for space applications, given that the faults on one processor core can be
isolated from the other cores [148]. Lockstep is an extension of processor replication
in which the execution of the replicas is synchronized. Simultaneous and symmetrical
execution of the same application code should provide identical results in the absence of
errors. If results differ, a rollback mechanism is needed to restore the system back to an
error-free state. This approach is effective to detect data errors by comparing data results at
several checkpoints during execution. However, in the case of control-flow errors, any of
the processors could miss a checkpoint, resulting in an unprotected hang of the system. A
watchdog timer could be used to overcome this limitation, but the associated high latency

189

limits the efficiency of this solution. In addition, control-flow errors can become very
complex, leading to latent effects that may not be reverted by system restoration [156].

Radiation testing is the most widely accepted method to evaluate the suitability of
electronic devices for space applications, including data processing systems. Radiation
testing results may quantify the device susceptibility to errors and the ability of hardening
techniques to detect them and/or mitigate their effects. However, common testing
approaches do not generally pay special attention to the causes of such errors and the
associated circuit vulnerabilities. By increasing the knowledge related to the sources of
errors, it could be possible to protect the circuits in a more effective manner and improve
mitigation techniques. Additionally, gaining insight about the faults can lead to assess
the criticality of an error, i.e. risk management [46], to take the corresponding corrective
action.

Most existing diagnosis approaches evaluate the effects of errors and then try to deduct
the origin of the fault using cause-effect analysis. However, the knowledge about the
internal architecture and the observability of the system are crucial factors to effectively
diagnose the error. A systematic approach is to evaluate the Architectural Vulnerability
Factor (AVF) [53] of each processor resource to estimate their susceptibility to errors.
Another approach is to perform extensive fault injection campaigns to create a fault
dictionary associating fault location and observed effects to diagnose radiation-induced
errors [104]. However, radiation-induced errors may present different characteristics
from the modelled ones, limiting the effectiveness of such techniques. Moreover, fault
consequences deeply depend on the application in execution, so it is difficult to develop
a generic association between the errors and their origin. In addition, there are common
errors, such as processor hangs or crashes, that may have diverse causes, increasing the
complexity of the diagnosis task regardless of the fault diagnosis approach. The accuracy
of fault diagnosis strongly depends on the quality and completeness of the gathered
information about the error. Collecting the information immediately after the event is
crucial to avoid losing relevant data that could be overwritten.

The trace interface is a resource commonly found in modern microprocessors to
support application development. It is initially intended to support software debugging and
application profiling, by capturing relevant information concerning processor execution
flow and data for those purposes. Such information is provided with low latency in a
non-intrusive manner. However, once the application development is complete, the trace
interface is commonly unused, so it can be reused for a different purpose with no cost.

Trace information is best suited for dealing with asynchronous events, such as those
produced by radiation. However, the use for error detection and diagnosis is new and it
is not natively supported by the processor manufacturers or associated tools. In addition,
the use of computer-based tools may not be suitable for detecting errors in an embedded
system while it is in operation. For this reason, a special infrastructure must be developed
to leverage the information available at the trace interface for error detection and diagnosis.

190

The use of the trace infrastructures for processor online monitoring was first proposed
in [2] to observe the execution of a LEON3 microprocessor and detect faults by computing
signatures and comparing executions. Later works on this topic focused on soft-core
microprocessors, which can be conveniently adapted or modified as needed to provide
a wide and rich access to trace information [8]. However, the case of hard-core
microprocessors is different. As the hardware cannot be modified and the internal resources
cannot be accessed, the trace information must be obtained through hard macrocells that
impose protocols and limit the available information [1].

ARM processors have achieved large market share in the commercial sector from the
last two decades, and ARM-based space-oriented initiatives, such as Nanoxplore FPGAs
or NASA HPSC, are becoming common. A wide range of competitive processor cores
optimized for diverse applications, from low power to high performance, along with the
ease of implementation in a System-on-Chip (SoC) may be two key factors for its success.
ARM processor cores are also widely supported by software developers and libraries
in many application fields, providing a huge knowledge base for new developments.
CoreSight [118] technology is a family of components provided by ARM to support trace
and debug capabilities on its processor cores. Almost every available ARM processor core
is compatible with CoreSight technology.

10.3. Error Detection and Diagnosis IP

We are presenting a solution to tackle both radiation hardening and testability
challenges regarding COTS microprocessors. We have developed a lightweight IP core in
HDL that leverages the information available at the trace interface to detect and diagnose
errors in ARM microprocessors, although the same approach could be applied to other
processor architectures. The presented IP can oversee the behavior of a microprocessor
or a SoC including more than one processor core, which is labeled as Processor Under
Monitoring (PUM) within this document. The IP can observe execution flow and data
values of PUM by monitoring the information provided by the trace interface in real time.
It gives to the user the capability of detecting errors and obtaining error evidence and
traceability with low latency, low impact on system design and no performance penalty.

The IP is currently compatible with several ARM CoreSight trace components: Program
Trace Macrocell (PTM), Instrumentation Trace Macrocell (ITM), Trace Funnel and Trace
Port Interface Unit (TPIU) [118]. The IP is compatible with the trace interface protocol
specification, attending specifically to the trace information that can be used to detect
errors. To that end, the IP is designed to obtain Program Counter (PC) values and data
values from trace data. The IP has been designed to require low power and small area to
be embedded in an application with minimum penalties. Regarding performance, the IP
design is optimized to decode and process trace data in real time to minimize fault detection
latency. The implementation of the IP can be adapted to multiple scenarios thanks to its
parametric design. Low pin count interface enables multiple integration schemes. It can be

191

used as a microprocessor peripheral on a System on Chip, or as standalone in a multi-chip
system.

The IP has been developed and tested using Xilinx Zynq-7000 APSoC [119], integrating
a dual core ARM Cortex-A9 processor.

10.3.1. Interface description

The IP can be connected to other devices through a set of interfaces, each one with
a specific purpose within the intended error detection and diagnosis functionality. The
top-level of the IP architecture is depicted in Fig. 10.1.

Fig. 10.1. Top level view of the IP and interfaces.

Configuration interface. The IP is configurable through a set of configuration registers
that can be accessed via the following compatible configuration interface options.

• Advanced eXtensible Interface (AXI), for memory mapped SoC integration.

• 4-pin Serial Peripheral Interface (SPI), for multi-chip integration.

The configuration interface also provides access to information related to error
diagnosis.

Trace interface. The IP trace interface is pin-to-pin compatible with ARM Trace Port
Interface Unit (TPIU) pinout, which is present in most ARM processor implementations.
The following signals are used:

• TRACE_CLK: clock signal to synchronize trace data.

• TRACE_CTL: control signal to indicate whether trace data is valid or not.

• TRACE_DATA (N:0): variable bit width trace data stream.

192

The IP is designed with 8-bit trace data port width by default. To enable compatibility
with 1-bit, 2-bit and 4-bit trace data port widths, an available additional module must be
inserted between the trace port and the IP.

Warning signal. Warning generator module can be configured to produce a warning
signal upon the activation of any user-selected signals at error bus. This is typically used
to indicate that an error has appeared but that the application can continue running, for
example a data corruption that does not need for system reset, but only to ignore recently
computed data.

Frozen signal. Freezer module can be configured to freeze the entire IP core upon
the activation of any user-selected signals at error bus. Freeze signal is the resulting OR
operation among all user-selected error signals at error bus. Once Freeze signal is activated,
Frozen signal activates to indicate this situation. Once the IP is frozen, no further trace data
will be processed, preserving the IP state for the user to gather error information through
the configuration interface. In such a case, both PUM and the IP must be put back into a
working, known state before continuing the application.

Status Bus. Information about the state of the internal resources of the IP is provided
in this bus.

Error Bus. Every error signal generated by any internal resource of the IP is provided
in this bus.

10.3.2. Functional description

The core of the IP is responsible of the management of the trace data supplied by the
PUM, which is handled by a sequence of modules as depicted in Fig. 10.2. The IP works
according to the following flow:

1. Trace information is generated on the PUM (Processor Under Monitoring) and
exported to the IP through the TPIU. Inside the IP, it first enters the Reformatter,
which decodes formatted trace frames and rebuilds the original trace stream from
each source.

2. Depending on the source the trace comes from, it is sent to the corresponding trace
decoder by the ID demux, which can be configured by the user with the identification
code (ID) corresponding to each trace source present in the PUM.

• The ITM decoder implemented in the IP can decode trace information produced
by an Instrumentation Trace Macrocell, and the value retriever module obtains
the values sent through the trace. Obtained data values can be sent to different
user-configurable data checking resources, explained in section 10.3.3.

• The IP can include one or more PTM decoder modules, each decoding trace
information produced by a Program Trace Macrocell. The PC follower module

193

obtains traced PC values, which correspond to a succession of instruction
addresses of the corresponding PUM processor core. PTM decoder modules
do not need a copy of the executed program to work. Thus, user is encouraged
to enable branch broadcasting feature on PTM to maximize PC observability.
Obtained PC values are sent to a set of checking resources, discussed in
section 10.3.3.

3. Checking resources examine the information received from the trace interface and,
according to their configuration, raise a dedicated error signal upon an error.

4. The event evaluator module can perform logic operations with error signals to
generate further error signals depending on more complex conditions.

5. If Freeze signal is activated at any time, all IP core resources become frozen,
preserving their state to enable error information retrieval by the user.

Fig. 10.2. Internal architecture view of the IP.

10.3.3. Checking resources

The error detection capabilities of the IP are defined by the integrated checking
resources, represented in Fig. 10.2.

Data checking. Different data checking resources are available, as data range checking,
data dual comparison checking and data triple comparison checking. When the data value
enters the data checker, it is sent to each resource according to user configuration. The
same data value can be sent simultaneously to more than one resource:

• Data range checking resource generates an error signal whenever the received value
is outside the expected user-configurable bounds. User can configure this resource
to change the behavior and produce an error if the value is inside bounds.

194

• Data comparison checking resource can be dual or triple and generates an error
signal whenever the received values match the corresponding Boolean operator.
Both dual or triple type and Boolean operator are defined at implementation. User
can also configure this resource to produce an error whenever the received values
do not match the corresponding operator. Data is received sequentially, and the
comparison is only performed when the last data value is received. For that reason, a
configurable watchdog timer module is included in comparison checking resources
to detect when a group remains incomplete for an excessive time.

Program flow checking. PC range checker and PC loop watchdog resources receive
the successive PC values from a single PUM core to check whether the execution flow is
correct or not.

• PC range checker resource constantly monitors all received PC values and raise an
error signal in the case a particular value is outside of a set of user-configurable
allowed ranges.

• PC loop watchdog resource is also constantly monitoring received PC values to
check that a maximum time is elapsed between two consecutive receptions of a
specific PC value. Selected PC value is commonly the first instruction of the main
loop. In that case, the watchdog can be configured by the user to accurately detect
functional interrupt errors by configuring the watchdog to raise an error signal in the
case the elapsed time is greater than the maximum expected main loop execution
time. Unlike traditional watchdog approaches, that rely on the processor to refresh
the watchdog timer value, this approach does not need any action from the processor,
improving reliability.

Combined resources checking. The IP handles trace data from different sources
simultaneously. For this reason, additional checking approaches can be designed to
integrate information from more than one resource to detect and diagnose errors. These
features are currently under development and will appear in the next release of the IP.

• A lockstep checker could be implemented by combining PC information from more
than one core running the same application in lockstep. Lockstep integrity could be
checked by the IP in a non-intrusive manner and with no performance penalty.

• Signature/assertion checking can also be achieved by combining PC information
with data values from the trace. This way, the IP could check the correctness of the
execution flow not only by checking the PC value against allowed ranges, but also
by checking the correctness of the associated signature values online with execution.

195

10.3.4. Error diagnosis

The information available at the trace interface is very rich, and the data rate for a
typical application can exceed 1 Gbps. The IP is an independent entity designed to decode
and examine such huge amounts of data to detect errors. But the IP not only obtains
error-related data, but also trace data related to nominal execution. Thus, it is possible to
go a step further by using such information to contextualize error appearance. If only error
detection is performed from trace data, most relevant information about the error would be
lost. However, by gathering such information, a wider view of each error can be obtained,
and error diagnosis can be achieved. For example, when a faulty PC value is found, the
user could get the previous PC values, that would give the point in execution where the
error took place. In addition, when a faulty data value is found, the user could also observe
the faulty value and previous ones.

The presented IP has been designed to provide error diagnosis capabilities, by
introducing historical data record on each checking resource. Once the IP has detected
an error, it becomes frozen for the user to retrieve such historical information through the
configuration interface.

Table 10.1. IP SPECIFICATIONS

Condition Min Typ Max Units Comment

Pin Count
SPI interface option
No error signals

6 10
Each error signal
adds extra pins

Error detection
latency

No nested events in event evaluator 23
TRACE_CLK
clock cycles

Event evaluator
adds one cycle per

@1333 Mbps 140 ns each nested event
Operating
frequency

Implemented on Xilinx XC7Z010 166 MHz
TRACE_CLK
frequency

LUT count Synthesis for Xilinx Artix 7 series 2500 6000 6-input LUTs
Flip Flop count Synthesis for Xilinx Artix 7 series 2700 7000 D-type FFs

Trace Data
throughput

On-chip XC7Z010 over EMIO
8-bit data width

1333 Mbps

Off-chip XC7Z010 over MIO
LVCMOS33
4-bit data width

920 Mbps

Off-chip XC7Z010 over EMIO
TDMS33
4-bit data width

1200 Mbps

10.4. Applications

The IP has been developed in HDL, ready to be implemented in any FPGA platform.
The parametric design of the IP increases flexibility and provides a wide range of
user-configurable resources. Additionally, pre-implemented ready-to-use typical use case

196

designs have been developed and can be provided to be used in commonly available
development platforms for a quicker setup, evaluation, and deployment. Main IP
specifications are listed in Tab 10.1. The IP features high data throughput with small
footprint, reduced pin count, and low latency.

Several development phases are supported by the provided functionality:

• Design: providing error detection and diagnosis capabilities during development to
identify flaws in the system and enhance a given application to meet dependability
requirements.

• Device evaluation: detecting and classifying errors in different devices, allowing
severity evaluation to provide objective criteria on component selection. Not only for
COTS but also for space-oriented devices, it could help to understand and mitigate
complex failure modes.

• Operation: working side by side with a microprocessor to check the integrity of the
executed application in real time, raise an alert upon error, and provide diagnosis
information to perform the necessary corrective action with low latency, achieving
fault tolerance.

The IP can be integrated using two basic system architectures: binary architecture or
ternary architecture, depending on the number of available processors in the system.

In a binary architecture, only one processor, PUM (Processor Under Monitoring),
and one IP are present. The IP is checking PUM execution through its trace interface and
reporting error detection and diagnosis information to take corrective actions. If the found
error is not recoverable, the IP would trigger a whole system reset to avoid a permanent
functional interrupt. A binary architecture is the minimum fault tolerant system that can be
built around this IP and requires effort from the designer to assess that the whole system
would meet the dependability requirements. Binary system architecture is depicted in
Fig. 10.3 a).

In the case of a ternary architecture configuration, the IP is checking the execution of
a processor, PUM, which is only in charge of performing heavy, non-critical tasks which
require very high performance. An additional microprocessor, P1, is governing the entire
system without supervision, so it must be expected to have very low error rate and provide
all safety and time critical tasks to meet dependability requirements. However, there is
probably no need for P1 to be extremely powerful because it can rely on PUM to perform
all heavy, non-critical tasks. The IP will inform P1 whenever and error is found on PUM
to take a corrective action. In this case, the designer effort is lower as the corrective action
can be as simple as ignoring the last data packet or even a PUM reset, since PUM is not
servicing any critical task. Ternary system architecture is depicted in Fig. 10.3 b).

Several works have been conducted by the authors following the described trace
monitoring approach using Xilinx Zynq-7000 AP SoC during the development of the IP.

197

a)

b)

Fig. 10.3. IP integrated in a) binary and b) ternary architecture configuration.

[J1] and [J2] demonstrated the feasibility of using trace information for error detection
purposes in both control-flow and data with several application benchmarks, reaching up
to 95% error coverage. Later works demonstrated the capability of the IP to be integrated
in a more realistic application and to be combined with other hardening techniques such
as dual core lockstep [J3] and data redundancy acceleration using SIMD [J5], achieving
up to 99.9% error coverage. Most recent works illustrate the error diagnosis capabilities
of the IP under proton and neutron irradiation [J4] and also under laser fault injection
[J6], demonstrating fine granularity on discriminating error types, and the suitability of the
recorded information to perform effective error diagnosis.

10.5. Conclusions

Increasingly competitive space industry constantly seeks for new solutions to enhance
spacecraft processing capabilities on orbit. COTS processors, and particularly ARM cores,
are receiving much attention in the last years due to their excellent performance and power
consumption features. Despite COTS processors have been flown on successful missions,

198

several challenges still prevent COTS processors to be massively adopted in space missions,
as they involve risks regarding radiation hardness assurance.

Providing solutions to ease the safe introduction of COTS processors on spacecraft
may enable unprecedented computing capabilities on orbit, leading to a more efficient use
of resources. This paper has presented a new error detection and diagnosis technique based
on trace information monitoring and an IP design to implement it.

Trace monitoring is a new tool in the designer’s toolbox to manage risks and improve
the reliability of microprocessor-based space systems. This solution is currently available
at ARQUIMEA as an IP core compatible with ARM Cortex-A9 processor. It has been
functionally validated in Xilinx Zynq device under radiation testing (TRL3-4) obtaining
high error detection rate (up to 99.9%) [J5] and useful diagnosis information [J4, J6]. The
IP features low pin count and parametric design ready to be implemented in any FPGA with
low footprint. Currently, efforts are ongoing to enhance IP capabilities and compatibility
with a wider range of technologies and processor cores, including Xilinx Zynq Ultrascale,
Microchip rad-tolerant devices and NanoXplore FPGAs.

Acknowledgements

This work has been supported in part by the Spanish Ministry of Science and Innovation
under project PID2019-106455GB-C21 and by the Community of Madrid under grant
IND2017/TIC-7776. The IP has been developed in collaboration between University
Carlos III of Madrid and Arquimea, in the framework of an Industrial Ph.D. program.

References

[J1] M. Peña-Fernandez et al., “PTM-based hybrid error-detection architecture for
ARM microprocessors”, Microelectronics Reliability, vol. 88-90, pp. 925–930,
Sep. 2018. doi: 10.1016/j.microrel.2018.07.074.

[J2] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Morilla,
and P. Martín-Holgado, “Online error detection through trace infrastructure in
ARM microprocessors”, IEEE Transactions on Nuclear Science, vol. 66, no. 7,
pp. 1457–1464, Jul. 2019. doi: 10.1109/TNS.2019.2921767.

[J3] M. Peña-Fernández et al., “Dual-core lockstep enhanced with redundant
multithread support and control-flow error detection”, Microelectronics Reliability,
vol. 100-101, no. 113447, Sep. 2019. doi: 10.1016/j.microrel.2019.113447.

[J4] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “The use of
microprocessor trace infrastructures for radiation-induced fault diagnosis”, IEEE
Transactions on Nuclear Science, vol. 67, no. 1, pp. 126–134, Jan. 2020. doi:
10.1109/TNS.2019.2956204.

199

https://doi.org/10.1016/j.microrel.2018.07.074
https://doi.org/10.1109/TNS.2019.2921767
https://doi.org/10.1016/j.microrel.2019.113447
https://doi.org/10.1109/TNS.2019.2956204

[J5] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “Error
detection and mitigation of data-intensive microprocessor applications using SIMD
and trace monitoring”, IEEE Transactions on Nuclear Science, vol. 67, no. 7,
pp. 1452–1460, Jul. 2020. doi: 10.1109/TNS.2020.2992299.

[J6] M. Peña-Fernandez, A. Lindoso, L. Entrena, I. Lopes, and V. Pouget,
“Microprocessor error diagnosis by trace monitoring under laser testing”, IEEE
Transactions on Nuclear Science, vol. 68, no. 8, pp. 1651–1659, Aug. 2021. doi:
10.1109/TNS.2021.3067554.

[1] L. Entrena et al., “Fault-tolerance techniques for soft-core processors using the
trace interface”, in FPGAs and Parallel Architectures for Aerospace Applications.
Soft errors and Fault-Tolerant Design, Springer, 2016, pp. 293–306.

[2] M. Grosso, M. S. Reorda, M. Portela-Garcia, M. García-Valderas, C. López-Ongil,
and L. Entrena, “An on-line fault detection technique based on embedded debug
features”, Proc. 16th IEEE International On-Line Testing Symposium, pp. 167–172,
2010.

[8] A. Lindoso, L. Entrena, M. Garcia-Valderas, and L. Parra, “A hybrid fault-tolerant
LEON3 soft core processor implemented in low-end SRAM FPGA”, IEEE
Transactions on Nuclear Science, vol. 64, no. 1, pp. 374–381, Jan. 2017.

[27] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies”, IEEE Transactions on Device and Materials Reliability, vol. 5,
no. 3, pp. 305–316, Sep. 2005.

[33] H. Quinn, “Challenges in testing complex systems”, IEEE Transactions on Nuclear
Science, vol. 61, no. 2, pp. 766–786, Apr. 2014.

[46] K. A. LaBel, A. H. Johnston, J. L. Barth, R. A. Reed, and C. E. Barnes, “Emerging
radiation hardness assurance (RHA) issues: A NASA approach for space flight
programs”, IEEE Transactions on Nuclear Science, vol. 45, no. 6, pp. 2727–2736,
Dec. 1998.

[53] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability factors for
a high-performance microprocessor”, Proc. IEEE/ACM International Symposium
on Microarchitecture, pp. 29–40, Sep. 2003.

[65] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda, and
M. Violante, “Experimentally evaluating an automatic approach for generating
safety-critical software with respect to transient errors”, IEEE Transactions on
Nuclear Science, vol. 47, no. 6, pp. 2231–2236, 2000.

[67] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A C/C++ source-to-source
compiler for dependable applications”, IEEE International Conference on
Dependable Systems and Networks, pp. 71–78, 2000.

200

https://doi.org/10.1109/TNS.2020.2992299
https://doi.org/10.1109/TNS.2021.3067554

[68] E. Chielle, J. R. Azambuja, R. S. Barth, F. Almeida, and F. L. Kastensmidt,
“Evaluating selective redundancy in data-flow software-based techniques”, IEEE
Transactions on Nuclear Science, vol. 60, no. 4, pp. 2768–2775, Aug. 2013.

[79] M. Hiller, “Executable assertions for detecting data errors in embedded control
systems”, Proc. International Conference on Dependable Systems and Networks,
pp. 24–33, 2000.

[87] J. Azambuja, S. Pagliarini, L. Rosa, and F. Kastensmidt, “Exploring the limitations
of software-only techniques in see detection coverage”, Journal of Electronic
Testing, vol. 27, no. 4, pp. 541–550, 2011.

[90] R. Ginosar, “Survey of processors for space”, Proc. Int. Space System Engineering
Conf. (DASIA), pp. 1–5, Aug. 2012.

[92] K. A. LaBel and M. J. Sampson, “NEPP roadmaps, COTS, and small missions”,
Jun. 2016.

[104] J. Mogollon, J. Nápoles, H. Guzman-Miranda, and M. Aguirre, “Real time SEU
detection and diagnosis for safety or mission-critical ICs using hash library-based
fault dictionaries”, Proc. 2011 12th European Conference on Radiation and Its
Effects on Components and Systems, vol. 3, pp. 705–710, Sep. 2011.

[118] ARM Inc, CoreSight Components – Technical Reference Manual. 2009.

[119] Xilinx Inc, Zynq-7000 All Programmable SoC: Technical Reference Manual,
UG585. 2016.

[145] M. Nicolaidis, Soft Errors in Modern Electronic Systems. Springer, 2011.

[148] M. Pignol, “DMT and DT2: Two fault-tolerant architectures developed by CNES
for COTS-based spacecraft supercomputers”, Proc. 12th IEEE International
On-Line Testing Symposium, 10–pp, Jul. 2006.

[156] Á. B. de Oliveira et al., “Lockstep dual-core ARM A9: Implementation and
resilience analysis under heavy ion-induced soft errors”, IEEE Transactions on
Nuclear Science, vol. 65, no. 8, pp. 1783–1790, Aug. 2018.

201

11. CONCLUSIONS AND FUTURE WORK

11.1. Conclusions

This Thesis proposes a new hardware monitoring approach for high-end, hard-core
microprocessors using information available at the trace interface. The techniques
developed in this Thesis improve the fault tolerance and the observability of
microprocessor-based systems in the presence of radiation-induced faults that are applicable
to space applications. The test vehicle for this work has been the Xilinx Zynq-7000
device family featuring a hard-core dual-core ARM Cortex-A9 microprocessor. Diverse
techniques have been developed to leverage trace information concerning both execution
control-flow and data values to detect and diagnose radiation-induced errors. Remarkably,
most of the proposed techniques could be extensively applied to other ARM devices or
even to other processor architectures.

The observation of the device is performed through the trace interface since it provides
relevant information about execution in a non-intrusive manner. The selection of the trace
interface as an observation point is highly convenient since it is a resource commonly
available in modern microprocessors and is commonly left unused during system service
life. The reuse of existing hardware for observation and error mitigation purposes is key
when dealing with hard-core microprocessors, as their hardware cannot be modified. The
trace interface of ARM microprocessors is based on the CoreSight technology, which
introduces a modular subsystem for application trace and software debugging. In the
particular case of the Zynq-7000 device, the main trace sources are the Program Trace
Macrocell (PTM) and the Instrumentation Trace Macrocell (ITM) that generate trace
information related to program execution and data values respectively. The information
generated by the trace sources is handled by other CoreSight components and can be
exported outside the processing system for user retrieval. Trace information is compressed
and encoded before being output for an efficient use of the available bandwidth. Different
ARM microprocessors may integrate different trace sources implementing different trace
protocols, however they commonly include CoreSight components for program and
data tracing producing similar information regardless of their type. In fact, CoreSight
technology can be effectively used to tackle the observability challenges for complex
microprocessor-based systems.

Given the high throughput of the trace interface, which can be above 1 Gbps, most part
of the developed fault detection techniques have been implemented in dedicated hardware
as a VHDL IP to enable online trace monitoring with minimum latency. Several hardware
modules have been designed within the scope of this work and integrated into an IP capable
to extract the trace information from the formatted data frames and encoded trace streams,
based on the available CoreSight technical documentation. The IP includes additional

202

hardware modules for configuration and also checking resources capable to perform error
detection and diagnosis using the retrieved information. Remarkably, the IP architecture
has been oriented to obtain a modular and scalable design, capable of handling information
coming from several trace sources. Its versatile design allows for simultaneous monitoring
of control-flow and data or even multi-core system monitoring with a single IP. Scalability
may enable the incorporation of further support for new trace sources in the future. The
different IP capabilities are configurable and can be enabled or disabled through generic
implementation parameters.

The control-flow error detection techniques developed in this work are based in the
collection of the Program Counter (PC) value of the microprocessor during execution.
Such information can be automatically exported by the PTM without interfering processor
operation, thus introducing no performance penalty nor overhead in the application and no
need to modify the code. The IP can detect errors in the PC value by checking whether
it lies inside a specific memory region, that could be associated to the user application,
or not. In the case that the processor is found to be executing code outside the expected
region, a fault is signaled. By constantly checking the PC value it is possible to perform
error detection with much lower latency than other common approaches, such as watchdog
timers. Additionally, another error detection technique was developed to detect whether
the processor is not executing the application main loop in the expected timely manner,
by checking the elapsed time between consecutive iterations. Such techniques are highly
effective and present low complexity, and have proved to detect a very high portion of
control-flow errors in the different fault injection and irradiation campaigns performed in
this work.

Trace-based control-flow error detection techniques developed in this Thesis have been
succesfully combined with a software-based dual-core lockstep technique in collaboration
with Alicante University to form a hybrid technique. The hybrid approach leverages
the dual-core processing system (PS) present in the Zynq-7000 device to detect and
correct data errors by executing the same program in both available processors and
comparing between results. In the case of mismatch, a re-execution is triggered to obtain a
correct result. It is remarkable the concept of reusing existing hardware, such as a spare
processor in a dual-core system, to introduce fault-tolerance techniques. The control-flow
errors are detected in this approach through the trace information available from both
processors, which is simultaneously gathered by the IP to check the PC values of each
one. The contribution of trace monitoring in this approach is crucial, since the detection
of control-flow errors is a complex challenge for the software-implemented dual-core
lockstep system, but it is much more affordable for the trace checker IP. This approach
has demonstrated to achieve high error coverage both in fault injection and under proton
irradiation testing.

Data error detection techniques have also been developed in this work by leveraging
the capability of the ITM to export through the trace the value of any data variable in
the software during execution. For the data value to be exported, the value shall be

203

explicitly written by the application in a set of specific-purpose registers. Thus, some
modification is needed in the application code that could lead to an associated overhead in
performance and code size. Nevertheless, simple rules can be developed to introduce the
new instructions corresponding to those points in the code before the computation results
are output, thus limiting the overhead. The IP can detect errors on data values by checking
whether they are within a predefined expected range or by performing consistency checks
on replicated data. In the case of data replication, the code must be modified to support
the replication of redundant data variables, introducing performance penalty, but the IP
enables the possibility to perform the consistency checks on hardware, thus reducing the
total performance penalty when compared with a pure-software replication approach. Such
low complexity checks have been proved to detect a high portion of data errors in the
performed fault injection and irradiation campaigns with low latency.

Data error detection techniques developed in this Thesis have been successfully
combined with a SIMD-based data error mitigation technique with replicated data,
conforming a hybrid technique. This hybrid approach leverages the capability of NEON
SIMD engine present in the processing system (PS) of the Zynq-7000 device to perform
simultaneous computations on multiple data with a single instruction. This acceleration
scheme is used to detect and correct data errors by performing replicated computations
on triplicated data with very low performance penalty. It is remarkable again the concept
of reusing the existing resources available on the hardware to introduce fault-tolerance
techniques. The trace information is used in this approach to detect control-flow errors in
the execution and also to perform the consistency checks on replicated data, removing the
burden of performing such complex tasks at the software. This approach has demonstrated
to achieve very high error detection and correction capabilities in fault injection and under
neutron irradiation testing.

The different fault detection techniques presented in this work have been progressively
developed and introduced in the IP during the evolution of the performed research. Different
tests have been carried out in this work allowing to validate the developed techniques and
obtain intermediate results to make decisions about research directions and evaluation of the
capabilities of the proposed approach. Software fault injection has been used throughout the
entire work to continuously support the development of the different techniques at desktop
level and to perform preliminary evaluation before validation campaigns. Irradiation
campaigns have been performed at external renowned facilities at key points during
development to validate the developed techniques under radiation-induced faults and
obtain results susceptible to publication. A total of three low-energy proton irradiation
campaigns have been performed in Centro Nacional de Aceleradores (CNA) in Spain, one
campaign with neutron irradiation in Los Alamos Neutron Science Center (LANSCE) in
the United States and two campaigns with laser fault injection in University of Montpellier
in France. All of them have enabled to prove the validity of our developments and to find
new opportunities to improve the work.

204

One of the most relevant findings during the development of this Thesis was the use of
the trace information not only to perform radiation-induced error detection but also error
diagnosis. Although it was not initially planned, error diagnosis was proposed based on
the results obtained in the first test campaigns, which suggested that trace information
could be used to contextualize the error instant and to discriminate between different error
types. Error diagnosis has gained high relevance in this work and specific techniques have
been developed to obtain useful diagnosis information from the trace. Dedicated fault
injection and irradiation campaigns have been performed to evaluate the potential diagnosis
capabilities of trace information demonstrating that the trace interface provides enough
observability to obtain detailed information about the observed errors and perform effective
error diagnosis. The obtained diagnosis information can be used to analyze the causes of
radiation-induced errors and to identify weak points in microprocessor-based applications,
allowing to design optimal error mitigation solutions. The diagnosis techniques presented
in this work have demonstrated an unprecedented accuracy in the performed fault injection
and irradiation campaigns, allowing to precisely locate faults and to find error patterns.
Laser fault injection campaigns have shown that the proposed error diagnosis techniques
can enable the identification of zones more prone to errors than others in a given device. In
addition, the proposed diagnosis approach is non-intrusive, presenting high potential for
its use in hard-core microprocessors performing critical applications.

It is remarkable that the techniques proposed in this work have obtained very high error
detection and detailed error diagnosis capabilities while dealing with a complex information
resource such as the ARM CoreSight trace interface. In fact, the fixed implementation of the
CoreSight subsystem in the device actually limits the available information and conditions
the possible error detection and diagnosis approaches. While other works devoted to
microprocessor fault detection through trace monitoring for soft-core microprocessors
may have access to a richer, or even custom trace interface, this work is the first one
intending to detect radiation-induced faults on a complex hard-core microprocessor with
a standard, fixed trace interface imposing observability restrictions. This is a pioneer
work intended to perform detection and diagnosis of radiation-induced errors in hard-core
microprocessors through the trace interface, dealing with both control-flow erros and data
errors. All proposed techniques have been tested under fault injection and irradiation test
campaigns to evaluate their effectiveness and limitations. Obtained results demonstrate the
feasibility of the approach, that could potentially contribute to risk management applied to
applications within the New Space paradigm.

In the academic and research field, this work has received excellent acceptance at
renowned specialized forums in the area of radiation effects in electronic circuits and
devices. Four contributions were communicated and accepted in four consecutive editions
of the most relevant European conference in the field, namely RADECS (Radiation and its
Effects on Components and Systems), with one poster in 2018 and three oral presentations
performed by the author in 2019, 2020 and 2021. One contribution was also accepted as a
poster at the most important American conference in this field, namely NSREC (Nuclear

205

and Space Radiation Effects Conference) in 2020. RADECS and NSREC are the most
important conferences of the Nuclear and Plasma Sciences Society of the IEEE. Another
relevant European conference in the reliability topic is ESREF (European Symposium on
Reliability of Electron Devices, Failure Physics and Analysis), where two communications
were accepted as oral presentations performed by the author in 2018 and 2019, respectively.
Seven publications have been attained in prestigious journals, including IEEE Transactions
on Nuclear Science (JCR Q2) with 5 publications and Microelectronics Reliability (JCR
Q3) with 2 publications.

This Thesis has been carried out in the framework of an Industrial Ph.D. program,
supported by the Community of Madrid under Grant IND2017/TIC-7776 awarded in
2017. By this Industrial Ph.D. the aerospace company Arquimea and the University
Carlos III of Madrid (UC3M) have collaborated in the development of this work and
promoted the transfer of technology from the academia to the industry. Particularly,
UC3M has led the research activities while Arquimea has pursued their implementation
as a marketable product; and the author has carried out the work inside the company
environment. For all involved parties, this Thesis has provided visibility in international
forums and has increased mutual collaboration, augmenting the possibilities of future
projects in partnership.

This work has been carried out gradually by developing and testing different error
detection and diagnosis techniques. However, none of them have been tested separately
from the others, but they have been progressively integrated in a common design as a single
IP. As a result, the obtained IP has become modular, scalable and configurable to tune its
functionality depending on the test. The developed hardware has the potential to be adapted
to different implementations and scenarios, as illustrated by the different chapters in this
work, so it has potential to be used by third parties for research or industrial purposes.
Moreover, the developed techniques can be easily integrated with other microprocessor
fault-tolerance techniques to form hybrid techniques as demonstrated in this work. In
addition, the IP requires minimal effort and software support to be used, since it only
needs initial configuration to start operating independently of the processor, checking its
behavior by the trace interface. Given its industrial orientation, the results of this Thesis
have actually been communicated to the On-Board Data Processing workshop OBDP2021
organized by ESA in mid-2021. An oral presentation was made introducing the developed
IP as a product available to customers to be included in the life cycle of space designs to
increase observability of microprocessor-based systems during testing and to detect errors
during operation in space.

A very relevant result of this Industrial Ph.D is that it has notably promoted additional
R&D activities in the company, focusing on new technologies applied to error mitigation
for COTS microprocessors under radiation. As a result, the error detection and diagnosis
IP concept has also been presented to European Space Agency through a call of ideas
for technology transfer related to COTS, called Open Space Innovation Platform (OSIP).
The idea was positively informed and was selected for becoming a collaboration project

206

between Arquimea and University Carlos III of Madrid (UC3M) funded by ESA, which has
already started in late-2021. The achievement of this project demonstrates the industrial
interest on the technology developed in this Thesis. The project intends to give continuity
to the developed technology to become an industrially available product. The new project,
which is out of the scope of this Thesis, takes this Thesis as a starting point and proposes to
focus on the development and evaluation of an error detection and diagnosis tool according
to the current needs of New Space sector. It is remarkable that the technology transfer,
which was an important objective given the Industrial orientation of this work, has been
successfully achieved by the attainment of this new project, sponsored by an important
actor in the space sector such as the European Space Agency. The achievement of this
contract reveals that a research result, backed by several publications, has been successfully
transferred and exploited to the industry with benefit for the company, which demonstrates
the accomplishment of the ultimate objective of the Industrial Ph.D. program.

11.2. Future work

This work has set the foundations for further activities by demonstrating the feasibility
and potential applications and capabilities of error detection and diagnosis techniques
based on trace information for complex, hard-core microprocessors. From the experience
acquired from this work, some future activities have been identified and are proposed
hereunder. Many of them are currently being addressed at the company as part of the new
OSIP project funded by ESA:

• Expand IP capabilities to support more ARM microprocessors and devices.
Currently the IP is compatible with the Program Trace Macrocell (PTM) and the
Instrumentation Trace Macrocell (ITM) trace sources, and has been tested with
Xilinx Zynq-7000 device family. However, the IP could potentially be compatible
with any other CoreSight trace source such as the Embedded Trace Macrocell (ETM)
or the System Trace Macrocell (STM), and support a higher number of devices. The
modular and scalable architecture of the IP allows to design a configurable module
that could be adapted to different implementation scenarios. This action is currently
part of the OSIP project with European Space Agency, with the objective to identify
the ARM technologies and devices of interest in the space industry and to make the
IP compatible with them.

• Validation under heavy ions irradiation. Despite the techniques developed within
this work have been validated under proton and neutron irradiation, currently the
gold standard for Single-Event Effects in space community is heavy ion testing. It
has not been possible to perform such testing within the scope of this work due to
budget and calendar limitations, combined with the COVID-19 pandemic outbreak,
that severely limited mobility and access to such facilities. This action is currently

207

part of the OSIP project with European Space Agency, planning to perform a final
technology validation under heavy ion testing.

• Evaluation with high complexity software applications. The software
applications used as benchmarks within this Thesis have been selected to have
reduced complexity to increase the controlability of the system during fault injection
and irradiation campaigns. This approach has helped to have a good control and
understanding of the experimental setup, allowing to obtain as much information
as possible to improve the design. However, the applications commonly run by
microprocessors in space are far more complex such as data processing, data
compression or image processing. Increasing the complexity of the used benchmarks
would lead to a different scenario and reveal new challenges enabling future
developments. This action is currently part of the OSIP project with European
Space Agency, planning to perform the final validation campaigns with at least one
complex benchmark representative of a space application.

• Develop a commercial product. The IP resulting from this work could be
considered as a research tool to evaluate the capabilities of the developed techniques
and the potential of trace information to be used for error detection and diagnosis.
However, the current design is not conceived for standard users that need guidance
on how to build applications around it. By performing an extensive design review
and documentation, a wider range of potential users could benefit of the innovative
capabilities of this technology. In fact, this is a crucial step to reach an industrial
phase of the IP. These actions are currently part of the new development project with
European Space Agency, willing to obtain a marketable IP design and commercial
documentation for potential users and customers.

• Develop, implement and evaluate additional checking techniques. The error
detection techniques developed within this Thesis have demonstrated to cover a
high amount of errors in validation campaigns, while maintaining low complexity
and requiring few resources to be implemented. Thanks to the proposed techniques
described in this Thesis, additional research can be carried out to develop more
complex techniques, especially by combining the information from different trace
sources.

208

BIBLIOGRAPHY

[J1] M. Peña-Fernandez et al., “PTM-based hybrid error-detection architecture for
ARM microprocessors”, Microelectronics Reliability, vol. 88-90, pp. 925–930,
Sep. 2018. doi: 10.1016/j.microrel.2018.07.074.

[J2] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Morilla,
and P. Martín-Holgado, “Online error detection through trace infrastructure in
ARM microprocessors”, IEEE Transactions on Nuclear Science, vol. 66, no. 7,
pp. 1457–1464, Jul. 2019. doi: 10.1109/TNS.2019.2921767.

[J3] M. Peña-Fernández et al., “Dual-core lockstep enhanced with redundant
multithread support and control-flow error detection”, Microelectronics Reliability,
vol. 100-101, no. 113447, Sep. 2019. doi: 10.1016/j.microrel.2019.113447.

[J4] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “The use of
microprocessor trace infrastructures for radiation-induced fault diagnosis”, IEEE
Transactions on Nuclear Science, vol. 67, no. 1, pp. 126–134, Jan. 2020. doi:
10.1109/TNS.2019.2956204.

[J5] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas, “Error
detection and mitigation of data-intensive microprocessor applications using SIMD
and trace monitoring”, IEEE Transactions on Nuclear Science, vol. 67, no. 7,
pp. 1452–1460, Jul. 2020. doi: 10.1109/TNS.2020.2992299.

[J6] M. Peña-Fernandez, A. Lindoso, L. Entrena, I. Lopes, and V. Pouget,
“Microprocessor error diagnosis by trace monitoring under laser testing”, IEEE
Transactions on Nuclear Science, vol. 68, no. 8, pp. 1651–1659, Aug. 2021. doi:
10.1109/TNS.2021.3067554.

[J7] M. Peña-Fernández et al., “Hybrid lockstep technique for soft error mitigation”,
IEEE Transactions on Nuclear Science, 2022. doi: 10.1109/TNS.2022.3149867.

[C1] M. Peña-Fernandez, A. Lindoso, and L. Entrena, “IP to detect and diagnose errors
in COTS microprocessors through the Trace Interface”, presented at the 2nd
European Workshop on On-Board Data Processing (OBDP2021), Jun. 2021. doi:
10.5281/zenodo.5521538.

[1] L. Entrena et al., “Fault-tolerance techniques for soft-core processors using the
trace interface”, in FPGAs and Parallel Architectures for Aerospace Applications.
Soft errors and Fault-Tolerant Design, Springer, 2016, pp. 293–306.

[2] M. Grosso, M. S. Reorda, M. Portela-Garcia, M. García-Valderas, C. López-Ongil,
and L. Entrena, “An on-line fault detection technique based on embedded debug
features”, Proc. 16th IEEE International On-Line Testing Symposium, pp. 167–172,
2010.

209

https://doi.org/10.1016/j.microrel.2018.07.074
https://doi.org/10.1109/TNS.2019.2921767
https://doi.org/10.1016/j.microrel.2019.113447
https://doi.org/10.1109/TNS.2019.2956204
https://doi.org/10.1109/TNS.2020.2992299
https://doi.org/10.1109/TNS.2021.3067554
https://doi.org/10.1109/TNS.2022.3149867
https://doi.org/10.5281/zenodo.5521538

[3] M. Portela-García et al., “On the use of embedded debug features for permanent and
transient fault resilience in microprocessors”, Microprocessors and Microsystems,
vol. 36, no. 5, pp. 334–343, 2012.

[4] L. Parra et al., “Efficient mitigation of data and control flow errors in
microprocessors”, IEEE Transactions on Nuclear Science, vol. 61, no. 4,
pp. 1590–1596, 2014.

[5] L. Parra et al., “A new hybrid nonintrusive error-detection technique using dual
control-flow monitoring”, IEEE Transactions on Nuclear Science, vol. 61, no. 6,
pp. 3236–3243, 2014.

[6] L. Entrena et al., “Flexible approaches to fault-tolerant microprocessors for space
applications”, Proc. Data Systems in Aerospace (DASIA), ESA Special Publication
SP-732, May 2015.

[7] B. Du et al., “Online test of control flow errors: A new debug interface-based
approach”, IEEE Transactions on Computers, vol. 65, no. 6, pp. 1846–1855, Jun.
2016.

[8] A. Lindoso, L. Entrena, M. Garcia-Valderas, and L. Parra, “A hybrid fault-tolerant
LEON3 soft core processor implemented in low-end SRAM FPGA”, IEEE
Transactions on Nuclear Science, vol. 64, no. 1, pp. 374–381, Jan. 2017.

[9] B. Johnson, “An introduction to the design and analysis of fault-tolerant systems”,
pp. 1–87, 1996.

[10] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and
taxonomy of dependable and secure computing”, IEEE transactions on dependable
and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[11] G. Buja and R. Menis, “Dependability and functional safety: Applications in
industrial electronics systems”, IEEE Industrial Electronics Magazine, vol. 6,
no. 3, pp. 4–12, 2012.

[12] A. Avizienis, J.-C. Laprie, B. Randell, et al., Fundamental concepts of
dependability. University of Newcastle upon Tyne, Computing Science, 2001.

[13] W. Kuo, W.-T. K. Chien, and T. Kim, Reliability, yield, and stress burn-in: a unified
approach for microelectronics systems manufacturing & software development.
Springer Science & Business Media, 1998.

[14] J. Lienig and H. Bruemmer, Fundamentals of electronic systems design. Springer,
2017.

[15] R. C. Lacoe, “Improving integrated circuit performance through the application of
hardness-by-design methodology”, IEEE Transactions on Nuclear Science, vol. 55,
no. 4, pp. 1903–1925, Sep. 2008.

[16] J. D. Cressler, “Big picture and some history of the field”, in Extreme Environment
Electronics, J. D. Cressler and H. A. Mantooth, Eds., Boca Raton: CRC Press,
2013, pp. 3–9.

210

[17] E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for
electronics”, Proceedings of the IEEE, vol. 76, no. 11, pp. 1423–1442, Nov. 1988.

[18] M. Xapsos, “A brief history of space climatology: From the big bang to the
present”, IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 17–37, Jan.
2019.

[19] P. K. Grieder, Cosmic rays at Earth. Elsevier, 2001.

[20] L. Dilillo, F. Wrobel, J. Galliere, and F. Saigne, “Neutron detection through
an SRAM-based test bench”, Proc. IEEE Int. Workshop Advanced Sensor and
Interfaces (IWASI), pp. 64–69, 2009.

[21] D. Heynderickx, B. Quaghebeur, E. Speelman, and E. Daly, “ESA’s space
environment information system (SPENVIS)-a WWW interface to models of
the space environment and its effects”, in 38th Aerospace Sciences Meeting and
Exhibit, 2000, p. 371.

[22] T. R. Oldham and F. McLean, “Total ionizing dose effects in MOS oxides and
devices”, IEEE transactions on nuclear science, vol. 50, no. 3, pp. 483–499, Jun.
2003.

[23] D. M. Fleetwood, “Total ionizing dose effects in MOS and low-dose-rate-sensitive
linear-bipolar devices”, IEEE Transactions on Nuclear Science, vol. 60, no. 3,
pp. 1706–1730, Jun. 2013.

[24] J. Srour and J. Palko, “Displacement damage effects in irradiated semiconductor
devices”, IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 1740–1766,
Jun. 2013.

[25] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of single-event
upset in digital microelectronics”, IEEE Transactions on Nuclear Science, vol. 50,
no. 3, pp. 583–602, Jun. 2003.

[26] F. W. Sexton, “Destructive single-event effects in semiconductor devices and ICs”,
IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 603–621, Jun. 2003.

[27] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies”, IEEE Transactions on Device and Materials Reliability, vol. 5,
no. 3, pp. 305–316, Sep. 2005.

[28] P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank, and J. A. Felix, “Current and future
challenges in radiation effects on CMOS electronics”, IEEE Transactions on
Nuclear Science, vol. 57, no. 4, pp. 1747–1763, 2010.

[29] R. Baumann, “Soft errors in advanced computer systems”, IEEE Design & Test of
Computers, vol. 22, no. 3, pp. 258–266, Jun. 2005.

[30] M. L. Alles, “Radiation hardening by process”, in Extreme Environment
Electronics, J. D. Cressler and H. A. Mantooth, Eds., Boca Raton: CRC Press,
2013, pp. 287–297.

211

[31] European Space Agency, Space product assurance. Techniques for radiation effects
mitigation in ASICs and FPGAs handbook. ECSS, 2016.

[32] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design for
submicron CMOS technology”, IEEE Transactions on nuclear science, vol. 43,
no. 6, pp. 2874–2878, Dec. 1996.

[33] H. Quinn, “Challenges in testing complex systems”, IEEE Transactions on Nuclear
Science, vol. 61, no. 2, pp. 766–786, Apr. 2014.

[34] J. R. Schwank, M. R. Shaneyfelt, and P. E. Dodd, “Radiation hardness assurance
testing of microelectronic devices and integrated circuits: Radiation environments,
physical mechanisms, and foundations for hardness assurance”, IEEE Transactions
on Nuclear Science, vol. 60, no. 3, pp. 2074–2100, Jun. 2013.

[35] Department of Defense, Test Method Standard Microcircuits MIL-STD-883. 2013.

[36] European Space Agency, Total dose steady-state irradiation test method. 2010.

[37] European Space Agency, Single event effects test method and guidelines. 2014.

[38] J. E. D. E. C. (JEDEC), Test Procedure for the Management of Single-Event Effects
in Semiconductor Devices from Heavy Ion Irradiation, JESD57. 2017.

[39] J. E. D. E. C. (JEDEC), Test Standard For The Measurement of Proton Radiation
Single Event Effects in Electronic Devices, JESD234. 2013.

[40] H. Quinn, T. Fairbanks, J. L. Tripp, G. Duran, and B. Lopez, “Single-event effects
in low-cost, low-power microprocessors”, 2014 IEEE Radiation Effects Data
Workshop (REDW), pp. 1–9, 2014.

[41] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, “Fault simulation
and emulation tools to augment radiation-hardness assurance testing”, IEEE
Transactions on Nuclear Science, vol. 60, no. 3, pp. 2119–2142, Jun. 2013.

[42] S. P. Buchner, F. Miller, V. Pouget, and D. P. McMorrow, “Pulsed-laser testing
for single-event effects investigations”, IEEE Transactions on Nuclear Science,
vol. 60, no. 3, pp. 1852–1875, Jun. 2013.

[43] K. Sahu, “EEE-INST-002: Instructions for EEE parts selection, screening,
qualification, and derating”, NASA/TP—2003–212242, 2008.

[44] R. Baumann, “Radiation hardness assurance in the ‘Wild West’ of commercial
space”, in IEEE NSREC Short Course, Dec. 2020, pp. IV/1–IV/68.

[45] NASA Engineering & Safety Center, “COTS components in spacecraft systems:
Understanding the risk”, Reference NASA/TM-2014-218261,

[46] K. A. LaBel, A. H. Johnston, J. L. Barth, R. A. Reed, and C. E. Barnes, “Emerging
radiation hardness assurance (RHA) issues: A NASA approach for space flight
programs”, IEEE Transactions on Nuclear Science, vol. 45, no. 6, pp. 2727–2736,
Dec. 1998.

212

[47] J. Plante and M. Sampson, “Cost impacts of upgrading electronic parts for use in
NASA spaceflight systems”, 2003.

[48] P. Winokur, G. Lum, M. Shaneyfelt, F. Sexton, G. Hash, and L. Scott, “Use of
COTS microelectronics in radiation environments”, IEEE Transactions on Nuclear
Science, vol. 46, no. 6, pp. 1494–1503, Dec. 1999.

[49] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran, “Software
resilience and the effectiveness of software mitigation in microcontrollers”, IEEE
Transactions on Nuclear Science, vol. 62, no. 6, pp. 2532–2538, Dec. 2015.

[50] F. Irom, “Guideline for ground radiation testing of microprocessors in the space
radiation environment”, Jet Propulsion Laboratory, National Aeronautics and Space
Administration, Pasadena, CA, Tech. Rep., 2008.

[51] S. M. Guertin, “Guideline for single-event effect (SEE) testing of system on a
chip (SOC) devices”, Jet Propulsion Laboratory, National Aeronautics and Space
Administration, Pasadena, CA, Tech. Rep., 2018.

[52] H. Quinn et al., “Using benchmarks for radiation testing of microprocessors and
FPGAs”, IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 2547–2554,
Dec. 2015.

[53] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability factors for
a high-performance microprocessor”, Proc. IEEE/ACM International Symposium
on Microarchitecture, pp. 29–40, Sep. 2003.

[54] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas, and D.
Gizopoulos, “Multi-bit upsets vulnerability analysis of modern microprocessors”,
2019 IEEE International Symposium on Workload Characterization (IISWC),
pp. 119–130, 2019.

[55] A. Serrano-Cases, L. M. Reyneri, Y. Morilla, S. Cuenca-Asensi, and
A. Martínez-Álvarez, “Empirical mathematical model of microprocessor sensitivity
and early prediction to proton and neutron radiation-induced soft errors”, IEEE
Transactions on Nuclear Science, vol. 67, no. 7, pp. 1511–1520, Jul. 2020.

[56] R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting error rate for
microprocessor-based digital architectures through C.E.U. (Code Emulating
Upsets) injection”, IEEE Transactions on Nuclear Science, vol. 47, no. 6,
pp. 2405–2411, Dec. 2000.

[57] M. Rebaudengo, M. S. Reorda, and M. Violante, “Software-level soft-error
mitigation techniques”, in Soft Errors in Modern Electronic Systems, Springer,
2011.

213

[58] V. Nair, H. Kim, N. Krishnamurthy, and J. Abraham, “Design and evaluation
of automated high-level checks for signal processing applications”, Proc. SPIE
advanced algorithms and architectures for signal processing conference, Aug.
1996.

[59] Z. Alkhalifa, V. S. Nair, N. Krishnamurthy, and J. A. Abraham, “Design and
evaluation of system-level checks for on-line control flow error detection”, IEEE
Transactions on Parallel and Distributed Systems, vol. 10, no. 6, pp. 627–641, Jun.
1999.

[60] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by software
signatures”, IEEE transactions on Reliability, vol. 51, no. 1, pp. 111–122, Mar.
2002.

[61] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante, “Soft-error
detection using control flow assertions”, Proc. 18th IEEE Symposium on Defect
and Fault Tolerance in VLSI Systems, pp. 581–588, 2003.

[62] R. Vemu and J. A. Abraham, “CEDA: Control-flow error detection through
assertions”, Proc. 12th IEEE International On-Line Testing Symposium (IOLTS),
pp. 151–158, 2006.

[63] J. R. Azambuja et al., “A fault tolerant approach to detect transient faults
in microprocessors based on a non-intrusive reconfigurable hardware”, IEEE
Transactions on Nuclear Science, vol. 59, no. 4, pp. 1117–1124, Aug. 2012.

[64] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante, “Soft-error
detection through software fault-tolerance techniques”, in Proceedings 1999 IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT’99),
Nov. 1999, pp. 210–218.

[65] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda, and
M. Violante, “Experimentally evaluating an automatic approach for generating
safety-critical software with respect to transient errors”, IEEE Transactions on
Nuclear Science, vol. 47, no. 6, pp. 2231–2236, 2000.

[66] B. Nicolescu and R. Velazco, “Detecting soft errors by a purely software approach:
Method, tools and experimental results”, Design, Automation and Test in Europe
Conference, pp. 57–62, 2003.

[67] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A C/C++ source-to-source
compiler for dependable applications”, IEEE International Conference on
Dependable Systems and Networks, pp. 71–78, 2000.

[68] E. Chielle, J. R. Azambuja, R. S. Barth, F. Almeida, and F. L. Kastensmidt,
“Evaluating selective redundancy in data-flow software-based techniques”, IEEE
Transactions on Nuclear Science, vol. 60, no. 4, pp. 2768–2775, Aug. 2013.

214

[69] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by duplicated
instructions in super-scalar processors”, IEEE Transactions on Reliability, vol. 51,
no. 1, pp. 63–75, Mar. 2002.

[70] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, “SWIFT:
Software implemented fault tolerance”, Proc. 3rd International Symposium on
Code Generation and Optimization (CGO), pp. 243–254, Mar. 2005.

[71] G. A. Reis, J. Chang, and D. I. August, “Automatic instruction-level software-only
recovery”, IEEE micro, vol. 27, no. 1, pp. 36–47, Jan. 2007.

[72] N. Oh and E. J. McCluskey, “Error detection by selective procedure call duplication
for low energy consumption”, IEEE Transactions on Reliability, vol. 51, no. 4,
pp. 392–402, Dec. 2002.

[73] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via simultaneous
multithreading”, Proceedings of 27th International Symposium on Computer
Architecture (IEEE Cat. No. RS00201), pp. 25–36, 2000.

[74] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault recovery using
simultaneous multithreading”, Proc. 29th Annual International Symposium on
Computer Architecture, pp. 38–87, 2002.

[75] S. Mukherjee, Architecture design for soft errors. Elsevier, 2008.

[76] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz, “Transient-fault
recovery for chip multiprocessors”, Proc. 30th Annual International Symposium
on Computer Architecture, pp. 98–109, 2003.

[77] K.-H. Chen, G. von der Brüggen, and J.-J. Chen, “Reliability optimization on
multi-core systems with multi-tasking and redundant multi-threading”, IEEE
Transactions on Computers, vol. 67, no. 4, pp. 484–497, Apr. 2018.

[78] N. Oh, S. Mitra, and E. J. McCluskey, “ED4I: Error detection by diverse data
and duplicated instructions”, IEEE Transactions on Computers, vol. 51, no. 2,
pp. 180–199, Feb. 2002.

[79] M. Hiller, “Executable assertions for detecting data errors in embedded control
systems”, Proc. International Conference on Dependable Systems and Networks,
pp. 24–33, 2000.

[80] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improving FPGA
design robustness with partial TMR”, in 2006 IEEE International Reliability
Physics Symposium Proceedings, Mar. 2006, pp. 226–232.

[81] A. J. Sánchez-Clemente, L. Entrena, and M. García-Valderas, “Partial TMR in
FPGAs using approximate logic circuits”, IEEE Transactions on Nuclear Science,
vol. 63, no. 4, pp. 2233–2240, Jul. 2016.

[82] F. Abate, L. Sterpone, and M. Violante, “A new mitigation approach for soft errors
in embedded processors”, IEEE Transactions on Nuclear Science, vol. 55, no. 4,
pp. 2063–2069, Aug. 2008.

215

[83] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step (TCLS) ARM®
cortex®-R5 processor for safety-critical and ultra-reliable applications”, 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshop (DSN-W), pp. 246–249, 2016.

[84] P. Bernardi, L. B. Poehls, M. Grosso, and M. S. Reorda, “A hybrid approach
for detection and correction of transient faults in SoCs”, IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 4, pp. 439–445, Aug. 2010.

[85] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “A watchdog processor to
detect data and control flow errors”, in 9th IEEE On-Line Testing Symposium,
2003, pp. 144–148.

[86] S. Bergaoui and R. Leveugle, “IDSM: An improved control flow checking approach
with disjoint signature monitoring”, roc. 24th Conference on Design of Circuits
and Integrated Systems (DCIS), 2009.

[87] J. Azambuja, S. Pagliarini, L. Rosa, and F. Kastensmidt, “Exploring the limitations
of software-only techniques in see detection coverage”, Journal of Electronic
Testing, vol. 27, no. 4, pp. 541–550, 2011.

[88] J. R. Azambuja, M. Altieri, J. Becker, and F. L. Kastensmidt, “HETA: Hybrid
error-detection technique using assertions”, IEEE Transactions on Nuclear Science,
vol. 60, no. 4, pp. 2805–2812, 2013.

[89] I. V. McLoughlin, V. Gupta, G. Sandhu, S. Lim, and T. Bretschneider,
“Fault tolerance through redundant COTS components for satellite processing
applications”, in Fourth International Conference on Information, Communications
and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia.
Proceedings of the 2003 Joint, vol. 1, Dec. 2003, pp. 296–299.

[90] R. Ginosar, “Survey of processors for space”, Proc. Int. Space System Engineering
Conf. (DASIA), pp. 1–5, Aug. 2012.

[91] T. M. Lovelly and A. D. George, “Comparative analysis of present and future
space-grade processors with device metrics”, Journal of aerospace information
systems, vol. 14, no. 3, pp. 184–197, 2017.

[92] K. A. LaBel and M. J. Sampson, “NEPP roadmaps, COTS, and small missions”,
Jun. 2016.

[93] R. Trautner, “ESA’s roadmap for next generation payload data processors”, in
Proc. Data Syst. Aerosp. Conf.(DASIA), 2011, pp. 159–161.

[94] P. P. Shirvani, N. Oh, E. J. Mccluskey, D. Wood, M. N. Lovellette, and K. Wood,
“Software-implemented hardware fault tolerance experiments: COTS in space”,
in International Conference on Dependable Systems and Networks (FTCS-30 and
DCCA-8), New York (NY), 2000.

[95] J. R. Marshall, “Embedding COTS processors into fault tolerant space
applications”, in 10th Computing in Aerospace Conference, 1995, p. 1032.

216

[96] D. Gizopoulos et al., “Architectures for online error detection and recovery in
multicore processors”, in 2011 Design, Automation & Test in Europe, IEEE, 2011,
pp. 1–6.

[97] D. S. Khudia, G. Wright, and S. Mahlke, “Efficient soft error protection for
commodity embedded microprocessors using profile information”, ACM SIGPLAN
Notices, vol. 47, no. 5, pp. 99–108, 2012.

[98] T. A. Alves, S. Kundu, L. A. Marzulo, and F. M. França, “Online error detection
and recovery in dataflow execution”, in 2014 IEEE 20th International On-Line
Testing Symposium (IOLTS), IEEE, 2014, pp. 9–104.

[99] R. Vemu, S. Gurumurthy, and J. A. Abraham, “ACCE: Automatic correction of
control-flow errors”, in 2007 IEEE International Test Conference, IEEE, 2007,
pp. 1–10.

[100] N. Khoshavi, H. R. Zarandi, and M. Maghsoudloo, “Two control-flow error
recovery methods for multithreaded programs running on multi-core processors”,
in 2012 28th International Conference on Microelectronics Proceedings, IEEE,
2012, pp. 371–374.

[101] J. M. Mogollón, H. Guzmán-Miranda, J. Napoles, and M. Aguirre, “Metrics for
the measurement of the quality of stimuli in radiation testing using fast hardware
emulation”, IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp. 2456–2460,
Aug. 2013.

[102] M. Elm and H.-J. Wunderlich, “BISD: Scan-based built-in self-diagnosis”, 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE 2010),
pp. 1243–1248, 2010.

[103] N. Naber, T. Getz, Y. Kim, and J. Petrosky, “Real-time fault detection and
diagnostics using FPGA-based architectures”, Proc. International Conference
on Field Programmable Logic and Applications, pp. 346–351, Aug. 2010.

[104] J. Mogollon, J. Nápoles, H. Guzman-Miranda, and M. Aguirre, “Real time SEU
detection and diagnosis for safety or mission-critical ICs using hash library-based
fault dictionaries”, Proc. 2011 12th European Conference on Radiation and Its
Effects on Components and Systems, vol. 3, pp. 705–710, Sep. 2011.

[105] W. Mansour and R. Velazco, “An automated SEU fault-injection method and tool
for HDL-based designs”, IEEE Transactions on Nuclear Science, vol. 60, no. 4,
pp. 2728–2733, Aug. 2013.

[106] F. Sexton, “Microbeam studies of single-event effects”, IEEE Transactions on
Nuclear Science, vol. 43, no. 2, pp. 687–695, Apr. 1996.

[107] Y. Xu et al., “An accelerator-based neutron microbeam system for studies of
radiation effects”, Radiation protection dosimetry, vol. 145, no. 4, pp. 373–376,
Jun. 2011.

217

[108] V. P. Srini, “Special feature: Fault diagnosis of microprocessor systems”, Computer,
vol. 10, no. 1, pp. 60–65, Jan. 1977.

[109] S. Wei, F. Tongshun, and D. Mingfang, “Research for digital circuit fault testing and
diagnosis techniques”, Proc. International Conference on Test and Measurement,
vol. 1, pp. 330–333, Dec. 2009.

[110] B. K. Sikdar, N. Ganguly, and P. P. Chaudhuri, “Fault diagnosis of VLSI
circuits with cellular automata based pattern classifier”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 7,
pp. 1115–1131, Jul. 2005.

[111] F. A. Bower, D. J. Sorin, and S. Ozev, “Online diagnosis of hard faults in
microprocessors”, ACM Transactions on Architecture and Code Optimization,
vol. 4, no. 2, Jun. 2007.

[112] S. Z. Shazli, M. Abdul-Aziz, M. B. Tahoori, and D. R. Kaeli, “A field analysis of
system-level effects of soft errors occurring in microprocessors used in information
systems”, Proc. IEEE International Test Conference, pp. 1–10, Oct. 2008.

[113] P. Bernardi, R. Cantoro, S. De Luca, E. Sanchez, A. Sansonetti, and G. Squillero,
“Software-based self-test techniques for dual-issue embedded processors”, IEEE
Transactions on Emerging Topics in Computing, vol. 8, no. 2, pp. 464–477, 2020.

[114] M. Ulbricht, M. Schölzel, T. Koal, and H. T. Vierhaus, “A new hierarchical built-in
self-test with on-chip diagnosis for VLIW processors”, 14th IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and Systems,
pp. 143–146, 2011.

[115] D. Kodavade and S. Apte, “Troubleshooting microprocessor based system using
an object oriented expert system”, International Journal of Advanced Computer
Science and Applications, vol. 3, no. 5, pp. 111–116, May 2012.

[116] ARM Inc, CoreSight Technical Introduction. 2013.

[117] ARM Inc, CoreSight Architecture Specification v2.0. 2013.

[118] ARM Inc, CoreSight Components – Technical Reference Manual. 2009.

[119] Xilinx Inc, Zynq-7000 All Programmable SoC: Technical Reference Manual,
UG585. 2016.

[120] ARM Inc, CoreSight Program Flow Trace Architecture Specification. 2011.

[121] Xilinx Inc, Zynq UltraScale+ Device: Technical Reference Manual, UG1085. 2020.

[122] B. Du, E. Sanchez, M. S. Reorda, J. P. Acle, and A. Tsertov, “FPGA-controlled
PCBA power-on self-test using processor’s debug features”, IEEE International
Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS),
2016.

218

[123] M. A. Wahab, P. Cotret, M. N. Allah, G. Hiet, V. Lapotre, and G. Gogniat,
“ARMHEx: A hardware extension for DIFT on ARM-based SoCs”, in 2017 27th
International Conference on Field Programmable Logic and Applications (FPL),
IEEE, 2017, pp. 1–7.

[124] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, “Using CoreSight PTM to integrate
CRA monitoring IPs in an ARM-based SoC”, ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 22, no. 3, pp. 1–25, Apr. 2017.

[125] H. Moon, J. Lee, D. Hwang, S. Jung, J. Seo, and Y. Paek, “Architectural supports
to protect OS kernels from code-injection attacks and their applications”, ACM
Transactions on Design Automation of Electronic Systems (TODAES), vol. 23,
no. 1, pp. 1–25, Aug. 2017.

[126] N. Decker et al., “Rapidly adjustable non-intrusive online monitoring for
multi-core systems”, in Brazilian Symposium on Formal Methods, Springer, 2017,
pp. 179–196.

[127] N. Decker et al., “Online analysis of debug trace data for embedded systems”,
in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
IEEE, 2018, pp. 851–856.

[128] D.-A. Suciu and R. Sion, “DroidSentry: Efficient code integrity and control flow
verification on TrustZone devices”, in 2017 21st International Conference on
Control Systems and Computer Science (CSCS), IEEE, 2017, pp. 156–158.

[129] A. Pârvu, “Program trace capture and analysis for ARM”, M.S. thesis, ETH Zürich,
Systems Group, Department of Computer Science, 2016.

[130] G. Portokalidis, “TRAILS: Efficient data flow tracking through HW-assisted
parallelization”, Stevens Institute of Technology Hoboken United States, Tech.
Rep., 2019.

[131] E. J. Clark, “Trace-based hardware control flow signature checking”, M.S. thesis,
University of Illinois at Urbana-Champaign, 2018.

[132] S. M. A. Zeinolabedin, J. Partzsch, and C. Mayr, “Real-time hardware
implementation of ARM CoreSight trace decoder”, IEEE Design & Test, vol. 38,
no. 1, pp. 69–77, 2020.

[133] S. M. A. Zeinolabedin, J. Partzsch, and C. Mayr, “Analyzing ARM CoreSight
ETMv4.x data trace stream with a real-time hardware accelerator”, in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2021,
pp. 1606–1609.

[134] A. W. Hoppe, F. L. Kastensmidt, and J. Becker, “Control flow analysis for
embedded multi-core hybrid systems”, in Applied Reconfigurable Computing.
Architectures Tools and Applications, Springer, 2018, pp. 485–496.

219

[135] A. Hoppe, J. Becker, and F. L. Kastensmidt, “Fine grained control flow checking
with dedicated FPGA monitors”, in 2020 IEEE 33rd International System-on-Chip
Conference (SOCC), IEEE, 2020, pp. 219–224.

[136] M. Glorieux et al., “Single-event characterization of Xilinx Ultrascale+®MPSOC
under standard and ultra-high energy heavy-ion irradiation”, in 2018 IEEE
Radiation Effects Data Workshop (REDW), IEEE, 2018, pp. 1–5.

[137] R. Koga, S. Davis, J. George, M. Zakrzewski, and D. Mabry, “Heavy ion and proton
induced single event effects on Xilinx Zynq UltraScale+ Field Programmable Gate
Array (FPGA)”, in 2018 IEEE Radiation Effects Data Workshop (REDW), IEEE,
2018, pp. 1–5.

[138] D. S. Lee et al., “Single-event characterization of 16 nm FinFET Xilinx UltraScale+
devices with heavy ion and neutron irradiation”, in 2018 IEEE Radiation Effects
Data Workshop (REDW), IEEE, 2018, pp. 1–8.

[139] M. Amrbar, F. Irom, S. M. Guertin, and G. Allen, “Heavy ion single event effects
measurements of Xilinx Zynq-7000 FPGA”, in 2015 IEEE Radiation Effects Data
Workshop (REDW), IEEE, 2015, pp. 1–4.

[140] Digilent Inc, ZYBO Reference Manual. 2014.

[141] AVNET Inc, PicoZed™ 7Z015 / 7Z030 SOM(System-On-Module) Hardware User
Guide. 2020.

[142] J. Gómez-Camacho et al., “Research facilities and highlights at the centro nacional
de aceleradores (CNA)”, The European Physical Journal Plus, vol. 136, no. 3,
pp. 1–16, 2021.

[143] R. W. Garnett, “LANSCE accelerator update and future plans”, in Journal of
Physics: Conference Series, IOP Publishing, vol. 1021, 2018, p. 012 001.

[144] Raspberry Pi (Trading) Ltd, Raspberry Pi 4 Model B datasheet. 2019.

[145] M. Nicolaidis, Soft Errors in Modern Electronic Systems. Springer, 2011.

[146] T. Michel, R. Leveugle, and G. Saucier, “A new approach to control flow
checking without program modification”, Proc. 21th International Symposium on
Fault-Tolerant Computing (FTCS-21), pp. 334–341, 1991.

[147] A. Lindoso, M. García-Valderas, L. Entrena, Y. Morilla, and P. Martín-Holgado,
“Evaluation of the suitability of NEON SIMD microprocessor extensions under
proton irradiation”, IEEE Transactions on Nuclear Science, vol. 65, no. 8,
pp. 1835–1842, Aug. 2018.

[148] M. Pignol, “DMT and DT2: Two fault-tolerant architectures developed by CNES
for COTS-based spacecraft supercomputers”, Proc. 12th IEEE International
On-Line Testing Symposium, 10–pp, Jul. 2006.

[149] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith, “Isolation in
commodity multicore processors”, Computer, vol. 40, no. 6, pp. 49–59, Jun. 2007.

220

[150] Á. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “Analyzing lockstep
dual-core ARM cortex-A9 soft error mitigation in FreeRTOS applications”, Proc.
30th Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 84–89,
2017.

[151] J. R. Azambuja, Â. Lapolli, L. Rosa, and F. L. Kastensmidt, “Detecting SEEs in
microprocessors through a non-intrusive hybrid technique”, IEEE Transactions on
Nuclear Science, vol. 58, no. 3, pp. 993–1000, Jun. 2011.

[152] Xilinx Inc, Soft error mitigation controller v4.1 Product guide, PG036. 2014.

[153] J. R. Azambuja et al., “Evaluating neutron induced see in SRAM-based FPGA
protected by hardware-and software-based fault tolerant techniques”, IEEE
Transactions on Nuclear Science, vol. 60, no. 6, pp. 4243–4250, Dec. 2013.

[154] X. Iturbe, B. Venu, and E. Ozer, “Soft error vulnerability assessment of
the real-time safety-related ARM cortex-R5 CPU”, 2016 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pp. 91–96, 2016.

[155] N. S. Bowen and D. K. Pradham, “Processor-and memory-based checkpoint and
rollback recovery”, Computer, vol. 26, no. 2, pp. 22–31, Feb. 1993.

[156] Á. B. de Oliveira et al., “Lockstep dual-core ARM A9: Implementation and
resilience analysis under heavy ion-induced soft errors”, IEEE Transactions on
Nuclear Science, vol. 65, no. 8, pp. 1783–1790, Aug. 2018.

[157] M. Violante, C. Meinhardt, R. Reis, and M. S. Reorda, “A low-cost solution for
deploying processor cores in harsh environments”, IEEE Transactions on Industrial
Electronics, vol. 58, no. 7, pp. 2617–2626, Jul. 2011.

[158] V. Bernon-Enjalbert, M. Blazy-Winning, R. Gubian, D. Lopez, J.-P. Meunier,
and M. O’Donnell, “Safety integrated hardware solutions to support ASIL D
applications”, 2013.

[159] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors, “PLR: A
software approach to transient fault tolerance for multicore architectures”, IEEE
Transactions on Dependable and Secure Computing, vol. 6, no. 2, pp. 135–148,
Apr. 2009.

[160] H. Mushtaq, Z. Al-Ars, and K. Bertels, “Efficient software-based fault tolerance
approach on multicore platforms”, Design, Automation & Test in Europe
Conference & Exhibition, pp. 921–926, 2013.

[161] G. S. Rodrigues, F. Rosa, Á. B. de Oliveira, F. L. Kastensmidt, L. Ost, and R. Reis,
“Analyzing the impact of fault-tolerance methods in ARM processors under soft
errors running Linux and parallelization APIs”, IEEE Transactions on Nuclear
Science, vol. 64, no. 8, pp. 2196–2203, Aug. 2017.

[162] ARM Inc, Cortex-A9 MPCore Technical Reference Manual. 2011.

221

[163] A. Serrano-Cases, F. Restrepo-Calle, S. Cuenca-Asensi, and A. Martínez-Álvarez,
“Softerror mitigation for multi-core processors based on thread replication”,
Proceedings of 20th IEEE Latin American Test Symposium, Mar. 2019.

[164] G. M. Swift, F. Fannanesh, S. M. Guertin, F. Irom, and D. G. Millward,
“Single-event upset in the PowerPC750 microprocessor”, IEEE Transactions on
Nuclear Science, vol. 48, no. 6, pp. 1822–1827, Dec. 2001.

[165] H. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli, “Vulnerability analysis of l2
cache elements to single event upsets”, Proc. of the Design Automation & Test in
Europe Conference, pp. 1276–1281, Mar. 2006.

[166] ARM Inc, Cortex-A9 Technical Reference Manual r4p1. 2012.

[167] A. Lindoso, M. Garcia-Valderas, and L. Entrena, “Analysis of neutron sensitivity
and data-flow error detection in ARM microprocessors using NEON SIMD
extensions”, Microelectronics Reliability, vol. 100, no. 113346, 2019.

[168] ARM Inc, Cortex-A9 NEON Media Processing Engine Technical Reference Manual
r3p0. 2011.

[169] ARM Inc, NEON Programmer’s Guide. 2013.

[170] M. Pignol, “COTS-based applications in space avionics”, 2010 Design, Automation
& Test in Europe Conference & Exhibition (DATE 2010), pp. 1213–1219, 2010.

[171] L. Entrena, A. Lindoso, M. G. Valderas, M. Portela, and C. L. Ongil, “Analysis of
SET effects in a PIC microprocessor for selective hardening”, IEEE Transactions
on Nuclear Science, vol. 58, no. 3, pp. 1078–1085, Feb. 2011.

222

	Agradecimientos
	Published and submitted content
	Other research merits
	Resumen no técnico
	Non-technical summary
	Resumen técnico
	Technical summary
	Abbreviations
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Industrial Ph.D. supported by the Community of Madrid
	1.3 Objectives
	1.4 Document structure

	2 Dependability under radiation in COTS microprocessors
	2.1 Dependability in space applications
	2.1.1 Dependability attributes
	2.1.2 Faults, errors, and failures
	2.1.3 Dealing with faults
	2.1.4 Dependability threats in spacecraft

	2.2 Radiation effects on electronics
	2.2.1 The space environment
	2.2.2 Cumulative effects
	2.2.3 Single-event effects

	2.3 Addressing radiation effects
	2.3.1 Radiation hardening
	2.3.2 Component testing
	2.3.3 Component qualification

	2.4 Trends in space industry
	2.4.1 Background: the so-called "traditional space"
	2.4.2 New Space trends
	2.4.3 Use of COTS in space applications
	2.4.4 COTS testing and qualification

	2.5 Microprocessors under radiation
	2.5.1 Microprocessor errors
	2.5.2 Microprocessor testing

	2.6 Microprocessor fault-tolerance
	2.6.1 Fault-tolerance techniques for microprocessors
	2.6.2 Fault-tolerance techniques for COTS microprocessors

	3 Materials and methods
	3.1 Resources
	3.1.1 Vehicle of study
	3.1.2 Facilities
	3.1.3 Fault injection tool
	3.1.4 Other equipment

	3.2 Methodology
	3.2.1 Chronology
	3.2.2 Development
	3.2.3 Validation
	3.2.4 Industrialization
	3.2.5 Dissemination

	4 PTM-based hybrid error-detection architecture for ARM microprocessors
	Abstract
	4.1 Introduction
	4.2 Related work
	4.3 Hybrid architecture
	4.3.1 Hardware monitor
	4.3.2 Data error detection

	4.4 Experimental results
	4.4.1 Experimental setup
	4.4.2 Proton irradiation
	4.4.3 Fault injection

	4.5 Conclusions and future work
	Acknowledgements
	References

	5 Online Error Detection Through Trace Infrastructure in ARM Microprocessors
	Abstract
	5.I Introduction

	6 Dual-Core Lockstep enhanced with redundant multithread support and control-flow error detection
	Abstract
	6.1 Introduction
	6.2 Proposed lockstep approach
	6.2.1 Architecture
	6.2.2 Data error detection
	6.2.3 Control-flow error detection

	6.3 Experimental results
	6.4 Conclusions
	Acknowledgements
	References

	7 The Use of Microprocessor Trace Infrastructures for Radiation-Induced Fault Diagnosis
	Abstract
	7.I Introduction

	8 Error Detection and Mitigation of Data-Intensive Microprocessor Applications Using SIMD and Trace Monitoring
	Abstract
	8.I Introduction

	9 Microprocessor Error Diagnosis by Trace Monitoring under Laser Testing
	Abstract
	9.I Introduction

	10 IP to detect and diagnose errors in COTS microprocessors through the Trace Interface
	Abstract
	10.1 Introduction
	10.2 Microprocessor Error Detection and Diagnosis
	10.3 Error Detection and Diagnosis IP
	10.3.1 Interface description
	10.3.2 Functional description
	10.3.3 Checking resources
	10.3.4 Error diagnosis

	10.4 Applications
	10.5 Conclusions
	Acknowledgements
	References

	11 Conclusions and future work
	11.1 Conclusions
	11.2 Future work

	Bibliography

