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Abstract

Recurrent Neural Networks (RNNs) have been successful in a wide range of applications in-

volving temporal sequences such as natural language processing, speech recognition and video

analysis. However, RNNs often require a significant amount of memory and computational

resources. In addition, the recurrent nature and data dependencies in RNN computations can

lead to system stall, resulting in low throughput and high latency. This work describes novel

parallel hardware architectures for accelerating RNN inference using Field-Programmable Gate

Array (FPGA) technology, which considers the data dependencies and high computational costs

of RNNs.

The first contribution of this thesis is a latency-hiding architecture that utilizes column-wise

matrix-vector multiplication instead of the conventional row-wise operation to eliminate data

dependencies and improve the throughput of RNN inference designs. This architecture is

further enhanced by a configurable checkerboard tiling strategy which allows large dimensions

of weight matrices, while supporting element-based parallelism and vector-based parallelism.

The presented reconfigurable RNN designs show significant speedup over CPU, GPU, and other

FPGA designs.

The second contribution of this thesis is a weight reuse approach for large RNN models with

weights stored in off-chip memory, running with a batch size of one. A novel blocking-batching

strategy is proposed to optimize the throughput of large RNN designs on FPGAs by reusing the

RNN weights. Performance analysis is also introduced to enable FPGA designs to achieve the

best trade-off between area, power consumption and performance. Promising power efficiency

improvement has been achieved in addition to speeding up over CPU and GPU designs.

The third contribution of this thesis is a low latency design for RNNs based on a partially-folded

hardware architecture. It also introduces a technique that balances initiation interval of multi-

layer RNN inferences to increase hardware efficiency and throughput while reducing latency.

The approach is evaluated on a variety of applications, including gravitational wave detection

and Bayesian RNN-based ECG anomaly detection. To facilitate the use of this approach, we

open source an RNN template which enables the generation of low-latency FPGA designs with

efficient resource utilization using high-level synthesis tools.
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Chapter 1

Introduction

1.1 Challenges and Objectives

Artificial neural networks (ANNs) are a popular type of machine learning algorithm and form

the basis of deep learning. They are computing systems inspired by the structure and function

of the human brain, consisting of interconnected nodes that mimic the way biological neurons

communicate with each other.

Recurrent neural networks (RNNs) are a type of ANN that have feedback connections, allow-

ing output from some nodes to be fed back as input. This structure allows them to retain

information about the sequence of input data. Before the development of RNNs, ANNs were

unable to consider the correlation between current data and previous data, as each datum was

treated as independent. However, many tasks require current and previous data values when

making decisions. RNNs are well-suited for these situations as they are able to incorporate

previous information. RNNs have been successful in a variety of sequence-to-sequence process-

ing applications, such as language translation [4, 5, 6], speech recognition [7, 8, 9] and video

analysis [10, 11]. Data [12] from Google’s datacenters indicate that RNNs accounted for 29%

and 21% of Tensor Processing Unit (TPU) workloads in 2016 and 2019, respectively, showing

20
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Figure 1.1: A single-layer RNN network (left) showing inter-timestep data dependencies after
unfolding (right). A represents a hardware unit for the layer. The number of total timesteps
is N . TSi denotes the timestep i, and xi is the input vector at timestep i. ci and hi denote the
cell state and the hidden vector at timestep i respectively.

their significance. The most widely-used type of RNN is the long short-term memory (LSTM)

network [13], which forms the foundation for many of the aforementioned applications. More

about LSTM and other types of RNNs can be found in Section 2.1.2.

Since low latency is crucial for providing a smooth user experience in applications like Apple Siri

and Google Voice Search, efficient and real-time acceleration of RNNs is necessary. However,

despite their widespread use, hardware acceleration of RNNs is challenging due to the data

dependencies arising from their recurrent nature. In an RNN model, a layer or timestep should

wait until its preceding layer or timestep is finished, because part of its inputs comes from the

output of the preceding layer or timestep. For example, as shown in Fig. 1.1, the computation

that requires c0 and h0 at timestep TS1 cannot start until both c0 and h0 are available from

the preceding timestep. More about data dependencies of RNNs can be found in Section 2.1.3.

1.1.1 First Challenge and Objective

The goal of this thesis is to optimize reconfigurable accelerators for RNNs, with a focus on

Field-Programmable Gate Arrays (FPGAs), in order to improve the performance and efficiency

of RNN designs on a single FPGA. FPGAs are integrated circuits that have a matrix of logic

elements and interconnections that can both be reconfigured to perform a given digital function.

By creating multiple copies of these functions, FPGAs are especially adept at implementing

parallel functions, making them highly suitable as hardware accelerators for applications with
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high levels of parallelism. The details of FPGAs are discussed in Section 2.1.5.

However, there are several challenges that hinder the performance of RNNs on FPGAs. The

first challenge (C1) is as follows:

• C1: The data dependencies arising from the recurrent nature of RNN computation can

lead to undesired system stalls. In addition, inefficient tiling strategies for tiled matrix

multiplications can leave hardware resources idle, resulting in low hardware utilization

(the proportion of hardware doing useful computation).

Objective O1 of this research is to address C1. The related contribution is summarized below;

more information can be found in Section 1.2.1.

The data dependencies in RNNs result in undesired system stall [1, 2] until the required hidden

vectors return from the full pipeline to start the next time-step calculation, as shown in Fig. 1.2a.

Moreover, inefficient tiling strategies for matrix multiplications can result in hardware resources

idle [1, 2]. For example, the hardware utilization of Brainwave [1] ranges from less than 1%

to only about 50% for various LSTM models, as shown in Fig. 1.2b. With the need for high

performance systems, it is essential to maximize hardware utilization to achieve the highest
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possible effective performance and energy efficiency. To address these issues, Chapter 3 presents

several hardware optimizations, including column-wise Matrix-Vector Multiplication (MVM)

and a checkerboard tiling strategy, to increase the hardware utilization of RNNs on FPGAs.

1.1.2 Second Challenge and Objective

While Chapter 3 focuses on cloud-based persistent RNNs [1, 2, 14, 15, 16] with weights on-chip,

Chapter 4 targets large RNNs such that their weights cannot be stored on-chip, such as those

targeting small chips used in edge computing. The second challenge (C2) is as follows:

• C2: In RNN inferences, weights fetched from off-chip memory are typically used only once

in computation in each timestep, which is inefficient. Additionally, it is difficult to exploit

the parallelism between timesteps in a single inference due to the data dependencies in

RNNs.

Objective O2 of this research is to address C2. The related contribution is summarized below;

more information can be found in Section 1.2.2.

When an RNN model is so large that the weights have to be stored in off-chip memory, it is not

efficient since the fetched weights are typically used only once for each output computation.
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The situation is even worse when considering a small embedded system that has small on-

chip memory and low memory bandwidth but requires low power consumption. To address

this challenge, many previous studies have proposed batching RNN inference requests [17, 18,

19, 20, 21, 22] on FPGAs, as shown in Fig. 1.3 (a). After combining the input vectors from

various requests for the same model, the weights can be reused among them, resulting in a good

communication-to-computation ratio. Besides, there is no data dependency between different

RNN requests. With batches of identically-sized samples, Graphics Processing Units (GPUs)

usually have better performance but higher power consumption than FPGAs [1, 19] since GPU

kernels have a higher clock frequency. However, this batch technique can harm latency because

different requests may not arrive at the same time [20], which means that a newly arrived

request must wait until the batch is formed, bringing a latency penalty. In addition, input

requests may be based on different neural architectures, which also breaks the assumption

that one can conduct computation on batches of identically-sized samples [23]. Thus, the new

hardware architecture which can function efficiently with a batch size of one (i.e., no batch) is

demanding [23].

To address these issues, Chapter 4 describes a novel approach to increase the performance of

RNNs while still targeting a single inference request, by exploiting the parallelism between

various timesteps, as shown in Fig. 1.3 (b). By reusing the weights of various timesteps and

eliminating the need to wait for other requests as required in general batching techniques,

Chapter 4 offers a more efficient approach to address these issues. However, this is challenging

because there are data dependencies between different timesteps of RNNs. To overcome this

issue, we propose a novel blocking-batching strategy to optimize the throughput of FPGA-based

RNN designs by reusing the RNN weights. Our approach includes a performance analysis that

can be used to balance trade-offs between area, power and performance (Section 4.2.3).

1.1.3 Third Challenge and Objective

Both Chapters 3 and 4 are based on a fully-folded hardware architecture, as shown in Fig. 1.4(a).

It employs a single computational engine with multiple identical Processing Elements (PEs) to
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process a tile of the matrix computation of an RNN timestep or an entire timestep of a layer at

a time, such that the entire RNN is processed by repeatedly running the engine [1, 2]. However,

when the targeted RNN layers are small, these PEs may not be fully utilized, resulting in low

hardware efficiency. If an architecture is designed for a certain matrix tile size N ×M , when

dealing with matrices with smaller tile size, e.g., n × m such that n < N and m < M , then

padding would be needed. For example, the engine in Brainwave [1] has a total of 96,000 PEs

and can effectively process a 400×240 matrix tile in parallel. Any small RNNs with MVMs

smaller than these dimensions that the engines are designed to process will leave some resources

idle on these designs, resulting in hardware underutilization and low efficiency. The larger the

gap, the greater the decline in actual performance compared to peak performance. In addition,

since there is only one single engine in fully-folded architectures, the various layers of a network

must have the same amount of parallelism which is not flexible and does not take full advantage

of the customizability of FPGAs.

The third challenge (C3) is as follows:

• C3: Existing fully-folded hardware architectures are inefficient for small-sized multi-layer

RNNs because they leave some hardware resources idle when the MVMs in the RNNs

are smaller than the dimensions that the engines are designed to process [1, 2, 24]. The

single engine requires uniform parallelism across layers, reducing flexibility and limiting

customization in FPGAs. Moreover, unbalanced Initiation Intervals (IIs) in multi-layer

RNN designs result in long latency and low hardware efficiency. Furthermore, there is a

lack of publicly available low latency High-Level Synthesis (HLS) based RNN templates.

Objective O3 of this research is to address C3. The related contribution is summarized below;

more information can be found in Section 1.2.3.

Chapter 5 proposes a partially-folded hardware architecture that addresses the limitations of

fully-folded architectures for processing RNNs. The architecture is shown in Fig. 1.4(b). In this

architecture, each layer or a few cascaded layers are implemented using a separate hardware

engine, and these engines are connected together to form a coarse-grained pipeline. The main
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Figure 1.4: (a) A fully-folded hardware architecture with a single computation engine capable
of processing multiple layers in an RNN model. (b) A partially-folded hardware architecture
with several custom engines, each processing a few timesteps of an RNN layer or a whole layer
or even multiple layers.

idea is that if a single engine with a fully-folded architecture is underutilized when running a

multi-layer model because of its size, it would be more efficient to split this engine into several

smaller partially-folded engines that can run simultaneously, each of which is dedicated to

processing a layer or a few cascaded layers with independent and tailor-made optimization. This

increases the hardware utilization and reduces the design latency. Moreover, this architecture

employs an II balancing technique to balance the IIs among multiple engines, further improving

hardware efficiency.

For example, consider the 3-layer RNN network in Fig. 1.5(a) which illustrates inter-timestep

and inter-layer data dependencies. There are opportunities to fold the computations along the

timestep axis and the layer axis. Fig. 1.5(b) corresponds to fully folding the computations

along both axes, resulting in a single engine design, while Fig. 1.5(c) corresponds to partially

folding the computations along the timestep axis, resulting in a multi-engine design with the

same number of engines as the number of layers.

In addition, the proposed partially-folded architecture aims to achieve low latency and high

throughput by fully flattening computations within one timestep for each layer and implement-

ing each operation in the timestep physically on-chip using dedicated hardware circuits.
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Figure 1.5: (a) A 3-layer RNN network showing inter-layer and inter-timestep data dependencies
after unfolding. It has two LSTM layers and one TimeDistributed (TD) dense layer. (b) The
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of layer 0 and 1, while the outer loop processes different layers. (c) The design based on the
partially-folded architecture. There are 3 cascaded layer-dedicated hardware units, B, C, D,
each processing one layer.

To achieve the best performance, one could fully unfold the computations both along the

timestep axis and the layer axis. In this scenario, many engines are connected in a mesh-

like 2-dimensional structure like Fig. 1.5(a). Each engine would perform the computation of

one timestep, and the entire design could run in a coarse-grained pipeline with an initiation

interval as the pipeline depth of one engine. However, this fully-unfolded architecture may not

be practical in practice due to limited hardware resources available in current FPGAs.

The design presented in Chapter 5 only unfolds computations along the layer axis, but does not

physically unfold the timesteps. Instead, it processes each timestep in the same layer repeatedly

using the same hardware unit, taking advantage of the fact that the computation patterns of

different timesteps in the same layer are the same. This allows the design to reuse hardware

resources efficiently while still maintaining good performance.

Alternatively, when the number of timesteps is small but the number of layers is large, one

may unfold computations along the timestep axis, resulting in a multi-engine design with the

same number of engines as timesteps rather than layers. However, this approach has the same
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drawback as fully-folded architectures, in that the engine must be able to process various layers,

reducing the possibility of simplifying each engine to improve efficiency. It is the same reason

that the partially-folded architecture designs in Chapter 5 do not use multiple copies of the

engine proposed in Chapter 3 and Chapter 4. In addition, unfolding the computations along

the timestep axis may require a significant amount of hardware resources since the number of

timesteps is typically much larger than the number of layers [25]. For example, a 4-layer LSTM

model [26] for gravitational wave detection has 100 timesteps, and a 5-layer LSTM model [27]

for speech recognition may have 1500 timesteps.

There are many other ways of folding, such as partially folding computations along the timestep

or layer axis, resulting in a mapping of an NL-layer TS-timestep model to an M × P -engine

architecture, where M < NL and P < TS. Moreover, there are also many ways to interconnect

the multiple engines other than the chain-like structure discussed in this thesis, such as central-

bus or crossbar-based topologies [28]. However, addressing these topics is beyond the scope of

this thesis and is left for future research. Furthermore, this thesis focuses on exploring solutions

on a single FPGA and exploring the use of multiple FPGAs is left for future research.

1.2 Research Contributions

This thesis focuses on optimizing reconfigurable accelerators for RNNs on FPGAs. The aim

is to improve the performance and efficiency of RNN designs on these platforms. However,

there are many challenges that hinder the performance of RNNs on FPGAs, and three main

challenges are described in Section 1.1. To address these challenges, this thesis presents three

main contributions: a latency-hiding architecture that utilizes column-wise matrix-vector mul-

tiplication with a flexible checkerboard tiling strategy, a blocking-batching strategy to reuse

RNN weights to optimize the throughput of large RNNs that cannot fit into on-chip memory,

and a low latency RNN design for FPGAs based on a partially-folded architecture. These

contributions are described in more detail below.
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1.2.1 Column-wise Matrix-Vector Multiplication for RNNs

The first contribution of this thesis is a latency-hiding architecture that utilizes column-wise

matrix-vector multiplication with a flexible checkerboard tiling strategy to address Challenge C1

and Objective O1.

This contribution (Chapter 3) presents a novel column-wise MVM for RNNs to eliminate data

dependencies and introduces a latency-hiding hardware architecture with hybrid kernels as

well as Configurable Adder-tree Tail (CAT) units, increasing the hardware utilization and

design throughput. It also introduces a flexible checkerboard tiling strategy that supports

Element-based Parallelism (EP) and Vector-based Parallelism (VP) to exploit the available

parallelism while increasing hardware utilization. In addition, the (EP, VP) parameter space

is comprehensively explored. The proposed approach and optimizations are applied to RNN

workloads from the DeepBench suite [27]. Compared to Brainwave design [1] and the Brainwave-

like NPU [2] with the same RNN workloads on FPGAs, our design achieves 3.7 to 14.8 times

better performance and has the highest hardware utilization. This work has been published in

papers [24, 29].

1.2.2 Optimizing Large RNNs with Weights Reuse

The second contribution of this thesis is a blocking-batching strategy that reuses the RNN

weights to optimize the throughput of large RNNs that are too large to fit into on-chip memory

on FPGAs, addressing Challenge C2 and Objective O2.

When RNN models are too large to fit in on-chip memory on FPGAs, the weights have to

be stored in off-chip memory. Chapter 4 investigates a novel blocking-batching strategy to

optimize the throughput of large LSTM designs on FPGAs with a performance analysis based

on LSTM models to balance trade-offs between area, power and performance. In addition,

a stall-free hardware architecture is presented to eliminate the data dependencies and stalls,

thereby further increasing the throughput of the design. Compared to the state-of-the-art

design that stores the weights in off-chip memory, our approach achieves 1.65 times higher
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performance-per-watt efficiency and 1.60 times higher performance-per-DSP efficiency. When

compared with CPU and GPU implementations, our novel hardware architecture is 23.7 and

1.3 times faster while consuming 208 and 19.2 times less energy, respectively. This work has

been published in papers [30, 31].

1.2.3 Low Latency RNNs with Partially-folded Architectures

The third contribution of this thesis is a low latency design of RNNs on FPGAs, addressing

Challenge C3 and Objective O3.

Chapter 5 presents a partially-folded architecture for RNN, which maps all the layers on-chip

and performs computation on their own units with dedicated optimization to achieve low latency

and high throughput. This chapter also introduces a technique for balancing IIs in multi-layer

RNN inferences, improving hardware efficiency and increasing design throughput. Additionally,

a low latency LSTM template is devised, which enables the generation of low-latency FPGA

designs with efficient resource utilization by HLS tools. We have open-sourced the template

with some examples.1 This work has been published in papers [32, 33]. The balancing II

technique has also been discussed in papers [34, 35].

1.2.4 Connection between the Contributions

Fig. 1.6 illustrates how the three contributions of this thesis link together. Chapters 3 and 4

respectively present optimizations for accelerating RNNs with weights in on-chip memory and

off-chip memory on a single FPGA, as shown in the bottom left of Fig. 1.6. The optimizations

in these chapters are based on a fully-folded hardware architecture, as shown in Fig. 1.4(a).

The designs in Chapters 3 and 4 utilize all the computing resources to form a large-scale single

physical engine that leverages data-level parallelism.

In general, it is possible to build a fully-folded architecture design by combining the novel

features of Chapters 3 and 4 to take advantage of both chapters. In fact, the idea of column-

1https://github.com/walkieq/RNN HLS
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wise MVM (Chapter 3) has been adapted in the designs for Chapter 4. However, more work

is needed to combine the blocking-batching strategy (Chapter 4) with the checkerboard tiling

strategy (Chapter 3), as well as other hardware enhancements such as CAT units (Chapter 3).

The details are included as future work in Chapter 6.

A hardware engine with a fully-folded architecture could be under-utilized when running a

multi-layer RNN model because of its size, as discussed in Section 1.1.3. To address the issue,

Chapter 5 introduces a partially-folded hardware architecture which can increase the hardware

utilization and reduce the design latency, as shown in the right top of Fig. 1.6. The fully-folded

engine is the engine with a fully-folded architecture. Investigating new hardware architectures

and optimization techniques for RNNs on FPGAs, such as hybrid architectures that combine

the fully-folded and partially-folded architectures, will be our future work.

Although this thesis focuses on RNNs, the fully-folded architecture and partially-folded archi-

tecture are general and could also be applied to other deep neural networks, such as convolu-

tional neural networks (CNNs), graph neural networks (GNNs), transformer neural networks

(TNNs), etc, resulting in various design options for various applications. We leave this as future

work discussed in Chapter 6.
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Chapter 2

Background and Related Work

2.1 Background

2.1.1 Recurrent Neural Network (RNN)

RNNs are ANNs with loops in them. The output of the previous nodes in RNNs forms part

of the input to the subsequent nodes, allowing information to persist. They have feedback

connections to retain past information about long-term dependencies over an arbitrary time.

Before RNNs, the information about the correlation between the current data and previous

data does not contribute to the training of ANNs since each data is considered independent of

any others. However, there are many tasks where the current status highly depends on both

current data and previous data. Therefore, the RNNs with feedback connections are used,

which can take the previous information into account for the present decision.

A basic structure of a RNN is shown in Fig. 2.1. The xt represents the input at the timestep

t while the ht represents the output, and A is a node or layer of neural network. Fig. 2.1(left)

shows the rolled representation and emphasizes the recurrent nature of RNNs. The loop with

A node allows information to be passed from one step to the next step. This can be seen

as multiple copies of the same network, each passing a message to a successor. Fig. 2.1(right)

shows the time-step unrolled representation. The unrolled RNN is a feedforward neural network
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Figure 2.1: A recurrent neural network with time-step unfolded.

using the same weights and bias throughout the unrolled layer, appearing at each time step.

The inputs and the outputs in the unfolded representation are the inputs x and outputs h at

the timesteps 0, 1, 2 and N . The equation below are the calculations which take place in a

simple RNN timestep t:

ht = tanh(Wxxt + Whht−1 + b) (2.1)

where Wx and Wh represent the weights for the input vector and hidden vector respectively. b

represents bias and tanh represents hyperbolic tangent function which is an activation function.

To train an RNN, standard backpropagation is unsuitable due to the recurrence. Backprop-

agation Through Time (BPTT) [36], a variation of backpropagation, is often used to update

the weights of an RNN, taking into account the times-step unrolling of RNNs. In BPTT, it

needs to conduct many products when updating the weights of an RNN with lots of timesteps.

This can create many small values due to the chain rule of partial derivatives to calculate the

gradient. These products eventually get very close to zero, preventing RNNs from learning

more information, which is known as the vanishing gradient problem [37]. This problem makes

it difficult for vanilla RNNs to learn long-term dependencies. In some sequences, earlier in-

puts can influence inputs much later in the sequence, making the vanilla RNNs struggling to

interpret such sequences.
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Figure 2.2: A detailed diagram of an LSTM Cell with loop-carried dependence.

2.1.2 Long-Short Term Memory (LSTM)

Vanilla RNNs are difficult to train for long sequences due to vanishing gradients [37]. To ad-

dress this issue, Hochreiter et al. introduced Long-Short Term Memory (LSTM) networks [13].

The LSTM networks are a type of Recurrent Neural Networks (RNN) which relies on a memory

controller to learn long-term dependencies. Since it is introduced, there have been many mod-

ifications to the original LSTM cell for different applications, but the changes to the standard

architecture are minimal and their effects on the overall prediction accuracy are negligible.

This study follows the standard LSTM cell [1, 2, 11, 38]. The detailed structure of an LSTM

cell or the node A mentioned in Fig. 2.1 is illustrated in Fig. 2.2. It utilizes the following

equations to compute the gates and produce the results for the next time step.

it = σ(Wi[xt, ht−1] + bi), ft = σ(Wf [xt, ht−1] + bf )

gt = tanh(Wg[xt, ht−1] + bu), ot = σ(Wo[xt, ht−1] + bo) (2.2)

ct = ft ⊙ ct−1 + it ⊙ gt, ht = ot ⊙ tanh(ct)

Here, σ and tanh represent the sigmoid function and hyperbolic tangent function. Both are

activation functions. it, ft, gt and ot stand for the output of the input gate (i-gate), forget gate

(f -gate), input modulation gate (g-gate) and output gate (o-gate) at timestep t respectively.
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The g-gate is often considered as a sub-part of the i-gate. Each LSTM gate consists of a MVM

unit and the addition of bias as well as a corresponding activation function unit, as shown

in Fig. 2.2. The ⊙ operator denotes an element-wise multiplication. W is the weight matrix

for both input and hidden units since the input vector and hidden vector are combined in the

equations. The b terms denote the bias vectors. ct is the internal memory cell status at timestep

t while ht is the hidden vector which is the output of the cell and passed to the next timestep

calculation or next LSTM layer.

The LSTM information flow is controlled by these four gates with details shown in Fig. 2.2.

The i-gate decides what new information is to be written into the internal memory cell; the

g-gate modulates the information processed by i-gate via adding non-linearity. Note that only

g-gate utilizes hyperbolic tangent as its activation function while all the other three gates utilize

sigmoid. The f -gate decides what old information is no longer needed and can be discarded

so there are element-wise multiplications between the output of f -gate and memory cell status

in the previous timestep ct−1. Its output will be added to the products of the outputs from

i-gate and g-gate to form the current status of the internal memory cell. The o-gate decides

what the value of the current hidden vector (ht) should be by multiplying the current status of

the memory cell after the hyperbolic tangent function, as shown in the LSTM-Tail in Fig. 2.2.

Our work focuses on the optimization of RNN inferences involving standard LSTMs, but the

proposed techniques can be applied to other Deep Neural Network (DNN) inferences.

Gated Recurrent Unit (GRU), introduced by Cho et al.[39] in 2014, is a variant of LSTM. It

combines the forget and input gates into a single “update gate” which determines how much of

the previous hidden state to keep and how much of the new input to add. As a result, the GRU

has one less gate than the LSTM, which leads to fewer parameters. Both LSTM and GRU

have been shown to perform well in various applications, and in some cases, the GRU may

outperform LSTM, while in other cases, the opposite may be true [40, 41, 42, 43]. However, the

LSTM was introduced several decades before the GRU, which allowed it to become more widely

recognized and adopted in research. In addition, LSTM’s effectiveness has been well studied

and demonstrated in a wide range of tasks, which has further contributed to its popularity.
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2.1.3 Data Dependencies in RNNs

RNN computations involve both inter-layer and intra-layer data dependencies. The latter

can be further divided into inter-timestep and intra-timestep dependencies. Inter-layer data

dependencies mean that the input of each layer is derived from the previous layer’s output.

Intra-timestep dependencies imply that the operations in a single timestep are dependent on

previous operations. In feed-forward only neural networks like CNNs, where there are no

timesteps, the intra-timestep are equivalent to intra-layer data dependencies. While two of the

three data dependencies can be found in feed-forward neural networks, only RNNs have the

inter-timestep data dependencies.

In RNNs, the output at each time step depends on the previous output and the current input.

This creates a dependency between the data at different time steps (inter-timestep), as the

network relies on this information to make predictions. For example, in a language model, the

RNN takes a sequence of words as input and predicts the next word in the sequence. The

prediction at each time step depends on the words that came before it, as well as the current

input word. This creates a dependency between the data at different time steps, as the network

uses the information from previous time steps to make its prediction.

Algorithm 2.1 illustrates the pseudocode of an LSTM layer. Wx and Wh denote the LSTM

weights for input and hidden vectors. B represents the bias. TS is the timestep. x is a set of

input vectors and has the size of (TS, Lx). h is a set of hidden vectors and has the size of

(TS, Lh). Seq decides if the whole sequence of hidden vectors should be returned or just the

one in the last timestep.

The function MVM x() performs MVM operations and the addition of bias for the LSTM

gates involving the input vectors. The MVMs involving the hidden vectors are conducted

in the function MVM h(). The Sigmoid tanh() is the activation function which performs

sigmoid or hyperbolic tangent operations. The LSTM tail() function contains the element-

wise operations as shown in Fig. 2.2. The result ht as labeled in red is required in MVM h() in

the next timestep iteration, which shows the existence of data dependencies between different
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Algorithm 2.1: The pseudocode of an LSTM layer.

1 Function LSTM layer(Wx, Wh, B, x, Seq):
2 h0 ← 0;
3 for t = 1 to TS do
4 Acc = MVM x (Wx, B, xt);
5 Acc = MVM h (Wh, Acc, ht−1);
6 Acc = Sigmoid tanh (Acc);
7 ht = LSTM tail (Acc);

8 if Seq then
9 return h; ▷ A set of all the hidden vectors

10 else
11 return ht; ▷ The hidden vector at the final timestep

12 End Function

time-steps. As [1] mentions, RNN programs have a critical loop-carry dependence on the ht

vector. If the full pipeline of the hardware accelerator cannot return ht to the vector register

file in time to start the next timestep then the hardware kernel will stall.

This thesis proposes several techniques that can alleviate this problem. In chapter 3, we

propose to calculate the MVMs column-wisely to alleviate the data dependencies, resulting in

good performance. In Chapter 5, we propose to split LSTM unit into two sub units based on

the data dependencies, and reallocate hardware resources to balance the initiation interval to

achieve good hardware performance.

2.1.4 AutoRegressive Integrated Moving Average (ARIMA)

One of the successful applications using LSTMs/RNNs is forecasting time series. Traditionally,

there are some statistical methods that can effectively forecast the next lag of time series data.

The most well known method is AutoRegressive Integrated Moving Average (ARIMA) which

uses a mathematical model to describe the relationship between the current value of a time

series and its past values.

LSTM and ARIMA are two different approaches for modeling and forecasting time series data.

There are many differences between them. The key differences are: first, LSTM is a type

of neural network that uses a deep learning approach involving training and inference steps,
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while ARIMA does not have a training step. Second, LSTM has more hyper-parameters than

ARIMA and can model more complex time series. But it also means LSTM is more hard to

tune compared with ARIMA. Third, LSTM does not require the data to be stationary but

stationarity is important assumption in ARIMA.

In summary, LSTM is more powerful but also more complex and more difficult to tune, while

ARIMA is simpler and easier to use but may not fit all types of time series tasks [44, 45].

Highlighting these differences helps to provide a broader perspective on time series forecasting

methods. Furthermore, the discussion on ARIMA underlines the fact that different tools may

be preferable under different conditions, promoting a comprehensive understanding of time

series forecasting.

2.1.5 Field-Programmable Gate Array (FPGA)

A Field-Programmable Gate Array (FPGA) is a type of integrated circuits that can be re-

configured to perform any digital function as a physical circuit after manufacturing. It has an

array of configurable logic elements and programmable interconnects, allowing it to be tailored

for specific digital circuit design requirements. The basic building block of FPGAs is Look-Up

Table (LUT) which is implemented using small Random-Access Memories (RAMs). The LUTs

implement combinational logic by storing a truth table and accessing it with the logic inputs

serving as the address. To implement sequential circuits, FPGAs utilize registers in conjunc-

tion with LUT outputs. With a large number of LUTs and registers, FPGAs can support the

implementation of large-scale parallel circuits. In addition, modern FPGAs also have coarse-

grained resources that provide high level functionalities fixed in silicon, such as multipliers,

digital signal processing (DSP) blocks, on-chip RAM, and even built-in processor cores. These

processor cores can either be dedicated hard processors, such as the ARM processors found in

Intel Arria [46] or Xilinx Zynq [47] FPGAs, or created from LUTs to form soft processor cores,

such as Intel’s Nios V [48] and AMD’s MicroBlaze [49]. There are different sizes of FPGAs

available, each offering different amounts of programmable logic resources. The larger ones

provide more resources, which allows for more parallel circuits and higher levels of acceleration.
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Designers have the option to choose from various FPGAs with different cost and performance

trade-offs.

The widespread use of machine learning, particularly in the form of DNN networks, has led

to a significant rise in computational requirements. To address this, AMD has developed AI

Engines [50] which are optimized for linear algebra, provide the compute density to meet these

demands. These engines are structured as 2D arrays consisting of multiple AI Engine tiles,

optimized for real-time machine learning computations with deterministic performance. Intel

has a similar solution, known as AI Tensor Blocks [51] found in Stratix 10 FPGAs [52] and the

next generation Agilex devices [53], which have dense matrix math units optimized for 8-bit

and 4-bit integer operations and mixed precision computations.

FPGAs have several features that make them well-suited for implementing accelerators for

RNNs. FPGAs can offer large amounts of parallelism, which can be leveraged to perform

multiple computations in parallel, thereby reducing latency for RNNs. In addition, they include

high-performance DSP blocks that are able to perform mathematical operations effectively, such

as MVMs, which are required for RNN computations. Moreover, FPGAs can be reprogrammed

after manufacturing, making it possible to quickly modify the design of an RNN accelerator

with optimized circuits specifically designed to adapt to changing requirements, resulting in

good performance and efficiency.

2.2 Related Work

We discuss the related work addressing the challenge C1, C2 and C3 in Section 2.2.1, 2.2.2

and 2.2.3, respectively. We also discuss the acceleration of cloud-based RNNs in Section 2.2.5,

targeting the same application domain as Chapter 3. Finally, exploiting the sparsity is an

important topic in accelerating RNNs, which is discussed in Section 2.2.4.
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2.2.1 Alleviating Data Dependencies for RNNs on FPGAs

There have been many previous studies on alleviating data dependencies for RNNs running on

FPGAs [1, 2, 15, 16, 19, 21, 22, 54, 55, 56, 57, 58]. The Brainwave design[1] is a single-threaded

SIMD Instruction Set Architecture (ISA) primarily comprised of matrix-vector and vector-

vector operations for running real-time artificial intelligence (AI), including persistent RNNs.

It leverages Vector-Level Parallelism (VLP), where compound operations are partitioned into

smaller operations with a fixed native vector size. Besides, it connects vector functional units

in a dataflow architecture, enabling vectors to flow directly from one functional unit to another,

thereby minimizing pipeline bubbles. One of the key features of the Brainwave architecture is

the use of a technique called ”instruction chaining” which helps to mitigate data dependencies

and improve efficiency. It allows sequences of dependent instructions to pass values directly from

one operation to the subsequent one. As opposed to conventional methods, this explicit chaining

mitigates data dependencies and enables the microarchitecture to exploit substantial pipeline

parallelism, bypassing the need for complex hardware dependency checking or multi-ported

register files, leading to an efficient and streamlined architecture for RNNs. The Brainwave-

like NPU [2] is based on the same technique to handle data dependencies. C-LSTM [54]

breaks down the LSTM pipeline into several smaller coarse-grained pipelines and overlaps their

execution time with a directed acyclic data dependency graph representing the computation

flow of LSTM. But these designs only consider the intra-timestep data dependencies, as shown

in Table 2.1.

RNNs have a lower degree of parallelism compared to CNNs because of the inter-timestep de-

pendencies [1]. RNNs process sequences of inputs, where the output at each time step depends

on the previous time steps, resulting in a dependency between time steps which prevents paral-

lel computation of different input vectors. The batch technique [15, 16, 19, 21, 22, 56, 57] is the

most common used technique to alleviate data dependencies in RNNs by interleaving different

input inference requests, as there are no data dependencies in different input inference requests.

However, using a batch of inputs can harm latency, as discussed in Section 1.1. The recently

introduced SHARP [58] (2022) is a specialized and adaptable ASIC-based architecture specif-
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Table 2.1: Summary of previous designs that alleviate data dependencies for RNNs on FPGAs

Addressing Data Dependencies Weights
intra-timestep inter-timestep techniques Storage

Brainwave [1] ✓ × Instruction Chaining on-chip

NPU [2] ✓ × Instruction Chaining on-chip

C-LSTM [54] ✓ × Coarse-grained Pipeline off-chip

[55] ✓ × 3-stage Scheduling off-chip

[15, 16, 22, 56] ✓ ✓ Batching on-chip

FP-DNN [19] ✓ ✓ Batching off-chip

[57, 21] ✓ ✓ Batching off-chip

SHARP [58] ✓ ✓ Unfolded Scheduling on-chip

Chapter 3 ✓ ✓ Column-wise MVM & Pipeline on-chip

Chapter 4 ✓ ✓ Blocking-Batching Strategy off-chip

ically tailored for RNNs. It leverages a combination of unfolded scheduling that unfolds the

MVM of the input and hidden vectors in order to alleviate inter-timestep data dependencies,

and a dynamically reconfigurable compute engine that optimizes resource mapping. To handle

the data dependencies, it pre-calculates the next step’s input MVM and stores the partial re-

sults in an intermediate buffer when the engine is processing the last sequential computation

of the cell state and hidden outputs for the current timestep. Besides, the reconfigurable com-

pute engine allows the accelerator to adapt to different RNN configurations and handles the

padding issue caused by matrix-vector multiplication more effectively. However, the original

paper only provides a high-level overview of the design, and it does not have details of the

microarchitecture implementations.

Chapter 3 describes a novel hardware architecture for RNNs, which is based on the column-

wise MVM to alleviate data dependencies, as well as several other optimization techniques to

improve the design’s performance and efficiency. The Chapter 4 combines the column-wise

MVM and blocking-batching strategy to reuse the weights to alleviate the inter-timestep data

dependencies for RNNs with weights on the off-chip memory.
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2.2.2 Acceleration of RNNs with Weights Off-chip

There are also many previous studies about LSTM implementations with weights stored in

off-chip memory on FPGAs [19, 20, 22, 30, 38, 59, 60, 61, 62]. This has been recognized as

a performance bottleneck due to the large latency incurred by repeatedly loading the weights

matrix from off-chip memory when the size of on-chip memory is not large enough to store the

entire matrix. Chang et al. [59] present an FPGA-based hardware implementation of LSTM on

the Xilinx Zynq 7020 with 16-bit quantization for weights and input data, both of which were

stored in off-chip memory. Guan et al. [38] propose a smart memory organization with on-chip

double buffers to overlap computations with data transfers. Later in [19], they present FP-

DNN, an end-to-end automated framework that maps Convolutional Neural Networks (CNNs)

or RNNs on FPGAs with RTL-HLS hybrid templates. FP-DNN maps LSTM inferences to

matrix-matrix multiplication kernels. However this is inefficient since there are only matrix-

vector multiplications in LSTMs. Therefore, they batch the input requests to convert the

matrix-vector multiplication to matrix-matrix multiplication to improve the performance of

LSTMs in the FP-DNN framework. Besides, their work does not explore the data dependencies

issue of LSTMs. Other studies such as [18, 20, 21] apply the batching technique to increase

the throughput of LSTM inferences. For example, E-BATCH is proposed [21] for RNNs, which

improves throughput and energy efficiency on an ASIC-based accelerator. By combining the

input vectors from various requests for the same model, the weights can be reused among them,

resulting in a good communication-to-computation ratio. However, this batch technique can

harm latency because different requests may not arrive at the same time [20], which means that

a newly arrived request must wait until the batch is formed, resulting in a latency penalty. Our

chapter 4 covers the published work [30, 31], which introduce the blocking-batching strategy to

increase the parallelism of RNNs while still targeting a single inference request, by exploiting

the parallelism between various timesteps in a single RNN inference. This work inspires some

subsequent studies [60, 61] by others in the community. [60] introduces a weight reuse scheme,

called Time-Step Interleaved Weight Reuse (TSI-WR), which interleaves the computations of

two adjacent time-steps in an LSTM cell. This interleaving allows for partial reuse of the on-chip

weight matrices across the two time-steps, reducing the need for repeated accesses to off-chip
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memory, leading to low power consumption. [61] introduces Split And Combine Computations

(SACC) approach which enables weight reuse by dividing weight matrix into lower-diagonal,

diagonal elements and upper-diagonal elements. These elements are accessed and reused across

consecutive time steps during the computations, reducing the need for repeatedly accessing

the same weights from off-chip memory. These two studies present fine-grained weight reuse

techniques and reduce off-chip memory access, aiming to reduce power consumption.

2.2.3 RNN Accelerators with Partially-folded Architectures

Previous FPGA-based RNN accelerators have mostly focused on fully-folded hardware archi-

tectures. Only a few efforts have explored the use of partially-folded hardware architectures for

RNNs. For example, Peng et al. [25] present a dual-engine accelerator for LSTMs, which can

execute multiple RNN inferences simultaneously or have cores collaborate on a single inference.

Khoda et al. [63] introduce ultra-low latency RNNs on FPGAs for physics applications based

on partially-folded architectures using the HLS4ML tool, demonstrating the potential of low

latency RNNs in scientific applications. This thesis provides a comprehensive analysis of fully-

folded architectures and partially-folded architectures for RNNs on FPGAs. In addition, an II

balancing technique is also introduced to balance the IIs among multiple engines, improving

hardware efficiency.

Some other efforts have used multiple FPGAs as multiple engines to accelerate RNNs. [64, 65]

introduce a multi-FPGA approach for accelerating multi-layer RNNs, with each FPGA pro-

cessing an RNN layer on an FPGA-based cluster. The computation is unfolded along the layer

axis but not the timestep axis, similar to the designs presented in Chapter 5. But Chapter 5

also introduces a technique to balance IIs, improving hardware efficiency and increasing design

throughput. [66] explores various partitioning strategies of large RNN inferences, including

single-layer RNN networks, to achieve scalable multi-FPGA acceleration. In contrast, this the-

sis focuses on a single chip implementation. However, the proposed partially-folded architecture

can be easily extended to support multiple FPGAs with different engines on different FPGAs,

each processing one layer or a few layers.
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2.2.4 Acceleration of Sparse RNNs

There is also much previous work [9, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76] on exploiting the spar-

sity in data and weights through pruning to reduce computation in networks and also to reduce

the memory footprint in order to achieve high performance and efficiency. ESE [9] proposes

a load-balance-aware pruning method with an automatic dynamic-precision data quantization

flow for LSTMs and compresses a large LSTM model by 20× without sacrificing prediction

accuracy. The load balancing refers to the even distribution of non-zero weights (the com-

putational tasks) across multiple Processing Elements (PEs). When a network is pruned, it

becomes sparse, with non-zero weights representing the workload. If one PE has more non-zero

weights than others, it creates a bottleneck, slowing down overall processing. The proposed

load-balance-aware pruning aims to ensure a balanced distribution of non-zero weights, im-

proving hardware performance and efficiency. It also includes a scheduler that partitions the

compressed model for parallel processing and schedules LSTM operations to overlap memory

references with computation. DeltaRNN [68] is a pruning method that exploits temporal spar-

sity in RNNs by skipping unnecessary computations and memory access using the delta network

algorithm. It only updates the output of a neuron when the neuron’s activation changes by

more than a set threshold (delta). This leads to a speedup of up to 5.7 times with little loss in

accuracy. However, it only supports a single layer GRU network. BBS (Bank-Balanced Spar-

sity) [70] is a structure pruning technique that divides weight matrix rows into banks for parallel

computing and adopts fine-grained pruning within each bank to maintain model accuracy. It

achieves both high prediction accuracy of a pruned LSTM model and high hardware efficiency

of the model running on FPGAs. BLINK [73] designs the LSTM inference using a bit-sparse

data representation. It converts multiplications into bit-shift operations to improve the energy

efficiency while maintaining LSTM inference accuracy for real-time calcium image processing.

The extension [77] proposes a combination of bit-sparse quantization and pruning methods for

energy-efficient LSTM inferences. More recently, Spartus [75] exploits spatio-temporal spar-

sity to achieve ultra-low latency inference using Column-Balanced Targeted Dropout (CBTD).

These studies are orthogonal to our proposed approach and hardware architecture. These

techniques can be complementary to our approaches to achieve even higher performance and
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efficiency of RNN/LSTM inferences using FPGAs.

2.2.5 Acceleration of Cloud-based RNNs

The Brainwave design [1] is a single-threaded SIMD architecture for running real-time artifi-

cial intelligence (AI), including persistent RNNs. It achieves more than an order of magnitude

improvement in latency and throughput over state-of-the-art GPUs on large memory intensive

RNN models at a batch size of 1. It stores NN model weights on-chip for RNNs to get a necessary

high memory read bandwidth to achieve higher performances. A coarse-grained reconfigurable

architecture (CGRA) based RNN accelerator is proposed [3] on top of Plasticine [78] with a

set of techniques for performing cross-kernel optimization in RNN cells. AERO [79] is a single-

threaded instruction-set based processor using a versatile vector-processing unit customized for

RNN inferences on resource-limited FPGAs. A Brainwave-like neural processing unit (NPU) is

proposed in [2] with a single-threaded architecture. They also explore the potential of combin-

ing a TensorRAM with FPGAs to provide large high-speed memory for large memory intensive

RNN sequence models. Besides, their late work [22] deploys the Brainwave-like NPU on the

Stratix 10 NX which is Intel’s new AI-optimized FPGA featured with AI tensor blocks. Our

chapter 3 and the related published work [24, 29] propose a novel latency-hiding hardware ar-

chitecture based on column-wise MVM and fine-grained tiling strategy for cloud-based RNNs

with good performance and power efficiency. Subsequent work [80, 81] presents RNN accel-

erators with spatial and temporal co-execution of multiple RNN/LSTM inferences, leading to

good performance.

2.2.6 GPUs and other Commercial Chips for LSTMs

A Graphics Processing Unit (GPU) is a specialized processor designed to handle the graphical

and mathematical computations required for rendering images and videos in real-time. They

have become increasingly popular for general-purpose computations as well, especially in sci-

entific computing and machine learning, due to their ability to perform many calculations in
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parallel. There are many high-level frameworks, such as TensorFlow [82] and PyTorch [83], that

offer built-in support for GPU acceleration, making it easy to use GPUs for LSTMs. However,

they often consume a large amount of power, which hinders their deployment on devices with

limited power supplies. GPUs can offer high performance with large amount of parallelism

when running batches of input requests but may not perform well when there is no batch due

to the data dependencies in LSTMs. In comparison, FPGAs offer benefits of low latency and

low power consumption [1, 2, 24, 29].

There are also some emerging commercial machine learning chips that are used to accelerate

LSTMs, such as Tensor Processing Unit (TPU) [84] from Google, Tensor Streaming Processor

(TSP) [85, 86, 87] from Groq and SambaNova [88, 89]. The TPUs are developed by Google for

accelerating machine learning workloads, which perform matrix computations efficiently. How-

ever, it suffers from low hardware utilization for LSTMs with an average utilization of 3.5% [84].

The Groq’s TSP is a single processor and includes 409,600 multiply-accumulate units along with

5120 vector ALU units. They are organized into sets of superlanes, each executing a very long

instruction word (VLIW) instruction. With a 1GHz frequency, its peak INT8 performance is

around 820 TOPS. However, the maximum effective throughput is 20 TOPS for a batch=1

LSTM-512 (hidden vector size is 512) [87], resulting in 2.4% hardware utilization. SambaNova

is based on Plasticine [78] architecture which is a coarse-grained reconfigurable architecture

(CGRA). It achieves 4-5 times speedup for online inference performance of LSTM and GRU

when compared with Nvidia’s A100 [89]. A SambaNova-like CGRA specific for accelerating

RNNs is proposed in [3], which is also on top of Plasticine [78]. The performance numbers

comparing our designs and this SambaNova-like RNN accelerator are listed in Table 3.3. Our

design (Large) achieves 1.8 times better performance than it [3].

2.3 Summary

This chapter presents background information that forms the foundation of this thesis. In ad-

dition, a review of various RNN designs on FPGAs is also presented. Many of these designs
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address data dependencies in RNNs by stalls, which can lead to low design efficiency. Chapter

3 introduces several techniques to alleviate the data dependencies, resulting in good perfor-

mance. Chapter 4 focuses on optimizing large RNNs with weights in off-chip memory. Chapter

5 presents a partially-folded hardware architecture for RNN, which maps all the layers on-chip

with dedicated optimization for each layer to achieve low latency and high throughput. In sum-

mary, the following chapters of this thesis discuss various approaches to optimize reconfigurable

designs for RNN acceleration, and achieve improvement in terms of design throughput, latency

and power efficiency.
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Chapter 3

Column-wise Matrix-Vector

Multiplication for RNNs on FPGAs

3.1 Introduction

This chapter presents a reconfigurable accelerator for REcurrent Neural networks with fine-

grained cOlumn-Wise matrix-vector multiplicatioN (RENOWN), involving a novel latency-

hiding architecture which can eliminate data dependencies to improve the throughput of RNN

inference systems.

To speed up RNN inferences, FPGAs have been utilized in various scenarios [1, 2, 38, 90],

achieving lower latency and power consumption compared to CPUs and GPUs. However, the

recurrent nature and data dependency in the RNN computation result in undesired system

stall until the required hidden vectors return from the full pipeline to start the next time-step

calculation [1]. Besides, while deep pipelining can be utilized to enhance operating frequency, it

increases stall penalty due to longer drain time. Moreover, inefficient tiling can leave hardware

resources idle resulting in low utilization. For example, the Brainwave [1] has six matrix-vector

multiplication (MVM) “tile engines”, each processing 400x40 matrices, so they have a peak

capability of processing a 400x240 matrix in parallel. Any MVM that does not map to this

dimension will leave some resources idle. Fig. 3.1 shows that Brainwave’s hardware utilization
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Figure 3.1: Hardware utilization of various LSTM implementations, including Nvidia Tesla
V100 GPU, Brainwave [1], Intel Brainwave-like NPU [2], CGRA-based Plasticine [3] and our
work. The hardware utilization is the proportion of hardware doing useful computation. These
workloads are representative LSTM layers from popular DNN models such as DeepSpeech.

ranges from less than 1% to only about 50% for various LSTM models. Another implementation,

Google’s TPU, also suffers from low hardware utilization and achieves an average utilization of

3.5% for LSTMs [84]. The Brainwave-like Neural Processor Unit (NPU) [2] with a fine-grained

zero-padding scheme achieves around 75% for a large LSTM. However, it still suffers from low

utilization, especially from medium to small sized LSTMs which are commonly used in many

applications [91, 38, 11]. LSTM models with small to medium sizes that have a large number of

time-steps are the most tangible examples that require dealing with lots of dependencies, as well

as the parallel task of MVMs [58]. With the need for high-performance systems, it is essential

to maximize the hardware utilization to achieve the highest possible effective performance and

energy-efficiency.

This work proposes a novel latency-hiding hardware architecture and a configurable checker-

board tiling strategy for RNN/LSTM models to increase hardware utilization and enhance the

throughput of RNN inference. First, we propose column-wise MVM for RNN/LSTM gates,

which is able to eliminate their data dependencies. The column-wise block-striped decompo-

sition of a matrix in MVM, as shown in Fig. 3.2b, is an effective outer-product based parallel
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(a) Row-wise MVM. (b) Column-wise MVM (This work).

Figure 3.2: Matrix-vector multiplications (MVM).

method for processing MVM in high-performance computing. Recently there are also some

outer-product based matrix-matrix multiplication accelerators [92, 93]. However, most of the

previous FPGA-based RNN implementations focus on row-wise MVM as shown in Fig. 3.2a.

The proposed architecture can start the calculation of the next time-step without waiting for

the system pipeline to be drained, which means that the system can be fully pipelined without

stalling.

Moreover, a novel configurable checkerboard tiling strategy is proposed which incorporates

Element-based Parallelism (EP) and Vector-based Parallelism (VP) to boost inference through-

put, as shown in Fig. 3.3. To support EP and VP, a new hardware architecture that supports

hybrid kernels is proposed which combines multiplier-adder-tree and multiply-accumulate ar-

chitectures. The architecture deploying many parallel multipliers followed by a large balanced

adder-tree is commonly used in FPGA-based RNN/LSTM accelerators [1, 2, 15, 38]. These

designs are based on row-wise MVM. To support MVM column-wise processing, our design de-

ploys many parallel multipliers followed by accumulators, as shown in Fig. 3.2b. Furthermore,

unlike our previous work [24] which is based on a fixed-size tiling approach, this work proposes

a configurable tiling technique that supports various configurations of EP and VP to further

improve the performance since different sizes of RNN models prefer different configurations of

(EP, V P ), as shown in Fig. 3.3

Our results indicate that the proposed acceleration architecture is not only the fastest compared

to the state-of-the-art for a large LSTM model, but also much more suitable for a wider-range

of RNN models in terms of complexity. Hence, it performs much better for RNN models with
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Figure 3.3: The Element-based Parallelism (EP) and Vector-based Parallelism (VP) with tiles
shaded in red or blue. Two sets of (EP, VP) are shown in this example.

different sizes as shown in Fig. 3.1. We make the following contributions:

• Novel column-wise MVMs for RNNs to eliminate data dependencies, increasing the hard-

ware utilization and system throughput.

• A flexible checkerboard tiling strategy supporting EP and VP to exploit the available

parallelism while increasing hardware utilization. Besides, the (EP, VP) parameter space

is comprehensively explored.

• A latency-hiding hardware architecture with novel hybrid kernels and Configurable Adder-

tree Tail (CAT) units to support the proposed optimizations.

3.2 Design and Optimization

This section covers data dependency analysis and optimizations targeting RNN designs. Some

system parameters are defined in Table 3.1.
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Table 3.1: Summary of parameters used in this study

W Weights matrix

wn All the weights of row n in W

w′

n All the weights of column n in W

Hw Number of Rows of weights matrix

Lw Number of columns of weights matrix

xt The input vector x at timestep t

ht The hidden vector h at timestep t

xt[j] The element j in the input vector x at timestep t

ht[j] The element j in the hidden vector h at timestep t

Lx Number of elements in the input vector x

Lh Number of elements in the hidden vector h

NPE Number of processing elements

EP Element-based Parallelism

V P Vector-based Parallelism

TS Timestep

MVM x The MVM involving input vector x

MVM h The MVM involving hidden vector h

3.2.1 Weights Matrix of LSTM Gates

In this design, the four matrices of i, f, o, u gates in LSTMs are combined into one large matrix

since they are of the same size. Thus, in one time-step calculation of the LSTM, we only need

to focus on one large matrix multiplied by one vector for the whole LSTM cell instead of four

small matrices multiplying one vector. This is a generic optimization that can be applied to any

MVMs that share the same input vector. Since each gate matrix has the size of Lh×(Lx+Lh),

the size of the combined matrix is (4 × Lh) × (Lx + Lh). Then we have the Hw = 4 × Lh

and Lw = Lh + Lx. Besides, the weights of the four LSTM gates are also interleaved in the

final weights matrix. Therefore, the related elements in the result vector from four gates are

adjacent and can be reduced easily via the element-wise operations in the LSTM-tail units.
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3.2.2 Row-wise MVM for RNNs

Conventional designs of MVM for RNNs are row-wise, and they have a major problem of being

stalled when their pipelines are not fast enough to bring data back to the input for the next

time step. They involve the entire vector of (xt, ht−1) and one or several entire rows of the

weights matrix at a time, as shown in Fig. 3.4a. This approach imposes additional stalling since

the system has to wait for a newly computed hidden vector before starting the calculation of

next timestep.

Data hazard exists since the whole new hidden vector ht is required to start the new com-

putation of xt+1 in the conventional MVM design for RNN/LSTM. It is mainly due to the

data dependencies between the output from the current timestep and the vector for the next

timestep. It indicates that the whole system pipeline needs to be drained to get the new com-

puted hidden vector ht before the new matrix-vector operations can start. As [1] mentions,

RNN programs have a critical loop-carry dependence on the ht vector. If the full pipeline

cannot return ht to the vector register file in time to start the next timestep then the MVM

unit will stall, as shown in Fig. 3.4b. On the other hand, deep pipelining is often required to

achieve a high operating frequency for designs. This makes it difficult to achieve a design with

the best trade-off.

3.2.3 The Proposed column-wise MVM for RNNs

This work proposes a new technique for calculating matrix-vector operations in a column-wise

fashion. At the beginning, only a few elements from the xt vector are used while ht−1 is not

touched, but all the elements in the corresponding columns of the weights matrix are involved

to perform the operations, as illustrated in Fig. 3.5a. To illustrate the idea, the number of the

pipeline stages of the example system is 4 as shown in Fig. 3.5b. However, the pipeline stages

of a real system can be much larger. In addition, the figure shows only one element in the xt

vector is used to perform the calculation for simplicity, but the actual number of the involved

elements in each cycle depends on the architecture’s parallelism requirements. The number of
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Figure 3.4: The row-wise MVM with LSTM data dependencies analysis

elements employed in this work is EP which is explored and fine-tuned in Section 3.3. The

partial result vector is generated from the small dot-product of the partial xt vector and the

corresponding weights. Then it is accumulated over multiple cycles to generate the final result

vector. This way, the calculation of the new inference of (xt+1, ht) can start without waiting for

the system pipeline to be drained to get ht since it only needs a partial input vector. It indicates

that the system can be fully pipelined without stalls, as shown in Fig. 3.5b. Each hidden vector

can finish the calculation in the shadow region of processing xt before it is required. The stall

happens in the calculation of each timestep, and the total potential stalling cycles equals the

design pipeline stages. When the LSTM workload is large, e.g., with a layer Lh as 2048, the

number of processing cycles of such a workload will be much larger than the number of stall

cycles and then the benefit of the column-based MVM will be small, because the ratio of the

stall cycles to the processing cycles is small. However, when the workload is small, e.g., with

a layer Lh as 256, the number of processing cycles of such a workload is also small. In such

a scenario, reducing stall cycles is vital because the ratio of stalls is large. For example, if

the number of processing cycles is the same as to the design pipeline stages, the hardware

utilization can be increased from 50% to 100% if all the stalls can be hidden.

One disadvantage has been observed that although the column-wise MVM only needs a partial

input vector, it produces the output vector later than the row-wise MVM, because it needs to

wait for all the columns to be processed to get the final accumulated vector before producing

the output [94]. It seems that the succeeding hardware units that depend on the output vector
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Figure 3.5: The column-wise MVM with LSTM data dependencies analysis

(e.g., those that perform activation functions and element-wise operations in the RNNs) would

need to wait longer. In contrast, the row-wise MVM completes one subset of the output vector

before moving to the next subset. Therefore, a subset of the final output vector is completed

sooner than in a column-wise case. However, in the column-wise case, the succeeding units can

get an entire output vector but not a subset. Although the column-wise architecture starts

the subsequent processing later than the one using row-wise MVM, the number of succeeding

units can be increased to match the output bandwidth and finish the whole calculation sooner

than the row-wise case. Practically, we do not need to significantly increase the number of

these units since they can process the whole vector over multiple cycles, until the next vector

is produced by the MVM engine. Besides, the row-based approach may also involve multiple

succeeding units to increase parallelism. Moreover, these units are much smaller compared to

the MVM kernel engine that has lots of multipliers and adders. Thus, the extra hardware area

is negligible compared to the whole accelerator.

When the size of xt vector is small and/or the size of ht vector is large, the design may still stall

because the cycles of processing xt vector cannot completely hide the whole pipeline latency to

get the ht ready before it is needed. However, with the column-wise MVM, we can still continue

to process the MVM of xt and its corresponding weights when we are waiting for the ht to be

computed. Besides, when the input vector is small, an LSTM model would rarely require a
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significantly larger hidden vector.

3.2.4 Tiling and Parallelism

To further exploit the available parallelism, we introduce Element-based Parallelism (EP) and

Vector-based Parallelism (VP) in our design, as shown in Fig. 3.3. The matrix of weights is

split into small tiles with a size of (EP, V P ). In each cycle, the hardware engine is able to

process a tile of the weights matrix and a sub-vector of [xt, ht−1] with a size of EP . EP and

V P need to be determined carefully so that the number of cycles to process the xt vector, given

by Lx
EP

, is larger than the system latency to ensure that the computation of hidden vectors can

be fully hidden by processing xt vector. This number is small when EP is large and it may still

result in system stalls. To increase system parallelism, V P is chosen to be as large as possible.

However, the largest number of V P is Hw, which equals 4 × Lh, since there are only 4 gates

in LSTM. In summary, the hardware utilization and system throughput can be improved via

balancing EP and V P .

A fixed configuration of (EP, V P ) can bring low hardware utilization. Brainwave [1] has 6 MVM

tile engines, each processing 400 × 40 matrices. The NPU [2] also has a fixed configuration

of 4 tiles, 120-wide dot product engines and 40 lanes. Any MVMs that do not map well

to these dimensions will leave some resources idle. Since RNNs are used for various tasks,

RNN accelerators should support diverse configurations. This work proposes a novel hardware

architecture to support various sets of (EP, V P ) since models with different sizes may prefer

different optimal EP and V P configurations. Fig. 3.3 shows the basic idea with two sets of

(EP, V P ).

One option is to adopt the row-wise MVM while cascading the computation of MVM x and

MVM h, which are the MVMs involving input vector and hidden vector respectively, instead of

a unified MVM. Cascading them with a row-wise fashion may also help to eliminate the data

dependencies between current and next timestep calculations. However, this approach compli-

cates the enhancement of parallelism. Usually the length of x and h are different, resulting in

different computation loads for MVM x and MVM h. The input vector x is usually application
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Figure 3.6: The number of processing cycles in our proposed column-wise approach for different
values of EP, NPE, and model sizes. Different colors combining different point shapes represent
different model sizes with Lh from 256 to 2048.

dependent while the value of h can be selected by designers to meet application requirements

and to reduce hardware utilization. Zero padding may be required to support both MVM x

and MVM h, which causes inefficiency. Actually the heights of the MVM x and MVM h are

both 4Lh, while the widths are Lx and Lh respectively. The column-wise based computation

enables more parallelism than the row-wise one, which improves design efficiency. Both the

designs [1, 2] separate and cascade the MVM x and MVM h, but they still suffer from low

hardware utilization as explained above.

3.3 Design Space Exploration

The hardware design space is characterized by the tiling block size of (EP, V P ) and the number

of processing elements (NPE) after combining the configurations discussed previously. The

effective performance varies with the tile size and the number of PEs. This design space

exploration is independent of the particular FPGA technology.

To figure out the optimal parameters of the system configuration for our in-depth analysis, we

develop a cycle-accurate simulator to conduct the design space exploration. A greedy algorithm

is proposed to explore design space. It starts with EP = 1 while the V P is given according to
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the system constraints shown in 3.1.

V P ≤ 4× Lh and V P ≤
NPE

EP
(3.1)

Practically EP and V P should be as large as possible because this would maximize the potential

parallelism and the system throughput. However, when EP increases, the number of cycles

needed for processing the input vector (Lx) decreases so that the system may not have sufficient

cycles to completely hide the processing of the hidden vector as discussed in Section 3.2.3. In

this exploration, the V P is set as large as possible, which is min(4 × Lh, NPE
EP

). Fig. 3.6

illustrates the exploration results for different sizes of LSTM models with Lh from 256 to 2048

with different colors and point shapes, using our hardware design when the NPE is 4096, 16384

or 65536. Fig. 3.7 shows the feasible sets of (EP, V P ) when NPE is 65536. The number of

processing cycles determines the throughput of the system and the lower it is, the better the

overall performance will be. As shown in Fig. 3.6, when EP is small, the number of processing

cycles is high because the V P is constrained by Equation (3.1) so that the number of effective

PEs is less than NPE, which leads to severe underutilization. For instance, V P should be no

larger than 4 × Lh which is 1024 when targeting the LSTMs with the size of Lh being 256,

illustrated by the blue line in Fig. 3.7. When EP increases, the number of processing cycles

decreases until EP reaches these sweet spots. When EP is larger than the ones in sweet spots,

processing cycles increase gradually. Please note EP = 1 is not shown in Fig. 3.6(left) as its

value is too large and it will make the sweet spot too small to be shown.

From our design space exploration result, the optimal configuration has an EP value between

4 and 16 when NPE = 16, 382, and between 16 and 64 when NPE = 65, 536. In these

sweet spots, high parallelism can be achieved, which results in high system throughput. Note

that for a given vector size, better performance and utilization can be obtained by adapting

the (EP, V P ) design parameters. As shown in Fig. 3.6 (left), the LSTM workload of 512 has

lower latency with (EP, V P ) of (32, 2048) than that of (16, 4096) as shown by the red line,

while the workload of 1024 has lower latency with (16, 4096) than (32, 2048) as shown by the

gray line. Different choices of EP and V P impact the hardware utilization and performance
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of the architecture when running RNN models of different sizes. There is a trade-off between

performance and design complexity with extra hardware resources for supporting various values

of (EP, V P ). More details about this trade-off is given in the following section.

3.4 Hardware Implementation and Optimization

This section presents our proposed hardware architecture (Fig. 3.8), based on the optimization

techniques introduced above. It consists of the kernel units, an adapter unit, an activation

function unit and tail units.

3.4.1 Kernel Units

The architecture consists of V P kernel units, and each unit has EP Processing Elements

(PEs), so the number of effective PEs is V P × EP . The V P and EP values are determined

via the design space exploration described in detail in Section 3.3. In this design, each PE

is one fully-pipelined multiplier. Fig. 3.9c shows the details of a computational kernel unit

in our design. The architecture of kernel units, as shown in Fig. 3.9a, which employs many
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parallel multipliers followed by an balanced adder-tree is commonplace in FPGA-based designs

of RNNs [38, 1]. This architecture is for row-wise MVMs. The column-wise MVM is based

on the architecture of many parallel multipliers followed by many parallel accumulators, as

shown in Fig. 3.9b, since the elements in the partial result vector are not related. To support

element-based parallelism, we propose a hybrid hardware architecture that combines these

two architectures. A small balanced adder tree is placed between the multipliers and the

accumulators, as shown in Fig. 3.9c. This small adder tree, which provides the summation of

the products of EP multiplications, can help to balance the EP and V P for a proper shape

of a tile. For example, when the V P is limited by 4× Lh as shown in Fig. 3.7, the design can

increase the EP to enable more PEs to increase the throughput since the number of effective

PEs is V P × EP .

The hybrid kernel might look more complex than the row-wise or column-wise kernel but it does

not consume more hardware resources when targeting a same problem size. For example, if the

number of the multipliers is N (for simplicity, N is a power of 2) for all 3 types of kernels and

each hybrid kernel has a EP -to-1 small adder-tree, the design with row-wise kernels requires N

multipliers and N−1 adders (the design is supposed to be a fully pipelined one with a balanced

tree), the design with column-wise kernels requires N multipliers and N accumulators, and the
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design with hybrid kernels needs N multipliers, N
EP
× (EP − 1) adders and N

EP
accumulators.

Because one EP -to-1 balanced adder-tree unit needs EP − 1 adders and there are N
EP

of such

units, so there are N
EP
× (EP − 1) adders in total. Generally, an accumulator is just an adder

so the hybrid kernel also needs N
EP
× (EP − 1) + N

EP
= N adders. Thus the design with hybrid

kernels has the same amount of hardware resources as the one using pure column-wise kernels

and just one more adder than the one using row-wise kernels. Please note that some row-wise

architectures also have accumulators after the large reduction tree since it can never guarantee

to fully unroll the matrix dimension [2]. In such a case, the design using row-wise kernels also

requires N adders.

3.4.2 Configurable Adder-tree Tail (CAT) Unit

To support various versions of EP and V P , we design novel adder reduction based on a custom

adder-tree with the configurable adder-tree tail. With various EPs, the number of levels of the

adder-tree needs to be changed correspondingly. If a fixed structure of the adder-tree is designed

for a large EP (EP is also the number of the input elements for the adder-tree), the results

from the last several levels of adder-tree can be used for small EPs to update the accumulators

directly instead of entering next level adders, as shown in mode 2 and 3 in Fig. 3.10. For

example, if EP is 64 and the number of input is also 64, with the proposed 4-input CAT, the

number of the output elements of this adder-tree becomes 2 when mode 2 is enabled. Thus,

instead of enabling a 64-to-1 adder-tree reduction, the design now has a 64-to-2 adder-tree

66



+

+

+

+

+ +

+ +

+

+

+

+

S
m

al
l A

dd
er

 T
re

e

S
m

al
l A

dd
er

 T
re

e

S
m

al
l A

dd
er

 T
re

e

Adder-tree Tail
Adder-tree Tail

Adder-tree Tail
Mode 1 - 4to1 Mode 2 - 4to2 Mode 3 - 4to4

Figure 3.10: The three modes of configurable 4-input adder-tree tail with accumulators

which actually includes two 32-to-1 adder-trees. So the configuration of (EP, V P ) changes

from (64, 1024) to (32, 2048). With mode 3, the same design can be enabled with (16, 4096).

The detailed implementation can be achieved by additional accumulators while keeping the

tree structure intact. However, the additional accumulators will result in resource overhead.

This work proposes the CAT architecture to reuse the adders in the tail of the tree as the

required accumulators with no extra adder components. The CAT with N-input (CAT-N) can

be configured to update 1 to N accumulators when the data reach the last log2(N) levels of the

adder-tree. Fig. 3.10 shows the three modes using CAT-4. The results from the adder-tree can

be used to update 1 to 4 accumulators. Fig. 3.11 shows the details of a CAT-4 unit. Different

MUX settings configure CAT-4 to be one of the 3 modes shown in Fig. 3.10. For example, the

red line in Fig. 3.11 shows the data flow when CAT-4 in mode 2. In our large scale design,

CAT-4 is sufficient since the sweet spot of EP is {16, 32, 64} according to design exploration

for optimal system throughput.

3.4.3 The Other Units

The adapter converts the parallelism between kernels and tails. Then de-quantization (De-

Quant) converts quantized values into fixed-point values to reduce hardware resources. The

σ/tanh unit performs the Sigmoid (σ) and hyperbolic tangent (tanh) functions. Both target
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Figure 3.11: The details of CAT-4

programmable lookup tables of size 2048 [9, 2]. The LSTM-tail unit and GRU-tail unit mainly

perform the element-wise operations. The output hidden vector (ht) needs to be quantized

before it can be used in the MVM kernels, so a Quant unit is deployed after the final output

of Tail units as shown in Fig. 3.8.

3.4.4 Low Precision Multiplications with DSP block Sharing

Reducing the precision of operations in DNN inference accelerators can achieve high efficiency

with little or no accuracy loss compared to floating-point by fitting more multipliers per unit

area. With careful retraining, low precision, even binarized RNNs can still have decent ac-

curacy [16, 18]. The authors in [16] trained an LSTM model using 1-bit weights and 2-bit

activations, which achieved a classification accuracy of 94% for OCR applications. Besides,

narrow bit-width multiplications can be mapped efficiently onto lookup tables and DSPs. For

example, Brainwave [1] deploys 96,000 MACs on a Stratix 10 2800 FPGA by packing 2-bit or

3-bit multiplications into DSP blocks combined with cell-optimized soft logic multipliers and

adders. Our fixed-point 8-bit design has 16,384 MACs. Besides, our fixed-point 2-bit design has

65,536 MACs, and it deploys the same word length for multipliers as those in Brainwave tar-

geting the same FPGA device for a fair comparison. Please note that our column-wise MVM

optimizations and fine-grained tiling strategy are applicable to multipliers of any numerical

precision.
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In current FPGAs, there are highly configurable DSP blocks which are often underutilized in

implementing low precision DNN designs. [95] and [96] demonstrated methods to pack two

8-bit multiplications into one Xilinx and Intel 18-bit multiplier respectively. Both methods

require two multiplications to share one input operand. With the proposed column-wise MVM,

one column of the weights matrix naturally shares the same element of the input vector, which

helps us to pack four 8-bit or ten 2-bit multiplications into one DSP block on Intel FPGAs [96]

to reduce the hardware resources. Moreover, this would not be a restriction (and will come at

lower cost) if we use a novel DSP similar to what was proposed in [97] and will be adopted in

the next generation Agilex devices [98].

3.5 Evaluation and Analysis

This section presents evaluation results and analysis of two generations of Intel FPGAs to

show the scalability of the proposed RNN accelerator optimizations.

3.5.1 Experimental Setup

To evaluate our RNN design, we utilize the same LSTM and GRU workloads as the Brainwave

design [1], the Brainwave-like NPU [2] and the Plasticine [3] for comparison. These workloads

come from the DeepBench suite which is a set of micro-benchmarks containing representative

layers from popular DNN models such as DeepSpeech [27]. These workloads are single layers

with various sizes of hidden vectors and different timesteps (or sequence lengths) from 1 to 1500,

as shown in Table 3.3. This work takes the LSTMs with Lh=256 as small LSTM workloads,

Lh=512 or 1024 as medium-sized ones, and Lh=1536 or 2048 as large ones. Two generations

of Intel FPGAs, an Arria 10 1150 (A10) and Stratix 10 2800 (S10) are evaluated and compared

with previous work. Both run persistent LSTM/GRU of inference. Our proposed hardware

architecture is captured in Verilog hardware description language, and is implemented in the

target A10 and S10 devices using Quartus Pro 18.1.
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Table 3.2: Resource Utilization

ALMs M20K DSP Freq.

Arria 10 1150
(

Precision = 8-bit
NPE = 4096

)

Avail. 427,200 2713 1518
Used 186,534 1,178 1,176 259Mhz

R. Util. 44% 43% 77%

Stratix 10 2800
(

Precision = 8-bit
NPE = 16,384

)

Avail. 933,120 11,721 5760
Used 487,232 10,061 4,368 260Mhz

R. Util. 52% 86% 76%

Stratix 10 2800
(

Precision = 2-bit
NPE = 65,536

)

Avail. 933,120 11,721 5760
Used 768,406 6,803 5,368 250Mhz

R. Util. 82% 58% 93%

3.5.2 Resource Utilization

Table 3.2 shows the resource utilization of our designs with three configurations on FPGAs. We

implement a small RENOWN with the configuration of (EP, V P ) as (4, 1024) using an Arria

10 FPGA which has 4096 8-bit multipliers in the MVM kernels. A medium-sized RENOWN

with the configuration of (EP, V P ) as (16, 1024) is implemented using a Stratix 10 FPGA

which includes 16,384 8-bit multipliers. A large RENOWN with 65,536 2-bit multipliers is also

implemented on a Stratix 10 FPGA with the configurations of (EP, V P ) as (16, 4096), (32,

2048) and (64, 1024). All our designs consume most of the FPGAs’ available resources. Note

that hardware utilization is different from resource utilization and it reflects how often the

hardware computational units would be “not idle”. Although we achieve a similar frequency to

that reported in the Brainwave [1] and Intel-NPU [2] papers, we believe that further low-level

optimizations can lead to higher frequencies for better performance. We leave that for future

work since it has a limited impact on the conclusions in this work.

3.5.3 Performance and Efficiency Comparison

To illustrate the benefits of our proposed approach, some existing LSTM/GRU accelerator

designs using the same benchmark are compared with ours in Table 3.3. This table illustrates

the latency, hardware (HW) utilization and throughput with various workloads under different

numbers of hidden units (h) and time-step (TS). The hardware utilization is the percentage
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of achieved Tera Operations Per Second (TOPS) to the peak performance for each layer. The

DeepBench published results [3] on a modern NVIDIA Tesla V100 GPU with 16-bit precision

are also included. Some existing FPGA-based LSTM accelerator designs are listed in Table 3.4.

For a fair comparison, we only show the previous work with a detailed implementation of the

LSTM system in this table. We show the FPGA chips, model storage, precision, number of

processing elements (NPE), run-time frequency, throughput, power efficiency and hardware

utilization.

The GPU is significantly underutilized even when cuDNN library API calls are used, since

it is designed for throughput-oriented workloads, and it prefers BLAS level-3 (matrix-matrix)

operations which are not common in RNN workloads [3]. Our design can provide promising

latency under 3ms for all Deepbench RNN layers at batch size of one, reaching up to 29.6

effective TOPS for a large LSTM workload (h=2048) which is the largest reported performance

in all these LSTM designs as shown in Table 3.3 and Table 3.4. Our work achieves 27.4 to 95.8

times higher performance than the Tesla V100 as shown in Fig. 3.12a. The performance of the

specific case (h=512) is approximately two orders of magnitude higher than the Tesla V100.

Our experiments show that the utilization is low with small RNN applications that are com-

posed of sequences of small MVMs due to small hidden unit sizes and large number of time-

steps. However, with our proposed optimizations, we can get higher throughput and hardware

utilization than the counterparts using a similar number of PEs. With a similar number of

PEs to [2], our RENOWN (Medium-size) achieves up to 94.1% hardware utilization which is

the highest with respect to state-of-the-art implementations on FPGAs, as shown in Fig. 3.1

and Fig. 3.12b. Achieving high utilization using a small number of PEs is easier than using a

large number of PEs.
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Table 3.3: Performance comparison of DeepBench Inference for the previous work and our designs

Benchmark GPU
ISCA18-
BWa [1]

FCCM19-
NPU [2]

MLsys19-
Plasticineb [3]

This Work
(Medium)

This Work
(Large)

Process(nm) 12 14 14 28 14 14
NPE - 96000 19200 12288 16384 65536

GRU
h=512
TS=1

Latn. (ms) 0.39 0.013 0.0015 0.0004 0.0006 0.0004
HW Util. 0.03% 0.5% 21.7% 30.9% 64.1% 24.8%

Perf.
(TOPS)

0.01 0.25 2.17 7.6 5.46 8.13

GRU
h=1024

TS=1500

Latn. (ms) 33.77 3.792 3.139 1.4430 2.59 0.879
HW Util. 1.8% 10.4% 60.2% 53.3% 85.5% 65.5%

Perf.
(TOPS)

0.56 4.98 6.01 13.1 7.28 21.5

GRU
h=1536
TS=375

Latn. (ms) 13.12 0.951 1.454 0.7463 1.36 0.428
HW Util. 2.6% 23.3% 73.2% 57.8% 91.4% 75.8%

Perf.
(TOPS)

0.81 11.17 7.30 14.2 7.79 24.8

GRU
h=2048
TS=375

Latn. (ms) 17.70 0.954 - 1.283 - 0.695
HW Util. 3.4% 41.2% - 59.81% - 82.8%

Perf.
(TOPS)

1.07 19.79 - 14.7 - 27.1

GRU
h=2560
TS=375

Latn. (ms) 23.57 0.993 - 1.973 - 1.076
HW Util. 4.0% 61.8% - 61.0% - 83.6%

Perf.
(TOPS)

1.25 29.69 - 15.0 - 27.4

LSTM
h=256

TS=150

Latn. (ms) 1.69 0.425 0.110 0.0419 0.033 0.029
HW Util. 0.3% 0.8% 14.3% 15.5% 56.1% 16.7%

Perf.
(TOPS)

0.09 0.37 1.43 3.8 4.79 5.49

LSTM
h=512
TS=25

Latn. (ms) 0.60 0.077 0.027 0.0139 0.014 0.0061
HW Util. 0.6% 2.8% 38.8% 30.9% 85.9% 52.6%

Perf.
(TOPS)

0.18 1.37 3.89 7.6 7.33 17.2

LSTM
h=1024
TS=25

Latn. (ms) 0.71 0.074 0.064 0.0292 0.054 0.015
HW Util. 1.9% 2.8% 65.7% 58.6% 90.7% 86.6%

Perf.
(TOPS)

0.59 5.68 6.56 14.4 7.73 28.4

LSTM
h=1536
TS=50

Latn. (ms) 4.38 0.145 0.246 0.1224 0.236 0.066
HW Util. 1.4% 27.1% 76.9% 63.7% 94.1% 87.4%

Perf.
(TOPS)

0.43 13.01 7.67 15.4 8.02 28.7

LSTM
h=2048
TS=25

Latn. (ms) 1.55 0.074 - 0.106 - 0.113
HW Util. 3.4% 47.1% - 64.3% - 90.2%

Perf.
(TOPS)

1.08 22.62 - 15.8 - 29.6

a Brainwave, b ASIC.
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Figure 3.12: Performance comparison
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In our RENOWN (Large) design, we use around 31.7% fewer multipliers than [1], while achiev-

ing 30.7% higher performance than [1] when targeting large LSTM workloads. When targeting

small LSTM models, our design achieves 14.8 times higher performance. This is due to bet-

ter hardware utilization which comes from our optimizations incorporating novel column-wise

MVM and fine-grained tiling strategy. With a large number of PEs, our RENOWN can still

achieve up to 90.2% hardware utilization which is higher than the other work. When targeting

small LSTMs and GRUs, RENOWN (large) has a similar utilization as [2] and [3]. However,

the number of PEs is respectively 3.41 times and 5.3 times more than those in [2] and [3]. The

configurable tiling of RENOWN (Large) also results in an additional up to 27% higher system

throughput as shown in Fig. 3.13. The figure shows the speedup of the system throughput

compared to the lowest one among them with a given EP value.

The previous designs of [16] and [56] in Table 3.4 explore various low precision designs, showing

their scalability to different bitwidth designs. Most of the other designs in Table 3.4 only

support one bitwidth while our work demonstrates both 8-bit and 2-bit designs which show

the scalability of our architecture to cover different bit-width designs. Our implementations

are produced using Verilog templates with configurable parameters for each hardware module

instance. Generally, [16] and [56] are more scalable in bitwidth since they do not use the

DSP hard blocks on FPGAs for the computational kernels. The FPGA DSP block has a fixed

bit-width and it needs a tailor-made wrapper for packaging several small multipliers into one

DSP hardware block. Besides, [16] and [56] target a particular model which has four parallel

and independent LSTM layers. These four independent LSTM layers can be scheduled in an

interleave manner for a hardware engine to alleviate the issues of recurrent dependencies.

Some of the designs target smaller FPGAs [16, 56] than the Stratix 10. They have fewer

logic resources and DSPs but they also have a smaller TDP (thermal design power) power

consumption. We follow the convention in all related papers and use GOPS for performance

comparison. In addition, we also use GOPS/W, power efficiency, so that we are not taking

advantage of the FPGA chip size when compared to the designs on small chips, such as the

designs in [16, 56].

75



LSTM hidden vector size

S
pe

ed
-u

p 
v.

s.
 L

ow
es

t

Figure 3.13: Performance speedup due to configurable tiling

Overall, our RENOWN (Medium-size) provides over 1.05 to 3.35 times higher performance and

1.22 to 3.92 times higher hardware utilization than the state-of-the-art design [2], as shown

in Table 3.3. In addition, the RENOWN (Large) achieves 3.7 to 14.8 times better performance

than state-of-the-art FPGA-based LSTM designs [1, 2, 3]. This work focuses on minimizing

latency and maximizing throughput by increasing the hardware utilization. The results show

flexible customizability of our architecture for different scenarios. The column-wise approach

exposes the most parallelism while minimizing stalls due to data dependencies.

To minimize latency, our design places the model weights onto the on-chip memory, achieving

high memory read bandwidth suitable for real-time services. However, some large-scale RNNs

recently emerge with large on-chip memory requirements. Our design adopts a scale-out net-

work of utilizing multiple accelerators like [1, 66] which partition the design to multiple FPGAs

to address the challenges of fast-growing RNN models where weights exceed on-chip memory

capacity on a single FPGA. Some cloud-based services are able to tolerate a slightly longer

latency of response. It means a small amount of batching can be employed if necessary. This

benefits the GPU-based RNN inferences [1]. In [18, 15, 21, 22], the batching technique is used

to improve the hardware throughput and utilization for LSTM inferences. Since our design

consumes a single input at a time, increasing batch size does not affect its utilization. Thus,
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Figure 3.14: Power consumption of the accelerator with the decomposition for each of the major
underlying blocks.

our architecture’s utilization is not affected with or without batching. Furthermore, some de-

signs use binarized datapaths [15, 16, 56] for LSTMs with negligible or no effect on accuracy.

Utilizing very low precision, e.g., binary, is orthogonal to our proposed approach which trans-

forms computation to eliminate data dependencies. Reducing precision can be combined with

our approach to achieve even higher performance and efficiency.

The comparisons made in this work do come with certain limitations. One key limitation is

that the impact of varying bitwidths on computational accuracy is not directly assessed in our

comparisons. Although reducing bitwidth can enhance efficiency, it’s important to acknowledge

that this change can also influence accuracy outcomes. However, we often lack access to the

detailed accuracy information of the existing studies we’re comparing. Besides, the benchmark

used does not fully represent real-world end-to-end application scenarios. Instead, it focuses

primarily on typical RNN layers which does not inherently include model accuracy information.

Furthermore, the accuracy/throughput in application level can be fairer metrics. However, it

is complicated as the listed previous papers utilize various applications to benchmark their

designs. We decide to use GOP/S as our comparative metric since it is commonly used in

relevant literature.

Fig. 3.14 illustrates the power consumption of the proposed RENOWN (Medium-size) design.
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The power is estimated by the Intel Early Power Estimator (EPE) tool and verified by the

Intel Quartus Power Analyzer. We note that this work considers only the chip power, for a fair

comparison. The bar chart in Fig. 3.14(left) shows the decomposition for each of the major

FPGA components. The static power consumption of the device is 7.16W. The dynamic power

consumption of the accelerator engine unit is the largest which is over 50%. The pie chart

in Fig. 3.14(right) shows the dynamic power consumption of each major unit of the accelerator

engine unit. The Buffer Units which store the weights and input/output data have the largest

power consumption which reaches nearly half of the power consumed by the whole engine unit.

The Kernel Units also consume nearly half of the power while the Tail units only consume less

than 1% power.

3.6 Summary

This chapter presents a novel column-wise MVM for RNNs to eliminate data dependencies

and introduces a latency-hiding hardware architecture with hybrid kernels and Configurable

Adder-tree Tail (CAT) units, increasing the hardware utilization and system throughput. It

also introduces a flexible checkerboard tiling strategy that supports EP and VP to exploit

the available parallelism while increasing hardware utilization and scalability. The proposed

accelerator has been implemented using Arria 10 and Stratix 10 FPGAs, achieving superior

performance and power efficiency compared to prior state-of-the-art implementations.
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Chapter 4

Optimizing Large RNNs with Weight

Reuse

4.1 Introduction

This chapter introduces a weight reuse approach for large RNN models with weights stored

in off-chip memory, running with a batch size of one. A novel blocking-batching strategy is

proposed to optimize the throughput of large RNN designs on FPGAs by reusing the RNN

weights. It is important to note that our strategy diverges from traditional batching techniques

that group completely different input requests to exploit the inter-request parallelism at the

cost of latency, as discussed in Section 1.1.2. Instead, our blocking-batching approach involves

the batching of activations of different timesteps from the same input sequence.

Although FPGA-based LSTM accelerators have advantages in latency and power consumption,

they are limited by the memory bandwidth of the FPGA board. The situation is even worse

when we consider a small embedded system with low power and low memory bandwidth. An

example of this is a monitoring camera system performing video processing, where large machine

learning models have previously been infeasible due to high memory bandwidth and low latency

requirements.
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There has been previous work [1, 14, 15, 100] with FPGA based implementations such that

all the weights are stored in the on-chip memory, but this is expensive and limits the size of

models that can be deployed. When the RNN model is so large that the weights need to be

stored on an external DRAM, it is not efficient because the fetched weights are typically used

only once for each output computation.

In this work, we focus on LSTM models which are too large to store in on-chip memory of FPGA

and we propose a novel blocking-batching strategy splitting the weight matrix into multiple

blocks while batching the input activation vectors so that we can process the calculations block

by block with weight reuse, which will reduce external memory access to save power and reduce

latency. Batching the input activation vectors for RNN has been studied [15, 17, 18, 19] to

increase the throughput, however few concern combining the blocking and batching for RNNs.

In addition, we analyze the underlying data access pattern and dependency in the matrix-vector

multiplication required by LSTM and a stall-free hardware architecture is proposed. With our

method and new hardware architecture, large LSTM systems can be processed efficiently on

FPGAs.

Our contributions are as follows:

1. A new blocking-batching strategy to reuse the LSTM weights to optimize the throughput

of large LSTM systems on FPGAs with a stall-free hardware architecture, resulting in

high throughput.

2. A performance model which enables a balance between performance, power consumption

and area for FPGA designs. Promising power efficiency improvement has been achieved

due to less off-chip access.

4.2 Design and Optimization

Since most of the calculations within LSTM cells lie in the matrix-vector multiplication with

complex data dependencies, this work will mainly focus on optimizing this operation for high
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Figure 4.1: Matrix-vector multiplication, showing the data dependency.

throughput. The element-wise operations in the LSTM tail can run parallel with the matrix-

vector multiplications. In this section, an improved architecture is first presented to re-organize

the multiplications to optimize data dependency and reduce stalls, thereby increasing the

throughput of the system. Then a new blocking-batching strategy of reusing the LSTM weights

to enhance the throughput of large LSTM systems is described via 3 scenarios. In addition, an

approach to optimize the design setting such as finding the best blocking number and the best

batch sizes is introduced.

4.2.1 Overcoming Data Dependency

The traditional implementation of the matrix-vector multiplication involves the entire vector of

(xt, ht−1) and a whole row of the weights at a time. However, this approach imposes additional

stalling as the system needs to wait for new computed hidden units vector before starting

the next time-step. This is mainly due to the data dependency between the output from the

current time-step and the vector for the next time-step as shown in Fig. 4.1, where Wx and Wh

represent the weights for the input vector and the weights for the hidden vector respectively.

That implies that the whole system pipeline needs to be emptied to get the new computed

hidden units before the new matrix-vector operations can start.

We propose a new technique that can alleviate this problem by calculating the matrix-vector

operations in a different manner. At the beginning, only a few elements from the xt vector

81



Wx Wh
xt

ht-1

xt+1

ht

xt+2

ht+1

Figure 4.2: New matrix-vector multiplication method using columns.

are used while ht−1 is not touched, but all the elements in the corresponding columns of the

weights matrix are used to do the operations, as shown in Fig. 4.2. The number of the involved

elements in the xt vector each cycle depends on the parallelism of system. In this way, the

calculation of the new inference of (xt+1, ht) can start without waiting for the system pipeline

to be emptied to get the ht, which means that the system can be fully pipelined without stall.

Each hidden vector can finish the computation in the shadow of processing xt before it is used.

4.2.2 New Blocking-Batching Strategy

Many LSTM designs on FPGA share the same problem where all the weights need to be stored

on-chip because of the slow latency to the off-chip memory. This approach is inapplicable for

large machine learning models or a small FPGA. Even after model compression and weights

pruning, the designs can still suffer from insufficient on-chip memory for large compressed

model. To solve this problem, we propose splitting the weight matrix into multiple blocks

while batching the input activations vectors so that we can process the calculations block by

block with weight reuse. This technique can be used for general LSTM model, or incorporated

with the technique proposed in Section 4.2.1. It seems similar to classic block matrix-matrix

multiplications, however our proposal also considers the data dependence in LSTMs. With

multiple vectors organized in a batch, the system can now reuse the same weights for the next

matrix-vector operation without the full input vector being ready. Since memory accesses are
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Figure 4.3: Blocking of the weights matrix and input activation vectors.

expensive we want to reduce the number of loads from memory. This method can reuse the

weights on multiple input vectors before reloading new weights from memory. This approach

is especially useful in an embedded system where FPGA size and memory resources are both

limited.

In our approach, the matrix includes parameters from all kinds of LSTM gates. In addition, the

gate weights are interlaced in the matrix. Furthermore, we slice the weights matrix along the

column, so the number of columns in each block is 1/(Blocking Number of the original number

of columns in the weights matrix), while the number of rows is the same as the original number

of rows, as shown in Fig.4.3. So each block includes parameters from all kinds of gates.

Typically the transfer time of the weights is much larger than the computation time. By

processing multiple time-steps of the input vector in a batch, we can use the weights multiple

times before reloading, which reduces the number of memory accesses. Assuming the number

of processing elements is fixed, increasing the batch size will also increase the computation

time. We can find a batch size such that the computation time is equal to or larger than the

transfer time to hide memory latency. In this way, we convert memory-bound applications to

compute-bound ones and improve the performance.

In addition, we make use of a double buffering architecture which stores two blocks on-chip.

Whilst calculating one block we can transfer the other block to maximize efficiency by reducing
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Table 4.1: Blocking-Batching Parameters

Mop Number of matrix operations

Npe Number of processing elements

Nt Number of elements transferred each cycle

Nb Number of blocks

Lx, Lh Number of elements in x and h vectors respectively

α Lx/(Lx + Lh)

B Batch size

DW Data Width

P 1 Performance/(2× frequency)

1 Performance is in terms of throughput while 2 means each data need

both multiplication and accumulation operations.

the stalling time.

4.2.3 Performance Model (Technology Independent)

This subsection presents the performance model which is independent of the particular FPGA

technology. There are 3 cases in this blocking-batching strategy:

1. The hidden unit weights can be stored in one block

2. The hidden unit weights can be stored in two blocks

3. The hidden unit weights need be stored in more than two blocks

We define a few parameters, as shown in Table 4.1 for later calculations. Ideally we would like

the calculation time for each block to be equal to the transfer time, but in reality usually one is

significantly longer than the other. Let us assume the calculation time for one block is longer

than the transfer time for one block.

Calculation Time ≥ Transfer Time

MopB

NbNpe

≥
Mop

NbNt

=⇒ B ≥
Npe

Nt

(4.1)
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Figure 4.4: Timing diagram for case 1.

This gives us the constraint B ≥ Npe

Nt
when the calculation time is greater than or equal to the

transfer time. Similarly we can derive the constraint B < Npe

Nt
when calculation time is less

than the transfer time.

Case 1 — In this case, the performance is almost dictated by having to store all weights

in the on-chip memory. If the maximum performance without stall is Pm, then this case can

achieve Pm. This is due to the novel stall-free blocking-batching architecture that ensures we

are always calculating and there is no stalling.

The ideal timing diagram for this case is shown in Fig. 4.4, where there is no idle time. T0

is transfer time for Block0 while C0 is computation time for Block0. As shown in Fig.4.4, C0

can start when T0 has finished. In practice, we find that there are some special cases where

we must stall the pipeline to wait for the final block to finish calculating. Normally we can

ignore the system latency because we can start processing the x part of the final block before

we reach the h elements, as illustrated in Fig. 4.2; by the time we reach the h elements they

will be ready. If the hidden input vector h occupies a large amount of the block, then we will

have to wait for the system pipeline to finish processing the last vector, which will cause stalls.

We find that these stalls cause the calculation of the final block to take about 10% longer time.

The calculations below consider the simple case when there are no stalls.
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Figure 4.5: Roofline performance model for case 1&2 (left) and case 3 (right).

We can calculate the effect on performance by considering the total number of operations

that must be done against the time spent. The performance depends on the time we spend

transferring each block versus the calculation time of each block, as shown in the following

equations and Fig. 4.5.

P =
MopB
MopB

Npe

= Npe when B ≥
Npe

Nt

(4.2)

P =
MopB
Mop

Nt

= BNt when B <
Npe

Nt

(4.3)

The blocking number, Nb, can be increased to reduce the on-chip memory needed. Due to

storing two blocks on-chip, we only need an amount of memory given by 2
Nb

to store all weights

on-chip. This means we can process a model many times larger, or process the same model

using a fraction of the on-chip memory. Of course there are some drawbacks to increasing the

block number, which are covered in cases 2 and 3.

Case 2 — In this case we must wait for both of the last blocks to be in the on-chip memory

before starting computation, because the next hidden vector in the batch has a dependency on

the previous. Fig. 4.6 shows the timing diagram for this case, where the red arrows indicate
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Figure 4.6: Timing diagram for case 2. The red arrows indicate the extra time we must wait,
i.e. stall.

the extra time we must wait.

P =
MopB

MopB

Npe
+ 2MopB

NbNpe

=
NpeNb

Nb + 2
(4.4)

In theory there is a small overlap at the beginning where we can begin to compute the first

sub-vector, and also at the end when we can start transferring while working on the last sub-

vector in the last vector of the batch. Since this is equal to double the time to process one

sub-vector, it will be negligible compared to the total time and we shall leave this out of our

approximations. The performance calculation is done in a similar way when B = Npe

Nt
; we

consider that each matrix element must be transferred and the transfer time is equal to time

for processing all the Mop, but the hidden weights also have the added processing time which

takes up 2 blocks in all Nb blocks.

In cases 1 and 2, we can achieve weight reuse for both the independent parts of the vector (input

activations) and the dependent components (hidden vector) within the batch. By utilizing

weight reuse, we can decrease external memory traffic down to a fraction of 1
B

. It means that

the design only loads the weights once and then efficiently reuses them across all vectors in the

batch, thereby reducing external memory access, leading to improved design efficiency.

Case 3 — In the most complex case we have multiple blocks due to a large LSTM model
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Figure 4.7: Timing diagram for case 3.

and/or a small FPGA. In this case the hidden vector will be split across more than two blocks,

so we cannot store it entirely on-chip at the same time.

Due to the data dependency between sub-vectors we must reload the last few blocks where the

hidden vector is. It is necessary to reload Nb number of times to finish each vector in the batch.

The performance calculation is more complex but follows the same pattern as before. We

consider each case, when the xt input and weights takes longer to transfer, then αMop

Nt
is larger

than αMopB

Npe
as shown in equation (4.6), or when the calculation takes longer than αMopB

Npe
as

shown in equation (4.5). Conversely, the hidden input and weights always spend more time

transferring since each calculation is only one sub-vector from the batch, yet all the weights

need to be transferred each time. The final roofline model is shown in Fig. 4.5.

p =
MopB

αMopB

Npe
+ (1−α)MopB

Nt

=
NpeNt

αNt + (1− α)Npe

when B ≥
Npe

Nt

(4.5)

p =
MopB

αMop

Nt
+ (1−α)MopB

Nt

=
BNt

α + (1− α)B
when B ≤

Npe

Nt

(4.6)
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Although this case seems to offer poor performance because of the limitation of memory band-

width, we should remember that this is similar to the standard method without processing

using columns. We would need to load each block into memory B times and each sub-vector

would be processed individually. With our new architecture, we re-use the weights as much

as possible for the independent part of the vector, and only need to reload the weights for the

dependent part of the vector with the hidden weights. In this scenario, the memory traffic can

be reduced to a fraction of B+1
2B

. When B is much larger than 1, the r Furthermore, if there

are more on-chip memory on the target FPGA then this case will be changed to case 1 which

becomes compute-bound with high performance.

4.2.4 Resource Modelling

FPGA-based LSTM accelerators are constrained by two types of resources: one is the logic

resources such as LUTs and DSPs, the other is the memory resource i.e. the BRAMs. Based

on [101, 102], DSPs are the limiting resource for the computation engines. Therefore, only DSP

usage is considered in this category. In our design, fixed-point adders are implemented using

LUTs in order to save DSPs since the adders consume much fewer LUTs compared to that

of multipliers and considering the available LUTs are far more than the DSPs on FPGA. Let

Dmul represents the number of DSP usage of one multiplier, the total number of required DSPs

is Npe ×Dmul.

The memory resources are mainly occupied by the dual buffers and BB-FIFOs and its usage is

given by:

BRAMNum =
(Lx + Lh)× (4Lh + B)×DW × 2/Nb + B ×Npe ×DW

BRAMsize

(4.7)

Practically, Blocking-Batching(BB)-FIFO can be implemented using LUTRAM in order to save

BRAMs when the entry of each BB-FIFO is small. If so, the term of B×Npe×DW

BRAMsize
in equation

(4.7) can be omitted.
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Figure 4.8: The entire system.

4.3 System Architecture

4.3.1 System Overview

Fig. 4.8 shows the overall system on a FPGA board while Fig. 4.9 shows the architecture of the

Stall-free Blocking-batching Engine (SBE). This system consists of SBE units, with a CPU and

DDR3 DRAM as the off-chip memory. All the weights and input activations (CNN-extracted

features) are stored in the off-chip memory. The Reg Ctrl unit, which is connected to the

AXI4-lite bus, is used to transfer the control commands while data communication is managed

by the DMA units which are connected to the PCIe bus or AXI4 bus. The CPU is used to send

configurable parameters to the SBE and control the transmitting of the weights and receiving

the results when the hardware finishes processing, which is all done via the Reg Ctrl unit.

The details of the SBE architecture is shown in Fig. 4.9. As mentioned, only one block is

transferred from the off-chip memory to the FPGA on-chip memory in each iteration of com-

putation. The partial weights will be stored in buffer0 and buffer1 which work as a double

buffer. In addition the partial batch size activations of the input x vectors are also stored in

a double buffer. With a carefully chosen batch size, these buffers work to overlap the time of

data communication with LSTM inference computation.

The processing elements (PE) perform the matrix-vector operations that work as the LSTM

gates. They multiply one element from the partial input vector by all the corresponding weights.
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The partial result of one partial activation will be accumulated via the inter-block linking and

finally stored into the small Blocking-Batching(BB)-FIFO to be used in the next block. Each

partial activation in the batch will generate one result and will be stored in the BB-FIFO.

Therefore, the depth of the BB-FIFO is equal to the batch size.

Consolidating of the block computations is done via the BB-FIFO in the PE units. When the

new block computation begins, the value in the BB-FIFO will be read via the Exter-Block link

and used as the initial value for the accumulator. After the new block computation, the partial

results of the new block will be accumulated into the former partial results and finally stored

into the BB-FIFOs. When all the blocks are processed, the final result across all blocks for the

batch will be generated on the LSTM interconnection unit, where they will be reshaped for

later processing.

4.3.2 SBE Architecture

The post processing (PP) units are used to perform other functions after the matrix-vector

multiplications in the LSTM cell and they work under the shadow of the PEs. Their paral-

lelism is configurable to improve the performance and reduce the latency depending on the

FPGA resources available. The batch normalization (BN) [103] unit, which is optional and

can be turned off via the controller, performs the batch normalization on the results of the

matrix-vector multiplications. The Sigmoid/Tanh are the non-linear modules which apply the

activation functions. We implement these activation functions using a piece-wise linear approx-
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imation [104], which is shown to have little impact on accuracy during LSTM-RNN inference

[38]. The outputs will be buffered in the output buffer while waiting to be transferred via DMA.

4.4 Evaluation

4.4.1 Experimental Setup

Many variants of LSTM have been proposed which are suitable for different tasks. In this work,

the LRCN [11] for video activity recognition is used to demonstrate our approach. Typically,

the LRCN is implemented using a CNN to extract a fixed-length vector of features which are

then passed into a recurrent sequence learning module, such as an LSTM. In this work, the

features of each frame in the video come from the average pool layer of the Inception-v3 which

has been pre-trained on the ImageNet dataset. An additional Fully Connected layer is applied

to transfer the features number to 1792 and then fed to our LSTM system. We retrain the

LSTM network to get the top-1 accuracy of 72.97% and top-5 accuracy of 89.61% which are

higher than the accuracy of 67.37% in the original LRCN design [11].

To recognize the performance and limitations of the proposed LSTM hardware acceleration,

we implement the hardware system for the LSTM part in LRCN for the RGB model, where

the LSTM-256 model has 256 hidden units. Each LSTM-256 gate weights matrix is 2048*256

and there are four gates. The target platform is Xilinx ZC706, which consists of a XC7Z045

FPGA and dual ARM Cortex-A9 processor. 1 GB DDR3 RAM is installed on the platform as

the off-chip memory. The on-chip memory of the XC7Z045 is 19.2Mb while the weights in this

LSTM model are more than 32Mb which are too large to store in the on-chip memory of the

FPGA. We also implement the LSTM-512 model which has 512 hidden units using the Virtex 7

VX690T FPGA.
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Table 4.2: Resource Utilization

LUT LUTRAM FF BRAM DSP

Zynq
7045

Avail. 218600 70400 437200 545 900
Used 165668 49224 150451 517.5 900
Utili. 75.8% 69.9% 34.4% 94.9% 100%

Virtex7
690T

Avail. 433200 174200 866400 1470 3600
Used 203549 71478 221576 1070 2060
Utili. 47% 41% 25.6% 72.8% 57%

4.4.2 Resource Utilization

Table 4.2 shows the resource utilization for our stall-free BPE design on the Zynq 7045 FPGA.

The number of PEs, Npe, is configured to 1024 targeting LSTM-256 while the batch size is

64. Nt is 16 when the DMA data bus is 256-bit with a 16-bit LSTM datapath. If the DMA

data bus is 512-bit then the proper batch size is 32. Nt needs scaling if DMA data bus works

under a different frequency with computation engines. For our system on Zynq, almost all the

FPGA’s hardware resources are utilized. A few multiplication units are implemented using

LUT because there are only 900 DSP elements in our system. Note that the number of PEs,

Npe, is configured to 2048 for LSTM-512 targeting Virtex 7 VX690T FPGA because this device

has an abundance of DSPs.

The best batch size. The best batch size is determined by balancing the computation time

and communication time from the off-chip to on-chip memory. For case 1 and 2, the best batch

size on Zynq can be easily calculated from Equation (4.1), which shows that B = Npe/Nt = 64.

However, for case 3, the performance equations (4.5) and (4.6) are complex, but we can still

get 64 as the proper batch size, as illustrated in Fig. 4.5. The performance is not related to

B when B ≥ Npe

Nt
as shown in equations (4.2) and (4.5), which means increasing the batch size

does not increase performance beyond a certain point, but only wastes the on-chip memory.

The proper blocking number. For a given LSTM model, when the blocking number in-

creases, the block size decreases, and then the required on-chip memory decreases, because we

will only store two blocks on the FPGA. This means that we can process a large LSTM system

efficiently even with a small FPGA. However, for a given system, the blocking number cannot
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Figure 4.10: Throughput with various blocking numbers on ZYNQ 7045.

be too large because performance can be reduced as shown in case 3. The performance of the

LRCN with different blocking numbers on the Xilinx ZC706 platform is shown in Fig. 4.10.

Pm is the ideal performance when all the weights are stored in the on-chip memory without

external DRAM accesses. It is the highest performance that the system can achieve. From Fig.

4.10, the proper blocking number is 16, which is the sweet point with only 1/8 on-chip memory

required compared to previous research which put all the weights in the on-chip memory. It is

the best trade-off between on-chip memory size/usage (or FPGA device) and performance. For

a given application and performance requirement, the proper blocking number and blocking

size will help us to choose the proper FPGA device. We do not need to select a large and

expensive FPGA with large on-chip memory before the blocking-batching strategy is applied.

When the blocking number decreases from 16 to 8, the performance can still be boosted by

about 10%. However, a larger and more expensive FPGA with double on-chip memory will be

required. Furthermore, if the user can bear with a reduced performance then they can choose

a smaller and cheaper FPGA as shown in Fig. 4.10.
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Table 4.3: Performance comparison of the FPGA design versus CPU and GPU.

CPU GPU This Paper This Paper

Platform
Intel Xeon
E5-2665

TITAN X
Pascal

Virtex 7
VX690T

Zynq
7Z045

Frequency 2.4 GHz 1.62 GHz 125 Mhz 142 MHz

Technology 22 nm 16 nm 28 nm 28 nm

Power (W) 93 159 26.5 10.6

Precision 32 bit float 16 bit fixed

Model Size per Frame1 81921* 256

Time per Sample2 (ms) 14.45 0.78 0.38 0.61

Energy per Sample2 (mJ) 1343 124.02 10.05 6.47

1 Combing the four matrices of i, f, o, c gates.
2 Each sample/video has 32 frames.

4.4.3 Performance and Efficiency Comparison

To compare the performance of the proposed design on FPGA with other platforms, we imple-

ment the LRCN on Intel Xeon E5-2665 CPU and NVIDIA X Pascal GPU based on Tensor-

flow(r1.12) framework. The CuDNN 7.4.1 libraries are used for optimizing the GPU solution.

Both CPU and GPU implementations run with batch size set to 32 samples, which are 1024

frames in total. Compared with the LRCN on CPU and GPU, our Zynq FPGA design is 23.7

and 1.3 times faster and consumes 208 and 19.2 times less power respectively as shown in Table

4.3.

We have demonstrated parameterizable performance scaling for different LSTM sizes and batch

size approaches, see Fig.4.11(left). With very large LSTM models, our design can achieve 1.60-

5.41 times higher performance than the ones without SBE, as shown in Fig.4.11(right). In

addition, the performance scaling for different blocking number is shown in Fig.4.10. The

results show flexible customizability of the architecture for different scenarios.

To illustrate the benefits of our proposed approach, some existing FPGA-based LSTM-RNN

accelerator designs are compared with ours in Table 4.4. For a fair comparison, We only show

the previous work with detailed implementation of the LSTM system storing the weights in
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(a) Throughput with various batch sizes on
ZYNQ 7045.

(b) Throughput of our design v.s non SBE de-
sign for very large LSTM systems on ZYNQ
7045.

Figure 4.11: Design throughput.

external memory of FPGA. We list the FPGA chips, model storage, precision, run-time fre-

quency, throughput, power efficiency and resource efficiency. The table contains a range of

designs across this parameter space for comparison. Our design achieves power efficiency as

20.84 GOPS/W and resource efficiency as 0.246 GOPS/DSP which are the highest with respect

to state-of-the-art implementations on FPGAs operating on a dense LSTM model with weights

stored in off-chip memory. With a similar number of DSP resources to [19], our system using

Virtex 7 achieves 356 GOPS which is the highest performance among all the FPGA implemen-

tations of LSTMs storing weights in the off-chip memory. Because of routing congestions, our

Virtex 7 design only runs at 125Mhz.

With our weights reusing SBE, small FPGAs can still process a large RNN model efficiently.

Note that our comparison does not cover recent approaches [15, 68, 70] about LSTM accelera-

tion using model compression and weight pruning to fit in on-chip memory. Such techniques are

orthogonal to our proposed approach. Since useful inference results may not be possible when

the FPGA has insufficient memory to store an accurate compressed model, it can still suffer

from insufficient on-chip memory of FPGAs for large compressed models. Our technique com-

plements these approaches for improving efficiency. Future work will explore pruning methods

to allow large, sparse models to run on FPGAs.
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Table 4.4: Comparison with previous implementations of dense LSTM models with weights on
off-chip Memory.

Chang [59] Guan [38] ESE [9] FP-DNN [19] This Paper This Paper

FPGA
Zynq
7Z020

Virtex 7
VX485T

Kintex
KU060

Stratix V
GSMD5

Virtex 7
VX690T

Zynq
7Z045

Technology (nm) 28 28 20 28 28 28

Model Storage off-chip

Prec. (bits) 16 32a 12
16
32a 16 16

DSP Number 220 2800 2760 3180c 3600 900

Freq. (Mhz) 142 150 200 150 125 142

Perf. (GOPS) 0.47 7.26 282b 316
86a 356 221

Power Effi.
(GOPS/W)

0.268 0.37 6.87
12.63
3.44a 13.48 20.84

Resource Effi.d

(GOPS/DSP)
0.002 0.003 0.102

0.099
0.027a 0.099 0.246

a Floating point
b Dense Model
c One Intel FPGA DSP includes two 18*18 multipliers
d To make a fair comparison, the total number of DSP in device is used to calculate GOPS/DSP when evaluating

LSTM accelerator

4.5 Summary

This chapter presents a blocking-batching strategy to optimize the throughput of large RNNs

that are too large to fit in on-chip memory on FPGAs. This is achieved by reusing the RNN

weights and eliminating data dependencies and stalls through a stall-free hardware architecture.

A performance analysis based on LSTM models is also presented to balance area, power, and

performance in FPGA designs. When compared to the state-of-the-art design [19] that use

off-chip memory to store weights, our design on Zynq achieves 1.65 times higher performance-

per-watt efficiency and 1.60 times higher performance-per-DSP efficiency. When compared to

CPU and GPU implementations, our hardware architecture is 23.7 and 1.3 times faster while

consuming 208 and 19.2 times less energy, respectively.
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Chapter 5

Low Latency RNNs on FPGAs

5.1 Introduction

This chapter presents a novel reconfigurable partially-folded architecture for reducing the la-

tency of RNNs, with gravitation wave detection as an example application. Among the many

RNN variants, the most popular one is LSTM. We also propose to balance initiation intervals in

a multi-layer LSTM network, by identifying appropriate reuse factors for each layer, to improve

hardware efficiency. Initiation intervals represent the time intervals between the start times of

different stages in a pipeline. The performance of the pipeline is dictated by its slowest stage.

Meanwhile, the reuse factor corresponds to the number of times a multiplier is used in the

computation of a module. Further details will be elaborated on in the following sections.

The detectors at the Laser Interferometer Gravitational-Wave Observatory (LIGO) produce

time-series data, as they capture cosmic events such as black hole mergers which happen at

unknown times and of varying durations. Accelerating RNN inference using reconfigurable

accelerators such as FPGAs would enable sophisticated processing, such as anomaly detection,

to run in real time on the data stream from the detector and generate a fast response.

However, existing LSTM accelerators cannot support low-latency and effective multi-layer ex-

ecution, especially when targeting small LSTM models with requirements of low latency and
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high throughput for scientific applications. Many existing FPGA-based LSTM accelerators are

designed with the same idea as their GPU counterparts, which utilize a single computational

engine architecture where the engine is designed to run one block or layer at one time, and the

whole network is processed by running the engine repeatedly [1, 2]. Their design consists of

arranging computing resources to form a single core with many processing elements, leverag-

ing data level parallelism. However, when the size of the targeted LSTM layer is small, these

hardware resources will not be fully utilized, e.g., when targeting a small LSTM layer, the

Brainwave hardware utilization is lower than 1% [1], while the utilization of the NPU can be

lower than 15% [2]. Moreover, since a single engine is used, the various layers must have the

same amount of parallelism which is not flexible to take full advantage of the customizability

of FPGAs. Thus, this work applies a partially-folded architecture to map all the LSTM layers

on-chip and perform the computation for different layers on their own unit with independent

optimization to achieve low latency and high system throughput.

Unlike CNN inference designs [105, 106] which only have forward datapaths and can be fully

pipelined, there are feedback datapaths in RNN inference and data dependencies exist between

the current timestep and the next timestep. Unrolling the timesteps fully may help, however the

sequence length (timestep) of an LSTM model is usually larger than the number of layers [25],

e.g., 1500 timesteps in an LSTM layer in DeepSpeech [27], which makes the full unrolling of

timesteps impractical on FPGAs because of the limited hardware resources.

To accelerate an RNN model with multiple LSTM layers, this work proposes coarse grained

pipelining with balanced II (initiation interval) to improve system throughput and reduce la-

tency. This is achieved by identifying appropriate reuse factors for each layer, resulting in fast

response and enhanced resolution for processing sensor data. It can achieve the best (smallest)

system level II for a neural network with multiple LSTM layers on a given FPGA. The II is the

number of clock cycles before a unit can accept new inputs and is generally the most critical

performance metric in systems [107]. A perfect pipeline has II = 1 cycle, as this is required to

keep all pipeline stages busy. However, the II of an LSTM layer is generally larger than one

because of the data dependencies. For a model with multiple layers in sequence, the initiation

interval of this model is decided by the largest II among all the layers [108], as shown in Fig. 5.1.
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Figure 5.1: Unbalanced layer IIs among various cascaded layers in an RNN model.

The unbalanced IIs in various layers result in hardware inefficiency and low throughput. Ac-

celerating a deep LSTM model is challenging since the computation load varies greatly among

layers and data dependency exists both time-wise and layer-wise.

Our approach is to ensure all the layer IIs are balanced to eliminate system stall, so that the

system becomes a coarse grained seamless pipeline. It increases pipeline parallelism by perform-

ing more computations without increasing latency, and without introducing additional memory

traffic or storage. Unbalanced IIs in a pipeline is a common issue, but few studies address

balancing IIs in the context of accelerating multi-layer DNNs, especially for RNNs/LSTMs.

The proposed coarse-grained pipelining is similar to layer parallelism but the granularity in

our approach does not need to cover an entire layer. An LSTM layer can still be divided into

multiple blocks with pipeline parallelism. In addition, a customizable template for this archi-

tecture has been designed, which enables the generation of low-latency FPGA designs with

efficient resource utilization using high-level synthesis (HLS) tools. Moreover, We develop an

optimization algorithm such that, given the dimensions of the LSTM layers and a resource

budget, computes a partitioning of the FPGA resources for an efficient low-latency design.

We make the following contributions:

• A novel technique for balancing IIs of multi-layer LSTM inference to increase hardware

efficiency and design throughput.

• A low latency LSTM template which enables the generation of low-latency FPGA designs
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Table 5.1: System Parameters

IIsys System initiation interval

TS Timestep number

iiN Timestep loop initiation interval in the LSTM layer N

IIN Initiation interval for layer N

LTN Latency of a single timestep loop for layer N

LTα Latency of the unit α; α could be mult / mvm / tail / σ

xt The input vector x at timestep t

ht The hidden vector h at timestep t

Wx LSTM gates weight matrix for input vector.

Wh LSTM gates weight matrix for hidden vector.

Lx Number of elements in the input vector x

Lh Number of elements in the hidden vector h

Rx Reuse factor for MVM involving LSTM input vector xt

Rh Reuse factor for MVM involving LSTM hidden vector ht

Rt Reuse factor for LSTM tail unit

with efficient resource utilization by HLS tools. We open source the templates with some

examples1.

The specific RNN layered structure and coefficients are LIGO specific, but the need for low

latency would benefit many other applications, especially those requiring real-time response,

e.g., low latency would benefit the Large Hadron Collider (LHC) physics [109, 110], adaptive

radiotherapy [111] and electronic trading [112]. The proposed techniques can be adapted to

address these other applications. Besides, the balancing II technique has been applied to low

latency graph neural network designs [34, 35, 113].

5.2 Design and Optimization

This section analyzes unbalanced II issues and introduces several optimizations for multi-layer

RNN designs. We define a few parameters, as shown in Table 5.1 for later calculations.

1https://github.com/walkieq/RNN HLS
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Figure 5.2: Overview of the LSTM-based autoencoder.

5.2.1 LSTM-based Autoencoder for Gravitational Wave Detection

Fig. 5.2 shows an overview of the LSTM-based autoencoder used for gravitational wave detec-

tion. The models and the dataset are available on GitHub [114, 26]. The autoencoder consists

of two components, an encoder and decoder. The encoder learns to transform data from the

input layer into a latent-space representation, which acts as a data “bottleneck”. The decoder

then reconstructs the output of the reduced latent representation as close as possible to its

original input. When the error between input and reconstructed values is high, the input is

flagged as anomalous. In this work, an LSTM-based autoencoder is used as an unsupervised

prediction model to detect the anomalies for gravitational waves. This works by only training

the LSTM-autoencoder to encode and decode normal background conditions at the LIGO in-

terferometers. When an event containing a gravitational wave passes through the autoencoder,

the model cannot encode and decode the additional strain provided by the gravitational wave.

Both the encoder and decoder have two LSTM layers. A TimeDistributed dense layer is applied

before the data output.

5.2.2 System II for Multi-layer LSTM Networks

Accelerating a deep LSTM model which has multiple layers is challenging since the computation

varies greatly among layers and data dependencies exist both time-wise and layer-wise. An

efficient technique to improve throughput and reuse computational resources is to pipeline

hardware units. If each input can overlap with itself, we can achieve simultaneously inference
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parallelism within a run by coarse grained pipelining as shown in Fig. 5.1.

However, a naive implementation can result in a large number of idle cycles due to inter-layer

dependencies since the pipeline is not seamless; a particular layer might stall until the previous

layer finishes. The unbalanced IIs in various layers results in hardware inefficiency and low

system throughput. Typically, the particular layer with the largest II should be optimized

since it dominates the system II. Generally, the II cycles can be reduced if more hardware

resources are allocated to that particular layer by adding more parallelisms. So the targeted

layer should be allocated as many hardware resources as possible. However, the hardware

resources on a given FPGA is limited, which means that the other layers may occupy less

hardware resources. When the resources for a layer decrease, the II of that layer will increase.

Then this layer may become the one that has the largest II and dominates the design. Thus,

the optimal case is that all the layers have the same II, in which scenario the design utilizes the

hardware resources efficiently and achieves the highest system throughput as shown in Fig. 5.3.

Besides, we find that we do not need to unroll every unit in order to achieve the lowest II. Some

hardware resources can be saved from the units which do not require full unrolling. Then these

saved hardware resources can be reallocated to the other units which dominate the system to

achieve low initiation intervals. As shown in Fig. 5.3, the hardware resources for layer 1 can be

reduced so that the saved resources can be reallocated for layer 0. The IIlayer1 is increased to

II ′layer1 while the IIlayer0 which is the largest can be reduced to II ′layer0 so that the final system

IIsys can be reduced.

Partitioning FPGA resources to enhance throughput has been studied for CNNs [105, 106, 115,

116] but they do not touch the RNNs and the recurrent nature as well as the data dependencies

in RNN computations, which are absent from CNNs. We develop an optimization algorithm

such that, given the dimensions of the LSTM layers and a resource budget, computes a par-

titioning of the FPGA resources for an efficient and balanced high-performance design. Our

algorithm runs in seconds and produces a set of reuse factors [109]. We then use these factors

to parameterize an LSTM template design specified using HLS to form a complete multi-layer

LSTM implementation. Since all the layers have the same II, we only need to focus on the
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Figure 5.3: Overview of the method used to balance IIs.

optimization for a single LSTM layer. The layer II and system II are

IIN = iiN × TS (5.1)

IIsys = max(II0, II1, ..., IIN) (5.2)

The original IIN should be IIN = iiN × TS + (LTN − iiN). However, the extra (LTN − iiN)

cycles can be eliminated after using the rewind #pragma in for Vivado HLS. The rewind

pragma enables rewinding, or continuous loop pipelining with no pause between the end of one

loop iteration and the start of the next iteration. So the proposed balancing method has two

benefits. First, it improves throughput due to pipelining. Second, it reduces system latency

since if the LSTM loop initiation interval, iiN , can be reduced by 1 cycle, then the system

latency can be reduced by TS cycles in total according to Equation (5.1).

5.2.3 The II of a Single LSTM Layer

Algorithm 5.1 illustrates the pseudocode of an LSTM layer. Wx and Wh denote the LSTM

weights for input and hidden vectors. B represents the bias. x is a set of input vectors and has

the size of (TS, Lx). h is a set of hidden vectors and has the size of (TS, Lh). Seq decides if

the whole sequence of hidden vectors should be returned or just the one in the last timestep.

The function MVM x() performs MVM operations and the addition of bias for the LSTM
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Algorithm 5.1: The pseudocode of an LSTM layer.

1 Function LSTM layer(Wx, Wh, B, x, Seq):
2 h0 ← 0;
3 for t = 1 to TS do
4 Acc = MVM x (Wx, B, xt);
5 Acc = MVM h (Wh, Acc, ht−1);
6 Acc = Sigmoid tanh (Acc);
7 ht = LSTM tail (Acc);

8 if Seq then
9 return h; ▷ A set of all the hidden vectors

10 else
11 return ht; ▷ The hidden vector at the final timestep

12 End Function

gates involving the input vectors. The MVMs involving the hidden vectors are conducted

in the function MVM h(). The Sigmoid tanh() is the activation function which performs

sigmoid or hyperbolic tangent operations. The LSTM tail() function contains the element-

wise operations as shown in Fig. 2.2. The result ht as labeled in red is required in MVM h()

in the next timestep iteration, which shows the existence of data dependencies.

This work splits one LSTM layer into two sub-layers. The first one is the mvm x which has

no data dependencies and performs MVM operations for the LSTM gates involving the input

vectors while the second one includes all the others which form a loop with data dependencies,

as shown in Fig. 5.4. For accelerating LSTM layers used for gravitational wave detection,

the system is designed to achieve the average latency (system II) as small as possible. To

achieve the lowest system II, fully unrolling the neural network model is an effective method

which utilizes a multiplier only once in the computation of a layer. E.g., a fully connected

(FC) layer with input size num in and output size num out can achieve the lowest latency

if there are num in × num out multipliers. This is the most parallel and fast way a layer

can be computed. It has been demonstrated in the HLS4ML based DNN designs for particle

physics [109]. However, unlike forward computation in the FC layers used in the design of [109],

there are data dependencies in LSTM computations.

After we have split the LSTM layer into two sub-layers, the two can be pipelined as shown

in Fig. 5.5. According to the discussion in Section 5.2.2, the optimal case is when the two
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Figure 5.5: Coarse grained pipelining in an LSTM layer.

sub-layers have the same II. Since the second sub-layer is complex and its II is usually larger

than the one of the first sub-layer, the parallelism for the first sub-layer does not need to be

as large as possible, resulting in a reduction of the number of multipliers needed to process the

mvm x unit. The saved multipliers can then be reallocated for other layers to achieve a lower

system II. Reducing the parallelism of mvm x does not hurt the system latency. Normally,

each input vector can finish the calculation in the shadow region of processing the ht because

of the pipelining. Besides, the cycles for processing the first mvm x can be eliminated when

calculating the layer II because of the keyword of rewind in Vivado HLS.

While the second sub-layer may seem complex, if the design is split into more sub-layers, these

sub-layers cannot be coarse grained pipelined. The reason is that the start of the next iteration

needs the result from the current iteration, as shown by the red arrows in Fig. 5.5
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Figure 5.6: Timestep overlapping.

5.2.4 Overlapping the Computations in Cascaded LSTM Layers

In the proposed coarse grained pipelining, the processing of the cascaded LSTM layers can be

overlapped. The second layer does not need to wait for the whole sequence of hidden vectors

to be ready. Just one hidden vector from the former LSTM layer is sufficient to start the

calculation of the next LSTM layer as shown in Fig. 5.6. It helps to reduce the overall system

latency. It has to be noted that the LSTM2 can only start after the LSTM1 calculation is

completed, since only the last timestep hidden vector is returned in LSTM1, which is decided

by the structure of the autoencoder.

5.3 Implementation

5.3.1 HLS Implementation

This work maps all the layers on-chip and different layers run in a fashion of coarse grained

pipelining to increase the system throughput. Besides, this work always seeks to achieve ex-

tremely low latency by utilizing as many hardware resources as possible. However, because

of the data dependencies between different timesteps in LSTM calculation, the initiation in-
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terval is typically larger than 1. In this case, HLS will automatically increase the initiation

interval until it can find a feasible schedule. For complex designs it is common to partition

functionality into multiple modules, streaming data between them through explicit interfaces.

Smaller components are more modular, making them easier to reuse, debug and verify. The

effort required by the HLS tool to schedule code sections increases dramatically with a large

number of operations that need to be considered for the dependency and pipelining analysis.

Scheduling logic in smaller chunks is thus beneficial for compilation time and sometimes also

for system latency. Our experiments show that inlining every function, especially the mvm x

and mvm h in the LSTM gates, brings large II when the involved matrices are large.

The trade-off between latency, throughput and FPGA resource usage is determined by the

parallelization of the inference calculation. This work adopts the reuse factor used in [109] to fine

tune the parallelism, which is configured to set the number of times a multiplier is used in the

computation of a module. In one extreme, all multiplications can be performed simultaneously

using a maximal number of multipliers, while alternatively in the other extreme, one can use

only one multiplier and perform the multiplications sequentially; between these extremes the

user can fine tune algorithm throughput versus resource usage.With a reuse factor of one, the

computation is fully parallel. With a reuse factor of R, 1
R

of the computation is done at a time

with a factor of 1
R

fewer multipliers.

The total number of multiplications required to infer a given LSTM layer using 16-bit is:

DSPlayer =
4× Lx× Lh

Rx

+
4× Lh2

Rh

+ 4× Lh (5.3)

DSPmodel =
N
∑

layer=1

DSPlayer ≤ DSPtotal (5.4)

Compared with the number of multipliers used in LSTM gates, the one required in the LSTM

tail unit is small so the Rt is set to 1. Otherwise, 4×Lh
Rt

should be used in Equation (5.3).

Besides, since the LSTM cell status, ct−1, is represented in 32-bit, the ft × ct−1 in the LSTM

tail needs two Xilinx DSPs to implement one multiplier. Thus, the LSTM tail unit consumes

4×Lh DSPs. The activation function sigmoid is implemented using BRAM-based lookup tables
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with a range of precomputed input values. The hyperbolic tangent function is implemented as

piecewise linear function [117] to reduce the latency. In the next subsection, we introduce our

method for determining Rx and Rh with a given FPGAs.

5.3.2 Design Space Exploration

FPGA multipliers are pipelined; therefore, the latency of one MVM computation, LTmvm, is

approximately

LTmvm = LTmult + (R− 1)× IImult (5.5)

where LTmult is the latency of the multiplier, IImult is the initiation interval of the multiplier,

which is one cycle in this work. Equation (5.5) is approximate because, in some cases, additional

cycles could be introduced for signal routing. Besides, the Vivado HLS tool will replace a

multiplier by an adder when the corresponding weight is simple.

As we discussed in Section 5.2, the optimal case is that the two sub-layers in an LSTM layer

have the same II, which results in Equation (5.6).

IIsublayer = LTmvm x = LTmvm h + LTσ + LTtail (5.6)

where LTmvm x and LTmvm h are the latencies of the MVM units involving input vectors x

and hidden vectors h respectively. LTσ is the latency of the sigmoid function and LTtail is the

latency of the LSTM tail unit. These units are shown in Fig. 5.4. If we substitute Equation (5.5)

into Equation (5.6) and then we get

Rx = Rh + LTσ + LTtail. (5.7)

The architecture designed in this section serves as a baseline to deploy our methodology, whose

goal is to find Pareto-optimal sets of reuse factors of the proposed accelerator to achieve a

good trade-off between our design objectives, which are hardware resources, energy, and per-
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formance. To achieve low latency, the reuse factors should be as small as possible since when

they decrease the parallelism increases, leading to high throughput. However, when reuse fac-

tors decrease, the required hardware resources increase and may easily exceed the number of

total hardware resources on an FPGA. If we substitute the Equation (5.7) and Equation (5.3)

into Equation (5.4), we can get a quadratic inequality of Rh, which gives the minimum Rh for

a given number of DSPs.

Fig. 5.7 illustrates the exploration results of an LSTM layer with (Lx, Lh) = (32, 32) and

different values of reuse factors, which are from 1 to 10. The red line represents the cases with

the same Rx and Rh. The blue line shows the cases with balanced IIs, where Rx and Rh meet

the constraint in Equation (5.7). For simplicity, LTσ is set to 3 and the LTtail is 5. Please note

that LTσ and LTtail are both system dependent and can vary depending on clock frequency

and FPGA devices. After balancing IIs, the Pareto frontier moves from red line to blue line.

With the proposed technique, we can achieve a same II with less DSP usage (from point A to

point C) or we can achieve a better II (from point A to point B) as shown in Fig. 5.7.
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5.4 Evaluation and Analysis

This section presents the performance of the RNN models developed for gravitational wave

detection on two generations of Xilinx FPGAs (ZYNQ 7045 and U250) demonstrating the

scalability of the proposed optimization. Details can be found in Section 5.4.3.

5.4.1 Experimental Setup

Simulated gravitational waves (GWs) are generated using the GGWD library [118]. Noise is

generated at a specified power spectral density (PSD) to mimic normal detector background

conditions using PyCBC [119]. This approach to simulated data generation ignores glitches,

blips, and other transient sources of detector noise, though this algorithm can be re-purposed

for identifying these detector glitches with unsupervised methods. Signal events are generated

simulating GW production from compact binary coalescences using PyCBC [119], which itself

uses algorithms from LIGO’s LAL Suite [120]. Signal events containing GWs were created

overlaying simulated GWs, with the SEOBNRv4 Approximant, on top of detector noise. This

provides an analogous situation to a real GW, in which the strain from the incoming wave is

recorded in combination with the normal detector noise. Data are then whitened and band-

passed, then normalized. The training set has 240K gravitational wave events. The validation

set and test set have 60k and 50k events respectively. To study the performance and limitations

of the proposed optimizations and hardware architecture, the designs are implemented using

Vivado HLS 19.2. Two generations of Xilinx FPGAs, the ZYNQ 7045 and U250, are evaluated

and compared with previous work.

5.4.2 Model Accuracy

To quantify the performance of the autoencoders for anomaly detection implemented by various

neural networks, we use the AUC metric, or area under the Receiver Operating Characteristic

(ROC) curve, as shown in Fig. 5.8, with higher AUC corresponding to better performance. The
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Figure 5.8: AUCs and ROC curves for various autoencoders.

default timestep [114] of 100 is used. AUC is a common metric for evaluating models as it is

classification-threshold-invariant. The threshold for flagging an anomaly by its loss spike can

be calculated by setting a false positive rate (FPR) on noise events. The higher the threshold

for detecting an anomaly, the lower the FPR will be. This threshold can be used to calculate

the corresponding true positive rate (TPR) on signal events. We observe that the LSTM-based

autoencoder has the highest AUC, and hence the best performance, among the unsupervised

designs [114] with various NN layers, including GRU, CNN and DNN. Additionally, Qkeras [121]

is used to quantize the LSTM-based autoencoder to 16-bit. We find this precision to have a

negligible effect on the NN performance.

5.4.3 Performance and Efficiency Comparison

To illustrate the benefits of our proposed approach, two LSTM-based autoencoders are eval-

uated. The first one is a small autoencoder which has the same architecture as the one used

in gravitational wave detection described in Section 5.2.1 but only has two LSTM layers, each

having 9 hidden units. The results are shown in Table 5.2. It is running at 100MHz with 8

112



Table 5.2: Performance comparison of the FPGA designs.

Z1 Z2 Z3 U1 U2 U3

FPGA Zynq 7045 U250

DSP total 900 12,288

Rh 1 2 1 1 1 4

Rx 1 2 9 1 9 12

LUT used
45k

(21%)
45k

(21%)
43k

(20%)
449k

(26%)
463k

(27%)
516k

(30%)

DSP used
1,058

(118%)
578

(64%)
744

(83%)
11,123
(91%)

9,021
(73%)

2,713
(22%)

iilayer cycles 9 10 9 12 12 13

IIlayer cycles 72 80 72 96 96 104

timesteps. The weights and input are 16 bits. The bias and LSTM cell status are both 32 bits

to keep the accuracy. To achieve the lowest latency, the reuse factors should be set to one so

that all the operations are unrolled, e.g., the design Z1 in Table 5.2. However the required

number of DSPs exceed the one of the total DSPs on this FPGA. One may increase the re-use

factor from one to two to fit the design into this FPGA device. However the cost is that now

the timestep loop initiation interval, iilayer, increases by one cycle which results in TS cycles

increase for the layer II, e.g., the design Z2 in Table 5.2. However, it is not necessary to fully

unroll all units in order to achieve the lowest latency. Some hardware resources can be saved

from the units which do not require full unrolling and can be allocated to the other units which

are dominating to achieve low latency.

With the proposed balancing of IIs, some of the DSPs resources can be rearranged from im-

plementing mvm x to mvm h to achieve lower latency, e.g., the design Z3. So this design can

still achieve the lowest II like the case with full unrolling, and it is still able to fit in this FPGA

device as shown in Table 5.2, showing the benefits of balanced IIs. Besides, with heterogeneous

reuse factors, the parallelism of the design can be fine-tuned to make the trade-off between

latency, throughput and FPGA hardware resources as shown in Fig. 5.9. With the balanced

II, the number of DSPs can be reduced up to 42% while achieving the same IIs.

Besides, to show the adaptability of our technique, the nominal autoencoder [114] developed for
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Figure 5.9: Initiation intervals and DSP numbers using various reuse factor Rh on Zynq 7045.

gravitational wave detection is implemented using a larger FPGA, U250, running at 300MHz

with 8 timesteps. It has four LSTM layers which have a number of hidden units equal to 32, 8,

8, 32 respectively and one TimeDistributed dense layer before the output. Since the U250 has

12,288 DSPs, the whole fully unrolled autoencoder can be fit into this FPGA with both Rx and

Rh set to one, shown as the design U1 in Table 5.2. With our technique of balancing IIs, the

DSPs of the design U2 can be reduced by 2102 while achieving the same design IIs and same

design throughput. After HLS synthesis, the II is slightly larger than the one estimated by the

performance model since the DSP usage is very high and some additional cycles are incurred for

signal routing. The design U3 is an interesting version with reuse factors (Rh, Rx) as (4, 12). It

achieves a slightly worse II, as shown in Table 5.2, however it consumes 3.3 and 4.1 times less

DSPs than design U2 and design U1 respectively. Sometimes, the user may only care about the

latency of the LSTM running on the FPGAs, then they can just take the point that gives them

the lowest latency with most resources. However, if the user can bear with a slightly reduced

latency then they can choose a smaller and cheaper FPGA as shown in Table 5.2. One can

choose between using less resources but increasing latency and vice versa. Please note because

of the data dependence, the iilayer could be hard to optimize to 1. However, it could be further

optimized to a smaller value using fast multipliers or fast activation functions. We leave that
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Table 5.3: Latency comparison of the FPGA design versus CPU and GPU.

CPU GPU This work

Platform Intel E2620 TITAN X U250

Process 32nm 28nm 16nm

Precision F32 F32 16 Fixed

Latency 39.7 ms 32.1 ms 0.867 us

for future work since it has a limited impact on the conclusions we draw from our study in this

work.

To compare the performance of the proposed design on FPGA with other platforms, we imple-

ment the same LSTM-based autoencoder on Intel CPU and NVIDIA GPU. The AVX2 vector

instructions are enabled for the CPU while the CuDNN 7.4.1 libraries are enabled for the GPU.

Compared with the designs running on CPU and GPU, our FPGA design runs much faster, as

shown in Table 5.3. We are processing each inference sequentially (batch 1) since requests need

to be processed as soon as they arrive. The GPUs provide large throughput by running many

parallel inferences but may not perform well when the batch is small, especially there are data

dependencies in LSTMs. However, FPGAs work fast on a single inference with a fully unrolled

tailor-made design.

Some other HLS-based RNN/LSTM accelerators for low latency designs on FPGAs are com-

pared with ours in Table 5.4. Rao et al. [122] implement an HLS-based low latency LSTM

network on an FPGA, tailored specifically for a particle physics application known as Top Tag-

ging. They are the first to integrate the LSTM network into the HLS4ML framework [109].

Lee et al. [123] introduce a latency-optimized LSTM design for accurate radio frequency spec-

tral prediction in real-time. Besides, they present a flexible LSTM module generator which

can generate optimized LSTM inference cores of arbitrary size and arbitrary fixed-point preci-

sion. In this table, we focus on latency since the throughput, power or power efficiency of the

other designs are not reported. Our design achieves 4.92 to 12.4 times lower latency compared

to the state-of-the-art FPGA designs targeting anomaly detection. Our single-layer design,

with a similar amount of DSP resources to another design [122], is 3.9 times faster as shown
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Table 5.4: Comparison with previous FPGA-based LSTM designs for anomaly detection and
physics

[123], 2018 [122], 2020 This work This work

FPGA Kintex7 K410T KU115 U250 U250

Process (nm) 20 20 16 16

Model Single Layer Single Layer Single Layers Four Layers

Application Domain Anomaly Detection Physics - Anomaly Detection

LSTM hidden
units Lh

32 16 32 32,8,8,32

DSPs 1091 2374 2221 9021

Precision (bits) 16 fixed 16 fixed 16 fixed 16 fixed

Frequency (MHz) 155 200 300 300

Latency (us) 4.27 1.35 0.343 0.867

in Table 5.4. Since the FPGAs adopt different transistor technology, performance of designs

in [122, 123] should be given a factor of 20/16=1.25 improvement. So the latency of the 2 de-

signs become 3.42µs and 1.08µs, still worse than the designs from this work. Note that because

of the structure of an autoencoder, the processing of the encoder and the decoder cannot be

overlapped, which increases the end-to-end latency of the design. Nevertheless, we still achieve

better latency than the others which contain only one LSTM layer. Moreover, while the other

designs report Vivado HLS synthesis latency, we report the RTL co-simulation latency which

is likely to be more accurate.

5.5 Summary

This chapter introduces a partially-folded architecture for RNNs that maps all the layers on-

chip and performs computation on their own units with dedicated optimization to achieve low

latency and high system throughput. It targets small-sized RNN models with requirements

for low latency and high throughput, such as for scientific applications. A novel technique for

balancing IIs in multi-layer RNN inference is also presented, which improves hardware efficiency

and increases design throughput. In addition, a low latency LSTM template is proposed, which
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enables the generation of low-latency FPGA designs with efficient resource utilization by HLS

tools. Results show latency reduction of up to 12.4 times over the existing FPGA-based LSTM

design.

117



Chapter 6

Conclusion

6.1 Summary of Achievements

This thesis focuses on optimizing reconfigurable accelerators for RNNs on FPGAs. The ob-

jective is to improve the performance and efficiency of FPGA-based RNN designs. This the-

sis presents three main contributions: a latency-hiding architecture that utilizes column-wise

matrix-vector multiplication with a flexible checkerboard tiling strategy, a blocking-batching

strategy to reuse RNN weights to optimize the throughput of large RNNs that cannot fit into

on-chip memory, and a low latency design of RNNs on FPGAs based on a partially-folded

architecture.

Chapter 3 (Contribution 1) presents a column-wise MVM approach for RNNs to eliminate

data dependencies and introduces a latency-hiding hardware architecture with hybrid kernels

and Configurable Adder-tree Tail (CAT) units, increasing the hardware utilization and system

throughput. It also introduces a flexible checkerboard tiling strategy that supports EP and VP

to exploit the available parallelism while increasing hardware utilization. In addition, the (EP,

VP) parameter space is comprehensively explored. The proposed approach and optimizations

are applied to RNN workloads from the DeepBench suite [27]. Compared to the Brainwave

design [1] and the Brainwave-like NPU [2] with the same RNN workloads on FPGAs, our

design achieves 3.7 to 14.8 times better performance and has the highest hardware utilization.
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The evaluation results show a significant speed-up over CPU, GPU and FPGA implementations

in related work.

Chapter 4 (Contribution 2) introduces a blocking-batching strategy that reuses the RNN

weights to optimize the throughput of large RNNs that are too large to fit in on-chip memory

on FPGAs, running with a batch size of one. A performance analysis based on LSTM models

is also presented to balance area, power, and performance in FPGA designs. When compared

to state-of-the-art designs that use off-chip memory to store weights, our design achieves 1.65

times higher performance-per-watt efficiency and 1.60 times higher performance-per-DSP effi-

ciency. When compared to CPU and GPU implementations, our hardware architecture is 23.7

and 1.3 times faster while consuming 208 and 19.2 times less energy, respectively.

Chapter 5 (Contribution 3) introduces a partially-folded hardware architecture for RNNs that

maps all the layers to on-chip resources and performs computation on their own units with

dedicated optimization to achieve low latency and high throughput. A novel technique for

balancing IIs in multi-layer RNN inference is also presented, which improves hardware efficiency

and increases design throughput. In addition, a low latency LSTM template is proposed, which

enables the generation of low-latency FPGA designs with efficient resource utilization by HLS

tools.

While the proposed solutions in the thesis significantly enhance the performance and efficiency

of RNN designs on FPGAs, there are some limitations that merit further exploration. First,

the proposed architectures are based on existing FPGA devices, leaving potential room for op-

timization with novel hardware resources in new FPGAs - see Section 6.2.1. Second, the focus

of the thesis is on hardware-based optimizations, but numerous algorithm-based optimizations

can be combined with our solutions to perform algorithm-hardware co-design, potentially yield-

ing even higher performance - see Section 6.2.2. Furthermore, other aspects - see Section 6.2.3

- worth investigating in future work include hybrid hardware architectures, reconfigurability

for RNN accelerators, and methods of improving debugging, security, and resilience of RNN

accelerators. Investigating these topics could help achieve even better RNN designs on FPGAs.

In summary, this thesis presents hardware optimization approaches for RNNs on FPGAs that
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address the challenges of recurrent nature and data dependencies, and low hardware utiliza-

tion, and large latency. These optimizations are applied to different types of RNNs with dif-

ferent memory configurations, including those with weights in on-chip memory and those with

weights in off-chip memory. The proposed approaches and architectures significantly improve

the performance and efficiency of RNN designs on FPGAs, with speed-ups over CPU and GPU

implementations and better performance compared to other FPGA designs.

6.2 Future Work

There are several areas where further research could be conducted to improve the performance

and efficiency of RNN accelerators on FPGAs. Some possible directions for future work will be

presented in the following sections.

6.2.1 Novel Hardware

Current and future work includes exploring the use of new FPGA resources such as the AI

Engines [50] from AMD/Xilinx for RNNs. AI Engines are architected as 2D arrays consisting

of multiple AI Engine tiles that are optimized for real time machine learning computation with

deterministic performance. Intel also has similar engines, named AI Tensor Blocks [51] which

contain dense matrix math units that are tuned for 8-bit and 4-bit integer operations with

mixed precision computations. These blocks can also be ganged up to handle large vector

math computations. However, these new engines are still electrical based components for

computation. In the future, Optical Neural Networks (ONN) [124, 125] which performs the

computation using optical elements could be a promising alternative as it provides fast data

processing with low power consumption.

Besides, von Neumann architecture based accelerators suffer from large power consumption

and latency due to data movement, which limits the efficiency of RNN accelerators. High-

speed memory, such as on-chip SRAM, can provide high memory bandwidth but it is costly
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with large silicon die area. There is also High Bandwidth Memory (HBM) [126] but its memory

bandwidth is still not sufficient to meet the requirement of memory-bound applications, such as

RNNs. In the future, in-memory computing [127] which runs calculations entirely in computer

memory might be a promising solution to overcome the memory bottleneck in RNNs.

These studies are orthogonal to the approaches and optimizations presented in this thesis, and

could be complementary to ours in order to achieve even better performance and efficiency in

RNN designs.

6.2.2 Hardware/Software Co-design

In addition to exploring novel hardware components, it is also important to consider combining

hardware and software optimizations in order to further improve the performance and efficiency

of RNN accelerations. With the reconfigurability of FPGAs, developers can not only optimize

algorithms on fixed hardware, but also customize both the algorithm and hardware together

in order to achieve good performance. This design space offers many opportunities for co-

optimization and adaptation as machine learning algorithms and hardware architectures evolve.

One way to extend our FPGA-based innovations to a wider range of machine learning tasks

is by combining them with software optimizations, such as model compression techniques like

hardware-friendly unstructured or structured pruning [70, 75], low bit-width pre-training [121]

or post-training [15, 56] quantization, and neural architecture search [128]. These techniques

can help to further improve the performance and efficiency of reconfigurable RNN designs,

making them suitable for a wider range of applications.

6.2.3 Further Opportunities for Future Work

Other potential areas of future work for RNNs on FPGAs include:

• Investigating new hardware architectures and optimization techniques for RNNs on FP-

GAs, such as hybrid architectures that combine the fully-folded and partially-folded ar-
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chitectures.

• Developing new tiling strategies or parallelization techniques for RNN computations on

FPGAs, such as strategies that can better exploit data parallelism or improve hardware

utilization.

• Evaluating the performance and energy efficiency of RNN accelerators on FPGAs in

different application domains, such as natural language processing, speech recognition,

and computer vision.

• Investigating new methods for mapping RNN models to single and multiple FPGAs, such

as high-level synthesis tools or automatic mapping techniques that can generate efficient

FPGA implementations with minimal user intervention.

• Exploring how the proposed optimizations can benefit RNN training. As the use of

FPGAs for RNN inference becomes more widespread, it is possible that FPGAs could

become more commonly used for RNN training as well.

• Exploring how the reconfigurability of FPGAs can benefit the RNN accelerators by hav-

ing multiple designs optimized for different workloads, and selecting the one that would

minimize latency and maximize performance at run time.

• Investigating methods to improve debugging, security, resilience of RNN accelerators to

ensure that the accelerators are robust and can be deployed in real-world applications.

6.3 Final Thoughts

6.3.1 Transformer and RNN

The transformer [129] model uses a self-attention mechanism that allows it to process input

data in parallel, rather than sequentially. This makes it much faster and more efficient than

traditional recurrent neural networks (RNNs), such as LSTMs, which process input data se-

quentially. Transformer-based models have achieved state-of-the-art results [129, 130] and have
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become the de facto standard for some tasks, such as language modeling and machine trans-

lation. An example application of large-scale language model is the famous ChatGPT [131].

Comparison between transformer and LSTM is available [130, 132, 133, 134].

Some people argue that RNNs are superseded by transformers [129], but this is not the case.

Although transformers [129] have achieved promising results in large scale Natural Language

Processing (NLP) tasks, RNNs are still popular in many other sequence-based tasks, delivering

an acceptable level of accuracy, such as audio processing [135] and anomaly detection [26, 32].

Besides, [132] combines the components of LSTM and transformer and achieves better results

than both models on their own. Furthermore, [134] shows that LSTM models can achieve

better results than a transformer model on a small dataset. Transformers process all input

tokens in parallel, allowing them to take advantage of parallelism but at a cost of per-layer

complexity of O(N2). In contrast, RNNs have a complexity of only O(N). Since it is costly

to adopt transformers on long-sequence tasks, RNNs are still favorite for some domain-specific

areas, such as edge computing.

To make informed decisions about when to use RNNs versus transformers, it is important

to conduct a systematic evaluation of applications and workloads using benchmarks, as well

as resource and performance models for CPUs, GPUs, and FPGAs. In addition, standardized

evaluation metrics that capture the strengths and limitations of both architectures are necessary.

These efforts would enable researchers to determine the most appropriate architecture for a

given task under specific resource constraints.

Furthermore, the Block-Recurrent Transformer [136] has been proposed recently to reduce the

computational cost without sacrificing accuracy, by integrating a recurrence mechanism into a

transformer layer and achieving improved results over very long sentences [136]. This highlights

the potential for RNNs to continue being a key component in future neural layers, resulting

in more efficient neural network models. Given the high cost of running ChatGPT (millions

of dollars a day [137]) and the increasing interest in making AI more efficient and accessible,

integrating the proposed optimizations for RNNs in this thesis with the ideas presented in the

Block-Recurrent Transformer [136] could potentially lead to more efficient and cost-effective
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transformer models for use in ChatGPT [131] and other natural language processing applica-

tions. These optimizations, which focus on improving the performance and efficiency of RNNs

on FPGAs, may also benefit future models with recurrence mechanisms, resulting in more

efficient neural network models.

6.3.2 Design Automation

Many of the optimizations presented in this thesis are done manually, which require in-depth

hardware understanding. However, this optimization process is tedious, error-prone, and must

be repeated for each new application, or at least each new application domain. Besides, it

becomes more challenging to create good optimized designs since compute landscape is rapidly

evolving and becoming more heterogeneous with various underlying hardware units, such as

GPUs, FPGAs, ASICs, CPUs, etc. The “Cambrian explosion” of novel computer architec-

tures [138] with domain-specific hardware platforms is on the way. It becomes even more

challenging when designs meet machine learning which is also a rapidly moving research field.

The gap between software descriptions and optimized designs is widening.

As a result, a novel and high performance tool framework for this “Cambrian explosion” is in

demand to serve as a bridge between the continuously evolving machine learning algorithms and

hardware architectures. The use of automatic or machine learning guided tool frameworks could

also lead to more efficient hardware/software co-optimization [139] and exploration of domain-

specific and heterogeneous hardware platforms. Such frameworks could include automating

hardware architecture generation or generating the code for the architecture if the architecture

is programmable.

The proposed optimizations in this thesis could serve as the basis for a potential RNN design

tool that automates the optimization process and enables users to customize their designs based

on their specific needs and trade-offs. Fig. 6.1, which is based on Fig. 1.6, could serve as a

foundation for automating diverse RNN implementations and cover end-to-end RNN design,

from high-level description to implementation on various hardware platforms. In the case of

a single-chip design, this figure shows the use of the partially-folded architecture introduced
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Figure 6.1: Various design options for RNNs.

in Chapter 5 when the fully-folded engine is under-utilized; otherwise, it employs the fully-

folded architecture introduced in Chapters 3 and 4. The fully-folded engine is an engine with

a fully-folded architecture. For multi-chip designs, it is critical to distribute the computation

load across multiple chips and implement appropriate communication strategies to ensure effi-

cient data transfer and synchronization between the chips. This could involve a combination

of partially-folded and fully-folded architectures, depending on the specific requirements and

constraints of the multi-chip system.

An extended version of Fig. 6.1 could involve analysis of RNN algorithm and data descriptions,

prioritization of trade-offs, and multiple levels of optimization, considering both high-level and

low-level optimizations. The high-level optimization would focus on algorithm optimization,

such as neural architecture fine-tuning and model compression, determining the best-suited

hardware platform, including CPUs, GPUs, FPGAs, or a mixture of resources, and deciding on

optimal single-chip or multiple-chip, homogeneous or heterogeneous implementations. The low-

level optimization would involve fine-grained tuning of the chosen architecture for the selected

hardware, maximizing performance and resource utilization.

To explore the development of this extended tool architecture, initial steps could include:
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1. Analyze the algorithm and data description, extracting key features from a given RNN

model.

2. Prioritize trade-offs based on the user’s specific needs and constraints.

3. Perform design space exploration based on the extended Fig. 6.1 to explore various con-

figurations and optimizations for the given RNN model. This step could include evalu-

ating the trade-offs between different RNN architectures (such as LSTM, GRU, or other

variants), investigating algorithm optimizations like model compression techniques (e.g.

pruning or quantization), and assessing the compatibility and performance of different

hardware platforms, such as CPUs, GPUs, FPGAs, or a mixture. Determine which plat-

form and architecture (fully-folded or partially-folded) offer better resource utilization,

efficiency, and latency based on the specific needs and constraints of the user. This step

automatically identifies the most suitable RNN architecture and optimization strategy

for the specific application and constraints.

4. Generate an initial hardware design based on the selected RNN architecture, algorithm

optimizations, and hardware platform.

5. Apply low-level optimizations tailored to the chosen hardware platform and architecture,

fine-tuning the design for maximum performance and resource utilization. If the results

are not satisfactory, the tool framework could return to step 3 to try different design and

optimization options and iterate the process.

Developing such an end-to-end tool is an ambitious task, and the work flow summarized in

Fig. 6.1 can serve as a foundation. This tool would benefit researchers and developers without

hardware optimization expertise, improving their productivity and the resulting design quality

which will help maximize the impact of RNN designs.
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