6,292 research outputs found

    Algorithms for Constructing Overlay Networks For Live Streaming

    Full text link
    We present a polynomial time approximation algorithm for constructing an overlay multicast network for streaming live media events over the Internet. The class of overlay networks constructed by our algorithm include networks used by Akamai Technologies to deliver live media events to a global audience with high fidelity. We construct networks consisting of three stages of nodes. The nodes in the first stage are the entry points that act as sources for the live streams. Each source forwards each of its streams to one or more nodes in the second stage that are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage that act as sinks and are located in edge networks near end-users. As the packets in a stream travel from one stage to the next, some of them may be lost. A sink combines the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. Our primary contribution is an algorithm that constructs an overlay network that provably satisfies capacity and reliability constraints to within a constant factor of optimal, and minimizes cost to within a logarithmic factor of optimal. Further in the common case where only the transmission costs are minimized, we show that our algorithm produces a solution that has cost within a factor of 2 of optimal. We also implement our algorithm and evaluate it on realistic traces derived from Akamai's live streaming network. Our empirical results show that our algorithm can be used to efficiently construct large-scale overlay networks in practice with near-optimal cost

    Implementing an approximation scheme for all terminal network reliability

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaf 50).by Ray P. Tai.M.Eng

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Improved bounds and algorithms for graph cuts and network reliability

    Full text link
    Karger (SIAM Journal on Computing, 1999) developed the first fully-polynomial approximation scheme to estimate the probability that a graph GG becomes disconnected, given that its edges are removed independently with probability pp. This algorithm runs in n5+o(1)ϵ3n^{5+o(1)} \epsilon^{-3} time to obtain an estimate within relative error ϵ\epsilon. We improve this run-time through algorithmic and graph-theoretic advances. First, there is a certain key sub-problem encountered by Karger, for which a generic estimation procedure is employed, we show that this has a special structure for which a much more efficient algorithm can be used. Second, we show better bounds on the number of edge cuts which are likely to fail. Here, Karger's analysis uses a variety of bounds for various graph parameters, we show that these bounds cannot be simultaneously tight. We describe a new graph parameter, which simultaneously influences all the bounds used by Karger, and obtain much tighter estimates of the cut structure of GG. These techniques allow us to improve the runtime to n3+o(1)ϵ2n^{3+o(1)} \epsilon^{-2}, our results also rigorously prove certain experimental observations of Karger & Tai (Proc. ACM-SIAM Symposium on Discrete Algorithms, 1997). Our rigorous proofs are motivated by certain non-rigorous differential-equation approximations which, however, provably track the worst-case trajectories of the relevant parameters. A key driver of Karger's approach (and other cut-related results) is a bound on the number of small cuts: we improve these estimates when the min-cut size is "small" and odd, augmenting, in part, a result of Bixby (Bulletin of the AMS, 1974)

    Minimum-cost multicast over coded packet networks

    Get PDF
    We consider the problem of establishing minimum-cost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as both static multicast (where membership of the multicast group remains constant for the duration of the connection) and dynamic multicast (where membership of the multicast group changes in time, with nodes joining and leaving the group). For static multicast, we reduce the problem to a polynomial-time solvable optimization problem, and we present decentralized algorithms for solving it. These algorithms, when coupled with existing decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving minimum-cost multicast. By contrast, establishing minimum-cost static multicast connections over routed packet networks is a very difficult problem even using centralized computation, except in the special cases of unicast and broadcast connections. For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the theory of dynamic programming to suggest how it may be solved

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    Sequential Importance Sampling Algorithms for Estimating the All-Terminal Reliability Polynomial of Sparse Graphs

    Get PDF
    The all-terminal reliability polynomial of a graph counts its connected subgraphs of various sizes. Algorithms based on sequential importance sampling (SIS) have been proposed to estimate a graph\u27s reliability polynomial. We show upper bounds on the relative error of three sequential importance sampling algorithms. We use these to create a hybrid algorithm, which selects the best SIS algorithm for a particular graph G and particular coefficient of the polynomial. This hybrid algorithm is particularly effective when G has low degree. For graphs of average degree < 11, it is the fastest known algorithm; for graphs of average degree <= 45 it is the fastest known polynomial-space algorithm. For example, when a graph has average degree 3, this algorithm estimates to error epsilon in time O(1.26^n * epsilon^{-2}). Although the algorithm may take exponential time, in practice it can have good performance even on medium-scale graphs. We provide experimental results that show quite practical performance on graphs with hundreds of vertices and thousands of edges. By contrast, alternative algorithms are either not rigorous or are completely impractical for such large graphs
    corecore