7 research outputs found

    Caching of XML Web Services to Support Disconnected Operation

    Get PDF
    XML Web services can now be accessed in all places and at all times. The problem now facing these XML Web services is the need be to universal availability. Caching can be used by client applications that use XML Web Services on wireless or mobile networks in the face of intermittent connectivity. The idea of interjecting a client side cache proxy may be a step in the direction towards the ultimate goal of a seamless online/offline operating environment of these XML Web Services. But, Web services present new challenges to existing cache managers since they have generally been designed without regard to caching and hence offer little support. The WSDL description of a Web service specifies the message format of a necessary to invoke a service operation but lacks the information needed to indicate whether an operation will modify the server state or produce different results on different invocations. We have suggested several annotations to the WSDL document that will allow custom cache managers to tailor their behavior based on the specific requirements of the Web service. We then built a caching system onto an HTTP proxy and interjected it between a Web service and its application client, to test our assumptions. We demonstrated that a XML Web services could be operated to a limited extent disconnected from the server, without modifying the implementation of the service or their applications

    Method-based caching in multi-tiered server applications

    Get PDF
    Abstract In recent years, application server technology has become very popular for building complex but mission-critical systems such as Web-based E-Commerce applications. However, the resulting solutions tend to suffer from serious performance and scalability bottlenecks, because of their distributed nature and their various software layers. This paper deals with the problem by presenting an approach about transparently caching results of a service interface\u27s read-only methods on the client side. Cache consistency is provided by a descriptive cache invalidation model which may be specified by an application programmer. As the cache layer is transparent to the server as well as to the client code, it can be integrated with relatively low effort even in systems that have already been implemented. Experimental results show that the approach is very effective in improving a server\u27s response times and its transactional throughput. Roughly speaking, the overhead for cache maintenance is small when compared to the cost for method invocations on the server side. The cache\u27s performance improvements are dominated by the fraction of read method invocations and the cache hit rate. Our experiments are based on a realistic E-commerce Web site scenario and site user behaviour is emulated in an authentic way. By inserting our cache, the maximum user request throughput of the web application could be more than doubled while its response time (such as perceived by a web client) was kept at a very low level. Moreover, the cache can be smoothly integrated with traditional caching strategies acting on other system tiers (e.g. caching of dynamic Web pages on a Web server). The presented approach as well as the related implementation are not restricted to application server scenarios but may be applied to any kind of interface-based software layers

    A cache framework for nomadic clients of web services

    Get PDF
    This research explores the problems associated with caching of SOAP Web Service request/response pairs, and presents a domain independent framework enabling transparent caching of Web Service requests for mobile clients. The framework intercepts method calls intended for the web service and proceeds by buffering and caching of the outgoing method call and the inbound responses. This enables a mobile application to seamlessly use Web Services by masking fluctuations in network conditions. This framework addresses two main issues, firstly how to enrich the WS standards to enable caching and secondly how to maintain consistency for state dependent Web Service request/response pairs

    Model-driven dual caching For nomadic service-oriented architecture clients

    Get PDF
    Mobile devices have evolved over the years from resource constrained devices that supported only the most basic tasks to powerful handheld computing devices. However, the most significant step in the evolution of mobile devices was the introduction of wireless connectivity which enabled them to host applications that require internet connectivity such as email, web browsers and maybe most importantly smart/rich clients. Being able to host smart clients allows the users of mobile devices to seamlessly access the Information Technology (IT) resources of their organizations. One increasingly popular way of enabling access to IT resources is by using Web Services (WS). This trend has been aided by the rapid availability of WS packages/tools, most notably the efforts of the Apache group and Integrated Development Environment (IDE) vendors. But the widespread use of WS raises questions for users of mobile devices such as laptops or PDAs; how and if they can participate in WS. Unlike their “wired” counterparts (desktop computers and servers) they rely on a wireless network that is characterized by low bandwidth and unreliable connectivity.The aim of this thesis is to enable mobile devices to host Web Services consumers. It introduces a Model-Driven Dual Caching (MDDC) approach to overcome problems arising from temporarily loss of connectivity and fluctuations in bandwidth

    Generic Distribution Support for Programming Systems

    Get PDF
    This dissertation provides constructive proof, through the implementation of a middleware, that distribution transparency is practical, generic, and extensible. Fault tolerant distributed services can be developed by using the failure detection abilities of the middleware. By generic we mean that the middleware can be used for many different programming languages and paradigms. Distribution for each kind of language entity is done in terms of consistency protocols, which guarantee that the semantics of the entities are preserved in a distributed setting. The middleware allows new consistency protocols to be added easily. The efficiency of the middleware and the ease of integration are shown by coupling the middleware to a programming system, which encompasses the object oriented, the functional, and the concurrent-declarative programming paradigms. Our measurements show that the distribution middleware is competitive with the most popular distributed programming systems (JavaRMI, .NET, IBM CORBA)

    Implementing a Caching Service for Distributed CORBA Objects

    No full text
    . This paper discusses the implementation of CASCADE, a distributed caching service for CORBA objects. Our caching service is fully CORBA compliant, and supports caching of active objects, which include both data and code. It is specifically designed to operate over the Internet by employing a dynamically built cache hierarchy. The service architecture is highly configurable with regard to a broad spectrum of application parameters. The main benefits of CASCADE are enhanced availability and service predictability, as well as easy dynamic code deployment and consistency maintenance. 1 Introduction One of the main goals of modern middlewares, and in particular of the CORBA standard [45], is to facilitate the design of interoperable, extensible and portable distributed systems. This is done by standardizing a programming language independent IDL, a large set of useful services, the Generic InterORB Protocol (and its TCP/IP derivative IIOP), and bridges to other common middleware..

    Adaptive Caching of Distributed Components

    Get PDF
    Die Zugriffslokalität referenzierter Daten ist eine wichtige Eigenschaft verteilter Anwendungen. Lokales Zwischenspeichern abgefragter entfernter Daten (Caching) wird vielfach bei der Entwicklung solcher Anwendungen eingesetzt, um diese Eigenschaft auszunutzen. Anschliessende Zugriffe auf diese Daten können so beschleunigt werden, indem sie aus dem lokalen Zwischenspeicher bedient werden. Gegenwärtige Middleware-Architekturen bieten dem Anwendungsprogrammierer jedoch kaum Unterstützung für diesen nicht-funktionalen Aspekt. Die vorliegende Arbeit versucht deshalb, Caching als separaten, konfigurierbaren Middleware-Dienst auszulagern. Durch die Einbindung in den Softwareentwicklungsprozess wird die frühzeitige Modellierung und spätere Wiederverwendung caching-spezifischer Metadaten gewährleistet. Zur Laufzeit kann sich das entwickelte System außerdem bezüglich der Cachebarkeit von Daten adaptiv an geändertes Nutzungsverhalten anpassen.Locality of reference is an important property of distributed applications. Caching is typically employed during the development of such applications to exploit this property by locally storing queried data: Subsequent accesses can be accelerated by serving their results immediately form the local store. Current middleware architectures however hardly support this non-functional aspect. The thesis at hand thus tries outsource caching as a separate, configurable middleware service. Integration into the software development lifecycle provides for early capturing, modeling, and later reuse of cachingrelated metadata. At runtime, the implemented system can adapt to caching access characteristics with respect to data cacheability properties, thus healing misconfigurations and optimizing itself to an appropriate configuration. Speculative prefetching of data probably queried in the immediate future complements the presented approach
    corecore