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ABSTRACT 

This research explores the problems associated with caching of SOAP Web Service 

request/response pairs, and presents a domain independent framework enabling 

transparent caching of Web Service requests for mobile clients. The framework intercepts 

method calls intended for the web service and proceeds by buffering and caching of the 

outgoing method call and the inbound responses. This enables a mobile application to 

seamlessly use Web Services by masking fluctuations in network conditions.  

This framework addresses two main issues, firstly how to enrich the WS standards to 

enable caching and secondly how to maintain consistency for state dependent Web 

Service request/response pairs. 
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CHAPTER 1 

INTRODUCTION 

Background 

There are a number of approaches for creating distributed object oriented systems (EMM 00). 

The network location of objects, in a distributed object oriented system, is hidden and the 

communication between objects is performed using a set of interfaces. A new approach for 

creating distributed object oriented systems focuses on loose coupling of distributed components 

by the use of existing internet standards (e.g. XML). This approach is named Service Oriented 

Architecture (SOA) (SCH 96, OAS 05). An implementation of SOA is a technology known as 

Web Services (WS) (NEW 04). 

 

Figure 1-1. The service oriented architecture (SOA) defines three components; the registry, the 

service and the client components 

SOA defines three components [Figure 1-1]. The components are the service (e.g. WS), the 

client, and the registry (e.g. UDDI
1
). SOA supports heterogeneous client and service components 

(SCH 96). The service component publishes self identifying information (e.g. name, 

organization) in the registry component. The client finds/discovers the service by performing a 

lookup in the registry and proceeds by interacting with the service. 

An important requirement of SOA is that services are self-describing (SCH 96). The service 

description defines a set of operations (hereafter known as methods) and any related data types. 

                                                 
1
 The Universal Discovery and Description Integration, out of the scope of this research 
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Invocation of service methods is the primary interaction between clients and services [Figure 1-

1]. After a client has performed a registry lookup and has found a service, the client processes 

the service description, and proceeds by invoking service methods. The pattern of method 

invocation/return is equivalent to the pattern of classical request/response pairs. 

SOA also requires that services are self-contained and stateless. These two requirements simplify 

the arrangement/orchestration of independent services in order to perform a task (WEE 05). 

Finally, WS specify self description and interaction messages in the declarative Extensible 

Markup Language (XML). The use of XML simplifies the use of WS in heterogeneous 

environments. 

 

Figure 1-2. A single client and a web service, the web service (WS) uses a database 

Web Services 

A simple WS and a single client are used to illustrate WS and clients [Figure 1-2]. The WS 

implements two simple methods, namely GetRecord and AddRecord. The GetRecord method 

requires a numeric parameter which serves as a record identifier, and it returns the record’s 

content. Further, the AddRecord method takes two parameters, the first is the record identifier 

and the second is a record’s content. 

The WS description is a document named the Web Service Description Language (WSDL) 

(W3C 05) [Figure 1-3]. 

The interaction between the client and WS is via a messaging protocol, named the Simple Object 

Access Protocol (SOAP). Figure 1-4 shows a SOAP request/response pair representing 

invocation/return of the GetRecord method. The response of a GetRecord request is a SOAP 

message named GetRecordResponse. 
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Figure 1-3. The web service description language (WSDL) (CER 02) 

SOAP messages are commonly
2
 transported by the Hypertext Transfer Protocol (HTTP) (W3C 

05). Figure 1-5 shows a SOAP message representing the outbound invocation of GetRecord, as 

transported by HTTP. SOAP’s dependency on HTTP relates WS to the World Wide Web 

(WWW) in a relationship of common dependence. 

 

 

Figure 1-4.  SOAP messages between a client and a web service 

                                                 
2
 Although SOAP messages are often transported over HTTP (W3C 05), the SOAP specification 

is transport-independent (W3C 05). SOAP over HTTP is the generally accepted and widely 

deployed WS scenario. 
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Figure 1-5. A SOAP message over HTTP 

The interaction between WS and client 

The previous overview of the client’s interaction with the WS assumed that the client has 

performed a lookup operation on the registry, and a service has been found. However, the 

overview did not provide complete detail of the interaction. The interaction can be divided in two 

stages, stage 1 and stage 2 [Figure 1-6]. The goal of stage 1 is to prepare the client for method 

invocations, while stage 2 consists of method invocations and method returns. Figure 1-6 shows 

a total of seven interactions, three of which (A-C) belong to stage 1 and the other four (D-G) 

belong to stage 2.  

Stage 1 begins when the client requests the WSDL [Figure 1-6A]. After the WSDL document is 

received [Figure 1-6B], then a local proxy object is generated [Figure 1-6C]. The proxy object 

contains a set of methods which are identical to the methods of the WS.  The proxy object is 

responsible for generating and parsing SOAP messages. 

 

Figure 1-6. Detailed interaction between a client and WS 

POST /host/service HTTP/1.1 

Host: host 

Content-Type: text/xml; charset=utf-8 

Content-Length: length 

SOAPAction: "http://host/GetRecord" 

 

<?xml version="1.0" encoding="utf-8"?> 

<soap:Envelope xmlns:xsi="….. "> 

  <soap:Body> 

    <GetRecord xmlns="http://host/"> 

      <rid>int</rid> 

    </GetRecord> 

  </soap:Body> 

</soap:Envelope> 

A 

B 

C D 

F 

E 

G 
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At the beginning of stage 2, the client invokes a method on the proxy object [Figure 1-6D]. A 

SOAP request [Figure 1-5] detailing the method name and parameters is generated by the proxy 

object and is sent to the WS [Figure 1-6E]. The WS, in turn, processes the request and returns a 

SOAP response to the proxy object [Figure 1-6F]. The proxy object decodes the SOAP response 

and creates a value which is returned to the client [Figure 1-6G].  

Nomadic WS clients 

Kleinrock (KLE 96) defines nomadicity as “the system support needed to provide a rich set of 

capabilities and services to the nomad as he moves from place to place in a transparent and 

convenient form”. The study of nomadicity focuses on the device’s and application’s support for 

mobility and disconnected operation (SAT 96, KLE 96, LAP 96). In this work, the term 

‘nomadic’ is used interchangeably with the term ‘mobile’. The nomadic WS client is defined as 

an application, situated on a Nomadic Unit (NU), and interacting with WS [Figure 1-7]. 

A nomadic WS client benefits from the loose coupling of services in SOA. The focus on 

nomadic WS clients is motivated by the need for mobility, coupled with the availability of 

increasingly faster mobile networks (e.g. IEEE 802.11 (IEE 05) and CDMA 1xRTT (CDM 05)). 

 

Figure 1-7. The context environment consists of mobile WS clients 

The problem of intermittent connectivity 

Wireless connectivity is classified as weak, since wirelessly connected devices are subject to 

planned and unplanned disconnections. An example of a planned disconnection is the removal of 

the wireless network card to conserve battery life. Unplanned disconnections are more critical 

than planned disconnections, an example of which is loss of the wireless signal due to user 

 

NU 
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movement. The occurrence of unplanned disconnections is followed by reconnections, which is 

manifested in intermittent sequence [Figure 1-8]. 

 

Figure 1-8. Effect of intermittent connectivity on a nomadic WS client 

A WS client requires continuous availability of the connectivity resource, because SOAP over 

HTTP can not overcome an interruption of communication (POW 02, DEV 03, TER 03). The 

interruption of SOAP request/response pairs occurs in two scenarios [Figure 1-8]. The first 

scenario is the interruption of the outbound GetRecord request [Figure 1-4]. The second scenario 

occurs when the connectivity interruption occurs during the transmission of the inbound SOAP 

response (e.g. GetRecordResponse see [Figure 1-4]). 

In either scenario, the WS client is incapable of receiving the response message, unless error 

handling logic is implemented. Error handling logic, using a pull approach, can resubmit the 

original request and then wait for a new response. Alternatively, using a push approach, the WS 

can resubmit the lost response when the loss of the response is detected. 

However, a pull approach can lead to undesired side effects, this is the case when the invocated 

method is state-altering (e.g. AddRecord). A duplicate execution of the method AddRecord can 

lead to a corrupt or inconsistent database. The push approach, on the other hand, requires that the 

client is located at an unchanging (a.k.a. static) network location. This requirement can not be 

guaranteed in the mobile setting. The approaches for overcoming intermittent connectivity are 

the subject of the next section. 
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Overcoming intermittent connectivity 

Approaches for overcoming intermittent connectivity have either relied on the replication (KIS 

92) of the network component or caching (TER 03) the responses of the network component. 

However, replication is difficult to support when the network component is a WS. Replication 

requires a homogenous environment (as opposed to a heterogeneous environment). A 

homogenous environment assumes the equivalence of programming language, and libraries. The 

assumptions of homogeneity are not maintained by SOA.  

An alternative solution to replication is the use of a cache, SOAP responses are cached (a.k.a. 

stored) for later reuse and new requests are buffered pending connectivity. Caching overcomes 

intermittent connectivity. This work selects a cache as the approach for overcoming intermittent 

connectivity of nomadic WS clients. Significant research on caches, and on overcoming 

intermittent connectivity motivate the selected approach.   

The solution, however, is subject to the constraints of mobility (SAT 96, BAR 95, KLE 96, LAP 

96). The complexity of the solution is constrained by the limited processing power (CPU), 

smaller runtime and storage memory, and a short device operation time (battery lifetime). 

Caches 

The concept of a cache (BAR 95, WAN 99, FRI 02) was first introduced for processor-memory 

communication; the concept then spread to file systems, computer networks, database systems 

and distributed object systems. Caches have been used to overcome disconnectivity, to decrease 

the latency of responses, and to increase throughput. A cache requires the identification of two 

cache semantics. These are cacheability and consistency maintenance. 

The identity of cacheability permits a cache to store a copy of a response in the cache (e.g. 

GetRecordResponse). A response is generally not cached when the original request 

alters/modifies a state (e.g. AddRecord). In addition, a response is stored in the cache for a period 

of time (e.g. 1 hour), this period of time is managed by a consistency maintenance strategy. 

Consistency maintenance employs synchronization of state between the cache and the WS. 

Consistent (a.k.a. valid) cache responses are desired, they reduce the number of stale or invalid 

record accesses. A consistent cached value of GetRecord is equivalent to a value returned 
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directly from the WS. An inconsistent cached value is known as stale/invalid. A value is stale 

because the record’s content is modified or the record has been deleted. 

A consistency maintenance strategy can delete/remove a stale response from the cache. 

Alternatively, the strategy can refresh the stale response by resending the original request (e.g. 

GetRecord). In this case, the new valid response overwrites the old stale response. Consistency 

maintenance also supports requests which alter/modify the state. A state modifying request (e.g. 

AddRecord) is known as a WRITE request. The WRITE request is logged while the network is 

disconnected and is submitted when connectivity is regained. The behaviour of logging a 

WRITE and then submitting it is known as a Write Back. 

Problem Statement 

The resource required by the nomadic WS client is connectivity to the WS. However, 

intermittent connectivity contradicts this requirement and motivates a solution. The proposed 

solution is a cache; the cache protects the nomadic WS client from the unavailability of the 

required resource. The problem in using a WS cache is that the cache semantics of cacheability 

and consistency maintenance are neither defined by the service description WSDL, nor the 

protocol SOAP (TER 03, DEV 03). 

The challenges of the proposed solution are outlined as following: 

 

1. Identifying the cacheability of WS methods. 

2. Identifying a consistency maintenance strategy suitable for an intermittently connected, 

client-side WS cache.  

3. The architecture is independent of WS and clients. The implementation does not require 

modifications of WS, WS standards (e.g. SOAP), or client applications.  

Thesis Goals 

The goal of this thesis is to develop and evaluate a WS Cache Model. The model defines the 

missing cache semantics which can support a WS cache for nomadic clients. A model consists of 

elements, and the complexity of elements is a component of model complexity. This thesis 
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presupposes that the specification of more cache semantics (an increase of model complexity) 

has a positive relationship with efficient
3
 cache operation. 

1. To identify the elements of the proposed cache model: The two required cache semantics 

that will be used are cacheability and consistency maintenance. A simple (Optimistic Model) 

model tags WS methods as READs (cacheable) or WRITEs (not cacheable). Whereas a complex 

model represents the functional dependencies of WS methods, as a directed state graph between 

WS methods and resources. 

2. To measure the relationship between cache efficiency and model complexity: The 

relationship is measured when three models, increasing in complexity (by specification of more 

detailed semantics) are evaluated by cache efficiency. A model is considered better if it achieves 

high cache efficiency at low model complexity. 

3. To evaluate the client-side cost and the influence of selected factors: Model complexity 

influences cache efficiency, at a client-side cost. The cost is the sum of two cost sets: 

 the cost of model processing: processing (CPU), and model storage (Memory) 

 the cost of cache operations: processing (CPU), cache size (Memory), and network cost 

Seemingly, other factors can influence cache efficiency and client cost. Two factors are selected 

and evaluated (one at a time); such as workload characteristics, and frequency of disconnectivity. 

Thesis Overview 

This thesis is organized as follows; Chapter 1 introduces the research context and described the 

problems and objectives of the thesis. Chapter 2 reviews important research in the areas of file 

caches, disconnected operation in distributed object systems, web services caches and 

consistency maintenance. The goal of chapter 2 is to discuss applicable approaches and how they 

relate to the thesis research. Chapter 3 details the implementation and design decisions of the 

proposed solution. Chapter 4 details the design of experiments and evaluation setup of the 

framework. Chapter 5 reviews the results and discusses the findings. In Chapter 6, the conclusion 

of this research is presented, followed by a summary of contributions, and suggestions for future 

work.  

                                                 
3
 Cache efficiency is measured by the number of cache hits and the number of consistent cache 

hits. 
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CHAPTER 2 

LITERATURE REVIEW 

Introduction 

The architecture and standards of WS build on the standards of the web (e.g. HTTP 

(W3C 05)). This motivates the use of web cache literature (BAE 97, CAO 98, HUA 99, 

WAN 99, MAH 00) in the study and development of a WS cache. Alongside, because a 

WS is an implementation of SOA, the study of caching and resilience to disconnectivity 

in distributed object systems (CHO 00, CON 03, WAN 04) is relevant. 

Caching of web documents is motivated by the need for improved availability and 

quicker retrieval of documents. Historically, the web consisted of documents 

characterized by low frequency of change; these documents are known as static. Research 

on static documents focused on the identification and communication of cacheability, 

cache policies, cache locations and hierarchies, cache protocols, and cache sharing. 

However, the domination of static documents was superseded by dynamic documents 

(e.g. CGI, ASP, JSP). 

The high frequency of change of dynamic documents made it harder to identify 

cacheability and maintain consistency. Relevant research (CAO 98, HUA 99) focused on 

identifying cacheability, consistency maintenance and ensuring the availability of 

dependencies. The relevance of dynamic content caches to a WS cache is a result of 

common dependence on HTTP and the high frequency of change. 

Research in distributed object systems (CHO 00, CON 03) focuses on the problem of 

consistency maintenance, conflict detection and conflict resolution, and disconnected 

operation. However, cacheability is generally assumed for methods which are state-

reading (e.g. having return values). 

Terminology 

In this work, the terms WS client and client are interchangeably used. The client is 

situated on a mobile device referred to as the Nomadic Unit (NU). A cache is a memory 
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coordinated by a cache policy, the cache content is memorized instances of data 

(typically responses). A cache is typically referred to by its network location. A cache 

residing on the client is a client-side cache, other caches are server side caches, and proxy 

caches. A proxy is a network component located either on an intermediary node or on the 

client-side. This work refers to a live component/resource, meaning that the 

component/resource is reachable. 

The network traffic between the client and the server is overseen and\or controlled by the 

proxy. A proxy can be caching (e.g. caching proxy (CAO 98)) and a proxy can alter the 

network traffic (e.g. network filter). Furthermore, a proxy can be a load balancing 

gateway, or a buffer to an intermittently available resource (e.g. WS). 

A cache is typically used to exploit temporal locality. A locally found response is quicker 

to retrieve than waiting for a new response from a remote location. Temporal locality is 

the principle stating that a recently used response will likely be needed again. A cache 

can also be used as a shield against intermittent availability of a network component (e.g. 

the WS). The cache becomes a shield when all requests are answered from the cache once 

the live network component becomes unreachable. 

A cache’s answer to a request is either a cache hit or a cache miss. A cache hit indicates 

that the response is found in the cache, and a cache miss indicates that the response is not 

found in the cache. A hashfunction is responsible for identifying if a new request matches 

an old request. The hashfunction’s result identifies the location of the response entry in 

the hashtable, the hashfunction’s argument being the origin request. 

A match between requests A and B is found when the evaluation of the hashfunction on a 

request A, hashfunction(A), yields the same result as hashfunction(B). The equality of the 

results means that requests A and B are equal. Consequently, the response of request A is 

suitable for the new request B. 

Cacheability of a request is the property stating that responses can be cached without the 

creation of an undesired program state (FRI 02, TER 03, LAP 96). Cacheability is always 

true for a request that is state-reading and non state-altering. The cached response, 

however, remains in cache until it is determined as invalid, or until the cache size is too 

large and the response was not recently used. A response is invalid if it has expired by an 
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age value (e.g. HTTP time-to-live). An invalid response must be requested again from the 

live resource. 

A cache is supported by strategies for maintaining equality between local responses and 

live responses. Consistency maintenance is the term used to describe these strategies. 

Hence, cached responses should closely resemble the responses of the live resource (e.g. 

WS). A strategy (e.g. implicit invalidation) removes or refreshes a cached response when 

a condition is true (e.g. response age is more than maximum age). 

Requests which read the state of a resource are called READ requests (or READs). A 

READ request is synonymous with the terms query, state-reading, and state-dependent. 

Requests which alter (a.k.a. modify) the state of a resource are called WRITE requests. A 

WRITE request is synonymous with the terms update, and state-altering. A client 

receiving a local reply to a READ has performed a read-local operation. However, a 

client receiving a remote response to a READ has performed a read-through operation. A 

delayed state-alteration is known as a write back. However, an immediate state-alteration 

on the live resource is the result of a write-through operation. 

The following sections review research literature about disconnected file caches, static 

and dynamic web caches, distributed object caches, consistency maintenance, and WS 

caches. The review concludes by a summary outlining the findings. 

Disconnected File Caches 

The Coda file system (KIS 92, SAT 96, NOB 97) represented an important step towards 

disconnected file IO operations. Coda is a networked file system that evolved from the 

Andrew file system (AFS). Coda is motivated by the need for disconnected information 

access. The Coda project and related research emphasizes the need for adaptation as a 

result of mobility constraints (NOB 97). 

Two adaptation strategies are defined, application transparent adaptation and application 

aware adaptation (NOB 97). In the former strategy, the file system is responsible for 

managing information availability and control, while in the latter strategy an application 

can influence adaptation. The influence of the application is made possible by 
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application-specific resolvers (ASR). A resolver is a file format handler, which performs 

conflict resolution (KIS 92, SAT 96, NOB 97). 

Coda’s main strategy, application transparent adaptation, has three modes of operation; 

hoard, emulate and reintegrate. In the hoarding mode, requests are returned from the 

server and are locally stored. In the emulation mode, all requests are answered from 

cache, and WRITE requests are logged. Finally, in the reintegration mode, Coda attempts 

to detect conflicts and perform resolution/reconciliation. The reintegration mode begins 

when the connection is regained. Conflict resolution in the reintegration phase uses 

Isolation-Only transactions (IOT). An IOT detects read-write conflict based on 

serializability constraints. However, the detection and resolution of write-write conflicts 

is left to ASRs (NOB 97, KIS 92, SAT 96). 

Reintegration occurs in two phases, rapid cache validation and trickle reintegration. In 

the rapid cache validation phase, the NU sends a list of stamps, representing cached 

content and the server is responsible for acknowledging or revoking the stamps. 

However, in the trickle reintegration phase, the NU propagates updates to the server in 

the background of new requests. Reintegration is further optimized by a logical divider 

mechanism, where records are either removed (not propagated) or stored in the 

disconnected log depending on ongoing reintegration results (NOB 97, KIS 92, SAT 96). 

Coda implements user assisted cache miss handling by the use of a user model. The 

model approximates user patience and decides if a cache miss is reported to the user or is 

answered from a remote location. A remote answer has a weight proportional to the 

detected network bandwidth.  

The ROVER toolkit (JOS 97) is a framework for the disconnected operation of objects. 

ROVER assumes optimistic concurrency control, and performs application 

transparent/aware adaptations comparable to those of Coda (KIS 92, SAT 96, NOB 97). 

However, the cache content of ROVER is objects, instead of files (JOS 97). The objects 

are named relocatable dynamic objects (RDO). 

An RDO is replicated on the client-side and all operations are locally performed. A log of 

mutated (a.k.a. state-altered) objects is maintained by the client and is sent to the server 

when new RDOs are imported. A client-side scheduler is responsible for incremental 
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push transfer of the logs. The server, in turn, is responsible for conflict detection, 

resolution, and the distribution of messages. The messages notify clients of all resolved 

conflicts. 

ROVER implements queuing of remote procedure calls (referred to as QRPC). A QRPC 

performs lazy/asynchronous import of RDOs. Additionally, a QRPC implements a split-

phase operation, where an interrupted response triggers server reattempts. The split-phase 

operation removes the need for the resubmission of unanswered requests (JOS 97). 

File caches were originally developed for fully disconnected operation. The hoarding 

mechanism in Coda, and the replication of an RDO in ROVER are mechanisms which 

maintain disconnected availability of files. However, cache misses in such environments 

are always fatal (FRO 98). On write back policies, Froese et al. (FRO 98) observes that 

an aggressive write back policy conflicts with the priority of READs. In a simulation 

study of file write back policies, Froese et al. (FRO 98) find that a delayed write back 

policy does achieve good levels of cache consistency without sacrificing READ 

throughput. 

Web Caches 

In the area of web caches, and the context of static web content, Wang (WAN 99) 

recognizes the use of http proxy servers and client-side caches as the most common 

caching approaches. Proxy servers and client-side caches are nodes, which reside on the 

connectivity tunnel between HTTP clients and servers. Either approach operates 

transparently as a result of cache support in HTTP. Proxies and client-side caches are 

found useful because of reduced bandwidth consumption, lesser server load, and a shorter 

latency of responses. Additionally, client-side caches are noted for the benefit of 

disconnected availability of content. Wang (WAN 99) and Mahanti et al. (MAH 00) 

attribute these benefits to cache locality. Locally answered requests are returned faster, 

without the requirement of server processing. Hence, bandwidth consumption is reduced 

because of the elimination of a network roundtrip. Additionally, local availability of 

responses protect the client from server/network unavailability as requests are locally 

answered. 
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Web caches are possible due to the support for cacheability identification and consistency 

maintenance in the HTTP specification (W3C 05). An HTTP response specifies if the 

body of the response (a.k.a. the content) is cacheable. The response headers also specify 

an expiry time, after which the content is invalid/old (a.k.a. stale). An HTTP client can 

perform explicit invalidation by sending a special validation request to the server. The 

request is marked by a condition which states that a server response is needed only if the 

content has changed since a given time. Alternatively the HTTP client can send a request 

which queries the last time of content change, for a given request. In turn, the client 

compares the time of change to that of a locally cached response. The result of this 

comparison is that a local response is either stale or valid, and processing proceeds 

accordingly.  

Of note, is cache sharing between HTTP proxies. Cache sharing is the responsibility of 

related protocols (WAN 99)  (e.g. the Internet Cache Protocol ICP (CAO 02)). ICP 

supports interactions (a.k.a. negotiation) between caches, and is out of the scope of this 

work. 

Consistency maintenance 

Wang (WAN 99) states that the selection of a consistency model depends on the 

frequency of content change, and on the client's tolerance for stale content accesses. 

Wang (WAN 99) notes that stale content is commonly served to clients while the web 

server is unreachable. HTTP’s support for the maintenance of cache consistency (a.k.a. 

coherency) is implemented by two commonly used models. The first is the strong 

consistency model, and the second is the weak consistency model. Strong cache 

consistency is maintained by client validation (a pull mechanism), or server invalidation 

(a push mechanism). Weak consistency, however, is maintained when the cached content 

is invalidated by a value (e.g. time-to-live value). 

In a pull mechanism, the result is higher cache hit latency. The latency of the cache hit is 

higher because the client must validate a cached item by sending a special request to the 

server. The push mechanism, however, requires server cooperation and a static/constant 

location for the client. The HTTP server is responsible for broadcasting invalidation 

messages (a.k.a. reports); the messages notify clients of content changes.  
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Wang (WAN 99) reviews a proposed mechanism known as piggyback invalidation. 

Piggyback invalidation is a hybrid pull/push mechanism, where the server appends an 

invalidation report/list to responses of new requests. The piggyback mechanism removes 

the push requirement of a static/constant client location. Moreover, the piggyback model 

is noted for resulting in a level of cache consistency that is higher than weak consistency, 

and lower than strong consistency. 

Dynamic Content Caches 

Dynamic content (e.g. CGI, JSP, ASP) are characterized by high frequency of change. 

Moreover, a dynamic resource is determined by both a URI and the parameter values of 

the URI. As a result; cacheability identification and consistency maintenance is more 

challenging (CAO 98, HUA 99, WAN 99). 

Dynamic content caches generally follow one of two approaches (WAN 99); the active 

caching approach (CAO 98) and the server accelerator approach (HUA 99). Either 

approach imposes the use of a programming language (e.g. java) for implementation of 

dynamic content. The requirement of language compatibility limits the use of a cache to 

homogenous environments (CAO 98, HUA 99, WAN 99). 

Server accelerators require the alteration of dynamic content to use special cache API. 

The cache API is defined by the accelerator entity, on the server side. The applicability 

of the server accelerator approach to a client-side WS cache, as such, is not practical. 

Hence, the following section ignores the server accelerator approach, and reviews the 

active caching approach. 

The active caching approach 

Active caches require the implementation of computation logic, known as applets. The 

applets are requested by a caching proxy, along with the applet dependencies (e.g. data 

file). The proxy, in turn, receives a request and invokes the cache applet with a defined 

set of parameters (e.g. request headers). The response of the applet is a new page, or a 

hint to use a cached page, or to pass the request to the server. 

The cache content in an active cache is executable logic, instead of web documents. 

However, executable logic is commonly dependent on a data resource (e.g. database), this 
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dependency is generally unsupported by active caches. However, Huang et al. (HUA 99) 

proposed an architecture where an applet implementation uses a special file IO library. 

The library performs automatic identification of applet dependencies (generally referred 

to as server data). The library intercepts file commands (e.g. open, read) and dynamically 

retrieves the required files. 

Huang et al. (HUA 99) argue that trust between servers and caches is a required 

prerequisite for availability of applet dependencies. Trust is required because server data 

can contain sensitive organizational or user data. Trust is established after mutual 

authentication between servers and caches. Only a trusted cache is permitted to receive 

server data. 

Consistency maintenance 

In the approach of Cao et al. (CAO 98), a cache applet records a log of client requests, 

and the log is periodically pushed to the server. Additionally, resource management 

policies are defined. A policy categorizes the output of a cache applet as negotiated or 

non-negotiated. The difference between the two categories is that a negotiated document 

is a trusted document and the data it requires is retrieved for local storage. Trust is 

established if the server shares a set of HTTP protocol extensions. 

The approach of Huang et al. (HUA 99) assumes cache applets are read only. Read only 

applets do not modify their data. Hence, implicit invalidation of applets and applet 

dependencies is considered sufficient. 

Distributed Object Caches 

Conan et al. (CON 03) describe Domint as a system enabling disconnected operation of 

CORBA objects for mobile clients. Domint’s architecture is based on portable 

interceptors (PI), a CORBA mechanism for monitoring and altering of communication 

between a client stub and an Object Request Broker (ORB). Requests are sent directly to 

the remote object while connectivity persists. Domint’s recognizes two levels of 

connectivity; partial and full. Domint causes minimal or no overhead in either level of 

connectivity (CON 03). Method calls which are executed during partial connectivity are 

executed both locally and remotely. 
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Conan et al. (CON 03) state that disconnected operation is dependent on method call 

semantics. The semantics of a method call are the presence of in (e.g. data), out (e.g. 

pointer), in/out parameters (e.g. pointer w\value) and if a return value is defined. All 

locally executed operations in disconnected mode are logged. The logging of method 

calls is dependent on the semantic relationships across method calls. Conan et al. (CON 

03) identify the reintegration phase as the time period following reestablishment of 

connectivity. Logged operations are used for reconciliation (a.k.a. consistency 

maintenance) with the ORB during the reintegration phase. 

Domint (CON 03) assumes that no object is accessed by more than one disconnected 

client at a time. The assumption of optimistic concurrency removes the complexity of 

distributed consistency maintenance. 

CASCADE (CHO 00) is a distributed object caching architecture which supports 

disconnected operation of CORBA objects. CASCADE is similar to Domint (CON 03) in 

its use of portable interceptors (PI). A PI intercepts and alters the communication 

between objects. Moreover, CASCADE caches the distributed object (code) and its 

dependencies (data). Cached objects are organized into hierarchies based on FCFS arrival 

of requests. Strong consistency is maintained by imposing an order on updates, reflected 

in the hierarchical tree structure of the clients. The tree structure is distributed, and is also 

replicated at each node. The distribution and replication of the tree structure protects 

CASCADE from node/tree-branch failure. 

In CASCADE (CHO 00), two classes of configurable policies exist. The first class is 

policies per request and the second is policies per object. The policies implement 

consistency guarantees, persistent behaviour along with more cache semantics. The per 

request policies are dependent on call semantics. However, the per object policies are 

dependent on the hierarchy of clients. 

Distributed reconciliation is also implemented, and it is dependent on the selected policy 

class. A policy influences update propagation and the consistency guarantees. CASCADE 

supports a set of READ/WRITE policies; read your writes (a.k.a. blind reads), monotonic 

reads and monotonic writes (a.k.a. no conflict), writes follow reads (a.k.a. read 

preference), and total ordering (a.k.a. global sequencing of updates). Additionally, 
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CASCADE guarantees eventual update propagation (CHO 00). The complexity and 

range of policies supported by CASCADE enable the guarantee of strong cache 

consistency (CHO 00). 

Cache Consistency Maintenance 

Wang et al. (WAN 04) developed SACCS, a hybrid consistency maintenance scheme for 

nomadic environments. Existing approaches are categorized as stateful and stateless. 

Stateful approaches (e.g. explicit invalidation) require server cooperation, while stateless 

approaches (e.g. implicit invalidation) do not. SACCS is a hybrid stateful and stateless 

algorithm. The algorithm uses a set of flags located at the server and the NU. Invalidated 

cache content is replaced by a placeholder ID. Upon re-connectivity, valid content is 

flagged as uncertain and refreshed accordingly. SACCS removes the requirement of 

periodic broadcasts of invalidation messages/reports (WAN 04). 

In a study of consistency maintenance mechanisms for nomadic environments, 

Lindemann et al. (LIN 03) propose a new mechanism named lazy invalidation. Lazy 

invalidation does not require direct connectivity/communication between the NU and the 

server. The approach works by exploiting the concept of epidemic distribution of 

information. Epidemic distribution is derived from biological environments, where 

information flows between mobile nodes when they are in close contact. 

Invalidation messages are epidemically distributed between nomadic units. However, a 

result of mobility is that lazy invalidation can not guarantee that all nodes receive the 

invalidation messages. Lindemann et al. (LIN 03) propose the coupling of lazy 

invalidation with implicit invalidation for overcoming this limitation. The proposal 

guarantees the invalidation of cached content, either by lazy invalidation or implicit 

invalidation. In a simulation study, the coupling of implicit and lazy invalidations 

resulted in a cache consistency efficiency of 95% (LIN 03). 

SOAP Caches (a.k.a. WS Caches) 

Terry et al. (TER 03) identified the need for WS caches for mobile WS clients. 

Transparent deployment and general applicability are identified as two desired properties 

of a WS cache. Transparent deployment is defined as non interference with the WS or 
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client implementation. General applicability is defined to differentiate a cache from a 

service-specific and application-specific error handling logic. 

Terry et al. (TER 03) recognize two critical issues in WS caches, namely the 

identification of cacheability and consistency maintenance. The lack of necessary 

semantic information in the service description (WSDL) is identified as the primary 

challenge for caching of boxed WS. The authors state that a requirement for a WS cache 

is that all operations are designated either as update (a.k.a. WRITE) or query (a.k.a. 

READ). The association of write/read semantics to WS operations identifies cacheability. 

Query operations are cacheable because they do not alter the service state, while Update 

operations are deemed selectively cacheable with the requirement of replay. 

Terry et al. (TER 03) state that the requirement of strong consistency conflicts with the 

existing WS standards. The existing standards do not support Stateful consistency 

maintenance approaches (e.g. pull, push, or piggy-back). The alternative stateless 

approaches (e.g. implicit invalidation) are suggested as a compromise. Terry et al. (TER 

03) recognize that execution of an update operation invalidates a stored response of a 

query, which motivates additional consistency maintenance if the state interdependencies 

are known. Terry et al. (TER 03) propose the use of a modification transform to cached 

records. The transform modifies cached query requests to reflect the state changes of an 

update invocation. The transform requires knowledge of the state interdependencies of 

WS method, and additionally requires executable logic approximating the operation of 

service methods. 

Terry et al. (TER 03) declare that "for pre-existing web services, understanding the 

correct consistency requirements is an extremely challenging issue". The proof of 

concept implementation demonstrated the feasibility of a WS cache operating in 

disconnected mode. Terry et al. (TER 03) also identified that SOAP caches can encounter 

difficulties when attempting to match SOAP requests to previously seen requests. The 

difficulty leads to a false cache miss and is known as a cache busting problem. The 

problem is a direct result of SOAP’s XML grammar; it is manifested when two SOAP 

headers mismatch, across two identical requests. 
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Takase et al. (TAK 02, TAK 04) offer a solution to the cache busting problem in SOAP 

caches. Canonicalization is proposed as an approach to guarantee request matches based 

on an XML canonicalization template. The canonical form of a document describes the 

permissible changes in document structure, while the document meaning is preserved. If 

two canonical forms match, then the documents are equivalent regardless of the 

difference in their physical structures. A canonicalization template is service specific and 

caching is demonstrated using only a modified reverse web proxy. Takase et al. (TAK 02, 

TAK 04) generalize all SOAP requests as read only and no special attention is given to 

the feasibility of the XML intensive approach on constrained mobile devices. 

In a study of client-side WS caches, Devaram et al. (DEV 03) considered RPC-style 

SOAP messages. An RPC client is profiled and the generation of SOAP requests is 

divided into stages. The client is found to spend a considerable fraction of the request 

latency in the XML encoding stage. The XML encoding stage consumes 40% of the 

request latency. The proposed solution is SOAP compression. Devaram et al. (DEV 03) 

found that SOAP compression is more costly (in latency) than the XML encoding stage. 

Additionally, Devaram et al. (DEV 03) observed that the client-side approach leads to 

improved response times, as the client does not incur the cost of encoding previously 

encoded SOAP requests. Another observation is that a large fraction of an encoded 

document remains constant across requests. The authors suggest the use of these 

observations when deciding on the cache location and the caching unit. Devaram et al.’s 

(DEV 03) primary focus, however, is on the reduction of SOAP latencies. 

Tian et al. (TIA 03) also observe the high cost of XML processing. The authors approach 

the problem by dynamic compression of SOAP messages. The server chooses the 

compression level depending on the client’s choices and depending on server load. The 

method is classified as a quality of service approach. Tian et al. (TIA 03) promote the use 

of quality of service (QoS) approaches for mobile WS clients. 

Alwagait et al. (ALW 04) describe DeW as a framework for dependable operation of web 

services. DeW supports location independence of the WS in respect to clients. In DeW, a 

WS is replicated across network nodes with the goal of providing fault tolerance and load 

balancing. An extended WSDL is developed along with a specialized client proxy. The 
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client proxy does not interfere in the communication between the client and the WS. 

However, when a network fault occurs (e.g. WS is unavailable), the proxy is responsible 

for communicating with the DeW infrastructure and redirecting client requests to a WS 

replica. The DeW framework requires strong connectivity of DeW components; as a 

result it is unsuitable for intermittently connected clients. Furthermore, the DeW 

framework requires a SP to implement special service logic in support of DeW operation 

(ALW 04). 

Summary 

A basis for the development of a WS cache is the operation modes of the Coda file 

system; hoard, emulate, and then reintegrate (KIS 92). Moreover, Coda's adaptation 

strategies have been used by other frameworks (e.g. ROVER (JOS 97)). Application 

aware/transparent adaptations are guidelines for a scalable, and a heterogeneity-

supporting WS cache. 

The studies of web caching identify proxy caches and client caches as proven 

mechanisms for protecting clients from server unavailability. Existing research has 

identified that an application's tolerance for stale resource accesses decides the choice of 

a consistency model (e.g. strong vs. weak). The approaches of caching dynamic web 

content require the replication of executable logic. The replication of executable logic, 

however, conflicts with the assumptions of heterogeneous environments (e.g. the WS 

environment). Furthermore, replication of executable logic on mobile devices is an 

additional burden, because of the limited processing and storage resources. 

The reviewed distributed systems (Domint (CON 03) and CASCADE (CHO 00)) show 

that a remote object's operation in disconnected mode is possible. The consistency 

maintenance mechanisms utilize a log enabling reconciliation at the reintegration phase. 

In these systems, the relationships between operations highly influence the cache 

behaviour. The relationships are the availability/sharing of in/out parameters and 

existence of return values. Additionally, CASCADE (CHO 00) implements cache 

policies which are assigned per method or per object. The use of a policy class (e.g. per 

method) enables the choice of higher or lower consistency guarantees. The choice of 

consistency guarantees is dependent on the application requirements. 
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Implicit and explicit invalidation of cache content are well studied. The use of implicit 

invalidation is shown to be the approach of choice for maintaining weak cache 

consistency on mobile clients. However, a hybrid algorithm called lazy invalidation is 

shown to offer considerable improvements to mobile cache consistency without the 

requirement of server cooperation. 

The HTTP (W3C 05) protocol does not support identification of cacheability for HTTP 

POST requests. Moreover, support for consistency maintenance in HTTP uses a pull 

based approach. On each request, a client is responsible for testing a last-modified header. 

This mechanism, however, is only for GET requests, and it requires strongly connected 

clients. Moreover, state-altering requests require the minimum of delayed execution. 

However, the HTTP protocol does not permit/support write back of POST requests. 

With regards to WS caches, the community is beginning to focus on the challenges. The 

challenges are in the identification of cacheability, and in the choice of consistency 

maintenance strategies. The lack of semantic information (a.k.a. metadata) describing the 

service methods is a critical limitation of the WSDL. The semantic information describes 

WS methods as READ or WRITE. 

On HTTP, the identification of cacheability of WS methods is not possible. The HTTP 

specification supports cacheability headers by resource. An HTTP resource is identified 

by a URL. However, SOAP requests target a single resource URL, regardless of the 

intended WS method.  

For disconnected consistency maintenance, a transform which modifies cache records is 

proposed (TER 03). The transform (a.k.a. modification transform) modifies a cached 

READ to reflect a change of state which resulted from a disconnected WRITE. The 

modification transform, inherently, requires knowledge of the functional dependencies 

between WS methods. Additionally, the transform is an executable logic, which 

approximates the operation of a WS method. However, the requirement of executable 

logic limits the applicability of the approach to homogeneous environments. 

On SOAP caches, the identity of what is cached (a.k.a. cache unit) is a prerequisite for 

cache implementation. A cache can be implemented as a hashtable where 

request/response pairs are stored using a hashfunction of the SOAP request. SOAP 
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complicates caching because it is specified as in verbose XML grammar. It is common 

that string comparison of two identical SOAP requests does not succeed. A hashfunction 

which directly compares the string representations of SOAP messages can fail. The 

failure occurs when two hash values, of two identical SOAP requests, are unequal. The 

inequality is a result of SOAP’s verbose XML grammar. A an example is when a SOAP 

header contains data that changes across requests (e.g. request time, or request count). As 

a result, two identical requests have two different string representations, and two different 

hash values. This is known as a cache busting problem. Cache busting results in false 

cache misses which decrease cache utility and efficiency. 

Eliminating cache busting is important for an efficient cache implementation. A 

generalized XML grammar (e.g. canonicalization template) is proposed (TAK 02, TAK 

04) as a method which eliminates cache busting. However, a mechanism similar to 

CORBA’s portable interceptors (PI) (CHO 00, CON 03) may also prove useful in this 

objective. A PI intercepts method invocations instead of protocol messages. Similar 

approaches to a CORBA PI have been used for dynamic content caches (e.g. Huang et al. 

(HUA 99)) and file system caches (e.g. Coda (KIS 92, NOB 97)). 
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CHAPTER 3 

THE WS CACHE FRAMEWORK 

A client-side cache is the execution environment of the WS cache model. The cache 

implementation, named CRISP, is a proof of concept which enables experimentation. The 

name CRISP is not an acronym. The system architecture which motivated the design of 

CRISP is outlined in Figure 3-1. The client-side WS stack (2) performs the operations of 

the WS proxy as originally shown in Figure 1-6. The client application (1) is unaware of 

the network connectivity or the communication between the client-side stack and WS (6). 

 

Figure 3-1.  The system architecture, the client WS stack (2) is selected as the location of 

CRISP 

This chapter is structured as follows; section 3.1 describes the design of the client-side 

cache and details the roles and interactions of components. In section 3.2, the design of 

the WS cache model is described and an example is used to show a cache model 

specification. The example used builds on the simple service described in chapter 1. In all 

diagrams; squared brackets are used to indicate a condition (e.g. state) for an interaction. 

The literal M denotes a method signature and parameters values. The literal RV denotes 

the return value, and DV denotes a default value. The symbol hf is the hashfunction used 

as hf(M). 
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The Client-side Cache 

CRISP is a WS cache located inside the client-side WS stack [Figure 3-1 (2)]. CRISP 

requires the specification of the WS cache model. The model is specified in an XML 

document, named the cache semantics description (CSD). 

 

Figure 3-2. The architecture of CRISP 

A simple architecture diagram is in the Figure 3-2 and a detailed version is at the end of 

this section [Figure 3-8]. In CRISP, cache operation is initiated when a method 

invocation/return is intercepted (e.g. GetRecord/GetRecordResponse). CRISP does not 

intercept or modify SOAP messages, and as a result, it does not interfere with the WS 

standards. Additionally, the location of CRISP within the WS stack allows transparent 

operation. The operation of the cache is transparent to both the client and the WS. 

Therefore, the WS client overcomes intermittent connectivity by transparent adaptation 

(NOB 97). 

CRISP operates in one of three states, namely harvest (while connected), emulate (while 

disconnected) and reintegrate (once a connection is re-established). 

Design decisions 

The chosen location for CRISP is the client-side WS stack. The relationship between the 

WS stack and the client application is the exchange of method invocations/returns. The 

WS stack precedes the SOAP processing stage (DEV 03, TIA 03). Hence, CRISP 

intercepts method invocations/returns, and no SOAP messages are intercepted or 

modified. Therefore, the chosen location protects the hashtable from cache busting (TER 

03, TAK 02, TAK 04). In addition, the chosen location means that cache operation is 
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performed at a step preliminary to the SOAP encoding stage. As a result, the client 

application benefits from the elimination of SOAP processing at each request. 

 

Figure 3-3. The method-call interception proxy MIP (2) is located between the client 

application (1) and the client-side WS stack (3) 

The Method-call Interception Proxy (MIP) 

The client application [Figure 3-3 (1)] invokes method calls on the WS stack. Upon each 

invocation, the MIP [Figure 3-3 (2)] intercepts the method invocation (e.g. GetRecord) 

and initiates the cache operation. If a request can not be answered locally, then the MIP 

sends the request to the lower levels of the WS stack [Figure 3-3 (3)]. The WS stack, in 

turn, communicates via SOAP messages over HTTP with the remote WS [Figure 3-4]. 

 

Figure 3-4. The client-side WS stack (1) and the WS (2) communicate via SOAP 

request/response pairs, the communication is transported by HTTP 

1 2 

2 3 1 
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The Network Monitor 

The network monitor component [Figure 3-5 (1)] observes the connectivity state [Figure 

3-5 (2)] and initiates resilience to connectivity fluctuations. Connectivity is seen as either 

online (ON) or offline (OFF). The state of CRISP is altered depending on the relationship 

between the current connectivity state and the previous connectivity state [Table 3-1]. 

Table 3-1. The state of CRISP is dependent on current and past connectivity states 

Past Connectivity Current Connectivity The State of CRISP 

Unknown OFF Emulate 

OFF ON Reintegrate 

OFF OFF Emulate 

ON ON Harvest 

ON OFF Emulate 

 

 

Figure 3-5. The network monitor (1) detects the network state (2) and influences theMIP 

(3), and the cachemanger (4) 
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The Cache Manager  

The cache manager [Figure 3-6 (2)] controls all cache operations. These operations are 

initiated by the MIP [Figure 3-6 (1)]. The cache manager interfaces with the CSD [Figure 

3-6 (3)] preliminary to making cache decisions (e.g. add to cache, add to log). 

 

Figure 3-6. On every request from the MIP (1); the cache manager (2) queries the WS 

cache model (3) 

The cache manager queries the CSD, if a request is identified as a READ (e.g. 

GetRecord) then the cache manager queries the hashtable [Figure 3-7 (2)]. If the 

hashtable contains a return value of the request, then the result is forwarded back to the 

MIP. However, if no local return value is found (a cache miss) then this is handled 

depending on the state of CRISP. In the emulate state, the cache manager returns a 

default value (DV), if known, and adds the request to the READ queue [Figure 3-7 (3)]. 

However, in the harvest state, the cache manager returns a null which indicates that the 

request should be processed remotely. In turn, the MIP forwards a pair of method 

invocation/return back to the cache manager after the request is processed by the WS. 

Alternatively, the CSD can identify a request as a WRITE (e.g. AddRecord). The cache 

manager proceeds depending on the state of CRISP. If the state is emulate, then the cache 

manager adds the request to the WRITE queue [Figure 3-7 (4)]. However, if the state is 

1 

3 
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harvest, then the cache manager returns a null to the MIP, which in turn sends the request 

to the lower levels of the WS stack, with the goal of processing by the WS. 

 

Figure 3-7. The cache manager (1) queries the hashtable (2) if a request is cached, 

depending on the result and the current state: the request is added to the READ queue (3) 

or the WRITE queue (4). 

The Cache 

The cache is composed of a hashtable and two queues; the READ queue (DRQ) and the 

WRITE queue (DWQ) [Figure 3-7 (2, 3, 4)]. All operations are performed by the cache 

manager component [Figure 3-7 (1)]. The queues are populated in the emulate state, and 

are emptied when the state becomes reintegrate. 

The hashtable uses a function hf parameterized by the WS location, method name, and 

any parameters specified by the CSD. The function hf is a hashfunction used for storing a 

response, and mapping stored responses to new requests. 

The DRQ and DWQ contain READ and WRITE requests, respectively. The DRQ 

guarantees uniqueness. The guarantee of uniqueness is an optimization, permitted 

because the outcome of N identical READs is equivalent to the outcome of the first 

READ. The same guarantee, however, is not implemented by the DWQ. The DWQ 

permits duplicates because the state of the WS is dependent on the order, and number of 

WRITEs. 
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Consistency Maintenance 

Consistency maintenance in CRISP does not require WS cooperation. Hence, implicit 

invalidation (CAO 98, NOB 97) is used. The invalidation condition of a record is 

dependent on the CSD’s specification. The CSD can specify a response’s expiry on a 

threshold of time (e.g. 1 hour). Alternatively, the CSD can specify a directed state graph, 

which results in the invalidation of a cached READ (e.g. GetRecord) cascaded by the 

execution of a WRITE (e.g. ModifyRecord). 

Upon reestablishment of connectivity, the network monitor triggers the reintegration 

phase (inspired by Coda (NOB 97)). The DWQ buffers state-altering methods invoked 

during disconnectivity, in FIFO order. The reintegration phase commences by invoking 

the invocations stored in the DWQ, followed by the invocations stored in the DRQ. 

Depending on the cache policy, the write back of the queues is either preemptive of new 

requests, or is performed in the background (a.k.a. trickle reintegration). 

 

Figure 3-8. Detailed architecture diagram of CRISP 
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Cache Model Specification 

CRISP requires the specification of a WS cache model. This model is specified as an 

XML document named the cache semantics description (CSD). The following sections 

describe the fundamental model elements. 

The cacheability element 

The cacheability semantic is defined when methods are classified as a READ and/or a 

WRITE. Cacheability is assumed for READs (e.g. GetRecord), and WRITEs (e.g. 

AddRecord) are logged for write back. A WS method is marked as a READ if it is state-

dependent. A state dependency is assumed if the method defines a return value [Table 3-

2]. On the other hand, a WS method is marked as a WRITE if it is state-altering. State 

alteration is assumed if the method does not define return a value [Table 3-2].  

Table 3-2. Identification of method cacheability in the CSD 

Method signature Return Value CSD Marking 

datatype GetRecord(parameters) yes READ 

AddRecord(parameters) no WRITE 

ModifyRecord(parameters) no WRITE 

The dependency matrix element 

The dependency matrix is used for specifying the functional dependencies of methods. 

The dependencies are used for consistency maintenance in CRISP, they encode the 

relationship [Table 3-3] between WS methods and internal resources (e.g. database 

tables). The matrix is a directed relationship graph between N methods and X resources. 

Table 3-3. A specification of a simple dependency matrix element in the CSD 

Method Dependent on Method 

GetRecord ModifyRecord 

AddRecord  

ModifyRecord  

 

In the above table, the GetRecord method is singularly dependent on ModifyRecord. The 

dependency, however, does not specify a shared parameter as a condition for 

dependency. Hence, the complexity of the dependency matrix is low and all cached 

instances of GetRecord are removed from cache after any execution of ModifyRecord. 

This matrix assumed that there is a single resource (e.g. database table) which is shared 
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between GetRecord and ModifyRecord. However, in reality, many resources are shared 

(e.g. database rows) and only one resource at a time is relevant. The relevant resource is 

identified by a shared parameter (e.g. record identifier). 

The WS methods use X resources, and each resource is denoted by R. A method either 

READs or WRITEs a resource. The dependency matrix [Table 3-4] encodes a directed 

relationship graph [Figure 3-9]. The result is that a cached method Mi (state-dependent on 

Rα) is invalidated/refreshed when Mj (state-altering of Rα) is invoked. 

Table 3-4. A specification of a more complex dependency matrix element in the CSD 

Method Dependent on Method 

GetRecord(Rα) M1 ModifyRecord(Rα) M2 

AddRecord M3  

ModifyRecord M2  

 

 

Figure 3-9. Directed state graph between N methods (denoted by M) and X resources 

(denoted by R) 

The default values element 

Terry at al. (TER 03) proposed the specification of default values for WS methods. A 

default value shields the application logic from the effects of a disconnected cache miss. 

Default values are defined for READs [Table 3-5], at the model design time, and are used 

for initializing the CSD. In this work, the use of default values is termed partial cache 

hits.  
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Table 3-5. A specification of simple default values in the CSD 

Method Default Value 

GetRecord “temporarily unavailable” 

Summary 

The design of a client-side cache and a WS cache model are the subject of this chapter. 

The client-side cache, implemented on Windows Mobile is named CRISP, and is used for 

experimentation. CRISP is located within the client-side WS stack, it intercepts method 

invocations and method returns and performs an action. One of three actions is possible; 

a method invocation is sent to the WS, stored in a local log, or answered from cache. The 

action performed depends on the state of CRISP and on the WS cache model. Hence, the 

operation of CRISP requires a specification of the WS cache model. 

The WS cache model consists of three elements; cacheability, dependency matrix, and 

default value elements. The model is specified as an XML document named the cache 

semantics description (CSD). A valid CSD specification requires only the specification of 

the cacheability element. Cacheability is specified by assigning READ/WRITE semantics 

to WS methods. The complexity of the CSD can then be increased by including the 

dependency matrix. The dependency matrix represents the functional dependencies of 

WS methods.    

The operations of CRISP are transparent to both client applications and remote WS. 

CRISP maintains three states; harvest, emulate, and reintegrate. The state of CRISP (e.g. 

emulate) is identified by the relationship between current connectivity and past 

connectivity (e.g. current=OFF and past=ON/OFF). The role of connectivity detection 

and state maintenance is internal to CRISP. CRISP detects the state of OFF connectivity, 

buffers WRITEs, and answers READs locally. Once connectivity is regained, then 

CRISP performs consistency maintenance, driven by the cache semantics description. 

The design of CRISP, the cache semantics, and the location of the framework are the 

three factors that enable transparent adaptation of the WS client to intermittent 

connectivity. 
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CHAPTER 4 

EXPERIMENTATION 

The evaluation of this research is carried out by three sets of experiments, alphabetically 

labelled A, B and C. In each set, experiments are assigned a goal and one or more 

workload(s), metric(s), cache model(s), connectivity pattern(s), and cache policy. For 

each experiment, a minimum of one setting from each of the following settings is 

allocated: one WS, five synthetic workloads, three cache models, five network 

connectivity patterns. 

The choice of using five workloads is to have workloads containing a high to low ratio of 

READ and WRITE operations. Five workloads permit having workloads containing from 

100% READs to 20% READs, and from 0% WRITEs to 80% WRITEs, at 20% steps. 

The five network connectivity patterns, on the other hand, capture 100% connectivity 

down to 20% connectivity, at a 20% reduction of connected times in each pattern. 

In the first experimental set A, the cost of using the framework vs the no-framework 

scenario is compared. Additionally, the cache efficiency of a simple cache model is 

measured. The comparison is performed in strong and weak connectivity settings for the 

framework scenario. Experimental set B evaluates cache efficiency in relation to model 

complexity, using three cache models. The third experimental set (C), measures the 

influence of workload characteristics, network connectivity pattern on cache efficiency 

and on client cost. 

The first half of this chapter (0) details the experimental setup, and the second half (0) 

details the three experimental sets.  

Experimental Setup 

The Web Service 

The experimental WS implements methods supporting a public discussion forum. The 

use of a public discussion forum is seen as a realistic medium for mobile user learning. 

Mobile users will initiate new discussions (by asking questions), contribute to new 
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discussions by replying to existing topics and modify old posts. The WS supports 

common activities of public discussion forums by implementing a set of five operations, 

detailed by the following list of operations. 

WS Methods: 

The WS implements the following five methods, in no particular order: 

 Get the number of messages in a forum (READ) 

 List the messages of a forum (READ) 

 Read a message (READ) 

 Add a message (WRITE) 

 Modify a message (WRITE) 

WS Cache Models 

Three models are defined (see Table 4-1), the first model defines cacheability semantics 

and no consistency maintenance semantics are defined. In the second model, simple 

semantics supporting coarse consistency maintenance is defined. In the third model, 

detailed consistency maintenance is enabled by using a refined dependency matrix. The 

WS is defined to have N methods, maintaining X resources. 

Cache Model 1: Optimistic Model 

The model specifies a simple cacheability element for N methods. The cacheability 

element defines READ, WRITE semantics for each method. The model does not define 

any semantics for consistency maintenance. As a result the model is optimistic on the 

validity of the cached READs. 

Cache Model 2: Pessimistic Model 

In addition to the specification of simple cacheability, the model also specifies an 

additional element supporting consistency maintenance. The model specifies a simple 

dependency graph, representing the relationship between N methods and X resources. 

However, the X resources are approximated by a single resource R [Figure 4-1], as 

method arguments are not considered. The model is pessimistic because consistency 

maintenance is managed by the coarse granularity of the dependency graph. The 
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approximation of resources by a singular resource R leads to the invalidation of all 

READs, on every execution of a WRITE. 

 

Figure 4-1. The relationship of N methods (denoted by M) and a single resource (denoted 

by R), the original X resources (R1… Rx) are approximated by R 

Cache Model 3: Resource-Aware Model 

This model is a refinement of model 2. The resource relationships are specified for all X 

resources [Figure 4-2]. The granularity of the relationships is improved as the method 

arguments are considered for identifying resource accesses. 

 

Figure 4-2. The relationship of N methods (denoted by M) and X resources (denoted by 

R) 
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Table 4-1. The three Cache Models 

Model Cacheability 
Resource 

Relationships 

Consistency 

Maintenance 

1. Optimistic Model yes 0 resources none 

2. Pessimistic Model yes 1 resource simple 

3. Resource-Aware Model yes X resources complex 

 

Metrics 

The metrics are categorized by the nature of their measurement (e.g. cost, efficiency). In 

the first category are the metrics measuring cache efficiency. The second category is a set 

of metrics measuring network costs. In the third category, the metrics measure the costs 

expended by the WS client process (e.g. CPU Time). 

Cache Efficiency 

 Cache Hits: the number of locally found responses 

 Consistent Cache Hits: the number of consistent locally found responses 

 Cache Efficiency: the percentage of cache hits which are also consistent records 

accesses. Efficiency = #Consistent Cache Hits ÷ #Cache Hits 

Network Cost 

 Network Bytes - Inbound: the total byte size of inbound responses 

 Network Bytes - Outbound/Delayed: the total byte size of outbound requests, 

grouped by connectivity state. 

Client Cost 

 Request Latency – Time: the total time spent between a method call and receiving 

the method return 

 CPU – Time: the time spent by the CPU while processing a method call/return, 

this metric includes the overhead time of framework operation. 

 Memory – Bytes: the memory size of the client process, the size includes the size 

of the cache, cache content, and the process’s execution stack and heap. 

 

The client is instrumented to collect the metrics while it is subjected to a set of scenarios 

(e.g. Workloads). The client executes dependently on a request/connectivity pattern, and 

the metrics are collected after every request. 
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Workloads 

The experimental workloads are a set of synthetic request patterns. A synthetic workload 

is a set of WS requests following the Zipf distribution. The Zipf distribution is used for 

selecting the record ID. The requests are characterized by the ratio X (READ operations) 

to Y (WRITE operations), such that a workload is composed of X% READs and (100-

X)% WRITEs. For all workloads, optimistic concurrency is assumed and an experimental 

run assumes no write-write conflict. 

Synthetic Workloads 

 P1; 100% READs, 0% WRITEs 

 P2: 80% READs, 20% WRITEs 

 P3: 60% READs, 40% WRITEs 

 P4: 40% READs, 60% WRITEs 

 P5: 20% READs, 80% WRITEs 

Network Connectivity Patterns 

A fault generator is responsible for emulating intermittent connectivity. The connectivity 

is fluctuated between Online and Offline, at uniform random intervals and for uniform 

periods of time. An 80% Connectivity pattern means that the client is able to access the 

WS in 80% of the requests. 

 C1: 100% Connectivity (strong connectivity) 

 C2: 80% Connectivity (weak connectivity) 

 C3: 60% Connectivity (weak connectivity) 

 C4: 40% Connectivity (weak connectivity) 

 C5: 20% Connectivity (weak connectivity) 

Cache Policies 

A READ policy (RP 1) and two WRITE polices (WP 1-2) are enabled by the framework. 

Unless stated, the experiments use the default READ policy RP 1 and the default WRITE 

policy WP 1. The least recently used (LRU) policy is used as the default replacement 
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policy. In these experiments, the cache size is set to a large value, and as a result the 

replacement policy will not be executed. The replacement policy is only needed when the 

size/number of cached responses is close to the maximum capacity of the cache. 

Invalidation of cached elements is performed by implicit invalidation. A cached response 

expires by an age value, or when a resource-sharing WRITE is invoked. The WS cache 

model [Figure 0] details the invalidation conditions and parameters per WS method. 

Replacement Policies: 

Least Recently Used LRU 

This policy has been shown to support short-term temporal locality in web caches (e.g. 

(MAH 00, WAN 99)) and caches in general (e.g. KIS 92, CAO 95, FRO 98)). The policy 

removes the oldest cache record first. The goal is that the cache contains primarily 

records which are in demand. 

READ Policies: 

RP 1: Default 

In the default policy CRISP exploits local responses, regardless of connectivity state. As 

a result, the latency of requests is reduced at the cost of a decrease in consistent record 

accesses. CRISP can be configured to not exploit temporal locality, and instead to answer 

requests from cache only when network connectivity is lost. 

In addition, by default, CRISP implements an optimization suggested by Terry et al. 

(TER 03) transforming a disconnected cache miss to a partial cache hit (read-default). In 

addition to masking a cache miss by a partial cache hit (read-default), CRISP implements 

a simple optimization of the READ queue (DRQ). In response to a disconnected cache 

miss, the request is also queued for delay reading once connectivity is regained. 

WRITE Polices: 

WP 1: Background/Trickle write back 

Trickle write back during reintegration has been shown (FRO 98, CHE 95) to result in a 

better overall read throughput, without a significant decrease in the time of return to a 

consistent state. 
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WP 2: Preemptive write back 

It has been shown (FRO 98, CHE 95) that preemptive write back improves the 

consistency of the cache at a faster rate than is obtained by delayed write back policy. 

The improvement of consistency is the result of write preference, at the expense of a 

decrease in read throughput. 

Execution Environment 

The experiments are executed within virtual machines [see Figure 4-3] in order to control 

the environment. The virtual machines are configured to contain 512MB Ram, and a 

default Pentium III-class processing unit. An instrumented WS client uses a WS, given an 

experiment configuration. A configuration consists of a set of workloads, connectivity 

patterns, and a cache model. 

Virtual Machine, 512MB Ram, 

Pentium III CPU

Virtual Machine, 512MB Ram, 

Pentium III CPU

WS

Intermittent Connectivity - Simulator

WS Client

 

Figure 4-3. The execution environment 
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Experiments 

Experimental set A 

The goal of these first experiments is to demonstrate the benefit of a WS cache 

framework when compared to the no-framework scenario. The experiments measure the 

achieved cache efficiency of the framework scenario and then compare the client cost of 

using the framework to the client cost of the no-framework scenario. 

The framework scenario uses an Optimistic Model, as it is the simplest of all models. The 

comparison is made in strong connectivity (the first experiment), and is repeated again in 

weak connectivity (the second experiment). The specification of a WS cache model 

defines the cacheability of WS methods, and enables utility of the WS client during 

intermittent connectivity. 

Experiment 1: No cache model vs. Optimistic Cache Model 

The experiment is executed in the strongly connected setting (network connectivity 

pattern C1). The goal of the experiment is to measure the client cost of a WS client using 

the framework, and compare it to the client cost of the WS client without using the 

framework. The metrics collected are the client cost metrics. The workloads of this 

experiment are P1-P2 and only the default cache policy is used. 

Experiment 2: Optimistic Cache Model in weak connectivity 

The experiment subjects the framework scenario to weak connectivity (connectivity 

pattern C2). The goal of the experiment is to highlight the benefit of using the framework 

during intermittent connectivity. In the weakly connected setting, using a cache model 

enables utility of a WS client, and cache efficiency is measured. The client cost is also 

measured and compared to that of the strongly connected setting. The workloads of this 

experiment are P1-P2 and only the default cache policy is used. 

Experimental set B 

Three experiments evaluate the effect of model complexity on cache efficiency.  It is 

expected that as model complexity increases, that cache efficiency will also increase. All 

the experiments are executed under a weak connectivity constant using connectivity 
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pattern C2. Each experiment is executed using a workload containing 20% WRITE, and 

80% READ operations.  

Experiment 1: Cache efficiency of the Optimistic Cache Model 

The experiment executes an Optimistic Model (cache model 1) under weak connectivity 

(C2) and synthetic workload (P2). The goal of the experiment is to measure the cache 

efficiency in a baseline setting. The metrics collected are the cache efficiency metrics. 

Experiment 2: Cache efficiency of the Pessimistic cache model 

The experiment executes a Pessimistic Model (cache model 2) under weak connectivity 

(C2) and synthetic workload (P2). The goal of the experiment is to identify the observed 

cache efficiency in comparison to the results of the first experiment. The metrics 

collected are the cache efficiency metrics. The default cache policy is used. 

Experiment 3: Cache efficiency of the Resource-Aware cache model 

The experiment executes a Resource-Aware model (cache model 3) under weak 

connectivity (C2) and synthetic workload (P2). The goal of the experiment is to identify 

the observed cache efficiency in comparison to the results of the first two experiments. 

The metrics collected are the cache efficiency metrics. The default cache policy is used. 

Experimental set C 

The experiments measure the effect of two factors on cache efficiency and on the client-

side cost. The goal of these experiments is to measure the influence of workloads, and 

connectivity pattern using three cache models. It is expected that the costs at the client are 

composed of the cost of model processing, and the cost of framework operation. 

The first experiment evaluates a baseline setting, while the following two experiments 

evaluate the influence of one selected factor at a time. 

Experiment 1: Baseline cache efficiency and client cost of cache models 

Three models (cache model 1-3) are examined using workload P2 and network 

connectivity pattern C2. The metrics collected are the client cost metrics, the network 

cost metrics, and the cache efficiency metrics. The goal of the experiment is to evaluate a 

baseline setting. 
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Experiment 2: Influence of workload on cache efficiency and client cost 

Three model (cache model 1-3) are examined using workloads P3-P5 and network 

connectivity pattern C2. The goal of the experiment is to evaluate the influence of a 

workload on cache efficiency and cost. 

Experiment 3: Influence of connectivity on cache efficiency and client cost 

Three models (cache model 1-3) are examined using workload P2 and network 

connectivity patterns C3-C5. The metrics collected are the cache efficiency metrics, the 

client process metrics, and the network cost metrics. The goal of the experiment is to 

evaluate the influence of network connectivity on cost and on cache efficiency. The 

influence of network connectivity is compared to that of workloads. 
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CHAPTER 5 

RESULTS 

Experiment Set A 

The experiments use an Optimistic Cache Model to demonstrate the benefit of the 

framework. The experiments measure the achieved cache efficiency and compare the 

client cost of using the framework to a no-framework scenario. 

The experiments use two workloads, the first contains 100% READ requests and no 

WRITE requests, while the second contains 20% WRITE, and 80% READ requests. 

Cache efficiency is expected to decrease with the introduction of WRITE requests, as 

they result in the implicit invalidation of some cached responses. It is necessary to 

execute the no-framework scenario in strong connectivity, as only the utility of the 

framework permits the use of a WS client during intermittent connectivity. 

Data that show CPU utilization (%), or Latency (time) are displayed using trend lines. A 

trend line is either a moving average, or a logarithmic average of the data points. A 

moving average is the average of K data points, per graph point (e.g. 50 per. Mov. Avg). 

 

Figure 5-1. Execution cost of using the framework vs. the no-framework scenario 
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Observations and Discussion 

The results [Figure 5-1] show the total CPU utilization when using CRISP, in comparison 

to the total CPU utilization without CRISP. The results show that CRISP, using an 

Optimistic Cache Model, during strong connectivity exhibit low overhead of an 

additional 50%. The CPU utilization of the no-framework scenario is between 2% and 

4%, while the CPU utilization of the framework scenario is between %2 and 5%. 

The execution cost (CPU) of a workload composed of 100% READ requests is above the 

execution cost of the no-framework scenario, however the difference is not significant. 

The same result is observed when using a workload containing 20% WRITE requests, 

however the cost is higher. 

 

Figure 5-2. Request latency of framework, as Log of data, using workloads P1 and P2 

In the strongly connected setting, a beneficiary effect of using the framework is an 

expected decrease in the latency of requests. It is observed [Figure 5-2] that request 

latencies are lower, in the strongly connected than in the weakly connected setting. The 

observation is true, for a short workload (e.g. 25% of P1, or 25% of P2). The observation 

is also true for a workload composed of READs only. 
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The trend, however, changes when using the full workloads [Figure 5-2]. The longterm 

latency of requests in a workload containing a mixture of READ/WRITE requests is 

better in the weakly connected setting. Additionally, the request latencies of the workload 

containing a mixture of READ/WRITE requests are better in the longterm than the 

request latencies of a READs only workload. This result can be attributed to the 

framework’s overhead when processing READ requests. 

 

Figure 5-3. Cache efficiency using a mixed READ/WRITE workload (P2) during an 80% 

weakly connected setting 

Using the framework during weak connectivity, and a workload composed of 80% 

READ requests, and 20% WRITE requests, the framework achieves a cache hit rate 

above 50% and cache efficiency above 70% [Figure 5-3]. 

A result of caching is the exploitation of temporal locality. The effect of locally answered 

READ requests is the reduction of execution and network costs for the mobile device. 

During the processing of P1 (workload composed of 100% READ requests) the execution 

cost linearly drops in time. However, the result is not observed when processing P2 

(workload composed of 80% READ, and 20% WRITE requests), the processing cost 

increases as a result of the framework’s overhead (e.g. reintegration). 
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Figure 5-4. The linear reduction in processing cost when processing P1, shown as a log 

 

Figure 5-5. The linear increase of processing cost when processing P2, shown as a log 

A reduction in network cost shows that local responses reduce network utilization. 
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Figure 5-6. The reduction of network utilization when using the framework 

An effect of weak connectivity is an increase of inconsistent record accesses, and an 

expected decrease of cache efficiency. The intermittent lack of connectivity prevents the 

return to a consistent state and slows consistency maintenance. 

 

Figure 5-7. Cache hits and consistent cache hits using a mixed READ/WRITE workload 

(P2), weakly connected setting C2, and an Optimistic Cache Model 

Trendline: Log(Bytes Sent) = -28.23ln(x) + 355.56

0

100

200

300

400

0 500 1000

B
y
te

s

Requests

10 per. Mov. Avg. (Bytes Sent) Log. (Bytes Sent)

0

100

200

300

400

500

600

1 500 999

#
 C

ac
h
e 

H
it

s

Requests

Cache Hits Consistent Cache Hits

1000



 

50 

Caching is used with an implicit tolerance of stale records accesses. The achieved cache 

efficiency decreases over time [Figure 5-7] as cache consistency is not managed by the 

Optimistic Model. The underlying cause is that WRITE requests result in implicit 

invalidation of cached records, and the number of inconsistent cache hits increases over 

time as more WRITE requests are executed and consistency is not mainted. 

Intermittent connectivity is a constant of mobility; however the degradation of cache 

efficiency over time is a negative result for using an Optimistic Cache Model. The 

primary benefit of using the framework is the utility of a WS client during intermittent 

connectivity. It is observed that the client cost is low, that the latency of requests is 

reduced while the achieved cache efficiency is acceptable. 
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Experiment Set B 

The experiments use three WS cache models of increasing complexity. The first model 

contains cacheability semantics. The second cache model (Pessimistic Model) adds a 

dependency matrix, encoding the relationships between the WS method and resources. 

The matrix supports the invalidation/removal of stale READ records. However, the 

dependency matrix, in the Pessimistic Model, approximates all resources by a single 

resource R. The third cache model (Resource-Aware) refines the granularity of the 

dependency matrix by removing the approximation of resources.   

The experiments are executed in a weakly connected setting, and use workload P2, 

containing 80% READs, and 20% WRITEs. 

Observations and Discussion 

The experiments show that when using an Optimistic Cache Model, the cache hit rate is 

51.4%, and 72.6% of the cache hits are consistent record accesses [Figure 5-8]. During an 

extended period of weak connectivity, however, the Optimistic Cache Model is not 

sufficient for sustaining cache efficiency. The lack of consistency maintenance increases 

the number of stale record accesses over time.  

 

Figure 5-8. Breakdown of cache efficiency using Optimistic Cache Model 
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The lack of consistency maintenance in the Optimistic Cache Model can be overcome by 

introducing the dependency matrix element into the cache model.  

We observe that using the Pessimistic Cache Model severely reduced the number of 

cache hits to below that of the Optimistic Cache Model (15.2% vs 51.4%) [see Figure 5-

9]. The model’s complexity was increased by introducing the dependency matrix 

element. However, the introduction of a coarse granularity dependency matrix resulted in 

lower cache efficiency (13.8% vs 72%). The coarse dependency matrix approximates all 

resources by a singular resource R. The approximation of resource accesses by R leads to 

a large set of false positives. False positives are cached records invalidated by a single 

WRITE request. A direct result is a smaller number of records remain in cache, 

increasing the number of cache misses and severely degrading cache efficiency. 

 

Figure 5-9. Breakdown of cache efficiency using Pessimistic Cache Model 

The third experiment subjects the same workload and connectivity pattern to a Resource-

Aware cache model. The model complexity is increased by refining the granularity of the 

dependency matrix. Instead of approximating x resources by R, all resources (R1… Rx) 

are used. We observe the Resource-Aware cache model to successfully achieve cache 

efficiency above that of pervious models, at 99% [see Figure 5-11]. The result is achieved 

0

40

80

120

160

1 500 999

#
 C

ac
h
e 

H
it

s

Requests

Cache Hits Consistent Cache Hits

1000



 

53 

by the consistency maintenance enabled by the fine granularity dependency matrix. This 

result, however, is achieved at a slightly lower overall cache hit rate of 45.8%. Observe 

the following graph [Figure 5-10], it shows that the number of consistent cache hits 

nearly matches the number of overall cache hits. The result is that cache efficiency nears 

100% as nearly all records accessed are in a consistent state. 

 

Figure 5-10. Cache hits are all nearly consistent, using the Resource-Aware cache model 

The above result significantly improves the utility of the framework in mobile WS 

clients. High cache efficiency, as observed in the Resource-Aware cache model, enables 

the use of applications having low tolerance for stale records accesses. High cache 

efficiency (approaching 100%) means that nearly all record accesses are consistent. In 

turn, this satisfies a difficult requirement of applications that require consistent (or nearly 

consistent) record accesses. 

 

 

 

 

0

100

200

300

400

500

1 500 999

#
 C

ac
h
e 

H
it

s

Requests

Cache Hits Consistent Cache Hits

1000



 

54 

 

Figure 5-11. Cache hits, and cache efficiency, when using cache models of varying 

complexity 

The results show [Figure 5-11] that an Optimistic Cache Model achieves cache efficiency 

above 70%. The results also show that increasing the cache complexity does not 

automatically increase cache efficiency. The Pessimistic Model produced significantly 

lower results than the optimistic and Resource-Aware models. The number of cache hits 

is highest when using the Optimistic Cache Model, however cache efficiency is highest 

when using the Resource-Aware cache model. We’ve also shown that it is possible to 

achieve a significant cache efficiency of 99% while maintaining the cache hit rate above 

45%. 
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Experiment Set C 

The experiments measure the effect of workloads and connectivity pattern on cache 

efficiency and on the cost at the client-side. The measurements are grouped by cache 

model complexity. 

Observations and Discussions 

Subjecting an Optimistic Cache Model to workloads P2-P5 proportionally decreases the 

achieved number of cache hits [Figure 5-12]. In the workloads P2-P5, the number of 

READ operations starts at 80% (in P2) and decreases by 20% for each workload (e.g. 

60% in P3). The reduction in the number of READ operations is combined with a 

proportional increase of the number of WRITE operations. As a result, the number of 

cache hits decreases linearly with the decrease in number of READ operations in a 

workload. 

 

Figure 5-12. Effect of Workload on Cache Hits - Optimistic Model 

Furthermore, the reduction in the number of cache hits, as the number of READ 
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Figure 5-13. Effect of Workload on Cache Efficiency - Optimistic Model 

Next, we observe the effect of varying workloads on the latency of requests [Figure 5-

14], and on the processing cost [Figure 5-15] of the Optimistic Cache Model. Observe 

that request latency increases in the long term as the number of WRITEs increase. 

However the effect of workloads on the processing cost, in this model, is not significant. 

This result can be explained because the model complexity has a larger effect on 

processing cost, and request latency, than the effect of the distribution of READ/WRITE 

requests within a workload. 

 

Figure 5-14. Effect of Workload on Request Latency – Optimistic Model 
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Figure 5-15. Effect of Workload on CPU Utilization on the client – Optimistic Model 

Next, we subject the Pessimistic Cache Model to the same workloads and observe the 

reduction in the number of cache hits as expected [Figure 5-16]. However the reduction 

does not follow the pattern observed in the Optimistic Cache Model [Figure 5-12]. The 

effects of workload P3 and P4 (60% READs, and 40% READs correspondingly) is less 

for than the effect of the workload P5. It is also observed that the effect of P3, and P4 on 

the reduction in the number of cache hits is relatively equal for 70% of the workload, and 

then it diverges. Furthermore, observe that the workload P5, containing 80% WRITE 

requests achieves a number of cache hits approaching 0%. 

 

Figure 5-16. Effect of Workload on Cache Hits - Pessimistic Model 
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Next we observe the effect of the same workloads on the cache efficiency of the 

Pessimistic Cache Model [Figure 5-17]. The cache efficiency peaks later, proportionally 

to the lower number of READ requests in a workload. Observe the cache efficiency of P4 

peaking after that of P3, which in turn peaks later that the peak of P2. The combination of 

the coarse granularity dependency matrix, and the workload P5 (containing only 20% 

READ operations) achieve almost a 0% efficiency. The result is attributed to the 

pessimistic behaviour of the model, resulting in a high rate of cache evictions, due to 

false positives as a result of the approximation of all resources by a singular R. 

 

Figure 5-17. Effect of Workload on Cache Efficiency - Pessimistic Model 

 

Figure 5-18. Effect of Workload on CPU Utilization on the client – Pessimistic Model 
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Next we observe the processing cost [Figure 5-18], represented by the percentage of CPU 

Utilization, to vary highly when using the workload P2. However the execution cost is 

dramatically increased by workloads containing higher numbers of WRITE operations. 

The processing cost of the dependency matrix, and pessimistic behavior is the primary 

factor in the observed result. 

 

Figure 5-19. Effect of Workload on Cache Hits - Resource-Aware Model 

In the following experiment we use the Resource-Aware cache model and observe the 

reduction in number of cache hits [Figure 5-19] when using workloads having decreasing 
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Figure 5-20. Effect of Workload on Cache Efficiency - Resource-Aware Model 
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The effect of workloads on cache efficiency [Figure 5-20] follows the pattern of later 

peaks observed when using the previous cache models. The peaks of cache efficiencies, 

however, continue until almost 30% of the workloads are executed. The Resource-Aware 

model, using all workloads, achieves cache efficiency approaching 100%, until after 30% 

of the workload execution. The observed efficiency is maintained near 100% for P2, and 

drops to 80% for P3, 60% for P4, and rises unexpectedly for P5. The workload P5 

achieves a slightly better cache efficiency than P4, and at some point almost 10% better 

efficiency than that of the workload containing 20% more READ requests. However this 

result is insignificant because the number of cache hits achieved by P5 is less than half of 

the hits of P4 [see Figure 5-19]. 

Next we observe the effects of workloads on the processing cost of the Resource-Aware 

cache model [Figure 5-21]. The cost increases as the number of WRITE requests increase 

in the workloads. Observe the higher tendencies of processing the workloads P3, P4 and 

P5 vs. the processing cost of P2. The increase of processing costs is attributed to the 

complexity of resolving the fine granularity of the dependency matrix. The dependency 

matrix is used increasingly more often as the number of WRITE requests is increased. 

 

Figure 5-21. Effect of Workload on CPU Utilization on the client – Resource-Aware 

Model 
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Optimistic and the refined complexity cache models exhibit a degradation of cache 

efficiency as disconnectivity is increased. As the frequency of disconnectivity increases, 

we observe that cache efficiency decreases [see Figure 5-22]. The result is that shorter 

periods of connectivity, lead to slower consistency maintenance. Additionally, observe 

that cache hit rates decrease as disconnectivity is increased [Figure 5-23]. This 

observation is true for both the optimistic and the Resource-Aware cache models. 

 

Figure 5-22. Effect of Connectivity Pattern on Cache Efficiency of cache models 

0%

20%

40%

60%

80%

100%

C2 C3 C4 C5

C
a
c
h

e
 E

ff
ic

ie
n

c
y

Connectivity Pattern

Optimistic Pessimistic Resource-Aware



 

62 

 

Figure 5-23. Effect of Connectivity Pattern on Cache Hit Rate achieved by cache models 
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CHAPTER 6 

CONCLUSION 

The prevalence of Service Oriented Architecture in the future of computing is highlighted 

by its support for client/service patterns in heterogeneous environments. In addition, the 

increasing availability and advances of mobile computing motivate supporting the 

nomadic use of WS clients. 

This research presents a framework, and sample implementation (for Windows Mobile) 

enabling seamless operation of nomadic WS clients. The framework has low cost when 

using a simple model and leads to a reduction of request latency. The framework's design 

relies on semantics supporting the caching of WS interactions, while eliminating the cost 

and risks of SOAP processing. We've shown, using three cache models that the 

framework enables disconnected operation of the mobile WS client. The carefully chosen 

location of the framework decreases the costs of SOAP parsing/processing, avoids cache 

busting, and operates transparently of the client application's logic. 

The specification format of Cache semantics, as XML, enables future extensions to 

support a tailored mobile cache. Two core semantics are supported by the Cache 

Semantics Description, the first is cacheability and the second is consistency 

maintenance. The cacheability semantic is the minimum requirement of document 

specification. The consistency maintenance semantic details the functional dependencies 

of WS methods and resources, specified at either coarse granularity (by approximation of 

resources), or specified at high granularity (by considering method arguments). 

The results show that a simple cache model, where only the cacheability semantic is 

known, can be used to protect a WS client from intermittent connectivity at a low cost. 

However, because the cache model is optimistic on the validity of cache records (as 

semantics supporting consistency maintenance are not known), then the model is 

recommended for use only in short periods of intermittent connectivity. The results show 

that the Optimistic cache model is sufficient to reach 70% cache efficiency, during 

periods of infrequent disconnectivity. 

A cache model that specifies the consistency maintenance semantic at coarse granularity 

is worse off than the simple cache model. The coarse granularity of consistency 
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maintenance leads to pessimistic behavior where many READ records are invalidated by 

every WRITE, leading to a severe decrease in the number of cache records which in turn 

degrade the cache hit rate, and cache efficiency. The processing cost of the pessimistic 

model is also significantly higher than the processing cost of the simple optimistic model, 

because of the cost of consistency maintenance and the higher cost of reintegration. 

The results show that to maintain cache efficiency during intermittent connectivity, the 

specification of cacheability must be associated with semantic supporting cache 

consistency maintenance. The Resource-aware cache model specifies finely grained 

consistency maintenance semantic, and it is shown to significantly improve cache 

efficiency above all other models. The cache efficiency of the Resource-aware model 

reaches 99%, at a good cache hit rate (comparable to the cache hit rate of the simple 

optimistic cache model).  

The results also show that Cache Efficiency is reduced in extended periods of null 

connectivity. Additionally, when using the Pessimistic/Resource-Aware cache models: 

workloads containing a high percentage of WRITE requests have a higher processing 

cost. 

The results showed the effect of using models of increasing complexity on cache 

efficiency. It is shown that as model complexity increases and more consistency 

maintenance is performed that the cache hit rate decreases. This result is explained by the 

smaller number of records remaining in the cache, as a result of consistency maintenance. 

The negative effect of extended periods of disconnectivity on cache models was also 

shown. Long periods of intermittent connectivity reduce the amount of time available for 

consistency maintenance during reintegration. A direct result is that cache efficiency 

degrades over time. However, the effect of periods of disconnectivity, in combination 

with the scheduling of background reintegration is significant on the Pessimistic cache 

model. The pessimistic behavior of the model leads to longer queues, to be processed 

during reintegration, highlighting the need for longer periods of connectivity. Using the 

Pessimistic cache model highlights that Trickle Integration, combined with pessimistic 

behaviour, results in significant variation of results. As a result, the use of this model is 

not recommended. 
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Finally, the results show that workload characteristics (the ratio of READ to WRITE 

requests) have an effect proportional to the decrease of number of achievable cache hits. 

The lower the number of READs in a workload, the lower is the cache hits. Furthermore, 

we’ve shown that workloads containing large percentage of WRITE requests have an 

increasingly higher cost when using cache models that specify the dependency matrix 

element. The cost is a result of the expense of model processing, and in addition to cost 

of reintegration. 

The use of the complex, Resource-aware cache model is expensive, because of the 

processing costs, however its use is less expensive than the use of the Pessimistic cache 

model. As advances in mobile computing reduce the cost effect (e.g. multi-core 

processing units), and because the achieved cache efficiency of the Resource-aware 

model is significantly better (reaching 99%), the use of this model is recommended. 

The experiments and results are subject to the design of the framework, and to the 

unavailability of real user traces, and recorded connectivity patterns. 

Future Work 

1. Use additional synthetic workloads to determine the effect of randomness on 

experiments and conclusions. 

2. Use of workloads composed of user traces, and connectivity patterns recorded by 

connectivity monitor to test the framework. The experiments lend support to the utility of 

the framework in a mass deployment setting. 

3. Implement the framework on other platforms (e.g. Google Android, Apple iPhone). 

4. The nomadic unit is subject to battery life limitations. A cold restart of the nomadic 

unit, during period of null connectivity, renders the cache ineffective. To overcome the 

effect of cold start, the framework can be assisted by knowledge of the remaining battery 

life. The cache content can be saved once an off period is predicted. Upon a recharge, the 

mobile cache resumes from its previous state, resulting in more cache hits due to a warm 

start. 

5. The framework can benefit from monitoring the patterns of human movement, 

especially in regards to crowd movement. Disconnected cache hits could be improved if 
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the mobile cache can cooperate and share entries with nearby caches. Additionally, it 

may be possible to augment shared entries with additional information. The shared 

information may support inference of network quality of service, in relation to 

movement. This approach can assist the mobile client in predicting periods of null 

connectivity and to use localized QoS data to optimize its operation (e.g. perform early 

consistency maintenance, or to prefetch entries before a disconnection occurs). 

6. The framework currently relies on the human specification of cache semantics, per 

web service. A mobile client will only benefit from the framework once the semantics are 

specified. Alternatively, if a local component can monitor the patterns of WS 

communication of local applications, then it maybe possible to automatically assign 

cacheability semantics to WS operations. Additionally, the special component monitors 

and cooperates with a central repository for automatic discovery of semantics 

descriptions. The goal is to enable mobile WS applications to function after minimum 

modification. 
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