
Adaptive Caching of Distributed
Components

Dissertation

zur Erlangung des akademischen Grades Doktoringenieur
(Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Inf. Christoph Pohl
geboren am 5. April 1977 in Pirna

Gutachter:
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill TU Dresden
Prof. Dr.-Ing. Wolfgang Lehner TU Dresden
Prof. Dr. rer. nat. habil. Heinrich Hußmann LMU München

Tag der Verteidigung: 12. Mai 2005

Dresden im Mai 2005

ii

Preface

Locality of reference is an important property of distributed applications.
Caching is typically employed during the development of such applications
to exploit this property by locally storing queried data: Subsequent accesses
can be accelerated by serving their results immediately form the local store.

Current middleware architectures however hardly support this non-func-
tional aspect. The thesis at hand thus tries outsource caching as a separate,
configurable middleware service. Integration into the software development
lifecycle provides for early capturing, modeling, and later reuse of caching-
related metadata. At runtime, the implemented system can adapt to caching
access characteristics with respect to data cacheability properties, thus healing
misconfigurations and optimizing itself to an appropriate configuration. Spec-
ulative prefetching of data probably queried in the immediate future comple-
ments the presented approach.

How to read this book

The introduction in section 1 on page 1 outlines the motivation behind this
work, specifies the addressed problems, lists possible application scenarios
where these problems occur, states the objectives in terms of goals, non-goals,
and eventually the claims of this thesis. Finally, a number of requirements are
derived and the fundamental building blocks of the contributions of this thesis
are explained.

This thesis crosscuts a large area of applied computer science, including
distributed systems, middleware, and database technology, software engineer-
ing, and adaptive systems. Section 2 on page 9 gives an overview of the state-
of-the-art of the relevant subset of these areas.

Consequentially, section 3 on page 81 introduces the related work, i.e., ap-
proaches, concepts, and other research work that parallels part of the function-
ality presented in this thesis.

As the first chapter describing the actual contribution of this thesis, sec-
tion 4 on page 107 starts the concept of static caching, i.e., preconfiguring
cacheability properties before deployment. However, cacheability metadata
may be initially misconfigured and it is subject to changing access characteris-
tics. Hence, adaptive countermeasures augment the implemented middleware
service with self-healing and self-optimization properties. A heuristic for im-

iv Preface

proving weak consistency is presented as well as extensions for speculative
prefetching.

The integration of modeling aspects for cacheability metadata into the soft-
ware development cycle is discussed in section 5 on page 131. A UML Pro-
file for caching comprises light-weight UML extensions, which can be used to
model such properties and reuse them for model-driven generation of code
fragments.

For the discussion of implementation issues, section 6 on page 147 ex-
plains two different approaches how the conceived middleware services for
caching can be integrated in exisisting component-oriented middleware plat-
forms. The second approach, based on invocation interception, is finally cho-
sen as a basis for the prototype.

Finally, section 7 on page 161 concludes the presented contributions and
reasons about potential benefits as well as the issues of a proper evaluation.
An outlook points to directions of future research.

Typographic Conventions

Text typeset in italics (Palatino) is used for new keywords/concepts, foreign lan-
guage terms, and f ormulas. The typewriter (Courier) font is used for
source code and WWWlinks. And sans-serif (AvantGarde) for identifiers
in the Unified Modeling Language (UML).

Acknowledgements

First of all, I would like to thank my advisor Prof. Dr. Alexander Schill for sup-
porting my researching and for giving me the opportunity of conducting this
work in the creative atmosphere of his chair for computer networks. Special
thanks also go to my second and third reviewers, Prof. Dr. Wolfgang Lehner,
and Prof. Dr. Heinrich Hußmann, who both readily agreed to support my the-
sis in an uncomplicated manner. I already learned to value both of them as
competent contact persons and pleasant discussion partners in the COMQUAD

project; Prof. Hußmann also during the organization of the �UML� 2004
workshop on Models for Non-functional Aspects of Component-Based Soft-
ware (NfC’04).

During the compilation of this thesis, I have received material, insights and
general hints from the following persons during countless discussions: Prof.
Dr. Alexander Schill, Prof. Dr. Wolfgang Lehner, Prof. Dr. Heinrich Hußmann,
Prof. Dr. Klaus Meyer-Wegener, Dr. Olaf Neumann, Dr. Thomas Springer, Dr.
Thomas Ziegert, Hamud Al Hammoud, Sven Buchholz, Steffen Göbel, Marcus
Meyerhöfer, Daniel Pfeifer, Simone Röttger, Daniel Schaller, Stefan Urbansky,
Steffen Zschaler, and the many anonymous reviewers of my publications. I
wish to thank all of them for their time and patience.

WWW links

v

Furthermore, my friends and fellow climbers deserve a warm thank you
and “Berg Heil” for the many beautiful, relaxing days in the rocks of Elbsand-
stein and elsewhere, for sharpening my sense for responsibility, and for teach-
ing me how to control my fears. The pleasant hours in their company helped
me to regain the strength needed for completing this work.

Finally, special thanks go to my parents and Noreen for love, support, sym-
pathy, and understanding, especially during the last busy months.

Dresden, May 2005 Christoph Pohl

vi Preface

Contents

Preface . iii

Contents . vii

List of Figures . xi

List of Tables . xiii

Listings . xv

1. Introduction . 1

1.1 Motivation and Problem Statement 1

1.2 Scenarios . 2

1.3 Objectives . 3

1.3.1 Goals . 3

1.3.2 Non-Goals . 4

1.3.3 Claims . 5

1.4 Requirements Definition . 5

1.5 Cornerstones . 6

2. State of the Art . 9

2.1 Caching in General . 9

2.1.1 Consistency and Coherence 11

2.1.2 Replacement Strategies 12

2.1.3 Cacheability . 13

2.1.4 Granularity . 13

2.1.5 Usage Examples in Information Systems 14

2.2 Component-Oriented Middleware Platforms 14

viii CONTENTS

2.2.1 Software Components . 15

2.2.2 Middleware in General 18

2.2.3 Multi-tiered Architectures 21

2.2.4 Enterprise JavaBeans . 22

2.2.5 CORBA Components . 29

2.2.6 Microsoft .NET . 38

2.2.7 Web Services . 41

2.2.8 Summary . 45

2.3 Distributed Data Management 46

2.3.1 Transactions and Concurrency Control 46

2.3.2 Distributed Databases . 50

2.3.3 Distributed Concurrency Control 52

2.3.4 Summary . 53

2.4 Adaptive Systems . 53

2.4.1 Control Theory . 54

2.4.2 Adaptive Software . 54

2.4.3 Conclusion . 58

2.5 Modeling and Design Concepts 58

2.5.1 Unified Modeling Language 58

2.5.2 Model Driven Architecture 65

2.5.3 Attribute-oriented Programming 66

2.5.4 Design Patterns . 70

2.5.5 Meta-Programming . 70

2.5.6 Aspect-Oriented Software Engineering 75

2.6 Conclusion . 78

3. Related Work . 81

3.1 Caching in Distributed Systems 81

3.1.1 Web Caching . 84

3.1.2 Adaptive Caching . 86

3.1.3 Database Caching . 87

3.1.4 Application Level Solutions 91

3.1.5 Middleware-based Concepts 94

CONTENTS ix

3.2 Communication Restructuring 99

3.3 Prefetching . 100

3.3.1 Prefetching in Database Management Systems 101

3.3.2 Prefetching in Distributed File Systems 102

3.3.3 Web Cache Prefetching . 102

3.3.4 Prefetching in Distributed Object-oriented Systems . . . 103

3.4 Summary . 104

4. Design of an Adaptive Middleware Service for Caching 107

4.1 Static Caching . 107

4.1.1 Architectural Integration 108

4.1.2 Static Prefetching . 110

4.1.3 Conclusion . 110

4.2 Adaptive Caching . 111

4.2.1 Goals . 111

4.2.2 Architectural Extensions 112

4.2.3 Distributed Access Statistic 114

4.2.4 Conclusion and Comparison 119

4.3 Static Prefetching . 120

4.3.1 Architectural Integration 121

4.3.2 Conclusion . 125

4.4 Dynamic Determination of Prefetching Dependencies 125

4.4.1 Architectural Integration 126

4.4.2 Performance Considerations 128

4.5 Conclusion . 128

5. Software Development Cycle Integration 131

5.1 Model-driven Development . 132

5.2 UML Profiles . 133

5.2.1 AndroMDA Profile . 135

5.2.2 UML Profile for Caching 136

5.3 Development Process . 139

5.3.1 Component Design . 139

x CONTENTS

5.3.2 Component Implementation 141

5.3.3 Code Generation . 143

5.3.4 Roles and Responsibilities 145

5.4 Conclusion . 146

6. Implementation of the Adaptive Middleware Service 147

6.1 Stub Modification . 147

6.1.1 Multiple References . 148

6.1.2 Client-side Containers . 149

6.1.3 Object Equality in Component-based Middleware Plat-
forms . 151

6.1.4 Integration into the Middleware Platform 151

6.1.5 Returning Collections of Stubs 153

6.1.6 Consistency . 154

6.1.7 Conclusion . 155

6.2 Descriptive Point-cutting . 155

6.2.1 Integration into the Middleware Platform 156

6.2.2 Conclusion . 160

7. Conclusions and Outlook . 161

7.1 Evaluation . 161

7.1.1 Functional Evaluation . 162

7.1.2 Quantitative Evaluation 163

7.1.3 Software Development Process 167

7.2 Outlook . 167

Bibliography . 185

List of Figures

1.1 Cornerstones of the thesis . 6

2.1 Object Request Brokers . 20

2.2 Multi-tiered architecture for distributed applications 21

2.3 J2EE architectural overview . 23

2.4 Abstract model of EJB . 26

2.5 CORBA Components container architecture 31

2.6 Abstract model of CCM . 32

2.7 Relationships between component descriptors and packages . . 36

2.8 Deployment architecture . 37

2.9 Abstract model of COM . 38

2.10 Elements of the .NET framework 41

2.11 Web service technology overview 42

2.12 Web service framework stack . 44

2.13 General architecture of component-oriented middleware 45

2.14 The process of adaptation . 53

2.15 A simple feedback control loop 54

2.16 MOF metalevels . 60

2.17 The OEP micro process . 61

2.18 Component forms . 63

2.19 Overview of the MDA process 66

2.20 The principle of interceptors . 73

2.21 JBoss metalevel architecture . 74

3.1 Existing Approaches for Caching in Enterprise JavaBeans 82

3.2 Example of Semantic caching . 89

xii LIST OF FIGURES

3.3 State Object Pattern by example 92

4.1 Schema of static caching . 109

4.2 Adaptive Caching Approach . 113

4.3 General data flow of adaptive caching 115

4.4 Graphical interpretation of validity probability 116

4.5 Static Prefetching . 122

4.6 Sequence diagram of Static Prefetching at client side 124

4.7 Sequence diagram of Static Prefetching at server side 125

4.8 Adaptive Prefetching . 127

5.1 Model-driven tool chain . 132

5.2 Possible relationships between profiles 134

5.3 Example for use of caching stereotypes 140

6.1 Proliferation of stubs . 149

6.2 Integration of modified “Smart stubs” with the Client-side Con-
tainer . 150

6.3 Client-side Container . 150

6.4 Interceptors in JBoss Dynamic Proxies 156

6.5 Sequence of static caching . 158

List of Tables

2.1 Enterprise JavaBeans life-cycle categories 25

2.2 Transaction attributes in EJB . 28

2.3 CORBA Components life-cycle categories 34

2.4 Classification of adaptational issues 55

2.5 Base mechanisms for adaptation 56

2.6 Adaptation steps at runtime . 58

2.7 Models and Diagrams in UML 60

5.1 Stereotypes of AndroMDA PSM 135

5.2 Stereotypes for caching . 137

5.3 Tagged values for caching . 137

5.4 Stereotypes for prefetching . 138

5.5 Tagged values for prefetching . 138

7.1 Cost-benefit estimation . 163

xiv LIST OF TABLES

Listings

2.1 Xdoclet usage example . 68

2.2 J2SE 5 metadata annotations example 69

3.1 Example for a materialized view 88

5.1 Example for use of caching tags 142

5.2 Example for use of prefetching tags 143

5.3 Exemplary caching.xml file . 144

5.4 Exemplary caching.xml file with prefetching dependencies . . . 145

6.1 Client-side Container Interface 151

6.2 Modified Stub . 152

6.3 CollectionWrapper . 154

6.4 IteratorWrapper . 155

6.5 A simple CachingClientInterceptor 159

xvi LISTINGS

The ancient Masters did not try to educate the people but kindly taught
them to not-know.

Tao te Ching by Lao Tsu (∗570–†490 BC), Chinese philosopher.

1
Introduction

1.1 Motivation and Problem Statement

Component-oriented programming models took hold in the area of distributed
middleware platforms in the last couple of years. One of the main challenges
addressed by deployment of middleware is to hide the details of concrete com-
munication relationships from application developers—a feature also known
as distribution transparency. It would thus be desirable to treat potentially re-
mote components like local objects during development of distributed busi-
ness applications. Today’s platforms already provide this from a static point
of view, e.g., by transparent installation of proxy objects. However, the naive
use of this communication abstraction can considerably restrain the efficiency
of such applications because every remote access crossing process spaces or
node boundaries is an order of magnitude slower than its local equivalent.
Besides design patterns for optimized data transmission, especially data repli-
cation techniques like caching and prefetching1 proved of value in the past for
solving this issue.

The problem in connection with the deployment of these techniques is Caching is
an
orthogonal
aspect of
application
logic

that they represent orthogonal base functionality, unrelated to the actual busi-
ness logic. Their proper use requires additional knowledge from application
developers, which in turn increases the error-proneness of the corresponding
code. Hence, it is sensible to outsource these techniques for data transfer op-
timization as an independent middleware service—an aspect—which is de-
scriptively configurable and thus taken from the direct responsibility of the
application developer. Hardly any approaches have been published that tackle

1 In the following, we will simply use the term caching when referring to both caching and
prefetching, since the latter can be seen as an extension of the former. (Cf. section 3.3 on
page 100.) The distinction between caching and replication is made in section 2.1 on page 9.

2 Introduction

this issue transparently at the interface of application components. This poses
the main contribution of this work.

After years of skepticism, Computer-Aided Software Engineering (CASE) grad-
ually managed to gain momentum. Model-driven approaches added to its
success, allowing to directly generate code by transforming models.

Descriptive configurability of the caching aspect imposes the issue of in-Develop-
ment

process
tegration into the software development cycle. The application developer can
naturally enrich the application model with valuable information at design
time regarding the applicability of caching for attributes of components and
the application’s tolerance to inconsistencies. This metadata can be trans-
formed and used for generating code segments in the course of application
development. The issues of modeling and the separation of roles and concerns
in this respect form the second pillar of this work.

Adaptive, self-managing systems attracted a lot of attention in the recent
past. Their goal is to let systems adapt themselves to changing environmental
conditions.

The gathered cacheability metadata mentioned above represents just anAdaptivity
initial value that is subject to change at runtime. Such changes may have a
lasting influence on the suitability of certain attributes for caching. This espe-
cially applies to read/write ratio of attributes, access patterns of component
users and thus the working set of the cache, or even temporal dependencies
between attribute accesses and the corresponding implication on prefetching.
The runtime environment has to be instrumented and monitored to be able to
dynamically react to such changes. Information gathered in this way can be
used to adapt the system to changing conditions, to correct misconfigurations,
or to automatically determine optimal configurations.

1.2 Scenarios

A number of universal application areas and usage scenarios for the proposedCache
method
results of

business tier

extensions shall be outlined in this section. In general, we will focus on multi-
tiered architectures (see section 2.2.3 on page 21) like they are commonly found
in today’s (Web-based) business applications. Components of the business tier
model business objects and processes. They run in application servers and en-
capsulate state, which they expose through their interfaces as attributes. Acces-
sor and mutator methods may be used to query and manipulate these attributes.
We basically try to cache method results of accessor methods in a transparent
manner.

Clients benefitting from this extension are thus all application parts aboveWeb servers
and fat
clients

the business tier. This includes both Web applications, i.e., Web servers con-
structing dynamic Web pages from business content, as well as traditional “fat
client” applications that provide presentation logic by themselves.

1.3 Objectives 3

Examples for the latter category comprise applications with a higher de- eLearning
gree of interactivity at the user interface than common Web-based applica-
tions. This includes distributed collaborative multimedia in general or on-
line learning platforms in particular, e.g., the Java-based Teleteaching Kit (JaTeK)
[Neu03]. Some sort of learning objects are typically used concurrently by a
group of users. Changes to this material can only be made by tutors and au-
thors; they occur rather seldom and consistency requirements are weaker than,
e.g., for business applications. Thus, this class of data is suitable for caching.

Distributed mobile applications also belong to this category. Users are Mobile
Computingcommunicating using heterogeneous end devices and changing connectivity.

In the context of the BIB3R project, a context framework [Lös02] was devel-
oped for centrally managing the state of online users and the capabilities of
their devices. Client side caching of this information would help to reduce
latency and expensive bandwidth consumption. This example scenario could
even be extended towards weakly connected / partially detached applications,
allowing offline clients to perform disconnected operations.

1.3 Objectives

Various problems have already been identified introductorily in the motiva-
tion. This section resumes this discussion, aiming at concrete goals and claims
of this thesis. The major problems outlined above included the following Problems
points:

• Letting application developers integrate caching logic in their compo-
nent code is inadequate because it forces them to reason about an or-
thogonal aspect.

• Transparent integration of caching at the level of application component
interfaces has not been investigated sufficiently.

• Caching-related descriptive metadata for middleware configuration is
not considered at design time by existing approaches. Valuable infor-
mation already available at this early stage is thus lost for reuse and con-
sistency requirements cannot be observed appropriately.

• Caching-related metadata is subject to changes at runtime. Related ap-
proaches consider either static preconfiguration or dynamic determina-
tion but not the combination of both, which would reduce the necessary
learning phase while healing misconfigurations at the same time.

1.3.1 Goals

To address these challenges, we define a number of goals we want to achieve
with the contributions of this work:

4 Introduction

Middleware service for caching. Caching is an orthogonal aspect, which
shall be transparently integrated as a descriptive middleware service.

Improved performance. The deployment of caching serves the original goal
of reducing the user-perceived latency of access to application compo-
nents in comparison to non-caching solutions.

Network traffic reduction. A side effect of the previous goal is that reusing
cached method results at client side also reduces bandwidth consump-
tion between client and server.

Distribution transparency. Since modern middleware platforms (see sec-
tion 2.2 on page 14) already provide most if not all of the transparency
concepts defined by ISO/ITU-T [ISO95], one major goal of our work is
to maintain existing distribution transparency concepts as far as possible
for the planned extensions of these systems.

Design process. Capturing caching-related metadata, i.e., cacheability, con-
sistency, and prefetchability, shall be supported by the process of soft-
ware design. Available information is to be gathered as early as possible
for later reuse in model transformation and code generation.

Stability. Continuous and generative integration of modelling issues into the
software developement cycle shall enable stabler software development.

Ease of use. The separation of caching from application concerns should also
simplify the task of application component programmers since they will
not have to care anymore for orthogonal caching issues.

Adaptivity. The system shall continuously adapt itself to changing access pat-
terns, aiming at an optimal configuration of the caching service.

1.3.2 Non-Goals

A similar importance appertains to issues considered out of the scope of this
work. This differentiation helps to focus on the main goals.

Design patterns capture concepts and strategies that proved of value in ex-No Design
patterns emplary application scenarios. They provide guidelines for application devel-

opers for building new applications. However, the awareness of the issues
behind a pattern is explicitly required from developers. Our approach relieves
developers from this awareness, letting them concentrate on solving the ac-
tual problems of their application domain. Design patterns for optimized state
transfer may be used by the middleware service in a transparent manner but
their explicit use at application level is discouraged.

Much work has been invested in research and development of caching algo-No Caching
algorithms rithms, including replacement strategies and consistency protocols. Although

this work will have to deal with these issues as well, the primary goal is to
reuse existing concepts as far as possible.

1.4 Requirements Definition 5

1.3.3 Claims

The following claims shall be verified in the context of this thesis:

1. The aspect of caching of component state can be transparently outsourced
as a middleware service.

2. Early gathering of caching-related metadata stabilizes the development
of distributed applications and reduces the necessary amount of hand-
written code.

3. Adaptivity helps to reach appropriate configurations.

1.4 Requirements Definition

In this section, we will dispose ancillary conditions and requirements for the
proposed extensions. These will help to further differentiate our solution from
related work.

Existing knowledge about access patterns and anticipated user behavior Why not
cache
everything?

should be captured and utilized as early as possible to avoid wasting resources
at runtime, especially during the initial learning phase before an optimal con-
figuration is reached. The specification of application-specific tolerance to in-
consistencies at the level of component attributes is furthermore crucial to in-
form the system about the precise conditions for employing caching technol-
ogy. Without this knowledge, the system would potentially try to inappropri-
ately cache data with stringent consistency requirements.

Software components as we define them in section 2.2.1 on page 15 are a Why compo-
nents?concept for separation of concerns. They encapsulate business logic in a self-

contained manner while allowing higher-level service functionality to be built
by composition. Additionally required orthogonal middleware services can
be configured in a descriptive manner. We refer to this concept as descriptive
middleware (see section 2.2 on page 14). Thus, the concept of components forms
the natural basis for our approach to descriptive configuration of the caching
aspect.

Modeling tools and languages are a fundamental concept in Computer- Why MDA?
Aided Software Engineering, which finally took hold in software development
(cf. section 2.5 on page 58). The popularity of UML for application design led
to model-driven concepts that try to bridge the gap between models and code.
We will try to utilize these concepts to enable a continuous reuse of caching-
related metadata throughout the development cycle.

Required distribution transparency can be divided into client transparency Maximum
transparencyand server transparency, i.e., the necessity of additional precautions on either

side. We want to avoid such violations of transparency. Hence, language mod-
ifications, additional hook methods or callbacks, etc. are discouraged, both at

6 Introduction

the component business interface and below within component application
logic. Descriptive markup is to be used exclusively to configure the middle-
ware service.

The heterogeneity of presented application scenarios may result in a va-Strict
client-server riety of possible network connectivity alternatives between client and server

below the application layer. We require strict adherence of client-server rela-
tionships, i.e., servers may only respond to client requests, no direct callbacks
or broadcasts are permissible (e.g., for invalidation messages). Packet filters
(firewalls) and Network Address Translators (NAT) between communicating
partners are plausible reasons why such callbacks may simply fail at lower
layers.

We do not require strong consistency (see section 2.1.1 on page 11) but in-Weak
consistency stead resort to weaker, best-effort consistency of cached data, i.e., we will tolerate

staleness of data up to a certain degree the possible occurence of read/write
anomalies. But the system shall nevertheless try to avoid conflicts by expir-
ing cached objects adaptively according to their current access patterns. This
degree of consistency is sufficient for a significant subset of the relevant appli-
cation scenarios.

1.5 Cornerstones

According to the objectives mentioned in section 1.3 on page 3, the thesis at
hand basically builds on three major cornerstones as depicted in figure 1.1.

Distributed Systems
Middleware

Softw
are Engineering A

da
pt

iv
e

Sy
st

em
s

Fig. 1.1: Cornerstones of the thesis

Transparent middleware service. The aspect of data replication, i.e., caching
and prefetching, shall be made transparent to the application developer
and it shall be outsourced as an orthogonal, configurable middleware
service. This cornerstone is subject of section 4 on page 107.

1.5 Cornerstones 7

Software development process. The necessary non-functional properties
shall be captured as early as possible during application development,
at design time, in the form of additional metadata. Transformation of
this metadata into necessary configuration descriptions for the runtime
environment shall be enabled by appropriate code generators. This cor-
nerstone will be discussed in section 5 on page 131.

Runtime adaptation. Metadata of component attributes concerning their
cacheability and prefetching dependencies are subject to gradual
changes at runtime due to changing access characteristics of applica-
tion clients. The proposed middleware service shall be designed to
dynamically adapt to changes of these parameters, aiming at auto-
matic correction of misconfigurations and an optimal utilization of the
infrastructure—especially of the caching service. The whole aspect of
adaptation is the core topic of section 4.2 on page 111.

8 Introduction

The nicest thing about standards is that there are so many of them to
choose from.

Ken Olson (∗1926), founder of Digital Equipment Corp., 1977.

2
State of the Art

The purpose of this chapter is to provide the necessary background informa-
tion on commonly used technology in the setting of this thesis. It provides
definitions for required terms and explains many of the fundamental concepts
used later for implementation. Although written in a consecutive style, its
sections may also be read separately out of their context.

2.1 Caching in General

Caching is a fundamental concept of this work. A thorough introduction is
therefore necessary. In its original meaning, a cache1 is a hiding place or a Origin
secure place of storage for concealing and preserving provisions which are
inconvenient to carry. In computer science, caches generally denote small fast
memories holding recently accessed data that is slow or expensive to fetch,
designed to speed up subsequent access to the same data. Since caches have
been used over several decades in very different fields of computer science,
we will give a general overview in this section.

Based on the idea that data queried or computed once will probably be
needed again in the near future2, caches store (a limited amount of) data re-
trieved from a certain remote source location near to its local sink. The meaning
of “remote” and “local” depends entirely on the concrete context of use. The
main goals for the deployment of caching are:

Performance in terms of lower perceived response times from the perspec-

1 French, from cacher: to press, to conceal, to hide.
2 i.e., temporal locality of reference, see below.

10 State of the Art

tive of data sinks, since required data can be served locally to some de-
gree; and

Scalability in terms of increased throughput and higher maximum number
of concurrently servable data sinks (clients) by reducing bandwidth con-
sumption of the data channel between source and sink, and workload of
the data source (the server), since clients are able to operate autonomous-
ly to some degree.

In contrast to replication (cf. section 2.3.2 on page 50) of data, caching doesCaching vs.
replication not address availability and fault-tolerance of the augmented systems. While

replicas may cooperate in an equal fashion, caches always represent only the
“soft state” of a certain primary copy, usually the server. Furthermore, caches
retain data that has been referenced; replicas may be filled in advance. Lenz
distinguishes three levels of data objects [Len97, p.62]: application domain,
logical level and physical level. At the physical level, several copies (replicas)
of logical objects may exist. Logical objects map to real world objects of the
application domain. They may contain redundancy in terms of overlapping
information, which can be computed as a function of other data objects. In the
context of our work, cached method results represent potentially redundant data
items at the logical level, which may be replicated several times at the physical
level. However, in the case of strict interpretation of the assumptions from
definition 2.8 on page 17, redundancy is avoided and updates of logical data
items are equivalent to updates of physical replicas.

The exploitation of locality of reference is the most important way to achieveLocality of
reference both goals, performance and scalability. There are several different distinc-

tions for reference locality, whereof the first two account for the most common
subset:

Temporal Locality. Once referenced objects will probably be accessed again
in the near future;

Spatial Locality. Given a certain object, referencing “nearby”3 objects in-
creases the likelihood of accessing that object;

Geographic Locality. Geographically collocated clients will access similar
objects (only relevant for distributed systems).

Semantic Locality. Knowledge about the semantics of accessed data may
help to extract result data of subsequent queries, or at least portions
thereof4.

The sequence of accessed objects is usually modeled as a stack, i.e., when anStack model
3 The meaning of “nearby” depends on the context of the referenced objects: Web pages

contain links to nearby objects; an application’s memory pages should be physically near to
each other etc.

4 This concept forms the basis of Semantic Caching as introduced independently by
Keller/Basu and Dar et al. [KB94, DFJ+96] for queries of relational databases. Cf. section 3.1.3
on page 87.

2.1 Caching in General 11

object is accessed, it is “put” on top of the stack and it gradually moves deeper
as other objects are accessed. The maximum number of objects on the stack,
i.e., the stack depth, is referred to as the working set. This terminology shows
the obvious parallels to memory and buffer management in operating systems
and databases. Almeida et al. [ABCdO96] showed that temporal locality can
also be characterized by the marginal distribution of the stack distance trace,
whereas spatial locality relates to the notion of self-similarity, i.e., long-range
correlations in the dataset.

The effectiveness of caching depends upon a number of factors, including
the size of the user population that a cache is serving and the size of the cache
serving that population (i.e., the cardinality of its working set).

In the following, we will discuss common problems in connection with
caching and their solutions.

2.1.1 Consistency and Coherence

Just like replication, caching introduces global redundancy by creating multi-
ple copies of single data items. Redundant copies have to be kept consistent
to a defined degree, i.e., coherence of copies has to be ensured in such a way
that different copies give the same values. This problem becomes even more
pressing if multiple users/clients may concurrently alter these copies. Caches
are usually client replicas grouped around one (or few) central server(s). The
parallels to replication in distributed databases suggest the applicability of ap-
proaches for replication control (see section 2.3.2 on page 50) and distributed
concurrency control (see section 2.3.3 on page 52). Different degrees of consis-
tency are achievable depending on the selected methods. Gruber [Gru97] and
Franklin et al. [FCL97] give comprehensive overviews of existing cache consis-
tency protocols, a few of which will be discussed in the context of section 3.1.3
on page 87.

Strong Cache Consistency

Strong consistency is usually defined by one-copy serializability (1SR), which
is already a weaker degree of consistency than strict or atomic consistency:
All processes see all operations in the same global order (cf. section 2.3.3 on
page 52 and [BHG87]). There are several alternative approaches for achieving
strong cache consistency, based on the assumption that modifications are syn-
chronized at the primary copy (i.e., the server), e.g., Client validation assumes Validation vs.

invalidationpolling the status of a cache item upon every access, which does however not
prevent concurrent modifications between the server’s validation reply and
the client’s actual access. Server invalidation is based on invalidation messages
the server broadcasts upon modifications of cache items, which is prone to
poor scalability due to client state managed at server side. To achieve strong
consistency with server invalidation, updates have to be delayed until all client

12 State of the Art

caches have been invalidated, which in turn raises the question for appropri-
ate time-out values. A more thorough discussion of client validation vs. server
invalidation in the context of Web caching can be found in [RS02, Chap. 10].

Weak Cache Consistency

In general, weak consistency refers to any degree of consistency weaker than
sequential consistency (1SR). The idea is to specify constraints for convergence,Conver-

gence i.e., after a given period of time without modifications of cache items, caches
converge to the same state. Strategies may include a number of heuristics,
e.g., adaptive expiration timers assume that the average time between changesAdaptive

expiration
time and

piggyback
validation

also applies in the future. Validation messages as explained above may be
transferred piggyback with other messages between client and server: Either
the server responds to a list of cache items for which validation was requested
or it proactively emits a list of outdated items.

2.1.2 Replacement Strategies

Cache size is usually limited, and if it gets exhausted, replacement strategies
decide which items to keep and which to discard. For instance, Podlipnig
and Böszörmenyi [PB03] mention the following characteristics for classifying
replacement strategies: recency (time since last reference to an object), frequencyCharacteris-

tics for
classification

(number of requests to an object), size of an object, cost of fetching an object,
time since last modification, and (heuristic) expiration time. Different factors
may be combined in weighted functions as a basis for replacement strategies.
Furthermore, randomized strategies exist that incorporate a nondeterministic
element into their decisions.

The most prominent representatives of cache replacement strategies are
doubtlessly Least-Recently-Used (LRU) and Least-Frequently-Used (LFU), which
are also widely used in other application areas, e.g., management of database
buffers and disk buffers, memory paging etc. LRU discards the least recently
used items first. Obviously, this requires keeping track of what was used
when, which is usually implemented by a stack or linked list. LFU counts
how often an item is needed. Those that are used least often are discarded
first. The SIZE strategy discards the biggest objects first. Cost, modifica-
tion and expiration time (aging) are usually integrated factors in variants of
recency/frequency-based strategies. A number of cache replacement strate-
gies have been compared in the context of Web caching (see section 3.1.1 on
page 84) by Podlipnig and Böszörmenyi [PB03].

Belady [Bel66] explained that the optimal replacement strategy is the oneOptimal
strategy which replaces the object that will not be used for the longest time in the fu-

ture. This optimum cannot be achieved because this would imply fortune-
telling. However, it poses a goal and limit for realistic replacement strategies.
The success of a cache replacement strategy is characterized by a low cache

2.1 Caching in General 13

miss rate (i.e., number of objects transferred from the original data source per
total number of objects served), which corresponds to page faults in memory
management.

2.1.3 Cacheability

Another issue in caching systems is which data items should be cached and What to
cache?which not—the cacheability of data. The simplest approach is to cache every-

thing. This may however be too inefficient for application scenarios where
(a subset of) data is too volatile, i.e., that changes too rapidly. The overhead
for frequent invalidation would frustrate the benefits of caching, leading to
a worse overall performance than simple access without any caching at all.
Therefore, ways to specify cacheability of individual data items or classes of
items have been introduced in areas where data items vary in expiration time,
size, and cost for fetching. For instance, HTTP/1.1 defines a simple method
for per-object specification of cacheability [FGM+99, Sect. 13.4].

The question about the time of incorporation of data in the cache is rather When to
cache?simple, in contrast to memory paging in operating systems, for instance. A

cache in its original form contains only data that has been queried before by
the client application it is serving. Strategies that shift the point of data trans-
fer to the cache to an earlier time are commonly referred to as prefetching (see
section 3.3 on page 100).

2.1.4 Granularity

Granularity generally refers to the size of parts of a greater whole. Given the
need to transfer a certain amount of data D in packets of a certain size—the
granularity g—the number of required interactions n can simply be calculated
by

n =
D
g

which generally shows that the number of required interactions increases re-
ciprocally proportional with the granularity:

n ∼ 1
g

Let to denote the constant overhead time for each interaction and τ the
factor time per data. The time per interaction t is then given by

t(g) = τg + to

and the overall transfer time by

T(g) = D
(

to

g
+ τ

)

14 State of the Art

Theoretically, the optimal case would be n = 1 for g = D, i.e., to transfer
needed data all at once in T = to + τ. However, it is usually impossible to
determine in advance which specific data items actually belong to D. Respon-
siveness, i.e., the user-perceived time between request and delivery of data
items, would furthermore increase to its maximum value t = τD + to. For
caches, coarse grained cache items may waste bandwidth but save overhead for
additional interactions required by fine grained cache items. Coarser grained
cache items may additionally introduce benefits because of spatial locality of
reference, i.e., subsequently required data may already be contained in the
current working set. In practice, the optimal case is usually a trade-off be-
tween different factors, including overhead for interactions, expected average
response time, cache size, etc.

2.1.5 Usage Examples in Information Systems

It has been mentioned introductorily that caches can be found almost every-
where in computer and software architecture. We will briefly give a few ex-
amples to illustrate the bandwidth of possible application scenarios.

Hardware caches can be found at all levels of the memory hierarchy of mod-Hardware
ern computer architectures. For instance, a multi-level cache hierarchy accel-
erates data transfer between CPU registers and main memory. Physical cache
memory resides on most modern hard disk drives to buffer access to the slower
magnetic storage.

Most modern operating systems additionally use portions of main memoryOperating
systems to further cache (hard) disk accesses. The paging mechanism of virtual memory

management can also be seen as a form of caching since it obviously benefits
from spatial locality of reference. A plethora of approaches for other software
caches can also be found in distributed systems, a few of which will be introduced
in the context of related work in section 3.1 on page 81.

2.2 Component-Oriented Middleware Platforms

In this section, we will give an overview of software composition (see section 2.2.1
on the facing page) and middleware (see section 2.2.2 on page 18) in general,
followed by an explanation how these concepts are used in combination to
build multi-tiered architectures (see section 2.2.3 on page 21).Three examples for
standard component-based middleware platforms—EJB, CCM, and .NET—
are given in sections 2.2.4–2.2.6. The relation of these platforms to Web Services
is discussed in section 2.2.7 on page 41.

2.2 Component-Oriented Middleware Platforms 15

2.2.1 Software Components

The origin of the concept of software components is attributed to Doug McIl-
roy’s famous paper about “Mass Produced” Software Components [McI69]. They
are a fundamental basis of this thesis. Therefore, a clear definition is needed.
The main problem with existing definition approaches found in literature are
the different perspectives of participants in the software development process,
which resulted in a number of different and sometimes contrary definitions.

Brown and Wallnau [BW98] collected four illustrating definitions for soft-
ware components from different views. The first describes interfaces and im-
plementation as the crucial constituents of a component on which the principle
of loose coupling is based:

Definition 2.1 (Philippe Kruchten, Rational Software)
A component is a non-trivial, nearly independent, and replaceable part of a system
that fulfills a clear function in the context of a well-defined architecture. A component
conforms to and provides the physical realization of a set of interfaces.

It should be noted that the architectural composition context of a compo-
nent is also an integral part of this definition, whereas no assumptions are
made about how to discover and bind components at runtime. This is subject
of the second definition:

Definition 2.2 (Gartner Group)
A runtime software component is a dynamically bindable package of one or more
programs managed as a unit and accessed through documented interfaces that can be
discovered at runtime.

A third definition outlines that components should have no implicit depen- Independent
deploymentdencies to other components or subsystems, a prerequisite for independent

deployment:

Definition 2.3 (Clemens Szyperski [Szy02, p. 548])
A software component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third party.

Components are often used to model business objects and processes. Hence, Business
componentsto enable loose coupling, a software component has to encapsulate all profes-

sional aspects of a self-contained business concept:

Definition 2.4 (Wojtek Kozaczynski, SSA)
A business component represents the software implementation of an ‘autonomous’
business concept or business process. It consists of all the software artifacts necessary
to express, implement and deploy the concept as a reusable element of a larger business
system.

16 State of the Art

These four definitions share a few common points but also reveal a num-
ber of differences as it was already pointed out in [BW98]: Kozaczynski and
Kruchten agree on the coarse-grained nature of components whereas Szyper-
ski and Gartner leave this issue open. Component autonomy and declaration
of dependencies also lack a uniform description.

Definition 2.5 ([OMG03b, p. 8])
Component: A modular part of a system that encapsulates its contents and whose
manifestation is replaceable within its environment. A component defines its behavior
in terms of provided and required interfaces. As such, a component serves as a type,
whose conformance is defined by these provided and required interfaces (encompassing
both their static as well as dynamic semantics).

The terms “component” and “module” are sometimes used interchange-
ably, like hinted at in definition 2.5 by mentioning replaceability. However,
there are subtle differences: As noted in definition 2.3 on the page before, the
major benefit of components is re-usability by composition. This is a feature
not necessarily required from modules. Oestereich [Oes02] realized further-Components

are
identifiable,

modules are
not.

more that components are usually identifiable in opposition to modules, which
have no concept for identity of instances. Therefore, we shall distinguish a
software module as follows:

Definition 2.6
A software module is an autonomous, self-contained program unit characterized by
information hiding, data abstraction, encapsulation, minimal interface specification,
straightforwardness, and testability.

Aßmann [Aßm03] requires modularity as a prerequisite of component modelsCode reuse
necessitates

modularity
to enable code reuse, the former being characterized by information hiding as
well as syntactic and semantic substitutability. Other requirements for compo-
nent models include parameterization to enable adaption and standardization to
enable improved reuse. Software components do not only require a component
model but also composition techniques like connection, extensibility, aspect sepa-
ration, scalability and metamodeling, as well as a composition language to serve
as a foundation for software composition.

Although the concept of software modules is much older, they have been
in the focus of research in the mid 1980s when various Module Interconnec-MIL
tion Languages (MIL, [PDN86]) evolved. Modules are often understood as
units of packaging classes and routines, i.e., libraries. They are therefore also
sometimes used to refer to units of component deployment, as seen in defini-
tion 2.5. Definition 2.7—a summary of Cheesman and Daniels’ UML Com-UML

Components ponents [CD00], which will be discussed in more detail in section 2.5.1 on
page 63—does not explicitly mention the term “module” but it nevertheless
confirms the distinction of modules and components based on identifiability.

Definition 2.7 (compiled from [CD00])
A Component conforms to a Component Standard. It needs a clear Component
Specification that includes a set of supported Component Interfaces. The specifi-

2.2 Component-Oriented Middleware Platforms 17

cation can be realized by multiple Component Implementations that can in turn
be deployed as Installed Components. These installations can be used to instantiate
concrete Component Objects, which have their own data and a unique identity.

Software components are conceptually based on Component Models—or
Component Standards as in definition 2.7 on the preceding page—which mani-
fest a metalevel for defining and describing components of a certain kind, i.e.,
their interfaces, parts, ports, roles, and other structural features. Cheesman
and Daniels [CD00] furthermore understand a component model as a set of
supported services, accompanied by rules that have to be obeyed to take ad-
vantage of these services. This anticipates a component model’s implication
of a Component Framework comprising the runtime and execution environment
for components based on the aforementioned model. It interprets a Component
Language to connect components according to a Composition Technique implic-
itly associated with the component model. Examples for such models and
frameworks include component-oriented middleware platforms like CORBA
Components (see section 2.2.5 on page 29), Sun’s (Enterprise) JavaBeans (see
section 2.2.4 on page 22), the Microsoft Component Object Model and it’s ex-
tensions (see section 2.2.6 on page 38), but also simpler constructs like Archi-
tecture Description Languages (ADL [MT00], descendants of the aforemen-
tioned MIL [PDN86]) or pipes & filters [McI64, BMR+96].

Our Refined Definition

In the context of this work, we will embrace the definitions listed above. We
furthermore refine definition 2.4 on page 15 with special regard to identifiabil-
ity, state encapsulation, and access, which is reflected in various component
models:

Definition 2.8
Components are identifiable program artifacts that encapsulate the state of business
objects and business processes. This state is manifested in component attributes,
which a component exposes via accessor and mutator methods of its interface.

Hence, we focus especially on business components and put less attention Business
componentson other component types, e.g., infrastructure components. We will heavily

rely on the assumption of definition 2.8 for the implementation of our caching
service in section 4 on page 107. For instance, JavaBeans [Sun02b] use a pat-
tern of get /set method pairs for modeling accessors and mutators. How-
ever, this definition does not narrow the impact of our contribution because
this assumption is present in many of today’s component-oriented middle-
ware platforms, as we will discover later in this section.

18 State of the Art

2.2.2 Middleware in General

While most component models as defined in section 2.2.1 on page 15 imply a
component framework that implements the corresponding runtime environ-
ment, no assumptions are made about the presence of middleware services.

Middleware evolved long before the advent of software
componentization—among other sources—from the host of Transaction
Processing Monitors (TP Monitors) [MW88]. A convenient general description
of the term Middleware is given in definition 2.9

Definition 2.9 (David E. Bakken [Bak02])
Middleware is a class of software technologies designed to help manage the complexity
and heterogeneity inherent in distributed systems. It is defined as a layer of software
above the operating system but below the application program that provides a common
programming abstraction across a distributed system, [. . .] it provides a higher-level
building block for programmers than APIs provided by the operating system. [. . .]
Middleware can be considered to be the software that makes a distributed system pro-
grammable.

This definition not only requires a middleware to provide a communicationMiddleware
services abstraction for distributed applications, it also hints at the existence of orthog-

onal middleware services transparently provided by the framework according
to additional descriptors further delineating non-functional properties5. Exam-
ples of such programming abstractions include but are not limited to secu-
rity, transactionality, persistence, replication, concurrency, location, and mo-
bility. Another objective of middleware platforms is to shield programmers
from heterogeneity imposed by distribution, operating systems, hardware but
also by programming languages, which closely relates it to the goal of distri-
bution transparency of the Reference Model for Open Distributed ProcessingDistribution

transparency (RM-ODP) [ISO95, p. 17, p. 64 et seq.].

The ISO and ITU-T standardization organizations defined the Reference
Model for Open Distributed Processing (RM-ODP) in 1995 to foster portability
across heterogeneous platforms, collaboration between ODP systems in terms
of information exchange and use of functionality, as well as distribution trans-
parency, for which a number of selective concepts are defined to hide the con-
sequences of distribution from both end users and system developers: Access,
failure, location, migration, relocation, replication, persistence, and transaction
transparency.

These orthogonal services and heterogeneity abstractions are also in the
focus of newer research approaches like Aspect-Oriented Programming, which
shall be subject to closer inspection in section 2.5.6 on page 75

5 While the business application that is running on a certain middleware platform is re-
sponsible for the functional properties of its interface implementation, i.e., the business logic
itself, the middleware platform caters for all remaining non-functional properties, which are
also sometimes referred to as “ilities”[FBLL02] meaning qualities like reliability, availability,
manageability, dependability, etc.

2.2 Component-Oriented Middleware Platforms 19

Definition 2.9 is more or less confirmed by Schantz and Schmidt:

Definition 2.10 (Schantz and Schmidt [SS01])
Middleware is systems software that resides between the applications and the under-
lying operating systems, network protocol stacks, and hardware. Its primary role is
to

1. Functionally bridge the gap between application programs and the lower-level
hardware and software infrastructure in order to coordinate how parts of appli-
cations are connected and how they interoperate and

2. Enable and simplify the integration of components developed by multiple tech-
nology suppliers.

Bakken [Bak02] further categorizes currently existing middleware ap-
proaches into the following classes:

Remote Procedure Call (RPC) provides the abstraction of transparent syn-
chronous procedure invocation across system boundaries but offer only
limited support for concurrency or exception handling.

Distributed Object Middleware raises the object-oriented axioms—encapsu-
lation, inheritance, and polymorphism—to the level of transparent dis-
tribution by leveraging the primitives of RPC. Most platforms provide a
variety of programming abstractions and services partly inherited from
their roots in Transaction Processing Monitors (TPM)6. Examples include
the Object Management Group’s Common Object Request Broker Archi-
tecture (CORBA) [OMG04a], Microsoft’s Distributed Component Object
Model (DCOM) [MSd], and Sun Microsystems’ Java Remote Method In-
vocation (RMI) [Sun02a]. Figure 2.1 on the following page shows for the
example of CORBA how Object Request Brokers (ORB) of this middleware Object

Request
Brokers

category transparently distribute requests to local and/or remote ser-
vants. In the case of CORBA, the Internet Inter-ORB Protocol (IIOP)—the
Internet binding of the Generic Inter-ORB Protocol (GIOP)—is used for
communication between ORBs at remote hosts. Client stubs and server
skeletons proxy object requests and take care of argument and result (un)-
marshalling.

Message-oriented Middleware (MOM) generalizes the well-known mail-
box principle to asynchronous message queues, which can be used to
loosely couple system topologies. Further middleware services include
persistence, replication, and real-time capabilities7.

Distributed Tuples comprise distributed Relational Database Management
Systems (RDBMS)[Cod70], TPMs, but also tuple space approaches like
Linda or Java Spaces in Jini [Gel85, SCA, Sun].

6 See for example [MW88].
7 See [DSO03] for an overview.

20 State of the Art

Request

Stub

Client

Skeleton

Servant
Object

Object Request Broker

Stub

Client

Skeleton

Servant
Object

Object Request Broker

IIOP

GIOP

N
e

tw
o

rk

Fig. 2.1: Object Request Brokers according to [OMG04a]

Another category that Bakken left out in his enumeration is formed by Dis-
tributed Shared Memory Systems (DSM) [PTM97], which shall be mentioned here
for the sake of completeness:

Distributed Shared Memory Systems (DSM) are typically found in high
speed parallel computing environments. They share a mutual set of dis-
tributed memory pages whose consistency is maintained by the memory
subsystem using multi-cast and similar technologies. Support for distri-
bution is provided by both, hardware and software architectures.

If caching is used as a special form of partial replication, DSM systems
typically rely on page-oriented caching strategies and procedural or message-
oriented middleware on object caching algorithms, respectively. More details
are described in section 2.1 on page 9.

Distributed Component-Oriented Middleware

Distributed Component-Oriented Middleware platforms technically form exten-
sions of the above mentioned Distributed Object Middleware, merging this ap-
proach with older technology of Transaction Processing Monitors, like CICS,
Tuxedo, and Encina, which is why they are also often referred to as Com-
ponent Transaction Monitors (CTM). The major benefit of component-oriented
platforms is that they provide descriptive middleware, i.e., they allow the useDescriptive

vs. explicit
middleware

of middleware services to be specified descriptively, relying on the runtime
environment to interpret and fulfill these descriptions. Components simply
implement business/application logic; the middleware provides the container
that encapsulates this logic and integrates additional services. In contrast, ex-
plicit middleware requires application programmers to explicitly access these
services in their program code. Schmidt et al. [SSRB00] describe a similar con-
cept in their pattern Component Configurator (cf. section 2.5.4 on page 70). A
few example platforms shall be examined closer in the ensuing discussion.

2.2 Component-Oriented Middleware Platforms 21

2.2.3 Multi-tiered Architectures

Component-oriented middleware as described above is commonly used for
the business tier of so-called Multi-tiered Architectures. The schematic princi-
ple of this architecture style for building distributed applications is drawn in
figure 2.2.

Database Server

Web Server
Web Client

Client Tier Presentation Tier Business Tier Database Tier

Application Server

Syndicated Application Server

Application Client

Fig. 2.2: Multi-tiered architecture for distributed applications

1. The database tier forms the basic layer for accessing business data.

2. On top of that, the business tier encapsulates business objects and pro-
cesses—typically modeled as components running inside an application
server that provides the respective component framework as a runtime
environment. Apart from the database tier, application servers may in
turn syndicate back-end services of other application servers not neces-
sarily conforming to the same component model. This process is part EAI
of a larger concept often referred to as Enterprise Application Integration
(EAI).

3. The third layer is formed by the presentation tier, which is usually im-
plemented either by Web servers or Web containers serving dynamic
Web content.

4. The client tier is formed by thin Web clients (browsers) or by fat appli-
cation clients, which have to provide the presentation logic, i.e., the user
interface, by themselves8.

8 Some publications assume that fat clients also execute business logic and refer to our distinc-

22 State of the Art

It was quite common for older applications to directly access the data-
base tier without an intermediate business tier. They had to provide the
business logic as well.

In today’s complex scenarios, the above described EAI process introduces
a recursive element to the tier principle. This range of different possible com-
binations—two, three, four, or even n tiers—explains why the term “multi-
tiered” was coined. A few application server platforms that enable such archi-
tectures will be introduced in the following sections.

2.2.4 Enterprise JavaBeans

The Enterprise JavaBeans technology will be used as a reference platform for
the demonstration of various concepts that will be proposed in section 4 on
page 107. We will therefore introduce it in a slightly more detailed manner
than the other example platforms in section 2.2.5 on page 29 and section 2.2.6
on page 38.

Sun Microsystems’ Enterprise JavaBeans (EJB) component technology
emerged in 1998 when the Version 1.0 of its specification [MH98] appeared as
a result of Sun’s endeavors to raise the older JavaBeans technology9 [Sun02b]
for client-side component-oriented programming to the level of component-
oriented middleware—much in the way that Microsoft extended its Component
Object Model (COM) to COM+ and DCOM (see section 2.2.6 on page 38).
The specification has gone through a number of revisions since then [MH99,
DYK01, DeM03] during which it evolved into a de facto industry standard. A
new major revision—Version 3.0 [DeM04]—is currently under development.
The main goals of EJB include:

• a common component model for developing and composing Java-based
distributed applications;

• abstractions to hide the complexity of transactionality, access control,
and persistence from application developers, i.e., distribution transparency
in terms of the RM-ODP [ISO95];

• a platform for Commercial-Of-The-Shelf (COTS) components, enabling a
marketplace for different component and container vendors.

Relation to the Java 2 Platform Enterprise Edition

The EJB component model and container framework is part of the Java 2 Plat-
form Enterprise Edition (J2EE)—Version 1.4 [Sha03] in the case of the current

tion by the terms of thin and think Web clients. We will nevertheless denote application clients
with more than simple Web browser functionality as fat clients.

9 JavaBeans was first released in 1996/97.

2.2 Component-Oriented Middleware Platforms 23

EJB Version 2.1 [DeM03]—the larger runtime environment around the mere
component container. J2EE also comprises infrastructure services like security,
transaction management, naming, and various APIs for processing of Servlets
and JavaServer Pages (JSP), messaging (JMS), mail, database connectivity, XML
parser technology, support for the Simple Object Access Protocol (SOAP) and
Web Services (see section 2.2.7 on page 41), among others. Figure 2.3 gives a
high-level overview of the elements of the J2EE architecture.

PLATFORM OVERVIEW6

Figure J2EE.2-1 J2EE Architecture Diagram

The following sections describe the J2EE Platform requirements for each kind
of J2EE platform element.

J2EE.2.2 Application Components

The J2EE runtime environment defines four application component types that a
J2EE product must support:

• Application clients are Java programming language programs that are typically
GUI programs that execute on a desktop computer. Application clients offer a
user experience similar to that of native applications, and have access to all of
the facilities of the J2EE middle tier.

• Applets are GUI components that typically execute in a web browser, but can
execute in a variety of other applications or devices that support the applet
programming model. Applets can be used to provide a powerful user interface
for J2EE applications. (Simple HTML pages can also be used to provide a
more limited user interface for J2EE applications.)

J2SE

HTTP
SSL

Database

Web Container

J2SE

ServletJSP

EJB Container

J2SE

EJB

Applet Container

J2SE

Applet
HTTP
SSL

Application Client
Container

Application
Client

W
eb S

rvcs

Mgmt

JMX

JM
S

 C
onnectors

Java
Mail

JAF

 JT
A

JAX-
RPC

SAAJ

JA
X

R

 JA
C

C

W
eb S

rvcs

Mgmt

JMX

JM
S

 C
onnectors

Java
Mail

JAF

 JT
A

JAX-
RPC

SAAJ

JA
X

R

 JA
C

C

JAX-
RPC

SAAJ
JA

X
R

JM
S

W
eb S

rvcs
Mgmt

JMX

New in J2EE 1.4

Fig. 2.3: J2EE architectural overview [Sha03]
Legend: EJB—Enterprise Java Beans; J2SE—Java 2 Standard Edition;
JACC—Java Authorization service provider Contract for Containers;
JAF—Java Activation Framework; JAXR—Java API for XML Reg-
istries; JAX-RPC—Java API for XML Remote Procedure Call; JMS—
Java Message Service; JMX—Java Management eXtensions; JSP—Java
Server Pages; JTA—Java Transaction API; SAAJ—SOAP with Attach-
ments for Java

The J2EE describes a multi-tiered architecture (see section 2.2.3 on page 21): Multi-tiered
architectureWeb clients (i.e., plain Web browsers and Java Applets) and application clients

access server-side J2EE applications via the Hypertext Transfer Protocol (HTTP,
[FGM+99]) over a Web container providing the presentation logic either by means
of JavaServer Pages or Servlets. Application clients furthermore have the op-
portunity of directly accessing the business logic—encapsulated by EJBs in the
EJB container—taking care of presentation logic by themselves.

24 State of the Art

Roles in Component Life-cycle

One of the crucial achievements of Enterprise JavaBeans was the definition of
six independent roles in the life-cycle of software components:

1. Enterprise Bean Providers are application domain experts without special
knowledge about system-level programming. They provide the actual
business logic as reusable components, i.e., Enterprise Beans.

2. Application Assemblers are also domain experts who compose components
from various Bean Providers into larger deployable application units,
which also includes incorporating other application components like Ja-
vaServer Pages.

3. Deployers install single Enterprise Beans and whole Enterprise Applica-
tion Archives in particular operational environments about which they
have expertise. This installation process also includes customization of
applications by means of provided parameters.

4. EJB Server Providers are experts in operating systems, middleware, or da-
tabase systems catering for low-level platform services like distribution,
transaction management, persistence, etc.

5. EJB Container Providers are currently assumed to be the same vendors
as the EJB Server Providers. Their responsibility is to provide the op-
erational environment for components, including tools for deployment,
monitoring, and management.

6. System Administrators configure and administrate a concrete server in-
stallation using the management and monitoring tools provided by
server and container providers.

Roman et al. [RAJM01] further mention Tool Vendors as an additional party
responsible for providing necessary tools especially for Bean Providers and
Application Assemblers.

These roles—in combination with the contracts specified between them
throughout the specification—assure a clear separation of concerns and enable
a modular design of the component environment. This can also be seen as
an interpretation of the Latin proverb divide et impera10 that proposes to main-
tain power and effectiveness by splitting up a larger problem and distributing
responsibilities.

The EJB Component Model

The Enterprise JavaBeans component model distinguishes three different life-
cycle categories of Beans:

10 divide and conquer/rule

2.2 Component-Oriented Middleware Platforms 25

Entity Beans form the basic building blocks of most EJB-based applications.
They wrap the (persistent) state business objects, thus mapping directly to
back-end database tables—instances representing tuples, attributes rep-
resenting columns. Roman et al. [RAJM01] call them the “nouns” of busi-
ness applications. The object-relational (O2R) mapping of these entities
to persistent tuples in a database can be handled either manually by the
Bean provider, i.e., Bean Managed Persistence (BMP), or automatically by
the container, i.e., Container Managed Persistence (CMP). The latter alter-
native furthermore introduces the option of Container Managed Relations
(CMR), which includes automatic loading and consistency handling of
different relation types between entities.

Session Beans are—corresponding to the above mentioned analogy—the
“verbs” of business applications operating on entities, i.e., they repre-
sent the business processes manipulating the state of business objects. The
specification introduces yet another distinction:

Stateless Session Beans maintain no conversational state between con-
secutive operation calls.

Stateful Session Beans work exclusively for a certain client, maintain-
ing a session state between this client’s calls.

Message-driven Beans represent actions similar to Stateless Session Beans.
However, they can only be invoked asynchronously by sending weakly
typed messages to them. This Bean type has been introduced in Ver-
sion 2.0 [DYK01] to open up the platform to the Message-oriented Middle-
ware paradigm [DSO03].

Table 2.1 summarizes the differences between these component life-cycle
categories.

Tab. 2.1: Enterprise JavaBeans life-cycle categories
Bean type State Identity Behavior
Stateless Session no no potentially

transactional
Stateful Session transient non-persistent potentially

transactional
Message-driven no no asynchronous

invocation
Entity persistent, vis-

ible, managed
by component
or container

persistent,
visible as
PrimaryKey

potentially
transactional

Bean providers essentially have to create the programming artifacts in fig-
ure 2.4 on the following page for every single Bean.

26 State of the Art

Component
Descriptor
(ejb−jar.xml)

Deployment
EJB

Primary Key

Local Home

EnterpriseBean

Remote

Home

Local

(other Home)

<<ejb−ref>>

Fig. 2.4: Abstract model of EJB

Bean class. The Bean class captures the actual business logic of the bean, i.e.,
the operations working on some kind of state (either conversational or
persistent). It has to implement javax.ejb.EnterpriseBean or one
of its sub-interfaces as an internal handle for the container, depending
on the bean type (see table 2.1 on the page before).

Remote interface. The Remote interface is also often called Business interface
since it comprises all externally callable operations of a business object or
process, including reading and updating attributes of its internal state.

Home interface. The Home interface was introduced to bundle operations
that are not specific to a particular instance of a Bean but rather concern
the whole extent11 of a bean type. This primarily includes life-cycle op-
erations12 for creating and destroying instances but also finder and select
methods for retrieving (collections of) instances according to some query
criteria or for performing certain aggregating operations, respectively.

Primary keys. Persistent identification of Entity Bean (see table 2.1 on the pre-
ceding page) instances in the context of an installation of a Home interface
is provided by Primary Key classes, which usually capture the contents of
one or more columns of an entity’s corresponding tuple in the back-end
database.

Local interfaces. Version 2.0 [DYK01] furthermore introduced the concept of
Local Interfaces for efficient communication within the boundaries of the
server Java Virtual Machine (JVM). They basically correspond to Remote
and Home interfaces but lack support for transparent distribution.

11 In object-oriented databases, the extent comprises all instances of a particular type.
12 so called factory operations, named after the Factory Method pattern described in [GHJV94]

2.2 Component-Oriented Middleware Platforms 27

Deployment descriptors. The specification requires the presence of an ejb
-jar.xml descriptor file in every Bean archive containing the metadata
necessary for configuring middleware services appropriately during de-
ployment and for referencing collaborating components (�ejb-ref�).
This is part of the concept called implicit or descriptive middleware by Ro-
man et al. [RAJM01], which means that middleware services like trans-
actions, security, persistence, etc. do not have to be accessed in an ex-
plicit, programmatic fashion. The runtime environment transparently
inserts the desired functionality instead, according to the descriptions
composed by Bean Providers, Application Assemblers, and/or Deploy-
ers. EJB container providers usually provide support for special con-
tainer functionality by means of additional vendor-specific deployment
descriptors.

Note that Message-driven Beans do not have any synchronous external
interfaces (Home, Remote, etc.) at all since they are invoked asynchronously
upon arrival of messages in certain Queues or Topics.

The motivation behind this decoupling of interfaces and implementation Loose
couplingis to enable the container to proxy each and every access to Bean instances by

providing the direct implementations of Home and Remote interfaces by itself
as a kind of adapter13. This allows container providers to transparently add
additional behavior14 as required. Apart from transactions, security, and per-
sistence, this also includes instance pooling, another important concept of Enter- Pooling
prise JavaBeans: The container may keep a certain number of Bean instances,
which it does not have to instantiate once they are needed for servicing client
requests. Deleted instances are not destroyed immediately but rather returned
to the “pooled” state, which enables fast reuse for the next request. The same
technique is also applied to other resources, like threads, database connections,
etc. to improve overall throughput and scalability.

There are basically two alternative ways to implement the container’s role
as a runtime environment: Either by static generation of container glue code
at deployment time or by using meta-programming mechanisms (see sec-
tion 2.5.5 on page 71) at runtime. The latter provides more flexibility because
additional functionality may be inserted after the application has already been
deployed.

Transaction Management

Transaction management is a key element of the EJB architecture. The con-
tainer transparently coordinates different (distributed) resource managers15. De-

13 Cf. structural pattern “Adapter” in [GHJV94].
14 Cf. “Chain of Responsibility” pattern in [GHJV94] or “Interceptor” pattern in [SSRB00].
15 Resource managers are servers like, for instance, database management systems, capable

of taking part in the Two-Phase-Commit (2PC) protocol. More details on distributed transactions
are explained in section 2.3 on page 46.

28 State of the Art

marcation of transactions can be distinguished as follows:

User transactions allow clients to make explicit calls to begin() and
commit() or abort() each transaction using UserTransaction con-
texts of the Java Transaction API (JTA).

Bean-managed Transactions leave it to the bean provider to explicitly
begin and end (i.e., commit / abort) transactions.

Container-managed Transactions require the bean provider only to give
per-method specifications of transactional capabilities for its compo-
nents using the values for the transaction attribute in the deployment
descriptor as shown in table 2.2. The container will handle existing
and/or new transaction contexts appropriately. It assumes that a bean
wishes to commit the transaction unless it explicitly invokes the method
setRollbackOnly() .

Especially user transactions require more attention if results of Bean invo-Transactions
and caching cations are subject to caching as intended in section 4 on page 107. Protocols

for intertransactional caching will be introduced in section 3.1.3 on page 87 as a
possible approach to this challenge.

Tab. 2.2: Transaction attributes in EJB
Transaction attribute Existing context No context
NotSupported suspended before and

resumed after method
processing

no context created

Required honored and used new context started
Supports honored and used no context created
RequiresNew suspended before and

resumed after method
processing; new con-
text started

new context started

Mandatory has to be set by calling
client

exception

Never exception no context created

More details of the EJB component model (up to Version 2.0 [DYK01]) are
explained, for instance, in Ed Roman’s “Mastering EJB” [RAJM01].

History and Future

The initial Version 1.0 [MH98] was not much more than a preliminary release
trying to provide a common basis for the emerging market of EJB server/-
container vendors. It was quickly superseded by Version 1.1 [MH99], which
made support for Entity Beans mandatory, introduced assembly descriptors,

2.2 Component-Oriented Middleware Platforms 29

and required explicit description of environmental dependencies, among other
improvements.

The next major release, Version 2.0 [DYK01], introduced a number of new EJB 2.0
features: Message-driven Beans are a new Bean type, triggered by arriving JMS
messages. Container Managed Persistence (CMP) support was enhanced, in-
cluding Container Managed Relationships (CMR). Local Interfaces have been in-
troduced for lightweight access to components without support for poten-
tial distribution. EJB QL is an object-relational query language for finder
and select methods. Select methods and additional business methods are
now allowed on Home interfaces, similar as in CORBA Components (cf. sec-
tion 2.2.5).

Enterprise JavaBeans v2.1 [DeM03] standardized further developments in- EJB 2.1
troduced meanwhile by various container vendors. These developments ba-
sically include support for accessing and providing Web Services. A timer ser-
vice allows for coarse-grained, transactional, time-based event notifications,
which is useful for managing business processes. Furthermore, enhancements
to Message Driven Beans and EJB QL complemented the addition of this ver-
sion.

Future Developments. The upcoming EJB 3.0 (at the time of writing in early EJB 3.0
draft state) targets at major points of criticisms of previous revisions [DeM04,
pp. 7]:

• The number of programming artifacts shall be reduced by extensive use
of metadata annotations as proposed by Java Specification Request 175
[Bra04] and soon provided by Java 2 Runtime Environment v5 for “con-
figuration by exception”, encapsulation of environmental dependencies,
and object-relational mapping.

• Simplification of Bean types allows for programming EJBs like “plain old
Java objects” (POJOs) as already provided by the JBoss open-source ap-
plication server [FR03, BB03], among others;

• EJB QL shall be enhanced further.

These improvements can be summarized as a tendential reduction of the grad- Reduced
complexityually bloated specification’s complexity towards leaner, more modular con-

cepts for plug-in–based introduction of new middleware services in an aspect-
oriented manner (cf. section 2.5.6 on page 75).

2.2.5 CORBA Components

The Object Management Group (OMG) started in 1999 to create its own
specification for server-side component-oriented application development—
CORBA Components (CCM) [OMG02a]—as a response to Microsoft’s older ap-
proaches based on the (Distributed) Component Object Model (D/COM) and

30 State of the Art

the Microsoft Transaction Server (MTS) (see section 2.2.6 on page 38) and
Sun Microsystems’ JavaBeans technology [Sun02b] for client-side component-
oriented programming. The emerging Enterprise JavaBeans specification (see
section 2.2.4 on page 22) furthermore led to number of extensions and im-
provements. The CORBA Components Model (CCM) is based on the OMG’s
Common Object Request Broker Architecture (CORBA) [OMG04a] as the un-
derlying distributed object middleware platform. On account of being a unifi-
cation attempt, the CCM tries to leverage potentials of both concurring worlds,
EJB and COM, while adding further advantages at the same time. Exam-
ples include platform-neutrality in opposition to DCOM/MTS and language-
neutrality in contrast to Java/EJB.

Unfortunately, this “best-of-breed” strategy is responsible for the even
higher complexity of the CORBA Components specification in comparison to
the Enterprise JavaBeans or Microsoft COM technology. This major drawback
is the reason for the comparatively small number of commercial and open-
source implementations of this specification. However, the OMG’s proposal
provides a much cleaner architecture from an academic viewpoint than, e.g.,
the EJB specification. For this reason, we will closer examine a few features
and concepts of this architecture. A more in-depth comparison between the
three competing technologies—Enterprise JavaBeans, Microsoft (D)COM, and
CORBA Components—can be found, e.g., in [Poh99].

CORBA Components and CORBA

While CORBA [OMG04a] itself provides only a basic platform of explicitly
programmable middleware services, the CORBA Components Model offers
more descriptive means for specifying implicit component behavior, similar
to and in some points far beyond Enterprise JavaBeans. It explicitly aims at
modeling business objects and processes even though any business semantics
have been strictly avoided in the specification. Building on top of CORBA
as the underlying communication layer and middleware service platform, the
component model is added as an additional abstraction layer for describing
application architectures, as depicted in figure 2.5 on the facing page. Just as
in EJB, the container provides the runtime environment for components, en-
capsulating access to them and transparently integrating middleware services
as required by additional component descriptions.

The CORBA Interface Definition Language (IDL) [OMG04a] has been aug-IDL
mented by numerous meta-model elements for capturing the necessary addi-
tional constructs. However, these augmentations can be mapped completely to
equivalent CORBA IDL v3.0 statements. These additional language constructs
also provide an easier access to component-oriented programming than, e.g.,
EJB, where components do not exist as explicit programming language arti-
facts.

2.2 Component-Oriented Middleware Platforms 31

CORBA
Component

C on ta in er

H om e

Callbacks

External

C

l
i

e
n
t

P
O

A

Internal

Tra nsaction s Security Persistence Notification

ORB

Fig. 2.5: CORBA Components container architecture [OMG02a]

The Development Cycle

Development of component-oriented applications in CCM comprises the fol-
lowing steps:

1. A component specification is described in IDL, which comprises its in-
terface(s), including one or more Home interfaces (cf. EJB).

2. Next, the Component Implementation Definition Language (CIDL) is used to CIDL
describe the framework for a possible corresponding implementation of
the component specification. This primarily includes the life-cycle cate-
gory, persistence mapping, and segmentation of facets. Code generators
are used to create various interfaces and abstract base classes for the ac-
tual implementation in an arbitrary target language for which a CORBA-
binding exists, in accordance with the Component Implementation Frame- CIF
work (CIF).

3. These base classes and program skeletons have to be extended and im-
plemented by the application programmer.

4. Complete implementations are bundled in archives together with their
appropriate component descriptors.

32 State of the Art

5. Components can then be assembled and pre-configured in using assem-
bly descriptors and component property files. This also poses an exten-
sion of the EJB specification, which introduces only one descriptor (ejb
-jar.xml) for everything from component and resource description to
persistence mapping an assembly.

6. Such component packages can finally be deployed at conforming appli-
cation servers.

The CORBA Components Model

CORBA Components provide a much finer distinction of a component specifi-
cation’s different artifacts than its competing models, COM and EJB. Figure 2.6
shows an abstract view on features of the CORBA Components Model, includ-
ing supported interfaces, facets and receptacles, event sources and event sinks, as
well as attributes.

Facets
Receptacles

Attributes Event source

Event sink

Component

Primary Key

Home Interface
CORBA

(CCD)
Descriptor
Component

(Equivalent Interface)
Supported Interfaces

Fig. 2.6: Abstract model of CCM

Supported interfaces can be used to extend the equivalent interface of a com-
ponent—responsible, for instance, for navigational access to facets—by
means of normal inheritance.

Facets are used to model provided interfaces of distinct application aspects or

2.2 Component-Oriented Middleware Platforms 33

roles of a component16. This opens up the possibility to encapsulate the
implementation of different facets by separate servant classes. Available
facets of a component can be queried and navigated from its equivalent
interface.

Receptacles or used interfaces are used to model unidirectional connections
of interfaces provided, for instance, by other components. This mech-
anism can be used during component assembly to configure networks of
collaborating components by assigning provided and used interfaces to
each other according to their specified roles17.

Event sources emit (1 : 1) or publish (1 : n) arbitrary event objects with call-by-
value semantic18. Technically, event sources are special receptacles since
they call back event sink interfaces that have to be announced to them.

Event sinks are the corresponding consumers of emitted or published events,
which are “pushed” by event sources to this special kind of facet. Events
are primarily intended for notification of components within the context
of a deployment19.

Attributes represent externally visible properties of a component, which can
be read and written by accessors and mutators. Their primary purpose
is to allow (pre-)configuration of components and component instances
during assembly and deployment.

Home interfaces are modeled differently from the features explained above.
The Component IDL has a special construct for defining Home interfaces
and their management relationship to a certain component. In analogy
to EJB, Homes are used to capture operations that are not bound to a
specific component instance. This primarily includes factory and finder
functionality but also arbitrary auxiliary methods. A home definition in
IDL may also include a primarykey definition if needed for identifica-
tion.

Primary keys are value objects used for persistent identification of Entity com-
ponents (see table 2.3 on the next page) in the context of a concrete in-
stallation of their Home interface(s).

Deployment descriptors provide metadata necessary for configuring mid-
dleware services appropriately during deployment, just as in EJB (cf. fig-
ure 2.4 on page 26). Details about CORBA Component Descriptors are
discussed on page 35.

16 This concept is taken from COM (cf. section 2.2.6 on page 38).
17 At this point, CCM goes far beyond what other component models provide; e.g., EJB only

allows to specify expected naming service entries of collaborating Beans but leaves the pro-
cesses of instantiation entirely in the responsibility of the Bean itself.

18 Cf. [OMG04a] for the differences between reference and value semantics.
19 Although the concrete implementation of the required event mechanism is left to the con-

tainer, asynchronous invocation as with Message-driven EJBs is not explicitly supported by this
simple mechanism.

34 State of the Art

Similar to the Enterprise JavaBeans model (cf. table 2.1 on page 25), CORBA
Components distinguishes different life-cycle categories, as shown in table 2.3.

Tab. 2.3: CORBA Components life-cycle categories
Category State Identity Behavior
Service no no non-

transactional
Session transient non-persistent non-

transactional
Process persistent, but

invisible to the
client, managed
by component

persistent,
potentially vis-
ible through
user-defined
operations,
managed by
component

potentially
transactional

Entity persistent, vis-
ible, managed
by component
or container

persistent,
visible as
primarykey

potentially
transactional

Service components correspond to Stateless Session Beans, Session and Process
to Stateful Session Beans, and Entity, of course, to Entity Beans. EJB’s Message-
driven Beans have no direct equivalent in CCM. Process components represent
a special type of components that is best compared with DCOM components
with Microsoft Transaction Service (MTS) support (cf. section 2.2.6 on page 38).

For the implementation of components, CCM introduced the concept the
Component Implementation Definition Language (CIDL) as an intermediary step
between interface specification and binary implementation, which is much
closer to the concepts of UML Components20. The basic element of a CIDL
definition is the composition as the unit of implementation, which selects:

Life-cycle category as in table 2.3;

Catalogs of persistent storage locations for later referencing within abstract
storage home bindings (optional);

Executors as servants for home and component implementations, including
the allocations between them;

Segments within executors for encapsulation of independent state and acti-
vation capability of (groups of) facets defined before in IDL;

Delegation of operations of home or component executors (per segment) to
storage homes or storages, respectively, which either contain traditional

20 Cf. definition 2.7 on page 16 and section 2.5.1 on page 63.

2.2 Component-Oriented Middleware Platforms 35

hand-written code for object-relational mapping (self-managed persistence,
SMP) or generated code (container-managed persistence, CMP) according
to the persistent state declaration code within the CIDL definition; and

Proxy homes for increased scalability, e.g., by installing remote servants with
caching functionality (albeit the specification is a bit vague at this point).

The Component Implementation Framework (CIF) provides the architectural CIF
framework behind the syntax and semantics of the CIDL. There already ex-
ists a UML Profile21 [OMG04c] that maps component specifications to CIF ele-
ments for automatic (CIDL) code generation. The major goal of this additional
step in component development is to further minimize the necessary artifacts
the application programmer has to implement for a component.

The CORBA Components specification also provides a mapping to and EJB mapping
from the Enterprise JavaBeans component model, including definitions for
runtime interoperability in both directions. Bridges allow for transparent en-
capsulation of interfaces for clients against each other. Thus, CCM clients see
a CCM view of EJB components and EJB Clients an EJB view of CCM compo-
nents, respectively. The server-side component-container contracts are how-
ever far more different from each other as to allow an easy interoperability at
this level, too. Hence, there is currently no way to deploy EJB components to
a CCM container or CCM components to EJB containers, respectively.

Descriptors and Deployment

Just as Enterprise JavaBeans, CCM follows the concept of descriptive middle-
ware, i.e., the configuration of component behavior can be adapted to a spe-
cific purpose and/or runtime environment by means of additional descriptors
that are evaluated by the container at deployment time. CCM features a much
richer collection of descriptors than EJB. An overview is given in figure 2.7 on
the following page.

Component Software Descriptors (CSD) are XML files describing physical
implementations as softpkg elements, including external dependen-
cies to other subsystems, libraries, or additional components, as well as
details of the target platform, like processor, operating system, etc.

CORBA Component Descriptors (CCD) are XML files initially generated
from CIDL composition declarations. It primarily contains redundant—
for avoiding access to the interface repository—descriptions of the com-
ponent ports as well as life-cycle category and facet segmentation. De-
velopers further have to specify non-functional properties, like transac-
tional properties of operations22, semantics of event handling, security in

21 Cf. section 2.5.1 on page 61.
22 Transaction demarcation—especially container-managed transactions—closely resembles the

concepts of EJB as shown in table 2.2 on page 28.

36 State of the Art44 KAPITEL 2. AKTUELLE MIDDLEWARE-PLATTFORMEN

Software

(+CSD)
Package

Component
Assembly
Package
(+CAD)

CORBA
Component
Descriptor (CCD)

Component
Property
File (CPF)

Component
Package
(Softpkg with

*

 CCD)

1

1

*
*

*

Implementation files

Abbildung 2.9: Schematische Beziehungen zwischen Komponentenpaketen und
Descriptoren

die die Struktur von Metainformationsdateien in Software Packages beschreibt.
CSDs enthalten im wesentlichen Aufstellungen von physischen Implementierun-
gen, insbesondere von Komponenten, und deren Abhängigkeiten zu anderen Sub-
systemen, Bibliotheken oder auch weiteren Komponenten. Darüber hinaus wird
auf Zielsystemdetails (Prozessor, Betriebssystem. . .) verwiesen. Eine Sonder-
form, die Component Packages, enthalten zudem noch Einstellungen (Properties)
und Component Descriptors (CCD, siehe weiter unten).

Aus der CIDL-Beschreibung einer Komponente kann der plattformabhängige
CIDL-Compiler neben den Implementierungsskeletten auch halbfertige CORBA
Component Descriptors (CCD) erzeugen, die einerseits – zur Umgehung des Zu-
griffs auf das Interface Repository – redundante Beschreibungen der Component
Ports (siehe Abschnitt 2.2.2) aber auch der Lebenszykluskategorie und der Fa-
cettensegmentierung enthalten. Vom Entwickler müssen weitere Informationen
zu den transaktionalen Eigenschaften, der Ereignisbehandlung, der Konfiguration

Fig. 2.7: Relationships between component descriptors and packages

terms of role-based access control, reentrance (capability for concurrent
access to code segments) etc.

Component Property Files (CPF) are XML files describing pre-configura-
tions of component attributes.

Component Assembly Descriptors (CAD) are XML files that comprise ele-
ments describing the components used in the assembly, connection infor-
mation, and partitioning information (i.e., collocation of components on
specific hosts and processes). Instantiated components can be connected
by their facets and receptacles or event sources and sinks, respectively.

Software Packages are ZIP archive files grouping a Component Software De-
scriptor with a set of binary implementation files (libraries etc.), which
may be either contained in the archive or referenced externally.

Component Packages are special Software Pages additionally containing
CORBA Component Descriptors and optionally Component Property Files.

2.2 Component-Oriented Middleware Platforms 37

Component Assembly Packages bundle multiple Component Packages to-
gether with a Component Assembly Descriptor and optionally a number of
Component Property Files containing component attribute configurations.

Especially the aspect of assembly shows many parallels to Architecture De- ADL
scription Languages (ADL) [MT00]: Components are connected using their
ports, i.e., facets, receptacles, and event sources / sinks. Attributes can be used
to pre-configure component instances. However, CCM has no explicit concept
for connectors—the container plays this role implicitly—and no assumptions
are made on how component assemblies evolve at runtime.

Due to the more intricate constellation of various archive and descriptor
types, the process of deployment is also somewhat more complicated in com-
parison to, for instance, Enterprise JavaBeans. Figure 2.8 depicts the instantia-
tion of various runtime container constructs at deployment time.

ComponentServer

Container

 CCMHome

CCMObject

ComponentInstallation

DeploymentApplication

AssemblyFactory

ServerActivator

Assembly

<<instantiates>>

<<instantiates>>

<<instantiates>>

<<instantiates>>

<<instantiates>>

Fig. 2.8: Deployment architecture [OMG02a]

The Deployment Application opens an Assembly and checks dependencies to
pre-installed subsystems using the information in the Software Package. It is
thus able to determine necessary steps to prepare target hosts using special

38 State of the Art

agents. In the next step, component servers are started remotely in different
processes according to the declaration in the Assembly. This in turn allows
to create instances of homes and components and to pre-configure these in-
stances with the help of Properties with the purpose of subsequent announce-
ment to naming and trading services. Finally, connections are established be-
tween the component ports as specified in the Assembly.

2.2.6 Microsoft .NET

The Microsoft .NET framework and its ancestor, the Component Object Model
(COM), play only a marginal role in the context of this work since we pri-
marily use the Enterprise JavaBeans platform to demonstrate our concepts.
An implementation on the .NET platform would however be possible as well.
Hence, we will take a closer look at this competing approach and compare its
features with those offered by EJB (see section 2.2.4 on page 22) and CCM (see
section 2.2.5 on page 29).

COM

The Microsoft Component Object Model (COM) [MSc] was first introduced in
1993 for component-oriented programming of local (client-side) applications.
Nevertheless, it still provides the fundamental concepts for all of its exten-
sions, which will be subject of the following sections. The concepts of COM
originate from the Object Linking and Embedding (OLE) technology, which wasOLE
primarily used for features like “copy and paste” / “drag and drop” between
different applications, as well as for managing compound document objects.
COM was actually the underlying object model for OLE 2. The basic elements
of this object model are shown in figure 2.9.

IUnknown

Facets Component

Fig. 2.9: Abstract model of COM

IUnknown is the standard interface every COM object has to implement. It
comprises three methods:

2.2 Component-Oriented Middleware Platforms 39

AddRef() and Release() for client reference counting, which is nec-
essary to determine if an object can be disposed because it is not
referenced anymore, and

QueryInterface() for retrieving Facets.

Facets are additional, independent interfaces an object may provide to ser-
vice client requests to its functional services.

Object instantiation is typically accomplished by querying a class factory Class factory
from the COM runtime library using the class ID (CLSID) of the desired object.
These factories are able to create objects, which a client can in turn query for
their facets after it has added itself as a new reference to that object. There is
also a host of standard literature available to explain the main features of this
model, e.g., [Rog97].

ActiveX [MSa] was introduced in 1996 as a synonym for some parts of OLE ActiveX
relating to Internet integration. This technology is comparable to both, Sun’s
JavaBeans [Sun02b] specification and Java Applet technology, in that it enables
distribution of small client programs over the Internet, integrated on Web sites.
However, the lack of security mechanisms for code integrity and access control
to system functions posed a major drawback of ActiveX compared to Java Ap-
plets, which was only partially compensated after the retroactive integration
of code signing mechanisms.

DCOM and MTS

The Distributed Component Object Model (DCOM) [MSd], originally called “Net-
work OLE” is an extension of COM to allow COM objects to communicate re-
motely in a reliable, secure, and efficient manner. It is based on the Remote
Procedure Call (RPC) specification of the Open Software Foundation’s Dis- OSF-DCE
tributed Computing Environment (OSF-DCE). It was introduced in 1996 as a
response to the Object Management Group’s Common Request Broker Archi-
tecture (CORBA) [OMG04a].

Among a number of new features, DCOM also introduced a concept for
custom proxy objects23, which can be used to inject code on the client side.
Apart from load balancing and fault tolerance, this mechanism can also be
used for caching data at the client side.

The Microsoft Transaction Service (MTS) [MSe] builds on DCOM to combine
object request broker functionality with that of a Transaction Processing (TP)
monitor. Provided services include transactions, scalability services, connec-
tion management, and administration. Hence, it provides a comparable set of
middleware services as Sun’s Enterprise JavaBeans technology and the OMG’s
CORBA Components Model. Unlike its competitors, MTS supports only one Only one

component
type

23 Cf. section 2.5.5 on page 71.

40 State of the Art

component type, which can be compared to EJB Session Beans (cf. table 2.1 on
page 25) and CCM Process components (cf. table 2.3 on page 34). The concept
of automatic transactions allows the demarcation of transaction attributes simi-
lar to EJB and CCM, but only coarser grained at component level (cf. table 2.2
on page 28).

A deeper insight to programming with MTS is given, e.g., in Gray’s book
[GJL97].

COM+

In 1997, Microsoft introduced COM+ [MSb] as a further extension of COM
with the goal to re-align COM and DCOM as a single product family. TheAlignment of

COM and
DCOM

most prominent enhancement has been the introduction of a set of common

Common
services

services, such as transactions, role-based security at method-level, monitoring
and administration facilities, message queuing and event services, and load
balancing / clustering, among others. Interoperability between components
written in different languages was also improved. A context interface and at-
tributes were added to the component interface. The concept of interception (cf.Interception
section 2.5.5 on page 71) was added to enable simple architecture extensions.
The programming model was simplified to allow designing components as
simple as single-user, single-threaded applications and to let the runtime en-
vironment take care of concurrency and distribution issues automatically. In
that respect, the concept COM+ closely resembles the competing approaches
of CCM and EJB, especially the resource pooling mechanisms as an extension of
MTS resource dispensers.

.NET

Microsoft .NET [MSf] was released in 2002 as a framework for components
that facilitate integration by sharing data and functionality over a network. It
features a client runtime environment as well as a number of server implemen-
tations for various middleware tasks. It is furthermore accompanied by a set
of development tools for building component-oriented applications. In many
ways, it parallels Sun’s Java 2 Enterprise Edition (J2EE).

While its predecessors (COM etc.) where mainly focused on the Microsoft
(Windows) platform .NET tries to make up for former disadvantages by pro-
viding neutrality from both, platforms and languages. The basic building
block of the framework is the Common Language Runtime (CLR) as depictedCLR
in figure 2.10 on the next page. The CLR can be implemented on practically
any platform24. Although the Java-like C# [MSg] is the preferred language for
programming .NET applications, the CLR supports over 20 different program-
ming languages, which also poses a major benefit in comparison to its prede-

24 Currently, there even exist rudimentary CLR implementations for open-source operating
systems like Linux. However, most integrated COM+ services are still platform-dependent.

2.2 Component-Oriented Middleware Platforms 41

cessors (COM etc.) as well as its competitors (EJB, CCM). Language neutrality
is provided by means of the Microsoft Intermediate Language (MSIL), a machine- MSIL
independent low-level language comparable to Java byte-code, to which re-
spective compilers have to translate high-level code. Similar to the Java ap-
proach, a Just-In-Time (JIT) compiler translates MSIL fragments into managed
native code for execution within the runtime engine. A Common Type System CTS
(CTS) similar to CORBA IDL [OMG04a] or the Meta Object Facility [OMG03a]
ensures cross-language type-safety.

XML Web Services Web Forms

ASP.NET

ADO.NET

Common Language Runtime

Windows Forms

Framework Class Libraries

Fig. 2.10: Elements of the .NET framework

Apart from language integration, the CLR caters for security and resource
management (memory, processes, threads, etc.) as well as life-cycle manage-
ment of components, among other functions. On top of the CLR reside the
Framework Class Libraries (FCL)—a set of base libraries for standard input/out- FCL
put, string manipulation, security, networking, multi-threading, and graphi-
cal user interfaces. ADO.NET comprises XML and Database access libraries.
ASP.NET supports the development of Web applications (user front-ends) and
Web services (back-end integration of third-party services). It can thus be
compared to Java ServerPages (JSP) and Servlet technologies in J2EE. Windows
Forms allow for easy programming of desktop applications. They are intended
as an alternative to ActiveX controls.

Backward-compatibility to COM is provided by means of Runtime Callable
Wrappers (RCW) and COM Callable Wrappers (CCW), which have to be imple-
mented by COM / .NET components to become accessible by the other tech-
nology, respectively.

Parts of the .NET Framework have been submitted to the ECMA for in- CLI
ternational standardization by the name of “Common Language Infrastructure”
(CLI), i.e., the virtual machine (CLR) and class library (FCL) behind the .NET
architecture.

A more in-depth introduction to programming applications with the .NET
framework is given, e.g., in Prosise’s book [Pro02].

2.2.7 Web Services

Web services [BHM+04] are a technology for integrating heterogeneous ap-
plications in a very loosely coupled manner. They provide interoperability

42 State of the Art

between various platforms because of their neutrality from implementation
languages and executing platforms. The related protocols are based on XML,
making it easy for developers to debug applications because of the human-
readable nature of exchanged messages. Protocol data is typically shipped
over HTTP, which allows easy contacting of globally distributed services re-
gardless of most firewall security measures that are usually a challenge for
other middleware platforms. In the context of multi-tiered architectures (see sec-
tion 2.2.3 on page 21), they can be used as technology for Enterprise ApplicationEAI
Integration (EAI).

Interestingly, the relation of services and components has been realized by
Cheesman and Daniels before the advent of web services [CD00, p. 8]:

A component isn’t a service, although one of the things you can
do with components is build Service-Based Architectures, where each
Component Object provides a specific function, using specific data.

Another concept that is often discussed lately in connection with web ser-
vice technology are Service-Oriented Architectures (SOA) [BHM+04, Sect. 3.1],Service-

Oriented
Architectures

or service-based architectures. They denote an architectural style character-
ized by loose coupling between interacting software agents. As illustrated in
figure 2.11, services are units of work performed by service providers for service
requesters, both acting as agents on behalf of their owners. Loose coupling is
achieved by a simple set of generic interfaces through which extensible, de-
scriptive messages are exchanged.

It takes no wonder that web service technology has been gradually inte-
grated into the component architectures introduced above. Sun’s EJB features
support for web services since v2.1 [DeM03], and web services are an integral
part of J2EE [Sha03]. Microsoft’s .NET platform [MSf] also heavily relies on
web services as a technology for integrating external services.

Web service technology builds on a number of standards and specifica-
tions, which are shown in their relation to each other in figure 2.11.

Service
Broker

UDDI

WSDLWSDL

SOAP
Service
Provider

Service
Requester

Fig. 2.11: Web service technology overview

2.2 Component-Oriented Middleware Platforms 43

Simple Object Access Protocol (SOAP) [Mit03] is a light-weight applica-
tion level protocol for message exchange between object-oriented (and
typically component-oriented) systems. It basically defines an XML-
based format for request/response messages between systems. Remote
procedure calls (RPC) can be emulated with SOAP. It is typically run
on top of HTTP [FGM+99], although it was designed to run on top of
virtually any Internet protocol. SOAP messages have a header for meta-
information about transactions, security, etc. and a body consisting of
an envelope that contains the payload information. Besides SOAP, XML-
RPC can also be used as a more lightweight protocol for invoking web
services.

Web Service Description Language (WSDL) [CCMW01] is an XML-based
format for describing the public interface of web services, i.e., an ab-
stract description of supported operations and message types as well as
concrete protocol bindings and message formats.

Universal Description, Discovery, and Integration (UDDI) [JM02] is an
XML-based registry interface for global businesses. A UDDI business
registration consists of three components:

White pages contain information about address, contact, and known
identifiers;

Yellow pages categorize a service based on standard taxonomies; and

Green pages comprise technical information about services exposed
by the business

UDDI registries are meant to be queried by SOAP messages and to serve
WSDL documents for the web services they list. Unlike SOAP and WSDL,
the UDDI initiative was not led by the W3C but by OASIS instead. Note
that a (central) registry like that proposed by UDDI is not necessarily
required for service discovery25.

However, SOAP, WSDL, and UDDI form only the fundamental basis of the Web service
framework
stack

larger Web services framework as depicted in figure 2.12 on the next page. This
framework consists of three ever-growing stacks of emerging specifications for
communication protocols, service descriptions, and discovery facilities.

Discussion and Relevance Apart from the advantages web services pro-
vide for the easy integration of distributed services, there is also a number
drawbacks:

• Performance is usually slower by magnitudes in comparison to other
middleware platforms.

25 For instance, peer-to-peer (P2P) approaches would also be feasible. The whole area of P2P
systems would however lead out of this work’s scope.

44 State of the Art

Security

Reliability

Routing

Transactions

Context

SOAP

Attachements

XML Schema

Interface

Service

QoS

Composition

Agreements

Inspection

Directory

W
S
F
L

W
S
D

L

U
D

D
I

Descriptions Discovery

X
M

LP

Protocols

Fig. 2.12: Web service framework stack according to [RW02]
Legend: QoS—Quality of Service; SOAP—Simple Object Access
Protocol; UDDI—Univeral Description, Discovery, and Integration;
WSDL—Web Service Description Language; WSFL—Web Service
Flow Language (composition language proposed by IBM); XMLP—
XML Protocols (W3C Working Group)

• Circumventing firewalls by tunneling all traffic over HTTP introduces
new security issues that are much harder to audit.

• Support for more sophisticated middleware features like security or
transactions is currently still missing or under development.

For a more detailed introduction to web service technology, the interested
reader may consider one of the huge number of books and articles available
about this topic, e.g., Cerami’s book [Cer02].

In the context of this work, web services play only a marginal role. TheyWeb services
vs. distributed

objects
just provide yet another access protocol to (potentially) component-based ser-
vices. This opinion is also shared by Birman [Bir04], who argued in con-
trast to Vogels [Vog03] that Web services are indeed essentially just another
access technology for distributed objects. Vogels [Vog03] complained about
the document-centered nature of Web services, which ultimately restricts their
computing model, rendering the concept inappropriate for general use. But
although Web service protocols and concepts evolved in an ad hoc fashion
to overcome platform interoperability issues by loose coupling using stan-
dard protocols, their rapidly growing popularity, platform-independence, and
ubiquitous use will accelerate the addition of missing middleware functional-
ity like reliability/availability.

It would pose no major technical obstacles to implement the proposed
approach for method-based caching on top of this technology and accessing

2.2 Component-Oriented Middleware Platforms 45

clients would also benefit from this enhancement. However, supporting this
additional access technology would bear only little scientific value.

2.2.8 Summary

Section 2.2 comprised a rather long discussion of current state-of-the-art com-
ponent-oriented middleware platforms, namely Sun’s Enterprise JavaBeans,
the OMG’s CORBA Components Model, and Microsoft’s .NET (section 2.2.4
on page 22, section 2.2.5 on page 29, and section 2.2.6 on page 38). An in-depth
comparison of all features has been provided elsewhere (e.g., in [Poh99]) and
would go beyond the scope of this work.

However, a few similarities and common architectural features shall be
summarized here to emphasize the general applicability of the proposed con-
cepts in section 4 on page 107, although the demonstration of these concepts
has only been implemented for the EJB platform.

DB

ContainerApplication

MiddlewareMiddleware
Service Service

Component
Instance

Proxy
Component

Application ServerClient

Fig. 2.13: General architecture of component-oriented middleware

The general architecture of the component-oriented middleware platforms
introduced above is depicted in figure 2.13: Client applications access (poten-
tially distributed) components through some kind of proxy/stub object that
provides distribution transparency as well as hooks for arbitrary middleware
services. The proxy ultimately transmits invocations to a (potentially remote)
application server where the actual component instance resides in a runtime
environment, which we will shortly refer to as container. In analogy to the
client-side proxy, the container in turn provides hooks for middleware ser-
vices and takes care of life-cycle functionality etc. before it finally invokes the
component instance to perform the requested service. The component instance
may in turn invoke additional components (not shown in the figure) or query
a database directly or indirectly (via the container). Invocation results are then
transferred back to the invoking client application in reverse order.

46 State of the Art

It is furthermore important to note that definition 2.8 applies to all of the ex-
ample platforms presented above. In other words, component state is always
accessed by means of accessor/mutator methods. Hence, caching component
state based method results is feasible for all major platforms.

2.3 Distributed Data Management

In section 2.2 on page 14 the business tier (cf. figure 2.2 on page 21) was put
into the center of interest, elaborating about persistence and transactionality,
among other middleware services provided by application servers. However
in this respect, application servers only act as mediators to the database tier,
comparable to TP monitors [MW88]. Databases may in turn be replicated andDistributed

databases distributed, which opens up a completely different research area—the field of
distributed databases [BHG87, Rah94, Len97, ÖV99]. However, a number of
fundamental concepts from this field are important when talking about trans-
actionality of cached access to components in section 4 on page 107, since this
can be seen as a special case of partial replication. Hence, we will give a brief
overview of this subject.

2.3.1 Transactions and Concurrency Control

The concept of transactions is known in the database community since sev-
eral decades as a concept for programs operating on a shared resource (e.g.,
a database) without interfering with each other. Härder and Reuther summa-
rized the most important properties of transactions under the acronym ACIDACID

properties [HR83]:

Atomicity requires a transaction to be processed in an “all-or-nothing” man-
ner, i.e., the whole transaction program has to succeed, including each
individual operation. Otherwise it has to be rolled back (undo), i.e., its
effects have to be made invisible.

Consistency of the database has to be preserved across transactions, i.e.,
transactions may commit only legal results.

Isolation preserves the illusion of single-user-operation for concurrently run-
ning transactions, i.e., the events within transactions are hidden from
other transactions until they are committed.

Durability has to be guaranteed for results of successfully completed transac-
tions by the database management system, i.e., the state must be recon-
structible after a sudden system crash (redo). Once completed transac-
tions can only be undone by corresponding compensatory transactions.

These properties are also influencing each other, e.g., isolation is a prereq-
uisite for atomicity; consistency is required for durability. A database man-

2.3 Distributed Data Management 47

agement system (DBMS) has to implement a number of concepts to ensure the
adherence of ACID properties:

Recovery caters for atomicity and durability by ensuring that aborted trans-
actions can be rolled back (undo) and committed transactions can be re-
played (redo) after system crashes. An important technique to achieve
recoverability is logging: The recovery system has to log redo and undo Logging
information continuously about every transaction, either logical in terms
of data manipulation operations (i.e., the “delta”) or physically in terms
of before- and after-images. A number of books discuss the details of
logging and recovery, e.g., [BHG87].

Concurrency Control is a form of synchronization that is especially required
for keeping up the isolation property, but also for consistency. For ob-
vious performance reasons DBMS concurrently serve multiple transac-
tions. Serializability theory deals with the synthesis of serializable histories, Serializability
i.e., non-conflicting execution plans of concurrent transactions.

An execution is serializable if it produces the same output and
has the same effect on the database as some serial execution of
the same transactions. [BHG87]

The transaction manager of a DBMS achieves serialization of concurrent
transactions by using schedulers that execute, reject, or reorder operations Scheduler
of transactions by delaying them. The goal of schedulers is to ensure the
serial execution of transactions accessing the same data by mutual exclu-
sion. A basic distinction can be drawn between locking and non-locking
schedulers, for both of which we will discuss a number of general strate-
gies a few paragraphs later.

Without concurrency control, a number of anomalies may occur due to in- Anomalies
terfering read/write operations. Only serializable executions can prevent all
of these phenomena26.

Lost Update phenomena occur when two transactions read the old value of
the same data object before writing it both in an arbitrary sequence.

Dirty Read is also referred to as “read uncommitted data”, i.e., data that is not
fixed and might be rolled back later.

Inconsistent Retrieval is a more subtle type of interference that occurs when
a transaction reads one data item before it is updated by another trans-
action and another data item after the same update transaction has up-
dated it. That is why this anomaly is also called “non-repeatable read”.

Phantoms are data items that are inserted or deleted while another transac-
tion is operating on a set of data items to whose predicate the “phan-
toms” would match. However, they are either not considered anymore

26 Weaker degrees of consistency are described, e.g., by Gray et al. [GLP75].

48 State of the Art

or even falsely considered further on, since they were either not yet
present or not present anymore at the begin of the second transaction.

Concurrency Control by Locking

From the historical perspective, locking schedulers have been the first solution
for solving the problem of mutually exclusive data access of concurrent trans-
actions. Each data item has an associated lock, which must be acquired as a
kind of token before access to that data item is granted. As an optimization, a
distinction is made between shared (or “read”) locks and exclusive (or “write”)
locks: Read operations may concurrently access the same data items withoutRead and

Write locks interference but write operations need mutually exclusive access27.

Another important issue for the performance and scalability of a DBMS is
the granularity of locks. Typical granularity levels for locking are database,Locking

granularity area, file, record, or for relational databases [Cod70] table, row, and column.
Coarse grained locking benefits from low overhead for locking itself but it re-
duces throughput due to the increased likeliness for conflicts of operations. So
the tradeoff for more fine grained locking is overhead vs. concurrency.

The most common protocol to accomplish locking of data items in the con-
text of transactions is Two-Phase-Locking (2PL). In the growing phase, the sched-2PL
uler acquires locks for accessed data items as a given transaction proceeds. Af-
ter the shrinking phase has begun, locks may only be released but not anymore
acquired. This does not prevent dirty read anomalies since unlocked written
data items may still have to be rolled back. Strict 2PL was introduced for this
reason: Instead of a shrinking phase, a shrinking point is defined where all locks
have to be released at once.

A major problem of locking schedulers are race conditions for data items
that may lead to deadlocks and starvation of transactions. Timeouts for locksDeadlocks
are the simplest solution but also the one with the most undesired side-effects,
e.g., unfair abortions. More sophisticated schedulers use detection algorithms.

Optimistic Concurrency Control

The first alternative for non-locking schedulers is optimistic concurrency con-
trol. Also known under the name certifiers [BHG87, Sect. 4.4], this concept isCertifiers
based on the assumption of a low probability of conflicting transactions and
follows a three step scheme:

1. Read. The transaction may read data items as normal and write to its
private “sandbox”.

27 Bernstein et al. [BHG87] furthermore discuss the locking of additional “increment” and
“decrement” operations, which shall be omitted here for brevity.

2.3 Distributed Data Management 49

2. Validation. After commit the scheduler checks the contents of the transac-
tions sandbox for possible conflicts, aborting it retroactively if necessary.

3. Write. The sandbox content is written to the central database if no con-
flicts were detected.

Härder [Här84] discusses two implementation variants: Backward and For-
ward Oriented Concurrency Control (BOCC/FOCC). Both variants require the
specification of read set RS(Ti) and write set WS(Ti), i.e., the set of data items
read and written by a transaction Ti with WS(Ti) ⊂ RS(Ti), prior to validation.

BOCC considers all transactions that have been committed during execution
of the validated transaction. If RS(Ti) ∩ WS(Tj) 6= ∅ for any Tj that
has committed during execution of Ti, Ti has to be rolled back. This
imposes the danger of starvation if the validated transaction is continu-
ously rolled back. BOCC furthermore suffers from bad scalability due to
the need to keep write sets of all committed transactions.

FOCC considers all transactions that are currently running at the point of val-
idation for potential conflicts. If WS(Ti) ∩ RS(Tj) 6= ∅ for any Tj that is
active during validation of Ti, Tj or Ti have to be rolled back. This leaves
greater flexibility for selecting transactions to abort, which comes at the
cost of required locking of write sets during validation.

Timestamp-based Concurrency Control

Another non-locking scheduling mechanism is based on ordering of times-
tamps, which are assigned in a globally unique fashion to transactions TS(T)
as well as their contained operations in form of read timestamps RTS(x) and
write timestamps WTS(x) of data items x. Every transaction is required to
know all changes made by other transactions that have begun earlier, but
it must not see any changes of younger transactions. Thus, a transaction
T is rolled back if it tries to read a data item x that has been changed by
a younger transaction, i.e., TS(T) < WTS(x), or if it tries to write a data
item y that a younger transaction has already read or written, i.e., TS(T) <
max{RTS(y),WTS(y)}. Hence, the probability of aborting increases with the
time a transaction remains active in the system, which in turn increases the
probability of starvation. This Basic Timestamp Ordering (BTO) strategy is still BTO
prone to dirty reads, a limitation that is remedied by Strict Timestamp Ordering,
which is explained, e.g., in [BHG87, Sect. 4.2].

Multiversion Concurrency Control

Multiversion Concurrency Control (MCC) [BHG87, Chap. 5] is another non- MCC
locking concurrency control method that is also based on timestamps to

50 State of the Art

achieve serializability. It assures that a read-only transaction T always in-
stantly gets a consistent, yet potentially slightly out-dated view of its required
data objects x, corresponding to its begin timestamp (BTS), i.e., WTS(x) <
BTS(T). Read and write transactions have to be declared as such in advance,
otherwise this scheduling method degrades to the scheduling used for write
transactions. The original variant of MCC imposes the same rules for write
accesses as BTO, i.e., a transaction has to be rolled back if it tries to write a data
item that a younger transaction has already read or written.

However, other scheduling methods can also be employed for timestamp
ordering of write transactions. For instance, Schaller [Sch03] introduces a com-
bination of MCC and FOCC for front-end caches of relational DBMS, which
uses FOCC for scheduling write transactions.

2.3.2 Distributed Databases

Distributed DBMS use computer networking technology to connected parts or
instances of databases, usually with the goal of improved performance, scala-
bility, and availability, while preserving distribution transparency, autonomy
of participating databases, and consistency of the global data set. Bernstein et
al. [BHG87] simply define a distributed database system as a collection of central-
ized database system nodes connected by a communication network. Every
data item is stored at exactly one node. Systems that store the same data at
multiple nodes are called replicated database systems.Replicated

databases In contrast, Rahm [Rah94] introduces a number of classification criteria for
distributed database management systems, e.g., allocation of external mem-
ory, physical distribution, and type of coupling. Apart from tightly coupled
shared everything and shared disk systems, the most important distinction of
shared nothing systems is between integrated and federated database systems:

Integrated Database Systems comprise identical nodes accessing a mutual
database, either on a shared disk or physically distributed. They provide
full distribution transparency for clients but low autonomy of participat-
ing nodes. Since all nodes have the same conceptual database schema,
this case is also referred to as homogeneous distribution or replicated data-
bases.

Federated Database Systems provide a higher level of autonomy by as-
signing a separate conceptual schema to each participating node. Co-
operating databases in a federation may access remote data if its owner
permits access. However, increased autonomy comes at the cost of de-
creased distribution transparency because of diverging schemas in the
case of heterogeneous distribution.

A good overview of problems, concepts, and solutions for this subset of
distributed database systems is given, e.g., by Rahm [Rah94], Lenz [Len97]

2.3 Distributed Data Management 51

and Özsu/Valduriez [ÖV99]. Bernstein et al. [BHG87, Chap. 8] briefly discuss
the issues of replicated data.

However, the benefits of distribution come at the cost of additional chal-
lenges. Connections can break down, messages can get lost, whole nodes may
become unavailable. This leads to additional considerations for recovery as
well as for concurrency control, the latter of which will be discussed in sec-
tion 2.3.3 on the following page.

Replication Control

Another challenge is the maintenance of global consistency. Especially homo-
geneous, replicated databases require solutions to ensure that changes made at
one node are reflected globally at all nodes. This includes invalidating and/or
updating outdated copies of changed data items. This problem domain is
also referred to as replication control, i.e., providences to keep replicated copies Coherence
coherent to and consistent with their originating data sources. For instance,
Rahm [Rah94, Chap. 9] and Lenz [Len97, Sect. 3.3] explain a number of tech-
niques for solving this problem.

The simplest strategy is called Read-Once-Write-All (ROWA), which assumes ROWA
that clients read data from any node and write data to all nodes. This achieves
consistency easily, although at the cost of expensive write accesses. The re-
quirement for 2PC (see section 2.3.3 on the next page) or similar protocols lim-
its scalability with the number of participating nodes.

Primary-Copy (PC) strategies aim at eliminating these deficiencies by defin- PC
ing one replica as the “primary copy” that has to be changed. This node will
notify the other replicas asynchronously “as soon as possible”. Different im-
plementation alternatives are discussed in [Rah94, Sect. 9.2] depending on the
necessity of locks for read access to replicas and the required degree of consis-
tency.

Voting methods represent another alternative solution that is based on the
idea to gather “votes” of replicas for read and write locks. Majority Consen-
sus requires the acquisition of an absolute majority of votes for a lock, which Majority

Consensusensures that no two transactions may concurrently alter the same data item.
However, this strategy implies significant communication costs. Because of
this, the optimized Quorum Consensus method was introduced, which weights Quorum

Consensusreplicas by assigning them a certain number of votes v. A number of votes—
the read quorum r—is required from transactions to read a data item, a write
quorum w to write one. The constraint w > v/2 ensures that only one trans-
action may write a data item at a time; r + w > v prevents concurrent reading
and writing of a data item.

For situations with weaker consistency requirements, Snapshot Replication Snapshots
may also pose an alternative. Snapshots are materialized views that are stored
as separate data items that can be queried by read transactions.

52 State of the Art

2.3.3 Distributed Concurrency Control

Scheduling transactions spanning multiple database nodes introduces new
challenges for concurrency control methods. Traditionally, solutions are sought
that behave exactly like centralized one-copy databases. Such equivalent exe-
cutions are called one-copy serializable (1SR) [BHG87]. This requires extensions1SR
of local protocols for the distributed case. Locking protocols like 2PL can be
used to build distributed schedulers. However, distributed deadlock detection
becomes slightly more complicated. Non-locking protocols also require some
more attention for the distributed case. Timestamp-based methods like BTO
and MCC require global synchronization of distributed clocks at defined inter-
action points to remain effective. BOCC and FOCC need special consideration
of the time span between validation phase and final commit/abort to prevent
dirty read phenomena.

An important protocol for handling distributed commit/abort decisions
is two-phase commit (2PC), which is crucial to support distributed recovery as2PC
well. As the name suggests, it splits the process of ending a distributed trans-
action in two phases, which have to be communicated to participants by the
initiator:

1. Voting Phase. The initiator sends a PREPAREmessage as a voting request
to all participants. Participants reply to this with READYor FAILED de-
pending on their local commit decision.

2. Decision Phase. In case of a unanimous vote for READY, the initiator sends
a COMMITmessage in turn to all participants, who then act accordingly
and stop. Otherwise, the initiator sends an ABORTmessage to all partici-
pants that voted with READYand then stops.

2PC is resilient to both site failures and communication failures, however it
is prone to blocking if transactions time out in their uncertainty period. More
sophisticated variants of three-phase commit (3PC) have been proposed as a
remedy, but they are more complicated to implement which is why they are
rarely deployed. More details can be found in [BHG87, Chap. 7].

The strict 1SR constraint may also be softened by only requiring replication
convergence [Len97, p. 74], i.e., mutual consistency of replicas will eventuallyConver-

gence and
weak

consistency

be reached without having to roll back committed changes. This leads to the
application-specific mitigation of consistency to increase efficiency. A compre-
hensible discussion of related approaches would however go beyond the scope
of this work. A few examples will be handled in section 3.1.3 on page 87 in the
context of database caching. More details can be found in [Len97, Sect. 4].

2.4 Adaptive Systems 53

2.3.4 Summary

We have shown in this section that solutions for managing distributed data
sources in a consistent manner have been researched comprehensively by the
distributed database community over the past decades. Today’s off-the-shelf
application servers (see section 2.2 on page 14) actively use only a small frac-
tion of this functionality, e.g., the 2PC protocol for coordinating transactions
in which multiple distributed data sources are involved. However, many con-
cepts from the replicated database domain are also applicable for distributed
caches since client-side caches behave like replicas of a Primary Copy (cf. sec-
tion 2.3.2 on page 51)—the server. We will thus refer to these concepts later as
needed.

2.4 Adaptive Systems

The title of this work implies a close relation to the area of adaptive systems.
We will thus elaborate briefly on the state of the art in this field.

Adaptation, from Latin adaptare, adaptio, denotes the act or process of adapt-
ing or fitting, the state of being adapted or fitted, or the result of adapting.
Springer [Spr04, Sect. 1.4] described the process of adaptation as depicted in
figure 2.14 and definition 2.11:

Adaptation
Result of

Adaptation
Adaptation

Goal of

Adaptation

Information

Object of

Fig. 2.14: The process of adaptation according to [Spr04]

Definition 2.11 (inspired by [Spr04, Sect. 1.4])
Adaptation is the activity of adapting a certain object of adaptation to a goal of
adaptation. The outcome of this process is the result of adaptation; information
about the difference between goal and result is used again as feedback to the adaptation
operation itself.

The process of adaptation thus forms a closed control loop, which is dis- Closed
control loopcussed in section 2.4.1 on the next page. Definition 2.11 captures what is

adapted (the object) and why (the goal). What is omitted is who (the subject,
i.e., an administrator, the runtime environment, or the object itself) and when
(at the time of development, compilation, deployment, runtime, maintenance,
or even continuously).

54 State of the Art

2.4.1 Control Theory

Classical control theory basically distinguishes open and closed control loops:

Open-loop controllers have no direct connection from the system’s output
to its input. This is the reason for its high sensitivity to the dynamics of
the controlled system, which poses its major disadvantage.

Closed-loop controllers or feedback controllers were thus introduced in con-
trol theory to avoid these problems. Figure 2.15 depicts a simple feed-
back control loop.

r +

−

e
C

u
P

y

Fig. 2.15: A simple feedback control loop
Legend: r—reference value; e—error, i.e., difference between
reference and output; C—controller; u—input/update; P—
process/plant under control; y—output

The output Y(s) of a feedback control loop is thus given as:

Y(s) =
(

PC
1 + PC

)
R(s)

where PC/(1 + PC) is called the transfer function of the system. It is obvious
that

PC � 1 → Y(s) ≈ R(s)

which leads to stability of control, i.e., output will be bounded for any boundedStability, Con-
trollability,

Observability
input over any amount of time. Closely related to stability are controllability,
i.e., the reaction of a system’s internal state to external input, and observability,
i.e., how well the internal state of a system can be derived from its external
output.

Hence, the crucial part about judging a system’s control properties is know-
ing its transfer function Y(s). For adaptive software in general as discussed in
the following section or for software components in particular, it is however of-
ten hard to precisely give this transfer function because not all parameters are
always known.

2.4.2 Adaptive Software

In the following, we will concentrate on adaptation, adaptability, and adaptiv-
ity in the context of software systems in general and component-based soft-
ware in particular. As a refinement of definition 2.11 on the page before,
Lieberherr [Lie96] emphasizes context as the cause of adaptation:

2.4 Adaptive Systems 55

Definition 2.12 ([Lie96, p. 1])
Adaptive object-oriented software is software that adapts automatically to chang-
ing contexts. Contexts may be behavior, implementation class structures, synchro-
nization structures, object migration structures, etc.

Czarnecki and Eisenecker [CE00] further distinguish adaptable and adaptive
systems by differentiating between the ability to be adapted from the ability to
adapt itself:

Definition 2.13 ([CE00, p. 397])
Adaptable systems can be adapted to a particular deployment environment, whereas
adaptive systems adapt themselves to a deployment environment.

We will consequentially use adaptability to refer to the ability to be adapted Adaptability
vs. Adaptivityand adaptivity for the ability of a subject to adapt itself to a given goal of adap-

tation. The term self-adaptation is also often used to refer to this aspect of re-
flexivity.

In [PG03], we have presented a general classification scheme of issues in
connection with adaption as depicted in table 2.4.

Tab. 2.4: Classification of adaptational issues according to [PG03]
Classification Adaptation Description
Who? User-driven administrator
(Trigger) System-driven container
Where? / Parametric within component
How? Structural within composition / application
Why? System-side react to preemption of resources

Application-side react to user requirements
When? Static deploy-time

Dynamic run-time upon initialization
during connection

How much? (Overhead) additionally required time & resources

Springer [Spr04] characterizes adaptive applications, which we consider syn-
onymous to adaptive software, by their ability to dynamically adapt application
data, properties of communication, and application structure as a reaction to
changes of their environmental context at runtime. He classifies base mech-
anisms for adaptation with focus on context-aware ubiquitous applications as
shown in table 2.5 on the next page, which actually represents a refinement of
the second criteria of our classification in table 2.4.

The Proxy pattern (see section 2.5.5 on page 72)—a prerequisite for the ex-
tensions we will introduce in section 4 on page 107—is explicitly mentioned as
a structural mechanism for adapting connections between components. Both
Caching28 and Prefetching (see section 3.3 on page 100) are characterized as

28 See section 2.1 on page 9 and section 3.1 on page 81.

56 State of the Art

Tab. 2.5: Base mechanisms for adaptation according to [Spr04]

St
ru

ct
ur

al
ad

ap
ta

ti
on Placement

Migration
Place of creation
Dynamic binding
Indirection / Proxy

Connection Branch
Parallelization
Joining
Adding

Components Removing
Replication

Pa
ra

m
et

ri
c

ad
ap

ta
ti

on

C
om

m
un

ic
at

io
n

Protocol parameter
Transfer Exception handling

Data priority
Queuing

Buffering Logging
Caching
Prefetching

Access Lazy loading
Delayed write-back

A
pp

lic
at

io
n

da
ta

Enrichment
Aggregation
Annotation
Structural transformation

Transformation Format transformation
Transcoding
Generation

Replacement Extraction
Selection

Reduction
Lossy conversion
Filtering

mechanisms for adapting the parameters of communication between compo-
nents. Caching buffers queried data in a temporary memory; prefetching shifts
the point of data transfer to an earlier time before actual access.

Self-managed Systems

Adaptive systems in general received a lot of attention in the recent past driven
by the desire to reduce the complexity and maintenance effort of today’s (soft-
ware) systems. Other causes for adaptation include heterogeneity of operation
environments and corresponding availability of resources, user-required qual-
ity of service (QoS), as well as malfunctions, failures, and breakdowns. The
broad bandwidth of adaptive software comprises online-learning algorithms
and genetic code, self-managing systems (see below), adaptation to heteroge-
neous and mobile application environments, personalized and adaptive user

2.4 Adaptive Systems 57

interfaces, among others. Klamar [Kla04] provides a good overview of current
trends in the area of adaptive systems. For instance, the field of Autonomic Autonomic

Computing,
Self-X, and
CHOP
properties

Computing [KC03] created the keywords self-management and so-called “self-
x-properties” or CHOP properties of systems:

Self-configuration addresses the autonomous adaptation to changing envi-
ronment conditions in terms of new servers, software versions etc.

Self-healing systems are able to detect malfunctioning components and to re-
act appropriately by isolating affected components, repairing or replac-
ing them and finally reintegrating them into the system. This requires a
minimum of redundancy to maintain uninterrupted operation and user-
perceived transparency. Garlan et al. [GKW02] collected a representative
profile of approaches to self-healing.

Self-optimization targets continuously self-improving systems that try to in-
crease the efficiency in terms of performance and cost of their operation
by learning their operating parameters and available resources from ex-
periments.

Self-protecting systems try to shield themselves from malicious intrusion
and data corruption. Their capabilities go beyond those of self-healing
systems in such a way as they anticipate potential issues by continuously
monitoring reports of sensor data.

The challenges for developing adaptive software already start with the de-
sign and implementation of adaptable components. Model-driven approaches
(see section 2.5.2 on page 65), e.g., [GS02], and Architecture Description Lan-
guages (ADL) [MT00] provide promising approaches for tackling these issues.
However, support for adaptation either has to be weaved into components
themselves (cf. section 2.5.6 on page 75) or it has to be provided at runtime
by the platform on which components are executed—the middleware (see sec-
tion 2.2 on page 14). This support is crucial for making composed adaptable
systems adaptive. To be able to adapt the structure and behavior of a system,
the middleware also needs support for reflection (see section 2.5.5 on page 71),
i.e., some sort of meta-programming mechanism.

Necessary steps for adaptation at runtime, which have to be performed by
adaptive systems, have been summarized in [GKW02] as a superset of Oreizy
et al. [OGT+99] and Garlan/Schmerl [GS02]. These steps include: Monitoring
the system and measuring of sensor data; resolving measured data and inter-
preting it at architectural level; detecting the necessity or possibility of adapta-
tion; planning a resolution in terms of adaptation steps; deploying the descrip-
tion of this resolution; and finally enacting the adaptation in the runtime envi-
ronment. Table 2.6 on the following page relates the different terminologies to
each other.

Fractal [DL03] is an example for “self-adaptive” component-based mid-
dleware: Adaptation to specific execution contexts and their evolution is fac-
tored out as a concern, which is handled by the middleware. A component

58 State of the Art

Tab. 2.6: Adaptation steps at runtime
[GS02] [GKW02] [OGT+99]
Monitoring Monitoring Monitoring

Interpretation
Resolving

PlanningDetecting
Resolution Planning

Adaptation
Deploying Deploying
Enacting Enacting

is made adaptable by specifying its expected behavior depending on certain
contexts. The middleware in turn makes the component self-adaptive by inter-
preting adaptation profiles, which can be loaded dynamically at runtime. An
important challenge is posed by the question of how to adapt to changes of
parameters that have not been considered at design time. This leads to the
general problem that computers can only process what has been specified or
what they have been programmed for. Furthermore, correctness of adaptive
systems becomes even more complex to ensure in comparison to traditional,
static systems.

2.4.3 Conclusion

In the context of this work, we will concentrate especially on caching, which
has been classified in table 2.5 on page 56 as a mechanism for parametric adap-
tation of communication between components by buffering query results. We
will present the necessary middleware support for this mechanism in section 4
on page 107 and elaborate on our approach for configuring the use of this ser-
vice at development and/or deployment time in section 5 on page 131. In
section 4.2 on page 111, we will show especially how this middleware service
can be made adaptive in terms of changed cacheability categorization of com-
ponent attributes (i.e., method results) to remain efficient at runtime.

2.5 Modeling and Design Concepts

The purpose of this section is to introduce fundamental concepts of software
engineering, which will be needed at various points of this work, especially in
section 5 on page 131.

2.5.1 Unified Modeling Language

The Object Management Group’s Unified Modeling Language (UML) forms the
elementary building block for the integration of the concepts of this work into
the software development cycle, which is presented in section 5 on page 131.

2.5 Modeling and Design Concepts 59

It is an open modeling and specification language for (object-oriented) soft-
ware systems. The OMG issued a request for proposal for “Object Analysis History of

UML& Design” in 1996. As a result of a joint effort of the “the Amigos”—Booch,
Jacobson, and Rumbaugh—the version 1.0 of UML was released in 1997, in-
deed unifying the most common modeling techniques up to this date: the
Booch method [Boo94], Jacobson’s Object-Oriented Software Engineering (OOSE)
[Jac91], and Rumbaugh’s Object Modeling Technique (OMT) [RBP+91]. UML
has gone through a number of revisions since then and has become a de facto
industry standard. The latest stable release is version 1.5 [OMG03d]. The
next generation—UML 2.0—is currently being finalized. It consists of two
parts: infrastructure [OMG03b], i.e., the “internals” of UML, and superstructure
[OMG03c], i.e., the high-level constructs and diagrams that users commonly
identify with UML.

We will not explicitly use any new features of UML 2.0 in the context of this
work but diagrams will conform to this newer version wherever applicable.
As Cris Kobryn summarized in [Kob04], the major improvements of UML 2.0 UML 2.0
include:

Composite structures enable support for component-based development us-
ing Parts, Ports, and Connectors in black-box and white-box–views.

Hierarchical decomposition of structure (Classes and Components) and be-
havior (Interactions, State Machines, and Activities), as well as

Integration of these structural and behavioral constructs across different dia-
gram views.

Action semantics —a new feature since UML 1.5—have been integrated with
the above mentioned behavioral constructs, allowing the definition of
executable UML models.

Incremental language architecture layers: Basic, Intermediate, and Complete
levels organize all UML 2.0 packages allowing, e.g., easier tool compli-
ance testing.

There are three major models within UML as outlined in table 2.7 on the
next page together with the accompanying graphical representations. Regard-
ing the extensions proposed in section 5 on page 131, we will especially focus
on class and component diagrams. A more in-depth introduction to UML, in-
cluding version 2.0, is given in Fowler’s “Brief Guide” [Fow03].

Note that models exist independently from these diagrams. A bind-
ing from the UML metamodel to the OMG’s Meta-Object Facility (MOF) Meta-Object

Facility (MOF)[OMG03a]—a technology for modeling and representing metadata in dis-
tributed object repository architectures that is also used for CORBA, among
others—exists for interoperability with other metadata repositories. Currently,
the UML 2.0 infrastructure specification and the MOF 2.0 specification are
proactively moving towards an architectural alignment of their metamodel

60 State of the Art

Tab. 2.7: Models and Diagrams in UML
Model Aspect Diagram types
Functional Model Functionality Use Case Diagram
Object Model Structure Class Diagram

Object Diagram
Component Diagram
Deployment Diagram

Dynamic Model Behavior Sequence Diagram
Collaboration Diagram
Activity Diagram
Statechart Diagram

approaches. The goal of this unification attempt is depicted in figure 2.16 on
the next page: MOF forms the common meta-metamodel (also called M3 level)
for UML, CORBA IDL, and other metamodels (M2 level). These can in turn
be used to create specific models (M1 level), e.g., for a certain application, from
which concrete objects (M0 level) can be instantiated. To give an example: Cus-
tomer “John Doe” is an object (M0) of the Customer class (M1), which was
modeled in UML (M2). In other words, MOF provides the means to create
metamodels.

MOF Model

models

metamodels

meta-metamodel

UML

MOF Model
MOF Model

UML Models

IDL Interface
IDL Interface

IDL Interfaces

Metamodel
IDL

Fig. 2.16: MOF metalevels [OMG03a]

The XML Metadata Interchange (XMI) [OMG03e] format can be used to ex-XML
Metadata

Interchange
(XMI)

port UML models (as well as other MOF-compliant models) in an interchange-
able form. It allows producing XML schemas or document type definitions
(DTD) from object models as well as XML documents from objects. For the
tool chain we will propose in section 5 on page 131, XMI plays a crucial role as

2.5 Modeling and Design Concepts 61

the interchange format between modeling tools and model transformers.

Software Design Methods

There is no development methodology dictated by the UML but it forms the
basis for at least two software design methods:the Rational Unified Process
(RUP) [Kru00] and the Object Engineering Process (OEP) [Oes02]. Both of these
methods are heavyweight processes, in opposition to lightweight processes
such as Beck’s Extreme Programming (XP) [Bec99] or Fowler’s Continuous Inte-
gration [FF03], meaning that the former two are rather suited for large-scale
software projects with more than ten developers involved. Details and differ-
ences of particular methods are out of this work’s scope. It is however impor-
tant to keep the general procedure in mind, which essentially follows the line
of the OEP micro process in figure 2.17: analysis, design, implementation, and
validation. This process is often applied in an iterative, incremental fashion
throughout the individual project phases during which different actors per-
form activities belonging to certain disciplines in parallel.

analysis:
requirements
definition

micro
process

test definition:
define sucess criteria

implementation:
develop solution

design
conceive solution

update plan

test:
measure success

Fig. 2.17: The Object Engineering Process (OEP) micro process (according to
[Oes02])

Extension mechanisms

The Unified Modeling Language [OMG03d, Sects. 2.6, 2.14, 3.16–3.18],
[OMG03b, Sect. 13], [OMG03c, Sect. 18] defines several standard extension
mechanisms, including Stereotypes, Constraints, and Tagged Value Definitions.
These mechanisms can be used to specialize or refine the UML for a specific
purpose at the metalevel (see figure 2.16 on the facing page) (M2), i.e., to con-
strain the range of valid models (M1).

In the advent of UML 2.0, these extension mechanisms have been further
streamlined, avoiding redundancies in the definition of structural metamodel
elements:

62 State of the Art

Definition 2.14 ([OMG03b, Sect. 13.1.7])
Stereotype is a kind of Class that extends Classes through Extensions. Just like a
class, a stereotype may have properties, which may be referred to as tag definitions.
When a stereotype is applied to a model element, the values of the properties may be
referred to as tagged values.

Stereotypes thus inherit the structural capabilities of normal Class, e.g., having
Constraints (like any other Element) or Properties (here interpreted as tagged
values).

Stereotypes can be used to classify specific meta-classes of the reference meta-
model29. They are categorized into:

Decorative stereotypes define (visual) notations for meta-classes;
Descriptive stereotypes describe usage relationships by assigning com-

ments to meta-classes;
Restrictive stereotypes constrain the structural and behavioral proper-

ties of meta-classes.

Constraints further specialize conditions for contents, states, or semantics of
meta-classes that always have to be fulfilled. UML allows constrains
to be specified either in natural language or using the Object Constraint
Language (OCL);

Tagged Value Definitions are properties (i.e., typed attributes) of stereotyped
meta-classes. Assigning certain values to distinct meta-class instances
may alter their semantics and constraints.

A set of such refinements for selected elements of the reference meta-UML Profiles
model constitutes a UML profile:

Definition 2.15 ([OMG03b, Sect. 13.1.5])
A profile defines limited extensions to a reference metamodel with the purpose of
adapting the metamodel to a specific platform or domain.

Additionally, natural language descriptions can be used to further express con-
straints and semantics. Visual notations may further customize the presenta-
tion of extensions. In future versions, heavyweight extensions will be available to
modify the reference meta-model itself by adding Meta-Object Facility (MOF)
[OMG03a] elements to the profile context. Profiles form name-spaces for the
uniqueness of their contained extensions. Generalization of profiles can be
used to extend the semantics of parent profiles. Elements from related profiles
can be imported. Compatibility between profiles can be declared, meaning
that elements will not collide. Note that even derived profiles declare meta-
models (cf. figure 2.16 on page 60), i.e., they operate on M2 to define valid M1
level models.

29 Stereotypes are bound to model elements of the reference metamodel by Extensions, a new
feature since UML 2.0.

2.5 Modeling and Design Concepts 63

An OMG white paper [OMG99] describes how to use these extension mech-
anisms to build custom UML profiles. This approach has been formalized in
the current UML 2.0 specification [OMG03b, Sect. 13], [OMG03c, Sect. 18]. The
currently accepted way of defining UML profiles is a tabular form, which lists
stereotypes together with their base meta-class, parent stereotype, tags, con-
straints and description (cf. [OMG03c, Appendix C]). Examples for such pro-
files30 include, e.g., the UML Profile for Enterprise Distributed Object Com-
puting (EDOC) [OMG02b, OMG04b], the UML Profile for CORBA Compo-
nents [OMG04c], or the UML Profile for Enterprise JavaBeans [Gre01], which
is explained in detail in section 2.5.1 on the following page.

UML Components

A few introductory remarks about how Components are modeled in UML
have already been mentioned in section 2.2.1 on page 15. The concept for com-
ponents themselves is quite simple as described in definition 2.5 on page 16.
The underlying concepts and assumptions have been gathered in defini-
tion 2.7 on page 16. Figure 2.18 displays the most prominent features of this
model: A Component Specification includes a set of supported Component Inter-
faces. The specification can be realized by multiple Component Implementations,
which can in turn be deployed multiple times as Installed Components. Concrete
Component Objects are instantiated within the context of a particular installed
component.

Component
Specification
Component
Specification

Component
Implementation

Component
Implementation*

 r
ea

liz
at

io
n

*

1 1

Component
Interface

Component
Interface

1..* supported

Installed
Component

Installed
Component*

 i
ns

ta
lla

tio
n

Component
Object

Component
Object*

 i
ns

ta
nc

e

1

Fig. 2.18: Component forms according to [CD00]

The structural features and visual notation of components has been re-
vised in UML 2.0. Diagrams for components, composite structures (including
components), and deployments (i.e., physical placement and installation of
components) are described by the UML Superstructure [OMG03c, Sect. 8–10].
Examples for component diagrams have already been given by figure 2.4 on
page 26, figure 2.6 on page 32, and figure 2.9 on page 38. The enhanced struc-
tural capabilities of components in UML 2.0 (e.g., ports, parts, and connectors)

30 For a more complete and current list of UML profiles, see http://www.omg.org/mda/
specs.htm#Profiles .

http://www.omg.org/mda/specs.htm#Profiles
http://www.omg.org/mda/specs.htm#Profiles

64 State of the Art

are already a result of criticism concerning the limited expressiveness of for-
mer revisions, which was voiced by Cheesman and Daniels [CD00], among
others.

To further constrain UML component modeling capabilities to specific plat-Example
profiles forms, UML 2.0 superstructure [OMG03c, Appendix C] contains example pro-

files for common component models, like J2EE/EJB, COM, .NET, and CCM.
These examples are however not fully compatible to the competing profiles
mentioned in section 2.5.1 on page 61. This inconsistency shows that the pro-
file mechanism is an unstable, yet vivid part of UML under active develop-
ment.

UML Profile for EJB

It has been mentioned introductorily that UML serves the purpose of a visual
modeling notation in section 5 on page 131. Furthermore, Enterprise Java-
Beans (EJB) has been anticipated as the example platform for demonstrating
the realization of method-based caching as a middleware service in section 4
on page 107. Hence, we will closer examine existing possibilities for modeling
EJBs with UML.

UML profiles have been introduced in section 2.5.1 on page 61 as a flexible
mechanism for constraining the use of UML model elements to specific plat-
forms or application domains. A number of example profiles have also been
mentioned. The need for a UML Profile for EJB has been realized quite early,
and this realization led to the Java Specification Request 26 [Gre01], which was
initiated in 1999 by Rational Software. Basically following the OMG’s guide
for writing profiles [OMG99], it defined a set of stereotypes and tagged values
for modeling component-based applications conforming to the EJB v1.1 spec-
ification [MH99]. It was however withdrawn in March 2004, mainly becauseJSR 26

withdrawn of personnel deficiencies after restructuring within the participating compa-
nies31.

This is rather unfortunate, since the Metamodel and UML Profile for Java
and EJB Specification [OMG04b]—the Java-binding of the UML Profile for En-
terprise Distributed Object Computing (EDOC) [OMG02b]—directly references
the above mentioned UML Profile for EJB [Gre01]. It remains yet unclear how
the OMG intends to bridge this gap. However, it has already been mentioned
above that the UML 2.0 superstructure [OMG03c, Sect. C.1] also provides an
(incompatible) example profile for EJB, albeit a very limited one.

Model transformer and code generator tool providers, which will be used
in section 5 on page 131, need profiles for defining valid input models for their
transformations (cf. section 2.5.2 on the next page). Some of them, e.g., An-
droMDA [Boh04], follow a different approach to solve the problem of a miss-
ing UML profile for EJB: They use a general EDOC-like [OMG02b] profile for

31 according to a personal e-mail from Andy Dean, the current specification lead for JSR 26 at
IBM

2.5 Modeling and Design Concepts 65

modeling and leave the issues of technology projection to the code generator
templates. More details of this procedure will be explained in section 5 on
page 131.

2.5.2 Model Driven Architecture

While UML (see section 2.5.1 on page 58) supports software design by (graph-
ical) modeling, it does not address issues of implementation. Many tools for
Computer Aided Software Engineering (CASE) already provide export functions
for code generation, the resulting program code is usually decoupled from
its originating model. This significantly reduces maintainability, i.e., changes Problem:

decoupling
of models
and code

made on either side have to be synchronized by hand. But there are also other
challenges, e.g., the transformation of (UML) models of different abstraction
levels, where appropriate support for model consistency was missing.

These challenges were the driving force behind the OMG’s initiative to-
wards a Model Driven Architecture (MDA) [MM03]. The main goal of this en-
deavor is to support the whole software development cycle end-to-end by
means of reusable models. This implies the ability to describe transformations Model trans-

formationbetween models at different abstraction levels to be able to specify systems
independently of the platforms that support them:

Computation Independent Models (CIM) are domain models from the
viewpoint of practitioners of a specific domain. They do not contain any
references to technical artifacts used to model domain concepts.

Platform Independent Models (PIM) capture the domain model in a more
technology-centric manner but still at a very general abstraction level
without references to platform-specific realization concepts.

Platform Specific Models (PSM) bind the details of a PIM to the specific
properties and capabilities of a target platform.

Platform Models specify the concepts, services and technical artifacts of par-
ticular target platforms for use in PSMs of that specific platform.

The motivation for this differentiation of models is a matter of separation
of concerns in modeling: It prevents aggregation of too much information in a
single layer. The distinction makes the different levels manageable by avoid-
ing confusion. The most important models and/or viewpoint in the Model
Driven Architecture are the Platform Independent and Platform Specific Mod-
els. The idea is to apply transformation operators to PIMs for generating cor-
responding PSMs, as drawn in figure 2.19 on the following page. This pro-
cess is iterative, i.e., PSMs can be further refined and again be used as input
(PIM) of yet another transformation, resulting in a new PSM. UML Profiles as
introduced in section 2.5.1 on page 61 are used to constrain the range of valid Relation to

UML ProfilesUML models usable as PIMs / PSMs for generating (further) PSMs. Platform-
specific profiles can be used to assign application model elements to concepts

66 State of the Art

and roles of a target Platform Model by using descriptive and restrictive stereo-
types. The end of this transformation chain is reached when some template-
driven code generator creates runnable code as the final output.

depends
upon

depends
upon

Transformation
Specification

defined
in

defined
by

defined
in

Source Language Target Language

Source Model Target ModelTransformation

Fig. 2.19: Overview of the MDA process according to [KWB03]

The MDA approach shows its advantages best when used as a genera-Advantages
tor for building tiers of applications, e.g., multi-tiered server-based applica-
tions running on top of (component-oriented) middleware (cf. section 2.2 on
page 14). In this scenario, MDA eases the management of communication de-
pendencies between different target PSMs at model and code level [KWB03],
for instance, the relational database model, EJB component model, and Web
application model of a given application PIM. MDA furthermore provides the
ability to reflect custom changes at PSM or code level back in the originating
PIM.

However, MDA offers no real support for integrating of existing code bases.Disadvan-
tages It is furthermore still in its early phase of development, meaning the proposed

process is far from being stable. Up to now, there is no real tool interoper-
ability. The definition of transformation descriptions is currently completely
vendor-specific.

We will use MDA in section 5 on page 131 as a concept for generating
caching-related code elements from a PSM, which uses a specific UML Pro-
file. For a more concise discussion of the MDA approach, we kindly refer the
interested reader to books like Kleppe et al. ’s “MDA Explained” [KWB03].

2.5.3 Attribute-oriented Programming

The previous section already hinted that code generation is a frequent task inCode
generation enterprise application development. Apart from its importance in the context

of transforming models into runnable code, it gains even more momentum in
connection with component-based middleware platforms. For instance, EJB
(see section 2.2.4 on page 22) inherently introduces a large amount of manda-
tory but partially redundant programming artifacts, e.g., remote, home, and
local interfaces, descriptors, etc. This also suggests the use of some automated
generating mechanism.

2.5 Modeling and Design Concepts 67

This demand led to the development of attribute-oriented programming con-
cepts that try to reduce the amount of code application programmers have to
write. The term refers to the insertion of special attributes into source code
with the purpose of semantic evaluation by code generation tools. Since we
are going to use a specific code generator—XDoclet [ÖSA+03]—for creating
caching-related middleware descriptors in section 5 on page 131, we will elab-
orate in more detail on this specific tool.

XDoclet

The XDoclet project [ÖSA+03] started out in 2001 under the name “EJBDoclet”
as a simple code generation tool with the main purpose to concentrate all the
code belonging to an Enterprise JavaBean component in a single Java source
file. The approach is based upon the Javadoc concept, which was introduced in Javadoc
Java Development Kit v1.2 as a facility to enrich source code with additional
metadata for documentation purposes. To maintain backward compatibility
to the language specification, metadata is inserted by means of special tags in
source code comments that are ignored by unaware tools. XDoclet introduces a
number of such tags as the example in listing 2.1 on the following page shows.
It should become obvious that XDoclet tags have the following form:

@namespace.tag-name attribute-name= ” at t r ibute value”

The XDoclet tool scans these tags and constructs all necessary program-
ming artifacts, i.e., concrete bean class, remote, home, and local interfaces
(complete with business and finder methods), primary key and utility classes,
standard and vendor-specific descriptors, etc., from the (abstract) commented
bean class in listing 2.1.

However, this “one source” concept has also been criticized for under- Disadvan-
tagesmining the role model of EJB (cf. section 2.2.4 on page 24): If deployment

descriptors are to be generated from Bean class files, application assemblers
and deployers need access to source code for reproducibly changing deploy-
ment configurations. XDoclet-based applications are also harder to debug
since Javadoc-tags are not directly evaluated by compilers, which makes er-
rors harder to trace.

Besides EJB components, XDoclet also supports Web components (Java
ServerPages and Servlets), management components (JMX), and different per-
sistence engines (Hibernate and JDO), among others. These tasks generate XDoclet

extension
mechanisms

output based on XML-like XDoclet template (XDT) files. Output of the tem-
plates can be customized at predefined merge points that allow inserting arbi-
trary user-defined code segments. XDoclet tasks are usually called from Ant32

scripts. Subtasks may be defined for extending the functionality of existing

32 Ant is a Java-based make tool. For an introduction to Ant, XDoclet, JUnit, and other open-
source, Java-based development tools, refer to Hightower et al. ’s book [HOV04]. Fowler and
Foemmel’s Continuous Integration [FF03] also shows how to integrate these tools into a light-
weight development process.

68 State of the Art

Listing 2.1: XDoclet usage example according to [ÖSA+03]

1 /**
2 * This is an Account entity bean.
3 * @ejb.bean
4 * name="bank/Account"
5 * type="CMP"
6 * jndi-name="ejb/bank/Account"
7 * primkey-field="id"
8 * @ejb.finder
9 * signature="java.util.Collection findAll()"

10 * unchecked="true"
11 * @ejb.transaction
12 * type="Required"
13 */
14 public class AccountBean implements javax.ejb.EntityBean

{
15 // ...omitted for brevity...
16 }

tasks. Finally, new tasks may be introduced based on XDoclet’s API. A further
explanation of XDoclet’s capabilities is given in Wall et al. ’s book [WRÖ03].

The list of planned features for the next release of XDoclet, version 2, con-
tains a runtime attribute access API (XRAI) that uses byte-code manipulation
to augment generated classes with methods for accessing their metadata at-
tributes. This is an interesting parallel to the newer developments discussed
in the next section.

Alternative Approaches

A Java Specification Request (JSR) filed under number 175 [Bra04] addresses
the need for a metadata facility for Java. The goals of this JSR include:

• Definition of a standard language feature for the specification of meta-
data annotations;

• Definition of a runtime API for metadata access; and

• Definition of namespace rules for metadata annotations.

Meanwhile, the results of this JSR have been incorporated into version 5
of the Java 2 Standard Edition by the name of annotations. These annotationsAnnotations

in J2SE 5 may be defined by declaring special interfaces as in line 2 of listing 2.2, which
is later assigned in line 4 and queried in line 6. The new Annotation Processing

2.5 Modeling and Design Concepts 69

Listing 2.2: J2SE 5 metadata annotations example

1 /** A tagging interface for test purposes. */
2 public @interface Test { }
3 /** Some class using the annotation. */
4 @Test public class MyClass {
5 public static void main(String[] argv) {
6 if (MyClass.getClass().isAnnotationPresent(Test. class

))
7 System.out.println(” Test at t r ibute set . ”);
8 else
9 System.out.println(” Test at t r ibute not set . ”);

10 }
11 }

Tool (apt) can evaluate metadata annotations and start arbitrary actions, e.g.,
code generation.

The new metadata annotation facility is explicitly propagated as an alterna-
tive to existing approaches like JavaBeans’ BeanInfo concept [Sun02b] or EJB
deployment descriptors (cf. section 2.2.4 on page 22). This qualifies this new
feature as a serious competitor of the XDoclet approach introduced above.

The upcoming version 3.0 of the Enterprise JavaBeans specification [DeM04]
furthermore proposes to completely deprecate descriptors and the various in-
terfaces of bean components in favor of the new annotations feature. An
EJB would then consist of only one Java class file—a plain old Java object or
POJO—containing the necessary metadata in form of annotations, which the
container is able to evaluate directly. Depending on the outcome of the stan-
dardization process for EJB 3.0, XDoclet might become completely obsolete for
its original target—simplifying the development of EJBs.

It is interesting to note that Microsoft’s C#—the favorite language for .NET Metadata
attributes in
C#

(see section 2.2.6 on page 38) development—also provides a similar feature
for metadata attributes [MSg, section 17]. In analogy to tools like the above
mentioned AndroMDA [Boh04] or JavaGen [Out04], which transform UML
models into Java files with (XDoclet) metadata attributes, there also exist tools
like tangible architect [Tan], which produce .NET components written in C# con-
taining metadata attributes.

Conclusion

Given the range of alternative solutions and the engagement of major players
like Sun and Microsoft, it seems that attribute-oriented programming will def-
initely gain more attention in the near future—regardless of the fate of tools
like XDoclet. Hence, we will try to build on these ideas and concepts in the
context of this work, bearing in mind that at least one comparable solution

70 State of the Art

will eventually prevail.

2.5.4 Design Patterns

Patterns in general are sets of rules that allow modeling or generating items
or parts thereof. The first to apply the concept of patterns to design was the
American architect Christopher Alexander, who proposed A Pattern Language
[AIS77] for architecture and civil engineering. His approach targets at theOrigins of

design
patterns

same goals as modern software design patterns: Patterns capture ideas, con-
structs, and design decisions that proved to be successful in certain environ-
mental situations. Hence, architectural design is just a matter of consequent
(re-)application of simple principles. Alexander stated that patterns cannot be
invented but have to be discovered, discerned, or inferred from existing so-
lutions. Patterns are made reusable by abstracting from their concrete usage
scenarios.

Although some of McIlroy’s ideas, e.g., pipes & filters [McI64] could be in-
terpreted as early design patterns in software engineering, the first software ar-
chitects to apply Alexander’s concepts were Beck33 and Cunningham [BC87],
who introduced a set of patterns for designing Smalltalk programs. But
the book that eventually attracted more attention to software design by pat-
terns was “Design Patterns—Elements of Reusable Object-Oriented Software”
[GHJV94] by Gamma, Helm, Johnson, and Vlissides (the “Gang of Four”),
which introduced 23 general design patterns categorized into creational, struc-
tural, and behavioral patterns. One of the main achievements of this book was
the definition of a notation for patterns that gradually became standard for
later publications. Buschmann et al. applied the principle of design patterns
to the architecture of whole software systems [BMR+96]. The second editionPattern-

oriented
software

architecture
(POSA)

of this book was split in two volumes [BMR+00, SSRB00] of which the latter
especially dealt with constructing middleware (cf. section 2.2 on page 14) ar-
chitectures using common design patterns. We will occasionally refer to some
of these patterns later in this work and explain them as needed.

The component-based software engineering community also produced a
number of design patterns, e.g., for the construction of J2EE-based (see sec-
tion 2.2.4 on page 22) applications [ACM01], of which a few will also be subject
of closer inspection in section 3.1.4 on page 91.

2.5.5 Meta-Programming

The general term meta-programming refers to programming at the abstract met-
alevel that is used to describe valid programs. In analogy to the MOF termi-
nology (cf. figure 2.16 on page 60), this means access to level M2 for programs
at level M1. Since meta-programming is inherently suited for developing mid-

33 the same Kent Beck who proposed the extreme programming software development method;
cf. section 2.5.1 on page 61

2.5 Modeling and Design Concepts 71

dleware services [McA96], we will explore reflection and interception as two
mechanisms that will be employed later in section 4 on page 107.

Reflection

Transparently adapting the behavior of programs is not a new idea: It actu-
ally dates back as early as 1982 when Smith submitted his thesis about Pro-
cedural Reflection [Smi82]. Although models have changed greatly since then,
the basic concept is that programs (or components) should have the means
to inspect their current context and (limited) control over their interpretative
environment.

Reflective systems are defined in Maes’ thesis about computational reflec-
tion as follows:

Definition 2.16 (Pattie Maes [Mae87])
A reflective system is one that supports an associated causally connected self rep-
resentation (CCSR).

Definition 2.16 addresses the capability of a system to reason about and
act upon itself. The “causal connection” refers to the direct way how changes Causal

connectionof the self representation immediately effect in the underlying system’s actual
state and behavior. This implies a number of concepts, which have been sum-
marized by Kon et al. [KCBC02] and Blair et al. [BCRP98], among others:

Reification denotes the ability to access and manipulate the internal repre-
sentation of a system at runtime. Access to the meta-level is also often
referred to as introspection; manipulation as intercession, respectively.

Absorption in turn denotes the execution of these changes, thus realizing the
causal connection between both abstraction layers.

Meta-level architectures explicitly consist (at least) of a base-level for appli-
cation concerns and a meta-level responsible for reflective computation,
i.e., capable of performing reification and absorption.

Meta-object protocols (MOP) are needed to specify the means for manipu-
lating the meta-level of object-oriented reflective architectures, i.e., meta-
objects.

Structural reflection allows reification of structural features of an application
including its functionality.

Behavioral reflection additionally allows manipulating the semantics and
internal aspects of the runtime environment including non-functional
properties.

One of the first—and possibly best—known meta-object protocols was in-
troduced in the book “The Art of the Meta-Object Protocol” by Kiczales et al.

72 State of the Art

[KRB91], which describes a mechanism for manipulating the semantics of in-
heritance, method dispatching, and class instantiation applied to the example
of the Common Lisp Object System. Technically, modern languages like Java
only provide limited means of introspection, which are rather far from the ca-
pabilities of full-fledged reification as provided by MOP. This was actually one
of the driving forces behind the development of Aspect-Oriented ProgrammingAOP
(AOP) (see section 2.5.6 on page 75).

According to McAffer [McA96], distributed systems are inherently predes-
tined for reflectional programming, due to distribution transparency that is
usually aimed at34. Distribution itself can be understood as a non-functional
aspect that should ideally be separated from application logic by means of
meta-programming mechanisms. This realization is also reflected in other
publications [BCRP98, KCBC02], which leads to the definition of reflective mid-Reflective

middleware dleware:

Definition 2.17 (Geoff Coulson [Cou01])
Reflective middleware is simply a middleware system35 that provides inspection and
adaptation of its behavior through an appropriate CCSR36.

Buschmann et al. [BMR+00] described reflection as an architectural pattern
(cf. section 2.5.4 on page 70) for adaptable systems (cf. section 2.4 on page 53).

The Proxy Pattern

In distributed object-oriented systems (see section 2.2 on page 14), binding
objects called stubs (cf. figure 2.1 on page 20) are typically employed as proxiesStubs
to support distribution transparency.

Proxy is a common pattern (see section 2.5.4 on page 70) in object-oriented
software design [Sha86, GHJV94, BMR+96, BMR+00]. It refers to objects in-
stalled as representatives for some (remote) delegate, which they control and
whose interface they follow. This approach is typically taken by RPC-style
middleware like Java RMI and CORBA GIOP/IIOP (see section 2.2 on page 14)
where stubs proxy client requests and transparently handle marshalling of ar-
guments and return values, among other tasks.

These proxies are often used as access points for meta-programming. Smart
proxies and interceptors are two approaches for meta-programming at proxy
level, which are discussed in the following two sections.

Smart Proxies

Smart proxies have been developed in the CORBA world as a simple meta-
programming mechanism for behavioral reflection that intercepts calls from

34 Cf. [ISO95] for the definition of distribution transparency.
35 See definition 2.9 on page 18.
36 See definition 2.16 on the page before.

2.5 Modeling and Design Concepts 73

clients. They are application-provided stub implementations that may trans-
parently override the default stub behavior as defined by the ORB implemen-
tation to customize client behavior on a per-interface basis [WPSO01]. Like
other meta-programming mechanisms, smart proxies allow adapting existing
applications late in the software development cycle by exchanging the custom
proxy implementation without having to change existing application code.

Some ORB vendors like TAO [TAO], Inprise, and Iona adopted and pushed
the development of smart proxies, but e.g., Iona is already discontinuing sup-
port for this feature. Smart proxies provide better performance than portable
interceptors as shown by Wang et al. [WPSO01], but they provide less flexibil-
ity and are not standardized by the Object Management Group. Koster and
Kramp [KK00] showed that smart proxy functionality can be implemented us-
ing interceptors, but not vice-versa.

Interceptors

Interceptors have been in the focus of discussion for a few years as a behavioral
reflection mechanism until they were finally integrated in the OMG’s CORBA
Portable Interceptor specification [OMG01, OMG04a]. The document describes
interception points at request level, where additional metadata may be added
or read by custom interceptors. This concept was integrated for the primary
purpose of transparent context propagation, e.g., for security and transaction
metadata, along with (distributed) object invocations. Later proposals for net-
work and object level interceptors have not been integrated into the specifica-
tion. The former were meant for transparent adaptation of used transfer pro-
tocols, the latter for object life-cycle manipulation.

Schmidt et al. [SSRB00] describe interceptors as a service access and config-
uration pattern (see section 2.5.4 on page 70) for transparently adding services
to a framework, which are automatically triggered upon certain events.

Network

ResultParameter

InterceptorInterceptor … InterceptorInterceptor ServerServerClientClient ProxyProxy

call()
call()invoke()

invoke()

Fig. 2.20: The principle of interceptors

74 State of the Art

The basic scheme of interceptors is shown in figure 2.20 on the page be-
fore. On both, client and server side, interceptors can be hooked into the con-
trol flow of (remote) operation calls, basically to add parameters and to aug-
ment results, but generally to alter virtually any property of a call’s context,
even its semantics. The initial stub / proxy translates calls into weakly typed
Invocation metaobjects containing the necessary information for appropri-
ate processing. In the original interceptor pattern [SSRB00], which is also ad-
hered by the OMG [OMG01], the proxy is then responsible of calling each of
its configured interceptors in succession, which requires the interceptors to re-
turn control immediately. In the case of CORBA interceptors, this leaves no
possibility for interceptors to alter the general proceeding of call processing.

JBoss Interceptors. Another implementation variant realizes interceptors
closer to the scheme drawn in figure 2.20 on the preceding page. For instance,
the J2EE (see section 2.2.4 on page 22) application server JBoss [JBo04, FR03]
features an interceptor variant that closely resembles the behavioral design
pattern Chain of Responsibility as introduced by Gamma et al. [GHJV94].

MBean
Server

Invoker
MBean

Invoker
Proxy

Invocation Handler

EJB Client

Client-Side
Interceptors

Dynamic
Proxy

Server-Side
Interceptors

Container
MBean

EJB
Component

Server Virtual MachineClient Virtual Machine

Meta Level

Base Level

Client-Side
Proxy

type-independent call to invocation handler

invocations to base-level interfaces

flow of reified invocations

Fig. 2.21: JBoss metalevel architecture [FR03]

Figure 2.21 depicts this interceptor variant as described by Schaefer [Sch02],
and Fleury and Reverbel [FR03]. The transition from base level (M1) to met-
alevel (M2) is achieved by DynamicProxy objects, a concept of the Java Re-
flection API. A chain of client- and server-side interceptors is configured for
each deployed component. Each interceptor in this chain is responsible for
invoking its successor. The InvokerProxy is the terminal client-side inter-
ceptor, which eventually calls the potentially remote InvokerMBean . This is
the entry point to the server side, where the MBeanServer , i.e., the “message

2.5 Modeling and Design Concepts 75

dispatcher” of JBoss’ JMX37 implementation, selects the correct component
container. The container in turn traverses a configured chain of server-side
interceptors until the bean implementation and thus the actual business logic
is finally invoked. Method results are then passed backwards along this invo-
cation chain until they reach the invoking client. As mentioned introductorily,
the typical use case assumes that client interceptors set service context infor-
mation, which is then evaluated by server-side interceptors to decide about
permissibility of invocations, e.g., based on security or transaction contexts.

However, any interceptor may as well skip this step and return an arbitrary Idea for
integration of
caching

result object to its predecessor. This is the basic idea of integrating a middle-
ware service for caching, which is discussed in detail in section 4 on page 107.

Several projects, like Open ORB / Open COM [BCRP98], Lasagne [TVJ+01],
OIF [FBLL02], or Fractal [DL03], leverage interceptors for building frameworks
that try to hide a part of the complexity of meta-programming or to add a
higher level of communication abstraction. In contrast, our goal is rather to
pinpoint possible uses of basic mechanisms that already exist in current com-
ponent platforms.

2.5.6 Aspect-Oriented Software Engineering

While smart proxies and interceptors, the meta-programming approaches in-
troduced in section 2.5.5 on page 72 and section 2.5.5 on page 73, provide only
limited possibilities for behavioral reflection at few predefined execution points,
they do not address structural reflection at all. This insufficiency was the main Behavioral

and
structural
reflection

motivation behind Aspect-Oriented Programming. It technically provides a
meta-programming mechanism but its approach goes far beyond, because it
also proposes a new paradigm for programming.

The term Aspect-Oriented Programming (AOP) was coined by Kiczales et al.
[KLM+97], who also created AspectJ [Asp01], a Java-based aspect-oriented pro-
gramming language. AOP can be envisioned as the logical consequence of the
Separation of Concerns principle as proposed by Harrison et al. in the initial pa- Separation of

Concernsper on Subject-Oriented Programming [HO93]. It is a consequential extension of
the principles of reflection (see section 2.5.5 on page 71), allowing more fine-
grained control than reflective systems at both, base level and metalevel. AOP
especially considers cross-cutting concerns that can be implemented separately
and integrated into a cohesive system:

Definition 2.18 (Czarnecki and Eisenecker [CE00])
A model is an aspect of another model if it cross-cuts its structure.

A popular example for such a cross-cutting concern is logging [KLM+97,
Asp01]: Logging statements are spread throughout program’s code, which

37 Java Management eXtension, an upcoming specification for managing and monitoring of
services.

76 State of the Art

makes them hard to maintain, for instance, if the need for changes arises.
With AOP, the logging aspect is modularized as a separate program unit that
is weaved into the application at the desired points before execution. This
process is supported by three concepts:

1. The join point model, which allows to potentially select any execution
point of a system;

2. The ability to add aspectual behavior at the execution points identified by
using the join point model; and

3. The support for structural amendments for modifying the static structure
of a system.

The “reference implementation” AspectJ [Asp01] supports these concepts
by the following constructs, which are modeled by extensions of the Java lan-
guage. A preprocessor performs the aspect weaving, i.e., pre-compilation of “as-
pectized” code into compilable Java code containing the weaved-in aspects.

Aspects encapsulate cross-cutting concerns;

Join points are points in the code that can be modified;

Pointcuts describe the execution contexts in which an aspect should be acti-
vated; they refer to specific join points;

Advices implement the aspect functionality. They provide support for adding
aspectual behavior at specific points in the execution flow of a system;

Introductions provide for structural amendments.

The broader field of Aspect-Oriented Software Development (AOSD) addition-
ally comprises the remaining stages of software engineering, including analy-
sis, modeling, and design. Since AOP is not only a meta-programming mech-
anism but also a new paradigm, it has implications on the whole software
development cycle. For instance, Aspect-Oriented Modeling as proposed by El-Aspect-

Oriented
Modeling

rad et al. [EAB02, Ald03] is a burgeoning research area that addresses the lack
of support for modeling of separate concerns as sub-models in UML (see sec-
tion 2.5.1 on page 58). This resulted in the initial proposal for an UML Profile
(see section 2.5.1 on page 61) for AOP by Aldawud et al. [AEB03], which es-
sentially introduces stereotypes for Aspects as special Classes, Cross-Cuts as
Associations, and Preactivation and Postactivation Operations. This approach
closely resembles the UML notation for AOSD by Pawlak et al. [PDF+02]. The
ultimate goal of these endeavors is to enable model transformation and code
generation for AOSD by largely reusing concepts and practices of the Model
Driven Architecture (see section 2.5.2 on page 65).

2.5 Modeling and Design Concepts 77

Caching as an Aspect

Among the various application scenarios for aspect-orientation, caching is Caching as
an aspectsometimes used as an example aspect to demonstrate concepts of certain AOP

approaches. For instance, Pawlak et al. [PDF+02] model the use of a simple
software cache that stores queried objects as an aspectual concern of an exist-
ing software system. Ségura-Devillechaise et al. [SDMML03] even model Web
cache prefetching (cf. section 3.3.3 on page 102) as an aspect. Their motivation
for employing AOP is that the prefetching concern cross-cuts the structure of
cache systems.

Convergence of Middleware, CBSE, and AOSD

Another tendency that can be observed is the convergence of middleware,
Component-based Software Engineering (CBSE), and AOSD. Many applica-
tion server providers have started integrating AOP frameworks into their
products, e.g., BEA and JBoss [BB03]. Sun has realized this development and
adopted these ideas for the upcoming EJB 3.0 [DeM04]. All these examples
have in common that they try to minimize the number of mandatory program-
ming artifacts for components. Aspect-orientation helps to capture meta-data
concerning service usage of components, allowing to program components
like “Plain Old Java Objects” (POJOs).

One reason for this development is the realization that interceptors (cf. sec-
tion 2.5.5 on page 73), which are typically used to embed middleware ser-
vice usage in component-based applications, provide only a subset of AOP’s
capabilities while AOP can in turn be used to model equivalent interceptor
behavior, as we explained introductorily. For the example of EJB, the set of
mandatory middleware services could be modeled as one possible interceptor
chain configuration. Interceptor chains form only one possible behavioral exten-
sion mechanism of the middleware platform that could as well be modeled by
AOP mechanisms. Hence, AOP provides a superset of possible and required
functionality, which enables the most flexible solutions.

The trend also moves from static aspect weaving as with AspectJ [Asp01]
towards dynamic solutions, e.g., AOP framework of JBoss 4 [BB03], which Dynamic

aspect
weaving

use byte code manipulation and similar techniques at runtime to dynamically
weave cross-cutting concerns, like middleware services, into existing applica-
tion code. Thus, no modification of existing code and/or explicit recompila-
tion is needed. Aspects are declared descriptively, which parallels the concept
of component deployment descriptors.

Relevance for this Work

In the context of this work, aspect-orientation plays only a marginal role since
interceptors turned out to provide a sufficient degree of flexibility for the as-

78 State of the Art

pired goals. However, interceptors provide only a subset of the modeling pos-
sibilities of aspect-oriented approaches as we have shown above. Hence, our
middleware extensions proposed in section 4 on page 107 could as well be
modeled as aspects, although this would add only little scientific value. The
additional opportunities for caching services offered by behavioral and struc-
tural reflection at arbitrary point of execution have not yet been investigated.

2.6 Conclusion

What we have seen in this chapter is a general convergence of development
trends from different fields. Component-based Software Engineering (CBSE)
(see section 2.2.1 on page 15) has influenced the area of middleware (see sec-
tion 2.2 on page 14), which led to component-based middleware platforms that
allow specifying non-functional requirements of components and component-
based applications in a descriptive manner. Middleware platforms need meta-
programming mechanisms like reflection (see section 2.5.5 on page 71) or inter-
ceptors (see section 2.5.5 on page 73) to augment applications according to the
requirements of a concrete deployment. Aspect-Oriented Software Develop-
ment (AOSD) (see section 2.5.6 on page 75) is a closely related approach that
allows to capture non-functional properties as cross-cutting concerns, which
can be weaved into applications at compile time, at deployment time, or even
at runtime. Hence, today’s component-oriented middleware platforms start
supporting AOSD in their frameworks, e.g., see [BB03].

On the other hand, Meta-programming and AOSD form a basic mecha-
nism to build adaptive systems (see section 2.4 on page 53), since they both
allow altering the structure and behavior of systems by manipulating their in-
terpretative environment. Middleware platforms can be used again to bridge
the gap between adaptable components and adaptive systems built from them.

Model-driven approaches (see section 2.5.2 on page 65) are related to all
of the above mentioned fields, as they allow capturing additional information
about non-functional properties, adaptability, and other cross-cutting concerns
early at design time, to refine this information subsequently, and to reuse and
transform it between different levels of detail of models, culminating in code
generation. Attribute-oriented programming (see section 2.5.3 on page 66)
represents the continuation of this trend towards enriching source code with
meta-data to capture refined model information and to make this information
readily available to the runtime environment.

Management of distributed data (see section 2.3 on page 46) has been re-
searched by the database community for decades. Concepts like TP monitors
have been the archetypes of today’s component-based middleware platforms.
Moreover, data replication provides many fundamental concepts for caching
(see section 2.1 on page 9), which itself can be seen again as a mechanism for
adapting the parameters of communication between components by buffering
queried results.

2.6 Conclusion 79

In the course of this work, we will seize concepts from all of these fields
to come up with an integrated solution for caching of method results of com-
ponents as a middleware service (section 4 on page 107) that can be config-
ured at development time and deployment time (section 5 on page 131), and
which can adapt to changing cacheability parameters at runtime (section 4.2
on page 111).

Now that we have gathered the basic “tools” needed in the later course of
this work, we are ready to take a closer look in section 3 on page 81 at concepts
and approaches directly related to our ideas.

80 State of the Art

The wise speak only of what they know.

Gandalf to Grima “Wormtongue” in Lord of the Rings—The Two Towers
by John Ronald Reuel Tolkien (∗1892–†1973), English fantasy author

and philologist.

3
Related Work

While section 2 on page 9 introduced the state of the art concerning funda-
mental concepts used in this work, this chapter concentrates on research more
closely related to the contribution of this work. Section 3.1 resumes the gen-
eral discussion of caching from section 2.1 on page 9 and examines various
approaches for caching in distributed systems. Section 3.2 on page 99 intro-
duces other alternatives for reducing call latency by communication restruc-
turing and section 3.3 on page 100 elaborates on prefetching as mechanism for
loading probably needed data in advance.

3.1 Caching in Distributed Systems

It has been pointed out in section 2.1 on page 9 that locality of reference is
an important principle of data access, which should be observed when build-
ing any kind of applications. This implies that data and the logic operating
upon it should be moved as close together as possible. A general observation
in distributed applications is the need of clients to manipulate data stored on
servers. To maintain efficiency, application architectures have to be designed
in such a way that either data is transferred to logic, closer to clients, or logic
has to be implemented near data, closer to servers. A trend in multi-tiered archi-
tectures (see section 2.2.3 on page 21), which has been observed by C. Mohan Multi-tiered

architectures[Moh01], is to move interactions as close to clients as possible. Caching is a
key technique to reduce costs and improve user-perceived response times in
this respect.

Looking at the example of J2EE / Enterprise JavaBeans (cf. section 2.2.4
on page 22) as a typical multi-tiered architecture, several starting points for
caching become obvious. Considerable effort has gone into development of

82 Related Work

efficient data access paths on the server side as depicted in figure 3.1.

DB

EJB Server

Components

EJB Container

Web Server

JSPs
Servlets

Web Clients

Java Clients DB Cache,
O2R Mapper

Bean Pooling +
Caching

Dynamic
Fragment Caching

Web Caching

Proxy-
Objekte
Proxy

Objects

CCC

Server

Fig. 3.1: Existing Approaches for Caching in Enterprise JavaBeans

DB Caches hook in below and above the database connectivity (JDBC) layer.
Their main goal is to eliminate unnecessary database queries by caching
the results of previously executed SQL statements. 0bject-relational (02R)
mappers translate tuples of database relations and entities to objects. The
results of this process may also be subject of caching. But also more so-
phisticated front-end database caches are deployable at this point. See
section 3.1.3 on page 87 for more examples.

Bean Caches and Pooling are container-level mechanisms for performance
optimization. Usually, containers keep a number of bean instances ready
in a pool of configurable size. In case of subsequent accesses to the same
bean, the state doesn’t have to be reloaded on every call because it is
readily available from the pool due to temporal locality of reference. But
even for access to different instances, the overhead for instantiation can
be saved by reusing instances from the pool.

It is noteworthy that despite various parallels and similarities, pooling isPooling vs.
caching a mechanism for exclusive assignment of shared resources, while caching

is a technique to speed up (concurrent) access to read-only or mostly-
read data.

Entity beans can be passivated and stored to a temporal memory by
the container based on a certain replacement strategy to limit memory
consumption. Later reactivation avoids the overhead of reloading entity
state from the database and object-relational mapping of query results.
Additional add-on software extends these built-in caching capabilities,

3.1 Caching in Distributed Systems 83

e.g., by introducing persistent bean caches that store the state of passi-
vated entities in an object-oriented database. However, the application
server has to make use of consistency protocols like the ones known from
replication control (see section 2.3.2 on page 51) to ensure coherence be-
tween its bean instances and the underlying persistent storage.

Application servers may also be grouped in clusters, which poses a form Clustering
of replication targeted at fault-tolerance and scalability. Homogeneous
clusters replicate the same data evenly across all participating servers.
Heterogeneous clusters split servers into groups responsible for serving
subsets of a distributed application. Clustering may also be applied for
Web servers at the presentation tier. Again, replication control is required
to maintain coherence of replicas in the cluster.

Fragment Caches are used by Web servers (the presentation tier) to save the
effort for repeatedly constructing the same dynamic page1 or fragments
thereof when several requests refer to the same Uniform Resource Iden-
tifier (URI) [BLFM98]. Some application servers, e.g., BEA WebLogic
[BEA00], use additional tags for controlling cacheability in the JSPs them-
selves, which may prevent parts of a JSP from being retransformed or
recalculated. Rabinovich and Spatscheck called this “caching the un-
cacheable” [RS02, Chap. 13]. Servlets have to be programmed explic-
itly to reuse cached data, e.g., by leveraging object caching frameworks
like those we will briefly discuss in section 3.1.5 on page 95. But since
web servers are not necessarily deployed on the same network node or
within the same process as the EJB container, the whole presentation tier
will also benefit from caching at the proxy layer (see below).

Web Caches include Web proxies and browser caches like they can be found
in almost every Web browser. Both of them retain HTTP response data
mapped to the corresponding URIs. This strategy is only partially effec-
tive in its original form in many of today’s scenarios, due to dynamic,
personalized contents. More details of Web caching are discussed in sec-
tion 3.1.1 on the next page.

Proxy Objects are used by distributed middleware platforms to provide dis-
tribution transparency, as we have discussed in section 2.2 on page 14.
Both client logic and presentation logic use this abstraction level for pro-
gramming. This opens up two possibilities for caching implementations:
Either on top of this abstraction as an extension of external component
interfaces of the business tier or below as an additional middleware ser-
vice. Approaches to the former alternative will be introduced in sec-
tion 3.1.4 on page 91, examples for the latter one in section 3.1.5 on
page 94.

1 i.e., Java ServerPages (JSP) or Servlets

84 Related Work

3.1.1 Web Caching

Caching of Web documents is doubtlessly the most prominent example of
caching in distributed systems, which has received the greatest attention dur-
ing the last decade due to the tremendous growth of the World Wide Web
(WWW). Again, major goals comprise reduced server load and bandwidth
consumption as well as improved user-perceived responsiveness. The Hyper-
text Transfer Protocol (HTTP) [FGM+99] forms the basis for transfer of data
objects on the WWW. Every data object is globally locatable by a Uniform Re-
source Identifier (URI) [BLFM98]. Users typically have browsers as (graphical)
user interfaces for downloading and displaying data objects, i.e., hypertext
documents and embedded multimedia files.

Web caching is technically accomplished by buffering responses to HTTP
requests along their path from server to client. This can either be done by
caches directly in front of the servers, by relaying proxy caches anywhere onProxy Caches
the network, or by browser caches on the client machines. Server-side caches,
also known as reverse caches, primarily aim at reducing server load. Client-side
caches run by Internet service providers (ISPs) or local intranet providers are
also called forward caches; their goal is to reduce latency for their local user
population. HTTP specifies the conditions and details for caching of requests
[FGM+99, Sect. 13]: Protocol headers may essentially control cacheability andHTTP:

Cacheability
per object

give a “time to live” (TTL), i.e., a cache expiration time.

The idea of cooperating proxy caches and so-called surrogate servers led
to the development of Content Delivery Networks (CDN) [DMP+02], [RS02,Content

Delivery
Networks

Chap. 15]. One goal is to exploit geographical locality of reference to a higher
degree by propagating data over an infrastructure closer to its consumers. Se-
lection of surrogates can be accomplished, e.g., by dynamically manipulating
server name entries in the Directory Name Service (DNS)2 [Moc87] or by URI
rewriting in gateway servers3. Apart from mere content caching CDNs also
provide functionality for authentication, authorization, and accounting (AAA)
of content access. Although standardization of interfaces for content distribu-
tion interoperability by the Internet Engineering Task Force is still in progress,
CDN providers like Akamai already provide proprietary commercial solutions.
They try to reduce cost for redundant excess capacity by reusing their infras-
tructure for multiple customers. Since CDNs do not only cache data upon
request but may also proactively propagate data to surrogate servers, part of
their functionality can also be categorized as prefetching. We will therefore re-
sume this discussion in section 3.3.3 on page 102

A considerable amount of cache replacement strategies (cf. section 2.1.2
on page 12) have been proposed especially for Web caching. Podlipnig andReplace-

ment
strategies

Böszörmenyi [PB03] give a comprehensive survey of the current state of the

2 Clients access servers by symbolic names, which are resolved via DNS. The assignment of
names to physical servers can be manipulated by the CDN according to current server load.

3 All requests initially go to the same (cluster of) Web server(s), which redirect(s) them to
different URIs. These refer to some server performing the actual work.

3.1 Caching in Distributed Systems 85

art in this field. Adaptive approaches, like ACME presented by Ari et al.
[AAG+02], try to self-optimize caching by dynamically exchanging replace-
ment strategies according to current workload. More examples are discussed
in [PB03, Sect. 5.1].

For managing consistency (cf. section 2.1.1 on page 11) of Web caches, Consistency
plain client validation is the prevailing strategy instead of server invalidation,
which is only used for informing mirror servers and surrogates in CDNs [RS02,
Chap. 10]. However, a number of research approaches implemented piggy-
back schemes that closely resemble our approach presented in section 4.2 on
page 111. Piggyback Cache Validation (PCV) [KW97] batches validation requests
and transmits them using normal HTTP traffic. Piggyback Server Invalidation
(PSI) [KW98] follows the coarse-grained concept of volumes, i.e., groups of cor-
related objects, which are treated equally with respect to consistency. Volumes
have version numbers that are incremented upon every modification of a con-
tained object. Client validation requests are augmented to contain also the
volume version number of every requested object, which enables the server to
piggyback a list of updated objects of the corresponding volume. The server
does not need to keep a list of its clients. A combination of PCV and PSI turned
out to produce the least stale deliveries [KW98].

We have already mentioned above that per-object caching as defined by
HTTP becomes increasingly inefficient for today’s highly interactive and per-
sonalized Web applications because of the decreasing percentage of static con-
tent. However, the realization that fragments of dynamic Web pages can be
categorized into static (cacheable) and dynamic (volatile) content again en-
abled caching at a lower level. This enables Fragment Caching for Web servers Fragment

Cachingas depicted in figure 3.1 on page 82.

But since HTTP has no knowledge about the inner structure of transferred
data objects, the bottleneck between Web servers and clients persists. This led
to the proposal of so-called Edge Servers, i.e., the infrastructure of Web servers, Edge Servers
application servers, and database servers is moved closer to data centers on
the “edge” to clients4. Since Web applications typically make state accessible
that is maintained by a (or few) central databases, reliable caching solutions
are in turn required to bridge the gaps between the architecture tiers (cf. sec-
tion 2.2.3 on page 21). The bandwidth of possible approaches has already been
mentioned introductorily. Database caches, which we will examine closer in
section 3.1.3 on page 87, address the bottleneck between application servers
and databases by introducing front-end caches in the back-end of the busi-
ness tier. Application servers may themselves make use of a variety of caching
techniques, like the ones we already hinted at above. Business logic running
on application servers may also leverage caching services provided by their
cluster middleware. In the context of this work, we will concentrate on proxy-
based solutions at the back-end of Web servers or other clients of the business
tier, i.e., approaches for caching the data flow between presentation tier and

4 Cf. [RS02, Sect. 17.7] about distributed Web applications. CDNs currently try to embrace
this trend of Edge Servers in their development, cf. [DMP+02].

86 Related Work

business tier.

A brief overview of current trends in Web caching is given by C. Mohan
[Moh01]. More in-depth background information can be obtained from Rabi-
novich and Spatscheck’s book [RS02].

3.1.2 Adaptive Caching

As we have seen in table 2.5 on page 56, caching already represents a mech-
anism for adaptation itself. However, the term “adaptive caching” is slightly
overloaded. We will briefly discuss a few exemplary approaches that try make
various aspects of caching adaptive.

For instance, the existence of adaptive replacement strategies [PB03,Adaptive
replacement

strategies
Sect. 5.1] has already been mentioned in the context of Web caching. ACME
(Adaptive Caching Using Multiple Experts) by Ari et al. [AAG+02] uses
machine-learning algorithms to dynamically weight cache replacement strate-
gies according to their success, which provides better performance for proxy
cascades in Web / hyper-media scenarios.

Web proxies usually employ a heuristic for cache validation called adaptive
TTL based on the assumption that Web objects tend to remain unchanged ifAdaptive TTL
they have not been modified for a while [RS02, Sect. 10.1.2] The adaptive time-
to-live tTTL is computed as a fraction of the time between download tsent and
last modification tmodi f ied at the originating server: tTTL = min{k × (tsent −
tmodi f ied), tthreshold}, where k = [0.1 . . . 0.2] is a constant and tthreshold ensures that
very old objects are occasionally validated. This heuristic closely resembles
our approach for adaptive invalidation, which will be presented in section 4.2
on page 111.

The close relation between replicated databases (see section 2.3.2 on
page 50) and distributed caching has already been outlined before. Adaptive
approaches also exist in this field.

For instance, many cache consistency protocols for client-side database
caches (see section 3.1.3 on the next page) take an adaptive approach to lockAdaptive

locking escalation. They dynamically adapt the granulate of locks from page level to
object level if other locks already exist on the same page.

Lenz [Len97] proposes adaptive replication, which aims at a rather staticAdaptive
replication adaptation of platform-provided data replication consistency to application

requirements by allowing a flexible specification of consistency requirements
and controllable, application-specific inconsistencies.

Huang et al. ’s Divergence Caching [HSW94] tries to reduce response timeDivergence
Caching and bandwidth consumption of access to online databases by permitting trans-

actions to read stale (divergent) data. Each read has to be associated by its
tolerance to divergence. A refresh rate denotes intervals between automatic
cache refreshes. The authors start with a static approach of fixed refresh rates

3.1 Caching in Distributed Systems 87

and extend this to Dynamic Divergence Caching, which adapts refresh rates
to current intensities by monitoring a sliding window of read-write requests.
This aspect of Divergence Caching is closely related to the above mentioned
adaptive TTL and thus slightly comparable to our approach presented in sec-
tion 4.2 on page 111.

However, no approaches are known so far that explicitly aim at adaptive
determination of cacheability.

3.1.3 Database Caching

Database caching addresses the connection between business tier and database
tier. Scalability is intended to be improved by reducing the workload on back-
end database servers. This domain is not directly related to our work since we
address a higher layer of enterprise application architectures. However, many
approaches, e.g., for cache consistency, can be used as archetypes for similar
problems at higher layers. Apart from that, observations in section 3.1.1 on
page 84 already showed a general convergence of caching approaches from
different architectural tiers.

Much research has already been done in the early 1990s in the context of
Object-Oriented Database Management Systems (OODBMS), which already OODBMS
provided solutions for non-persistent caching in their client-side object buffers.
For instance, Adaptive Call-Back Locking (ACBL) [FC94], which will be dis-
cussed below, was developed in this context and is still the most important
protocol in this application area. In fact, many concepts for database caching
originate from the background of database buffer management in general and
client-side object buffers in particular.

In analogy to homogeneous, replicated databases (see section 2.3.2 on
page 50), the simplest approach would be to clone entire back-end tables in
front-end caches. However, the required amount of (largely useless) data
transfer upon updates jeopardizes the potential benefits of this strategy. This
realization led to a number of improvements, as illustrated in surveys by C.
Mohan [Moh01] or Härder and Bümann [HB04, BH04]. We will give a brief
overview in the following paragraphs.

Materialized views are a method for query result caching. Listing 3.1 on the Materialized
Viewsnext page gives an impression how to define a materialized view germancat

for limiting catalogue entries to the countries Germany, Austria, and
Switzerland. The result will be cached by the front-end database, which will
use its contents for answering subsequent queries. A major problem of ma-
terialized views are overlapping, redundant data sets from different queries.
This introduces replication to the cache, which in turn requires strategies for
keeping replicas consistent.

A similar but older approach are Quasi-copies [ABGMA88], which have also Quasi-copies
been reviewed in [Len97, Sect. 4.4.3, p. 113]. Database clients use read-only

88 Related Work

Listing 3.1: Example for a materialized view

1 CREATE SUMMARYTABLE germancat AS
2 (SELECT * FROMcatalogue
3 WHEREcatalogue.state IN (’DE ’, ’AT ’, ’CH’));

replicas5 for which they specify a defined degree of deviation from the master
copy (i.e., the server). Coherence conditions include delay for temporal devi-
ation, version for deviation in terms of a number of write operations, and a
arithmetic condition for deviation of value differences. Continuous alive mes-
sages from server to clients communicate the new data value, version number,
or an invalidation request to let clients decide about violation of their local
coherence predicates.

If database caches are not only expected to answer queries that have been
identically issued before but also ones whose answer is a subset or union of
previous queries, the cache needs query processing capabilities and the chal-
lenge of query containment arises.

One solution for this problem is semantic data caching for client-server re-Semantic
caching lational database environments [KB94, DFJ+96]. It has been shown that se-

mantic caching outperforms page and tuple caching because of the smaller
amount of result data that has to be transferred. This is achieved by issu-
ing potentially smaller remainder queries after intersecting a client’s current
cache content with the expected query result. The principle is depicted in
figure 3.2 on the next page: Let Q be a query Q = x > x1 ∧ y ≤ y3. The
current cache content can be described by V = x < x2 ∨ (y ≥ y1 ∧ y ≤ y2).
Hence, Q can be split into probe query P and remainder query R: P(Q, V) =
P1 ∨ P2 = (x > x1 ∧ x < x2 ∧ y ≤ y3) ∨ (x > x2 ∧ y ≥ y1 ∧ y ≤ y2 and
R(Q, V) = R1 ∨ R2 = (x ≥ x2 ∧ y < y1) ∨ (x ≥ x2 ∧ y > y2 ∧ y ≤ y3). Se-
mantic caching exploits semantic locality rather than spatial or temporal local-
ity of reference for its cache management meta-data. Individual cache entries
are represented by semantic regions containing constraint queries as references
and lists of data tuples as content. Apart from relational databases, semantic
caching has also been successfully applied to other application areas, e.g., code
archives [PTS05].

Another solution for the challenge of query containment is constraint-based
database caching: Based on an approach by TimesTen [Tea02] called Cache
Groups, various extending concepts have been developed. Cache groups areCache

Groups collections of cache tables, whose interrelations are specified by parameterized
cache constraints: Cache keys trigger loading tuples into the cache; referential
cache constraints (RCC) take care of loading additionally required tuples ac-
cording to data relationships between different columns of tables. The concept
of domain completeness (DC) ensures that all tuples required to answer a query
are contained in the cache. Although the approach proved to be effective, the

5 Similar to the concept of Snapshots, which was discussed in section 2.3.2 on page 50.

3.1 Caching in Distributed Systems 89

y1

y2

y3

x 2x 1

P1

R2

P2

R1

0

y

x

Cache
Query

Fig. 3.2: Example of Semantic caching

complexity of specifying cache constraints is still a daunting task for admin-
istrators, which requires thorough planning to avoid degradation to full-table
caching if RCCs are used for eager loading. Härder and Bümann [HB04, BH04]
give a comprehensive overview of this trend.

Protocols for intertransactional cache consistency of caches aim at providing Intertransac-
tional cache
consistency
protocols

transactional properties for cached queries, i.e., cached data from one trans-
action can be reused by another transaction while maintaining ACID (see sec-
tion 2.3.1 on page 46) properties with special focus on serializability and re-
coverability. Franklin et al. [FCL97] have compiled a classification of existing
approaches by differentiating between avoidance-based algorithms that prevent Avoidance

vs. detectionaccess to stale data within a transaction and detection-based ones that initially
permit access but may roll back transactions after commit if collisions are de-
tected. A second dimension is given by the point in time when the server
is informed about write operations: Synchronous methods block clients until Synchronous,

asyn-
chronous,
and deferred
validation

they receive a response to their lock escalation messages from the server; asyn-
chronous methods permit clients to optimistically continue their work with-
out waiting for the response; and deferred methods postpone informing the
server until commit. Gruber [Gru97] furthermore distinguishes avoiding pro-
tocols into eager and lazy proactive, and detecting protocols into eager/lazy
reactive and passive, depending on the efforts taken to keep cache contents
up-to-date. Pfeifer [Pfe04b] also gives a good overview from a more contem-
porary point of view and mentions the existence of nine important protocols.
The quality of cache consistency algorithms is typically measured in terms of
throughput of successfully committed transactions and the abort rate of trans- Throughput

vs. abort rateactions that had to be rolled back due to conflicts or deadlock resolution. In
the following, we shortly discuss a few exemplary protocols: Adaptive Call-
Back Locking (ACBL) [FC94], Adaptive Optimistic Concurrency Control (AOCC)
[AGLM95], Asynchronous Avoidance-based Cache Consistency (AACC) [ÖVU98].
Older approaches, e.g., Caching Two-Phase Locking (C2PL), simply extend pes-
simistic concurrency control schemes known from section 2.3.1 on page 46 for

90 Related Work

use in client-side caches, which reduces the size of required messages but not
the number in comparison to no-caching solutions.

ACBL is the prevailing cache consistency protocol for client-side object buff-
ers of OODBMS. It follows a synchronous, avoidance-based strategy, i.e.,
locks have to be obtained before write access is granted, and clients block
until the response to their lock escalation message arrives. Read locks are
obtained implicitly with data access. They are retained by clients across
transactions. The server uses call-backs to ask other clients to release or
loosen locks for required pages. The protocol is adaptive because of auto-
matic refinement of lock granularity from page level to object level.

AOCC is a deferred detection-based protocol that avoids read locks and uses
BOCC (see section 2.3.1 on page 49) for synchronization of write ac-
cess. Invalidation messages are send to other clients after commit by
the server, piggybacked on other messages. These invalidation messages
may require the other clients to roll back started transactions. This leads
to a better performance than ACBL due to less messages required but
also to the penalty of a higher abort rate in high-contention scenarios.

AACC is an asynchronous, avoidance-based protocol that achieves a high
performance and a low abort rate. Locks are managed collaboratively
be clients and server at both page and object level. Lock escalation mes-
sages are send asynchronously (in a non-blocking manner) by clients. A
client blocks at commit if its write operations affect another client’s cache
contents (i.e., collision avoidance). Piggybacking is only used for deferred
lock escalation and invalidation messages from clients to the server.

Schaller [Sch03] developed a concept for caching client-side front-end da-
tabases, which further allows the migration of transactions between different
front-end databases in mobile scenarios. The fundamental part of his work
constitutes of an intertransactional cache consistency protocol based on Multi-
version Concurrency Control (MCC) (see section 2.3.1 on page 49) for shield-
ing read transactions from synchronization, in combination with Forward-
oriented Optimistic Concurrency Control (FOCC) (see section 2.3.1 on page 49)
for write transactions. It can be classified as a deferred, passively detecting
protocol.

Pfeifer [Pfe04b] takes a similar approach for caching data access from pre-
sentation tier to business tier, at a higher architectural level, by caching results
of business method invocations. We will thus elaborate on his approach in
the context of section 3.1.5 on page 98. The architectural integration into the
transaction management infrastructure of an EJB-based application server is
provided by interposing an “m-scheduler” for method operations, which can
execute three different optimistic concurrency control protocols: The first pro-
tocol is based on 2PL certification as described in [BHG87, Sect. 4.4] (and also
on BOCC (see section 2.3.1 on page 49)); it aborts transactions trying to read
method results that have been invalidated by other transactions. The second

3.1 Caching in Distributed Systems 91

protocol is a “freshness-based” timestamp protocol derived from the TO concepts
in [BHG87, Sect. 4.2]; it processes transactions in the sequence of their times-
tamps. The third, “fitting-based” timestamp protocol allows reading stale cache
contents to some degree, similar to MCC (see section 2.3.1 on page 49). It tries
to “fit” transactions into non-cyclic serialization graphs although they might
contradict to the timestamp sequence. All three protocols can be classified as
deferred, lazy reactively detecting, since detection of invalid accesses is de-
ferred until commit and piggybacking is used for sending invalidation mes-
sages.

Not being bound to the limitations of the possible network communication
scenarios we defined in section 1 on page 1, most database caching methods
and consistency protocols rely on call-backs from servers to clients, which dis-
qualifies them as feasible solutions. However, piggyback approaches pose an
interesting option for deferred client notification, which we will discuss in sec-
tion 4.2 on page 111.

3.1.4 Application Level Solutions

In this section, we will concentrate on solutions for caching data access to the
business tier above the level of proxy objects (cf. figure 3.1 on page 82), within
the accessing applications themselves.

Caching implementations based on the abstraction level of component in-
terfaces have to introduce a proxy layer for encapsulating caching logic for
other client application modules. The closer this proxy layer follows the orig-
inal component’s interfaces, the less modifications to existing client modules
are needed. Design patterns (see section 2.5.4 on page 70) help with this task. Design

patternsChain of Responsibility [GHJV94] calls the remote implementation upon local
cache misses. Decorator [GHJV94] stores results in the cache after receiving
them from the server and before passing them to the client. This approach is
not novel and has been followed by many others before, e.g., Orca [BKTJ92],
Shadows [CPS93], OORPC [ZC96], and MinORB [MCC99]. But full access Transparency
transparency is not achievable due to the need for explicit invocation and/or
creation of the proxy objects—server and client programmers have to be fully
aware of these changes. The latter is especially cumbersome because changes
in client code are typically hard to deploy and maintain; versioning is required
etc.

The described caching layer can simply try to keep copies of query results
but usually several queries are triggered in sequence, e.g., because more than
one attribute of a component is needed by client applications to do their work.
In modern middleware as introduced in section 2.2 on page 14, there exist a
number of similar patterns and approaches, which are all more or less related
to the patterns State Object and Session Façades. Hardly any of them are sup-
ported by design tools or deployment utilities of containers.

92 Related Work

State Object Pattern

The State Object pattern is not to be confused with the behavioral State pat-
tern as introduced in [GHJV94]. It is rather a structural extension of the Proxy
pattern. Our assumption is shared that a component’s attributes / properties
are exhibited by accessor and mutator methods on its interface (cf. JavaBeans
[Sun02b]). The main part of the pattern is formed by a simple holder object that
is used as a “virtual attribute” for bundled state transfer between an abstract
client server pair, i.e., it is exhibited by an additional pair of accessor/mutator
methods. This strategy makes granularity of data access coarser, thus saving
a number of network round-trips as several attributes are queried together
instead of being fetched individually. Other names for the same concept are
Value Object [ACM01] and Data Array. But similar strategies have also alreadyValue Object
been used by Orca’s shared data-object model [BKTJ92]. Eberhard and Tripathi
[ET01] call this concept Reduced Object in their RMI-based caching service (see
section 3.1.5 on page 95).

This pattern uses a fixed data structure for bulk state transfer in its original
form but an extended, more flexible version called Dynamic Property enablesDynamic

Property clients to query a variable set of business object properties instead of the bulk
of attributes. Different use cases become possible at runtime without changes
to the component’s code.

In common e-business applications, a substantial part of a business object’s
attributes is usually needed all at once, e.g., when displaying customer infor-
mation in a table. To avoid costly network traffic, a State Object would be
used to access the entireness of customer’s attributes in a single remote call as
shown in figure 3.3 instead of querying every attribute separately.

Fig. 3.3: State Object Pattern by example

Although tools like XDoclet (see section 2.5.3 on page 66) provide help for
automatic generation of (multiple) state objects, this pattern still features a lack
of access transparency. The client programmer has to be well-aware of how to
use these mechanisms; the server-side programming efforts are non-trivial.

The caching layer could use state objects to transfer component state to
the manipulating (client) process in a coarse-grained manner, which reduces

3.1 Caching in Distributed Systems 93

the overall number of network round-trips. This bulk state transfer can either
be triggered by the client application after some modifications or even trans-
parently by the caching layer itself, which would add a simple prefetching
functionality since data is (partially) loaded in advance.

Access Beans

A similar solution called Access Beans is integrated in IBM’s Enterprise Java-
Beans product line [ST00]. Plain (non-remote) JavaBean components [Sun02b]
are used to wrap EJBs. These JavaBeans facilitate easier integration into visual
builder tools and encapsulate most of the typical tasks when accessing an EJB,
e.g., home look-up in naming contexts and remote instance creation, in the
Beans’ constructors. Extended versions, called Copy Helpers and Rowsets, add
caching functionality for single and multiple EJB instances in one Access Bean.

Wizards for Access Bean creation and selection of EJB data attributes for
Copy Helpers are part of IBM’s Visual Age for Java. Unfortunately, this is
the only supported builder tool and deployment of generated Access Beans is
cumbersome on application servers other than IBM WebSphere.

Astral Clones

Instead of creating additional State Object classes, Astral Clones, as proposed
by Res [Res01], try to reuse (EJB) bean implementations out of a container’s
scope for this purpose after some minor modifications. These modified beans
are called Astral Clones. Serialized instances containing the component’s state
can be transferred to clients by additional methods. Since these classes already
contain all necessary data manipulation logic, they can be used by clients just
like their remote equivalents. Special precautions have to be taken to ensure
serializability, i.e., (un)marshalling, and to distinguish between the two now
possible execution contexts—container and client side—in the bean’s imple-
mentation. Thread safety becomes another important issue as this is normally
handled by the container, which is now missing on the client side.

This concept works perfectly well with EJB 1.0 and 1.1 [MH98, MH99] but Only EJB 1.x
it is jeopardized by the Container-Managed Persistence (CMP) mechanism in-
troduced in EJB 2.0 [DYK01]: The container now handles persistent state man-
agement by polymorphic inheritance instead of delegation. Bean implementa-
tions defined by the bean provider have to be abstract. They access their persis-
tent state by calling abstract accessor / mutator (get-/set) methods, which are
implemented by the container’s persistence manager. This in turn implies that
the persistence manager’s concrete bean implementations have to be serializ-
able and their behavior has to be portable outside the container’s boundaries,
which cannot be assumed inherently.

94 Related Work

Session Bean Wrapper

An EJB’s implementation is not always accessible for later modification when
the need for caching arises. This small ancillary condition shipwrecks all the
hitherto introduced patterns as they strongly rely on server-side modifications
of bean implementation classes. Though it is still possible to use proxy objects
with caching functionality, they would be limited to caching already-queried
attributes only—no bulk state transfer could be arranged due to fixed business
interfaces.

If client code modification is feasible, an additional Session Bean could be
used to parenthesize (Entity) Bean access and add support for querying an
object’s state. The clients use the new Session Bean’s interface instead and the
Session Bean’s implementation handles State Object construction on the server
side (in the same container) thus avoiding network traffic when separately
querying the Bean’s attributes.

It is quite a common pattern to use Session Beans for executing operations
that involve numerous interactions with server components (EJBs) on the same
network node to reduce the application’s distribution cross section. This pat-
tern is also known as Session Bean Wraps Entity Beans [Bro01] or Session FaçadeSession

Façade [ACM01].

3.1.5 Middleware-based Concepts

As mentioned introductorily, all the concepts presented in section 3.1.4 on
page 91 require a considerable amount of recoding on client and server side,
which poses a violation of access transparency (and distribution transparency)
that might not be feasible in a lot of today’s business scenarios. This section
introduces alternative ways to accomplish transparent caching at the level of
middleware. Since caching is a technically motivated aspect, its implementa-
tion should be the middleware vendor’s responsibility.

Smart Proxies and Interceptors

It has already been outlined that Smart Proxies (see section 2.5.5 on page 72)
and Interceptors (see section 2.5.5 on page 73) can be used in CORBA-based
middleware to add user-defined behavior to remote object proxies. Caching
functionality is only one possible application for these concepts. For instance,
OIF [FBLL02] and Fractal [DL03] use client-side caching as an example aspect
for their interceptor frameworks. The principle is simple: Every intercepted
invocation is first checked against a local cache of invocation results on client
side; server-side implementations are only invoked upon cache misses.

3.1 Caching in Distributed Systems 95

Stub Annotation

Java’s RMI [Sun02a] and Java-IDL don’t have any providences for this con-
cept. Nevertheless, proposals have been made how to fill this gap: Smart Stubs Smart Stubs
[Lot00] is a simple proof-of-concept whose basic idea relies on renaming de-
fault RMI remote stubs and replacing them by derived, augmented classes that
wrap functionality for caching and performance monitoring.

Since it’s often undesirable to modify existing code—neither on clients, nor
on server side—the stub classes themselves (i.e., the underlying wire proto-
col’s proxy components for marshalling of remote calls) can be adapted and
modified. Without altering the business interfaces or violating the wire proto-
col, the system’s generated default stubs—in the case of Java RMI usually re-
sults of rmic —can be replaced by user-defined implementations. Smart Stubs
wrap system-generated default stubs in especially adapted subclasses that add
functionality for caching and performance monitoring. Command line tools
are provided to assist the creation of these adapted stubs.

However, attribute caching is performed in a far too static way. No atten-
tion whatsoever is paid to the diversity in attribute usage. Every attribute is
cached upon first usage and discarded uniformly in fixed intervals—a crude
way to ensure update synchronization. We tried to implement a first proto-
type of our concepts as an extension of the Smart Stub approach, which is
introduced in section 6.1 on page 147.

Caching Services

We already argued that caching is a technically motivated aspect, which is
never directly related to functional application requirements. It rather emerges
out of performance considerations taken at application runtime. Therefore it’s
only equitable to disburden application programmers of the challenge to im-
plement caching logic by themselves. The caching aspect should be provided
as a middleware service, which can either be used explicitly by application
programmers or be configured descriptively during deployment without re-
coding6.

In the CORBA world, middleware services are usually implemented as so-
called Common Object Services (COS), e.g., Naming, Trading, Transactions, etc.
The need for a caching service led to projects like Flex [KAD96], a CORBA-
based framework for client-side caching, and Cascade [CDFV00, Vit01], a
CORBA service for object caching in Wide Area Networks (WAN).

Efficient RMI A similar tendency can be observed in the context of Java RMI
[Sun02a]. For instance, Krishnaswamy et al. [KWB+98] implemented an effi-
cient RMI implementation including a caching service. Later versions of the

6 Cf. section 2.2 on page 14 for the discussion of explicit vs. implicit / descriptive middleware

96 Related Work

prototype [KGDA00, KRB01] were implemented on top of BBN technology’s
Quality Objects (QuO) [ZBS97] framework instead to enable the fulfillment of
Quality of Service (QoS) requirements regarding response times by using a
caching service, which was integrated in a transparent manner via QuO prox-
ies7. A time-sensitive consistency model allows to specify time-constrained con-
sistency levels for different sites in a staggered fashion.

Eberhard and Tripathi [ET01] also present a middleware solution for trans-
parent object caching in RMI-based distributed applications. Flexibility is pro-
vided with respect to consistency: A client policy is configured for client consis-
tency managers with an ActionsList and other metadata. ActionsLists config-
ure sequences of actions that are executed by the client consistency manager,
e.g., local and remote method invocation, state update, etc. but also retrieval of
further ActionsLists from the server consistency manager. Metadata includes
a cacheability categorization into none, immutable, read-only, read-write, and
server-only, which basically determines the behavior of the client policy. So-
called reduced objects (cf. section 3.1.4 on page 92) are used for bundled transfer
of object attributes, which saves network round-trips. Transparent integra-
tion is provided by byte-code manipulation of RMI stubs (cf. section 6.1 on
page 147). Although the approach provides many interesting suggestions for
our work, its major flaw is the ultimate dependence of its invalidation mech-
anism on client callbacks, which renders it impracticable for NAT / firewall
scenarios.

General Purpose Software Cache Starting with Data Update Propagation
[IC98], an algorithm relying on specified data dependencies between repli-
cas and their origins for optimized updates of distributed caches from the
background of IBM’s DynamicWeb Cache system, Iyengar et al. developed
a general-purpose software cache [Iye99], which can also be used out of the
context of a specific middleware in other application domains, e.g., databases.

A similar endeavor has been started in the Java community with Java Spec-
ification Request (JSR) #107 [Bor01], incited by Oracles Object Caching Ser-
vice for Java (OCS4J). Meanwhile, a number of prototypical implementations
evolved. Penchikala has compiled a comparison of recent implementations of
this JSR in the context of J2EE (see section 2.2.4 on page 22) application servers
[Pen04]. The relation to application servers is justified by their need to con-
sistently cache data in the business tier and web tier across clustered servers.
Some of the examined implementations also incorporate consistency proto-
cols for transactional cache access. However, most prototypes belong to the
category of explicit middleware, i.e., component/bean developers or Servlet
programmers have to use these services explicitly in their code. Only the up-
coming JBoss Cache could be used implicitly by interpreting an adequate de-
scription with JBoss’ AOP framework [BB03].

While most of these approaches more or less exclusively address explicit

7 QuO proxies are comparable to Smart Proxies, see above.

3.1 Caching in Distributed Systems 97

middleware, our goal is the implicit usage of such middleware services for
caching, in accordance with a description provided by either application pro-
grammer, component developer, or application assembler / deployer.

Distributed Shared Objects

Quite a number of scientific publications in the past decade elaborated on Dis-
tributed Shared Objects (DSO), a concept for transparent replication of objects.
In contrast to traditional middleware like CORBA and DCOM (cf. section 2.2
on page 14), DSOs are physically distributed entities that encompass all repli-
cas and proxies belonging to a logical object. In this respect, DSO models
go beyond the scope of the above presented caching services, although many
caching services already provide similar functionality.

Although it could be used as a Caching Service (cf. section 3.1.5 on page 95), Javanaise
Javanaise by Hagimont et al. [HL98, HB01] implies different semantics than this
class of middleware services. It is based on Java RMI [Sun02a] and provides
client-side caching (replication) of objects. Interdependent objects are grouped
in so-called clusters for improved performance of updates. Javanaise provides
the same interface as Java RMI, while extending its functionality. However, full
access transparency can not be achieved on client side. The issues of managing
multiple references to single objects are also discussed in [HB01]: A proxy-out
on client side manages backward-reference parameter passing; a proxy-in on
server side manages onward-reference parameter passing. All references to a
certain cluster within another cluster point to the same proxy-out object. This
concept closely resembles the scheme of stubs and skeletons, or client-side and
server-side interceptors, respectively, although at the higher abstraction level
of object clusters.

Globe by Bakker et al. [vSHT97, BAB+00] also builds on Distributed Shared Globe
Objects for controlling data replication on a per-object basis. A prototype called
the Globe Distribution Network based on this middleware implements a service
for global (wide area) distribution of data, e.g., software packages. Globe is
adaptive to changes in data popularity and update patterns.

AspectIX by Hauck et al. [HBG+98], an aspect-oriented (see section 2.5.6 AspectIX
on page 75) and CORBA-compliant ORB architecture, introduces a concept
named Fragmented Objects, which roughly resembles Globe’s concept of DSO.
Both functional and non-functional properties (i.e., aspects) of objects can be
configured by clients using a generic interface. Local fragment implementa-
tions of objects can be replaced transparently to fit configuration requirements.

In the strict sense, the shared data-object model behind the Orca programming
language [BKTJ92] can also be categorized as a DSO model.

Unbound by the constraints of particular middleware or component plat-
forms, most of these proposals managed to build efficient solutions for dis-
tributed applications. Unfortunately, hardly any of them managed to gain a
broader base of acceptance apart from academic acknowledgment. However,

98 Related Work

interesting cross-references can be drawn to the contribution of this work.

Client-side Caching of Method Results

Although some of the above mentioned proposals for caching services already
tried to cache results of method invocations at the client side, e.g., [KWB+98,
ET01], this section will concentrate on an approach that probably resembles
our work most closely, Peifer’s Method-based Caching [PJ03, Pfe04a, Pfe04b],
which transparently caches method results of business interfaces in multi-
tiered, J2EE-based applications.

The initial prototype [PJ03] integrates the caching logic at client side via
generated proxy objects, which are transparently made accessible to clients
over a manipulated naming service. Local cache consistency is preserved
by checking cache models for method dependencies (i.e., invalidation relation-Cache

models ships between different read/write methods) at runtime. Concurrent modifi-
cations of multiple clients are synchronized by invalidation messages, which
the server propagates to clients using a callback interface. Although this solu-
tion is feasible for scenarios with only a few web servers as application server
clients, it scales badly with for a growing number of clients of the business tier.
An experimental evaluation based on the RUBiS8 revealed promising results
for unlimited cache size and using LRU as replacement strategy.

An algebra for the introduced cache models [Pfe04a] formalizes their struc-
ture, correctness, and precision. Cache models are necessary to prevent the
cache from serving invalid results. They help to identify read-only methods,
i.e., those that do not alter to server’s state, by capturing all read-write de-
pendencies between business methods. Thus, specification of cache models
is a tedious, non-trivial task for developers. In contrast, our approach in sec-
tion 4.1 on page 107 follows the JavaBeans concept [Sun02b], i.e., component
state is exposed by accessor / mutator method pairs, which can be recognized
by their get /set naming pattern; additional invalidation dependencies can
be captured as metadata.

However, cache models alone can neither guarantee consistency of cachedConsistency
method results, nor convergence of different replicas. To provide a stronger
level of consistency than the initial invalidation scheme, transactional method-
caching was proposed in [Pfe04b], which was already mentioned in the con-
text of section 3.1.3 on page 87. Apart from the three consistency protocols, an
architecture is presented that implements the integration of the m-scheduler—
a transaction scheduler for method operations—into the transaction manage-
ment architecture of the JBoss open-source application server [FR03] on both
client and server side. A theory for serializable method cache histories9 is pro-

8 Rice University Bidding System [CMZ02, CCE+03], an eBay-like auction benchmark for
performance measuring of multi-tiered Web application architectures. RUBiS is comparable to
but different in focus than TPC-W [Smi01], a Web shop benchmark that tendentially overloads
the database tier.

9 i.e., representations of concurrent executions of transactions

3.2 Communication Restructuring 99

posed, which considers cached results of method invocations in addition to
common read/write operations of data elements, based on the concepts and
terminology of Bernstein et al. [BHG87].

Due to complications with integrating the scheduler with the JDBC data
manager, explicit read() /write() calls are necessary to inform the sched-
uler about access and manipulation of data. This poses a major violation of
transparency since it requires either bean developers or container-managed
persistence providers to explicitly use this interface.

The implementation hooks statically into the JBoss middleware archi-
tecture (cf. section 2.5.5 on page 73) with hard-coded modifications of
the RemoteMethodInvoker instead of some self-defined Interceptor. The
RemoteMethodInvoker is the last interceptor in the client chain, which fi-
nally transmits invocations to the server. Interceptors can be programmed and
inserted descriptively by third parties or by application developers themselves
for arbitrary middleware service functionality. Pfeifer’s approach is hence less
configurable in this respect than the solution presented in this work.

3.2 Communication Restructuring

Caching is only one solution to reduce the latency of distributed programs.
As explained in section 2.1 on page 9, the basic principle relies on temporal
and spatial locality of reference in data access program structures to reduce
subsequent idempotent remote calls. Another approach is to execute remote
calls asynchronously, i.e., without blocking the client, or to defer them at client
side and execute them in a bundle as soon as one result is actually needed for
further processing. These options have already been mentioned in section 3.1.3
on page 87 in the context of cache consistency protocols.

Liskov and Shrira introduced a language extension called Promises [LS88] Asyn-
chronous
RPC

for asynchronous invocation in Remote Procedure Calls (RPC) (see section 2.2
on page 14): RPCs do not block anymore, the runtime environment immedi-
ately returns a promise instead, i.e., a kind of proxy for the actual result. The
client code can proceed while the result is computed and finally returned asyn-
chronously by the server. Blocking only occurs if the client tries to actually use
the result behind a promise; in this case it has to wait until the result arrives.
Walker et al. proposed a similar concept called Futures [WFN90]. The Rover
system by Joseph et al. [JdT+95] extends these concepts for asynchronous RPC
in the context of mobile environments. Temporary disconnections can be han-
dled by persistently queueing RPCs in log files for later execution. However,
these concepts are not access transparent, i.e., they have to be used explicitly
by application programmers.

The above mentioned concept for deferring and bundling several remote
invocations into a single one is also referred to as batching or boxcarring. It can Boxcarring
be employed to reduce the number of required network round trips. Microsoft
DCOM [MSd, MS DCOM technical overview] uses this technique extensively,

100 Related Work

e.g., for object lookup, remote instantiation, or querying object functionality,
among others. To reduce the impact on the programming model, batching
code can be injected in custom proxies.

Yeung et al. [YK03, Yeu04] applied this scheme of call aggregation to Java
RMI [Sun02a] in a fully automated fashion. They provided an augmented
Java Virtual Machine (JVM) called Veneer that uses byte-code manipulation at
load-time to intercept RMI calls and delay them as long as their results are not
needed locally. In addition to that, the server may cache sequences of calls
to speed up future invocations. This approach poses an interesting comple-
mentation of our work. A conceptual integration of these concepts at intercep-
tor level might help to further improve the benefits of client-side caching of
method results.

3.3 Prefetching

While the discussion of caching in section 3.1 on page 81 merely addressed
the buffering of queried data for later reuse and the strategies for communica-
tion restructuring in section 3.2 on the preceding page tried to delay and bun-
dle data queries, this section tackles the challenge of how and when to fetch
data in advance, i.e., before it is actually queried. Since fetched data has to be
stored locally to make it immediately available to future queries, prefetching
can be seen as an extension of caching. While cache replacement algorithms
(cf. section 2.1.2 on page 12) were limited by Belady’s optimal strategy [Bel66],
prefetching tries to tackle this boundary from the opposite direction by antici-
pating future events.

The goals are almost the same as for caching: reduced apparent latency
and increased user-perceived performance. Although prefetching can achieveDanger of

reduced
scalability

better results in regard to these goals, its benefits come at the cost of increased
bandwidth consumption, even in comparison to the plain non-caching imple-
mentation of a certain application: Because loading data in advance always
implies some uncertainty of future events, a significant percentage of the band-
width and server load is wasted to load data in vain. This drawback may also
result in reduced scalability and throughput. Important metrics to measure
the efficiency of prefetching algorithms are precision (i.e., percentage of sub-
sequently requested prefetched objects) and recall (i.e., percentage of client re-
quests that were prefetched) [RS02, Sect. 12.1]. Both values limit the maximum
network utilization up to which no latency degradation occurs.

Prefetching includes techniques for pre-population of client caches, both
“server push” and “client pull” style. It is based on the assumption that the
time between subsequent data request of a client (i.e., data processing time
or user think time) can be used to load data in advance. User-transparentSpeculation
prefetching is almost always speculative. Non-transparent approaches require
either preanalysis of data processing code or externally provided information
about prefetchable data on client and/or server. Speculative techniques auto-

3.3 Prefetching 101

matically adapt to given access patterns but need an initial “ramp-up” phase
for learning. On the other hand, non-transparent approaches become immedi-
ately effective but may operate inefficiently if not configured carefully enough.
A combination of both is discussed in section 4.4 on page 125. Speculative
techniques always follow a similar pattern:

1. Observe and record access patterns;

2. Recognize patterns later;

3. Predict subsequent accesses;

4. Prefetch (hopefully) needed data.

Implementation alternatives for speculative techniques include Markov Implementa-
tionchains [Mar06] and data compression like Lempel-Ziv (LZ) [LZ77]. Both variants

take the probability of subsequent events into account. Approaches based on
Markov chains consider the probability for the next accessed data item as a
function of last n items to fetch the most likely next item. Compression-based
approaches model the frequency distribution of access to specific data items
for the same purpose. Examples for such prediction algorithms in the context of
Web prefetching are introduced in [RS02, Sect. 12.8].

The following sections discuss various application domains for prefetching
and related approaches.

3.3.1 Prefetching in Database Management Systems

Speculative, forecasting-based prefetching strategies have already been used
quite early in database systems for efficient buffer management [RR76, Smi78].
Speculative prediction algorithms like the ones mentioned above were used to
load pages into the buffer prior to requests to avoid page faults.

In contrast, Wedekind et al. [WZ86, KWZ90] proposed a different strat-
egy for canned transactions in realtime databases. Their concept is based on
preanalyzing future data operations to determine and load a superset of all po-
tentially relevant candidate pages beforehand. Preanalysis helps to determine
access patterns of transactions, which can be used to determine potential sub-
sequent requests. Queries are expanded to so-called superset queries by devel- Superset

queriesoping a precedence structure of involved database calls, identifying free query
parameters, and binding a reasonably large amount of them at execution time
as they become known. The challenge is to find the optimal time for issuing a
superset query to limit the amount of response data while remaining effective.

Cache Groups [Tea02, HB04, BH04] have been discussed in section 3.1.3 Cache
Groupson page 87 as a concept for constraint-based database caching, which tackles

the issue of query containment by ensuring domain completeness of cached
tuples. Referential Cache Constraints in Cache Groups also realize a form of
prefetching since they force loading data that is presently not directly queried.

102 Related Work

Our concept for prefetching presented in section 4.2 on page 111 follows
rather the descriptive approach of specifying prefetching dependencies in ad-
vance than the automatic operation preanalysis strategy.

3.3.2 Prefetching in Distributed File Systems

Distributed file systems (DFS) manage sets of distributed storage devices on
different machines and aim to provide a global view for its users. Trans-
parency is a major design goal, i.e., a DFS should have the same interface as
its local equivalent. Caching is often employed to increase the user-perceived
performance of file access. Most systems assume a low percentage of write
accesses and do not cater for full transactional capabilities, i.e., they provide
durability but not isolation. The cache granularity is relatively large: DFS
cache either blocks or whole files. Many systems also provide prefetching
functionality, e.g., to allow disconnected operation of clients in mobile environ-Discon-

nected
operation

ments.

For instance, Coda [KS91] was one of the first DFS to allow disconnected
operations. It introduced a concept called hoarding for prefetching files dur-Hoarding
ing times of strong connectivity according to a user-defined list of required
data objects (the hoarding database). This is obviously a non-transparent,
non-speculative technique that requires user interaction to provide additional
metadata.

In contrast, Kuenning’s SEER [Kue97] provides predictive hoarding of files
based on the semantic distance of files. This allows determining groups of files
belonging, e.g., to a project. SEER dynamically analyzes user behavior to pre-
dict the current working set.

3.3.3 Web Cache Prefetching

Although the issue of using the time between two HTTP requests to preload
data and decrease user-perceived latency is close at hand, most approaches
are still at research level. The simplest transparent solution would be to an-
alyze the structure of HTML documents and perform a complete traversal of
all contained links. But simple eager prefetching of all referenced objects is
sub-optimal. Hence, user preferences and service characteristics have to be
kept in mind, which has also been realized by [SDMML03], among others. Ra-
binovich and Spatscheck’s survey [RS02, Chap. 12] revealed that commercial
solutions operate only client side since most effective server-side approaches
would require changes to the HTTP specification or at least the agreement on
a least common denominator.

A possible client non-transparent solution requires the specification of a
“hot list”, similar to user bookmarks, whose actuality is always preserved.
The major Web browsers, Microsoft Internet Explorer and Mozilla, provideSite crawling
features called “site-crawling” or “link prefetching”, respectively. Both re-

3.3 Prefetching 103

quire the insertion of additional tags in HTML documents concerning the next
prefetchable links, which qualifies both solutions as server non-transparent
prefetching hints. The Microsoft solution allows the optional specification of a
prefetching depth, i.e., the number of levels that will be prefetched in the tree
spanned by the links of an HTML document. Unfortunately, both solutions
are incompatible with each other, which further limits their usefulness.

Other server non-transparent approaches include according to [RS02,
Sect. 12.5.2]:

• Gathered access statistics made available to clients to judge relative pop-
ularity of objects;

• Centralized aggregation of client-submitted usage reports;

• Active pushing of likely objects to clients.

Bestavros has been among the first to research Web cache prefetching is-
sues. He proposed a speculative, non-transparent, actively pushing scheme
called Server dissemination [Bes95, Bes96], which requires the server to attach
the objects that are most likely requested next to client responses.

Content Delivery Networks [DMP+02, RS02] have already been mentioned CDN
in the context of Web caching (see section 3.1.1 on page 84). But since the
propagation of data among surrogate servers usually takes place prior to client
requests, this concept also poses a form of prefetching in the strict sense.

3.3.4 Prefetching in Distributed Object-oriented Systems

Although some of the systems relying on restructuring of communication pat-
terns in section 3.2 on page 99 technically perform prefetching in a strict sense,
only few publications exist on prefetching in distributed object middleware.

Brügge and Vilsmeier [BV03] propose a mechanism to reduce the user-
perceived latency of remote invocations in CORBA by caching and prefetching
results of remote method invocations. Cacheability of method results is con-
figured statically by special tags in IDL source code. The same is done with
the expiration time (TTL) of cached results on interface level. Integration is
accomplished by means of manipulated client proxies. A history of method
calls is logged per proxy object in advance to construct a dependency matrix
of interface methods, which delivers probabilities for the invocation of certain
methods in dependency of the previous invocation of some other method. If
the probability exceeds 75 %, the depending method will also be executed by
the server and its result will be appended to the previous invocation for inser-
tion into the cache by the client proxy.

The approach is rather simple but it shows some interesting parallels to our
work, e.g., concentration on distributed objects that encapsulate centralized
state of some (database) entity or specification of cacheability and TTL in the

104 Related Work

source code. The calculation of a dependency matrix prior to execution poses
an interesting alternative to completely static specification and continuous dy-
namic calculation of prefetching dependencies in section 4.4 on page 125.

3.4 Summary

In this chapter, a number of approaches for reducing access latency in different
application domains have been presented.

Starting with the possibilities and limitations of Web caching, we have
shown that the trend is shifting towards dynamic content, which is increas-
ingly hard to cache by conventional architectures. Edge Servers have been
introduced in Content Delivery Networks to move the business tier (i.e., the
data manipulating application servers) closer to clients and end-users. Flexi-
ble caching support is needed for finer grained data caching below the level of
whole HTML pages. Our work represents a possible solution to this challenge
because it addresses exactly this interface. In addition, solutions for piggy-
back (in)validation that closely resemble concepts from section 4.2 on page 111
have been presented. These approaches were complemented by various adap-
tive schemes, including an adaptive TTL heuristic that is also relevant for our
work.

A number of parallels have been drawn to the field of database caching,
where a selection of cache consistency algorithms were presented. Again, op-
timistic schemes using piggyback messages for invalidation seemed to pose
an interesting complementation of our work in section 4.2 on page 111, since
these approaches do not require client callbacks and thus confirm to our initial
assumptions of client accessibility.

Various patterns and concepts at application level more or less require the
application programmer’s conscience of caching issues, which is why they
have only been surveyed for possibly reusable aspects like bundled state trans-
fer with State Objects.

We have presented a number of middleware mechanisms for transparent
integration of services like caching, followed by numerous caching services,
both explicitly programmable and configurable integrated ones. However,
only few solutions in the context of multi-tiered architectures explicitly ad-
dress caching at the interface between the business tier and presentation tier.

An approach for method-based caching in multi-tiered applications, which
explicitly aimed at this gap, was presented next. Although the concept is sup-
ported by an established serializability theory for cached access to method re-
sults, transparency is partially abandoned at the level of component code. The
configurability is inferior to our solution and the integration into the devel-
opment cycle, which would enable a better end-to-end treatment of caching-
related metadata, is also missing.

Communication restructuring and prefetching have been introduced as

3.4 Summary 105

two closely related alternative concepts for reducing access latency in a way
more detached or independent from actual requests. Both concepts provide in-
teresting prospects for further extending our solution. However, no solutions
are known that directly combine predictive and specification-based prefetch-
ing. Section 4.4 on page 125 will address this issue.

We can thus summarize our survey of related work as follows:

• Caching at the level of proxy objects at the interface of business compo-
nents running on application servers has hardly been addressed at all.

• Application-level solutions based on design patterns require massive
code modifications on both client and server side and thus cannot pro-
vide our the required degree of transparency and flexibility.

• The majority of middleware-based solutions addresses only specific plat-
forms, like RMI and CORBA. A general, platform-independent approach
is missing.

• Reconfigurability of caching properties is addressed only by few (mostly
aspect-oriented) prototypes. These in turn provide no continuous inte-
gration of caching issues into the software development cycle.

• Adapting cacheability properties at runtime has only been tackled by
more remote examples, e.g., adaptive TTL in Web caching. However,
this concept has not yet been applied to our abstraction level.

This summary augments the objectives and requirements from section 1.3
on page 3 and section 1.4 on page 5 with respect to the functionality we will de-
sign in section 4 on page 107 and implement in section 6 on page 147. A more
in-depth comparison of our adaptive approach to related work is discussed in
section 4.2.4 on page 119.

106 Related Work

Adaptability is not imitation. It means power of resistance and assimi-
lation.

Mahatma Gandhi (∗1869–†1948), Indian spiritual and political leader.

4
Design of an Adaptive Middleware

Service for Caching

In this chapter, we will explain the general design of our middleware service
for caching. For the static solution in section 4.1, which allows altering cache-
ability parameters only before deployment, component attributes or method
results once considered cacheable remain in that state. We will show how we
gradually enhanced this concept with respect to adaptivity and prefetching
functionality.

To respect the demanded validity probability for cache invalidation and to
consider changing access characteristics of component attributes and method
results, heuristic combination of adaptive expiration times and piggyback transfer
of metadata about invalidation and cacheability categorization will be intro-
duced in section 4.2 on page 111.

The remainder of the chapter will furthermore introduce an implementa-
tion of static prefetching in section 4.3 on page 120, which is built on top of the
adaptive caching solution. We will then elaborate an approach for dynamic
prefetching in section 4.4 on page 125.

4.1 Static Caching

The original starting point for this thesis in general was an idea for automatic
generation of caching logic in client-side stubs of Enterprise JavaBeans in com-
bination with a mechanism for notification of clients upon updates, which was
described in [NPF99]. The first prototype [PS02] used the concept of Stub An-
notation (see section 3.1.5 on page 95) to integrate caching logic in client-side
proxy objects. However, later conceptual extensions were based on the as-

108 Design of an Adaptive Middleware Service for Caching

sumption of an interceptor-enabled middleware platform (see section 2.5.5 on
page 73). Details of these two alternatives for implementation will be dis-
cussed in section 6 on page 147.

The major goal is the explicit, separate handling of the orthogonal non-Explicit
middleware functional aspect “caching” throughout a component’s lifecycle. This includes

the tight integration into the software development cycle, which will be exam-
ined closer in section 5 on page 131.

Another goal is the design of a platform-independent solution, which dif-Platform in-
dependence ferentiates our concept from various other related approaches presented in

section 3.1.5 on page 94, e.g., [KWB+98, ET01, BV03] that focus on RMI or
CORBA, respectively. Instead, we aim to provide a solution that is practicable
for any request/response-based middleware with a notion of application com-
ponents (cf. section 2.2 on page 14), as long as it provides a similar concept for
interceptors or reflective access to the metalevel (cf. section 2.5.5 on page 71)
by dynamic proxies or similar mechanisms.

An additional motivation for static configurability of the caching aspectApplication
specific

consistency
was the realization that it allows for capturing and utilizing available knowl-
edge of developers concerning the applicability of caching to component at-
tributes and methods as well as the application’s tolerance for inconsistencies
at an early stage of software development, as already outlined in section 1 on
page 1. Later publications [Poh03, PS03] complemented this static solution
with adaptivity, which is presented in section 4.2 on page 111, and prefetching
(see section 4.3 on page 120 and section 4.4 on page 125).

We have shown in section 2.5.1 on page 61 that software development is
often an iterative process that reuses test results again for further loops of
analysis, design, and implementation. Hence, adaptively determined config-
uration results can in turn represent initial values for a new iteration of the
software engineering process. This notion is also shared by the Model-Driven
Architecture (see section 2.5.2 on page 65), which introduced the challenge
of “backward” transformations that allow for reverse engineering and model
augmentation as a result of modifications to the implementation of an appli-
cation.

4.1.1 Architectural Integration

In general, static caching is performed as depicted in figure 4.1 on the next
page, based on the general architecture for additional services in component-
oriented middleware in figure 2.13 on page 45:

1. A container-generated dynamic proxy implementing the desired compo-
nent’s home and remote interface is called from somewhere within the
client application code.

The proxy creates an Invocation object and passes this through the
client-side interceptor chain where a CachingClientInterceptor is

4.1 Static Caching 109

Interceptor

Server

Interceptor

Client

DB

Application Server

4.

Client

5.2.

3.

Cacheability

Cache

Container

Proxy

Application

1.

Dynamic

6.
Component

Fig. 4.1: Schema of static caching

installed to quickly answer invocations whose results it can anticipate
from its cache contents.

2. The CachingClientInterceptor first checks its cacheability database
for entries matching the current invocation. The cacheability database is
a preconfigured client-local singleton1 If the current invocation is not-
cacheable , the invocation proceeds like every normal method call with
step 4.

3. For cacheable or const invocations the cache is eventually checked for
cached method results. The validity of existing entries is then checked
using the TTL property currently configured in the cacheability database
for the invocation. Invocations with invalidates entries, e.g., muta-
tor methods of attributes, lead to the invalidation of cached results that
possibly exist in the cache for their referenced methods.

4. If the invocation is not cacheable for some reason or if its result was not
found in the cache, it will finally be transmitted to the server.

5. The invocation is handled by additionally configured server-side inter-
ceptors until it reaches the actual component instance (the Bean).

6. The component instance may in turn contact a back-end database to re-
trieve business data, depending on component type and state. For in-
stance, in the case of EJB CMP Entity Beans the container transparently
performs this step as needed before the actual business logic is executed.

The CacheabilityDB essentially stores the following data:

Cacheability. Categorization into cacheable , constant (read-only), and
not-cacheable ;

1 Cf. section 5.3.3 on page 143 for the generation of the preconfigured caching.xml .

110 Design of an Adaptive Middleware Service for Caching

Validity. Maximum time-to-live (TTL) of cacheable entries; and

Invalidation. List of method signatures invalidated by the current method

The TTL value is used by the CachePolicy to automatically invalidate
a CacheEntry after the given amount of time to ensure weak consistency.Consistency
Invalidation dependencies cause the interceptor to invalidate the specified
other method results in the cache, similar to Eberhard’s ActionsList [ET01]
and Pfeifer’s cache models [Pfe04a] introduced in section 3.1.5 on page 95 and
page 98. Calls to remove() methods require the interceptor’s special atten-
tion because they imply the removal of all cache entries for keys (ir, m, {p})
with a given component identity ir, method signature m and parameter list
{p}.

4.1.2 Static Prefetching

Prefetching has been introduced in section 3.3 on page 100 as an extension of
caching technologies that aims at further reducing user-perceived latency of
data access by prepopulating client caches with data, which will probably be
queried next in the near future. We consequentially applied this concept to our
service for caching method results.

First considerations in this direction were presented in [PS02] and [PS03].
Prefetching dependencies have to be specified between methods with a close tem-
poral locality of reference to allow additional method results to be fetched by
the middleware service in advance. The combination with automatically gen-
erated State Objects (cf. section 3.1.4 on page 92) for fetching multiple attributes
at once presented a promising approach.

However, the first fully functional prototype [AH03, Sect 2.3] was imple-
mented on top of the dynamic, adaptive caching solution. The reason for this
decision was the necessity for special considerations in the access statistics
code of adaptive caching. It will thus be presented in section 4.3 on page 120.

4.1.3 Conclusion

Three questions remained unanswered in this section:

1. How can application designers specify caching-related metadata, i.e., con-
cerning cacheability, consistency, and prefetchability of method results,
in advance to allow continuous integration by model-driven approaches
and generative programming mechanisms?

2. How can this metadata be adapted at runtime to “heal” misconfigurations
and to gradually obtain optimal configurations of the middleware ser-
vice?

4.2 Adaptive Caching 111

3. How can the simple static time-to-live consistency mechanism be en-
hanced to reduce anomalies (cf. section 2.3.1 on page 46)?

The answer to the first question is given in section 5 on page 131, where
the integration of this solution into the software development cycle is elab-
orated. The latter two questions are subject of section 4.2, which introduces
a concept for adaptive reconfiguration of our caching service in combination
with a heuristic for improved (but still weak) consistency based on piggyback
validation/invalidation and adaptive expiration.

4.2 Adaptive Caching

So far, we have investigated the challenges of building a statically configurable
middleware service for caching component attributes and method results at
client side in section 4.1 on page 107. However, a number of open issues have
been isolated, motivating the need for adaptivity of the presented middleware
service at runtime: Up to now, the service does not explicitly respect the de-
manded validity probability for cache invalidation, nor does it consider chang-
ing access characteristics of component attributes and method results. These
two challenges will be tackled in this section by implementing a heuristic com-
bination of adaptive expiration times and piggyback transfer of metadata about
invalidation and cacheability categorization.

4.2.1 Goals

An obvious disadvantage of the static approach described in section 4.1 on
page 107 is necessity for component developers and deployers to precisely de-
scribe a component’s cacheability properties before deployment without any
chance of later interference. This drawback gave the motivation for our en-
deavors to extend the framework to dynamically adapt cacheability status of Adaptive

cacheability
categoriza-
tion

component attributes at runtime, i.e., whether a certain attribute or method
result should be considered for caching or not. The primary goals of this ap-
proach are:

• Automatic correction of misconfigurations. Component providers and cache
advisors (cf. section 5.3.4 on page 145) (among others) may not find op-
timal configurations in advance or they can even make mistakes. These
misconfigurations should be corrected automatically; the service should
heal itself (cf. section 2.4 on page 53).

• Automatic determination of optimal configuration. Closely related to the
aforementioned self-healing property is the goal of self-optimization.

• Adaptation to gradually changing client access behavior at runtime. Optimal
configurations are not static; they tend to be subject to changing access

112 Design of an Adaptive Middleware Service for Caching

characteristics at runtime. If an attribute gets written or a method re-
sult gets invalidated more often than originally considered, caching may
become inappropriate. Conversely, less frequent modifications may ren-
der caching useful again. Self-healing and self-optimization should also
apply in this respect.

Another disadvantage of the static solution is the missing considerationValidity
probability of demanded application-specific validity probabilities, the specification of

which was allowed by our UML Profile for Caching in section 5.2.2 on page 136.
Current access patterns in terms of read/write ratio should be used to calcu-
late an adaptive expiration time that reflects the two input parameters—validityAdaptive TTL
probability and read/write ratio—for each cached data item. This adaptive
time-to-live should be used to invalidate cache contents close to their actual
modification time, estimated from past modification cycles. The above men-
tioned property of self-healing / self-optimization is thus extended to the TTL
parameter, as well.

In terms of our definition 2.13 on page 55, we can summarize these goals:
While the static solution presented in section 4.1 on page 107 can be seen as an
adaptable system, the dynamic extensions of this section aim at building an adap-
tive system, i.e., a system that is able to manage parts of its service functionality
by itself.

4.2.2 Architectural Extensions

The key to achieve the above defined goals is to capture client-side data access
behavior to derive information about cacheability and invalidation of compo-
nent attributes and method results as we will explain later. We have devel-
oped a distributed access statistic for this purpose, whose details are subject of
section 4.2.3 on page 114.

In the following, we will explain how this concept has been integrated into
the static solution from section 4.1 on page 107 to build a dynamic, adaptive
caching service.

It has been anticipated in section 2.5.5 on page 73 and figure 2.13 on page 45
that interceptors are also available at server side in quite a similar fashion,
which allows exchanging arbitrary payload information between client and
server by attaching the concerning data to regular method invocations. Pairs
of interceptors on client and server side can thus be used to implement vir-
tually any type of middleware service. Following this line of thought, our
distributed access statistic described in section 4.2.3 on page 114 was also im-
plemented in such a piggyback manner by chaining additional Caching-Piggyback

exchange ServerInterceptor s in the component container’s interceptor stack. How
the gathered information is evaluated and eventually used to dynamically
adapt the behavior of CachingClientInterceptor s behavior is shown in
figure 4.2 on the next page as presented first in [Poh03, PS03].

4.2 Adaptive Caching 113

Interceptor

Server

Interceptor

Client

DB

Application Server

5.

Client

Cacheability

Access

statistic

6.

7.

8.2.

4.

3.

Cacheability

Cache

statistic

Access

Container

Proxy

Application

1.

Dynamic
Component

9.

Fig. 4.2: Adaptive Caching Approach

1. A container-generated dynamic proxy implementing the desired compo-
nent’s home and remote interface is called from somewhere within the
client application code.

2. The CachingClientInterceptor first checks its cacheability database
for entries matching the current invocation. The cacheability database
is a preconfigured client-local singleton2 and continuously updated by
dynamic adaptation as described below. If the current invocation is not-
cacheable , the invocation proceeds like every normal method call with
step 5.

3. For cacheable or const invocations the cache is eventually checked for
cached method results. The validity of existing entries is then checked
using the TTL property currently configured in the cacheability database
for the invocation. Invocations with invalidates entries, e.g., muta-
tor methods of attributes, lead to the invalidation of cached results that
possibly exist in the cache for their referenced methods.

4. Cache hits, i.e., method results served from the client-local cache, are
logged in the client-side access statistic.

5. If the invocation is not cacheable for some reason or if its result was not
found in the cache, it will finally be transmitted to the server. Additional
metadata, e.g., about access statistics, may be added to the payload of
the invocation. On the server side, it will pass another interceptor chain
containing the CachingServerInterceptor , which will evaluate this
metadata. Submitted access data can be removed from the client’s statis-
tic after transmission.

6. The invocation and its possibly attached information about client-side
cache hits are added to the server-side access statistic.

2 So far, there are no differences to the static solution from section 4.1 on page 107; cf. sec-
tion 5.3.3 on page 143 for the generation of the preconfigured caching.xml .

114 Design of an Adaptive Middleware Service for Caching

7. Changes in the access statistic concerning the read/write ratio of at-
tributes or method results, or their average time between modifications
may necessitate adapting the TTL and hence the cacheability categoriza-Adapting

cacheability tion of this type of invocations. The current TTL and cacheability setting
of an invocation is always attached to the payload of its returning result.

8. The invocation is then handed off to the additionally configured inter-
ceptors of the server-side chain until it reaches the actual component in-
stance (the Bean).

9. The component instance may in turn contact a back-end database to re-
trieve business data, depending on component type and state. For in-
stance, in the case of EJB CMP Entity Beans the container transparently
performs this step as needed before the actual business logic is executed.

For concision and better readability, the return path of invocations has not
been explicitly marked in figure 4.2 on the preceding page. It basically follows
the numbers in reverse order. Apart from the actual result object, additional
information may be added to the payload of the InvocationResponse , such
as adapted TTL values or cacheability categorizations. Back at the client side,
this information will first be stripped off the response. The result is then stored
in the client-side cache if the corresponding type of invocations is categorized
as cacheable or const .

4.2.3 Distributed Access Statistic

Capturing client-side data access behavior has been identified as the key to
derive information about cacheability and invalidation of component attributes
and method results. We have developed a distributed access statistic for this pur-
pose, i.e., a service that monitors access behavior at all clients and aggregates
the gathered data at server side.

A pure client-side solution would not reflect the behavior of the whole
user group. It would furthermore take more time to accumulate a signifi-
cant amount of data and to react to changing access patterns. We opted for
a distributed version where all clients collaborate with the server. The general
procedure can be described as follows:

1. Capture access patterns, i.e., gather access statistics (cache hits, read-
/write ratio, average time between modifications) at clients;

2. Accumulate and synchronize statistics at server;

3. Use in conjunction with application-specific required validity probability

• for invalidation of client-side caches and

• to determine changes of cacheability (categorization and TTL).

4.2 Adaptive Caching 115

This implies a data flow as depicted in figure 4.3:

• In addition to normal data transfer between client and server (i.e.,
method invocations and responses), clients regularly inform the orig-
inating server of local cache hits, i.e., component attribute accesses
and method results that have been successfully served by the client-
side cache. The server needs this information for the correct calcu-
lation of read/write ratios. Write accesses (i.e., attribute modifica-
tions and invalidating method invocations) are never served by the
CachingClientInterceptor ; they are always transmitted to the
server and thus do not need to be considered explicitly.

• The server in turn accumulates the submitted metadata to calculate the
average validity time tval of cached results for each potentially cacheable
data item as the average time between modifications to this data item.
Using the configured, application-specific demanded validity probability
pval , the time-to-live tTTL can be adaptively derived for each data item.
The current cacheability categorization can then also be determined by
comparing tTTL to the preconfigured threshold value ttlMin from sec-
tion 5.2.2 on page 136.

• Clients may also send validation requests to the server and the server may
invalidate cached data items as needed. We will elaborate this below.

Clients

Cache hits
Cacheability?
Validation?

Cacheability, TTL
Invalidation

Server

Fig. 4.3: General data flow of adaptive caching

Assuming a continuous, even distribution of validity times tval and an in-
validity probability given by pinv = 1 − pval , an estimation for tTTL can be
calculated by:

tTTL = pinv × 2tval

which follows from pinv as given by the ratio of the area of the rectangu-
lar triangle with the edges tTTL = tval − (tval − tTTL) and 1 to the area of the
rectangle (tval , 1) as depicted in figure 4.4 on the next page:

116 Design of an Adaptive Middleware Service for Caching

pinv =
tTTL/2

tval

The demanded validity probability pval can thus also be used to directly
control the cacheability of method results: pval = 0 is equivalent to the catego-
rization const and pval = 1 corresponds to not-cacheable .

valtvalt −

p
1

0 t
TTLt

pinv

Fig. 4.4: Graphical interpretation of validity probability

Note that the exact determination of tTTL would require an estimation of a
confidence interval for the distribution of tval and the demanded pval . How-
ever, our heuristic neglects this approach because it would

• impose a much higher overhead for calculations and

• require exact knowledge of the actual statistical distribution of tval , which
is even harder to determine.

Optimization: Interval-based Access Statistic at Component Level

Based on the assumption of approximately equal access characteristics of all
used component instances, we implemented an optimization that reduces the
book-keeping effort at server side. Instead of keeping track of every read andInstance-

independent
statistic

write access to attributes or method results of each individual component in-
stance, all accesses are aggregated at the metalevel, i.e., for every method in-
vocation of the same type3. Time intervals have furthermore been introduced
as a basis of access statistic collection instead of considering all accesses since
the last server start. This is where the component-level tagged values intervals
and intervalLength from section 5.2.2 on page 136 come into play:

3 Cf. section 2.5.1 on page 58 for metalevels and component forms.

4.2 Adaptive Caching 117

intervals denotes the number nint of intervals to be taken into account for
determining access characteristics;

intervalLength denotes the length tint of these measuring intervals in sec-
onds.

The average validity time tval of cached results, which is needed to adapt the
time-to-live tTTL as explained above, can then be calculated from the number
of involved component instances I and the number of write accesses mwrite
within a given measuring interval of the length tint:

tval = tint ×
I

mwrite

Hence, the access statistic governs a data structure per interval for ev-
ery potentially cacheable method invocation, which comprises the number of
write accesses mwrite and a set of identities of invoked instances {i} whose car-
dinality determines the number of involved instances: I = |{i}|. Lists of cache
hits transmitted piggyback by clients are needed to effectively determine the
set of globally used instances within an interval. At server side, the periodical
evaluation of intervals and subsequent TTL adaptations are triggered asyn-
chronously by a Thread .

Additionally Required Data Structures

The access statistic has been implemented as an extension of the cacheability da-
tabase at client side and server side. In addition to method signature, cacheabil-
ity, and TTL, a list of cache hit counters was inserted at client side. Counters are
removed from the list after transmission to the server. At server side, method
signature, cacheability, and TTL are augmented by the demanded validity prob-
ability, and a list of interval statistics whose entries consist of a set of component
instance identities accessed during the corresponding interval and a write access
counter.

Invalidation

One question remains unclear with respect to the above presented procedure:
How are clients notified about server-side updates concerning component state
and cacheability?

Earlier experiments with event-based publish-subscribe middleware in the
context of the solution presented in section 6.1 on page 147 [NPF99] scaled
poorly for increasing numbers of clients due to the tremendous amount of
status data and connections the server had to govern.

Therefore, the decision was made for a client-driven “pull” strategy that
relieves the server from the burden of direct “push” update propagation. To

118 Design of an Adaptive Middleware Service for Caching

avoid polling or “busy wait” of clients, the expiration time tTTL is continu-
ously adapted to the current average validity time tval of cached results of a
certain method. In this regard, the approach closely resembles the scheme of
adaptive TTL, which was presented in section 3.1.1 on page 84 as a heuristic for
cache expiration in Web proxies. However, our concept additionally takes the
demanded validity probability of cached data into account.

The original strategy of our approach as presented in [Poh03, PS03] incor-
porated the feature of revalidation. It can be described as follows with referenceRevalidation
to figure 4.2 on page 113:

• In addition to the average time between modifications tval the server-
side access statistic also keeps track of attribute and/or method result
modification times tmod by means of invalidates dependencies.

• When a cacheable method is invoked, the CachingServer-
Interceptor attaches the time of last modification tmod and the
expiration time tTTL according to the attribute’s current average time
span between changes tval as additional payload to the returned
InvocationResponse object, taken from step (8) and (9) of figure 4.2
on page 113. The current cacheability setting as explained in step (7) is
also attached, accordingly.

• Back on client side, the CachingClientInterceptor updates the
method result’s cacheability categorization if necessary and schedules
a java.util.TimerTask with the given expiration time. This Timer-
Task will enqueue the method results identity (i.e., signature, component
instance identity, and method parameter values if applicable) together
with its last modification time tmod in a list of expired objects.

• The next remote call passing a CachingClientInterceptor picks up
the value pairs from this expiration list and attaches them to the Invoca-
tion, thus preventing additional network traffic by this piggyback strat-
egy.

• Unmarshaled at server side, the expiration list is compared with the last
modifications in the access statistic, resulting in the creation of a positive
list containing a bit mask for changed cacheability categorizations and
value updates, which is transferred on the invocation’s way back to the
client.

• Modified attributes and method results are then discarded (invalidated)
from the client-side cache, implicating a normal retrieval upon next ac-
cess that causes the described procedure to start over again. The remain-
ing expiration candidates are revalidated, i.e., reinserted into the cache.
If an attribute turns out to be not-cacheable from now on, any of its
possibly existing cache entries will also be discarded.

4.2 Adaptive Caching 119

However, this strategy implies a tremendous book-keeping overhead since
the last modification times have to be managed for every instance of a com-
ponent attribute or method result. The above described instance-independent
optimization of an interval-based access statistic at component level was thus
introduced in [AH03] as a feasible trade-off between performance and consis-
tency.

Assuming a small deviation of tval , the amount of method results addition-
ally invalidated by the revalidation scheme should remain rather small. At the
same time, the savings achieved through preventing premature invalidations
by revalidation will hardly compensate the higher costs for data management
at server side, especially for fine-grained component attributes and method
results.

4.2.4 Conclusion and Comparison

It has already been mentioned that the adaptive caching approach presented
in this section closely resembles the adaptive TTL concept known from sec-
tion 3.1.1 on page 84 in the context of Web proxy cache expiration. The success
of this concept for caching data between client and presentation tier suggests
its applicability between presentation and business tier as well for applications
with weaker consistency constraints. Our approach additionally considers a
demanded validity probability in combination with the current average time be-
tween modifications to dynamically adapt the time-to-live value.

However, more parallels can also be drawn to Piggyback Cache Valida-
tion (PCV) and Piggyback Server Invalidation (PSI) [KW97, KW98], which
have also been successfully applied in the context of Web caching [RS02,
Sect. 10.1.4, 10.2.6]. Furthermore, Adaptive Optimistic Concurrency Control
(AOCC) [AGLM95] also uses piggybacking for cache invalidation messages
in the context of database caching (see section 3.1.3 on page 87). Our ap-
proach uses piggybacking to transmit adapted TTL values and cacheability
categorizations for cached method results and component attributes. Due to
the usually smaller granulate of method invocations in comparison to Web
page requests or database queries, piggybacking seems to be inappropriate
for validation requests of clients as well as invalidation messages of server.
The round-trip of a validation request takes nearly as much time as the corre-
sponding method invocation for data retrieval because of the high marshaling
overhead. Invalidation messages furthermore imply a book-keeping overhead
at server side that seriously impacts scalability for growing numbers of clients,
attributes, and component instances. These considerations were the driving
force behind our aforementioned optimizations towards an interval-based ac-
cess statistic at component level.

Although the achieved level of consistency is weaker than those of the da-
tabase cache consistency protocols compared by Gruber et al. [Gru97], this
classification can also be applied to categorize our solution as:

120 Design of an Adaptive Middleware Service for Caching

deferred because of the postponed piggyback messages;

lazy reactive because of eventual invalidation; and

avoiding because stale cache content is tried to be avoided in an best-effort
manner by means of adapted TTL values.

In this respect, it is also comparable to AOCC, which has a similar catego-
rization. The aspect of conflict detection is missing, because the solution was
originally designed for application scenarios with less stringent consistency re-
quirements. A fully transaction-aware solution could be built by adapting the
concepts proposed by Pfeifer [Pfe04b]. This would however bear only little
scientific value; it rather represents a pure engineering effort.

4.3 Static Prefetching

Prefetching has been introduced briefly as a possible extension of static caching
in section 4.1.2 on page 110. Earlier experiments in this direction have already
been presented in [PS02, PS03]. But we also mentioned that the first prototype
[AH03, Sect. 2.3] was instead built on top of the dynamic, adaptive solution
introduced in this section because of synergies with the implementation of the
distributed access statistic presented above.

The major goal of prefetching is to speculatively load that data into the
cache in advance, which might probably be needed in the near future. Hence,
it tries to exploit the temporal locality of data accesses to an even higher de-
gree than caching, which primarily considers spatial locality (see section 2.1
on page 9).

Speculative loading is performed in a transparent manner, i.e., without thePrefetching
dependen-

cies
client’s notice, as we already realized in section 3.3 on page 100. The goal of
the approach presented in this section is to reduce the amount of necessary
speculation by preconfiguring prefetching dependencies, which reduce the initial
ramp-up phase the service would otherwise need to decide which cacheable
method results are particularly worth being loaded in advance.

Prefetching can furthermore be conducted in a recursive manner by travers-
ing multiple levels of components. This is especially interesting if method re-
sults of a hierarchical network of component instances are to be prefetched. In
this case, method results of previously prefetched component references are
prefetched immediately after, e.g., in a first step all of a customer’s orders and
in a second step all product items contained therein. However, limiting the
recursion depth is important to avoid request bursts that might have serious
impacts on responsiveness and overall performance due to high load peaks.
Prefetching requests should thus be deferred to relax these negative impacts.

In analogy to the extension of static caching (see section 4.1 on page 107)
to the adaptive solution presented in section 4.2 on page 111, an approach for

4.3 Static Prefetching 121

dynamic prefetching will be presented in section 4.4 on page 125 as an extension
of static prefetching.

4.3.1 Architectural Integration

In contrast to caching, prefetching necessitates the execution of data requests
(i.e., method invocations) independent from the actual client application’s con-
trol flow. While intercepting and augmenting client-initiated communications
was sufficient for caching, prefetching requires additional methods to be is-
sued by the middleware service.

In all these considerations, the requirements and design goals of section 1.4
on page 5 still have to kept in mind: Client server relationships must not be
violated; piggybacking should be used as far as possible for data transfer to
preserve the original control flow as far as possible.

If prefetching is implemented as an extension of adaptive caching, the access
statistic should not register prefetching requests, which would otherwise dis-
tort actual access patterns. Therefore, prefetching requests must be marked as
such. This also serves the purpose of limiting the recursion depth as explained
above.

With these goals in mind, several alternatives for architectural integration
are possible:

Server-side initiation. The CachingServerInterceptor automatically ini-
tiates invocations for method results to be prefetched and attaches their
results to the initiating invocation’s InvocationResponse . However,
the server has no knowledge about already cached data of the concern-
ing client, so far.

A naive implementation would transfer prefetchable requests with every
invocation. To avoid this, the server could either try to keep track of
cached data of all clients or clients could submit a list of their currently
cached prefetchable method signatures in addition to each request. The
immense memory consumption of the first approach would seriously
limit scalability, while the second approach imposes a higher bandwidth
consumption.

Client-side initiation. In contrast, the CachingClientInterceptor can
also detect the necessity of prefetching with the help of preconfigured
prefetching dependencies. It has naturally a much better overview of
the contents of its client-local cache, allowing to skip those prefetching
requests whose results are already cached.

To provide for a low user-perceived latency despite the higher amount
of data to be transferred, prefetching requests are processed asyn-
chronously by a Thread. Once invoked, such method results are marked
as “in prefetching” in the local cache. When the client application tries to

122 Design of an Adaptive Middleware Service for Caching

access such data, it simply has to wait for the result to arrive or for a time-
out to expire, which would then throw a RemoteException . This ap-
proach can be compared to the concepts of Futures [WFN90] and Promises
[LS88] introduced in section 3.2 on page 99.

In turn, two alternatives exist for actually triggering the necessary asyn-
chronous invocations:

Access via component interface. The least invasive possibility for
issuing additional requests is to invoke the desired methods via
the normal Home/Remote interface of the component. However, it
is hard for the caching/prefetching service to distinguish between
regular client invocations and additional prefetching requests since
there is no possibility to mark requests as “in prefetching” at this
layer. It is furthermore impossible to efficiently bundle prefetching
requests in a simple way for the same reasons.

Insertion into interceptor chain. Instead of issuing all prefetching in-
vocations at the dynamic proxy of the desired component, the
CachingClientInterceptor can as well create Invocation
objects by itself and insert them into the interceptor chain for reg-
ular processing. The process of method invocation is thus abbrevi-
ated for prefetching requests. It is furthermore possible to explicitly
mark prefetching requests as such, easing the additionally required
processing.

For reasons obvious from the discussion above, inserting invocations into the
interceptor chain was chosen as the best alternative for implementation. The
general principle of this approach is depicted in figure 4.5, which is actually
an extension of figure 4.2 on page 113.

Interceptor

Server

Interceptor

Client

DB

Application Server

5.

Client

8.

4.

3.

Cacheability

Cache

statistic

Access

Container

Proxy

Dynamic

Thread

dependency

10.

12.

11.

2.

Application

1.
13. 14.

Cacheability

Access

statistic

dependency

7.

6.

7a.

7b. PrefetchingPrefetching

Component
9.

Fig. 4.5: Static Prefetching

4.3 Static Prefetching 123

The following description of the steps in figure 4.5 on the facing page just
considers the extensions to the description in section 4.2 on page 111:

2. If an Invocation is marked as “in prefetching”, proceed with step 5.

6. If an Invocation is marked as “in prefetching”, proceed with step 7.

7a. If the client issued requests for prefetching dependencies, the correspond-
ing reply is inserted into the InvocationResponse on the invocation’s
way back.

7b. If the invocation was issued for prefetching purposes, parameters for
prefetching requests will be extracted from its payload. For each entry,
an Invocation is created, submitted to the next interceptor in chain,
and the returning result is inserted into the InvocationResponse .

11. After the invocation has returned to the client and its result data has
been inserted into the cache, additional invocations are determined for
another level of prefetching. The bail-out condition of this recursion is
defined by the maximum depth of recursion.

12. Invocations determined as prefetching candidates are then checked for
existing results in cache, in case of which the corresponding invocations
are dropped. For the remaining invocations, a CacheEntry is created as
a placeholder that marks them as “in prefetching” and counts down the
number of recursions yet to be executed.

13. A Thread is created and supplied with a list of necessary information for
generating invocations, i.e., CachingClientInterceptor , method,
and parameters. An Invocation is created only for the first request
to be prefetched; the remaining list is simply inserted into its payload.

To enable a thread for reuse for multiple subsequent prefetching invoca-
tions, it gets returned a list of parameters for the next run of prefetching
list determination, instead of the actual results of its invocations.

14. The Thread issues a single invocation, which is marked as “in prefetch-
ing”. This invocation starts with step 2.

The details of the involved interactions on client side and server side are
also depicted in the sequence diagrams in figure 4.6 on the following page and
figure 4.7 on page 125.

Data Structures

In addition to the data structures of the adaptive caching solution, the cache-
ability database at client side and server side is extended to contain a list of
prefetching dependencies for every cacheability database entry (i.e., for every reg-
istered method). Such prefetching dependencies consist of a method signature,

124 Design of an Adaptive Middleware Service for Caching

for all entries in list

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Caching

DB

Cache Thread

Invoke()

(signature)?

yes

X(Condition)

List
[X] remove from

class (signature)
get Method

start

Invocations
for remaining
attach metadata

Interceptor

invoke() invoke()

list

is cacheable

in cache?

create Thread (list, interceptor)

Invocation
create

insert all
results in cache

list: signature, depth

get signatures to prefetch

Prefetch.

Client

Cacheab.

ClientInter. depend.

InvocationResponse

invoke()

InvocationResponse

fetching level

entries for
another pre−

normal
Invocation

next run of
prefetching list
determination

entry (depth)
[!X] insert prefetch

Fig. 4.6: Sequence diagram of Static Prefetching at client side

maximum prefetching recursion depth, and a list of parameter specifications, which
in turn comprises a number of method signatures.

4.4 Dynamic Determination of Prefetching Dependencies 125

for all entries in list

�
�
�
�

�
�
�
�invoke()

requests
of prefetching
extract list

invoke() invoke()

insert result into
InvocationResponse

ceptor
Inter−

normal

Invocation

Caching
ServerInter.

create Invocation

InvocationResponse

Server

Fig. 4.7: Sequence diagram of Static Prefetching at server side

4.3.2 Conclusion

We have demonstrated in this section how prefetching can be implemented as
an extension of our middleware service for caching. Prefetching dependencies
between method invocations can be modeled in a fashion that closely resem-
bles the capturing of cacheability properties at design time. The necessary
modeling extensions will be presented in section 5 on page 131. Again, our ex-
periments with the prototypical implementation of the framework’s prefetch-
ing extensions showed the general feasibility of the conceived approach.

Prefetching dependencies may however be influenced by changing access
characteristics at runtime. Misconfigurations may also occur during the mod-
eling phase. Hence, concepts are needed to heal misconfigurations, find optimal
configurations, and to adapt to changing access characteristics. These issues will be
discussed in the next section.

4.4 Dynamic Determination of Prefetching Dependencies

In section 4.2 on page 111 we argued that cacheability properties are dynamic
features of components, which are subject to changes at runtime. This gave
the motivation for adaptation of these properties to current access character-
istics. In turn, the same dynamic also applies to the prefetching dependencies
introduced in section 4.3 on page 120 as a means for static modeling of tem-

126 Design of an Adaptive Middleware Service for Caching

porally correlated access dependencies between method invocations. The pro-
cess of modeling these dependencies is also prone to misconfigurations and
dependencies themselves may gradually change with access characteristics at
runtime. First considerations in this direction were presented in [PS03]. A first
design at a more concrete level was drafted in [AH03]. The general goal is to
dynamically determine prefetching dependencies at runtime.

Much in the same way that static prefetching (section 4.3 on page 120) was an
extension of adaptive caching (section 4.2 on page 111), adaptive prefetching willAdaptive

prefetching be presented in this section as a direct extension of static prefetching. How-
ever, while the concepts and approaches have already been implemented pro-
totypically, adaptive prefetching exists only as a conceptual design at the time of
writing.

4.4.1 Architectural Integration

The first issue to be solved is the extent of data to be recorded for an optimalClient-
dependent,

instance-
independent

statistic

coverage of prefetching dependencies. To be able to recognize temporal de-
pendencies between subsequent method invocations of a single client, client-
dependent data recording is mandatory4. Hence, embedding the necessary statis-
tic into the CachingClientInterceptor seems to be the most appropriate
design decision.

In section 4.2.3 on page 116, an optimization has been introduced for lim-
iting the amount of required memory and computing time by implementing
the access statistic independent of component instances, based on the assump-
tion that access behavior is similar among different instances of the same com-
ponent. It is sensible to extend this optimization to the aspired prefetching
statistic, as well.

To further limit the amount of data to be stored, recorded information
should be retained only as long as required. Therefore, it is necessary to give a
threshold value tpre f for the maximum time between two method invocations
to be considered for prefetching. A good heuristic seems to be tpre f ≤ tTTL.

Finally, a threshold value ppre f min needs to be given for the probabil-
ity ppre f (m1, m2) that the dependent method m2 is invoked after the initiating
method m1 within tpre f . If ppre f (m1, m2) ≥ ppre f min, m2 should be prefetched
when m1 gets invoked. We thus need to monitor ppre f for all combinations
of method invocations at runtime. To limit the complexity, the current proto-
type considers only dependencies between invocations of the same component
type.

The general architecture depicted in figure 4.8 on the facing page is a con-
sequential extension of figure 4.1 on page 109, figure 4.2 on page 113, and
figure 4.5 on page 122. This implies an implementation based on the concept
of inserting additional invocations into the interceptor chain. Just like before,

4 in contrast to unified, client-independent treatment of all accesses

4.4 Dynamic Determination of Prefetching Dependencies 127

Interceptor

Server

Interceptor

Client

DB

Application server

5.

Client

8.

4.

3.

Cacheability

Cache

statistic

Access

Container

Proxy

Dynamic

Thread

dependency

10.

12.

11.

2.

Application

1.
13. 14.

Cacheability

Access

statistic

dependency

7.

6.

7a.

7b.Prefetching Prefetching

Prefetching

statistic

Invocations

Prefetching

statistic

Prefetching

statistic

Thread

6a. 6b.

11a.

11b.

11c.

Component
9.

Fig. 4.8: Adaptive Prefetching

we will only highlight the extensions added in this section:

5. New values of the prefetching statistic are periodically inserted into in-
vocations as piggyback payload for updating prefetching dependencies at
server side.

6a. Values from client-side prefetching statistics are inserted into the server-
side prefetching statistic.

6b. Prefetching dependencies are continuously updated with changing
prefetching statistics.

11a. After an invocation has returned to the client, it is inserted together with
its result (for traceability purposes) into the list of Invocations.

11b. The prefetching statistic thread periodically queries the list of Invocations
for new entries and analyzes them accordingly.

11c. Processed entries are inserted into the prefetching statistic and prefetching
dependencies are updated if required. The prefetching statistic stores a list
of subsequent invocations together with a frequency counter for every
possible invocation.

The above described procedure can be compared to the approach of Brügge
and Vilsmeier [BV03], which was discussed in section 3.3.4 on page 103:

1. Every invocation is logged together with its time of occurrence.

128 Design of an Adaptive Middleware Service for Caching

2. The counter of the initiating invocation’s signature is incremented.

3. It is checked whether another initiating signature accepts the invocation as
dependent signature. Therefore, a reverse map from dependent to initiating
is appropriate.

4. It is checked for all found signatures if the current invocation could have
been prefetched from them. In this case, the corresponding counter of
the dependent signature is incremented at the initiating signature

However, this approach is not yet capable of detecting prefetching depen-
dencies across multiple levels of invocations. This would require tree-like data
structures and a much more sophisticated processing logic for the prefetching
statistic.

To integrate the conceived concepts for adaptive prefetching into the soft-
ware development cycle, additional tagged values are needed for the maximum
inspection time tpre f and the minimum prefetching probability ppre f min. Con-
sequentially, additional XDoclet tags need to be introduced as well as new ele-
ments of the caching.xml file.

4.4.2 Performance Considerations

The adaptive prefetching approach presented in this section has not been fully
implemented. However, an initial analysis of the required data structures and
processing logic suggests a comparatively high overhead in terms of mem-
ory consumption and processing time. Hence, it seems only sensible to use
this concept rather during a learning phase to find optimal static configuration
of prefetching dependencies (cf. section 4.3 on page 120). The results of this
initial learning phase should then be exploited to configure the actual runtime
environment, based on the assumption that access patterns are comparatively
stable with respect to prefetching dependencies.

4.5 Conclusion

In this chapter, we have presented a number of extensions to the initial concept
of a statically configurable caching service in section 4.1 on page 107.

Adaptive caching in section 4.2 on page 111 aimed at healing misconfigura-
tions, finding optimal configurations, and adapting to changing access char-
acteristics with respect to cacheability properties by keeping track of average
validity times of cached method results. These values were considered for
adaptively configuring cache expiration times and cacheability categorizations
based on demanded validity probabilities.

This solution for adaptive caching was extended in section 4.3 on page 120
to allow static prefetching. Prefetching dependencies were statically configured

4.5 Conclusion 129

between methods and attribute accessors. Recursive prefetching was enabled
by mapping input and output parameters to invocations of the next level.

Finally, considerations towards adaptive prefetching have been discussed in
section 4.4 on page 125. In analogy to adaptive caching, a prefetching statistic
is needed to dynamically keep track of dependencies between method invo-
cations. The two delimiting parameters, maximum inspection time tpre f and
minimum prefetching probability ppre f min need to be adjusted carefully for
optimal operation of the adaptive prefetching service.

Besides the complete implementation of the adaptive prefetching approach,
the thorough quantitative evaluation of the implemented service functionality
is still left as an open issue. Furthermore, the software engineering support
needs to be optimized with respect to the configuration of prefetching meta-
data.

130 Design of an Adaptive Middleware Service for Caching

The engineer’s first problem in any design situation is to discover what
the problem really is.

5
Software Development Cycle Integration

The static configurability of caching aspects has been assumed for the middle-
ware service for caching proposed in section 4 on page 107. However, means
for capturing the corresponding metadata have been isolated as an open issue.
Application developers can naturally enrich application models with valuable
information at design time and thus can descriptively configure the middle-
ware service in advance. This is because they already have a fair notion about
the consistency requirements as well as cacheability properties of their appli-
cation components. This knowledge should be used as far as possible to avoid
the waste of resources during an initial learning phase for determining cache-
ability1 on one hand as well as to exploit known tolerances to a limited amount
of inconsistency during application design and at runtime, on the other hand.
These observations led to the requirement for software engineering support
for caching.

First ideas for integrating the management of caching-related metadata
into the software development cycle have already been presented in [PS02]. A
concept was proposed for representing cacheability categorizations of compo-
nent attributes by using Stereotypes as standard UML extension mechanisms
during application design with UML. This general approach still forms the
fundamental concept behind the proposed extensions in this chapter.

The remainder of this chapter will explain the integration using state-of-
the-art modeling and design techniques from section 2.5 on page 58. The
overall development process is explained in the context of a model-driven tool
chain in section 5.1 on the next page. The lightweight UML extensions neces-
sary for controlling model transformations are summarized as an UML Profile

1 Similar to the mechanism for continuous adaptation towards an optimal cacheability con-
figuration for current access patterns, which is presented in section 4.2 on page 111.

132 Software Development Cycle Integration

for Caching in section 5.2 on the facing page. The application of this profile in
the context of the proposed development process is discussed with the help of
examples in section 5.3 on page 139.

5.1 Model-driven Development

The Model-Driven Architecture (MDA) introduced in section 2.5.2 on page 65
proposes the iterative application of model transformers to generate more de-
tailed target models from abstract source models for further refinement. We
have extended and adapted this process as depicted in figure 5.1 and explained
below.

TemplateTemplate
TemplateTemplate

CASE-Tool Model Transformer Code Generator
UML
<XMI>

Template

CCC

Metadata

Template

Abstract
Component

Fig. 5.1: Model-driven tool chain

A substantial part of application design is typically done using UML (see
section 2.5.1 on page 58) models that capture the functionality, structure, and
behavior of application elements, e.g., components. Tools for Computer-Aided
Software Engineering (CASE) help design UML models in a graphical manner.
Stereotypes, Tagged Values, and Constraints can be used as lightweight exten-
sions of the UML metalevel to capture additional metadata within for certain
model elements. A set of such extension mechanisms for a specific purpose
can be summarized as a UML Profile like the one presented in section 5.2 on
the next page for caching. Profiles can be used to describe constraints for valid
Platform-Independent Models (PIM) and Platform-Specific Models (PSM). MostPIM/PSM
CASE tools (like Poseidon, ArgoUML, Together, or Rose) allow to export UML
models using the XML Metadata Interchange (XMI) format [OMG03e], which
can be read by other tools.

In our case, the model transformer tool AndroMDA [Boh04] processes XMIAndroMDA
files containing appropriately annotated UML models to produce abstract2 com-
ponent implementation classes according to selected target templates, which
compose cartridges in AndroMDA. Cartridges are available for various compo-
nent platforms like EJB or Hibernate. Their contained templates determine the
predefined frame of how target component implementations look like corre-
sponding to the source model. An AndroMDA template basically contains the

2 i.e., not yet compilable

5.2 UML Profiles 133

code frame of a specific component type, e.g., an EJB CMP Entity Bean, inter-
mingled with special code of a proprietary, macro-based language for dynam-
ically inserting component segments according to the state of certain source
model elements. We have extended the templates of AndroMDA’s EJB car-
tridge to additionally process our profile extensions from section 5.2.

For most templates of AndroMDA’s cartridges, the mentioned abstract com- XDoclet
ponents contain source code comments readable by the code generator XDoc-
let. The approach of generating all necessary interfaces and auxiliary classes
from the single source of an abstract component class has been explained in
section 2.5.3 on page 67. XDoclet’s extension mechanisms have also been in-
troduced in this context: Extending XDoclet Template (XDT) files, inserting
additional static code snippets at specific merge points of XDT files, and pro-
gramming custom tasks. We have developed a custom XDT file for producing
the additional caching.xml file required for statically configuring the mid-
dleware service of section 4 on page 107 or the initial configuration for the
adaptive middleware service presented in section 4.2 on page 111, respectively.
Other alternative abstract component target formats for attribute-oriented pro-
gramming are imaginable. For instance, a representation based on Java 1.5 an-
notations might obsolete the step of code generation altogether.

The overall integration of the mentioned tools is provided by means of the
Ant build tool as explained, e.g., in [HOV04]. In the following, we will sum-
marize our lightweight UML extensions for modeling caching properties of
components as a UML profile in section 5.2, followed by a step-by-step expla-
nation of the sketched development process in section 5.3 on page 139.

5.2 UML Profiles

We have already outlined that UML Profiles can be used to constrain valid
Platform-Independent Models (PIM) and Platform-Specific Models (PSM). Since
caching method results of Enterprise JavaBeans clearly is a platform-specific
matter, we need to provide a PSM for describing correct models that capture
caching-related metadata. Figure 5.2 on the following page shows possible
ways towards such a profile.

The UML standard facilities for modeling classes and components
[OMG03c] are adapted to the specific needs of component-oriented business
applications by the UML Profile for Enterprise Distributed Object Computing
(EDOC) [OMG02b], which represents a PIM itself. Alternatives for a PSM for
EJB have already been discussed in section 2.5.1 on page 64, including the
dilemma of discontinued support for the EDOC to EJB binding in [Gre01].

AndroMDA follows a slightly different approach: A more general EDOC-
like profile, which will be discussed in section 5.2.1 on page 135, is used to
directly generate abstract component code for the selected target platform as
explained in section 5.1 on the preceding page. This abstract component can
be envisioned as a kind of PSM although it has already passed the transition PSM

134 Software Development Cycle Integration

Components

<< profile >>
EDOC

PIM

PSM << profile >>
EJB

<< profile >>
CCM

<< profile >>
Caching

<< profile >>
CachingEJB

<< alternative >>

Fig. 5.2: Possible relationships between profiles

from model to code. However, this is not a conflict since code is one possible
representation of an application’s model3.

Since the situation of UML Profiles for EJB is somewhat ambiguous for the
reasons explained in section 2.5.1 on page 64, the pragmatic decision was to ex-
tend AndroMDA’s generic profile. These extensions will be explained in sec-
tion 5.2.2 on page 136. A positive side-effect of this decision is the potentially
greater code reuse of cartridges and templates. With respect to figure 5.2, we
thus opted for the left alternative. The �profile�CachingEJB only exists in-
directly: It is the metamodel of all abstract components appropriately annotated
with caching metadata. This is an intermediary representation, which is not
meant to be modified by developers. Hence, we refrained from specifying a
profile for it.

Representation and exchange of UML Profiles between different models
and tools is still an open issue. At the time of writing, profile elements have
to be inserted into models by typing their names into modeling tools like Po-
seidon prior to later assignment to model elements. A standardized exchange
format would help to increase robustness of our development process due to
the better type-checking support.

3 For instance, tools like Together/J generally used to map all model elements 1 : 1 to code
segments.

5.2 UML Profiles 135

5.2.1 AndroMDA Profile

The philosophy of AndroMDA [Boh04] is to save one step of model transfor-
mation by directly mapping the results of PIM to PSM transformation to its
representation in source code. It has been mentioned that a EDOC-like profile Simplified

EDOC Profileis used to constrain valid source models from which target implementation
frames, e.g., for EJB, can be generated. The key elements of this profile are
listed in table 5.1. Such a tabular notation has become accepted for describing
profiles according to common examples [Gre01, OMG03c].

Tab. 5.1: Stereotypes of AndroMDA PSM according to [Boh04]
Stereotype Base Class Description
�Entity� Class business object or domain object

that knows much and does little
�Service� Class dynamic element or activity that

does something to the entities
�PrimaryKey� Attribute mark attribute of entity class as pri-

mary key so that the entity can be
found in a database system

�FinderMethod� Operation associate a method of an entity class
with a database query to find in-
stances of this entity

�EntityRef�,
�ServiceRef�

Dependency make class A depend on entity/ser-
vice B if a template/cartridge can
process this information

�Exception� Dependency make class B an exception thrown
by all business methods of enti-
ty/service class A

In addition to this simple profile, AndroMDA defines three constraints that
are dictated by the implementation of the default templates:

1. Stereotypes drive code generation. The Stereotypes from table 5.1 have
to be used as “labels” that can be attached to application model elements
to control the generation of abstract components and parts thereof.

2. Primary keys of entity components must be of the type String . This is
because AndroMDA follows the philosophy of generating artificial pri-
mary keys, which allows for more robustness of the data model based on
the assumption that requirements for natural keys often change during
development.

3. One component has one Exception . This exception class will be thrown
by every business method of the component. Other exceptions should be
wrapped by this component-specific one.

As part of the profile, a mapping is defined from stereotypes of table 5.1 to Possible trans-
formations

136 Software Development Cycle Integration

elements of the metamodels of Enterprise JavaBeans, Hibernate, BPM4Struts,
and Web Services, among others. Such mappings convey a significant part
of the actual semantics of UML Profiles. Mapping AndroMDA stereotypes to
EJB is rather self-explaining: Entity Beans are generated from classes tagged
as �Entity�, Session Beans from �Service�, respectively. The reason why
AndroMDA uses classes instead of components as base classes of its compo-
nent stereotypes is the tight relationship to XDoclet’s one-source concept, i.e.,
all additionally necessary auxiliary classes and interfaces of a component are
generated from its main class.

5.2.2 UML Profile for Caching

Our UML Profile for Caching has been specified as a direct extension of the
AndroMDA profile in section 5.2.1 on the preceding page for the reasons ex-
plained above. Although it has only been validated for the Enterprise Java-
Beans platform, the generic nature of its parent profile would also allow trans-
formation to other target platforms like Hibernate. Table 5.2 on the next page
lists used stereotypes, which extend the metamodel, and table 5.3 on the fac-
ing page further defines tagged values that are useable in connection with these
stereotypes. Constraints have only been specified implicitly within the descrip-
tions on stereotypes and tagged value definitions.

The stereotype �caching� was just introduced to tag components as
generally appropriate for caching and above that, to allow specifying default
values for caching-related properties of component attributes and methods.

While the use of the stereotypes is rather self-explaining, the tagged values
in table 5.3 on the next page might require some further remarks:

• ttl is short for time-to-live and represents the maximum time a result
should remain in cache, i.e., its expiration time until validation (and pos-
sibly invalidation) is necessary.

• validity denotes the demand for a specific probability for validity of
cached results, which results in adapting the ttl of the corresponding item
depending on its access characteristics. This concept has not been used
in the static approach presented in section 4 on page 107. It is part of
the dynamic/adaptive solution, which will be introduced in section 4.2
on page 111. If ttl exceeds ttlMin, the corresponding attribute or method
result is considered to be �cacheable�, or �not-cacheable� oth-
erwise.

• intervals and intervalLength are also related to the dynamic/adaptive
solution. They can be used to specify the number of measuring inter-
vals and their length in seconds on a per-component basis. Access statis-
tics for dynamic (re)configuration of cacheability categorizations period-
ically check read/write ratios of component attributes and method re-
sults within the boundaries of these two tagged values.

5.2 UML Profiles 137

Tab. 5.2: Stereotypes for caching
Stereotype Base Class Description Tagged Values
�caching� �Entity�,

�Service�
tags a component as ap-
propriate for caching and
allows to specify default
values for cacheability
properties of cacheable
component attributes
using tagged values

ttl, validity,
intervals,
intervalLength

�const� Attribute,
Operation

results of this component
method or component
attribute’s get method
practically never change
(idempotent operation);
to be cached upon first
access

invalidates

�cacheable� Attribute,
Operation

results of this component
method or component
attribute’s get method
change rarely; should
be invalidated every
ttl seconds to ensure
the required validity
probability

ttl, validity,
invalidates

�not-cacheable� Attribute,
Operation

volatile attribute or
method that is subject to
frequent changes or that
should only be accessed
in a transactional context

invalidates

Tab. 5.3: Tagged values for caching
Tagged value Stereotype Description
invalidates �const�,

�cacheable�,
�not-cacheable�

list of signatures of method results
invalidated by the corresponding
method

ttl �caching�,
�cacheable�

maximum time until a cached re-
sult expires and must be validated

ttlMin �caching�,
�cacheable�

minimum ttl for an item to be con-
sidered as �cacheable�

validity �caching�,
�cacheable�

required probability for validity of
cached results

intervals �caching� number of intervals to use for the
access static for dynamically de-
termining cacheability

intervalLength �caching� length of the interval for recording
access statics

138 Software Development Cycle Integration

A few special cases have been considered: setXyz methods are automat-
ically considered to be�not-cacheable� and to have a tagged value invali-
dates set to getXyz . create /remove methods are also�not-cacheable�
and have invalidates set to all �FinderMethods�.

Profile Extensions for Prefetching

To allow modeling of prefetching dependencies in a similar manner like cache-
ability properties, extensions to our UML Profile are necessary, especially to
the stereotypes in table 5.2 on the preceding page and the tagged values in ta-
ble 5.3 on the page before. Hence, we introduced yet another stereotype
�prefetch� (table 5.4), which has three tagged values: signatures, depths,
and parameters (table 5.5).

Tab. 5.4: Stereotypes for prefetching
Stereotype Base Class Description Tagged Values
�prefetch� Attribute,

Operation
tags a component method
or component attribute’s get

method as having one or
more prefetching dependencies,
which are further specified by
this stereotype’s tagged val-
ues

signatures,
depths,
parameters

Tab. 5.5: Tagged values for prefetching
Tagged value Stereotype Description
signatures �prefetch� a list of method signatures to be

prefetched upon invocation of the cor-
responding method

depths �prefetch� a list of maximum prefetching recur-
sion depth at which the process of
prefetching should stop

parameters �prefetch� an optional list of parameter map-
pings for the prefetchable method’s
input parameters; numbers refer to
parameter values of the initiating
method (starting with 0 at the return
value); signatures may refer to other

attribute accessor methods of the same
component instance

The stereotype’s three tagged values—signatures, depths, and param-
eters—can be compared to the tagged value invalidates in table 5.3 on the
preceding page; all of them denote lists of values for a number of depen-
dencies. Their handling is rather uncomfortable because multi-valued tagged

5.3 Development Process 139

values are not properly supported by the current UML specification, which
simply provides string (textual) values. Furthermore, signatures, depths, Problem:

multi-valued
tags

and parameters represent tuples that refer to the same dependencies. The
workaround is that all lists are required to have the same number of elements
and that all elements at the same position relate to each other as members of
a dependency tuple. Since elements of the parameters list may also contain
multiple values (for individual parameters of the same dependency), two dif-
ferent delimiters have to be used to distinguish between individual parameters
and parameter groups belonging to dependencies.

5.3 Development Process

It has already been outlined that most caching concepts lack integration with
visual design (CASE) and builder tools. Although UML provides the means
for capturing additional caching-related metadata, a common solution is still
to store caching properties externally in proprietary formats using simple text
editors and similar tools. The purpose of this section is to demonstrate how
the UML Profile for Caching from section 5.2.2 on page 136 can be used within
the context of the tool chain presented in section 5.1 on page 132.

We will proceed as follows: Section 5.3.1 will demonstrate how to apply
our UML Profile during component design. The result of model transformation
is an abstract component that can be used as a skeleton for further refined
component implementations as shown in section 5.3.2 on page 141. This ab-
stract component contains metadata, which is to be processed by code gener-
ators to create the final implementation classes and deployment descriptors
as explained in section 5.3.3 on page 143. We will finally contemplate im-
plications responsibilities and additionally required roles in section 5.3.4 on
page 145.

5.3.1 Component Design

Considering the standard software development process, developers already
get a fair notion about a component’s usage scenarios, corresponding data
flows, and application-specific consistency requirements at design time, im-
mediately after thorough analysis. Attributes of components are the most suit-
able candidates for caching as they contain their actual data. We thus allow to
specify caching properties for component attributes using the stereotypes in-
troduced in table 5.2 on page 137:

constant Attributes marked as �const� practically never change. They are
to be cached upon first access;

cacheable Attributes marked as �cacheable� change rarely4, they are

4 The definition of “rarely” is application-specific. Hints about the tolerance of an application

140 Software Development Cycle Integration

also to be cached upon first access. An appropriate invalidation / up-
date propagation protocol is necessary to maintain the required level of
consistency;

not cacheable Attributes marked as �not-cacheable� should not be
cached for various reasons. They might either be subject to frequent
changes, or they should only be accessed in a transactional context, or
they might contain sensitive data that should not remain in cache for
security reasons, just to mention a few examples.

A minimal example for the use of caching stereotypes from section 5.2 on
page 133 is depicted in figure 5.3. Note that tagged values have no graphical
representation in UML by default, which is why they are not included in the
figure5.

<< entity , caching >>
Customer

<< const , PrimaryKey >> −id :String
<< cacheable >> −name :String
<< cacheable >> −address :Address
<< not−cacheable >> −password :String

<< cacheable , FinderMethod >> + findByName (name :String):void

CustomerException

<< Exception >>

Fig. 5.3: Example for use of caching stereotypes

Figure 5.3 also demonstrates the combination of the AndroMDA’s EDOC-
like profile for components (cf. section 5.2.1 on page 135) with our UML Pro-
file for Caching (cf. section 5.2.2 on page 136): Customer is tagged as an
�entity� but it is also stereotyped as a �caching� component, which
means that it is generally appropriate for caching and that default values
for caching properties may be configured. Another combination of stereo-
types can also be seen at the definition of the id attribute as �const�
and �PrimaryKey� or at the method findByName as �cacheable� and
�FinderMethod�. A CustomerException will be thrown by each business
method of the Customer component, including its attribute accessor methods.

Although at the time of writing not many tools support such combinations
of stereotypes, the UML and XMI specifications permit the assignment of mul-
tiple stereotypes to model elements in the same way that a class may have
inheritance relationships to multiple parents. For instance, the CASE tool Po-
seidon provides an appropriate user interface for modeling such relationships.

to inconsistencies can be configured using the ttl and validity tagged values to control expiration
time and required validity probability. This additional metadata is used by the dynamic/adap-
tive solution in section 4.2 on page 111

5 The UML 2.0 Superstructure specification [OMG03c] suggests using associated comments to
visualize tagged values. However, hardly any tool supports this optional feature at the time of
writing.

5.3 Development Process 141

5.3.2 Component Implementation

In this section we will discover how an abstract component is generated by the
model transformer AndroMDA as an intermediary representation.

There are currently several ways to trigger model transformation with An-
droMDA: Either as an Ant task, as a Maven plug-in, or as a Poseidon plug-in.
Irrespective of the actual starting procedure, AndroMDA searches the cartridge
selected for model transformation, e.g., EJB, for available templates that match
encountered stereotypes. Abstract components are successively constructed by
applying and processing these templates as already hinted at in section 5.1 on
page 132.

We controlled the output by providing modified component templates for Modified
templatesour model extensions. An AndroMDA template is essentially (Java) pseudo

code with mixed in special comments for controlling the transformation pro-
cess in a proprietary script language.

Listing 5.1 on the next page gives an impression of the way an exported
abstract Customer component might look like.

Obviously, stereotypes and tagged values have been mapped to special
JavaDoc comments. As mentioned before in section 2.5.3 on page 67, this
scheme of using special tagged comments to convey additional metadata in
source code was introduced with Java 1.2. These comments can be eval-
uated by compiler-independent parsers and tools, as we will see in sec-
tion 5.3.3 on page 143. Thus, a stereotype�cacheable� for a component at-
tribute becomes a /** @caching.method type="cacheable" */ com-
ment above the corresponding accessor method, or a component-level con-
straint caching.ttl=600 translates to /** @caching.ttl = 600 */ above
the Bean class. The dotted notation of these tags allows for simple name-
spacing.

Following the JavaBeans pattern of naming accessor/mutator method
pairs of component attributes get /setXyz by convention, stereotypes of at-
tributes are automatically mapped to the corresponding accessor methods.
Theoretically, the invalidates tagged value of the corresponding mutator
method would have to be set to the signature of the accessor method. How-
ever, since this procedure applies to every attribute, which would only bloat
the generated code, we implicitly assume the presence of this tagged value for
every attribute access as an optimization. But mutator methods may also have
other invalidates relationships, as shown with the example of setName .

Since finder methods do not have to be implemented directly by the main
(EJB) component implementation class, the�FinderMethod� from figure 5.3
on the facing page is mapped to a special class-level @ejb.finder tag and its
categorization as �cacheable� to another tag @caching.finder .

The tag @jboss.container-configuration is responsible for select-
ing the appropriate configuration of the interceptor chain, which is required at

142 Software Development Cycle Integration

Listing 5.1: Example for use of caching tags

1 /** @caching.bean
2 * ttl=600
3 * validity=0.95
4 * intervals=5
5 * intervalLength=1200
6 * @ejb.finder
7 * signature="java.util.Collection findByName(java.

lang.String name)"
8 * query="SELECT OBJECT(o) FROM customers AS o WHERE

o.name=?1"
9 * @caching.finder

10 * signature="java.util.Collection findByName(java.
lang.String name)"

11 * type="cacheable"
12 * validity=0.9
13 * @jboss.container-configuration
14 * name="Caching CMP EntityBean"
15 */
16 public abstract CustomerBean
17 implements javax.ejb.EntityBean {
18 /** @caching.method type="const"
19 * @ejb.pk-field */
20 public String getId() throws CustomerException;
21 /** @caching.method type="cacheable" ttl=3600 */
22 public String getName() throws CustomerException;
23 /** @caching.method type="not-cacheable" invalidates="

java.util.Collection findByName(java.lang.String)" */
24 public void setName(String name) throws

CustomerException;
25 /** @caching.method type="cacheable" */
26 public Address getAdress() throws CustomerException;
27 /** @caching.method type="not-cacheable" */
28 public String getPassword() throws CustomerException;
29 // (...)
30 }

deployment time and runtime as explained in section 6.2.1 on page 156.

Extensions for Prefetching

Referring to some fictive Order component, listing 5.2 illustrates the use of the
corresponding XDoclet tags for our prefetching stereotypes and tagged values
from table 5.4 on page 138 and table 5.5 on page 138.

5.3 Development Process 143

Listing 5.2: Example for use of prefetching tags

1 /** @caching.bean
2 * @ejb.finder
3 * signature="java.util.Collection

findByCustomerAndYear(java.lang.String customer, int
year)"

4 * query="SELECT OBJECT(o) FROM customers AS o WHERE
o.customer=?1" AND o.year=?2

5 */
6 public abstract OrderBean
7 implements javax.ejb.EntityBean {
8 /** @caching.prefetch
9 * signature="java.util.Collection OrderHome.

findByCustomerAndYear(java.lang.String,int) throws
javax.ejb.FinderException"

10 * depth="1"
11 * parameter="0"
12 * parameter="public abstract int Order.getYear()

throws OrderException"
13 */
14 public abstract String getCustomer() throws

OrderException;
15 // (...)
16 }

5.3.3 Code Generation

Originally intended to bridge the disconnection between bean implementa-
tions and interfaces that often tend to get out of sync, XDoclet (see section 2.5.3
on page 67) generates interfaces, deployment descriptors, and auxiliary classes
from Bean classes. It allows the construction of arbitrary code segments de-
pending on special JavaDoc comments at class / method level and special tem-
plate files that actually control the code generation process.

XDoclet is usually also triggered as an Ant task to process abstract com-
ponents like the one presented in listing 5.1 on the preceding page. The EJB
module of XDoclet uses the included tags to generate by default the concrete
Bean class, remote, home, and local interfaces (complete with business and
finder methods), primary key and utility classes as necessary, standard and
vendor-specific deployment descriptors, i.e., in our case basically ejb-jar.
xml , jboss.xml , and jbosscmp-jdbc.xml .

Now the challenge was to get XDoclet to process the additional tags pre- New
templatesented in section 5.3.2 on page 141. We have thus created a special XDoclet

template caching.xdt that is used to generate a separate caching.xml file
containing component-specific cacheability configuration data for deployment

144 Software Development Cycle Integration

as depicted in listing 5.3. In contrast to AndroMDA, XDoclet templates are
XML files themselves with special XML tags as commands for controlling the
transformation process. This template language is not very powerful but nev-
ertheless sufficient for most transformation purposes.

The structure of the caching.xml file in listing 5.3 is rather self-
explanatory: It sequentially captures cacheability properties of method signa-
tures. The additionally inserted <invalidates> tags from mutator methods
to accessor methods are also shown. Furthermore, the generated jboss.xml
is adapted to include our CachingClientInterceptor in the client-side

interceptor chain.

Listing 5.3: Exemplary caching.xml file

1 <caching>
2 <ttl>600</ttl>
3 <validity>0.95</validity>
4 <intervals>5</intervals>
5 <intervallength>1200</intervallength>
6 <method signature= ” public abstract java . lang . S t r i n g

Customer . getId () throws CustomerException”
7 cacheability= ”const” />
8 <method signature= ” public abstract java . lang . S t r i n g

Customer .getName() throws CustomerException”
9 cacheability= ”cacheable”

10 ttl= ”3600” />
11 <method signature= ” public abstract void Customer .

setName(java . lang . S t r i n g) throws CustomerException”
12 cacheability= ”not−cacheable”>
13 <invalidates signature= ” public abstract Customer

CustomerHome. findByName(java . lang . S t r i n g) throws
javax . ejb . FinderException” />

14 <invalidates signature= ” public abstract java . lang .
S t r i n g Customer .getName() throws CustomerException”
/>

15 </method>
16 <! -- (...) -- >
17 </caching>

After code generation, the application assembler / deployer is given the
opportunity to make certain manual adjustments to given descriptors, e.g.,
changing cacheability of certain attributes, altering expiration times etc.

Extensions for Prefetching

Listing 5.4 displays the caching.xml extensions corresponding to listing 5.2.

5.3 Development Process 145

Listing 5.4: Exemplary caching.xml file with prefetching dependencies

1 <caching>
2 <! -- (...) -- >
3 <method signature= ” public abstract java . lang . S t r i n g

Order . getCustomer () throws OrderException”>
4 <prefetch signature= ” public abstract java . u t i l .

Col lection OrderHome. findByCustomerAndYear (java .
lang . S t r ing , i n t) throws javax . ejb . FinderException”
depth= ”1”>

5 <directparameter num= ”0”/>
6 <parameter signature= ” public abstract i n t Order .

getYear () throws OrderException”/>
7 </prefetch>
8 <! -- (...) -- >
9 </method>

10 <! -- (...) -- >
11 </caching>

5.3.4 Roles and Responsibilities

Up to now, we have assumed that capturing cacheability metadata is per-
formed on-the-fly by application / component designers. However, appropri-
ately configuring the caching service can be a daunting task, especially with
respect to consistency requirements. The adaptive solution presented in sec-
tion 4.2 on page 111 can help to “heal” cacheability misconfigurations in terms
of access behavior and change rates at runtime, but it can not cure the conse-
quences of falsely specified tolerances to inconsistencies.

If none of the developer roles in the component life-cycle (cf. section 2.2.4
on page 24), namely component provider, application assembler, deployer, or sys-
tem administrator, have sufficient information and/or expertise to perform this
task, the introduction of an additional role may become necessary. We call this
role Cache Advisor, inspired by a role with the same name in the context of Cache

AdvisorCache Groups (see section 3.1.3 on page 87) [HB04] whose responsibility it was
to specify cache keys and referential cache constraints.

Our Cache Advisor’s responsibility is to annotate the component-based ap-
plication model with additional caching-related metadata at various develop-
ment stages. He may either assist the component provider at design time by
annotating the UML model with cacheability categorizations and consistency
constraints of component attributes and method results at this early stage. Or
he may add and alter caching-related tags in source code after model trans-
formation prior to code generation. But he may also assist application assem-
blers, deployers, and administrators by adapting caching.xml deployment
descriptors before (re)deployment. Additional, yet to be built tools might help
him with this task.

146 Software Development Cycle Integration

5.4 Conclusion

This chapter concentrated on how to capture cacheability metadata as early
as possible during component development. On one hand, hints about
application-specific data access characteristics can help to reach an optimal
configuration of the caching service in a timely manner. On the other hand,
knowledge about the tolerance of an application to (controlled) inconsisten-
cies of cached attribute values and method results are crucial for preserving
the application’s semantics.

In contrast to simply specifying caching attributes, e.g., at EJB level, the
UML integration allows visual modelling and a higher level of abstraction that
potentially enables the transformation of models to other target platforms. Al-
though this has not been implemented so far, the design of our middleware
service (cf. section 4 on page 107) could also be applied to other component-
oriented middleware platforms (see section 2.2 on page 14 and figure 2.13 on
page 45).

A model-driven tool chain was presented in section 5.1 on page 132, which
provided the seamless integration of this aspect into the development process.
A UML Profile for Caching was constructed in section 5.2 on page 133 to sum-
marize light-weight UML extension elements necessary for adding caching-
related metadata to UML application models. The use of these metadata
throughout the development process implied by the tool chain was then ex-
plained with the help of various examples in section 5.3 on page 139.

However, the presented solution alone is not robust to changes of access
characteristics at runtime. It can neither cope with major misconfigurations
of cacheability categorizations. These shortcomings motivate the need for an
adaptive, self-healing solution like the one that was presented in section 4.2
on page 111. Future work may include round-trip engineering, i.e., reversely
integrating adaptively determined configurations into the application model.

Many things difficult to design prove easy to performance.

Samuel Johnson (∗1709–†1784), English poet, lexicographer, and critic.

6
Implementation of the Adaptive

Middleware Service

In this chapter, we will present the major steps towards the integration of our
orthogonal middleware service for caching designed in section 4 on page 107
into the architecture of Enterprise JavaBeans (see section 2.2.4 on page 22) as
an exemplary component-based middleware platform. The first approach in
section 6.1 is based on the concept of Stub Annotation presented in section 3.1.5
on page 95. It can be seen as an early feasibility study that provided directions
for further progress. The second approach in section 6.2 on page 155 pro-
vides more configurability based on the concept of Interceptors presented in
section 2.5.5 on page 73 and section 3.1.5 on page 94, which forms the basis for
the adaptive extensions that have been designed in section 4.2 on page 111. Its
title “Descriptive Point-cutting” emphasizes the relation to Aspect-Orientation
(see section 2.5.6 on page 75) and descriptive middleware (see section 2.2 on
page 14).

6.1 Stub Modification

The original starting point for this thesis in general was an idea for automatic
generation of caching logic in client-side stubs of Enterprise JavaBeans in com-
bination with a mechanism for notification of clients upon updates, which was
described in [NPF99]. The JavaBeans pattern for encapsulating component at-
tributes by accessor/mutator methods—a basis for definition 2.8 on page 17—
was already a fundamental assumption in the referenced paper. Another sup-
position was the generation of custom stubs by the EJB container at deploy-
ment time as the initial access point for modification: Generated stubs were

148 Implementation of the Adaptive Middleware Service

augmented by additional functionality for supporting three categories of con-
sistency management mechanisms for component attributes, apart from non-
cacheable attributes:

pull cacheable. Clients asynchronously update their caches by periodically
querying the server.

pullWait cacheable. The server blocks and defers responses to client re-
quests until modifications actually occur. A sort of “semi-synchronous”
update is thus accomplished.

push cacheable. Following the Observer Pattern (cf. section 2.5.4 on page 70)
from [GHJV94], clients register EventListeners as callback objects at the
server. These are notified upon modifications of attributes to directly
propagate updates.

The second mechanism is only feasible if using alternative Java RMI im-
plementations as the underlying transport middleware. The reference imple-
mentation would leave ports open for every request, which turned out to be
a bottleneck. To improve scalability, the third mechanism was additionally
designed to provide hierarchical bundling of callback channels along the com-
ponent containment hierarchy1.

However, the last two mechanisms proved to scale badly with increasingBad
scalability numbers of clients, components, and attributes in later feasibility studies. The

reason for this was the considerable amount of necessary status information
and potentially open connections between server and clients, which is why
only the strategy of polling clients (pull cacheable) was implemented in later
prototypes.

The first prototype, which is discussed in [PS02], was based on the assump-
tion that most EJB container implementations use Java RMI Stubs as client-side
proxies for Bean components. The concept of Stub Annotation (see section 3.1.5
on page 95) was used to integrate caching logic as a client-side container into
these proxies, which can be compared to aspect weaving at join points in Aspect-
Oriented Programming (cf. section 2.5.6 on page 75). The remainder of sec-
tion 6.1 outlines this work before we introduce the interceptor-based solution
in section 6.2 on page 155, which represents the basis of all further extensions.

6.1.1 Multiple References

Apart from component state caching in terms of results of attribute accessor
methods, a middleware service for caching also has to take care of compo-
nent identities and handling of multiple references to the same components:

1 The approach was demonstrated with the example of the eLearning platform JaTeK
[Neu03], which features a hierarchical structure of course material composed of courses, chap-
ters, sub-chapters, and materials.

6.1 Stub Modification 149

Application components are usually related to each other. These relations are
typically exposed quite similar to attributes on their interfaces. This implies
that there is often more than one way to acquire references to component in-
stances. This leads to an often neglected problem we called proliferation of stub Proliferation

of stubsobjects, which is shown in figure 6.1.

Fig. 6.1: Proliferation of stubs

Whenever remote operations return stubs (or proxies) as remote references, Memory
consumptionnew proxies objects are being created in the client process upon every call.

Memory consumption increases linearly with the number of object references.
Every client has to check its received proxies for equality and discard identical
copies if they reference the same server object, i.e., the same Bean component
in our context. This gains even more significance if modified stubs may also
contain cached data. If no precautions are taken, clients proverbially drown in
cached attributes.

This problem has been realized by others before but most proposed solu-
tions have not proved satisfactory, due to either their lack of transparency or
their complexity for integration. For instance, the Distributed Shared Object
solution Javanaise (see section 3.1.5 on page 97) [HB01] uses a rather compli-
cated scheme of proxy-in and proxy-out objects on server and client side to
manage global object identities of transferred reference parameters. Our con-
cept performs the same tasks with augmented stub objects as we will discuss
below.

6.1.2 Client-side Containers

As a solution to avoid proliferation of stubs and to handle multiple references
we suggested using a Client-side Container, i.e., a look-up table Singleton2 in
each client process, which is queried every time a new stub is received to en-
sure the identity of remote references.

The concept for integration into the middleware architecture is based
on Stub Annotation—particularly on the “Smart Stubs” approach by Loton
[Lot00]—as described in section 3.1.5 on page 95. This decision was a matter

2 A pattern in [GHJV94] for client-static objects. More sophisticated implementation could
use Java caching services like [Bor01]. Cf. section 3.1.5 on page 95.

150 Implementation of the Adaptive Middleware Service

of simplicity because it enables easier short-term integration than, e.g., a full-
scale proxy generation solution. In other words, generated default RMI stubs
are extended by self-defined subclasses as drawn schematically in figure 6.2.

Fig. 6.2: Integration of modified “Smart stubs” with the Client-side Container

These modified, tool-generated stubs provide adapted caching functional-Equality of
component

stubs
ity for the components’ attributes and check remote reference return values
against the Client-side Container (see figure 6.3). If a remote reference turns
out to equal another stub for the same component, which has already been
stored in the Client-side Container’s repository, it will be discarded and the
equivalent reference from the repository will be returned. On the other hand,
the Client-side Container transparently stores the new remote reference, if no
equal stub can be found.

Fig. 6.3: Client-side Container

The actual Client-side Container interface is rather simple as depicted in
listing 6.1 on the facing page.

Using the static factory method getCSContainer() a concrete instance
of a Client-side Container can be obtained by the augmented stubs. This
enables transparent exchange of various implementations. The getStub()
method works in the above described manner.

6.1 Stub Modification 151

Listing 6.1: Client-side Container Interface

1 public abstract class CSContainer {
2 public static CSContainer getCSContainer() {
3 // (...)
4 }
5 public abstract Object getStub(Object id);
6 }

6.1.3 Object Equality in Component-based Middleware
Platforms

As mentioned introductorily, special attention must be paid to object identity.
One might assume that stubs can simply be maintained in a Hashtable but
there are certain obstacles that component models like EJB additionally intro-
duce: The specifications [MH99, DYK01, Sect. 8.5] explicitly warn that “the En-
terprise JavaBeans architecture does not specify object equality.” This implies
that the results of hashCode() and equals() are undefined. Unfortunately,
these methods are crucial for proper storage in standard Java hash tables.

Javax.ejb.EJBObject s are derived from java.rmi.Remote which
makes them accessible across network boundaries. But the very concept of
EJB relies on dynamic redistribution of subsequent remote calls for a certain
business object to different servants for pooling purposes. Hence, hashCode
() and equals() behave as expected for one and the same javax.ejb.
EJBObject servant but this could potentially be used for different entity iden-
tities by the container’s pooling algorithms.

EntityBeans’ primary keys are impractical for instance identification be- Handle
instead of
equals()

cause they are only unique for a certain bean type in the context of a single
deployment. A possible solution is to delegate the stubs’ hashCode() and
equals() implementations to javax.ejb.Handle , a long-lived identity ob-
ject, which can be obtained from every javax.ejb.EJBObject as unique
persistent reference3. Handles are cached as well in a lazy-evaluating way to
avoid additional remote calls every time equality is tested.

Utilizing these prerequisites, a first simple Client-side Container prototype
based on a single static hash table was implemented.

6.1.4 Integration into the Middleware Platform

To visualize the integration of Client-side Containers, imagine the following
example: An OrderBean references a CustomerBean . A getCustomer()
method is implemented to enable navigating access in an object-oriented man-

3 Handles usually contain a primary key and information about the bean’s JNDI-URL, among
other container-specific information.

152 Implementation of the Adaptive Middleware Service

ner, returning a remote reference to a CustomerBean . A generator tool would
realize this dependency, thus inserting code into the generated stub to perform
the above mentioned look-up as shown in listing 6.2

Listing 6.2: Modified Stub

1 public class _Order_Stub extends _Order_Smub {
2 private static transient CSContainer cscontainer =
3 CSContainer.getCSContainer();
4 private Customer customerCache = null ;
5 // (...)
6 public Customer getCustomer() throws java.rmi.

RemoteException {
7 if (customerCache== null) {
8 Customer c = super .getCustomer();
9 customerCache = cscontainer.getStub(c);

10 }
11 return customerCache;
12 }
13 }

The default stub _Order_Stub , which is generated by the standard RMIStub
renaming compiler, is renamed to _Order_Smub and the augmented implementation

that takes its place is derived from this class. Stub instantiation in Java RMI
is based on naming conventions, which makes renaming necessary4. On the
other hand, default stubs should not be altered beyond simple renaming be-
cause their structure may change without notice due to Sun’s internal modifi-
cations.

This example also demonstrates the integration of caching functionality:
An Order’s Customer is normally determined at creation time which makes
this attribute a perfect candidate for caching. However, multivalued relation-
ships between entities require special attention. We will elaborate on this prob-
lem in section 6.1.5 on the facing page

Note that no modifications are necessary on existing client or server code
because all changes are entirely transparent to the component itself. Not even
sources are needed for supplementary integration of caching. Stubs can be
regenerated by rmic or a container’s corresponding tool based on existing
class files. These are in turn altered by the stub generator tool.

Deployment

Most EJB containers provide two archives (JAR files) as output of their deploy-
ment tools—one for Bean clients containing remote stubs and interfaces, and

4 Cf. [Lot00].

6.1 Stub Modification 153

another one for the server which additionally comprises the bean implemen-
tation itself, generated container glue code that actually implements the bean
interface, and all necessary skeleton or tie classes.

The question arises how to get modified proxies into EJB archives. Unfor-
tunately, most EJB servers do not even expose generated server JARs during
Bean deployment. As long as there are no container-supported interfaces for
deployment, client and server JARs have to be unpacked, modified and copied
back to their container-specific locations.

Containers like JBoss [FR03] use dynamic proxies of the Java Reflection API
instead of stubs (cf. figure 2.21 on page 74). The InvocationHandler s be-
hind these proxies call a chain of Interceptors, the last of which finally transmits
the invocation using a generic RMI stub. This sophisticated architecture en-
ables other possibilities for integration, which will be discussed in section 6.2
on page 155.

6.1.5 Returning Collections of Stubs

Multiple instance return values, i.e., multivalued relationships, pose an impor-
tant issue, for instance:

• The OrderBean could also provide a method getItems() for querying
the positions of a given order.

• EJB Home interfaces can provide finder methods that may return multi-
ple instances.

Caching itself is not affected since the annotated stubs are automatically
returned by the RMI subsystem. But mechanisms for preventing stub prolif-
eration have to be adapted to ensure their effectiveness. The stubs of those
remote objects returning multiple references for other remote objects have to
query the Client-side Container for identical stubs before returning any refer-
ences to their clients.

Unfortunately, numerous options exist for the purpose of returning multi- Different
typesvalued results, e.g., java.util.Enumeration , java.util.Vector , java

.util.Collection and it’s subclasses, etc. On one hand it is hard to sup-
port at least the majority of these options and on the other hand the contents
of every collection class are just polymorphic java.lang.Object s, which
makes it difficult to detect one-to-many associations’ corresponding accessor
methods via introspection. Other object-oriented languages like C++ provide
adaptable Template classes for this purpose but Java lacks such a concept un-
til J2SE 5. Checking every return value with instanceof at runtime would
be far too inefficient. A possible way to avoid this is special mark-up by de-
sign tools to make the type of an association prominent. This mark-up can in
turn be transformed to special tags in source code comments, in analogy to the
concepts presented in section 5 on page 131.

154 Implementation of the Adaptive Middleware Service

In [PS02] we concentrated on the features demanded by the EJB specifica-
tion: Only java.util.Collection s are permissible return values—at least
for multivalued finder methods. Java Collection s are usually accessed
by java.util.Iterator s. These Iterators can be queried on an on-demand
base. This allows fetching of contents as needed. However, this otherwise
advantageous feature complicates a solution for the problem of returning col-
lections of stubs: A simple wrapper for the returned Collection that initially
converts its peer’s content of Smart Stubs by checking them against the Client-
side Container may have an impact on over-all performance because collec-
tions may potentially contain a vast number of members. Transferring all of
them at once may result in undesirable access peaks at server side.

A far better solution is to encapsulate Iterator s as well. This ensuresLazy
evaluation:

wrap
iterators

on-demand querying return stubs against the Client-side Container. The code
segments in Listing 6.3 and 6.4 on the facing page show how to implement
this:

Listing 6.3: CollectionWrapper

1 public class CollectionWrapper implements Collection {
2 private Collection peer;
3 private static transient CSContainer csc =
4 CSContainer.getCSContainer();
5 // (...)
6 public Iterator iterator(){
7 return new IteratorWrapper(peer.iterator());
8 }
9 public Object[] toArray(){

10 Object[] arr = peer.toArray();
11 if (arr!= null) {
12 for (int i=0;i<arr.length;i++) {
13 arr[i] = csc.getStub(arr[i]);
14 }
15 }
16 return arr;
17 }
18 }

6.1.6 Consistency

It has been outlined that changes made to replicated distributed objects always
result in inconsistencies. Many applications can fortunately cope with these
inconsistencies for a certain amount of time. For instance, expiration times in
the form of simple TTL counters are common in Web caching (see section 3.1.1
on page 84). The approach presented in [PS02] supports only dirty reads (see
section 2.3.1 on page 46). Cache invalidation via regular cache purges (i.e., TTL

6.2 Descriptive Point-cutting 155

Listing 6.4: IteratorWrapper

1 public class IteratorWrapper implements Iterator {
2 private Iterator peer;
3 private static transient CSContainer csc =
4 CSContainer.getCSContainer();
5 // (...)
6 public Object next(){
7 Object next = peer.next();
8 return csc.getStub(next);
9 }

10 }

expiration) can be enabled optionally. Client callback objects as described for
the push cacheable mechanism above have been considered an option, which
was abandoned later because of their bad scalability and their limitations in
firewalled scenarios (cf. section 1.4 on page 5), although they would have been
practicable for few Web servers as the only clients of the business tier. Cache
consistency protocols from the database domain (see section 3.1.3 on page 87)
were also taken into consideration but this direction was not pursued further
for the initial prototype.

6.1.7 Conclusion

Although the initial prototype presented in [PS02] was based on a different
integration technology, it nevertheless helped to isolate a number of problems
in connection with caching method results of application components above
the business tier, e.g., handling multiple references to single component in-
stances, wrapping multivalued results, or managing consistency. These initial
results formed the basis for extensions towards a different integration tech-
nology described below. First experiences were also gathered with respect to
modeling issues and software development cycle integration, which have been
presented in section 5 on page 131.

6.2 Descriptive Point-cutting

The concept of Interceptors has already been introduced as a flexible mecha-
nism for integrating orthogonal middleware services in section 2.5.5 on page 73
and section 3.1.5 on page 94. On the other hand, incorporating our caching ser-
vice into an existing middleware infrastructure using Stub Annotation proved
to be complicated and inflexible, especially with respect to deployment, as
described in section 6.1.4 on page 151. The combination of both—client-side
caching of method results and integration via interceptors—was first presented
in [PG03].

156 Implementation of the Adaptive Middleware Service

As mentioned introductorily, our second prototype [PG03] follows a static
approach, i.e., cacheability of attributes and method results has to be declared
at deployment time. Once considered cacheable, an attribute or method result
remains in that state. A reference implementation based on Sun’s Enterprise
JavaBeans (EJB) platform and the open source EJB container JBoss [FR03] was
developed to demonstrate the underlying concepts. JBoss was only chosen as
an example platform for demonstration for pragmatic reasons: It is available
open-source, comparatively well documented, and it is extensible and modu-
larly built, not at least because of its interceptor framework.

Later implementations [Poh03, PS03] extended this prototype with respect
to adaptive cacheability categorization as discussed in section 4.2 on page 111.

6.2.1 Integration into the Middleware Platform

Section 2.5.5 on page 73 already discussed the differences between CORBAJBoss
Interceptors Portable Interceptors [OMG01] and the variant implemented by JBoss [FR03]:

The latter rather resemble a Chain of Responsibility and allow more flexibility
for implementing services on top of this meta-programming mechanism.

Fig. 6.4: Interceptors in JBoss Dynamic Proxies

Let us now take a closer look at the client-side integration of these in-
terceptors as shown in figure 6.4 to better understand the integration of our
caching service: Client-side component proxies are transparently instantiated
at runtime using Java’s Dynamic Reflection API, which allows them to dy-
namically implement arbitrary interfaces. The Proxy raises invocations to the
metalevel by transforming them into Invocation objects, which are passed

6.2 Descriptive Point-cutting 157

to an InvocationHandler . A ClientContainer 5 passes each request as
an Invocation metaobject through a chain of Interceptor s. The last inter-
ceptor always hands the request to a static InvokerProxy that finally trans-
mits it to the server. A number of implementations exist for different transport
protocols. The JRMPInvokerProxy uses the Java Remote Method Protocol,
i.e., RMI, for this task. It actually holds a Stub object of the JRMPInvoker ,
which is an RMI servant object at server side that dispatches Invocation
metaobjects to Container s.

Server-side interceptors are stacked in a similar fashion within Contain-
er s. However, they are omitted in figure 6.4 on the preceding page for brevity
since the static solution only relies on client-side interceptors. When a response
returns from the server, it passes through the same interceptor chain in reverse
order.

Deployment

The default sequential order of both client-side and server-side interceptors is
determined by the server administrator. It can be overridden by bean providers
and/or application assembler for specific beans using the jboss.xml deploy-
ment descriptor. By overriding the default interceptor chain, we managed to
integrate our CachingClientInterceptor , which is discussed below.

When a caching-enabled component is deployed, the interceptor chain is
assembled along with a dynamic Proxy as shown in figure 6.4 on the facing
page according to the configuration in its jboss.xml deployment descrip-
tor. An additional caching.xml descriptor is evaluated by our modified
deployer. This descriptor contains all necessary information about method
cacheability, including cacheability, validity time, and invalidation dependen-
cies of methods. The latter two aspects have been hidden in listing 6.5 on
page 159 for brevity.

The creation of the caching.xml descriptor and its contained cacheability
information was discussed in section 5.3.3 on page 143 in the context of com-
ponent design and implementation. We created a modified deployer infras- New

deployertructure component for JBoss, which scans deployed archives for contained
caching.xml descriptors. The deployer uses this information to preconfig-
ure the static CacheabilityDB , which is a Singleton on both server and client
side, referenced by CachingClientInterceptor objects. The whole dy-
namic proxy composition is registered with the JNDI (naming) service as the
last step of deployment. Upon a client’s first JNDI lookup of the Bean compo-
nent, the proxy/stub for the Bean is marshalled and transferred. Interceptor
instances are then created in the client JVM as needed by remote references.

5 Not to be confused with the concept of Client-side Containers in section 6.1.2 on page 149!

158 Implementation of the Adaptive Middleware Service

Runtime

The implementation of the concept for static caching designed in section 4.1.1
on page 108 is depicted in figure 6.5, which corresponds to listing 6.5 on the
next page.

ContainerInterceptor proxy Invoker

Invoke()
Invoke()

true

in Cache

false

Invoke()

Invoke()
Bean.get()

insert in

Cache

Remote.get()
Invoke()

Invoke()

true

true

in Cache

...

...
isCachable()

isCachable()

Invoke()

Client Server

Client

Remote.get()

Proxy

Dynamic Caching−

Client
Interceptor

1st Invoker
Component

Fig. 6.5: Sequence of static caching

Prototypically, the cache back-end CachePolicy was implemented selec-
tively using JBoss’ LRUCachePolicy or TimedCachePolicy with compo-
nent identity6 i, method m, and method parameters {p} as combined keys and
results r as values, i.e., (i, m, {p}) → r. The basic granularity of cached data is
per-attribute but as these are members of identifiable components, collective
invalidation of attributes is still possible.

Although we initially took measures to let CachingClientIntercept-
or s perform multiple reference handling as explained in section 6.1.2 on page 149
by checking all returned remote references (i.e., proxies) for duplicates in the

6 A Bean instance identity in JBoss is composed of objectName and id ; the former uniquely
identifies a deployment (or installed component as in figure 2.18 on page 63), the latter represents
either the primary key of an Entity Bean or a session key of a Session Bean.

6.2 Descriptive Point-cutting 159

Listing 6.5: A simple CachingClientInterceptor

1 public class CachingClientInterceptor extends Interceptor {
2 // (...)
3 public InvocationResponse invoke(Invocation mi) throws Throwable {
4 // get cacheability data for the invocation
5 CacheabilityDBEntry dbe = cacheabilityDB.getEntry(mi);
6 if (dbe!= null && dbe.getCacheability()!=NOT_CACHEABLE) {
7 // create the cache key for the invocation
8 CacheEntry ce = new CacheEntry(mi.getObjectName(), mi.getId(),

mi.getMethod(), mi.getArguments());
9 // obtain reference to the corresponding cache

10 CachePolicy cp = CachePolicy.getCachePolicy(dbe);
11 // look up result
12 CacheResult result = (CacheResult) cachePolicy.get(ce);
13 if (result== null) { // cache miss
14 // invoke next interceptor in chain
15 InvocationResponse response = getNext().invoke(mi);
16 // new result wrapper object
17 result = new CacheResult(response.getResponse());
18 cp.insert(ce, result); // insert into cache
19 return response;
20 } else { // cache hit
21 // return response from cache
22 return new InvocationResponse(result.getResult());
23 }
24 } else { // not cacheable
25 return getNext().invoke(mi); // normal invocation
26 }
27 }
28 // (...)
29 }

local cache, we eventually removed this feature because it is not really needed:
The dynamic proxy compositions of figure 6.4 on page 156 do not contain
a noteworthy amount of state. The crucial parts, i.e., CacheabilityDB ,
CachePolicy , and InvokerProxy , are actually static members (Singletons)
that have to be transferred only once, upon initial access.

Bidirectional Piggyback Communication

Adaptivity and invalidation as designed in section 4.2 on page 111 require the
presence of bidirectional piggyback communication for exchanging metadata
between client and server.

Version 3.0.6 of JBoss, which was used as the basis for our middleware
extensions, unfortunately provided only a unidirectional channel for piggy-
backing information with invocations from client to server. The opposite di-
rection has not been considered in this version. Hence, we had to provide
a back-port from JBoss version 4.0.0 RC2 to enable the return channel for
piggyback information. This back-port basically consists of the aforemen-

160 Implementation of the Adaptive Middleware Service

tioned org.jboss.invocation.InvocationResponse as the return type
of generic org.jboss.proxy.Interceptor.invoke(Invocation) and
org.jboss.ejb.Interceptor.invoke(Invocation) methods instead
of java.lang.Object .

6.2.2 Conclusion

Our experiences with the framework showed the general feasibility of the con-
cept. The use of client-side interceptors is mandatory with JBoss, so the over-
head for invoking yet another interceptor is quite low. Cache lookups turned
out to be faster by magnitudes than direct component attribute queries requir-
ing a full client-server round-trip. A simple test scenario was set up with both
client and server JVM running on the same host7 to eliminate the interfering
influence of variable network latency. Results of cache miss times for queries
to a component’s value object were around 20 ms per request, reaching peak val-
ues of up to 1 sec, compared to 1 ms and even less for cache hits. Depending
on networking infrastructures, several more ms can be added for cache misses
in non-local scenarios.

Further details about this architecture and how its concepts may also be ap-
plied to other non-functional middleware services like monitoring and adap-
tation have also been published by in [PG03].

7 AMD AthlonTM XP1600+, 1GB RAM, Linux 2.6.5, Sun J2SE 1.4.2, JBoss 3.0.6

“The more frequently one uses the word ‘coincidence’ to explain bizarre
happenings, the more obvious it becomes that one is not seeking, but
evading, the real explanation.” Or, shorter: “The belief in coincidents is
the prevalent superstition in the Age of Science.”

Illuminatus!—The Eye in the Pyramid by Robert Joseph Shea
(∗1933–†1994) and Robert Anton Wilson (∗1932), American journalists

and authors.

7
Conclusions and Outlook

The most prominent achievement of this work is represented by the contin-
uous integration of the aspect of caching in distributed, component-oriented
applications as an orthogonal, descriptively configurable middleware service.
Dynamic adaptation to changing access characteristics helps to reach optimal
configurations of component attribute cacheability and thus complements this
work with respect to data dependency. Consequential capturing and genera-
tive reuse of caching-related metadata from design time to runtime underpin
the approach from the perspective of software engineering.

7.1 Evaluation

The following claims have been made in section 1.3.3 on page 5 with respect
to the contributions of this work:

1. The aspect of replication of component state can be transparently out-
sourced as a middleware service.

2. Early gathering of replication-related metadata stabilizes the develop-
ment of distributed applications and reduces the necessary amount of
hand-written code.

3. Adaptivity helps to reach appropriate configurations.

The existence of a working prototype can already be seen as a proof for
claim (1). A virtual example application served as a touchstone for the effec-
tiveness of our prototype as explained in section 7.1.1 on the next page. Part
of claim (3) is also covered by this test example. However, the challenges of a

162 Conclusions and Outlook

full-fledged quantitative performance evaluation are discussed in section 7.1.2
on the facing page. The argumentation in favor of claim (2) is given in sec-
tion 7.1.3 on page 167.

7.1.1 Functional Evaluation

The functionality of the prototypical middleware service implementation has
been evaluated qualitatively using a simple application data model from the e-
learning domain. This example has been chosen to reflect the requirements of
originally intended scenarios like the Java-based Teleteaching Kit (JaTeK) [Neu03].

This test application consists of a simple text-based client application in the
form of JUnit test cases and four different Entity Beans that are accessed by the
client:

• RootElement represents a central Entry point into the data server-side
structure;

• CourseElement represents components containing course data, i.e., co-
herent collections of learning material;

• ChapterElement represents sections of the course structure;

• LessonElement represent atomic learning objects, which are grouped
in chapters.

This simple structure spans a tree with a depth of four levels. The ex-
istence of attributes at each level and the potentially considerable width of
the tree structure especially in the first three levels provided a good basis for
testing caching as well as prefetching functionality. The test client repeatedly
traverses and modifies the tree structure and its attributes in random order,
starting with a test dataset of three children per parent at each level.

The developer of the client application does not have to take care of integrat-
ing the caching service. This integration is performed transparently by the
transmission of proxy objects, which have been preconfigured appropriately
at server side according to the information given in the components’ deploy-
ment descriptors.

The component developer (the bean provider in terms of EJB) has to con-
sider the aspect of client-side replication only at a much higher level of abstrac-
tion by modeling cacheability categorizations descriptively for component at-
tributes and method results during component design. This step can also be
performed at a later point in component development by experts we refer to as
cache advisors. Deployment descriptors are generated accordingly to configure
the middleware service at deployment time.

Hence, the general functionality and effectiveness can be tested with respect
to general caching, adaptation of expiration times, as well as prefetching, but

7.1 Evaluation 163

no real client access patterns are simulated. Thus, no statements can be made
about the efficiency of the implemented middleware service in terms of timely
delivery of responses, accuracy of predicted expiration times, and the result-
ing potential staleness of cached data. Therefore, a quantitative evaluation is
necessary.

7.1.2 Quantitative Evaluation

Caching is about performance. Hence, a quantitative analysis is needed to
judge the actual benefits of caching-related optimizations. However, improved
caching algorithms and strategies have explicitly been marked as out of this
work’s scope in section 1.3.2 on page 4. We thus mitigated our endeavors
somewhat in this respect and settled for a general cost-benefit estimation of our
proposed extensions, followed by a discussion of the special challenges of a
proper evaluation. Actual performance benefits can be estimated roughly by
drawing parallels to the success of used base algorithms in other domains.

Cost-Benefit Estimation

As a starting point, we compared the different proposed extensions of our
middleware service in table 7.1 with respect to

• Gained flexibility during software development and design;

• Decreased latency of invocation responses (i.e., the benefit); and

• General runtime overhead for statistics, adaptation, etc. (i.e., the cost).

Tab. 7.1: Cost-benefit estimation
Extension Flexibility Latency Overhead
Static Caching ◦ 	 ◦
Dynamic
Caching

⊕ 	 ⊕

Static
Prefetching

⊕ 		 ⊕⊕

Dynamic
Prefetching

⊕⊕ 		 ⊕⊕⊕

Static caching based on interception as proposed in section 4.1 on page 107
is taken as a basis for comparison since all the other concepts have been im-
plemented as step-by-step extensions of this base mechanism. This solution
already provides a much higher degree of flexibility than traditional, hard-
coded, implicit approaches towards integrating caching services, because in-
troduces the concept of explicit (descriptive) middleware to the domain of

164 Conclusions and Outlook

caching. However, it offers only little flexibility in terms of altering cache-
ability metadata at runtime. Although a small penalty is imposed to response
latency because of the additional client-side interceptor responsible for pro-
cessing cached data, the overhead for bookkeeping is non-existent because this
basic mechanism does not feature any adaptation for which statistical analysis
would be needed.

For the target platform JBoss, the use of client-side interceptors is manda-
tory, so the latency overhead for invoking yet another interceptor is quite low.
Cache lookups turned out to be faster by magnitudes than direct component
attribute queries requiring a full client-server round-trip. A simple test sce-
nario was set up with both client and server JVM running on the same host1

to eliminate the interfering influence of variable network latency. Results of
cache miss times for queries to a component’s value object were abound 20 ms
per request on average, reaching peak values of up to 1 sec, compared to 1 ms
and even less for cache hits. Depending on networking infrastructures, sev-
eral more ms can be added for cache misses in non-local scenarios. Thus, the
overall latency of invocation responses is decreased.

Dynamic caching is the first extension introduced in section 4.2 on page 111
as a concept for dynamic adaptation of cacheability categorizations and cache
expiration times at runtime. This solution offers more flexibility since optimal
cacheability configurations are not anymore ultimately necessary at deploy-
ment time. Misconfigurations are “healed” by the middleware service itself,
gradually converging to an appropriate configuration. Experiments with the
prototype during functional evaluation showed that the additionally imposed
latency can be neglected when comparing full client-server round-trips of the
traditional version to the augmented invocation processing. This penalty is
expected to be outweighed by the increased cache hit rate due to more appro-
priately adapted cache expiration times. The static overhead for computing
access statistics for every time interval at client side and server side increases
however in comparison to static caching.

Static prefetching has been designed as yet another extension of dynamic
caching in section 4.3 on page 120. Since prefetching dependencies have to be
specified in advance (before deployment), it adds only little flexibility at run-
time. The latency of invocation responses is expected to decrease on average
due to the higher cache hit rate imposed by prefetched results. The effort for
triggering additional, asynchronously processed prefetching invocations is the
reason for the higher overhead.

Dynamic prefetching has been conceived in section 4.4 on page 125 to par-
allel the adaptive capabilities of dynamic caching with respect to prefetching
dependencies, as well. Hence, it increases the flexibility of the solution at run-
time. The imposed response latency is comparable to static prefetching. The
additional latency for transmission of statistical data is expected to be out-
weighed by the higher cache hit rate due to the more appropriately config-

1 AMD AthlonTM XP1600+, 1GB RAM, Linux 2.6.5, Sun J2SE 1.4.2, JBoss 3.0.6

7.1 Evaluation 165

ured prefetching dependencies. However, the estimated overhead in terms
of memory consumption and processing time for statistical analysis increases
much more for the designed solution, which seriously affects the overall per-
formance of the system.

Conclusion We have shown that runtime flexibility increases with our ex-
tensions while latency of invocation responses decreases on the benefit side.
These positive effects are complemented by an increasing overhead on the cost
side. The actual break-even is highly application-specific and depends on a
number of factors, for instance high-level indicators such as cache hit rates,
but also low-level factors such as deviation of user access behavior with re-
spect to average time between component attribute modifications / method
invalidations or individual prefetching dependencies. Quantitative statements
for these performance parameters require a proper performance analysis and
benchmarking.

Performance Benchmarking

We have argued above that the evaluation of performance benefits of our solu-
tions requires a quantitative analysis. From a networking or systems engineer-
ing point of view, this requires the benchmarking of system characteristics like
throughput (requests and/or amount of data per time unit) and maximum
number of concurrently serveable clients (determined by iteratively searching
for a peak until throughput decreases again with additional clients). This sort
of analysis is typically conducted for Web-based, multi-tiered client-server ap-
plications by means of benchmark suits, such as the Rice University Bidding
System (RUBIS) [CMZ02, CCE+03] or TPC-W [Smi01].

We originally intended benchmarking our solution with RUBiS, to be able
to compare our approach to related work like Pfeifer’s Method-based Caching
[PJ03]. RUBiS was also chosen instead of TPC-W [Smi01], which rather over-
loads the database tier, according to [CMZ02]. Its System Under Test (SUT)
models an eBay2-like Web-based auction application for which a number of
alternative implementations are provided, including PHP4 and Java Servlets,
the latter with and without various EJB-based business tier variants. All al-
ternative implementations access the same database schema. Hence, the focus
of this benchmark is on comparing different implementation variants of pre-
sentation tier and business tier. The EJB-based business tier variants include
pure Session Bean or Entity Bean solutions, as well as implementations with
Session Façades and Value Objects (see section 3.1.4 on page 91) for different
versions of the EJB specification.

Our original plan was to augment the variant based purely on Entity
Beans with caching metadata and to compare its performance to the “hand-
optimized” variant with Session Façades and Value Objects.

2 http://www.ebay.com/

http://www.ebay.com/

166 Conclusions and Outlook

Problems with Traditional Benchmarks. However, a number of consider-
ations led us to abandon these plans. Benchmarks like RUBiS and TPC-W
focus on transactional Web applications. In contrast, our solution explicitly fo-
cuses on applications with weaker consistency requirements (cf. section 1.4 on
page 5). For the RUBiS components it was sometimes hard to give meaningful
cacheability categorizations that reflect the actual consistency requirements.
In general, most attributes would have to be marked as �not-cacheable�,
rendering our caching service useless.

Most existing benchmarks capture only a limited scope of possible client
access behavior. Hence, the general applicability of expected test results is
rather questionable, since the characteristics of one benchmark (i.e., cache hit
rates, deviation of client access behavior and prefetching dependencies etc.)
may be especially (un)suitable while those of another benchmark are not.

Moreover, changing access behavior is not covered by any of the known
benchmarks. These parameters are typically preconfigured statically by giving
transition probabilities between navigation steps of the modeled work flows.
A could have been conducted by monitoring real user behavior. However, this
would have exceeded the personnel and time constraints of this work.

Another problem of existing benchmarks like RUBiS is that the bench-
marked applications (SUT) usually feature hard-coded patterns like Value Ob-
jects even in the pure Entity Beans variant. These patterns try to solve the same
problems as our caching service, although at a different architectural level.
Our declared goal is to avoid any of these implicit concepts for streamlining
data transfer as a rule, because this sort of code is orthogonal to the actual
business logic.Hence, a lot of refactoring and reverse-engineering is required
to make these existing benchmarks useful for our purposes.

Comparison of Used Base Mechanisms. The issues listed above would
require either serious refactoring of existing benchmarks or a completely new
benchmark implementation from scratch. Both solutions were not feasible be-
cause of time constraints.

Instead, we argue for the plausibility of our expected results by referenc-
ing the successful deployment of the same base mechanisms that underly
our service in other application scenarios. Web-Caching protocols (cf. sec-
tion 3.1.1 on page 84) like adaptive time-to-live (ATTL) [RS02, Sect. 10.1.2], Pig-
gyback Client Validation (PCV) [KW97], and Piggyback Server Invalidation (PSI)
[KW98] closely resemble our approach for dynamic/adaptive caching (see sec-
tion 4.2 on page 111) as we have shown before. We assume that our middle-
ware service will thus perform comparatively for similar low-write application
scenarios like the ones introduced in section 1.2 on page 2.

7.2 Outlook 167

7.1.3 Software Development Process

The goal of qualitative analysis from the software engineering perspective is
to prove claim (2), i.e., early gathering of replication-related metadata stabi-
lizes the development of distributed applications and reduces the necessary
amount of hand-written code.

The primary target of our proposed extensions to the software develop-
ment process is indeed rather stability than acceleration. We capture caching-
related metadata early in the design phase for later generative transforma-
tion into descriptors for middleware service configuration. This obviously re-
duces the amount of hand-written code, which would otherwise be necessary
if caching logic was to be integrated implicitly into application code. Less
hand-written code makes the whole development process less error-prone,
thus increasing the stability of software development.

A similar success story can be observed for other middleware services as
well, for instance, security, transactions, and persistence, among others. This
has already been discussed as the major advantage of descriptive middleware
over implicit middleware in section 2.2.2 on page 18. Thus, we argue that the
proposed consideration of our caching service throughout the software devel-
opment cycle is a consequential and necessary step towards simple reconfig-
urability, which follows the general rule of separation of concerns.

Acceleration of software development is a side effect of this approach. How-
ever, we did not investigate the quantitative extent of this effect. This would
have required a field study of at least two representative user groups chal-
lenged with a given software engineering task over a longer period of time—
one group using the traditional approach of hand-coding caching logic, the
other using our new approach.

Another consideration is towards usability of our extension of the devel-
opment process. We argue that visual modeling and descriptive configuration
is generally easier to use than hand-coded access to non-standard frameworks
and programming libraries. This argumentation is easy to follow if the general
history of Computer-Aided Software Engineering (CASE) tools and their grad-
ual success over traditional, non-visual programming is taken into account.
However, a thorough analysis in this respect would also require a longer case
study with at least two representative user groups. We have left this as an
outlook as well due to time constraints.

7.2 Outlook

Throughout this work, a number of open issues have been isolated and left for
future work. In this section we will capture the most important ones of these
issues and sketch a short outline of possible next steps.

168 Conclusions and Outlook

Performance Evaluation. In section 7.1.2 on page 163 we have discovered
that proper benchmarking would be necessary to be able to make more defi-
nite statements about the actual performance of our prototype implementation
for certain use cases and application scenarios. A number of problems with ex-
isting benchmarks have been isolated, which have to be solved first, either by
refactoring and extending an existing benchmark or by implementing a new
one. These problems include:

• Strong consistency requirements of most benchmarks;

• Limited, statically modeled access behavior is insufficient for evaluating
the adaptivity of our dynamic caching solution; and

• Hard-coded patterns for optimized data transfer in most benchmarks.

Improved Software Development Support. Especially with respect to
modeling of prefetching dependencies (cf. section 5.2.2 on page 138), we have
discovered a need for further optimizations. The tagged values of signa-
tures, depths, and parameters all refer to lists of values because multi-valued
tagged values are not properly supported by the current UML specification
[OMG03c]. As soon as the OMG introduces a more comfortable modeling
mechanism for this issue, our profile should be adapted accordingly.

Reverse Engineering. Our modeling facilities are quite useful for applica-
tions design from scratch. This was to be expected since our solution was
designed especially for this use case. However, hardly any tool support is cur-
rently available for extending existing applications to incorporate our caching
service. We discovered this, for instance, during our attempt to extend the
RUBiS benchmark SUT. In analogy to other model-driven tools that gradually
begin to address reverse engineering of existing applications and bidirectional
transformation of metadata between different model abstraction levels (cf. sec-
tion 2.5.2 on page 65), a solution would be desirable that allows to obtain
cacheability metadata for existing components by means of visual modeling
tools instead of hand-coding the corresponding caching.xml descriptor file.

Feature Interaction A major challenge of aspects and non-functional
properties—or of separation of concerns in general—is the often unanticipated
interaction of these features, which is also sometimes referred to as aspect in-
terference. Examples of such interferences include the relation between the re-
sponse time of an invocation served from cache and its potential staleness, or
the confidentiality of passwords or cryptographic keys, which in turn affects
the cacheability of this data from a security point of view. It is plain to see, that
there are more driving forces behind the cacheability categorization of compo-
nent attributes and method results than plain application-specific consistency
requirements and tolerances.

7.2 Outlook 169

Feature interaction has been a research area for more than ten years, espe-
cially in the telecommunications domains. A further investigation of its impli-
cations in our application domain poses be an interesting research topic.

Alternative Consistency Protocols. Up to now, our prototype implements
only one consistency protocol: our heuristic for adaptive invalidation of
cached method results. This protocol is inappropriate for applications with
more stringent consistency requirements. Competing related approaches like
Pfeifer’s Method-based Caching [PJ03] in turn provide only one protocol
for strong consistency. Such protocols impose an unnecessary performance
penalty for applications or application parts with weaker consistency require-
ments. Hence, it would be sensible to have a flexible possibility for integrating
of alternative consistency protocols in a descriptive manner. In analogy to our
dynamic caching solution, one could even imagine an adaptive selection of
consistency protocols depending on the current network topology3 other fac-
tors.

3 E.g., Piggyback (in)validation for environments with NAT and firewalls; broadcast or call-
back invalidation for LAN environments.

170 Conclusions and Outlook

Bibliography

[AAG+02] Ismail Ari, Ahmed Amer, Robert Gramacy, Ethan L. Miller, Scott A.
Brandt, and Darrell D. E. Long. ACME: Adaptive caching using mul-
tiple experts. In Proceedings of the 4th Workshop on Distributed Data and
Structures (WDAS 2002). Carleton Scientific, 2002. 85, 86

[ABCdO96] Virgı́lio Almeida, Azer Bestavros, Mark Crovella, and Adriana
de Oliveira. Characterizing reference locality in the WWW. In Proceed-
ings of the 4th Conference on Parallel and Distributed Information Systems
(PDIS’96), Miami Beach, FL, USA, 1996. IEEE. 11

[ABGMA88] Rafael Alonso, Daniel Barbará, Hector Garcia-Molina, and Soraya Abad.
Quasi-copies: Efficient data sharing for information retrieval systems.
In Joachim W. Schmidt, Stefano Ceri, and Michele Missikoff, editors,
Proceedings of the 1st International Conference on Extending Database Tech-
nology (EDBT’88)—Advances in Database Technology, volume 303 of Lec-
ture Notes in Computer Science, pages 443–468, Venice, Italy, 14–18 March
1988. Springer. 87

[ACM01] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns: Best Prac-
tices and Design Strategies. Prentice Hall / Sun Microsystems Press, 1st
edition, 26 June 2001. 70, 92, 94

[AEB03] Omar Aldawud, Tzilla Elrad, and Atef Bader. UML profile for aspect-
oriented software development. In Aldawud [Ald03]. In conjunction
with the International Conference on Aspect-Oriented Software Devel-
opment (AOSD 2003). 76

[AGLM95] Atul Adya, Robert E. Gruber, Barbara Liskov, and Umesh Mahesh-
wari. Efficient optimistic concurrency control using loosely synchro-
nized clocks. In Michael J. Carey and Donovan A. Schneider, editors,
Proceedings of the International Conference on Management of Data, pages
23–34, San Jose, CA, USA, 22–25 May 1995. ACM SIGMOD, ACM Press.
89, 119

[AH03] Hamud Al Hammoud. Entwicklung eines adaptiven Caching-Dienstes
für verteilte Komponentensysteme. Diplomarbeit, Technische Univer-
sität Dresden, Dresden, Germany, 1 September 2003. 110, 119, 120, 126

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pat-
tern Language: Towns, Buildings, Construction. Oxford University Press,
1977. 70

[Ald03] Omar Aldawud, editor. Proceedings of the 3rd International Workshop on
Aspect-Oriented Modeling with UML, Boston, MA, USA, 18 March 2003.
ACM SIGSOFT / SIGPLAN. In conjunction with the International Con-
ference on Aspect-Oriented Software Development (AOSD 2003). 76,
171

172 Bibliography

[Asp01] Aspect-oriented programming with AspectJ. Project homepage of as-
pectj.org (Xerox PARC) http://www.aspectj.org , 2001. 75, 76, 77

[Aßm03] Uwe Aßmann. Invasive Software Composition. Springer, Berlin, Heidel-
berg, 2003. 16

[BAB+00] Arno Bakker, E. Amade, Gerco Ballintijn, Ihor Kuz, P. Verkaik, I. van der
Wijk, Marteen van Steen, and Andrew S. Tanenbaum. The globe distri-
bution network. In Proceedings of the USENIX Annual Technical Conference
2000, pages 141–152, San Diego, CA, USA, June 2000. 97

[Bak02] David E. Bakken. Encyclopedia of Distributed Computing, chapter Middle-
ware. Kluwer Academic Press, 2002. In press. 18, 19

[BB03] Bill Burke and Adrian Brock. Aspect-Oriented Programming and JBoss.
ONJava.com: The O’Reilly Network, 28 May 2003. 29, 77, 78, 96

[BC87] Kent Beck and Ward Cunningham. Using pattern languages for object-
oriented programs. In OOPSLA Workshop on Specification and Design for
Object-Oriented Programming, 17 September 1987. 70

[BCRP98] Gordon S. Blair, Geoff Coulson, P. Robin, and M. Papathomas. An archi-
tecture for next generation middleware. In Davies et al. [DRS98], pages
191–206. 71, 72, 75

[BEA00] BEA Systems. Using Custom WebLogic JSP Tags (cache, process, repeat),
WebLogic server 6.0 edition, 2000. http://e-docs.bea.com/wls/
docs60/jsp/customtags.html . 83

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1st edition, 5 October 1999. 61

[Bel66] Lazlo A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):79–101, 1966. 12, 100

[Bes95] Azer Bestavros. Using speculation to reduce server load and service
time on the WWW. In Proceedings of the 4th ACM International Confer-
ence on Information and Knowledge Management (CIKM’95), pages 403–
410, Baltimore, MD, USA, November 1995. ACM Press. 103

[Bes96] Azer Bestavros. Speculative data dissemination and service to reduce
server load, network traffic and service time in distributed information
systems. In Stanley Y. W. Su, editor, Proceedings of the 12th International
Conference on Data Engineering (ICDE’96), pages 180–187, New Orleans,
LA, USA, March 1996. IEEE Computer Society Press. 103

[BH04] Andreas Bümann and Theo Härder. Cache groups—an in-depth analy-
sis of design issues. In Proceedings of the 30th VLDB Conference, Toronto,
Canada, 31 August–3 September 2004. Very Large Data Base Endow-
ment. 87, 89, 101

[BHG87] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concur-
rency control and recovery in database systems. Addison-Wesley, Boston,
MA, USA, 1987. 11, 46, 47, 48, 49, 50, 51, 52, 90, 91, 99

[BHM+04] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferris, and David Orchard. Web Service Architecture.
W3C, 11 February 2004. W3C Working Group Note. 41, 42

[Bir04] Kenneth P. Birman. Like it or not, Web Services are Distributed Objects.
Communications of the ACM, 47(12):60–62, December 2004. 44

http://www.aspectj.org
http://e-docs.bea.com/wls/docs60/jsp/customtags.html
http://e-docs.bea.com/wls/docs60/jsp/customtags.html

Bibliography 173

[BKTJ92] Henri E. Bal, M. Frans Kaashoek, Andrew S. Tanenbaum, and Jack
Jansen. Replication techniques for speeding up parallel applications on
distributed systems. Concurrency: Practice and Experience, 4(5):337–355,
August 1992. 91, 92, 97

[BLFM98] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource
Identifiers (URI): Generic Syntax. Internet Engineering Task Force, Net-
work Working Group, August 1998. IETF RFC 2396. 83, 84

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-Oriented Software Architecture: A System of Pat-
terns. John Wiley & Sons, 1996. 17, 70, 72

[BMR+00] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-Oriented Software Architecture: A System of Pat-
terns, volume 1 of Software Design Patterns. John Wiley & Sons, 2000. 70,
72

[Boh04] Matthias Bohlen. AndroMDA. Project homepage: http://andromda.
org/ , 2004. 64, 69, 132, 135

[Boo94] Grady Booch. Object-Oriented Analysis and Design with Applications. Ben-
jamin / Cummings, Redwood City, CA, USA, 2nd edition, 1994. 59

[Bor01] Jerry Bortvedt. JCache - Java Temporary Caching API. Java Specification
Request #107, 19 March 2001. 96, 149

[Bra04] Gilad Bracha. A metadata facility for the Java programming language.
Java Specification Request #175, 13 September 2004. 29, 68

[Bro01] Kyle Brown. Session bean wraps entity beans. Portland Pattern Repos-
itory http://c2.com/ppr , February 2001. 94

[BV03] Bernd Brügge and Christoph Vilsmeier. Reducing CORBA call latency
by caching and prefetching. IEEE Distributed Systems Online, June 2003.
103, 108, 127

[BW98] Alan W. Brown and Kurt C. Wallnau. The current state of CBSE. IEEE
Software, September/October 1998. 15, 16

[CCE+03] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Mar-
guerite, and Willy Zwaenepoel. Performance comparison of middle-
ware architectures for generating dynamic web content. In Endler and
Schmidt [ES03], pages 242–261. 98, 165

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL). W3C, 1.1 edition,
15 March 2001. 43

[CD00] John Cheesman and John Daniels. UML Components: A Simple Process for
Specifying Component-Based Software. Component Software Series. Addi-
son-Wesley, October 2000. 16, 17, 42, 63, 64

[CDFV00] Gregory Chockler, Danny Dolev, Roy Friedman, and Roman Vitenberg.
Implementing a caching service for distributed CORBA objects. In Sven-
tek and Coulson [SC00], pages 1–23. 95

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 1st edition, 6 June
2000. 55, 75

http://andromda.org/
http://andromda.org/
http://c2.com/ppr

174 Bibliography

[Cer02] Ethan Cerami. Web Service Essentials: Distributed Applications with XML-
RPC, SOAP, UDDI & WSDL. O’Reilly, February 2002. 44

[CMZ02] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. Perfor-
mance and scalability of EJB applications. In Proceedings of the 17th
Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA’02), pages 246–261, Seattle, WA, USA, 4–8 November
2002. ACM SIGPLAN, ACM Press. 98, 165

[Cod70] Edgar Frank Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377–387, June 1970. 19, 48

[Cou01] Geoff Coulson. What is reflective middleware? IEEE Distributed Systems
Online, 2(8), December 2001. 72

[CPS93] Steve J. Caughey, Graham D. Parrington, and Santosh K. Shrivastava.
SHADOWS - a flexible support system for objects in distributed sys-
tems. In Proceedings of the 3rd International Workshop on Object Orientation
and Operating Systems (IWOODS’93), pages 73–82, Asheville, NC, USA,
1993. 91

[DeM03] Linda G. DeMichiel. Enterprise JavaBeans Specification Version 2.1. Sun
Microsystems, final release edition, 12 November 2003. 22, 23, 29, 42

[DeM04] Linda G. DeMichiel. Enterprise JavaBeans Specification Version 3.0. Sun
Microsystems, early draft edition, 24 June 2004. 22, 29, 69, 77

[DFJ+96] Shaul Dar, Michael J. Franklin, Björn Thór Jónsson, Divesh Srivastava,
and Michael Tan. Semantic data caching and replacement. In T. M. Vi-
jayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda,
editors, Proceedings of the 22th International Conference on Very Large Data
Bases (VLDB’96), pages 330–341, Mumbai (Bombay), India, 3–6 Septem-
ber 1996. Very Large Data Base Endowment, Morgan Kaufmann. 10,
88

[DL03] Pierre-Charles David and Thomas Ledoux. Towards a framework for
self-adaptive component-based applications. In Stefani et al. [SDH03],
pages 1–14. 57, 75, 94

[DMP+02] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitara-
man, and Bill Weihl. Globally distributed content delivery. IEEE Internet
Computing, 7(5):50–58, September 2002. 84, 85, 103

[DRS98] Nigel Davies, Kerry Raymond, and Jochen Seitz, editors. Middleware
1998—International Conference on Distributed Systems Platforms and Open
Distributed Processing, The Lake District, England, 15–18 September
1998. IFIP, Springer. 172, 176

[DSO03] Introduction to message-oriented middleware (MOM). IEEE Distributed
Systems Online, 31 August 2003. 19, 25

[DYK01] Linda G. DeMichiel, L. Ümit Yalçinalp, and Sanjeev Krishnan. Enter-
prise JavaBeans Specification Version 2.0. Sun Microsystems, final release
edition, 14 August 2001. 22, 25, 26, 28, 29, 93, 151

[EAB02] Tzilla Elrad, Omar Aldawud, and Atef Bader. Aspect oriented
modeling—bridging the gap between design and implementation. In
Don S. Batory, Charles Consel, and Walid Taha, editors, Generative Pro-
gramming and Component Engineering (GPCE 2002), volume 2487 of Lec-
ture Notes in Computer Science, pages 189–201, Pittsburgh, PA, USA, 6–
8 October 2002. ACM SIGPLAN/SIGSOFT, Springer. 76

Bibliography 175

[ES03] Markus Endler and Douglas C. Schmidt, editors. Middleware 2003, vol-
ume 2672 of Lecture Notes in Computer Science, Rio de Janeiro, Brazil,
16–20 June 2003. ACM / IFIP / USENIX, Springer. 173, 175, 185

[ET01] John Eberhard and Anad Tripathi. Efficient object caching for dis-
tributed Java RMI applications. In R. Guerraoui, editor, Middleware 2001,
volume 2218 of Lecture Notes in Computer Science, pages 15–35, Heidel-
berg, Germany, 2001. ACM / IFIP / USENIX, Springer. 92, 96, 98, 108,
110

[FBLL02] Robert E. Filman, Stuart Barrett, Diana D. Lee, and Ted Linden. Insert-
ing ilities by controlling communications. Communications of the ACM,
45(1):116–122, 2002. 18, 75, 94

[FC94] Michael J. Franklin and Michael J. Carey. Client-server caching revis-
ited. In M. Tamer Özsu, Umeshwar Dayal, and Patrick Valduriez, ed-
itors, Distributed Object Management, pages 57–78. Morgan Kaufmann,
1994. Papers from the International Workshop on Distributed Object
Management (IWDOM) 1992. 87, 89

[FCL97] Michael J. Franklin, Michael J. Carey, and Miron Livny. Transactional
client-server cache consistency: alternatives and performance. ACM
Transactions on Database Systems (TODS), 22(3):315–363, September 1997.
11, 89

[FF03] Martin Fowler and Matthew Foemmel. Continuous integra-
tion. ThoughtWorks Whitepaper, http://martinfowler.com/
articles/continuousIntegration.html , 2003. 61, 67

[FGM+99] Roy T. Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk Nielsen, Paul
Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
Internet Engineering Task Force, Network Working Group, June 1999.
IETF RFC 2616. 13, 23, 43, 84

[Fow03] Martin Fowler. A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley, 3rd edition, 19 September 2003. 59

[FR03] Marc Fleury and Francisco Reverbel. The JBoss extensible server. In
Endler and Schmidt [ES03], pages 344–373. 29, 74, 98, 153, 156

[Gel85] David Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages (TOPLAS), 7(1):80–112, January 1985. 19

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns - Elements of Reusable Object-Oriented Software. Addison-Wesley,
August 1994. 26, 27, 70, 72, 74, 91, 92, 148, 149

[GJL97] Steven D. Gray, Roger Jennings, and Rick A. Lievano. Microsoft Transac-
tion Server 2.0. Roger Jennings’ Database Workshop. Sams Publishing,
1 December 1997. 40

[GKW02] David Garlan, Jeff Kramer, and Alexander L. Wolf, editors. Proceedings
of the 1st Workshop on Self-Healing Systems (WOSS’02), Charleston, SC,
USA, 18–19 November 2002. ACM SIGSOFT, ACM Press. Collocated
with the FSE-10. 57, 58, 176

[GLP75] Jim Gray, Raymond A. Lorie, and Gianfranco R. Putzulo. Granularity of
locks and degrees of consistency in a shared database. In Proceedings of
the 1st International Conference on Very Large Data Bases (VLDB’75), Fram-
ingham, MA, USA, 22–24September 1975. ACM. IBM Research Report
RJ1654. 47

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

176 Bibliography

[Gre01] Jack Greenfield. UML Profile for EJB. Rational Software Corporation,
public draft edition, 28 August 2001. Java Specification Request 26: UM-
L/EJB Mapping Specification. Withdrawn 29 Mar, 2004. 63, 64, 133, 135

[Gru97] Robert E. Gruber. Optimism vs. Locking: A Study of Concurrency Control
for Client-Server Object-Oriented Databases. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, February 1997. Technical
Report MIT/LCS/TR-708. 11, 89, 119

[GS02] David Garlan and Bradley Schmerl. Model-based adaptation for self-
healing systems. In Garlan et al. [GKW02], pages 27–32. Collocated
with the FSE-10. 57, 58

[Här84] Theo Härder. Observations on optimistic concurrency control schemes.
Information Systems, 9(2):111–120, 1984. Special issue on databases: Their
creation, management and utilization. 49

[HB01] Daniel Hagimont and Fabienne Boyer. A configurable RMI mechanism
for sharing distributed java objects. IEEE Internet Computing, 5(1):36–43,
January / February 2001. 97, 149

[HB04] Theo Härder and Andreas Bümann. Datenbank-Caching – Eine sys-
tematische Analyse möglicher Verfahren. Informatik – Forschung und En-
twicklung, 19(1), 2004. 87, 89, 101, 145

[HBG+98] Franz J. Hauck, Ulrich Becker, Martin Geier, Erich Meier, Uwe Rastofer,
and Martin Steckermeier. AspectIX: An aspect-oriented and CORBA-
compliant ORB architecture. Technical Report TR-I4-98-08, Univ. of
Erlangen-Nuernberg, IMMD IV, 1998. 97

[HL98] Daniel Hagimont and D. Louvegnies. Javanaise: Distributed shared
objects for Internet cooperative applications. In Davies et al. [DRS98],
pages 339–354. 97

[HO93] Willian Harrison and Harold Ossher. Subject-oriented programming
(a critique of pure objects). In Andreas Paepcke, editor, Proceedings of
the 8th Annual Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’93), number 10 in SIGPLAN Notices
28, pages 411–428, Washington, DC, USA, October 1993. ACM Press. 75

[HOV04] Richard Hightower, Warner Onstine, and Paul Visan. Professional Java
Tools for Extreme Programming: Ant, XDoclet, JUnit, Cactus and Maven.
Wrox, April 2004. 67, 133

[HR83] Theo Härder and Andreas Reuter. Principles of transaction-oriented da-
tabase recovery. ACM Computing Surveys (CSUR), 15(4):287–317, De-
cember 1983. 46

[HSW94] Yixiu Huang, Robert H. Sloan, and Ouri Wolfson. Divergence caching
in client-server architectures. In Proceedings of the 3rd International Con-
ference on Parallel and Distributed Information Systems (PDIS ’94), pages
131–139, Austin, TX, USA, September 1994. IEEE. 86

[IC98] Arun Iyengar and Jim Challenger. Data update propagation: A method
for determining how changes to underlying data affect cached ob-
jects on the web. Technical Report RC 21093(94368), IBM Research,
T.J.Watson Research Center, Yorktown Heights, NY, USA, February
1998. 96

Bibliography 177

[ISO95] ISO/IEC, ITU-T, Geneve, Switzerland. Open Distributed Processing Ref-
erence Model—Part 3: Architecture, 1995. International Standard 10746-3
/ ITU-T Recommendation X.903. 4, 18, 22, 72

[Iye99] Arun Iyengar. Design and performance of a general-purpose software
cache. In Proceedings of the 18th IEEE International Performance Conference
(IPCCC’99), 1999. 96

[Jac91] Ivar Jacobson. Object-oriented software engineering. ACM Press, New
York, NY, USA, 1st edition, 1991. 59

[JBo04] JBoss Group. JBoss, 2004. Project homepage http://www.jboss.
org/ . 74

[JdT+95] Anthony D. Joseph, Alan F. deLespinasse, Joshua A. Tauber, David K.
Gifford, and M. Frans Kaashoek. Rover: A toolkit for mobile infor-
mation access. In Proceedings of the 15th ACM Symposium on Operating
System Principles (SOSP’95), number 5 in Operating System Review 29,
pages 156–171, Copper Mountain Resort, CO, USA, 3–6 December 1995.
ACM Press. 99

[JM02] Karsten Januszewski and Ed Mooney. UDDI Features List. OASIS, 3rd
edition, 2002. 43

[KAD96] Rammohan Kordale, Mustaque Ahamad, and Murthy V. Devarakonda.
Object caching in a CORBA compliant system. Computing Systems,
9(4):377–404, 1996. 95

[KB94] Arthur M. Keller and Julie Basu. A predicate-based caching scheme for
client-server database architectures. In Proceedings of the 3rd International
Conference on on Parallel and Distributed Information Systems (PDIS’94),
pages 229–238, Austin, TX, USA, 28–30 September 1994. IEEE Computer
Society Press. 10, 88

[KC03] Jeffrey O. Keffart and David M. Chess. The vision of autonomic com-
puting. Computer Magazine, 36(1):41–50, January 2003. 57

[KCBC02] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The case
for reflective middleware. Communications of the ACM, 45(6):33–38, June
2002. Special issue on adaptive middleware. 71, 72

[KGDA00] Vijaykumar Krishnaswamy, Ivan B. Ganev, Jaideep M. Dharap, and
Mustaque Ahamad. Distributed object implementations for interactive
applications. In Sventek and Coulson [SC00]. 96

[KK00] Rainer Koster and Thorsten Kramp. Loadable smart proxies and native
code-shipping for CORBA. In Proceeding of the 3rd International IFIP/GI
Working Conference on Universal Service Market USM 2000, volume 1890
of Lecture Notes in Computer Science, pages 202–213, Munich, Germany,
2000. Springer. 73

[Kla04] Sebastian Klamar. Adaptive Architekturen für verteilte Systeme.
Diplomarbeit, Technische Universität Dresden, Dresden, Germany,
30 September 2004. 57

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Akşit and Satoshi Matsuoka, editors, Pro-
ceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP’97), volume 1241 of Lecture Notes in Computer Science, pages

http://www.jboss.org/
http://www.jboss.org/

178 Bibliography

220–242, Jyväskylä, Finland, 1997. AITO / ACM SIGPLAN, Springer.
75

[Kob04] Cris Kobryn. UML 3.0 and the future of modeling. Software and Systems
Modeling, 3(1):4–8, March 2004. 59

[KRB91] Gregor Kiczales, Jim Des Rivieres, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991. 72

[KRB01] Vijaykumar Krishnaswamy, Michel Raynal, and David E. Bakken.
Shared state consistency for time-sensitive distributed applications. In
Proceedings of the 21st International Conference on Distributed Computing
Systems (ICDCS’01), pages 606–614, Phoenix, AZ, USA, 16–19 April
2001. IEEE Computer Society Press. 96

[Kru00] Philippe Kruchten. The Rational Unified Process: An Introduction. Addi-
son-Wesley, 3nd edition, 19 December 2000. 61

[KS91] James. J. Kistler and Mahadev Satyanarayanan. Disconnected operation
in the Coda file system. In Proceedings of the 13th ACM Symposium on
Operating Systems Principles (SOSP’91), number 5 in Operating Systems
Review 25, pages 213–225, Pacific Grove, CA, USA, 3–6 December 1991.
ACM Press. 102

[Kue97] Geoffrey H. Kuenning. Seer: Predictive File Hoarding for Disconnected Mo-
bile Operation. PhD thesis, University of California, Los Angeles, CA,
USA, May 1997. Technical Report UCLA-CSD-970015. 102

[KW97] Balachander Krishnamurthy and Craig E. Wills. Study of piggyback
cache validation for proxy caches in the world wide web. In Proceed-
ings of the 1st USENIX Symposium on Internet Technologies and Systems,
Monterey, CA, USA, 8–11 December 1997. 85, 119, 166

[KW98] Balachander Krishnamurthy and Craig E. Wills. Piggyback server inval-
idation for proxy cache coherency. Computer Networks, 30(1–7):185–193,
April 1998. Proceedings of the 7th International World Wide Web Con-
ference . 85, 119, 166

[KWB+98] Vijaykumar Krishnaswamy, Dan Walther, Sumeer Bhola, Ethendranath
Bommaiah, George Riley, Brad Topol, and Mustaque Ahamad. Effi-
cient implementations of Java remote method invocation (RMI). In Pro-
ceedings of the 4th Conference on Object-Oriented Technologies and Systems
(COOTS’98), Santa Fe, NM, USA, 27–30 April 1998. USENIX. 95, 98, 108

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture—Practice and Promise. Addison-Wesley, 1st edition,
25 April 2003. 66

[KWZ90] Klaus Kratzer, Hartmut Wedekind, and Georg Zörntlein. Prefetching—a
performance analysis. Information Systems, 15(4):445–452, 1990. Perga-
mon Press. 101

[Len97] Richard Lenz. Adaptive Datenreplikation in Verteilten Systemen, volume 23
of Teubner-Texte zur Informatik (TTzI). Teubner Verlag, Leipzig, Germany,
1st edition, 1997. 10, 46, 50, 51, 52, 86, 87

[Lie96] Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method
with Propagation Patterns. PWS Publishing Company, 1996. 54, 55

Bibliography 179

[Lös02] Frank Löschau. Realisierung kontextsensitiver Anwendungen auf Basis
eines Frameworks zur Kontextverarbeitung und -verwaltung. Diplo-
marbeit, Technische Universität Dresden, Dresden, Germany, 9 October
2002. 3

[Lot00] Tony Loton. The smart approach to distributed performance monitoring
with Java. JavaWorld, September 2000. 95, 149, 152

[LS88] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for ef-
ficient asynchronous procedure calls in distributed systems. In Proceed-
ings of the Conference on Programming Language Design and Implementation
(PLDI’88), number 7 in SIGPLAN Notices 23, pages 260–267, Atlanta,
GA, USA, 22–24 July 1988. ACM Press. 99, 122

[LZ77] Abraham Lempel and Jacob Ziv. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory, 23(3):337–
343, May 1977. 101

[Mae87] Pattie Maes. Computational Reflection. PhD thesis, Laboratory for Arti-
ficial Intelligence, Vrije Universiteit Brussel, Brussels, Belgium, January
1987. 71

[Mar06] Andrei Andreevich Markov. Rasprostranenie zakona bol’shih chisel na
velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo
obschestva pri Kazanskom universitete, 15(2):135–156, 1906. (Extension of
the limit theorems of probability theory to a sum of variables connected
in a chain). 101

[McA96] Jeff McAffer. Meta-level architecture support for distributed objects. In
Gregor Kiczales, editor, Proceedings of Reflection’96 Conference, pages 39–
62, San Francisco, CA, USA, 1996. Published before in IWOODS’95. 71,
72

[MCC99] Paul Martin, Victor Callaghan, and Adrian Clark. High performance
distributed objects using caching proxies for large scale applications. In
Proceedings of the 1st International Symposium on Distributed Objects and
Applications (DOA’99), pages 110–119, Edinburgh, UK, 1999. 91

[McI64] M. Douglas McIlroy. Pipes and filters. Internal Bell Labs memo, original
title lost, 11 October 1964. see http://cm.bell-labs.com/cm/cs/
who/dmr/mdmpipe.html . 17, 70

[McI69] M. Douglas McIlroy. “Mass produced” software components. In P. Naur
and B. Randell, editors, Software Engineering, pages 138–155, Brussels,
Belgium, 1969. Scientific Affairs Division, NATO. Report of a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7th to
11th October 1968. 15

[MH98] Vlada Matena and Mark Hapner. Enterprise JavaBeans Specification Ver-
sion 1.0. Sun Microsystems, 21 March 1998. 22, 28, 93

[MH99] Vlada Matena and Mark Hapner. Enterprise JavaBeans Specification Ver-
sion 1.1. Sun Microsystems, final release edition, 24 November 1999. 22,
28, 64, 93, 151

[Mit03] Nilo Mitra. SOAP Part 0: Primer. W3C, 1.2 edition, 24 June 2003. 43

[MM03] Joaquin Miller and Jishnu Mukerji. MDA Guide. Object Management
Group, 1.0.1 edition, 12 June 2003. omg/03-06-01. 65

http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html
http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html

180 Bibliography

[Moc87] Paul Mockapetris. Domain Names—Concepts and Facilities. Internet En-
gineering Task Force, Network Working Group, November 1987. IETF
RFC 1034. 84

[Moh01] C. Mohan. Caching technologies for Web applications. In Tutorial at
VLDB Conference 2001, Rome, Italy, 2001. http://www.almaden.
ibm.com/u/mohan/Caching_VLDB2001.pdf . 81, 86, 87

[MSa] Microsoft. ActiveX Controls. http://www.microsoft.com/com/
tech/ActiveX.asp . 39

[MSb] Microsoft. COM+. http://www.microsoft.com/com/tech/
COMPlus.asp . 40

[MSc] Microsoft. Component Object Model (COM). http://www.microsoft.
com/com/tech/com.asp . 38

[MSd] Microsoft. Distributed Common Object Model (DCOM). http://www.
microsoft.com/com/tech/dcom.asp . 19, 39, 99

[MSe] Microsoft. Microsoft Transaction Server (MTS). http://www.
microsoft.com/com/tech/MTS.asp . 39

[MSf] Microsoft. .NET Framework. http://msdn.microsoft.com/
netframework/ . 40, 42

[MSg] Microsoft. Visual C# Language Specification. http://
msdn.microsoft.com/library/en-us/csspec/html/
CSharpSpecStart.asp . 40, 69

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and compar-
ison framework for software architecture description languages. IEEE
Transactions on Software Engineering, 26(1):70–93, January 2000. 17, 37,
57

[MW88] Klaus Meyer-Wegener. Transaktionssysteme: Funktionsumfang, Real-
isierungsmöglichkeiten, Leistungsverhalten. Leitfäden der angewandten In-
formatik. B. G. Teubner, Stuttgart, Germany, 1988. 18, 19, 46

[Neu03] Olaf Neumann. Wiederverwendbare Komponenten für eLearning. Disserta-
tion, Technische Universität Dresden, Dresden, Germany, 2003. 3, 148,
162

[NPF99] Olaf Neumann, Christoph Pohl, and Katrin Franze. Caching in Stubs
und Events mit Enterprise Java Beans bei Einsatz einer objektorien-
tierten Datenbank. In Clemens H. Cap, editor, Java-Informations-Tage
JIT’99, Informatik Aktuell, pages 17–25, Düsseldorf, Germany, 20–
21 September 1999. Springer. 107, 117, 147

[Oes02] Bernd Oestereich. Developing Software with UML: Object-Oriented Analy-
sis and Design in Practice. Addison-Wesley, 2nd edition, June 2002. 16,
61

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heim-
bigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S.
Rosenblum, and Alexander L. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, May/June
1999. 57, 58

[OMG99] Object Management Group. White Paper on the Profile Mechanism, April
1999. ad/99-04-07. 63, 64

http://www.almaden.ibm.com/u/mohan/Caching_VLDB2001.pdf
http://www.almaden.ibm.com/u/mohan/Caching_VLDB2001.pdf
http://www.microsoft.com/com/tech/ActiveX.asp
http://www.microsoft.com/com/tech/ActiveX.asp
http://www.microsoft.com/com/tech/COMPlus.asp
http://www.microsoft.com/com/tech/COMPlus.asp
http://www.microsoft.com/com/tech/com.asp
http://www.microsoft.com/com/tech/com.asp
http://www.microsoft.com/com/tech/dcom.asp
http://www.microsoft.com/com/tech/dcom.asp
http://www.microsoft.com/com/tech/MTS.asp
http://www.microsoft.com/com/tech/MTS.asp
http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/library/en-us/csspec/html/CSharpSpecStart.asp
http://msdn.microsoft.com/library/en-us/csspec/html/CSharpSpecStart.asp
http://msdn.microsoft.com/library/en-us/csspec/html/CSharpSpecStart.asp

Bibliography 181

[OMG01] Object Management Group. CORBA Portable Interceptor Specification,
March 2001. ptc/01-03-04, formal/02-05-18. 73, 74, 156

[OMG02a] Object Management Group. CORBA Components, version 3.0 edition,
June 2002. formal/02-06-65. 29, 31, 37

[OMG02b] Object Management Group. UML Profile for Enterprise Distributed Object
Computing (EDOC), February 2002. ptc/2002-02-05. 63, 64, 133

[OMG03a] Object Management Group. Meta Object Facility (MOF) 2.0 Core Specifi-
cation, October 2003. ptc/03-10-04. 41, 59, 60, 62

[OMG03b] Object Management Group. UML 2.0 Infrastructure Specification, Septem-
ber 2003. ptc/03-09-15. 16, 59, 61, 62, 63

[OMG03c] Object Management Group. UML 2.0 Superstructure Specification, August
2003. ptc/03-08-02. 59, 61, 63, 64, 133, 135, 140, 168

[OMG03d] Object Management Group. Unified Modeling Language Specification, v1.5,
March 2003. formal/03-03-01. 59, 61

[OMG03e] Object Management Group. XML Metadata Interchange (XMI Specifica-
tion, 2.0 edition, May 2003. formal/03-05-02. 60, 132

[OMG04a] Object Management Group. Common Object Request Broker Architecture:
Core Specification, v3.0.3 edition, March 2004. formal/04-03-12. 19, 20,
30, 33, 39, 41, 73

[OMG04b] Object Management Group. Metamodel and UML Profile for Java and EJB
Specification, 1.0 edition, February 2004. formal/04-02-02. 63, 64

[OMG04c] Object Management Group. UML Profile for CORBA Components Specifi-
cation, March 2004. ptc/04-03-04. 35, 63

[ÖSA+03] Rickard Öberg, Andreas Schaefer, Ara Abrahamian, Aslak Hellesøy,
Dmitri Colebatch, and Vincent Harcq. XDoclet. Project homepage:
http://xdoclet.net/ , 2003. 67, 68

[Out04] Outsource Cafe. JavaGen: Automated Software Development, 2004. Project
homepage http://www.javagen.com/ . 69

[ÖV99] M. Tamer Özsu and Patrick Valduriez. Principles of distributed database
systems. Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 1999.
46, 51

[ÖVU98] M. Tamer Özsu, Kaladhar Voruganti, and Ronald C. Unrau. An
asynchronous avoidance-based cache consistency algorithm for client
caching DBMSs. In Ashish Gupta, Oded Shmueli, and Jennifer Widom,
editors, Proceedings of the 24th International Conference on Very Large Data
Bases (VLDB’98), pages 440–451, New York, NY, USA, 24–27 August
1998. Very Large Data Base Endowment, Morgan Kaufmann. 89

[PB03] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache re-
placement strategies. ACM Computing Surveys, 35(4):374–398, December
2003. 12, 84, 85, 86

[PDF+02] Renaud Pawlak, Laurence Duchien, Gerard Florin, Fabrice Legond-
Aubry, Lionel Seinturier, and Laurent Martelli. A UML notation
for aspect-oriented software design. http://jac.aopsys.com/
papers/uml_short/uml.html , 3 April 2002. 76, 77

http://xdoclet.net/
http://www.javagen.com/
http://jac.aopsys.com/papers/uml_short/uml.html
http://jac.aopsys.com/papers/uml_short/uml.html

182 Bibliography

[PDN86] Ruben Prieto-Diaz and James Neighbors. Module interconnection lan-
guages. Journal of Systems and Software, 6(4):307–334, November 1986.
16, 17

[Pen04] Srini Penchikala. J2EE object-caching frameworks. JavaWorld, May 2004.
96

[Pfe04a] Daniel Pfeifer. Eine Algebra für Cache-Modelle zum methodenbasierten
Caching im Applikationsserver-Bereich. Technical Report 2004-3, IPD,
Universität Karlsruhe, 10 February 2004. 98, 110

[Pfe04b] Daniel Pfeifer. Transaktionales Methoden-Caching im
Applikationsserver-Berreich. Technical Report 2004-13, IPD, Uni-
versität Karlsruhe, 6 August 2004. 89, 90, 98, 120

[PG03] Christoph Pohl and Steffen Göbel. Integrating orthogonal middle-
ware functionality in components using interceptors. In Klaus Irmscher
and Klaus-Peter Fähnrich, editors, Kommunikation in Verteilten Syste-
men (KiVS 2003), Informatik Aktuell, pages 345–358, Leipzig, Germany,
February 2003. VDE/ITG & GI, Springer. 55, 155, 156, 160

[PJ03] Daniel Pfeifer and Hannes Jakschitsch. Method-based caching in
multi-tiered server applications. In Robert Meersman, Zahir Tari, and
Douglas C. Schmidt, editors, On The Move to Meaningful Internet Sys-
tems 2003—Proceedings of the OTM Confederated International Conferences
CoopIS, DOA, and ODBASE, volume 2888 of Lecture Notes in Computer
Science, pages 1312–1332, Catania, Sicily, Italy, 3–7 November 2003.
Springer. 98, 165, 169

[Poh99] Christoph Pohl. Entwurfsrichtlinien zum komponentenbasierten Auf-
bau eines Teleteaching-Systems. Großer Beleg (term paper), Technische
Universität Dresden, 15 December 1999. In German. 30, 45

[Poh03] Christoph Pohl. Adaptively caching distributed components. In Middle-
ware2003 Companion, page 325, Rio de Janeiro, Brazil, June 2003. PUC-
Rio. 108, 112, 118, 156

[Pro02] Jeff Prosise. Programming Microsoft .NET. Microsoft Press, 2002. 41

[PS02] Christoph Pohl and Alexander Schill. Middleware support for trans-
parent client-side caching. Electronic Notes in Theoretical Computer Sci-
ence, 65(4), 7 April 2002. Software Composition Workshop (SC 2002) at
European conference on Theory And Practice of Software (ETAPS’02),
Grenoble, France. 107, 110, 120, 131, 148, 154, 155

[PS03] Christoph Pohl and Alexander Schill. Client-side component caching.
In Stefani et al. [SDH03], pages 141–152. 108, 110, 112, 118, 120, 126, 156

[PTM97] Jelica Protic, Milo Tomaevic, and Veljko Milutinovic. Distributed Shared
Memory: Concepts and Systems. John Wiley & Sons, 1997. 20

[PTS05] Christoph Pohl, Boon Chong Tan, and Alexander Schill. Semantic
caching of code archives. In Kommunikation in Verteilten Systemen
(KiVS 2005), Informatik Aktuell, Kaiserslautern, Germany, 28 February–
02 March 2005. VDE/ITG & GI, Springer. To appear. 88

[Rah94] Erhard Rahm. Mehrrechner-Datenbanksystem: Grundlagen der verteilten
und parallelen Datenbankverarbeitung. Addison-Wesley, 1994. 46, 50, 51

Bibliography 183

[RAJM01] Ed Roman, Scott Ambler, Tyler Jewell, and Floyd Marinescu. Mastering
Enterprise JavaBeans. John Wiley & Sons, 2nd edition, 14 December 2001.
24, 25, 27, 28

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, Englewood Cliffs, NJ, USA, 1991. 59

[Res01] Martijn Res. Reduce EJB network traffic with astral clones. JavaWorld,
January 2001. 93

[Rog97] Dale Rogerson. Inside COM: Microsoft’s Component Object Model. Mi-
crosoft Press, 1997. 39

[RR76] Juan Rodriguez-Rosell. Empirical data reference behavior in data base
systems. IEEE Computer, 9(11):9–13, November 1976. 101

[RS02] Michael Rabinovich and Oliver Spatscheck. Web Caching and Replication.
Addison-Wesley, January 2002. 12, 83, 84, 85, 86, 100, 101, 102, 103, 119,
166

[RW02] Berthold Reinwald and Sanjiva Weerawarana. Web services framework.
In Proceedings of the 18th International Conference on Data Engineering, San
Jose, CA, USA, 26 February–1 March 2002. IEEE, IEEE Computer Society
Press. 44

[SC00] Joseph Sventek and Geoff Coulson, editors. Middleware 2000—
International Conference on Distributed Systems Platforms and Open Dis-
tributed Processing, volume 1795 of Lecture Notes in Computer Science,
New York, NY, USA, 4–8 April 2000. IFIP WG6.1 / ACM, Springer. 173,
177

[SCA] Scientific Computing Associates. Linda Tuple Space. http://
lindaspaces.com/ , originally developed by the Yale Linda Group.
19

[Sch02] Andreas Schaefer. JBoss: an in-depth look at the interceptor stack. ON-
Java.com: The O’Reilly Network, 24 July 2002. 74

[Sch03] Daniel Schaller. Nebenläufige Aktualisierung teil-replizierter
Datenbestände bei Transaktionsmigration. Diplomarbeit, Technis-
che Universität Dresden, 15 June 2003. 50, 90

[SDH03] Jean-Bernard Stefani, Isabelle Demeure, and Daniel Hagimont, editors.
Proceedings of the 4th International Conference on Distributed Applications
and Interoperable Systems (DAIS 2003), volume 2893 of Lecture Notes in
Computer Science, Paris, France, 19–21 November 2003. IFIP WG 6.1,
Springer. 174, 182

[SDMML03] Marc Ségura-Devillechaise, Jean-Marc Menaud, Gilles Muller, and Ju-
lia L. Lawall. Web cache prefetching as an aspect: Towards an dynamic-
weaving based solution. In Mehmet Akşit, editor, Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development (AOSD
2003), pages 110–119, Boston, MA, USA, 17–21 March 2003. ACM. 77,
102

[Sha86] Mark Shapiro. Structure and encapsulation in distributed systems: The
proxy principle. In Proceedings of the 6th International Conference on Dis-
tributed Computer Systems (ICDCS’86), pages 198–204, Cambridge, MA,
USA, 19–23 May 1986. IEEE Computer Society Press. 72

http://lindaspaces.com/
http://lindaspaces.com/

184 Bibliography

[Sha03] Bill Shannon. Java 2 Platform Enterprise Edition Specification, v1.4. Sun
Microsystems, final release edition, 24 November 2003. 22, 23, 42

[Smi78] Alan Jay Smith. Sequentiality and prefetching in database systems.
ACM Transactions on Database Systems (TODS), 3(3):223–247, September
1978. 101

[Smi82] Brain Cantwell Smith. Procedural Reflection in Programming Languages.
PhD thesis, Department of Electrical Engineering and Computer Sci-
ence, MIT, Cambridge, MA, USA, February 1982. 71

[Smi01] Wayne D. Smith. TPC-W: Benchmarking An Ecommerce Solution. The
Transaction Processing Performance Council, v1.2 edition, 2001. 98,
165

[Spr04] Thomas Springer. Ein komponentenbasiertes Meta-Modell kon-
textabhängiger Adaptionsgraphen für mobile und ubiquitäre Anwendungen.
Dissertation, Technische Universität Dresden, Dresden, Germany,
March 2004. 53, 55, 56

[SS01] Richard E. Schantz and Douglas C. Schmidt. Encyclopedia of Software
Engineering, chapter Middleware for Distributed Systems: Evolving the
Common Structure for Network-centric Applications. John Wiley &
Sons, 2001. 19

[SSRB00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture: Patterns for Concur-
rent and Networked Objects, volume 2 of Software Design Patterns. John
Wiley & Sons, 2000. 20, 27, 70, 73, 74

[ST00] Rob Stevenson and Leonard Theivendra. Developing EJB Access Beans
in VisualAge for Java. Whitepaper, IBM Toronto Lab, October 2000. 93

[Sun] Sun Microsystems. Jini Network Technology. http://wwws.sun.com/
software/jini/ . 19

[Sun02a] Sun Microsystems. Java Remote Method Invocation Specification, revision
1.8 edition, 2002. General information at http://java.sun.com/
products/jdk/rmi/ . Available as part of Java 2 SDK Standard Edi-
tion at ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.
4.pdf . 19, 95, 97, 100

[Sun02b] Sun Microsystems. JavaBeans Technology, 2002. http://java.sun.
com/products/javabeans/ . 17, 22, 30, 39, 69, 92, 93, 98

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Component Software Series. Addison-Wesley, 2nd edition,
2002. 15

[Tan] tangible architect. Product homepage http://www.tangible.de/ .
Tangible engineering: Generative development for .NET. 69

[TAO] Real-time CORBA with TAO. Project homepage http://www.cs.
wustl.edu/˜schmidt/TAO.html . Washington University, St. Louis
and University of California, Irvine. 73

[Tea02] TimesTen Team. Mid-tier caching: The TimesTen approach. In Michael J.
Franklin, Bongki Moon, and Anastassia Ailamaki, editors, Proceedings of
the International Conference on Management of Data, pages 588–593, Madi-
son, WI, USA, 3–6 June 2002. ACM SIGMOD, ACM Press. 88, 101

http://wwws.sun.com/software/jini/
http://wwws.sun.com/software/jini/
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/products/jdk/rmi/
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
http://java.sun.com/products/javabeans/
http://java.sun.com/products/javabeans/
http://www.tangible.de/
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html

Bibliography 185

[TVJ+01] Eddy Truyen, Bart Vanhaute, Wouter Joosen, Pierre Verbaeten, and
Bo Nørregaard Jørgensen. Dynamic and selective combination of ex-
tensions in component-based applications. In Proceedings of the 23rd In-
ternational Conference on Software Engineering (ICSE’01), pages 233–242,
Toronto, Ontario, Canada, 2001. IEEE. 75

[Vit01] Roman Vitenberg. Caching support for CORBA objects. In Maarten van
Steen, editor, Distributed Systems Online, Research from the Trenches.
IEEE Computer Society Press, March 2001. 95

[Vog03] Werner Vogels. Web services are not distributed objects. IEEE In-
ternet Computing, 7(6):59–66, November–December 2003. See also
http://weblogs.cs.cornell.edu/AllThingsDistributed/
archives/000343.html . 44

[vSHT97] Marteen van Steen, Philip Homburg, and Andrew S. Tanenbaum. The
architectural design of Globe: A wide-area distributed system. Technical
Report IR-422, Vrije Universiteit Amsterdam, Netherlands, 1997. 97

[WFN90] Edward F. Walker, Richard Floyd, and Paul Neves. Asynchronous
remote operation execution in distributed systems. In Proceedings of
the 10th International Conference on Distributed Computing Systems, pages
253–259, Paris, France, 28 May – 1 June 1990. 99, 122

[WPSO01] Nanbor Wang, Kirthika Parameswaran, Douglas C. Schmidt, and Os-
sama Othman. The design and performance of meta-programming
mechanisms for object request broker middleware. In Proceedings of
the 6th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS’01), January 2001. 73

[WRÖ03] Craig Walls, Norman Richards, and Rickard Öberg. XDoclet in Action.
In Action. Manning Publications, December 2003. 68

[WZ86] Hartmut Wedekind and Georg Zörntlein. Prefetching in realtime data-
base applications. In Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data, pages 215–226. ACM Press, 1986. 101

[Yeu04] Kwok Cheung Yeung. Dynamic performance optimisation of distributed Java
applications. PhD thesis, Imperial College, University of London, March
2004. 100

[YK03] Kwok Cheung Yeung and Paul H. J. Kelly. Optimising Java RMI pro-
grams by communication restructuring. In Endler and Schmidt [ES03],
pages 324–343. 100

[ZBS97] John A. Zinky, David E. Bakken, and Richard E. Schantz. Architectural
support for quality of service for CORBA objects. Theory and Practice of
Object Systems, 3(1):55–73, 1997. 96

[ZC96] Matthew J. Zelesko and David R. Cheriton. Specializing object-oriented
RPC for functionality and performance. In Proceedings of the 16th Inter-
national Conference on Distributed Computing Systems (ICDCS’96), Hong
Kong, May 1996. IEEE Computer Society Press. 91

http://weblogs.cs.cornell.edu/AllThingsDistributed/archives/000343.html
http://weblogs.cs.cornell.edu/AllThingsDistributed/archives/000343.html

	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	1. Introduction
	1.1 Motivation and Problem Statement
	1.2 Scenarios
	1.3 Objectives
	1.3.1 Goals
	1.3.2 Non-Goals
	1.3.3 Claims

	1.4 Requirements Definition
	1.5 Cornerstones

	2. State of the Art
	2.1 Caching in General
	2.1.1 Consistency and Coherence
	2.1.2 Replacement Strategies
	2.1.3 Cacheability
	2.1.4 Granularity
	2.1.5 Usage Examples in Information Systems

	2.2 Component-Oriented Middleware Platforms
	2.2.1 Software Components
	2.2.2 Middleware in General
	2.2.3 Multi-tiered Architectures
	2.2.4 Enterprise JavaBeans
	2.2.5 CORBA Components
	2.2.6 Microsoft .NET
	2.2.7 Web Services
	2.2.8 Summary

	2.3 Distributed Data Management
	2.3.1 Transactions and Concurrency Control
	2.3.2 Distributed Databases
	2.3.3 Distributed Concurrency Control
	2.3.4 Summary

	2.4 Adaptive Systems
	2.4.1 Control Theory
	2.4.2 Adaptive Software
	2.4.3 Conclusion

	2.5 Modeling and Design Concepts
	2.5.1 Unified Modeling Language
	2.5.2 Model Driven Architecture
	2.5.3 Attribute-oriented Programming
	2.5.4 Design Patterns
	2.5.5 Meta-Programming
	2.5.6 Aspect-Oriented Software Engineering

	2.6 Conclusion

	3. Related Work
	3.1 Caching in Distributed Systems
	3.1.1 Web Caching
	3.1.2 Adaptive Caching
	3.1.3 Database Caching
	3.1.4 Application Level Solutions
	3.1.5 Middleware-based Concepts

	3.2 Communication Restructuring
	3.3 Prefetching
	3.3.1 Prefetching in Database Management Systems
	3.3.2 Prefetching in Distributed File Systems
	3.3.3 Web Cache Prefetching
	3.3.4 Prefetching in Distributed Object-oriented Systems

	3.4 Summary

	4. Design of an Adaptive Middleware Service for Caching
	4.1 Static Caching
	4.1.1 Architectural Integration
	4.1.2 Static Prefetching
	4.1.3 Conclusion

	4.2 Adaptive Caching
	4.2.1 Goals
	4.2.2 Architectural Extensions
	4.2.3 Distributed Access Statistic
	4.2.4 Conclusion and Comparison

	4.3 Static Prefetching
	4.3.1 Architectural Integration
	4.3.2 Conclusion

	4.4 Dynamic Determination of Prefetching Dependencies
	4.4.1 Architectural Integration
	4.4.2 Performance Considerations

	4.5 Conclusion

	5. Software Development Cycle Integration
	5.1 Model-driven Development
	5.2 UML Profiles
	5.2.1 AndroMDA Profile
	5.2.2 UML Profile for Caching

	5.3 Development Process
	5.3.1 Component Design
	5.3.2 Component Implementation
	5.3.3 Code Generation
	5.3.4 Roles and Responsibilities

	5.4 Conclusion

	6. Implementation of the Adaptive Middleware Service
	6.1 Stub Modification
	6.1.1 Multiple References
	6.1.2 Client-side Containers
	6.1.3 Object Equality in Component-based Middleware Platforms
	6.1.4 Integration into the Middleware Platform
	6.1.5 Returning Collections of Stubs
	6.1.6 Consistency
	6.1.7 Conclusion

	6.2 Descriptive Point-cutting
	6.2.1 Integration into the Middleware Platform
	6.2.2 Conclusion

	7. Conclusions and Outlook
	7.1 Evaluation
	7.1.1 Functional Evaluation
	7.1.2 Quantitative Evaluation
	7.1.3 Software Development Process

	7.2 Outlook

	Bibliography

