675 research outputs found

    Smoothing Problem in 2D Images with Tissue-like P Systems and Parallel Implementation

    Get PDF
    Smoothing is often used in Digital Imagery to reduce noise within an image. In this paper we present a Membrane Computing algorithm for smoothing 2D images in the framework of tissue-like P systems. The algorithm has been implemented by using a novel device architecture called CUDATM, (Compute Unified Device Architecture). We present some examples, compare the obtained time and present some research lines for the future.Ministerio de Ciencia e Innovación TIN2008-04487-EMinisterio de Ciencia e Innovación TIN-2009-13192Junta de Andalucía P08-TIC-04200Junta de Andalucía PO6-TIC-02268Ministerio de Educación y Ciencia MTM2009-1271

    A New Strategy to Improve the Performance of PDP-Systems Simulators

    Get PDF
    One of the major challenges that current P systems simulators have to deal with is to be as efficient as possible. A P system is syntactically described as a membrane structure delimiting regions where multisets of objects evolve by means of evolution rules. According to that, on each computation step, the applicability of the rules for the current P system configuration must be calculated. In this paper we extend previous works that use Rete-based simulation algorithm in order to improve the time consumed during the checking phase in the selection of rules. A new approach is presented, oriented to the acceleration of Population Dynamics P Systems simulations.Ministerio de Economía y Competitividad TIN2012- 3743

    Segmenting images with gradient-based edge detection using Membrane Computing

    Get PDF
    In this paper, we present a parallel implementation of a new algorithm for segmenting images with gradient-based edge detection by using techniques from Natural Computing. This bio-inspired parallel algorithm has been implemented in a novel device architecture called CUDA™(Compute Unified Device Architecture). The implementation has been designed via tissue P systems on the framework of Membrane Computing. Some examples and experimental results are also presented.Ministerio de Ciencia e Innovación TIN2008-04487-EMinisterio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08–TIC-04200Junta de Andalucía P06-TIC-02268Ministerio de Educación y Ciencia MTM2009-12716Universidad del Pais Vasco EHU09/0

    Studying the Chlorophyll Fluorescence in Cyanobacteria with Membrane Computing Techniques

    Get PDF
    In this paper, we report a pioneer study of the decrease in chlorophyll uorescence produced by the reduction of MTT (a dimethyl thiazolyl diphenyl tetrazolium salt) monitored using an epi uorescence microscope coupled to automate image analysis in the framework of P systems. Such analysis has been performed by a family of tissue P systems working on the images as data inpuJunta de Andalucía P08-TIC-04200Ministerio de Economía y Competitividad TIN2012-3743

    Radial Basis Functions: Biomedical Applications and Parallelization

    Get PDF
    Radial basis function (RBF) is a real-valued function whose values depend only on the distances between an interpolation point and a set of user-specified points called centers. RBF interpolation is one of the primary methods to reconstruct functions from multi-dimensional scattered data. Its abilities to generalize arbitrary space dimensions and to provide spectral accuracy have made it particularly popular in different application areas, including but not limited to: finding numerical solutions of partial differential equations (PDEs), image processing, computer vision and graphics, deep learning and neural networks, etc. The present thesis discusses three applications of RBF interpolation in biomedical engineering areas: (1) Calcium dynamics modeling, in which we numerically solve a set of PDEs by using meshless numerical methods and RBF-based interpolation techniques; (2) Image restoration and transformation, where an image is restored from its triangular mesh representation or transformed under translation, rotation, and scaling, etc. from its original form; (3) Porous structure design, in which the RBF interpolation used to reconstruct a 3D volume containing porous structures from a set of regularly or randomly placed points inside a user-provided surface shape. All these three applications have been investigated and their effectiveness has been supported with numerous experimental results. In particular, we innovatively utilize anisotropic distance metrics to define the distance in RBF interpolation and apply them to the aforementioned second and third applications, which show significant improvement in preserving image features or capturing connected porous structures over the isotropic distance-based RBF method. Beside the algorithm designs and their applications in biomedical areas, we also explore several common parallelization techniques (including OpenMP and CUDA-based GPU programming) to accelerate the performance of the present algorithms. In particular, we analyze how parallel programming can help RBF interpolation to speed up the meshless PDE solver as well as image processing. While RBF has been widely used in various science and engineering fields, the current thesis is expected to trigger some more interest from computational scientists or students into this fast-growing area and specifically apply these techniques to biomedical problems such as the ones investigated in the present work

    On the Real-Time Performance, Robustness and Accuracy of Medical Image Non-Rigid Registration

    Get PDF
    Three critical issues about medical image non-rigid registration are performance, robustness and accuracy. A registration method, which is capable of responding timely with an accurate alignment, robust against the variation of the image intensity and the missing data, is desirable for its clinical use. This work addresses all three of these issues. Unacceptable execution time of Non-rigid registration (NRR) often presents a major obstacle to its routine clinical use. We present a hybrid data partitioning method to parallelize a NRR method on a cooperative architecture, which enables us to get closer to the goal: accelerating using architecture rather than designing a parallel algorithm from scratch. to further accelerate the performance for the GPU part, a GPU optimization tool is provided to automatically optimize GPU execution configuration.;Missing data and variation of the intensity are two severe challenges for the robustness of the registration method. A novel point-based NRR method is presented to resolve mapping function (deformation field) with the point correspondence missing. The novelty of this method lies in incorporating a finite element biomechanical model into an Expectation and Maximization (EM) framework to resolve the correspondence and mapping function simultaneously. This method is extended to deal with the deformation induced by tumor resection, which imposes another challenge, i.e. incomplete intra-operative MRI. The registration is formulated as a three variable (Correspondence, Deformation Field, and Resection Region) functional minimization problem and resolved by a Nested Expectation and Maximization framework. The experimental results show the effectiveness of this method in correcting the deformation in the vicinity of the tumor. to deal with the variation of the intensity, two different methods are developed depending on the specific application. For the mono-modality registration on delayed enhanced cardiac MRI and cine MRI, a hybrid registration method is designed by unifying both intensity- and feature point-based metrics into one cost function. The experiment on the moving propagation of suspicious myocardial infarction shows effectiveness of this hybrid method. For the multi-modality registration on MRI and CT, a Mutual Information (MI)-based NRR is developed by modeling the underlying deformation as a Free-Form Deformation (FFD). MI is sensitive to the variation of the intensity due to equidistant bins. We overcome this disadvantage by designing a Top-to-Down K-means clustering method to naturally group similar intensities into one bin. The experiment shows this method can increase the accuracy of the MI-based registration.;In image registration, a finite element biomechanical model is usually employed to simulate the underlying movement of the soft tissue. We develop a multi-tissue mesh generation method to build a heterogeneous biomechanical model to realistically simulate the underlying movement of the brain. We focus on the following four critical mesh properties: tissue-dependent resolution, fidelity to tissue boundaries, smoothness of mesh surfaces, and element quality. Each mesh property can be controlled on a tissue level. The experiments on comparing the homogeneous model with the heterogeneous model demonstrate the effectiveness of the heterogeneous model in improving the registration accuracy

    Simulation of a continuum tumor model using distributed computing.

    Get PDF
    Mathematical modeling aims to provide a theoretical framework for understanding tissue dynamics and for establishing treatment response for diseased tissues, such as tumors. Previously published continuum models have successfully represented idealized two-dimensional and three-dimensional tissue for short periods of time. A recently published continuum model of cancer increases model complexity and describes three-dimensional tissue that, due to the required complexity of the geometric multigrid solver, can only be feasibly applied to millimeter-scale simulations. Furthermore, the computational cost for such models has hindered their application in the laboratory and in the clinic. With computational demands greatly outpacing current openMP-based approaches on single-CPU-socket machines, higher performance solvers for large-scale tissue models remain a critical need. In this thesis, preliminary results of a CUDA and CUDA-MPI based parallelization applied to a tissue model are presented, with significant speedups seen in solution calculation for an initial time step. With further access to larger distributed computing, these parallel frameworks could potentially scale to simulate large-scale tissues
    corecore