
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla
Segmenting images with gradient-based edge detection using
Membrane Computing

a,⇑ a,c b b
Daniel Díaz-Pernil , Ainhoa Berciano , Francisco Peña-Cantillana , Miguel A. Gutiérrez-Naranjo

a CATAM Research Group, Dept. of Applied Mathematics I, University of Seville, Spain
b Research Group on Natural Computing, Dept. of Computer Science and AI, University of Seville, Spain
c Department of Didactic of Mathematics and Experimental Sciences, University of the Basque Country, Spain
Keywords:
Edge detection
Sobel algorithm Tissue
P systems Membrane
Computing CUDA
⇑ Corresponding author.

E-mail addresses: sbdani@us.es (D. Díaz-Per
(A. Berciano), frapencan@gmail.com (F. Peña-
(M.A. Gutiérrez-Naranjo).
a b s t r a c t

In this paper, we present a parallel implementation of a new algorithm for segmenting images with
gradient-based edge detection by using techniques from Natural Computing. This bio-inspired parallel
algorithm has been implemented in a novel device architecture called CUDA™(Compute Unified Device
Architecture). The implementation has been designed via tissue P systems on the framework of
Membrane Computing. Some examples and experimental results are also presented.
1. Introduction

Paralleling classical digital image algorithms is a big challenge
for the next years (Parker, 2010; Davies, 2012). Such paralleling
is much more complex than the merely simultaneous application
of the sequential algorithm to different pieces of the image. The
coordination of different simultaneous processes in a whole algo-
rithm is so hard task that commonly the parallel algorithm needs
to be re-designed with only slight references to the classical one.
Usually, the design of a new parallel implementation not inspired
by the sequential one allows an open-mind vision of the problem
and the proposal of new creative solutions.

The key point of paralleling classical sequential algorithms is
the search of the efficiency and such efficiency is strongly linked
to the development of new parallel hardware architectures with
allows a realistic implementation of the theoretical advantages of
the parallel processes.

In this paper, the matter of study is the Sobel algorithm (Sobel,
1970) for edge detection. We present a parallel implementation of
the algorithm in the 3� 3 and 5� 5 versions. Based on a detailed
study of these parallel implementations, in this paper we also
introduce a new edge detection algorithm, the so called AGP
segmentator. A preliminary experimental comparison with the par-
allel implementation of the 3� 3 and 5� 5 Sobel operator shows
nil), ainhoa.berciano@ehu.es
Cantillana), magutier@us.es
that the AGP segmentator improves the classical version of the
Sobel operator.

Paralleling classical computer algorithm is currently a vivid
research area where different hardware architectures (clusters,
grids, FPGA, . . .) propose different solutions (Khalid et al., 2011a;
Khalid et al., 2011b; Ogawa et al., 2010; Sanduja and Patial,
2012). The chosen hardware architecture for our parallel imple-
mentation has been the Compute Unified Device Architecture,1

CUDA™. This is a novel general purpose parallel computing architec-
ture that allows the parallel NVIDIA Graphics Processing Units
(GPUs) to solve many complex computational problems in a more
efficient way than on a CPU. The choice of this parallel architecture
is supported by several reasons. The first one is that the computing
language CUDA™ allows programmers a friendly model for imple-
menting easily parallel programs, but the main reason comes from
the practical side. In the last years, there exists an increasing interest
in the specialized industry for the development of more and more
powerful Graphic Processing Units which can be used for general
purposes. This interest leads, on the one hand, to a more economi-
cally accessible (and hence, more extended) hardware and, on the
other hand, to the development of more powerful computational
units.

The design of new parallel solutions needs a strong theoretical
support that allows to control, to formalize, to check and even,
sometimes, to formally verify new algorithms. As a novel contribu-
tion with respect to recent contributions found in the literature,
the theoretical foundation of our parallel implementation of the
1 See http://www.nvidia.com/object/cuda_home_new.html.

https://core.ac.uk/display/157756483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.patrec.2012.10.014
mailto:sbdani@us.es
mailto:ainhoa.berciano@ehu.es
mailto:frapencan@gmail.com
mailto:magutier@us.es
http://dx.doi.org/10.1007/s11047-011-9287-4
http://dx.doi.org/10.1016/j.patrec.2012.10.014
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec

Edge Detection algorithms is based on Natural Computing
processes, namely, on Membrane Computing techniques.

As it will be shown below, Membrane Computing techniques
are inspired in the flow of metabolites between cells of a living tis-
sue or between the organelles in an eucaryotic cell. This flow of
metabolites takes place in parallel in Nature and can be interpreted
as a flow of information for computational purposes. Instead of a
set of few instructions with complex data structures, the computa-
tion steps in a Membrane Computing device are regulated by a set
of rules with a notation close to biochemical reactions. From a
computational point of view, such reactions can be read as a set
of if A then B rules where A and B are very simple data. As we will
show below, this theoretical construction fits perfectly for a com-
putational implementation within the GPU architecture.

The paper is organized as follows: firstly, we recall some pre-
liminaries on Natural Computing and the definition of the used
model of tissue P systems. Next, we provide a short description
of the algorithms object of our study: thresholding and the Sobel
algorithm for edge detection. In Section 4 some details of the
implementation and several examples are provided. Finally, some
remarks are given in the last section.
2. Natural computing

Nature is a big source of inspiration for new computational par-
adigms. Nature acts by performing changes (from microscopic bio-
chemical reactions to ecological global variations) which can be
interpreted as computations. Natural Computing2 abstracts the
way Nature operates, providing ideas for new computing models.
It involves research where the physical support is non standard, as
DNA-based Molecular Computing (Adleman, 1994) or Quantum Com-
puting (Hirvensalo, 2004); but almost all the research lines in Natural
Computing are currently supported in silicon-based computers.
Among them, we can cite Artificial Neural Networks (McCulloch and
Pitts, 1943), Genetic Algorithms (Holland, 1992), Swarm Intelligence
(Engelbrecht, 2005), Artificial Immune Systems (de and Timmis,
2002), Amorphous Computing (Abelson et al., 2000), Membrane
Computing (Păun, 2002) or Cellular Automata (von Neumann, 1966).

All these computational paradigms have in common the use of
an alternative way of encoding the information and the use of
intrinsic parallelism of natural processes. In this paper, we will
use the theoretical framework of Membrane Computing for han-
dling digital images. The use of techniques inspired in Nature for
processing digital images is not new. Many problems in such pro-
cessing have features which make it suitable for techniques in-
spired by nature. One of them is the treatment of the image can
be parallelized and locally solved. Regardless how large is the pic-
ture, the segmentation process can be performed in parallel in dif-
ferent local areas of the picture. Another interesting feature is that
the local information needed for a pixel transformation can also be
easily encoded in the data structures used in Natural Computing. In
the literature, we can find many examples of the use of Natural
Computing techniques for dealing with problems associated to
the treatment of digital images. One of the classic examples is
the use of Cellular Automata (Rosin, 2006; Selvapeter and Hordijk,
2009). Other efforts are related to Artificial Neural Networks
(Egmont-Petersen et al., 2002).

In Membrane Computing, there is a large tradition in the study
of dealing with information structured as two dimensional
objects (see, e.g., (Ceterchi et al., 2003a; Ceterchi et al., 2003b;
Dersanambika and Krithivasan, 2004; Krishna et al., 2001)). The
main motivation for these studies is to bring together Membrane
2 An introduction on Natural Computing can be found in (de Castro, 2007; Kari and
Rozenberg, 2008).
Computing and Picture Grammars. Recently, a new research line
has been opened by applying well-known Membrane Computing
techniques for solving problems from Digital Imagery as segmenta-
tion (Christinal et al., 2009; Christinal et al., 2011; Díaz-Pernil et al.,
2010b; Díaz-Pernil et al., 2011), thresholding (Christinal et al.,
2010a), smoothing (Peña-Cantillana et al., 2011b) or the symmetric
dynamic programming stereo algorithm (Gimel’farb et al., 2011).

The theoretical model used in this paper, Membrane Comput-
ing, is a model of computation inspired by the structure and func-
tioning of cells as living organisms able to process and generate
information. In particular, it focusses on membranes, which are
involved in many reactions taking place inside various compart-
ments of a cell. They act as selective channels of communication
between different compartments as well as between the cell and
its environment (Alberts et al., 2002). The computational devices
in Membrane Computing are called P systems (Păun, 2000).
Roughly speaking, a P system consists of a membrane structure,
in whose compartments one places multisets of objects which
evolve according to given rules which are usually applied in a syn-
chronous non-deterministic maximally parallel manner.3 We stress
here on the so-called (because of their membrane structure) tissue P
Systems (Martín-Vide et al., 2003) endowed with cell division.

2.1. Tissue P systems with cell division

In this section we present the formal bio-inspired model where
we have implemented our edge detection algorithms. First of all,
let us recall some basic preliminaries.

An alphabet, R, is a non empty set, whose elements are called
symbols. An ordered sequence of symbols is a string. The number
of symbols in a string u is the length of the string, and it is denoted
by juj. As usual, the empty string (with length 0) will be denoted by
k. A multiset m over a set A is a pair ðA; f Þ where f : A! N is a map-
ping. If m ¼ ðA; f Þ is a multiset then its support is defined as
suppðmÞ ¼ fx 2 Ajf ðxÞ > 0g and its size is defined as

P
x2Af ðxÞ. A

multiset is empty (resp. finite) if its support is the empty set (resp.
finite). If m ¼ ðA; f Þ is a finite multiset over A, and suppðmÞ ¼
fa1; . . . ; akg, then it will be denoted as m ¼ ffaf ða1Þ

1 ; . . . ; af ðakÞ
k gg. That

is, superscripts indicate the multiplicity of each element, and if
f ðxÞ ¼ 0 for any x 2 A, then this element is omitted. A graph G is a
pair G ¼ ðV ; EÞ where V is the set of vertices and E is the set of
edges, each one of which is a (unordered) pair of (different) verti-
ces. In what follows we assume the reader is already familiar with
the basic notions and the terminology underlying P systems.

Tissue P systems with cell division is a well-established P
system model presented by Păun et al. in (Păun et al., 2008). The
biological inspiration for considering cell division in this model is
that alive tissues are not static network of cells, since cells are
duplicated via mitosis in a natural way. Tissue P systems
with cell division have been previously used to design solutions
to NP-complete problems in polynomial time (see (Díaz-Pernil
et al., 2007; Díaz-Pernil et al., 2008a) and the references
therein).

Formally, a tissue P system with cell division of degree q P 1 is a
tuple of the form

P ¼ ðC;R; E;w1; . . . ;wq;R; iP; i0Þ;

where:

� C is a finite alphabet, whose symbols will be called objects;
� Rð� CÞ is the input alphabet;
3 We refer to (Păun, 2002) for basic information in this area, to (Păun et al., 2010)
for a comprehensive presentation and the P system web page http://ppage.psys-
tems.eu, for the up-to-date information.

http://ppage.psystems.eu
http://ppage.psystems.eu

� E# C is the alphabet of objects in the environment;
� w1; . . . ;wq are strings over C representing the multisets of

objects associated with the cells in the initial configuration;
� R is a finite set of rules of the following form:

(a) Communication rules: ði; u=v ; jÞ, for i; j 2 f0;1;2; . . . ; qg; i –
j;u;v 2 C�.

(b) Division rules: ½a�i ! ½b�i½c�i, where i 2 f1;2; . . . ; qg and
a; b; c 2 C;

� iP 2 f1;2; . . . ; qg is the input cell;
� i0 2 f0;1;2; . . . ; qg is the output cell.

A tissue P system with cell division of degree q P 1 can be seen
as a set of q cells (each one consisting of an elementary membrane)
labelled by 1;2; . . . ; q. We will use 0 to refer to the label of the envi-
ronment, iP is the label of the cell where the input is placed and i0

denotes the output region (which can be the region inside a cell or
the environment). The communication rules determine a virtual
graph, where the nodes are the cells and the edges indicate if it
is possible for pairs of cells to communicate directly. This is a
dynamical graph, because new nodes can appear produced by
the application of division rules.

The strings w1; . . . ;wq describe the multisets of objects initially
placed in the q cells of the system. We interpret that E# C is the set
of objects placed in the environment, each one of them in an arbi-
trarily large amount of copies.

The communication rule ði; u=v ; jÞ can be applied over two cells i
and j such that u is contained in cell i and v is contained in cell j.
The application of this rule means that the objects of the multisets
represented by u and v are interchanged between the two cells.
Note that either i or j can be equal to 0 and in this case the objects
are interchanged between one cell and the environment.

The division rule ½a�i ! ½b�i½c�i is applied over a cell i containing
object a. The application of this rule divides this cell into two new
cells with the same label. All the objects in the original cell are rep-
licated and copied in each of the new cells, with the exception of
the object a, which is replaced by the object b in the first one
and by c in the other one. Rules are used as usual in the framework
of Membrane Computing, that is, in a maximally parallel way (a
universal clock is considered). In one step, each object in a cell
can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can partici-
pate in a rule of any form must do it, i.e., in each step we apply a
maximal set of rules. This way of applying rules has only one
restriction when a cell is divided, the division rule is the only
one which is applied for that cell in that step; the objects inside
that cell cannot be communicated in that step.

The cells obtained by division have the same labels as the
original cell and if a cell is divided, its interaction with other
cells or with the environment is blocked during the mitosis
process. In some sense, this means that while a cell is dividing it
closes the communication channels with other cells and with the
environment.

A configuration is an instantaneous description of the P system.
Given a configuration, we can perform a computation step and
obtain a new configuration by applying the rules in a parallel man-
ner as it is shown above. A computation is a sequence of computa-
tion steps such that either it is infinite or it is finite and the last
step yields a halting configuration (i.e., no rules can be applied to
it). Then, a computation halts when the system reaches a halting
configuration.
2.2. Example

Let us consider the following tissue P system with cell division
of degree 3, P ¼ ðC;R; E;w1;w2;w3;R; iP; i0Þ, where C ¼ fa1; a2; b;
c; p; q; r; xg; R ¼ fa1; a2g and E ¼ fxg. The multisets in the initial
configuration are w1 ¼ b;w2 ¼ c and w3 ¼ r. The set of rules are
R1 � ð1; a1b=x3;0Þ;R2 � ð1; x=p;2Þ;R3 � ð1; x=q;2Þ, R4 � ð1; q=r;3Þ
and R5 � ½c�2 ! ½p�2 ½q�2. Finally, the input cell is iP ¼ 1 and the out-
put cell is i0 ¼ 3. Notice that rules R1 . . . ;R4 determine a virtual
graph with the cells as nodes. From R2 and R3 we can consider an
edge between cell 1 and cell 2. Analogously, R4 determines an edge
between cell 1 and cell 3. We also know by rule R1 that cell 1 can
trade some objects with the environment.

Let us consider as input of our computation the multiset a1a2
2

(one copy of a1 and two copies of a2) placed in the input cell 1.
By considering the input, the initial configuration C0 has three
cells, labelled with 1, 2, 3 and with the multisets w1 ¼ a1a2

2b,
w2 ¼ c and w3 ¼ r. In the first step of computation, rules R1 and
R5 are applied. Rule 1 interchanges the objects a1b from cell 1 with
three copies of x taken from the environment. Rule 5 divides the
cell 2. Hence, the configuration C1 has four cells: two of them
labelled with 1 and 3 (respectively) and the other two cells have
the label 2. The multiset in the cell labelled by 1 is w1 ¼ x3a2

2, the
cell labelled by 3 contains the multiset w3 ¼ r and the cells labelled
by 2 have, respectively, the multisets w2 ¼ p and w2 ¼ q. In the fol-
lowing step of computation rules R2 and R3 are applied. These rules
send one copy of the object x to the corresponding cell labelled by
2 against one copy of p and q (respectively). Therefore, the config-
uration C2 has the same four cells as in the configuration C1, but
with the multisets w1 ¼ xa2

2pq;w3 ¼ r and the cells labelled by 2
have the same multiset w2 ¼ x. Finally, in the third computation
step the rule R4 is applied and the object q in the cell 1 is inter-
changed with the object r in the cell 3. We get the final configura-
tion C3 with w1 ¼ xa2

2pr;w3 ¼ q and w2 ¼ x in both cells labelled by
2. As the output cell is cell 3, the multiset r placed in this cell in the
last configuration is the output of the configuration.
3. Edge detection and segmentation

In this paper, we present the implementation of a variant of the
Sobel algorithm with tissue P systems. Before giving our bio-in-
spired solution, we will show how the classical thresholding algo-
rithm can be seen from a Membrane Computing perspective.

Segmentation is the process of splitting a digital image into sets
of pixels in order to make it simpler and easier to analyze. Segmen-
tation is typically used to locate region of interest (ROI) in medical
images or in satellite image by finding the frontiers among regions.
Segmentation has shown its utility in bordering tumors and other
pathologies, computer-guided surgery or the study of anatomical
structure, but also in techniques which are not thought to produce
images but it produces positional information as electroencepha-
lography (EEG), or electrocardiography (EKG). Locating such ROI
is a hard task even for an expert human eye, due mainly to prob-
lems as noise and the degradation of colours. Technically, the pro-
cess consists of assigning a label to each pixel, in such way the
pixels with the same label form a meaningful region.
3.1. Thresholding with membrane computing

Thresholding is one of the simplest and most widely used image
segmentation techniques. Its basic aim is to obtain a binary image
from a grayscale one. The idea is to split the set of pixels into two
sets (black and white) depending on its brightness and a fixed va-
lue, the threshold. If the brightness of the pixel is greater than the
threshold, then the pixel is labeled as object. Otherwise, it is labeled
as background.

The basic thresholding method can be generalized in a natural
way. Instead of getting a binary image by labeling the original
set of pixels by f0;1g, we can consider a larger set of labels,

Fig. 1. Thresholding with 30 classes of same size.
f1; . . . ; kg so we obtain a final image with k grayscale levels.
Another natural generalization is to replace the grayscale by another
scale on the features of the pixel (brightness, intensity, color, etc.).

The process of thresholding of digital images can be considered
in the framework of Membrane Computing (see (Peña-Cantillana
et al., 2011a)). In order to do this, let us consider an ordered alpha-
bet of colors, C � N, and let us divide it in k 2 N intervals with the
same length (m 2 N). We choose the first color of each interval as
its representative. According to the basic algorithm, each pixel in
the interval will be replaced by the representative of the interval.
Fig. 1 shows an example of this process.

This algorithm can be easily seen in the framework of Mem-
brane Computing. We can encode an n� n image as a set of objects
aij where i; j 2 f1; . . . ;ng and a 2 C, the set of colors. Since the algo-
rithm interchanges the color of a pixel aij with another a0ij, we can
consider that such trading is produced by an antiport process
crossing a biological membrane. Therefore, we can consider a fam-
ily of tissue P system of degree 1, where no rules for cell division
are needed. Each member of the family P1ðk; nÞ processes all the
images of size n� n with k intervals.

P1ðk;nÞ ¼ ðC;R; E;w1;R; iP1 ; ioÞ;

where C ¼ R ¼ E ¼ faij : a 2 C; 1 6 i; j 6 ng; w1 ¼ ;;R is the
following set of communication rules:

� ð1; bij=aij;0Þ, for 1 6 i; j 6 n; m ¼ ðn=kÞ; l ¼ 0;1;2; . . . ; h�m;
a ¼ m 	 l, and b 2 C; a < b 6 aþ ðm� 1Þ.

These rules are used to divide the set of colors in r intervals of
length m. iP1 ¼ io ¼ 1.

Notice that each tissue P system of the family uses the massive
parallelism of the model to interchange all the pixels through the
membrane simultaneously, so, in the theoretical model, the thres-
holding process takes only one computational step.

3.2. Segmenting images with gradient-based edge detection using
tissue P systems

The Sobel operator (Sobel, 1970; Davis, 1975; Peli and Malah,
1982; Pal and Pal, 1993) is a discrete operator which computes
an approximation of the gradient of the image intensity function
applied to each pixel of a grey-level image. In fact, for each point
of the image, the result of the Sobel operator is either the corre-
sponding gradient vector or the norm of this vector. It uses two dif-
ferent filters, in X edge and in Y edge (Gx and Gy respectively), that
average the image in the direction perpendicular to the differenti-
ation applied. Next, given the pixel aij, let us define as xi;j the grey
level of the pixel aij.
If we consider the neighbours of the pixel aij, we can construct
the following grid of the grey levels of them.

Then, the Sobel gradient functions are defined by:

Gx ¼
1
4
fðxi�1;j�1 þ 2xi;j�1 þ xiþ1;j�1Þ � ðxi�1;jþ1 þ 2xi;jþ1 þ xiþ1;jþ1Þg:
Gy ¼
1
4
fðxi�1;j�1 þ 2xi�1;j þ xi�1;jþ1Þ � ðxiþ1;j�1 þ 2xiþ1;j þ xiþ1;jþ1Þg:

The Sobel operator is determined by G ¼ Gx i
!
þ Gy j

!
, with the

gradient norm calculated as

kGk ¼ jGxj þ jGyj

Equivalently, by using 2D-convolution operator, �;Gx and Gy can
be identified with the following operators applied over the previ-
ous grid of pixels, A:

Gx ¼
1
4

1 2 1
0 0 0
�1 �2 �1

2
64

3
75 � A Gy ¼

1
4

1 0 �1
2 0 �2
1 0 �1

2
64

3
75 � A

Here, we have presented how to apply a 3� 3 Sobel operator to
an image. The 5� 5 Sobel operator is defined in a very similar way
to 3� 3 operator. Next, we will show how this algorithm can be
implemented with a family of tissue P systems.

We give the following two steps to get a segmentation of digital
images. First, we detect edges applying a new operator, called AGP
segmentator (A Graphical P segmentator), which is a variation of the
Sobel operator. Secondly, we do a binarization of the resulting
image of the previous step. We use the algorithm previously
described.

The basic idea is to work with more information data than the
3� 3 Sobel operator, but to be more efficient than 5� 5 Sobel
operator, always from a parallel processing point of view, as we
can check in Section 4. We consider to work with a dynamical per-
spective. Firstly, for each pixel, we take the possible four directions
and look for the appropriate direction. Later, we control the effi-
ciency of our algorithm considering to work with only 12 pixels
(the 5� 5 Sobel operator uses 20 pixels).

So, given a digital image with n2 pixels (n 2 N), we define a tis-
sue P system with cellular division whose input is given by the set
faij : 1 6 i; j 6 ng.

Next, we give outline of how we can obtain a new approxima-
tion of the intensity gradient function AGP operator, of an image
using tissue P systems with cell division.

The functioning of a tissue P system of the family consists on
the following stages:

1. Generating stage: The system creates the necessary number of
copies of the pixels for the following stage. To do this, the P sys-
tem uses the environment and division rules.

2. Choosing a direction stage: The system decides among four
directions: west–east, northwest–southeast, north–south and
northeast–southwest.

3. Gradient stage: Chosen a direction, the system approximates
the intensity gradient function.

4. Output stage: The system sends to the output cell the results of
the previous stage.

3.3. A family of tissue P systems with cell division

So, we define a family of tissue P systems to approximate an
intensity gradient function of a 2D image. For each image of size
n2 with n 2 N, we consider the tissue P system and cell division
of degree n2 þ 2:

P2ðr;nÞ ¼ ðC;R;E;w1;w2;wð1;1Þ; . . . ;wðn;nÞ;wð1;1Þ0 ; . . . ;wðn;nÞ0R; iP2 ;oP2 Þ;

where

� C ¼ R [E [fb; T; cg,
� R ¼ faij : a 2 C; 1 6 i; j 6 ng,
� E ¼ fti; ðt;1Þ ; ðt;2Þ ; ðt;3Þ ;ai : 1 6 i 6 ng
i i i
[faij; ða; lÞij; :6 i; j 6 n; 1 6 l 6 6; a 2 Cg

[fzi : 1 6 i 6 b1 þ 1;

b1 ¼ dlog2jCjeg [fdi; di; d
0
i; d
00
i : 1 6 i 6 4g

[fy1; y2; x1; x2; x3g [fðA; lÞij : 1 6 i; j 6 n;1 6 l 6 4g

[fAl : 1 6 l 6 4g [fp1;p2; q1; q2; q3;l; g

[fol : 1 6 l 6 b1 þ 1g

¼ a1; w2 ¼ t1; . . . ; tn; wð1;1Þ . . . ¼ wðn;nÞ ¼ T; c255,
� w1

� R is the following set of communication rules:
1. ð1; aij=ða;1Þijða;2Þijða;3Þij;0Þ for 1 6 i; j 6 n and a 2 C,
2. ð2; ti=ðt;1Þi;0Þ for 1 6 i 6 n,
3. ð1; ða;1Þijða;2Þij=k;2Þ for 1 6 i; j 6 n,
4. ð2; ðt;1Þi=ðt;2Þi;0Þ for 1 6 i 6 n,
5. ð1;ai=a2

iþ1; 0Þ for 1 6 i 6 n,
6. ð2; ða;1Þij=ða;4Þ

4
ij;0Þ for 1 6 i; j 6 n,

7. ð2; ðt;2Þi=ðt;3Þi;0Þ for 1 6 i 6 n,
8. ½ðt;3Þi�2 ! ½b�2½b�2 for 1 6 i 6 n,
9. ð1; ða;3Þijanþ1=ða;5Þij; 0Þ for 1 6 i; j 6 n,

10. ð1; ða;5Þij=T; ði; jÞÞ for 1 6 i; j 6 n,
11. ðði; jÞ; ða;5Þij=ða;6Þijz1;2Þ for 1 6 i; j 6 n,
12. ðði; jÞ; zi=z2

iþ1;0Þ for i ¼ 1; . . . ; b1,
ðb;2Þ ðc;2Þ ðd;2Þ, 1

13. ðði; jÞ; ða;6Þij

i�1j�1 i�1j i�1jþ1

ðe;2Þij�1 ða;2Þij ðf ;2Þijþ1 ;2CA

ðg;2Þiþ1j�1 ðh;2Þiþ1j ðk;2Þiþ1jþ1

for 2 6 i; j 6 nþ 1,
ðði; jÞ; ðb;2Þi�1j�1ðk;2Þiþ1jþ1=d

b
1d

k
1; 0Þ for 1 6 i; j 6 n and
14.

b; k 2 C,
15. ðði; jÞ; ðc;2Þi�1jðh;2Þiþ1j=d

c
2d

h
2;0Þ for 1 6 i; j 6 n and c;h 2 C,

16. ðði; jÞ; ðd;2Þi�1jþ1ðg;2Þiþ1j�1=d
d
3d

g
3; 0Þ for 1 6 i; j 6 n and

d; g 2 C,
17. ðði; jÞ; ðe;2Þij�1ðf ;2Þijþ1=d

e
4d

f
4;0Þ for 1 6 i; j 6 n and e; f 2 C,

18. ðði; jÞ; dldl=k;0Þ for 1 6 i; j 6 n and 1 6 l 6 4,
19. ðði; jÞ; zðb1þ1Þ=y1z4

ðb1þ2Þ;0Þ for 1 6 i; j 6 n,
20. ðði; jÞ; zðb1þ2Þdl=d0l;0Þ for 1 6 i; j 6 n and l ¼ 1;2;3;4,
21. ðði; jÞ; zðb1þ2Þdl=d

0
l;0Þ for 1 6 i; j 6 n and l ¼ 1;2;3;4,

22. ðði; jÞ; y1=y2;0Þ,
23. ðði; jÞ; d0ld

0
lþ1=k;0Þ for 1 6 i; j 6 n and l ¼ 1;3,

24. ðði; jÞ; y2=x1y2
3;0Þ for 1 6 i; j 6 n,

25. ðði; jÞ; xl=xlþ1;0Þ for 1;2 and l ¼ 1; . . . ; b1 þ 1,
26. ðði; jÞ; y3d

0
l=d
00
l ;0Þ for 1 6 i; j 6 n and l ¼ 1;2;3;4,

27. ðði; jÞ; d00l d
00
k=k;0Þ for 1 6 i; j 6 n and 1 6 l < k 6 4,

28. ðði; jÞ; x3d
00
l =ðA; lÞij;0Þ for 1 6 i; j 6 n and l ¼ 1;2;3;4,

29. ðði; jÞ; ðA; lÞij=Als1;0Þ
30. ðði; jÞ; sl=s2

lþ1;0Þ for 1 6 i; j 6 n and l ¼ 1; . . . ;24b1,

31.

(a) ði; jÞ;A1

ða;4Þi�1j�2 ðb;4Þ
3
i�1j�1

ðc;4Þ2ij�2 ðd;4Þ4ij�1

ðe;4Þiþ1j�2 ðf ;4Þ
3
iþ1j�1

ðg;4Þ3i�1jþ1 ðh;4Þi�1jþ2

ðk;4Þ4ijþ1 ðl;4Þ2ijþ2

ðo;4Þ3iþ1jþ1 ðp;4Þiþ1jþ2

;2

, 1
CA

0
B@
for 26 i; j6nþ1 and a;b;c;d;e; f ;g;h;k; l;o;p2C,

(b) ði; jÞ;A2

ða;4Þ2i�2j�2 ðb;4Þi�2j�1

ðc;4Þi�1j�2 ðd;4Þ
4
i�1j�1 ðe;4Þ

3
i�1j

ðf ;4Þ3ij�1

ðg;4Þ3ijþ1

ðh;4Þ3iþ1j ðk;4Þ4iþ1jþ1 ðl;4Þiþ1jþ2

ðo;4Þiþ2jþ1 ðp;4Þ
2
iþ2jþ2

;2

, 1
CA

0
B@
for 26 i;j6nþ1 and a;b;c;d;e;f ;g;h;k; l;o;p2C,

(c) ði; jÞ;A3
ða;4Þi�2j�1 ðb;4Þ

2
i�2j ðc;4Þi�2jþ1

ðd;4Þ3i�1j�1 ðe;4Þ
4
i�1j ðf ;4Þ

3
i�1jþ1

ðg;4Þ3iþ1j�1 ðh;4Þ
4
iþ1j ðk;4Þ

3
iþ1jþ1

ðl;4Þiþ2j�1 ðo;4Þ
2
iþ2j ðp;4Þiþ2jþ1

;2

, !

for 26 i; j6nþ1 and a;b;c;d;e;f ;g;h;k; l;o;p2C,

(d) ði; jÞ;A4

ða;4Þi�2jþ1 ðb;4Þ
2
i�2jþ2

ðc;4Þ3i�1j ðd;4Þ
4
i�1jþ1 ðe;4Þi�1jþ2

ðf ;4Þ3ijþ1

ðg;4Þ3ij�1

ðh;4Þiþ1j�2 ðk;4Þ
4
iþ1j�1 ðl;4Þ

3
iþ1j

ðo;4Þ2iþ2j�2 ðp;4Þiþ2j�1

;2

, 1
CA

0
B@
for 26 i; j6nþ1 and a;b;c;d;e; f ;g;h;k; l;o;p2C,
32. ðði; jÞ; ðz;4Þij=cz
1;0Þ for 1 6 i; j 6 n and z ¼ a; b; c; d; e; f 2 C,

33. ðði; jÞ; ðz;4Þij=cz
2;0Þ for 1 6 i; j 6 n and z ¼ g;h; k; l; o; p 2 C,

34. ðði; jÞ; c1c2=k;0Þ for 1 6 i; j 6 n,
35. ðði; jÞ; s24b1þ1clcl=p1c0;0Þ for 1 6 i; j 6 n; l ¼ 1;2,
36. ðði; jÞ; p1q1=p2q2;0Þ for 1 6 i; j 6 n,
37. ðði; jÞ; cc0=k;0Þ for 1 6 i; j 6 n,
38. ðði; jÞ; q2=q3;0Þ for 1 6 i; j 6 n,
39. ðði; jÞ; p2c0=l;0Þ for 1 6 i; j 6 n,
40. ðði; jÞ;l=ð0;6Þij;0Þ for 1 6 i; j 6 n,
41. ðði; jÞ; p2q3=q4;0Þ for 1 6 i; j 6 n,
42. ðði; jÞ; q4c=ð1;6Þijo1;0Þ for 1 6 i; j 6 n,
43. ðði; jÞ; cðl;6Þij=ðlþ 1;6Þij;0Þ= for 1 6 i; j 6 n and l ¼ 1; . . . jCj,
44. ðði; jÞ; ol=olþ1;0Þ= for 1 6 i; j 6 n and l ¼ 1; . . . b1,
45. ðði; jÞ; ob1þ1ðz;6Þij=aij;1Þ= for 1 6 i; j 6 n and a; z 2 C,
� iP2 ¼ 1
� io ¼ 1.

3.4. Overview of a computation

The input data of a tissue P system of our family is an input
image of size n� n. This image is codified by objets of the type
aij where a 2 C and 1 6 i; j 6 n. The computation of a P system of
our family is split in four stages. When the input objects arrive
to the cell 1, the computation begins. This first stage has a technical
meaning: the system prepares the copies of the input objects to
send them to the cell 2. So, we can divide this cell as many times
as the number of copies are needed by the system. This stage fin-
ishes with the rules of type 9.

Then, the second stage starts sending (by each pixel of the input
image) an object codifying the pixel ði; jÞ to the cell ði; jÞ. For each
cell ði; jÞ (for each pixel aij), a direction (west-east, northwest-south-
east, north–south and northeast-southwest) is chosen (This infor-
mation will be used in the next stage). To do this choice, we take
the value of the adjacent pixels to aij (rule 13) and we make up four
pairs of pixels taking their positions (rules 14 to 17): ði; j� 1Þ and

Table 1
Complexity and necessary resources.

Complexity AGP operator Thresholding

Number of parallel steps nþ 26dlog2jCje 1
of a computation þ17

Necessary resources
Size of the alphabet Oðn2Þ Oðn2Þ
Initial number of cells n2 1
Initial number of objects 256n2 þ nþ 1 0
Number of rules Oðn2Þ Oðn2Þ
Upper bound for the length of the rules jCj 2
ði; jþ 1Þ; ði� 1; j� 1Þ and ðiþ 1; jþ 1Þ; ði� 1; jÞ and ðiþ 1; jÞ and
finally ði� 1; jþ 1Þ and ðiþ 1; j� 1Þ. Then, their values are taken
to do a substraction (rule 18). We keep the absolute value of these
numbers (rules 19 to 21) and select the biggest value of them (rules
22 to 28). To do the last step we do the following: we codify these
four values as the number of copies of four different objects (d0l with
l ¼ 1; . . . ;4). We take two pairs of these objects and do a substrac-
tion (rule 23). We keep a number of copies of two different objects
(it does not need the same number of copies) codifying each object
with all their copies in only one direction. So, we have eliminated
two possible directions. Then, we repeat the process with other
substraction (rule 27) and keep only one direction (rule 28).

So, the direction given by the maximum value among the four
obtained is chosen. The P system finishes this stage with the rules
of type 28.

The third stage starts with the rules of type 29. The tissue P sys-
tem brings new copies of the cells 2 to use them in each one of the
cells ði; jÞ (rules 31, four cases, one four each possible direction). We
do an approximation of the gradient vector of the intensity func-
tion, but not working with 3� 3 pixels, but working with a 5� 5
grid and we only take 6þ 6 pixels from one of the four following
possibilities:

The choice is done by the direction considered as appropriate in
the previous stage. Then, we add the two values obtained with
absolute value, one for the positive numbers (rule 32) and a second
one for the negative numbers (rule 33). Finally, we do a substrac-
tion (rule 34) and normalize our result dividing by 2 (rule 35). This
manner we have approximated the value of jGj. This stage finishes
with the rules of type 35.

The last stage is devoted to the output of the P system. First, for
each ði; jÞ we take the inverse value of the obtained value (rule 37).
We should take into account the cases where our value is less than
0. In this case, we consider the value 0 associated to our pixel (rules
39 and 40). Finally, we add our value to the pixel (rules 42 and 43)
generating an object ðz;6Þij and send it to the output cell (rule 44
and 45), in our case the cell 1. In this way, we obtain a new image
ready to do a thresholding and achieve a segmentation of the ori-
ginal image.

3.5. Complexity and necessary resources

Bearing in mind that the size of the input data is Oðn2Þ, the
amount of necessary resources to define the systems of our two
families and the complexity of our solutions can be observed in
the Table 1.

4. Experimental simulation

Simulation of different variants of P systems have been widely
studied in the last years. Since there does not exist implementa-
tions of P systems in vivo nor in vitro, the natural way to explore
the behavior of designed P systems is to simulate them in conven-
tional computers. A short description of some of these simulators
can be found in (Dı́az-Pernil et al., 2010a; Gutiérrez-Naranjo
et al., 2006). In (Borrego-Ropero et al., 2007), a first simulator for
tissue P systems was presented. In (Díaz-Pernil et al., 2011), a
sequential simulator for solving a problem from Digital Imagery
with Membrane Computing techniques was presented. Currently,
a big effort is being developed in the P-lingua project (Díaz-Pernil
et al., 2008b), by combining an efficient simulation engine with
an ad hoc programming language.

Recently, a new research line in the simulation of P systems has
started by using novel technologies as Field Programmable Gate Ar-
rays (FPGAs) (Nguyen et al., 2010) or Compute Unified Device
Architecture CUDA™(Cecilia et al., 2010; Peña-Cantillana et al.,
2011b).

In this paper, the algorithms have been implemented by using
CUDA™, (Compute Unified Device Architecture) (Nickolls et al.,
2008; Owens et al., 2008). CUDA™is a general purpose parallel
computing architecture that allows the parallel NVIDIA Graphics
Processing Units (GPUs) to solve many complex computational
problems in a more efficient way than on a CPU.

The way GPUs exploit parallelism differ from multi-core CPUs,
which raises new challenges to take advantage of its tremendous
computing power. GPU is especially well-suited to address prob-
lems that can be expressed as data-parallel computations. GPUs
can support several thousand of concurrent threads providing a
massively parallel environment. This parallel computation model
leads us to look for a highly parallel computational technology
where a parallel simulator can run efficiently. The newest genera-
tions of graphics processor units (GPUs) are massively parallel pro-
cessors which can support several thousand concurrent threads.
CUDA™comes with a software environment that allows developers
to use C as a high-level programming language.

The experiments have been performed on a computer with
a CPU AMD Athlon II x4 645, which allows to work with four
cores of 64 bits to 3.1 GHz. The computer has four blocks of
512 KB of L2 cache memory and 4 GB DDR3 to 1600 MHz of
main memory. The used graphical card (GPU) is an NVIDIA
Geforce GT240 composed by 12 Stream Processors with a total
of 96 cores to 1340 MHz. It has 1 GB DDR3 main memory in a
128 bits bus to 700 MHz. So, the transfer rate obtained is by
54.4 Gbps. The used Constant Memory is 64 KB and the Shared
Memory is 16 KB. Its Compute Capability level is 1.2 (from
1.0 to 2.1).

4.1. Experiments and examples

Next, we show graphically how the simulation with CUDA™of
3� 3 Sobel, 5� 5 Sobel and AGP algorithms work in different
images, detecting the representative edges in each case. Further-
more, we show here 2 examples (see Fig. 2) where the results of
3� 3 Sobel, 5� 5 Sobel and AGP can be compared in different ways
(see Fig. 3, Fig. 4): first of all, with respect to edges detection (first
column in Fig. 2 and 3); second, applying a thresholding (180, in
second column), the resulting binarized images can be compared;
and finally (in third column), using the algorithm defined in
(Christinal et al., 2010b) over them, the white connected compo-
nents enclosed by black connected components (we call white holes

Fig. 3. First comparative example between 3� 3 Sobel, 5� 5 Sobel and AGP operators.

Fig. 2. Original images.

4 Size (pixel�pixel): 1. 0:5K � 0:5K , 2. 1K � 1K , 3. 1:5K � 1:5K , 4. 2K � 2K , 5.
2:5K � 2:5K , 6. 3K � 3K , 7. 3:5K � 3:5K , 8. 4K � 4K , 9. 4:5K � 4:5K , 10. 5K � 5K , 11.
5:5K � 5:5K , 12. 6K � 6K , 13. 6:5K � 6:5K , 14. 7K � 7K , 15. 7:5K � 7:5K , 16. 8K � 8K ,
17. 8:5K � 8:5K , 18. 9K � 9K.
to this type of components) have been determined. In fact, it is easy
to see that the number of white connected components deter-
mined (enclosed by black connected components and painted by
different colors) using AGP is much bigger than using 3� 3 Sobel
and even bigger than using 5� 5 Sobel operator.

The AGP segmentator improves the behavior of the other two
operators. AGP operator uses more pixels with respect to 3� 3 So-
bel operator and the same number of pixels what 5� 5 Sobel oper-
ator. The reason to work better with respect the last one is we work
in a dynamical way. We do a previous work to find the best direc-
tion to apply an algorithm of this type. So, it is logical AGP operator
obtains more white holes.
Finally, we show some experimental comparisons of the
methods.

In Fig. 5 we have two graphics.4 In the first one we compare the
time cost of the sequential 3� 3 Sobel and the parallel AGP algo-
rithm depending on the size of the image. In the second one, we
compare the parallel efficiency on time of the 3� 3 Sobel, 5� 5

Fig. 4. Second comparative example between 3� 3 Sobel, 5� 5 Sobel and AGP operators.

Fig. 5. A time complexity of 3� 3 Sobel, 3� 5 Sobel and AGP segmentator
algorithms.

Table 2
Comparison among our implementations and (Khalid et al., 2011b).

1K � 1K 2K � 2K 3K � 3K

DUO CORE Sequential 3.04 11.56 25.26
QUAD CORE Sequential 3.39 12.92 28.12
DUO CORE (best 2 threads) 1.75 6.125 13
QUAD CORE (best 8 threads) 1 3.125 6.125
Sobel 3� 3 Sequential 0.05 0.152 0.77
Sobel 5� 5 Sequential 0.076 0.267 1.215
Sobel 3� 3 CUDA 0.092 0.105 0.137
Sobel 5� 5 CUDA 0.094 0.112 0.152
AGP CUDA 0.096 0.112 0.152
Sobel and AGP. We can check our operator is more efficient than
5� 5 Sobel and very close to 3� 3 Sobel.

From a computational point of view, it is clear that for small
images, there is no advantage using CUDA™, but in the way the im-
age increases, the time cost in sequential algorithm (in our case
3� 3 Sobel) increases rapidly, but a parallel implementation
(AGP in this case) remains with little time computational cost.
Finally, we compare our methods with some implementations
found in the literature. The reference has been (Khalid et al.,
2011b). In this paper, the authors present the results for images
whose size is 1K � 1K;2K � 2K or 3K � 3K pixels.

Table 2 shows the execution time of the methods with the pre-
vious sizes. For the four first rows the columns present the best
time obtained from 10 examples for images of each size. In this
case, the times were obtained by performing the experiments on
two different computers (DUO Core and QUAD Core) for sequential
and parallel implementations.

The five last rows show the times obtained with our implemen-
tations of the Sobel algorithm in the 3� 3 and 5� 5 versions for
sequential and parallel implementations. We also provide the time
obtained for the AGP segmentator.

5. Final remarks

Classical sequential algorithms need to be revisited and adapted
to the novel technologies, but the new developments also need the
support of deep theoretical foundations.

The bio-inspired computing techniques have features as the
encapsulation of the information, a simple representation of the
knowledge and parallelism, which are appropriate in dealing with
digital images. In this paper, we have shown an example of how a
combination of parallel bio-inspired algorithms together with a
parallel implementation can improve classical techniques for deal-
ing with digital images.

From the Computer Vision side, the use of bio-inspired tech-
niques opens many possibilities for a deep revision of classical
algorithms. The new architectures have shown to be powerful tools
for a real implementation of the intrinsic parallelism of the pro-
cesses of Nature.

From the Natural Computing side, the application of its tech-
niques to a new class of problems opens a new research line by
exploring new data structures and bio-inspired algorithms to solve
digital image problems in a more efficient way.
Acknowledgements

DDP and MAGN acknowledge the support of the projects
TIN2008-04487-E and TIN-2009-13192 of the Ministerio de Cien-
cia e Innovación of Spain and the support of the Project of Excel-
lence with Investigador de Reconocida Valía of the Junta de
Andalucía, grant P08-TIC-04200. AB acknowledges the support of
the project MTM2009–12716 of the Ministerio de Educación y
Ciencia of Spain and the project PO6-TIC-02268 of Excellence of
Junta de Andalucı́a, the ‘‘CATAM’’ PAICYT research group FQM-
296 and EHU09/04 project of University of the Basque Country.
References

Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy Jr., G., Knight, T.F., Nagpal, R.,
Rauch, E., Sussman, G.J., Weiss, R., 2000. Amorphous computing. Comm. ACM
82, 74.

Adleman, L.M., 1994. Molecular computation of solutions to combinatorial
problems. Science 266, 1021–1024.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., 2002. Molecular
Biology of the Cell, fourth ed. Garland Science, London, UK.

Borrego-Ropero, R., Díaz-Pernil, D., Pérez-Jiménez, M.J., 2007. Tissue simulator: A
graphical tool for tissue P systems, in: Vaszil, G. (Ed.), Proceedings of the
International Workshop Automata for Cellular and Molecular Computing, MTA
SZTAKI, Budapest, Hungary, pp. 23–34. Satellite of the 16th International
Symposium on Fundamentals of Computational Theory.

Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., 2010. Simulation of P systems with active membranes on
CUDA. Briefings Bioinf. 11, 313–322.

Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G., 2003a. Tissue-like P
systems with active membranes for picture generation. Fundam. Inf. 56, 311–
328.

Ceterchi, R., Mutyam, M., Păun, G., Subramanian, K.G., 2003b. Array-rewriting P
systems. Nat. Comput. 2, 229–249.

Christinal, H.A., Díaz-Pernil, D., Real, P., 2009. Segmentation in 2D and 3D image
using tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.O. (Eds.),
Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications. Proc. 14th Iberoamerican Conf. on Pattern Recognition, CIARP
2009, Guadalajara, Jalisco, Mexico, November 15–18. Springer, Berlin,
Heidelberg, pp. 169–176.

Christinal, H.A., Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., 2010a.
Thresholding of 2D images with cell-like P systems. Rom. J. Inf. Sci. Technol.
(ROMJIST) 13, 131–140.

Christinal, H.A., Díaz-Pernil, D., Real, P., 2010b. P systems and computational
algebraic topology. J. Math. Comput. Model. 52, 1982–1996, The BIC-TA 2009
Special Issue, Internat. Conf. on Bio-Inspired Computing: Theory and
Applications.

Christinal, H.A., Díaz-Pernil, D., Real, P., 2011. Region-based segmentation of 2D and
3D images with tissue-like P systems. Pattern Recognition Lett. 32, 2206–2212.
Advances in Theory and Applications of Pattern Recognition, Image Processing
and Computer Vision.

Davies, E., 2012. Computer and Machine Vision: Theory, Algorithms, Practicalities.
Elsevier Science.

Davis, L.S., 1975. A survey of edge detection techniques. Comput. Graphics Image
Process. 4, 248–270.

de Castro, L.N., 2007. Fundamentals of natural computing: An overview. Phys. Life
Rev. 4, 1–36.

de Castro, L.N., Timmis, J., 2002. Artificial Immune Systems: A New Computational
Intelligence Approach. Springer.
Dersanambika, K.S., Krithivasan, K., 2004. Contextual array P systems. Internat. J.
Comput. Math. 81, 955–969.

Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., 2007.
Solving subset sum in linear time by using tissue P systems with cell division.
In: Mira, J., Álvarez, J.R. (Eds.), IWINAC (1). Springer, Berlin, Heidelberg, pp. 170–
179.

Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.,
2008a. A uniform family of tissue P systems with cell division solving 3-COL in a
linear time. Theor. Comput. Sci. 404, 76–87.

Díaz-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A., 2008b. A P-
lingua programming environment for membrane computing. In: Corne, D.W.,
Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (Eds.), Workshop on Membrane
Computing. Springer, Berlin, Heidelberg, pp. 187–203.

Díaz-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I.,
Pérez-Jiménez, M.J., 2010a. Software for P systems. In: HandbookMC10, pp.
437–454.

Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P., 2010b. A bio-
inspired software for segmenting digital images. In: Nagar, A.K., Thamburaj, R.,
Li, K., Tang, Z., Li, R. (Eds.), Proc. 2010 IEEE Fifth Internat. Conf. on Bio-Inspired
Computing: Theories and Applications BIC-TA. IEEE Computer Society, Beijing,
China, pp. 1377–1381.

Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P., 2011. Designing a
new software tool for digital imagery based on P systems. Nat. Comput., 1–6.
http://dx.doi.org/10.1007/s11047-011-9287-4.

Egmont-Petersen, M., de Ridder, D., Handels, H., 2002. Image processing with neural
networks – a review. Pattern Recognition 35, 2279–2301.

Engelbrecht, A.P., 2005. Fundamentals of Computational Swarm Intelligence. Wiley
and Sons.

Gimel’farb, G., Nicolescu, R., Ragavan, S., 2011. P systems in stereo matching. In:
Real, P., Díaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (Eds.),
Computer Analysis of Images and Patterns, Lecture Notes in Computer Science,
vol. 6855. Springer, Berlin/Heidelberg, pp. 285–292.

Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., 2006. Available
membrane computing software. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, G.
(Eds.), Applications of Membrane Computing, Natural Computing Series, vol.
6855. Springer, pp. 411–436.

Hirvensalo, M., 2004. Quantum computing. Natural Computing Series. Springer.
Holland, J.H., 1992. Adaptation in Natural and Artificial Systems. MIT Press,

Cambridge, MA, USA.
Kari, L., Rozenberg, G., 2008. The many facets of natural computing. Comm. ACM 51,

72–83.
Khalid, N.E.A., Ahmad, S.A., Noor, N.M., Fadzil, A.F.A., Taib, M.N., 2011a. Analysis of

parallel multicore performance on sobel edge detector. In: Proc. 15th WSEAS
Internat. Conf. on Computers. World Scientific and Engineering Academy and
Society (WSEAS), Stevens Point, Wisconsin, USA.

Khalid, N.E.A., Ahmad, S.A., Noor, N.M., Fadzil, A.F.A., Taib, M.N., 2011b. Parallel
approach of Sobel edge detector on multicore platform. Internat. J. Comput.
Comm. 5, 236–244.

Krishna, S.N., Rama, R., Krithivasan, K., 2001. P systems with picture objects. Acta
Cybernet. 15, 53–74.

Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A., 2003. Tissue P systems.
Theor. Comput. Sci. 296, 295–326.

McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5, 115–133.

Nguyen, V., Kearney, D., Gioiosa, G., 2010. An extensible, maintainable and elegant
approach to hardware source code generation in reconfig-P. J. Logic Algebraic
Program. 79, 383–396.

Nickolls, J., Buck, I., Garland, M., Skadron, K., 2008. Scalable parallel programming
with CUDA. Queue 6, 40–53.

Ogawa, K., Ito, Y., Nakano, K., 2010. Efficient canny edge detection using a gpu. In:
Proc. 2010 First Internat. Conf. on Networking and Computing. IEEE Computer
Society, Washington, DC, USA.

Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C., 2008. GPU
computing. Proc. IEEE 96, 879–899.

Pal, N.R., Pal, S.K., 1993. A review on image segmentation techniques. Pattern
Recognition 26, 1277–1294.

Parker, J., 2010. Algorithms for Image Processing and Computer Vision. John Wiley &
Sons.

Peli, T., Malah, D., 1982. A study of edge detection algorithms. Comput. Graphics
Image Process. 20, 1–21.

Peña-Cantillana, F., Díaz-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A., 2011a. A
parallel implementation of the thresholding problem by using tissue-like P
systems. In: Real, P., Díaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch,
W.G. (Eds.), CAIP (2). Springer, pp. 277–284.

Peña-Cantillana, F., Dı́az-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A., 2011b.
Implementation on CUDA of the smoothing problem with tissue-like P systems.
Internat. J. Natural Comput. Res. 2, 25–34.

Păun, G., 2000. Computing with membranes. J. Comput. Systems Sci. 61, 108–143.
Păun, G., 2002. Membrane Computing. An Introduction. Springer-Verlag, Berlin,

Germany.
Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., 2008. Tissue P systems with cell

division. Internat. J. Comput. Comm. Control 3, 295–303.
Păun, G., Rozenberg, G., Salomaa, A. (Eds.), 2010. The Oxford Handbook of

Membrane Computing. Oxford University Press, Oxford, England.
Rosin, P.L., 2006. Training cellular automata for image processing. IEEE Trans. Image

Process. 15, 2076–2087.

http://dx.doi.org/10.1007/s11047-011-9287-4

Sanduja, V., Patial, R., 2012. Sobel edge detection using parallel architecture based
on FPGA. Internat. J. Appl. Inf. Systems 3, 20–24, Published by Foundation of
Computer Science, New York, USA.

Selvapeter, P.J., Hordijk, W., 2009. Cellular automata for image noise filtering. In:
NaBIC. IEEE, pp. 193–197.
Sobel, I.E., 1970. Camera models and machine perception. Ph.D. thesis. Dept. of
Computer Sciences. Stanford, CA, USA. AAI7102831.

von Neumann, J., 1966. Theory of Self-Reproducing Automata. University of Illinois
Press, Champaign, IL, USA.

	Segmenting images with gradient-based edge detection using Membrane Computing
	1 Introduction
	2 Natural computing
	2.1 Tissue P systems with cell division
	2.2 Example

	3 Edge detection and segmentation
	3.1 Thresholding with membrane computing
	3.2 Segmenting images with gradient-based edge detection using tissue P systems
	3.3 A family of tissue P systems with cell division
	3.4 Overview of a computation
	3.5 Complexity and necessary resources

	4 Experimental simulation
	4.1 Experiments and examples

	5 Final remarks
	Acknowledgements
	References

