89 research outputs found

    Supremica – An integrated environment for verification, synthesis and simulation of discrete event systems

    Get PDF
    An integrated environment, Supremica, for verification, synthesis and simulation of discrete event systems is presented. The basic model in Supremica is finite automata where the transitions have an associated event together with a guard condition and an action function that updates automata variables. Supremica uses two main approaches to handle large state-spaces. The first approach exploits modularity in order to divide the original problem into many smaller problems that together solve the original problem. The second approach uses an efficient data structure, a binary decision diagram, to symbolically represent the reachable states. Models in Supremica may be simulated in the environment. It is also possible to generate code that implements the behavior of the model using both the IEC 61131 and the IEC 61499 standard

    Multi-Agent Modelling of Industrial Cyber-Physical Systems for IEC 61499 Based Distributed Intelligent Automation

    Get PDF
    Traditional industrial automation systems developed under IEC 61131-3 in centralized architectures are statically programmed with determined procedures to perform predefined tasks in structured environments. Major challenges are that these systems designed under traditional engineering techniques and running on legacy automation platforms are unable to automatically discover alternative solutions, flexibly coordinate reconfigurable modules, and actively deploy corresponding functions, to quickly respond to frequent changes and intelligently adapt to evolving requirements in dynamic environments. The core objective of this research is to explore the design of multi-layer automation architectures to enable real-time adaptation at the device level and run-time intelligence throughout the whole system under a well-integrated modelling framework. Central to this goal is the research on the integration of multi-agent modelling and IEC 61499 function block modelling to form a new automation infrastructure for industrial cyber-physical systems. Multi-agent modelling uses autonomous and cooperative agents to achieve run-time intelligence in system design and module reconfiguration. IEC 61499 function block modelling applies object-oriented and event-driven function blocks to realize real-time adaption of automation logic and control algorithms. In this thesis, the design focuses on a two-layer self-manageable architecture modelling: a) the high-level cyber module designed as multi-agent computing model consisting of Monitoring Agent, Analysis Agent, Self-Learning Agent, Planning Agent, Execution Agent, and Knowledge Agent; and b) the low-level physical module designed as agent-embedded IEC 61499 function block model with Self-Manageable Service Execution Agent, Self-Configuration Agent, Self-Healing Agent, Self-Optimization Agent, and Self-Protection Agent. The design results in a new computing module for high-level multi-agent based automation architectures and a new design pattern for low-level function block modelled control solutions. The architecture modelling framework is demonstrated through various tests on the multi-agent simulation model developed in the agent modelling environment NetLogo and the experimental testbed designed on the Jetson Nano and Raspberry Pi platforms. The performance evaluation of regular execution time and adaptation time in two typical conditions for systems designed under three different architectures are also analyzed. The results demonstrate the ability of the proposed architecture to respond to major challenges in Industry 4.0

    Anpassen verteilter eingebetteter Anwendungen im laufenden Betrieb

    Get PDF
    The availability of third-party apps is among the key success factors for software ecosystems: The users benefit from more features and innovation speed, while third-party solution vendors can leverage the platform to create successful offerings. However, this requires a certain decoupling of engineering activities of the different parties not achieved for distributed control systems, yet. While late and dynamic integration of third-party components would be required, resulting control systems must provide high reliability regarding real-time requirements, which leads to integration complexity. Closing this gap would particularly contribute to the vision of software-defined manufacturing, where an ecosystem of modern IT-based control system components could lead to faster innovations due to their higher abstraction and availability of various frameworks. Therefore, this thesis addresses the research question: How we can use modern IT technologies and enable independent evolution and easy third-party integration of software components in distributed control systems, where deterministic end-to-end reactivity is required, and especially, how can we apply distributed changes to such systems consistently and reactively during operation? This thesis describes the challenges and related approaches in detail and points out that existing approaches do not fully address our research question. To tackle this gap, a formal specification of a runtime platform concept is presented in conjunction with a model-based engineering approach. The engineering approach decouples the engineering steps of component definition, integration, and deployment. The runtime platform supports this approach by isolating the components, while still offering predictable end-to-end real-time behavior. Independent evolution of software components is supported through a concept for synchronous reconfiguration during full operation, i.e., dynamic orchestration of components. Time-critical state transfer is supported, too, and can lead to bounded quality degradation, at most. The reconfiguration planning is supported by analysis concepts, including simulation of a formally specified system and reconfiguration, and analyzing potential quality degradation with the evolving dataflow graph (EDFG) method. A platform-specific realization of the concepts, the real-time container architecture, is described as a reference implementation. The model and the prototype are evaluated regarding their feasibility and applicability of the concepts by two case studies. The first case study is a minimalistic distributed control system used in different setups with different component variants and reconfiguration plans to compare the model and the prototype and to gather runtime statistics. The second case study is a smart factory showcase system with more challenging application components and interface technologies. The conclusion is that the concepts are feasible and applicable, even though the concepts and the prototype still need to be worked on in future -- for example, to reach shorter cycle times.Eine große Auswahl von Drittanbieter-Lösungen ist einer der Schlüsselfaktoren für Software Ecosystems: Nutzer profitieren vom breiten Angebot und schnellen Innovationen, während Drittanbieter über die Plattform erfolgreiche Lösungen anbieten können. Das jedoch setzt eine gewisse Entkopplung von Entwicklungsschritten der Beteiligten voraus, welche für verteilte Steuerungssysteme noch nicht erreicht wurde. Während Drittanbieter-Komponenten möglichst spät -- sogar Laufzeit -- integriert werden müssten, müssen Steuerungssysteme jedoch eine hohe Zuverlässigkeit gegenüber Echtzeitanforderungen aufweisen, was zu Integrationskomplexität führt. Dies zu lösen würde insbesondere zur Vision von Software-definierter Produktion beitragen, da ein Ecosystem für moderne IT-basierte Steuerungskomponenten wegen deren höherem Abstraktionsgrad und der Vielzahl verfügbarer Frameworks zu schnellerer Innovation führen würde. Daher behandelt diese Dissertation folgende Forschungsfrage: Wie können wir moderne IT-Technologien verwenden und unabhängige Entwicklung und einfache Integration von Software-Komponenten in verteilten Steuerungssystemen ermöglichen, wo Ende-zu-Ende-Echtzeitverhalten gefordert ist, und wie können wir insbesondere verteilte Änderungen an solchen Systemen konsistent und im Vollbetrieb vornehmen? Diese Dissertation beschreibt Herausforderungen und verwandte Ansätze im Detail und zeigt auf, dass existierende Ansätze diese Frage nicht vollständig behandeln. Um diese Lücke zu schließen, beschreiben wir eine formale Spezifikation einer Laufzeit-Plattform und einen zugehörigen Modell-basierten Engineering-Ansatz. Dieser Ansatz entkoppelt die Design-Schritte der Entwicklung, Integration und des Deployments von Komponenten. Die Laufzeit-Plattform unterstützt den Ansatz durch Isolation von Komponenten und zugleich Zeit-deterministischem Ende-zu-Ende-Verhalten. Unabhängige Entwicklung und Integration werden durch Konzepte für synchrone Rekonfiguration im Vollbetrieb unterstützt, also durch dynamische Orchestrierung. Dies beinhaltet auch Zeit-kritische Zustands-Transfers mit höchstens begrenzter Qualitätsminderung, wenn überhaupt. Rekonfigurationsplanung wird durch Analysekonzepte unterstützt, einschließlich der Simulation formal spezifizierter Systeme und Rekonfigurationen und der Analyse der etwaigen Qualitätsminderung mit dem Evolving Dataflow Graph (EDFG). Die Real-Time Container Architecture wird als Referenzimplementierung und Evaluationsplattform beschrieben. Zwei Fallstudien untersuchen Machbarkeit und Nützlichkeit der Konzepte. Die erste verwendet verschiedene Varianten und Rekonfigurationen eines minimalistischen verteilten Steuerungssystems, um Modell und Prototyp zu vergleichen sowie Laufzeitstatistiken zu erheben. Die zweite Fallstudie ist ein Smart-Factory-Demonstrator, welcher herausforderndere Applikationskomponenten und Schnittstellentechnologien verwendet. Die Konzepte sind den Studien nach machbar und nützlich, auch wenn sowohl die Konzepte als auch der Prototyp noch weitere Arbeit benötigen -- zum Beispiel, um kürzere Zyklen zu erreichen

    Engineering framework for service-oriented automation systems

    Get PDF
    Tese de doutoramento. Engenharia Informática. Universidade do Porto. Faculdade de Engenharia. 201

    The DS-Pnet modeling formalism for cyber-physical system development

    Get PDF
    This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets), designed for the development of cyber-physical systems, combining the characteristics of Petri nets and dataflows to support the modeling of mixed systems containing both reactive parts and data processing operations. Inheriting the features of the parent IOPT Petri net class, including an external interface composed of input and output signals and events, the addition of dataflow operations brings enhanced modeling capabilities to specify mathematical data transformations and graphically express the dependencies between signals. Data-centric systems, that do not require reactive controllers, are designed using pure dataflow models. Component based model composition enables reusing existing components, create libraries of previously tested components and hierarchically decompose complex systems into smaller sub-systems. A precise execution semantics was defined, considering the relationship between dataflow and Petri net nodes, providing an abstraction to define the interface between reactive controllers and input and output signals, including analog sensors and actuators. The new formalism is supported by the IOPT-Flow Web based tool framework, offering tools to design and edit models, simulate model execution on the Web browser, plus model-checking and software/hardware automatic code generation tools to implement controllers running on embedded devices (C,VHDL and JavaScript). A new communication protocol was created to permit the automatic implementation of distributed cyber-physical systems composed of networks of remote components communicating over the Internet. The editor tool connects directly to remote embedded devices running DS-Pnet models and may import remote components into new models, contributing to simplify the creation of distributed cyber-physical applications, where the communication between distributed components is specified just by drawing arcs. Several application examples were designed to validate the proposed formalism and the associated framework, ranging from hardware solutions, industrial applications to distributed software applications

    GRL: A Specification Language for Globally Asynchronous Locally Synchronous Systems

    Get PDF
    International audienceA GALS (Globally Asynchronous, Locally Synchronous) system consists of several synchronous subsystems that evolve concurrently and interact with each other asynchronously. Most formalisms and design tools support either the synchronous paradigm or the asynchronous paradigm but rarely combine both, which requires an intricate modeling of GALS systems. In this paper, we present a new language, called GRL (GALS Representation Language) designed to model GALS systems in an abstract and versatile manner for the purpose of formal verification. GRL has formal semantics combining the synchronous reactive model underlying dataflow languages and the asynchronous concurrent model underlying process algebras. We present the basic concepts and the main constructs of the language, together with an illustrative example

    A service-oriented approach to embedded component-based manufacturing automation

    Get PDF
    This thesis is focused on the application of Component-Based (CB) technology to shop oor devices using a Service Oriented Architecture (SOA) and Web Services (WS) for the purpose of realising future generation agile manufacturing systems. The environment of manufacturing enterprises is now characterised by frequently changing market demands, time-to-market pressure, continuously emerging new technologies and global competition. Under these circumstances, manufacturing systems need to be agile and automation systems need to support this agility. More speci cally, an open, exible automation environment with plug and play connectivity is needed. Technically, this requires the easy connectivity of hardware devices and software components from di erent vendors. Functionally, there is a need of interoperability and integration of control functions on di erent hierarchical levels ranging from eld level to various higher level applications such as process control and operations management services. [Continues.
    corecore