
Supremica – An integrated environment for verification, synthesis and
simulation of discrete event systems

Knut Åkesson†, Martin Fabian, Hugo Flordal
Department of Signals and Systems
Chalmers University of Technology

SE-412 96 Göteborg, Sweden

Robi Malik
Department of Computer Science

University of Waikato
Hamilton, New Zealand

Abstract— An integrated environment, Supremica, for veri-
fication, synthesis and simulation of discrete event systems is
presented. The basic model in Supremica is finite automata
where the transitions have an associated event together with a
guard condition and an action function that updates automata
variables. Supremica uses two main approaches to handle large
state-spaces. The first approach exploits modularity in order to
divide the original problem into many smaller problems that
together solve the original problem. The second approach uses
an efficient data structure, a binary decision diagram, to sym-
bolically represent the reachable states. Models in Supremica
may be simulated in the environment. It is also possible to
generate code that implements the behavior of the model using
both the IEC 61131 and the IEC 61499 standard.

I. INTRODUCTION

The supervisory control theory (SCT) [1], [2], [3] is a
framework for verification and synthesis of discrete event
supervisors. Since the theory is applicable to any system that
may be modeled as discrete event system there are a large
number of potential applications. However, user friendly
tools that are able to solve large problems are critical in order
for the theory to be accepted in industry. Supremica [4], [5],
[6] is an attempt to build an integrated development environ-
ment that is able to solve large scale supervisor verification
and synthesis problems. Previous releases of Supremica
used finite automata without hierarchy and variables. Recent
work has extended Supremica to include a more high-level
modeling language that includes variables, guards, actions
and hierarchy. A new user interface has been developed
that is a complete integrated development environment (IDE)
since it contains a graphical automata editor as well as an
easy to use interface to analyze, synthesize and simulate
discrete event supervisors. Supremica with the IDE, shown
in Fig. 1. The editor is an extended version of, Waters, an
automata editor developed at University of Waikato, New
Zealand. Supremica is constantly evolving but the latest
release can always be downloaded, free for education and
research, from [4].

†Corresponding author: knut@chalmers.se
Beside the authors of this paper other people have also contributed to

Supremica. From Chalmers the following people are the main contributors:
Arash Vahidi (BDD based algorithms), Markus Sköldstam and Martin Byröd
(extending the editor to handle variables, actions and guards), Goran Čengić
(Fuber, a IEC-61499 runtime), Avenir Kobetski (optimization algorithms).
Gian Perrone and Simon Ware at University of Waikato developed the
original Waters editor.

II. SUPREMICA

To make it easier to develop large models an extended
type of automata has been introduced in Supremica. This
new automata type is called Extended Finite Automaton
(EFA) and is an augmentation of the regular automaton with
guard and action formulas associated to the transitions. State
hierarchy is introduced by allowing the user to group states
together. There is also support for parameterized automata
that facilitate the development of models with a large number
of automata with similar structure. An EFA, as defined in
Supremica, is an augmentation of the regular automaton with
guard and action formulas associated to the transitions. A
transition in the EFA is enabled when its guard formula
is true. Moreover, when a transition in an EFA is taken,
updating actions of a set of variables may follow. Before
any analysis on the EFA is done they are translated to stan-
dard finite automata without hierarchy, variables, guards and
actions. Hence, the standard supervisory control algorithms
may be used to solve the verification and synthesis problems
even.

Analysis: Supremica implements monolithic and modu-
lar verification and synthesis algorithms for solving non-
blocking, controllability, and combined non-blocking and
controllability problems. The modular algorithms are de-
scribed in [7], [8], [9], [10]. The algorithms based on binary
decision diagrams are presented in [11], [12]. Supremica also
has rudimentary support for associating a cost with states.
Based on this cost it is possible to generate a supervisor with
minimal total cost. Applications and algorithms is presented
in [13], [14], [15].

Analysis Code generation and simulation: When a set of
supervisors has been synthesized it is desirable to be able to
generate code that implements these supervisors. Supremica
can generate code in a number of formats including IEC
61131 – Instruction List, Sequential Function Charts, Struc-
tured Text; ANSI C and Java. It is also possible to generate
IEC 61499 code from Supremica [16]. For some applications
it is also possible to verify the behavior of existing IEC
61499 code. To make this tight integration possible a new
IEC 61499 runtime environment, called Fuber, has been
developed [17], [18].

Applications: Supremica has been used both a Chalmers
and other universities to communicate the main ideas of
supervisory control to students. Supremica has also been
used in a number of applications including handling the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Screenshot of Supremica. An extended finite automaton is shown that contains an integer variable named sticks and four events
player 1 remove one, player 1 remove two, player 2 remove one, player 2 remove two. Each transition has an associated event
together with a guard condition and an action function that update the variable.

resource allocations in a commercial chemical batch control
system [19], multiple industrial robot coordination [20],
human-computer supervision [21] and for manufacturing
systems [22], [23].

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proc. of IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[2] W.M.Wonham, “Supervisory control of discrete event systems,” De-
partment of Electrical and Computer Engineering, University of
Toronto, Tech. Rep., 2005.

[3] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Kluwer Academic Publishers, Sept. 1999.

[4] “Supremica.” [Online]. Available: http://www.supremica.org
[5] K. Åkesson, M. Fabian, H. Flordal, and A. Vahidi, “Supremica—a tool

for verification and synthesis of discrete event supervisors,” in Proc.
of the 11th Mediterranean Conference on Control and Automation,
Rhodos, Greece, 2003.

[6] K. Åkesson, “Methods and tools in supervisory control theory: Oper-
ator aspects, computation efficiency and applications,” Ph.D. disserta-
tion, Chalmers University of Technology, Göteborg, Sweden, 2002.

[7] K. Åkesson, H. Flordal, and M. Fabian, “Exploiting modularity for
synthesis and verification of supervisors,” in Proc. of the 15th Triennial
World Congress of the International Federation of Automatic Control,
Barcelona, Spain, July 2002.

[8] H. Flordal, M. Fabian, and K. Åkesson, “Heuristics for verification and
synthesis of mutually nonblocking discrete event systems,” Department
of Signals and Systems, Chalmers University of Technology, Tech.
Rep. R012/2004, 2004.

[9] H. Flordal and R. Malik, “Modular nonblocking verification using
conflict equivalence,” in Proc. 8th Workshop on Discrete Event Systems
(WODES’06), Ann Arbor, Michigan, USA, 2006.

[10] ——, “Supervision equivalence,” in Proc. 8th Workshop on Discrete
Event Systems (WODES’06), Ann Arbor, Michigan, USA, 2006.

[11] A. Vahidi, “Efficient analysis of discrete event systems,” Ph.D. dis-
sertation, Department of Signals and Systems, Chalmers University of
Technology, Göteborg, Sweden, 2004.

[12] M. Byröd, B. Lennartson, A. Vahidi, and K. Åkesson, “Efficient
reachability analysis on modular discrete-event systems using binary
decision diagrams,” in Proc. 8th Workshop on Discrete Event Systems
(WODES’06), Ann Arbor, Michigan, USA, 2006.

[13] H. Flordal, D. Spensieri, K. Åkesson, and M. Fabian, “Supervision of
multiple industrial robots—optimal and collision free work cycles,” in
Proceedings of the IEEE Conference on Control Applications, Taipei,
Taiwan, sep 2004.

[14] A. Kobetski and M. Fabian, “Scheduling of discrete event systems
using mixed integer linear programming,” in Proc. 8th Workshop on
Discrete Event Systems (WODES’06), Ann Arbor, Michigan, USA,
2006.

[15] A. Kobetski, D. Spensieri, and M. Fabian, “Scheduling algorithms for
optimal robot cell coordination – a comparison,” submitted to the 2006
IEEE Conference on Automation Science and Engineering, Shanghai,
China.

[16] G. Cengic, K. Åkesson, B. Lennartson, C. Yuan, and P. Ferreira,
“Implementation of full synchronous composition using IEC 61499
function blocks,” in Proc. of 2005 IEEE Conference on Automation
Science and Engineering, Edmonton, Canada, 2005, pp. 267–272.

[17] “Fuber – IEC 61499 Function Block Execution Runtime.” [Online].
Available: http://sourceforge.net/projects/fuber

[18] G. Čengić, O. Ljungkrantz, and K. Åkesson, “Formal modeling of
function block applications running in IEC 61499 execution runtime,”
submitted to the 2006 IEEE Conference on Emerging Technologies
and Factory Automation , Prague, Czech Republic.

[19] K. Åkesson and M. Fabian, “Implementing supervisory control for
chemical batch processes,” in Proc. of the 1999 IEEE Int. Conf. on
Control Applications, Hawai’i, USA, 1999, pp. 1272–1277.

[20] H. Flordal, M. Fabian, and K. Åkesson, “Automatic implementation
and verification of coordinating PLC-code for robot cells,” in Proceed-
ings of the 11th IFAC Symposium of Information Control Problems in
Manufacturing, Salvador, Brazil, apr 2004.

[21] K. Åkesson, S. Jain, and P. Ferreira, “Hybrid computer-human su-
pervision of discrete event systems,” in Proc. of the 2002 IEEE
International Conference on Robotics and Automation, Washington,
DC, 2002, pp. 2321–2326.

[22] K. Danielsson, J. Richardsson, B. Lennartson, and M. Fabian, “Au-
tomatic scheduling and verification of the control function of flexible
assembly cells in an information reuse environment,” in 6th IEEE In-
ternational Symp. on Assembly and Task Planning, Montreal, Canada,
july 2005, pp. 80–85.

[23] K. Andersson, “Hierarchical control and restart of flexible manufac-
turing systems,” Licentiate thesis, Department of Signals and Systems,
Chalmers University of Technology, Göteborg, Sweden, 2006.


