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Abstract 

Traditional industrial automation systems developed under IEC 61131-3 in centralized 

architectures are statically programmed with determined procedures to perform predefined tasks 

in structured environments. Major challenges are that these systems designed under traditional 

engineering techniques and running on legacy automation platforms are unable to automatically 

discover alternative solutions, flexibly coordinate reconfigurable modules, and actively deploy 

corresponding functions, to quickly respond to frequent changes and intelligently adapt to 

evolving requirements in dynamic environments.  

The core objective of this research is to explore the design of multi-layer automation 

architectures to enable real-time adaptation at the device level and run-time intelligence 

throughout the whole system under a well-integrated modelling framework. Central to this goal 

is the research on the integration of multi-agent modelling and IEC 61499 function block 

modelling to form a new automation infrastructure for industrial cyber-physical systems. Multi-

agent modelling uses autonomous and cooperative agents to achieve run-time intelligence in 

system design and module reconfiguration. IEC 61499 function block modelling applies object-

oriented and event-driven function blocks to realize real-time adaption of automation logic and 

control algorithms. In this thesis, the design focuses on a two-layer self-manageable architecture 

modelling: a) the high-level cyber module designed as multi-agent computing model consisting 

of Monitoring Agent, Analysis Agent, Self-Learning Agent, Planning Agent, Execution Agent, 

and Knowledge Agent; and b) the low-level physical module designed as agent-embedded IEC 

61499 function block model with Self-Manageable Service Execution Agent, Self-Configuration 

Agent, Self-Healing Agent, Self-Optimization Agent, and Self-Protection Agent. The design 
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results in a new computing module for high-level multi-agent based automation architectures and 

a new design pattern for low-level function block modelled control solutions. 

The architecture modelling framework is demonstrated through various tests on the 

multi-agent simulation model developed in the agent modelling environment NetLogo and the 

experimental testbed designed on the Jetson Nano and Raspberry Pi platforms. The performance 

evaluation of regular execution time and adaptation time in two typical conditions for systems 

designed under three different architectures are also analyzed. The results demonstrate the ability 

of the proposed architecture to respond to major challenges in Industry 4.0.  
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Chapter One: Introduction 

1.1 Research Background 

Industrial automation plays a fundamental role in global industry. From a broad view, industrial 

automation systems have been evolving through a series of industrial revolutions: beginning with 

water- and steam-powered mechanical manufacturing systems, and followed by electricity-

powered mass production systems, then developing into information technology enabled 

mechatronic systems, until now integrated with communicating and computing capabilities to 

form industrial cyber-physical systems [1]-[2]. During these revolutions, industrial systems have 

gradually been automated and empowered from simply replacing heavy and repetitive labor 

work by machines, to applying computerized procedures and processes to control machines, to 

machines that are capable of intelligent behaviours. One of the most critical motivations for 

companies to continuously develop, deploy, and advance their automation systems is to remain 

competitive (e.g., balancing conflicts of mass customized product varieties and short production 

lead times, or low cost and high quality) in the global market. Especially over the last few 

decades, industrial automation systems empowered by information technology and intelligent 

electronics have significantly improved companies’ performances in meeting challenges and 

achieving goals (e.g., business, societal, and environmental). In the past decade, the 

manufacturing industry has marched into a new era and is leading the way to the fourth industrial 

revolution (i.e., Industry 4.0 [1]), of which some key features, e.g., integration of industrial cyber 

and physical systems (iCPS), application of industrial internet of things and services (IIoTS), are 

required for the development of next-generation industrial systems. 
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Traditional industrial automation systems developed in centralized architectures (e.g., 

several automation processes controlled by a single controller) are statically programmed with 

determined procedures (e.g., system functions and module interactions designed at early stages 

considering limited available requirements) to perform predefined tasks in structured 

environments (e.g., system operating as initially designed and difficult to adapt during runtime). 

However, current industrial environments create many challenges for these systems, especially 

when viewed in the context of Industry 4.0. In particular, systems designed under traditional 

engineering techniques and running on legacy automation platforms are unable to automatically 

discover alternative solutions, flexibly coordinate reconfigurable modules, and actively deploy 

corresponding functions, to quickly respond to frequent changes and intelligently adapt to 

evolving requirements in dynamic environments. To address this challenge, research is required 

on the design and modelling of automation architectures that are responsive to frequent changes 

and adaptive to evolving requirements in a distributed and intelligent way during runtime. 

Frequent changes and evolving requirements result from both the supply chain aspect (e.g., 

customer requirements and manufacturing resources) and the industrial system aspect (e.g., 

software update and hardware maintenance). A distributed and intelligent solution requires that 

systems are flexible in self-managing distributed architectures (e.g., dynamic configuration of 

decentralized modules and scalable solutions to meet challenges) and are adaptable in self-

organizing intelligent behaviours (e.g., balancing limited available resources and complex 

assigned workloads to improve overall utilization and to ensure required priority) in response to 

frequent changes and evolving requirements.  

In order to realize the promise of Industry 4.0, an autonomous, distributed, and 

cooperative approach to automation and control is required, that matches the intelligent, 
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concurrent, and stochastic nature of next-generation industrial systems. Recently, industrial 

systems have been evolving into a new form (i.e., industrial cyber-physical systems, iCPS), in 

which cyber and physical components collaborate with each other and are empowered for 

intelligence by communicating and computing cores [2]. This new type of iCPS appears to hold 

the most promise of achieving modern industrial automation systems in the Industry 4.0 era, to 

be flexible in reconfiguration of distributed system architectures and to be intelligent in 

adaptation to changes in dynamic environments. Central to this work on distributed intelligent 

automation, is the academic research on and industrial application of the standards IEC 61131-3 

[3]-[4] and IEC 61499 [5]-[6]. Furthermore, recent work in software design and hardware 

development have also helped reshape industrial automation systems [7]. In past decades, the 

IEC 61131-3 standard has been widely used in developing industrial automation systems, mainly 

focusing on the design of scan-based centralized and closed system architectures. However, as 

envisioned for the next-generation industrial automation systems to be portable, interoperable, 

and configurable, a new standard IEC 61499 was proposed for programming distributed 

industrial automation solutions [8]-[9]. IEC 61499 has been a promising alternative to IEC 

61131-3 as it offers some key features, e.g., application-based distributed architecture design, 

object-oriented function block modelling, and event-driven control application execution, to 

address challenges (e.g., scan-based and device-centered centralized architecture, 

implementation/vendor dependent feedback connection and device communication) IEC 61131-3 

is facing under current industrial environments. 

In this research, the core objective is to explore the design of multi-layer automation 

architectures to enable real-time adaptation at the device level and run-time intelligence 

throughout the whole system under a well-integrated modelling framework. Central to this goal 
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is the research on the integration of multi-agent modelling and IEC 61499 function block 

modelling, together with other enabling techniques, to form a new automation infrastructure for 

iCPS. Multi-agent modelling uses autonomous and cooperative agents to achieve run-time 

intelligence in system design and module reconfiguration. IEC 61499 function block modelling 

applies object-oriented and event-driven function blocks to realize real-time adaption of 

automation logic and control algorithms. In this thesis, a multi-agent architecture modelling 

framework to realize IEC 61499 based distributed intelligent automation is proposed. The design 

will focus on a two-layer self-manageable architecture modelling.  
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1.2 Thesis Structure 

The thesis is structured as follows (Figure 1-1). Following this introduction, the research 

motivation is described in Chapter Two, which outlines the research problem, objectives, 

methodologies, and expected contributions. Chapter Three is a literature review of five major 

topics on IEC 61499 function block modelling for distributed automation systems, in which 

design methods (e.g., object-oriented modelling technique), computing paradigms (e.g., 

autonomic computing framework), and engineering environments (e.g., Eclipse 4diac) are 

analyzed and will be applied in this thesis. The following chapters focus on deploying autonomic 

computing in the proposed architecture modelling framework, including: a) the reference 

architecture employed in the high-level cyber module and implemented as multi-agent systems, 

b) the self-managing properties employed in the low-level physical module and implemented as 

agent-embedded IEC 61499 function blocks. The design results in a new computing module for 

high-level multi-agent based automation architectures and a new design pattern for low-level 

function block modelled control solutions. In Chapter Seven, the proposed architecture 

modelling framework is demonstrated and evaluated through various experiments on the multi-

agent simulation model and the designed experimental testbed. Chapter Eight closes the thesis 

with conclusions and future work. 
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Chapter Two: Research Motivation 

2.1 Problem Statement 

Traditional industrial automation systems developed in centralized architectures are statically 

programmed with determined procedures to perform predefined tasks in structured 

environments. Figure 2-1 shows a simplified but typical industrial automation scenario, in which 

the system is originally programmed to sort specific blocks into corresponding bins. Details are 

described below to explain the research motivation: 

• a programmable robotic arm can rotate and translate to grasp and place blocks from a 

conveyor into bins on the fly on a workbench; 

• the task for the robotic arm is to pick up one type of block from the conveyor and then place 

them into the corresponding type of the bin on the workbench; and 

• engineers pre-program specific working procedures for robotic arms to finish specific tasks.  

Robotic Arm

Conveyor System

Sorting Bins

B1

B2

B3

B4

 

Figure 2-1: A simplified and typical industrial automation scenario 
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This type of scenario is common for many industrial applications, such as assembly lines 

in automotive manufacturing and sorting systems in distribution centres. They are considered as 

traditional industrial automation systems with enough automated capabilities to replace repetitive 

labour work or with some degree of flexibility for programmable controls. Typical features of 

these systems can be summarized as:  

• static programming with determined procedures (i.e., pre-programmed procedures);  

• structured environments (i.e., same blocks and bins on a specific workbench);  

• a set of predefined tasks/behaviours (i.e., reach, grasp, and place); and 

• centralized coordinating control (i.e., centralized pace control of the robotic arm and the 

conveyor).  

For traditional industrial automation systems, control units or automation functions have 

been programmed in IEC 61131-3 and executed in programmable logic controllers (PLCs) for 

decades [3], [10]. PLCs originated in the late 1960s and were programmed in Boolean formats or 

relay-derived ladder logic, as automated machines at that time were controlled by complex relays 

and were hard for maintenance and reconfiguration. In the early 1980s, the introduction of IEC 

61131-3 standardized the programming aspects (e.g., languages, data types, input/output) for 

PLCs. Especially, the International Electrotechnical Commission (IEC) defined five 

programming languages, including: two textual programing languages, instruction list (IL) and 

structured text (ST); two graphical programing languages, ladder diagram (LD) and function 

block diagram (FBD); and an additional set of graphical and equivalent textual elements, 

sequential function chart (SFC) [3], [10]. In the 1990s, PLCs welcomed programmable human-

machine interfaces (HMI) to replace traditional pushbutton styles for better human machine 

interaction (e.g., troubleshooting). The recent two decades saw the emergence of advanced 
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software and hardware technologies, and IEC 61131-3 cannot sufficiently support the design of 

distributed intelligent industrial systems. The IEC 61499, a new and improved standard based on 

extended function block concept of IEC 61131-3 was developed in the 2000s for the 

implementation of distributed industrial process measurement and control systems (IPMCSs) to 

support flexibility, portability, interoperability, and reconfigurability [8]-[9].  

Although IEC 61131-3 still dominates the design of legacy systems, current industrial 

environments have created many challenges for these legacy systems, especially when viewed in 

the context of Industry 4.0. Major issues for example are: a) current PLC technologies are not 

suitable for building distributed intelligent automation system architectures; b) automation 

programming languages of IEC 61131-3 used in current PLCs are implemented by each vendor 

and thus prevent interoperability; c) current IEC 61131-3 programmed PLC systems are difficult 

in adaption and in response to changes while maintaining predictable and stable operations 

during runtime. Consider the scenario in Figure 2-1 by adding additional elements:  

• there is a speed change of the conveyor which delivers blocks; 

• there is one red block mixed into those same type of black blocks; 

• there is also a red bin for those red blocks right behind the black bin; and 

• there is a different shape (e.g., cylinder) mixed into those blocks.  

In traditional industrial systems, all interactions and functions are designed at the 

development stage by considering limited available requirements. Although some of above cases 

may be considered at the beginning (e.g., encoders to measure conveyor speed), such type of 

case may occur unexpectedly and thus beyond the design capability of the system. This could 

result in modifying affected functions offline according to changes of design specifications or 

new requirements. That means industrial systems designed under traditional engineering 
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techniques and running on legacy automation platforms are unable to automatically discover 

alternative solutions, flexibly coordinate reconfigurable modules, and actively deploy 

corresponding functions, to quickly respond to frequent changes and intelligently adapt to 

evolving requirements in dynamic environments. Consider the scenario in Figure 2-1 and see 

what will happen next: 

• the robotic arm could miss blocks from the conveyor because of pace changes between 

them;  

• the robotic arm could also pick up the wrong red block and place it into the black bin as 

usual, not the red one; and 

• the robotic arm could not be able to pick up different shapes (e.g., cylinders).  

With predetermined procedures in structured environments for predefined tasks, even 

when the system is operating normally, errors could still happen because of those frequent 

changes and evolving requirements that may not all be considered at the very beginning. 

Therefore, as envisioned in this research, a well-integrated design framework to model 

automation architectures is required for the development of next-generation industrial systems in 

the Industry 4.0 era, that are responsive to frequent changes and adaptive to evolving 

requirements in a distributed and intelligent way during runtime. That means under the new 

architecture modelling framework: 

• the robotic arm can detect speed changes of the conveyor through communication to 

coordinate the pace; 

• the robotic arm can distinguish between red and black blocks, and other shapes; 

• the robotic arm can learn from past experience on black blocks to transfer sorting skills to 

the red block, or in more complex situations to pick up and put it into the red bin; and 
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• the robotic arm can learn from raw sensory data with black blocks to achieve skills to pick 

up different shapes (e.g., cylinders).   

The challenges associated with this type of scenario are becoming critical requirements 

for developing next-generation industrial automation systems. In the Industry 4.0 era, such 

systems should be modelled with open architectures to support portability, interoperability, and 

reconfigurability, which is the vision of IEC 61499 compared to the traditional IEC 61131-3 

standard. As reviewed in Chapter Three, research on IEC 61499 based industrial automation 

systems was mainly focused on function block execution semantics and transformation 

techniques for IEC 61131-3 based systems to IEC 61499 based ones. Until recently, there are 

studies on the integration with IEC 61499 enabling technologies of design and computing 

paradigms for modelling industrial automation systems. Recent advances in hardware (e.g., 

smart control devices) and software (e.g., mobile automation apps) provide new opportunities to 

develop such industrial automation systems. Furthermore, artificial intelligence/machine learning 

techniques have created a set of computational tools (e.g., deep learning and deep reinforcement 

learning) that can empower the system to be intelligent to a certain human level.  

In summary, industrial communicating and computing techniques have evolved into a 

new era, in which service-oriented and event-based programming, machine learning and data 

analytics, etc. are widely applied in the system design. A new paradigm is required to bring all 

these together to realize distributed intelligent system architectures envisioned by Industry 4.0. In 

light of the recent work in the area of industrial automation systems, especially the research on: 

• the standard of IEC 61499 for the application-based distributed architecture design that 

applies object-oriented function block modelling and event-driven control application 

execution; and 
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• the vision of Industry 4.0 for a smart and networked world that leverages the integration of 

industrial cyber and physical systems (iCPS) and the application of industrial internet of 

things and services (IIoTS). 

This research will continue to enrich design methods and computing frameworks for 

building self-managing industrial systems and to integrate multi-agent modelling with IEC 

61499 function block modelling for programming distributed automation solutions. The question 

that this research is trying to ask and help answer can be stated as follows: 

“How to achieve self-manageable industrial cyber-physical systems for IEC 

61499 based distributed intelligent automation (i.e., to explore the design of 

multi-layer automation architectures to enable real-time adaptation at the device 

level and run-time intelligence throughout the whole system by integrating multi-

agent modelling and IEC 61499 function block modelling)” 
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2.2 Objectives and Methodologies 

As stated in the research question, the long-term goal is to achieve self-manageable industrial 

cyber-physical systems for IEC 61499 based distributed intelligent automation. However, in this 

research the core objective is to explore the design of multi-layer automation architectures to 

enable real-time adaptation at the device level and run-time intelligence throughout the whole 

system under a well-integrated modelling framework.  

Central to this goal is the research on the integration of multi-agent modelling and IEC 

61499 function block modelling, together with other enabling techniques, to form a new 

automation infrastructure for iCPS. The major research methodologies focus on system 

architecture modelling including high-level cyber module and low-level physical module through 

deploying autonomic computing into architecture design [11]-[13]. In detail, the reference 

architecture is employed in the cyber module design and implemented as multi-agent systems, 

resulting in a new computing module with self-learning capabilities for high-level multi-agent-

based automation architectures [11], [13]. This methodology uses autonomous and cooperative 

agents to achieve run-time intelligence in system design and module reconfiguration. The self-

managing properties are employed in physical module design and implemented as agent-

embedded IEC 61499 function blocks, resulting in a new design pattern with embedded agent 

intelligence for low-level function block modelled control solutions [12]-[13]. This methodology 

applies object-oriented and event-driven function blocks to realize real-time adaption of 

automation logic and control algorithms. The proposed design are evaluated through simulation 

model development and experimental testbed design to show expected system capabilities to 

respond to major challenges in Industry 4.0 [13]-[15]. 
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2.3 Anticipated Contributions 

As stated before, the core objective of this research is to explore the design of multi-layer 

automation architectures to enable real-time adaptation at the device level and run-time 

intelligence throughout the whole system under a well-integrated modelling framework. A multi-

agent modelling framework of iCPS for IEC 61499 based distributed intelligent automation is 

proposed in this thesis, focusing on a two-layer self-manageable architecture modelling. This 

research is expected to result in the following contributions: 

1) High-Level iCPS Architecture. This architecture will use a multi-agent modelling framework 

to support autonomic computing (i.e., Monitoring, Analysis, Planning, Execution, and 

Knowledge). Instead of modelling these elements as services, a multi-agent model is applied 

so that it can actively interact with each other, operating environments, and system modules 

to achieve real-time communication and computation. 

2) Self-Learning Agent. The traditional autonomic computing framework will be enhanced with 

the introduction of a self-learning agent. Traditionally, only predefined rules, policies, and 

goals are provided by Analysis with limited situations. The system can work in some simple 

situations with predefined knowledge whereas in most cases it is far less capable of dealing 

with real-time dynamic situations. Furthermore, recent advances in artificial intelligence 

have created a set of computational tools (e.g., deep learning and deep reinforcement 

learning) that can empower the system to be intelligent to a certain human level. These 

artificial intelligence techniques are leveraged to enable system self-learning capabilities.  

3) Low-Level iCPS Architecture. This architecture will be based on the IEC 61499 function 

block modelling framework for event-driven distributed execution. Instead of programming 

automation systems in IEC 61131-3 in a centralized way, IEC 61499 function block 
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modelling for distributed automation is applied, which allows more flexibility, portability, 

interoperability, and reconfigurability. Also, node intelligence is embedded into function 

blocks to reduce data transmitting bandwidth and processing load. 

4) Self-Management Agents. A new agent-embedded design pattern for modelling IEC 61499 

function block based control applications will be introduced that provides self-management 

capabilities for real-time adaptation. These self-manageable agents embedded in IEC 61499 

function blocks are either initialized to be active for predefined tasks (i.e., self-configuration, 

self-optimization, self-healing, and self-protection) or deactivated in a sleep state. With this 

design pattern, the new agent-embedded function block types can be introduced to build 

self-manageable control applications. 
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Chapter Three: Literature Review 

3.1 Introduction 

Real-time control units or automation functions are mainly programmed under IEC 61131-3 or 

IEC 61499 and executed in PLCs or intelligent embedded devices. IEC 61131-3 dominates the 

design of traditional industrial automation systems and faces a lot of challenges, while IEC 

61499 is developed for programming next-generation industrial automation systems to support 

portability, interoperability, and configurability. Table 3-1 provides a list of published review 

papers or keynotes on the IEC 61499 research. As stated before, the main theme of this thesis is 

to explore the design of architecture modelling frameworks for IEC 61499 based distributed 

intelligent automation. Therefore, this chapter will focus on two major topics [16]-[18]: 

• how IEC 61499 has evolved as a standalone standard for programming next-generation 

industrial automation systems (Section 3.2, 3.3, and 3.4); and 

• how IEC 61499 has interacted with enabling technologies to realize distributed intelligent 

automation (Section 3.4, 3.5, and 3.6). 

Before the summary in Section 3.7, the two major topics are further detailed into five 

sub-topics. In these sub-topics, this research is based on the IEC 61499 reference architecture 

(Section 3.2), focuses on design and computing paradigms for modelling IEC 61499 based 

systems (Section 3.5), and applies one of the IEC 61499 engineering environments for 

implementation (Section 3.6). Discussions on IEC 61499 function block execution and system 

transition are for an overview purpose. These five sub-topics are as follows:   

• how the IEC 61499 standard is envisioned for programming next-generation industrial 

automation systems (Section 3.2);  
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• how each IEC 61499 FB is activated through event scheduling for determined execution 

(Section 3.3);  

• how existing systems programmed in IEC 61131-3 can be transitioned to IEC 61499 based 

systems (Section 3.4);  

• how IEC 61499 has integrated with enabling technologies for distributed intelligent 

automation (Section 3.5); and  

• how engineering environments for IEC 61499 have been implemented (Section 3.6).  

Table 3-1: IEC 61499 review/keynote papers and their scopes 

Reference Scope 

[Georg and Hussain 2006] [19] Modelling techniques for distributed control systems based on IEC 61499. 

[Zoitl et al. 2007] [20] Execution, verification, reconfiguration, and industrial adoption of IEC 61499. 

[Thramboulidis 2007] [21] Analysis of inefficiencies of the IEC 61499 model in factory automation. 

[Hall et al. 2007] [22] Challenges to industry adoption of IEC 61499 event-based function blocks. 

[Brennan et al. 2008] [23] Dynamic and intelligent reconfiguration of IEC 61499 based industrial automation. 

[Zoitl and Vyatkin 2009 [24] Modelling of distribution and architecture-centric design issues in IEC 61499. 

[Zoitl et al. 2009] [25] Comparative study of IEC 61131-3 and IEC 61499 for distributed automation systems. 

[Hanisch et al. 2009] [26] Formal modelling and verification of IEC 61499 function blocks. 

[Vyatkin 2009] [27] The IEC 61499 standard and its semantics for distributed automation systems. 

[Vyatkin 2011] [28] IEC 61499 as enabler of distributed and intelligent automation. 

[Strasser et al. 2011] [29] Design and execution issues in IEC 61499 distributed automation systems. 

[Strasser et al. 2012] [30] Launch and takeoff of the IEC 61499 function block standard. 

[Christensen et al. 2012a] [31] Overview of the second edition of the IEC 61499 function block standard. 

[Christensen et al. 2012b] [32] Software tools and running platforms of the IEC 61499 function block standard. 

[Thramboulidis 2015] [33] Service-oriented architectures for IEC 61499 industrial automation systems. 

[Sinha et al. 2019] [34] Static formal methods for industrial automation systems in IEC 61499/IEC 61131-3. 

[Prenzel et al. 2020] [35] Comparative study of IEC 61499 runtime environments. 

[Lyu and Brennan 2020 [17] Transformation methods, modelling techniques, and implementation tools in IEC 61499. 

[Sonnleithner et al. 2021] [36] Summary of a catalog of suboptimal structures or patterns in IEC 61499 applications. 
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3.2 Initiation of IEC 61499 Standards 

3.2.1 IEC 61499 Theoretical Fundamentals 

The theoretical fundamentals to develop IEC 61499 originated from its predecessor the IEC 

61131-3 standard. IEC 61131-3 has been designed with a scan-based centralized and closed 

architecture for PLCs in industrial automation for decades [4]. With advanced modelling 

methodologies, complex engineering requirements, and emerging software and hardware 

technologies, the IEC 61131-3 standard cannot sufficiently support the design of intelligent 

distributed automation systems. However, the defined programing languages, especially the 

concept of function blocks, are well established and widely utilized in industrial automation 

practices. Therefore, the IEC 61499 standard based on extended function block concept of IEC 

61131-3 is developed and continues to be improved.  

An overview of the IEC 61499 standard publications is shown in Table 3-2. IEC 61499-1 

defines a generic architecture in terms of implementable reference models, textual syntax and 

graphical representations, and their guidelines for the use of function blocks in industrial 

automation [6]. IEC 61499-2 defines software tool requirements to support engineering tasks of 

IEC 61499 based systems [37]. IEC 61499-4 defines rules for the development of compliance 

profiles to realize key requirements of IEC 61499 based systems, devices and software tools 

[38]. IEC 61499-3 is a technical report and has been withdrawn [39]. 
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Table 3-2: Overview of the IEC 61499 standard publications 

Title Topic Type Publication Status 

IEC 61499-1 

Function Blocks for IPMCSs 

- Part 1: Architecture 

Publicly Available 

Specification 
Edition 1.0, 2000 Replaced 

Function Blocks  

- Part 1: Architecture 

International 

Standard 

Edition 1.0, 2005 Revised 

Edition 2.0, 2012 Valid 

IEC 61499-2 

Function Blocks for IPMCSs  

- Part 2: Software Tools Requirements 

Publicly Available 

Specification 
Edition 1.0, 2001 Replaced 

Function Blocks  

- Part 2: Software Tools Requirements 

International 

Standard 

Edition 1.0, 2005 Revised 

Edition 2.0, 2012 Valid 

IEC 61499-3 
Function Blocks  

- Part 3: Tutorial Information 
Technical Report Edition 1.0, 2004 

Withdrawn 

2008 

IEC 61499-4 

Function Blocks for IPMCSs  

- Part 4: Rules for Compliance Profiles 

Publicly Available 

Specification 
Edition 1.0, 2002 Replaced 

Function Blocks  

- Part 4: Rules for Compliance Profiles 

International 

Standard 

Edition 1.0, 2005 Revised 

Edition 2.0, 2013 Valid 

3.2.2 IEC 61499 Function Block Models 

As stated before, IEC 61499 has been proposed for the development and implementation of 

distributed IPMCSs to support flexibility, portability, interoperability, and reconfigurability [40]-

[43]. Compared to the traditional IEC 61131-3 standard, it provides an open reference 

architecture to design distributed IPMCSs with some key features, e.g., object-oriented 

modelling by using function blocks as basic elements and event-driven execution by using 

data/events as inputs/outputs.  

The IEC 61499 standard [6] defines three types of function blocks (FBs): a) basic 

function block (BFB) defined as an event-driven state machine for execution of algorithms with 

inputs/outputs; b) service interface function block (SIFB) defined as a service sequence diagram 

for encapsulation of FB interaction with external services; and c) composite function block 

(CFB) defined as a network of FB instances through event and data connections. A FB model is 

first trigged by an input event with available input data, then executed through evaluating states 

(i.e., through the execution control chart (ECC)) and functioning algorithms (i.e., through the 

schedule function), and finally updated with data/event outputs (Figure 3-1). A typical system 

programmed under the IEC 61499 reference architecture is designed as: a) the control logic built 
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by function blocks as applications, and b) physical devices encapsulating required resources for 

implementation. The reference architecture will be further discussed in Section 6.2. 

START INIT

REQ1

REQ2

ALG EVNT

1

1

REQ1

REQ2

INIT

1

ALG1 EVNT1

ALG2 EVNT2

Output Event

Output Data

Input Event

Input Data

Execution Control 

Chart (hidden)

Internal Data 

(hidden)

Algorithms

(hidden)

Type Name

Instance Name

 

Figure 3-1: IEC 61499 function block model 

In conclusion, both IEC 61131-3 and IEC 61499 have evolved with their own key 

characteristics and employment of emerging technologies to fulfill new industrial requirements. 

Table 3-3 provides a comparison of key aspects of IEC 61499 and IEC 61131-3.  

Table 3-3: Comparison of key aspects of IEC 61499 and IEC 61131-3 

 IEC 61499 IEC 61131-3 

Modelling Paradigm Object-Oriented  Object-Oriented (supported) 

Modelling Component Function Blocks (FBs) Program Organization Units (POUs) 

Input and Output Events, Data Data 

Execution Mechanism Event Driven Scan Based (cyclic or periodic) 

Data Type Adopted from IEC 61131-3 Defined, e.g., integers, strings, etc. 

Engineering Approach Application Centered Device Centered (in practice) 

Architecture Characteristic Open Closed 

Structure Style Process Type Subroutine Type 

Communication Paradigm Publish/Subscribe, Client/Server Shared Memory, Communication Service 

Communication Mechanism Messages Shared/Global Variables 

Modelling Level Programming of Complete System Programming of Single Controller 

Programming Language 
No specific language defined, but 

IEC 61131-3 ones recommended 
IL, ST, FBD, LD, SFC 
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3.3 Execution of IEC 61499 Function Blocks 

Design modelling and execution semantics of IEC 61499 applications have been researched and 

reviewed in numerous published papers [27]-[29], [44]-[45]. Research in this area addresses the 

question of how each FB in the FB network is activated through event scheduling to realize 

determined execution. In this section, some typical execution models are summarized and then 

recent research on semantic-correct mapping for IEC 61499 will be reviewed. 

3.3.1 Execution Semantics of IEC 61499 Function Blocks 

Some typical execution models for IEC 61499 FBs are summarized in Table 3-4. The non-

preemptive multi-threading resource (NPMTR) model implemented in FBRT/FBDK is event-

trigged [46], whereas the cyclic execution model implemented in ISaGRAF and Cycle RT is 

PLC-like cyclic-scan [47]-[48]. Both FUBER and 4diac FORTE implement the sequential 

execution model with the main difference of the former using local event buffer, whereas the 

latter using global event buffer [49]-[51]. In the parallel execution model, aligning the FB 

execution speed with global instantaneous events distinguishes the synchronous and the 

asynchronous [51]-[53]. The hybrid model views a distributed IEC 61499 system as a collection 

of synchronous compositions of FBs communicating with each other over an asynchronous 

network [54]. 
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Table 3-4: IEC 61499 FB execution semantics 

References Execution Model Main Idea Implementation 

[Sünder et al. 2006b] 

[46] 

Non-Preemptive Multi-

Threading Resource 

(NPMTR) 

Depth-first event scheduling for 

execution of a targeted FB with 

an emitted event immediately. 

FBRT/FBDK 

[Vyatkin and Chouinard 2008; 

Tata and Vyatkin 2009]  

[47]-[48] 

Cyclic Execution 

Scheduling events for periodical 

execution of each FB in the FBN 

in a cyclic way. 

ISaGRAF 

Cyclic RT 

[Cengic et al. 2006b; 

Vyatkin and Dubinin 2007; 

Vyatkin et al. 2007]  

[49]-[51] 

Sequential Execution  

Breadth-first event scheduling for 

execution of FBs with a sequence 

of emitted events in ways of local 

or global event buffer. 

FUBER 

4diac FORTE 

[Vyatkin et al. 2007; 

Dubinin and Vyatkin 2008; 

Yoong et al. 2009; 

Yoong et al. 2015]  

[51]-[54] 

Parallel Execution 

Scheduling events for parallel 

execution of multiple FBs on 

multi-core processor architectures 

in synchronous, asynchronous, or 

hybrid ways. 

Prototype 

Complier 

3.3.2 Semantic-Correct Mapping for IEC 61499 Function Blocks 

A refactoring approach to ECCs in BFBs by removing deadlock states was proposed and 

implemented through graph transformations with a set of defined rules [55]. The proposed 

method can be extended to FB networks and applied to semantic-correct transformation of 

control programs. Then semantics-robust design patterns for IEC 61499 to solve the portability 

problem were further proposed [56]. The general idea is to transform original FB applications 

executed in some source model to resulting FB applications in target models with the same 

behaviour. Dai et al. proposed a design recovery, semantic analysis, and code generation 

framework based on ontology models for IEC 61499 [57]-[58]. The key difference between two 

studies is whether the design process starts with a single IEC 61499 platform [57], e.g., either 

FBDK or nxtSTUDIO, or multiple IEC 61499 platforms [58], e.g., both FBDK and nxtSTUDIO. 

Lindgren et al. proposed a mapping of IEC 61499 FBs to the real-time for the masses 

kernel (i.e., RTFM-kernel) for predictable real-time execution to address the execution problem 

of IEC 61499 FBs for light-weight controllers with limited resources [59]. Then a generic 

runtime system, i.e., RTFM-RT, to execute RTFM-core programs on threaded platforms for 
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predictable IEC 61499 execution was developed [60]. The proposed mapping from IEC 61499 

FBs to RTFM task and resource models is used for the execution under RTFM-RT. RTFM-core, 

RTFM-kernel, and RTFM-RT are parts of the RTFM-lang framework [61]. The implementation 

difference is that the RTFM-kernel directly exploits the peripheral hardware, whereas the 

RTFM-RT utilizes available threading architectures for scheduling and representing tasks, 

resources, or baselines [62]. Furthermore, based on the mapping of IEC 61499 FBs to RTFM 

task and resource models, a rea-time semantics for IEC 61499 to realize timing semantics [60] 

and a technique to assess the end-to-end response time of IEC 61499 distributed applications 

over switched Ethernet [63] were also proposed. 

Yoong et al. proposed a synchronous approach for mapping of IEC 61499 FBs with the 

synchronous language Esterel primitives to support precise execution semantics and formal 

verification [53]. Then a tool was developed to translate IEC 61499 FBs to Esterel primitives for 

verification of both control and data properties in FB programs [64]. Two design patterns were 

further proposed and characterized as time-predictable, determinist, and reactive [65]. One is the 

order synchronous design pattern for intra-resource FBs and the other is the delayed synchronous 

design pattern for inter-resource FBs with parallel execution. Sinha et al. proposed a syntactic 

extension defined as hierarchical and concurrent execution control chart (HCECC) to IEC 61499 

[66]. HCECCs introduce parallel and refined operators to allow explicit modelling of 

concurrency and hierarchy for ECCs in IEC 61499 BFBs and then are translated to IEC 61499 

CFBs with synchronous execution semantics. Based on successful mapping between IEC 61499 

FBs and synchronous primitives, an implementation scheme to define formal modelling and 

simulation verification for execution semantics of IEC 61499 FB networks via fixed point 

semantics [67] and a time-stamped discrete-event-based execution semantics for IEC 61499 FBs 
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with real-time constraints and deterministic execution behaviours [68] were proposed. 

In conclusion, research in this area is concerned with the standard itself, i.e., FB 

execution to solve semantics ambiguities. The FB execution semantics define rules for 

behaviours of FB execution. Semantics ambiguities could lead to nondeterministic behaviours of 

the same application executing in different IEC 61499 implementations [49]. Research on 

semantic analysis for IEC 61499 has focused on formal modelling of IEC 61499 FBs, then 

semantic-correct mapping between IEC 61499 FBs and proposed models through defined 

transformation rules, and finally simulation verification of execution semantics. 
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3.4 Transition to IEC 61499 Based Systems 

3.4.1 Challenges with Transition to IEC 61499 Based Systems 

IEC 61499 is promised to enable distributed architecture design for programming future 

industrial automation systems. Although, not as widely adopted by industry as IEC 61131-3, IEC 

61499 is gaining more popularity than before in industry. For example, automation and control 

solution providers Schneider and Rockwell are leading in industrializing IEC 61499 with 

nxtControl [69] and ISaGRAF [70] kits, respectively. If the industrial adoption of IEC 61499 is 

viewed in the context of the three-phase S-shaped Logistic Curve [71], it was in the first 

“Launch” phase when promoted by innovators before 2012 (i.e., Ed. 2.0 published), and is now 

in the transition to the second “Takeoff” phase associated with early adopters. There is still a 

long way to go to reach the third “Maturity” phase until some key issues are fully solved. As 

well, some of the challenges with wide industrial adoption that were identified in the early years 

of the standard (e.g., [72]) remained during the publication of Ed. 2.0 (e.g., [30]). In conclusion 

of recent research on IEC 61499, three main types of challenges for industrial adoption are 

identified in Table 3-5: a) industrial concerns on business development, b) technical issues 

related to standard itself, and c) societal aspects of trained personnel. 

Table 3-5: Main challenges for industrial adoption of IEC 61499 

Main Challenge Detailed Explanation 

Industrial Concerns 

Large amount of existing IEC 61131-3 based systems 

Little demand for a completely new design approach 

Huge cost incurred by introducing new technologies 

Technical Issues 

Few proved methods to redesign existing systems 

Same execution semantics but different system behaviours 

Better integration for efficient domain-specific design practice 

Societal Aspects 

New qualification requirements for control engineers 

New course design for teaching and learning IEC 61499 

New industrial training for applying and using IEC 61499 
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Considering these critical factors, much effort has been put into realizing successful and 

wide industrial adoption of IEC 61499. Some reasonable solutions are suggested as follows:  

a) To redesign existing IEC 61131-3 based systems for compliance with IEC 61499. 

Redesign is an intermediate step to transform existing systems programmed in IEC 61131-3 to 

IEC 61499 based systems to ensure they address industrial concerns on cost/benefit analysis and 

confidence/time for system transition. One example of work on this is Peltola et al.’s evaluation 

of IEC 61499 for the batch process industry [73]. The most recent research on the potential 

transitional path towards full adoption of IEC 61499 is the IEC 61499 CPS-izer proposed in 

Daedalus: a small-footprint controller capable of interacting with legacy systems through 

communication buses [74]. Daedalus is a pioneer European initiative for real-time distributed 

intelligence and cloud enabled CPS design modelling [75]. In Section 3.4.2, research on IEC 

61499 transformation methods will be discussed in detail.  

b) To provide feasible methods, techniques, and guidelines for designing IEC 61499 

based systems. Design is concerned with system modelling from the perspective of technical 

issues. One of the most critical technical issues is execution semantics, which has been 

thoroughly researched before IEC 61499 Ed. 2.0 (e.g., [29]). This work led to significant 

technical changes in the second edition: e.g., concurrency issues in execution control for 

deterministic execution, data consistency in sampling, declaration of temporary variables, 

network and segment types [31]-[32]. Recent research is more focused on IEC 61499 design 

modelling by integrating enabling technologies (e.g., service-oriented architecture, autonomic 

computing, and cloud computing) for advanced system capabilities (e.g., solutions as services in 

the cloud in Daedalus Digital Marketplace [76], system self-managing features enabled by 

autonomic service management [77]) in Industry 4.0. In Section 3.5, research on this aspect will 
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be discussed in detail.  

c) To providing qualified courses and hands-on training programs for students and 

engineers to learn and use IEC 61499. Teaching, learning and training are focused on societal 

aspects to support IEC 61499 applications based on available engineering environments. One 

great practice led by Zoitl et al. [78] is IEC 61499 workshops and events with hands-on courses 

and programs using Eclipse 4diac kit [79]. Another practice, initiated by Vyatkin et al. [80], is a 

hands-on training program to learn IEC 61499 using Schneider nxtControl kit [69]. An earlier 

hands-on tutorial [81] was presented to use Holobloc kit [82] to design distributed control 

applications. In Section 3.6, research on IEC 61499 system implementation will be discussed in 

detail. 

3.4.2 Methods of Transformation to IEC 61499 Based Systems 

Given the predominance of IEC 61131-3 based systems, there has been considerable interest in 

methods to transform IEC 61131-3 models to IEC 61499. For example, in this section, model-

driven, object/class-oriented, and ontology-based approaches, and commination paradigms are 

identified and discussed. However, the effort of programming and complexity of implementation 

for the two standards for different types of applications are different [83]. Therefore, selection 

between the IEC 61499 event-driven execution model and the IEC 61131-3 cyclic execution 

model is application dependent [25]. 

A. Model-Driven Approach 

Sünder et al. provided concepts, rules, and methods for transformation of existing IEC 61131-3 

automation projects into IEC 61499 control logic [84]-[85]. Transformation concepts include one 

based on equivalence of executing elements and another according to equivalence of resource 

elements. Transformation rules regarding aspects of configurations, resources, programs, 
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functions, and FBs are defined. Transformation methods are suggested as the one mapping POUs 

with ECCs in BFBs and the other mapping POUs with FB networks in CFBs. Based on this 

initial study, a model-driven automatic transformation approach was presented to test the second 

method for transformation of FBDs [86]. The proposed model to model transformation translates 

the input IEC 61131-3 source model through internal E-core models and finally into the output 

IEC 61499 target model. The implementation is realized through well matched libraries of both 

standards, input/output models as XML files, and XSD files as meta models. Further research 

focused on providing semantic correct transformations and two auxiliary transformations were 

studied to solve semantic issues [87]. One is the static transformation by converting IEC 61131-3 

FBs into simple FBs to solve library differences between two standards, and the other is the 

project dependent transformation by extracting execution orders of IEC 61131-3 FBs to solve 

execution sequence problems. Wenger et al. also proposed an automatic reengineering approach 

to migrate IEC 61131-3 based control applications into IEC 61499 [88]. The process was tested 

as proof of concept for sorting stations programmed in CoDeSys V2.3 [89] and reengineered into 

Eclipse 4diac software tools. 

B. Object/Class -Oriented Approach 

Dai and Vyatkin proposed two types of design patterns to redesign IEC 61131-3 PLCs using IEC 

61499 FBs [90]-[91]. The object-oriented approach considers each device distributed in the 

system and the class-oriented approach considers each service provided by all devices. For both, 

FB represents a class of its objects (i.e., devices), encapsulates data and methods, and can be 

instantiated. The object-oriented approach creates each individual instance of one FB for each 

device, whereas the class-oriented approach creates a single instance of one FB to serve all 

devices of this class. As a result, the difference is whether to create only one instance or different 
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instances of one FB to serve all or each of its devices. The object-oriented approach also includes 

conversion of PLC code into an ECC and reuse of PLC code in an algorithm.  

C. Ontology-Based Approach 

Semantic web technologies were used for automatic transformation of IEC 61131-3 based 

control systems to IEC 61499 based ones [92]-[94]. The whole process starts from importing 

IEC 61131-3 source code files into the IEC 61131-3 ontological knowledge base, then maps the 

ontology between IEC 61131-3 and IEC 61499 knowledge bases and ends by generating IEC 

61149 target code files from the IEC 61149 ontological knowledge base. The key part is 

ontology mapping, which includes mapping IEC 61131-3 resources to IEC 61499 devices, 

mapping IEC 61131-3 tasks to IEC 61499 resources, mapping IEC 61131-3 programs with 

functions/FBs to IEC 61499 CFBs, mapping IEC 61131-3 programs without functions/FBs to 

IEC 61499 BFBs, mapping IEC 61131-3 SFC programs to ECCs inside IEC 61499 BFBs, and 

mapping IEC 61131-3 FBD programs to IEC 61499 CFBs. Formal IEC 61131-3 models are 

defined so that correct execution semantics is recreated in IEC 61499 models. 

D. Communication Paradigms 

One of key elements to realize system transformation from IEC 61131-3 to IEC 61499 is the 

communication paradigm [95]. In IEC 61499, two paradigms, i.e., publish/subscribe for 

unidirectional communication and client/server for bidirectional communication, are defined. 

The publish/subscribe model is based on the n-to-n architecture in which one publisher can send 

messages to one or more subscribers and one subscriber can receive messages from one or more 

publishers. The client/server model is based on the n-to-1 architecture in which one or more 

clients communicate with one server in both sending and receiving messages. In IEC 61131-5, 

there are also some communication paradigms, e.g., programmed data acquisition and 
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interlocked control, for defined functions or FBs [96]. Campanelli et al. proposed an architecture 

model LowEffort-INTegration (LE-INT) for coexistence of IEC 61131-3 and IEC 61499 in the 

same engineering environment [97]-[98]. The architecture model is based on SIFBs in IEC 

61499 and specific FBs from programmed data acquisition (i.e., USEND, URCV, BSEND, and 

BRCV) and interlocked control (i.e., SEND and RCV). The architecture model is more effective 

in modular automation and control systems to realize two types of system integration: a) 

transformation of a centralized IEC 61131-3 system or several independent ones to a distributed 

system based on both standards; and b) insertion of one or more IEC 61131-3 systems in an 

existing distributed IEC 61499 system.   

E. Discussion 

In conclusion, recent research has focused on applying a variety of approaches (e.g., model-

driven, object/class-oriented, and ontology-based approaches, and communication paradigms) to 

model system transformations from IEC 61131-3 to IEC 61499. From the research aspect, work 

in this area is concerned with redesigning components/systems, translating codes/models, and the 

syntax level using XML-based model-driven approaches to the semantic level using knowledge-

based ontology-driven methods. The main differences are how and what they use to describe 

models and to what degree. From the industry aspect, research on system redesign provides 

alternative solutions and feasible guidelines for wide industry adoption of IEC 61499. Industrial 

partners can either reuse their accumulated knowledge (e.g., generic problem/solution templates, 

best practices and guidelines) or can have enough time/effort for a smooth transition preparing 

for new challenges in the Industry 4.0 era. Typical cases for example are CPS-izer research from 

Daedalus and nxtControl implementation from Schneider, both supporting hybrid system design 

(co-existence of IEC 61131-3 and IEC 61499).   
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3.5 Integration with IEC 61499 Enabling Technologies 

Industrial automation is envisioned to be realized through iCPS that are built from and depend on 

the integration and interaction of computational and physical components [2]. The iCPS 

paradigm together with its enabling technologies (e.g., service-oriented architecture [99], 

autonomic computing [100], and cloud computing [101]) is transforming the way human, 

machine, information, and environment interacting with each other, leading to Industry 4.0. This 

section will focus on how IEC 61499 has been integrated with its enabling technologies for 

distributed intelligent automation. Two perspectives are provided: a) design paradigms including 

object-oriented design, component-based design, and service-oriented architecture (Section 

3.5.1); and b) computing paradigms including distributed intelligence, autonomic computing, and 

cloud computing (Section 3.5.2). 

3.5.1 Design Paradigms for Modelling IEC 61499 Based Systems 

A. Object-Oriented Design 

The object-oriented design (OOD) applies object-oriented programming features (e.g., 

inheritance, instantiation, encapsulation, and polymorphism) to design industrial control 

programs and automation applications. In OOD, data structures are modelled based on 

interacting objects which may contain data fields (i.e., attributes) and code procedures (i.e., 

methods). Objects are instances of their classes which define data formats and available 

procedures.  

IEC 61499 FBs have some object-oriented features, for example, mapping types with 

classes, instances with objects, events with methods, and data with parameters/variables. FBs 

encapsulate data structures and internal algorithms, and can be instantiated working copies by 
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type definitions. FBs are triggered by input events with available data, implemented through 

control algorithms in BFBs or service sequences in SIFBs, and finally updated with events/data 

outputs. Since CFB is a network of FB instances, data exchange among its composited FBs is 

through publish/subscribe SIFBs [102]. Polymorphism and inheritance are not often used in 

automation programming due to issues raised by computation cost and execution determinism 

[103], except that adapters provide a kind of inheritance for similar FBs to share common 

interfaces.   

Vyatkin et al. proposed a conceptual OOD framework for modelling automation software 

based on IEC 61499 for potential benefits of intellectual property encapsulation and reuse [104]. 

Dai and Vyatkin proposed an object-oriented approach, including conversion of PLC code into 

an ECC and reuse of PLC code in an algorithm, to redesign distributed PLC control systems 

using IEC 61499 FBs [90]-[91]. Two cases of modern building management systems [105] and 

airport baggage handling systems [102] were studied by using OOD to model IEC 61499 based 

system architectures. 

B. Component-Based Design 

The component-based design (CBD) utilizes coarse-grained and loose-coupled components with 

certain well-defined functions and pre-defined communication interfaces from a cohesive set of 

fine-grained objects. Compared with OOD, CBD models a system with functional components 

rather than physical objects; multiple functions share a single algorithm with one generic event 

input instead of using dedicated events and algorithms for each method call [102].  

Proposed frameworks for modelling component-based distributed automation systems are 

mainly based on the automation component/object (AC/AO) concept and then toward intelligent 

control [106]-[109]. AC is an attempt to generalize the FB concept to represent a modelling unit 
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of hardware and software for the performance of automation and control functions [104], [110]-

[112]. In general, BFBs can be considered as software components, whereas SIFBs and CFBs 

cannot if without well-described interfaces and behaviours [85]. For other elements (e.g., 

applications, resources, and devices) may not be considered as software components, either [85]. 

Black and Vyatkin proposed a component-based architecture of an embedded intelligent 

control implementation with IEC 61499 [113]. The key parts of the architecture are reusable 

intelligent software components encapsulated in IEC 61499 FBs, especially the introduction of 

simulation components for predictive behaviours. The proposed architecture is scalable, 

reconfigurable, and fault tolerant, and paves the way to self-configuration. Dai and Vyatkin 

proposed a multi-layer component-based design pattern for improved reusability of distributed 

automation programs, including low-level basic control and interface layer, service layer, and 

high-level intelligent control layer [114]. Zoitl and Prähofer proposed design guidelines and 

patterns for building hierarchical automation solutions with IEC 61499, in which two concepts 

were focused for hierarchical component architectures: adapters and SubApp [115]-[116]. The 

IEC 61499 adapters models (i.e., typed interface accepting adapters plug and typed interface 

providing adapters socket) are in the form of FBs functioning as interfaces to hub input/output 

events and data [115]-[116]. The IEC 61499 SubApp model is a means to group application 

components in the top-down/bottom-up manner and share their common public interfaces [115]-

[116]. Compared to typed CFB models which new types are created during each adaptation of 

applications, the IEC 61499 SubApp model supports application adaptation on all hierarchic 

levels for reuse and configuration which is much faster for application development and structure 

modelling [115]-[116].  
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C. Service-Oriented Architecture 

The service-oriented architecture (SOA) paradigm approaches software system design as a 

network of loose-coupled and discoverable services with formal interfaces communicating 

through messages [99]. A systematic literature review of SOA research on IEC 61499 based 

industrial automation systems is provided in [33]. Therefore, Section 3.5.2 will focus on recent 

research on SOA with computing paradigms for IEC 61499 based iCPS.  

D. Discussion 

From a broad perspective, OOD, CBD, and SOA are closely related. Designs are modelled 

through IEC 61499 FBs with mapping, creation, composition, and execution of FBs as 

objects/components/services on different modelling levels. By evaluating these studies, common 

features of proposed methods can be summarized as: a) multi-layer or service-oriented 

architecture is employed; b) communication or interface/adapter design is focused; c) 

reconfiguration, reuse, and flexibility is aimed. Theoretically, IEC 61499 adopts object-oriented 

programming features in designing control programs and automation applications. For 

distributed system architecture modelling, component-based architectures with a higher level of 

abstraction are commonly applied in practice to incorporate system design, simulation, and 

validation. SOA is widely adopted in automation system design for advanced capabilities, e.g., 

autonomy and interoperability, due to rapid development of computing and networking 

technologies. Therefore, research on this aspect is tightly concerned with computing paradigms 

and iCPS in Industry 4.0. That, as a result, requires emphasis on interfaces or adapters design in 

IEC 61499. 
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3.5.2 Computing Paradigms for Modelling IEC 61499 Based Systems 

A. Distributed Intelligence 

Distributed intelligence is a major step for distributed and intelligent automation, usually realized 

through multi-agent systems (MAS). With this computing paradigm, distributed and intelligent 

automation is commonly achieved through autonomous and cooperative agents that are capable 

of operating independently or in collaboration with others to respond to system requests or 

changes and to achieve individual or shared goals [117]-[118]. Multi-agent modelling plays a 

key role in the development of complex industrial automation systems, allowing a decentralized 

way to design distributed and intelligent systems [117]-[119]. This approach is being applied in 

several domains of industrial applications: e.g., factory and building automation, power and 

energy systems [120]-[121]. 

Integration of intelligent software agents with low-level control functions provides a 

promising way to design distributed automation systems; however, real-time adaptation is a great 

challenge at this level given real-time constraints [119], [122]. Incorporating with IEC 61499 

FBs, research has focused on real-time distributed control for dynamic and intelligent 

reconfiguration, including reconfiguration models, implementation architectures, software 

platforms and evaluation methods [23], [118], [123]-[128]. For example, a three-layered FB and 

agent-based model for dynamic and intelligent reconfiguration of real-time distributed control 

systems was proposed, in which the architecture includes IEC 61499 FB models for low-level 

real-time control, mobile agents to model middle-level monitoring and activation systems, and 

software agents designed for high-level planning, scheduling, and configuration [123]. A 

reconfigurable concurrent FB model was also proposed to separate two control paths: IEC 61499 

FB modelled control application execution and multi-agent modelled configuration control 
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operation [124]. One recent research in this area is applying wireless sensor networks (WSN) to 

model distributed intelligent sensing and control systems. For example, Cai et al. proposed an 

application-oriented middleware architecture (AoMA) for distributed intelligent sensing and 

control of industrial WSN through MAS and IEC 61499 FBs [129]-[130]. Three main agents are 

designed to facilitate upper-level management, including device management agent, service 

mapping agent, and task management agent. IEC 61499 FBs are used as modelling tools for 

lower-level implementation, including node intelligence in BFBs, data acquisition/hardware 

control in SIFBs, and modular tasks in CFBs.  

Khalgui et al. proposed an architecture of reconfigurable multi-agent systems for IEC 

61499 based distributed control systems [131]. Two types of agents implemented in extensive 

markup languages are provided: reconfiguration agents modelled by nested state machines for 

local automatic reconfiguration and coordination agents defined by coordination matrices and 

communication protocols for managing reconfiguration behaviours. Guellouz et al. proposed a 

reconfiguration FB approach which is a series of guidelines in the design, modelling, and 

verification of IEC 61499 FB based reconfiguration control systems [132]. The key idea is to 

propose a new design pattern reconfiguration FB defined as event-triggered software 

components to control and execute reconfiguration tasks. As a result, compared to IEC 61499 FB 

model with input/output control events and execution control charts, it adds reconfiguration 

events to the interface and the master-slave execution control chart to define reconfiguration 

functions. 

Bonci et al. proposed a relational-model multi-agent system (RMAS) architecture that 

focused on multi-agent systems: the goal of this approach is to develop IEC 61499 FB based 

distributed intelligent applications to realise self-manageable iCPS in industry 4.0 [133]. The 
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RMAS architecture was first proposed to implement multi-agent systems for modelling, 

simulation, and control of iCPS. The architecture is designed on data-centric, event-based, and 

publish-subscribe paradigms and the core of the architecture is a generic agent skeleton structure 

that contains the genotype of RMAS units which in essence are relational active database 

management systems. Then the resulting architecture was proposed to serve as a middleware 

architecture for autonomic computing that will enable iCPS with self-management capabilities 

[134]. Recently, the RMAS architecture was further analysed to match the IEC 61499 reference 

models, focusing on integration of RMAS with IEC 61499 FB model, resource model, and 

device management model [135]-[136]. 

Furthermore, MAS and SOA are considered as key enabling technologies to model IEC 

61499 based iCPS with cloud and autonomous computing capabilities [77], [120], [137].  

B. Autonomic Computing 

In previous chapters the evolution of iCPS in Industry 4.0 characterized as distributed and 

intelligent to be able to self-manage were discussed. IEC 61499 based iCPS are not only 

designed with fundamental features (e.g., distributed to be flexible, configurable, portable, and 

interoperable) but also envisioned for advanced capabilities (e.g., learning abilities, self-

managing capabilities). Learning abilities to perform intelligent behaviours require iCPS to be 

self-manageable with flexible architectures (e.g., hardware and software) and adaptable 

strategies (e.g., rules and knowledge). The goal is to support real-time self-configuration, self-

healing, self-optimization, and self-protection for responsiveness to changes [23], [100], [118], 

[138]. It is summarized as: a) self-configuration of configuring and reconfiguring functions, 

structures, and processes to adapt to dynamical changes; b) self-optimization of improving and 

optimizing performances and operations with respect to predefined goals; c) self-healing of 
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detecting and recovering from disturbances and faults to maximize system availability; and d) 

self-protection of identifying and protecting against safety and security attacks to preserve 

system integrity [100]. 

Recent research has been focused on system autonomic service management modelling 

with consideration of IEC 61499. Mubarak and Göhner proposed an agent-based architecture for 

self-manageable industrial automation systems in which self-healing is illustrated by an example 

of passenger lift design [139]. The proposed architecture is developed with agents deployed on 

three levels: the control and supervision level, the self-management functionality level, and the 

automation system connection level. Lepuschitz et al. proposed an automation agent architecture 

for low-level control (LLC) self-reconfiguration of IEC 61499 based applications [140]. The 

approach is to use ontological representation of low-level functions on the high-level control 

(HLC) to enable HLC to reason and initiate reconfiguration processes for LLC. Strasser and 

Froschauer discussed a general concept for autonomous recovery of applications in IEC 61499 

based intelligent automation and control systems [141]. The proposed framework facilitates the 

exchange of hardware components with no need for extra configuration. Kaindl et al. proposed 

an agent-based architecture containing self-representation for automation systems to support self-

configuration and monitoring [142]. The approach is based on the concept of automation agents 

composed of hardware and software components. In software components, the real-time LLC is 

implemented using IEC 61499 FBs and the high-level control is for agents’ configuration, 

monitoring, and communication.  

Dai et al. proposed a service-oriented execution environment architecture, i.e., function 

block service runtime (FBSR), to support the SOA-based design of the IEC 61499 model [143]. 

For software services in iCPS, detailed definitions of common interfaces and feasible solutions 
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of dynamical discovery were further developed [144]. Inspired by autonomic computing, Dai et 

al. proposed a knowledge-driven autonomic service management architecture for self-

optimization of resource utilization [77] and a cloud-based decision support system for self-

healing in distributed automation systems using fault tree analysis [137]. FBSR was then 

extended to introduce concurrent models of computation for modelling distributed automation 

systems in the iCPS view [145] and used to test a new feature, i.e., rea-time data acquisition 

support for IEC 61499 based iCPS, to monitor and optimize industrial processes with real-time 

feedback data [146].  

C. Cloud Computing 

Recently cloud computing has emerged as a new computing paradigm for iCPS [101]. As 

defined by the National Institute of Standards and Technology (NIST), cloud computing enables 

ubiquitous, convenient, on-demand network access to a shared pool of configurable computing 

resources that can be rapidly provisioned and released with minimal management effort or 

service provider interaction [147]. Cloud computing employs a multi-layer architecture including 

application, platform, infrastructure, and hardware layers, and is realized through different 

service models including software as a service (SaaS), platform as a service (PaaS), and 

infrastructure as a service (IaaS) [147]. For modelling iCPS, integration of the cyber (i.e., cloud) 

and the physical (i.e., devices) are enabled by encapsulating services in design entities (e.g., IEC 

61499 FBs). Furthermore, to realize distributed and intelligent industrial automation, the 

capability of computing plays a critical role. Cloud computing provides a promising solution to 

model both system architectures and computing resources. 

Karnouskos et al. proposed a SOA-based architecture for empowering future 

collaborative cloud-based industrial automation [148]. They envisioned that future industrial 
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automation systems would be virtualized as cloud-based composition of cyber-physical services 

for multi-system interaction and cross-layer collaboration in both architectures and behaviours. 

Dai et al. proposed a configurable cloud-based validation environment for interoperability tests 

between various distributed automation systems from the bottom protocol level to the top system 

level [149]. The testing framework is implemented in a multi-layer infrastructure in which 

testing models are designed as IEC 61499 FBs. Demin et al. proposed a cloud-based framework 

for designing an IEC 61499 based application as a web service in SOA [150]. SOA and cloud 

computing make it possible to convert FBs to services and then deploy them to the cloud for as 

needed use. 

To support IEC 61499 with runtime monitoring, behavioral types as extensions to IEC 

61499 were proposed in [151]. Compared with traditional types (e.g., strings and integers) which 

model interfaces on a syntactic level, behavioral types extend the expressiveness of interface 

specifications by adding regular expression-based, protocol-like usages of components [151]. 

This work was further developed into a cloud-based monitoring framework to check timed 

properties described as behavioral types of IEC 61499 based industrial automation systems 

[152]. More features (i.e., Event, Var, and Watch) were proposed to support both 

publish/subscribe and client/server models for IEC 61499 based iCPS [146].  

D. Discussion 

In conclusion, the key idea of the above research is to introduce distributed intelligence, cloud 

computing, and autonomic computing frameworks combined with SOA in the design modelling 

of iCPS to support flexibility and interoperability and to realize self-management capabilities. 

Research on design paradigms focuses on how to model IEC 61499 based systems while 

research on computing paradigms focuses on how intelligent IEC 61499 modelled systems will 
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be. More specifically, industrial multi-agent solutions (e.g., [153]) allow distributed intelligence 

which means decentralized architectures and inherent capabilities for system self-adaption to 

changes. Usually, multi-layered architectures are employed with high-level industrial agents and 

low-level automation devices for modelling iCPS. One issue is the communication between the 

high-level and the low-level. Cloud computing allows design entities encapsulated as services 

and deployed into the cloud. Most IEC 61499 research on this aspect is focused more on cloud-

based system design and modelling; studies on sharing computing resources in the cloud (e.g., 

local intelligence dynamically linked to remote runtime functionalities in the cloud for sharing 

[75]) is as important towards distributed intelligent automation. Rather than accessing computing 

resources completely in the cloud, low-level intelligence can be achieved for real-time response 

and control through agent-embedded devices (e.g., node intelligence in WSN [130]). Autonomic 

computing enables system self-managing capabilities which are key components towards 

distributed intelligent systems. Current research mainly focuses on part of them theoretically, 

i.e., self-configuration, self-healing, and self-optimization. Design tests and implementation 

cases are still required for validation. 
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3.6 Implementation of IEC 61499 Engineering Environments 

3.6.1 Development of IEC 61499 Engineering Environments 

Since the publication of the IEC 61499 standard, academic activities and industrial practices on 

developing engineering environments to implement IEC 61499 FB models have been conducted. 

Typical projects for IEC 61499 engineering environments development are listed in Table 3-6. 

Table 3-6: Projects of developing IEC 61499 engineering environments 

Developer Product Type1 Grade2 Capability3 Status Technology Comment 

Schneider 

nxtControl 

[69] 

nxtSTUDIO ST 

IND P; I; C. Active 
Microsoft .NET Framework; 
XML DTD; ST. 

Comprehensive industrial solution 

packages; Hardware independent 

engineering. 

nxtIECRT RP 
nxtLIB LB 

nxtHMI RP 

Rockwell 
ISaGRAF 

[70] 

Workbench ST 
IND C Active 

Microsoft Visual Studio Shell; 

Virtual Machine. 

First commercial software 

environment. 
Runtime RP 

ISaVIEW RP 

Eclipse 

4diac [79] 

4diac IDE ST 
OPS P; I; C. Active Eclipse Framework; C++. Open source solutions. 4diac FORTE RP 

4diac LIB LB 
Holobloc 

[82] 
FBDK ST 

IND P; I; C. Active 
Oracle Java SE Platform; 

XML DTD. 
First IEC 61499 feasibility 

demonstration. FBRT RP 

Automation 
of Things 

[154] 

FourZeroTM 

Runtime 
RP 

IND C Active C++; 4diac FORTE 

Distributed and task-oriented 

architecture; Hardware and topology 

independent program; Real and 
virtual application creation. 

FourZeroTM 
Studio 

ST 

Yueyi 

Automation 
[155] 

FBB ST 

IND C Active 

Microsoft .NET Framework;  

ST, LD; 
C++; HTML/JavaScript. 

Service based runtime and dynamic 

reconfiguration; Real-time 
monitoring and data management. 

FBSRT RP 

FBDL RP 

NOJA 

Power [156] 
SGA ST IND P; I; C. Active 

Eclipse 4diac Framework; User 

Defined Analogue; Dynamic 
Data Types. 

Interaction with IEC 61850 et al.; 

System access to database; Query 
and control IEC 61499/SGA devices. 

PRETzel 

[157] 
BlokIDE ST ACA C Active Microsoft VS 2010/2013 

Synchronous execution; Formal 

verification; Static timing analysis; 
Highly efficient code. 

O3neida 

[158]-[159] 

Workbench 
ST OPS C Inactive Java; NetBeans; Eclipse. 

Experimental use for Automation 

Objects. FBench 

Fuber [160] FUBER RP OPS C Inactive Java; BeanShell. An IEC 61499 interpreter. 

SEG [161] 
CORFU 

RP ACA C Inactive 
Unified Modelling Language;  
Model Integrated Mechatronics. 

An IEC 61499 runtime embedded 
tool. Archimedes 

UDESC 

[162]-[163] 

ICARU_FB  RP 
OPS P; I; C Inactive XML DTD. 

Dynamic reconfiguration; Code 

simplicity. GASR-FBE  ST 
1 ST: Software Tool; RP: Runtime Platform; LB: Library of software components. 
2 ACA: Academic; IND: Industrial; OPS: Open Source.  
3 P: Portability; I: Interoperability: C: Configurability. Not formally tested because of license issues. 

 

Engineering environments usually includes three components [28], [32]: a) software tools 

(ST), i.e., an integrated development environment to model designs; b) runtime platforms (RP), 

i.e., a runtime environment to execute programs; c) libraries of software components (LB), i.e., a 
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library to store elements. Furthermore, these implementations can be classified into three 

categories: a) IEC 61499 based, e.g., Holobloc FBDK/FBRT; b) IEC 61131 based but IEC 61499 

supported, e.g., ISaGRAF Workbench/Runtime; and c) IEC 61499 and/or IEC 61131 based (i.e., 

hybrid), e.g., nxtControl nxtSTUDIO/nxtIECRT. As proposed in IEC 61499-4, three key features 

are expected in developing those IEC 61499 engineering environments [39]: a) configurability, 

i.e., multi-source devices can be manipulated by multi-source software tools; b) portability, i.e., 

multi-source libraries can be used among multi-source software tools; and c) interoperability, 

i.e., multi-source devices can be exchanged among multi-source runtime platforms. 

A brief description of these engineering environments is as follows. The Schneider 

nxtControl includes a) nxtSTUDIO to integrate automation tasks, b) nxtLIB to offers 

prefabricated software objects, c) nxtIECRT to support hybrid control paradigms, and d) nxtHMI 

together with SCADA to enable multi-client/multi-server visualization [69]. The Rockwell 

ISaGRAF includes a) ISaGRAF Workbench to provide plug-in functions, b) ISaGRAF Runtime 

to execute target independent code generated by control applications, and c) ISaVIEW as a plug-

in for HMI [70]. The Eclipse 4diac includes a) 4diac IDE based on the Eclipse framework, b) 

4diac FORTE supporting online reconfiguration of applications and real-time execution of FB 

types, and c) 4diac LIB containing FBs, adapters, and sub-applications [79]. The Holobloc 

FBDK/FBRT were developed to support fundamental features of IEC 61499 based on design 

patterns (e.g., proxy, local multicast, tagged data, time-stamped messaging, 

model/view/controller/diagnostics [164]) [82]. The FourZeroTM platform developed by 

Automation of Things includes a) FourZeroTM Studio and b) FourZeroTM Runtime with key 

features, for example, distributed and task-oriented architecture, hardware and topology 

independent programming, and real-time monitoring and management [154]. The platform 
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developed by Yueyi Automation is based on the core model FBSR [143]. It includes a) data link 

FBDL, b) execution environment FBSRT, and c) FB builder FBB for real-time monitoring, 

dynamic reconfiguration, and data management [155]. The IEC 61499 design toolset Smart Grid 

Automation (SGA) from NOJA Power is based on Eclipse 4diac framework and focused on 

distributed power system automation applications in smart grid [156]. The PRETzel BlokIDE is 

academic software tool based on several research results, e.g., research on hierarchical and 

concurrent execution control chart (HCECC) for IEC 61499 [66] and efficient C code generation 

from IEC 614999 FBs [54], [165]. It is a design environment for model-driven engineering of 

programmable electronics integrated with IEC 61499 to allow automatic code generation, 

synchronous execution, formal verification, and static timing analysis [157]. Other projects are 

not currently active now but still valuable reference implementation [158]-[163]. 

3.6.2 Application of IEC 61499 Engineering Environments 

Applications of IEC 61499 engineering environments for industrial practices or academic 

experiments are common now (Table 3-7). In general, IEC 61499 has achieved successes in 

some typical domains, e.g., smart factory, smart building, smart grid, as envisioned in [30]. For 

smart factory, examples are design of IEC 61499 based control systems using ISaGRAF 

Workbench for shoe manufacturing plants [166] and using Eclipse 4diac IDE for Pick & Place 

stations [79]. Another typical example in current research is the design modelling of airport 

baggage handling systems using Holobloc FBDK/FBRT (e.g., [102], [113]). For smart building, 

nxtControl nxtSTUDIO is used to design IEC 61499 based building management systems for 

energy-efficient lighting system control (e.g., [105], [167]). For smart grid, solutions based on 

the combination of IEC 61499 FB implementation and IEC 61850 interoperable communication 

are researched by groups of Vyatkin et al. using Holobloc FBDK (e.g., [168]) or nxtControl 
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nxtSTUDIO (e.g., [169]), and groups of Strasser et al. using Eclipse 4diac IDE (e.g., [170]). An 

industrial application is NOJA Power’s Automatic Circuit Reclosers (ACR) running applications 

developed by its IEC 61499 design toolset SGA [156]. Recently, the standards working group of 

Open Process Automation (OPA) Forum is examining the IEC 61499 standard, and 

ExxonMobile, as a member of OPA Forum, is establishing the test bed to evaluate candidate 

components and standards including IEC 61499 for distributed FB applications [171]. 

Table 3-7: Applications of typical IEC 61499 engineering environments 

No. IEC 61499 Application Software 

1 Meat processing plant and fertilizer production plant  [172]. 

Holobloc 
2 Airport baggage handling systems [113]. 

3 Smart grid automation through IEC 61850/IEC 61499 logical nodes [168].  

4 Design of the control system of the transport line in a shoe manufacturing plant [173]. 

5 IEC 61499 based distributed control and IEC 61850 based automation for smart grids [79].  Eclipse 

4diac 6 The Pick & Place station for the design of IEC 61499 compliant control applications [79]. 

7 Control engineering for heating, ventilation and air-conditioning, lighting control [69]. Schneider 

nxtControl 8 Fertilizer production plant [69]. 

9 Food processing embedded machine control [174]. 

Rockwell 

ISaGRAF 

10 Research center data acquisition and control on a drying test bench [174]. 

11 Control of hydraulic parameters of district heating region “Zemliane” in Sofia [175]. 

12 High-speed train monitoring and control [176]. 

13 Railway safety functions in the mining transport system [177]. 

14 I-8000 wastewater treatment system [177]. 

15 Adaptive automation control for customized shoes manufacturing [166]. 

 

In conclusion, IEC 61499 has gained more popularity in academia and industry since the 

second edition published in 2012. Various IEC 61499 engineering environments have been 

developed to support IEC 61499 applications in a variety of domains. Capabilities of each IEC 

61499 engineering environments may vary but each serves an important role in promoting IEC 

61499 for distributed automation, especially in smart factory, smart grid, and smart building 

areas. These IEC 61499 engineering environments such as Eclipse 4diac kit are also a critical 

component in hands-on training programs in teaching and learning. One great thing to mention is 

that Schneider nxtControl includes a new module nxtServices in its kit to provide know-how 

services of IEC 61499 projects.  
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3.7 Summary 

In this chapter, major topics of research on IEC 61499 were reviewed. First, an overview of the 

IEC 61499 standard focusing on its development background, proposed reference architecture 

models, and FB execution semantics was reviewed. Then, challenges and methods of 

transforming existing IEC 61131-3 programmed systems to IEC 61499 based systems were 

discussed. By analyzing recent research on integration with IEC 61499 enabling technologies, 

perspectives of design methods (i.e., object-oriented design, component-based design, and 

service-oriented architecture) and computing frameworks (i.e., distributed intelligence, 

autonomic computing, and cloud computing) for modelling IEC 61499 based systems were 

provided. This thesis is based on studies in this section and further developed to propose a 

framework to model self-manageable iCPS for IEC 61499 distributed intelligent automation. At 

the end of this chapter, several implemented IEC 61499 engineering environments were listed, in 

which Eclipse 4diac will be used for experiments in the research. The reason to choose Eclipse 

4diac is that it is now the most popular, comprehensive, and capable engineering environment 

with active and open-source features (i.e., free for academic use), required elements (i.e., ST, RP, 

and LB) and capabilities (i.e., C, P, and I) defined by IEC 61499. 
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Chapter Four: Architecture Modelling Framework 

4.1 Introduction 

As stated in previous chapters, industrial cyber-physical systems (iCPS), in which cyber and 

physical components collaborate with each other and are empowered for intelligence by 

communicating and computing cores, appears to hold the most promise of achieving next-

generation industrial automation systems to be distributed and intelligent in the Industry 4.0 era. 

In this thesis, the research question is how to achieve self-manageable iCPS for IEC 61499 based 

distributed intelligent automation. More specifically, how to model such type of systems that are 

responsive to frequent changes and adaptive to evolving requirements in a distributed and 

intelligent way through integration of multi-agent modelling and IEC 61499 FB modelling. Thus, 

the core objective of the research is to explore the design of multi-layer automation architectures 

to enable real-time adaptation at the device level and run-time intelligence throughout the whole 

system under a well-integrated modelling framework. 

In this chapter, a multi-layer architecture modelling framework will be explored and the 

following chapters will focus on part of this modelling framework, that is the design of a two-

layer self-manageable architecture modelling for distributed and intelligent automation. 
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4.2 Modelling Framework  

The legacy industrial automation systems are typically designed as a 5-level architecture: a) low 

levels 0, 1, and 2 focus on industrial automation control and monitoring by applying, e.g., 

sensors and actuators (Field Devices, Level 0), programmable logical controllers and distributed 

control systems (PLC/DCS, Level 1), and supervisory control and data acquisition systems 

(SCADA, Level 2); b) high levels 3 and 4 focus on manufacturing and enterprise operations 

management and decision-making support by applying, e.g., manufacturing execution systems 

(MES, Level 3) and enterprise resource planning (ERP, Level 4) [178]. As envisioned in 

Industry 4.0, the development of next-generation industry systems will be leveraged by the 

integration of industrial cyber and physical systems (iCPS) and the application of industrial 

internet of things and services (IIoTS), both of that are enabled by industrial computing and 

communicating technologies and powered by artificial intelligence and data analytics. In this 

thesis, these industrial computing and communicating frameworks will be applied to form a 

feasible design of multi-layer automation architectures to enable real-time adaptation at the 

device level and run-time intelligence throughout the whole system under a well-integrated 

modelling framework. 

The proposed multi-layer system architecture modelling framework is shown in Figure 4-

1. The macro architecture (Figure 4-1a) is designed as a multi-layer model by deploying cloud 

computing [101], fog computing [179], and edge computing [180] into the framework. The 

micro architecture (Figure 4-1b) is designed as a multi-layer model by applying multi-agent 

based autonomic computing and agent-embedded IEC 61499 FB modelling to the framework 

[11]-[15]. In the following sections, a brief introduction to the proposed architecture modelling 

framework will be provided. 
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Figure 4-1: Multi-layer system architecture modelling framework 

4.2.1 Multi-Layer Macro Architecture 

The multi-layer macro architecture is designed with three key layers, i.e., Cloud Layer, Fog 

Layer, and Edge Layer, in distributing intelligence from top to bottom across the whole system. 

As it is not the focus of the research and some key concepts have been reviewed before, this 

section will provide a general ideal of the multi-layer macro architecture. 

A. Cloud Layer 

Cloud Layer is a network of cloud computing enabled management platforms for strategic 

decision support. Legacy product lifecycle management platforms (e.g., ERP, MES) can either 

be migrated to industrial clouds (e.g., public cloud, cooperate cloud) as accessible services, or 

furthermore, be powered with advanced computing platforms (e.g., plug-in modules like 
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machine learning tools) for enterprise-wide management, planning, and optimization. This layer 

mainly relies on powerful data centers to deal with high-volume, historical, advanced data 

processing and analysis, aiming at complex pattern detection to provide optimal solutions for 

mid- to long- term decision-making support. 

B. Fog Layer 

Fog Layer is a network of fog computing enabled middleware platforms for bridging different 

platforms together. Middleware platforms (e.g., protocol gateways, smart I/Os, servers and 

storage) play a crucial role in connecting different platforms and optimizing their 

communications. This layer mainly works on balancing local computing, communication, and 

storage resources to deal with mid-volume, lightweight, streaming data preprocessing and 

analysis, aiming at providing latency acceptable, solution reasonable, and near real-time 

responses.  

C. Edge Layer 

Edge Layer is a network of edge computing enabled automation platforms for process 

measurement and control. Automation platforms are home to front-end devices (e.g., sensors, 

actuators, controllers) with embedded computing intelligence (e.g., single board computers like 

Jetson Nano and Raspberry Pi) and available communicating connectivity (e.g., WiFi and 

Zigbee). This layer mainly focuses on built-in capabilities to deal with low volume, raw 

streaming data preprocessing and analysis, aiming at providing real-time adaptation for self-

management. This thesis focuses on Edge Layer and will explore a detailed design of this layer 

architecture modelling. 
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D. Hidden Layers 

Hidden Layers designed in the proposed architecture modelling framework represent other 

possible layers that are either a new emerging system layer to envision a future system 

architecture, or more detailed layers of an existing system layer.  

4.2.2 Multi-Layer Micro Architecture 

The multi-layer micro architecture is a detailed layered system architecture of Edge Layer in the 

multi-layer macro architecture. The multi-layer micro architecture is designed with three layered 

modules, i.e., high-level cyber module, middle-level interface module, and low-level physical 

module. The multi-layer micro architecture design deploys autonomic computing in the 

architecture modelling framework, including: a) the reference architecture employed in the high-

level cyber module and implemented as multi-agent systems, and b) the self-managing properties 

employed in the low-level physical module and implemented as agent-embedded IEC 61499 

FBs. The design results in a new computing module for high-level multi-agent based automation 

architectures and a new design pattern for low-level function block modelled control solutions. 

The objective is to achieve multi-agent enabled, IEC 61499 FB based distributed intelligent 

automation and control. 

A. High-Level Cyber Module 

The high-level cyber module design deploys autonomic computing reference architecture into 

the modelling framework with the implementation of multi-agent modelling techniques. The core 

of the reference architecture for autonomic computing is structured by different modules, 

including autonomic managers of five architectural elements Monitoring, Analysis, Planning, 

Execution, and Knowledge (i.e., MAPE-K) as an intelligent control loop, managed resources of 

software or hardware entities (e.g., databases, networks, and applications), and touchpoints of 
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sensors and effectors for monitoring and controlling managed resources by autonomic managers 

[100]. Furthermore, the architectural element Self-Learning is introduced in this research to the 

traditional autonomic computing reference architecture. For the architecture implementation, 

multi-agent modelling techniques are applied by using autonomous and cooperative agents to 

achieve run-time distributed intelligence in system design and module reconfiguration.  

Therefore, the high-level cyber module is designed as multi-agent computing model 

(Figure 4-1b, top) consisting of Monitoring Agent, Analysis Agent, Self-Learning Agent, 

Planning Agent, Execution Agent, and Knowledge Agent. An overview of these agents is shown 

as follows: 

• Monitoring Agent: monitoring and collecting system operation data, engineering data, and 

operating environment data through sensors. 

• Analysis Agent: pre-analyzing collected data for modeling complex situations to understand 

current system operations and to predict better future states. 

• Self-Learning Agent: designed under open-source artificial intelligence frameworks to 

deploy various machine learning models and employ rich data analytics tools aiming at 

gaining insights of system operations. 

• Planning Agent: selecting a series of action steps and generating an optimal action plan to 

respond to changes and to achieve goals. 

• Execution Agent: implementing action plans and controlling execution processes through 

actuators. 

• Knowledge Agent: maintaining data sets or knowledge repositories to provide support to and 

receive updates from other agents or entities. 
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B. Low-Level Physical Module 

The low-level physical module design deploys autonomic computing self-managing properties 

into the modelling framework with the implementation of IEC 61499 FB modelling techniques. 

The key system self-managing properties envisioned by autonomic computing are self-

configuration, self-healing, self-optimization, and self-protection [100]. For the architecture 

implementation, IEC 61499 FB modelling techniques are applied by using object-oriented and 

event-driven function blocks to realize real-time adaption of automation logic and control 

algorithms. Furthermore, a new design pattern, i.e., agent-embedded IEC 61499 FB model, is 

proposed for self-manageable services with the separation of control application execution and 

self-manageable service agent execution.  

Thus, the low-level physical module is designed as agent-embedded IEC 61499 FB 

model (Figure 4-1b, bottom) with Self-Manageable Service Execution Agent (Agent_SMS), Self-

Configuration Agent, Self-Healing Agent, Self-Optimization Agent, and Self-Protection Agent 

(Agent_SX). An overview of these agents is shown as follows: 

• Self-Manageable Service Execution Agent: monitoring system states and responding to 

changes by deciding the adequate behaviors to perform (i.e., activate one or more self-

manageable agents and execute self-manageable services). 

• Self-Configuration Agent: configuring/reconfiguring functions, structures, and process to 

adapt to dynamical changes. 

• Self-Healing Agent: detecting and recovering from disturbances and faults to maximize 

system availability. 

• Self-Optimization Agent: improving and optimizing performance and operations with respect 

to predefined goals. 
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• Self-Protection Agent: identifying and protecting against safety and security attacks to 

preserve system integrity. 

C. Middle-Level Interface Module 

The middle-level interface module serves as middleware for communication and connection of 

the high-level cyber module and the low-level physical module. Depending on the 

implementation of the high-level cyber module and the low-level physical module, the design 

will vary [122]. Although not the focus of this research, communication and connection of agent-

agent, agent-FB, FB-FB will be discussed in related chapters. 
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4.3 Summary 

In this chapter, the architecture modelling framework was proposed. The proposed multi-layer 

system architecture modelling framework includes three key layers (i.e., Cloud Layer, Fog Layer, 

and Edge Layer) from the macro view. The modelling framework employs the three-level 

industrial computing framework with consideration of the traditional industrial system 

architecture. The thesis focuses on the multi-layer micro architecture modelling by detailing 

Edge Layer that is mainly responsible for industrial automation and control platforms. The micro 

architecture, under the vision of Industry 4.0 that leverages the integration of industrial cyber and 

physical systems (iCPS) and the application of industrial internet of things and services (IIoTS), 

is designed as a multi-layer model by applying multi-agent based autonomic computing and 

agent-embedded IEC 61499 FB modelling to the framework. The design results in a new 

computing module for high-level muti-agent based automation architectures and a new design 

pattern for low-level FB modelled control solutions. In the following chapters, details of the 

design of this two-layer architecture modelling will be discussed. 
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Chapter Five: High-Level Cyber Module Architecture Modelling 

5.1 Introduction 

In the proposed high-level architecture modelling framework (Figure 5-1), the cyber module is 

designed as multi-agent MAPLE-K model in which the intelligent control loop (i.e., the 

MAPLE-K loop) is performed. A detailed algorithm is shown in Table 5-1. Generally, the cyber 

module starts from current state monitoring of the operating environment properties, the system 

engineering properties, and the real-time operation behaviours of the physical module (e.g., 

through sensors); continues to data analysis by analyzing or self-learning intelligence by learning 

from the collected environmental, engineering, and operational data; and ends with action 

planning and execution for responses (e.g., through actuators); while the knowledge base 

provides support to and receives updates from the whole process. The cyber module can be 

proactive (i.e., actively collects data for analysis and builds models for prediction) or reactive 

(i.e., passively receives data for analysis and applies models for prediction). For example, sensor 

nodes in regular operating states, the cyber module could work in a reactive way to save energy 

or resources; whereas sensor nodes detect fluctuations in operation, the cyber module could work 

in a proactive way to obtain more information in order to respond to changes. In the following 

chapters, simple and complex situations will be used and they are different simply based on if 

regular system operation requires adaptation (e.g., change or new requirement request). 
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Figure 5-1: The proposed high-level architecture modelling framework  

Table 5-1: Algorithm for the proposed multi-agent MAPLE-K model 

Algorithm 1: Multi-Agent MAPLE-K model 

01 Input: Current State //system running status 

02 Output: Action Plan //system updating plan 

03 Initialize Agent_Knowledge //run upon request from other agents 

04  Invoke reasonEngine 

05  Query knowledgeBase 

06  Update knowledgeBase 

07 Initialize Agent_Monitoring 

08  Call SensorNode for state perception 

09  Read currentState 

10  Send currentState to Agent_Analysis 

11 Initialize Agent_Analysis 

12  Receive currentState from Agent_Monitoring 

13  Call AnalysisDecision for pre-analysis 

14   Compute the comparison result of current and planned state/action 

15   Return decisionResult 

16  If decision result is positive Then 

17   Send optimalAction in planned optimalPolicy to Agent_Execution directly 

18  Else  

19   Call Agent_Self-Learning for deep learning/reinforcement learning 

20   Return selflearningResult 

21   Send computed optimalPolicy to Agent_Planning 

22  End  

23 Initialize Agent_Planning 

24  Receive computed optimalPolicy from Agent_Analysis 

25  Call PlanningDecision for optimal action plan 

26  Update computed optimalPolicy 

27  Send actionPlan in updated optimalPolicy to Agent_Execution 

28 Initialize Agent_Execution 

29  If decision result in AnalysisDecision is positive Then 

30   Execute optimalAction in planned optimalPolicy from Agent_Analysis 

31  Else  

32   Execute actionPlan in updated optimalPolicy from Agent_Planning 

33  End  
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5.2 Monitoring Agent Design 

The monitoring function provides the mechanisms that collect, aggregate, filter, and report data 

that represents the system’s current state in either passive or active way [100]. In this design, 

Agent_Monitoring collects data on the operating environment properties, the system engineering 

properties, and the real-time operation behaviours of the physical module through sensors, which 

is used by Agent_Analysis for data analysis, model building, behaviour learning and prediction. 

Sensory data are classified into three types: the internal engineering properties (i.e., machine 

health like tear on parts), the external environment properties (i.e., environmental conditions like 

temperature), and the real-time operation behaviours (i.e., working states like efficiency), which 

represent three key sources from industrial systems.  

Wireless sensor networks (WSNs) is one of the key enablers in the design of iCPS which 

are built of wireless networked sensor nodes (mainly composed of sensing, processing, 

transceiver, and power units) and are capable of distributed communication and intelligent 

control [181]. Sensor nodes are considered in the proposed architectural model as they can be 

deployed in the system as interfaces through which cyber and physical modules of iCPS can 

collaborate with each other to perceive system states, adapt to changes, and maintain its 

operation. For example, several autonomous mobile robots are added to the scenario described 

previously in Section 2.1 (Figure 2-1) to be responsible for carrying sorting bins to desired areas 

(Figure 7-1). Wireless sensors will be a good way to be attached for tracking these autonomous 

mobile robots and monitoring their working conditions. Sensor nodes are generally classified 

into regular sensor nodes and sink nodes [182]. For regular sensor nodes, those with fixed 

locations are referred to as anchor nodes whereas those without fixed locations are referred to as 

mobile nodes. Regular sensor nodes collect raw data and transmit to sink nodes before 
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transmitting to Agent_Analysis for advanced data analytics. As raw data aggregators and 

processors, sink nodes have advantages over regular sensor nodes in aspects of the data 

processing capability, the data transmitting bandwidth, and the battery supplying life [182].  

In the Agent_Monitoring data model (Figure 5-2), the MonitoringAgent class perceives 

current states from the SensorNode class by implementing the method perceiveCurrentState and 

then sends to the AnalysisAgent class by implementing the method sendCurrentState. The 

SensorNode class is a part of the MonitoringAgent class, in which one MonitoringAgent have one 

or more SensorNode whereas one SensorNode belongs to one MonitoringAgent. Three subclasses 

SinkNode, AnchorNode, and MobileNode are inherited from the superclass SensorNode, and can 

be instantiated their own objects. The SinkNode class has an aggregation relationship with the 

AnchorNode class and the MobileNode class, in which one AnchorNode or MobileNode has only 

one SinkNode each time whereas one SinkNode can have zero or more of both. The SensorNode 

class is aggregated by the Engineering class, the Environment class, and the Operation class, 

which represent three different types of sensory data. 
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Figure 5-2: The Agent_Monitoring data model 
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5.3 Analysis Agent Design 

5.3.1 Analysis Agent Modelling 

The analysis function provides the mechanisms that correlate and model complex situations to 

learn about system operations and predict future situations, thus it deals with the ability to 

understand the current context and to determine a better system state [100]. In this design, 

Agent_Analysis is a model of data analysis, model building, behaviour learning and prediction 

according to previous and current states, executed and planned actions, and is aimed at providing 

an optimal policy with optimal actions for the current state. Agent_Analysis receives the current 

state from Agent_Monitoring and sends optimal policies to Agent_Planning for action plans or 

sends optimal actions directly to Agent_Execution for implementation.  

Two situations are identified: a) simple situations with normal operations, 

Agent_Analysis receives data from Agent_Monitoring for analysis or sends desired results 

directly to Agent_Execution for immediate implementation; b) complex situations with abnormal 

operations, Agent_Analysis receives data from Agent_Monitoring for analysis and sends desired 

results to Agent_Planning for optimal action plans. Consider the scenario of a robotic arm 

sorting blocks into bins described previously in Section 2.1 (Figure 2-1): 

a) simple situations with normal operations. For example, the default setting of the 

robotic arm is to grasp black blocks and place them into the black bin. If nothing monitored 

changed, there will be no change in Agent_Analysis and Agent_Execution will implement the 

regular action plan.  

b) complex situations with abnormal operations. For example, mixed black and red 

blocks come for the robotic arm to sort into corresponding black and red bins. The system has to 

distinguish different colored blocks and then sort them into different bins. As color change 
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detected by Agent_Monitoring and analyzed by Agent_Analysis, the action plan has to be revised 

by Agent_Planning before being implemented by Agent_Execution. In this case, as color 

changed, the analysis and planning will require a little bit more effort than in simple situations.  

In the Agent_Analysis data model (Figure 5-3), the AnalysisAgent class implements the 

AnalysisDecision interface and the SelfLearningAgent interface. Typical attributes are 

previousState and executedAction, currentState and plannedAction, and computedAction. Typical 

methods are receiveCurrentState to communicate with the MonitoringAgent class, 

sendOptimalPolicy to communicate with the PlanningAgent or ExecutionAgent class, and 

initializeSelfLearningAgent to invoke the SelfLearningAgent interface. The AnalysisDecision 

interface is implemented for simple situations with optimal decisions available or complex 

situations as data pre-analysis before initializing SelfLearningAgent. Typical methods 

implemented in the AnalysisDecision interface are selectComputedAction, compareStateAction, 

and returnDecisionResult, in which the plannedAction and the computedAction are usually the 

same in simple situations while are different in the complex situations.  
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Figure 5-3: The Agent_Analysis data model 

5.3.2 Self-Learning Agent Modelling 

Agent_Self-Learning is a model to support Agent_Analysis for artificial intelligence so that the 

system can be intelligent to a certain human level. Agent_Self-Learning is designed under open-

source machine learning frameworks to deploy various learning models. In this research, it will 

not focus on details of machine learning models and algorithms, but on different levels of 

capabilities expected for Agent_Self-Learning. The SelfLearningAgent interface is realized 

through two sub-interfaces DeepLearning and ReinforcementLearning which are invoked by the 
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method selectLearningAgent (Figure 5-3). Consider the scenario of a robotic arm sorting blocks 

into bins described previously in Section 2.1 (Figure 2-1): 

a) To learn primitive skills from sensory data. For example, the robotic arm learns to 

move to the black block, pick up the black block, and place the black block into the black bin 

from its perception of the operating environment. Primitive skills like reach, grasp, and place are 

acquired through learning models like deep reinforcement learning.  

b) To learn from past experience to cope with new tasks. Tasks are reasonable planning 

of a collection of primitive skills/actions. Past experience of similar tasks can lead fast learning 

for new tasks. Therefore, this type of learning can be achieved through deep learning models like 

transfer learning. Considering the complexity of new tasks, two cases are further identified: 

b1) To deal with a simple new task. For example, a bigger black block comes for the 

robotic arm. The system can use the same learning model with a change of some types of 

parameters (e.g., holding force and opening angle of the gripper) since engineering features (e.g., 

dimension and mass) of objects have changed. The whole task is still similar with reach, grasp, 

and place skills.  

b2) To deal with a complex new task. For example, mixed black and red blocks come for 

the robotic arm to sort to black and red bins. The previous learning model cannot use because the 

system has to distinguish colored blocks and then sort them into different bins. Therefore, instead 

of model transfer, meta-model learning is required to add more primitive skills to form a new 

learning model for block sorting. 

Traditionally, only predefined rules, policies, and goals are provided by Agent_Analysis 

with limited situations. The cyber module can work in some simple situations with predefined 

knowledge whereas in most cases it is far less capable of dealing with real-time dynamic 
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situations. Therefore, Agent_Self-Learning is proposed to perform two types of machine learning 

models: a) deep learning to autonomically use existing data to train algorithms to find patterns 

and then make predictions about new data; b) reinforcement learning to autonomically adjust 

actions in the environment to maximize cumulative rewards.  

As proposed, the cyber module can be proactive or reactive in consideration of available 

data and models for analysis. One practical scenario for the previously described case of a 

robotic arm sorting blocks into bins (Figure 2-1) is as follows. The industrial system starts 

working with some predefined knowledge of normal operations (e.g., the robotic arm 

programmed to sorting blocks into bins), typical failures (e.g., the robotic arm could fail to catch 

the block on the fly), and regular maintenances (e.g., scheduled maintenance after thousands of 

picks). At the beginning of these simple situations, the cyber module could actively collect data 

for analysis and build models for prediction (e.g., rotation speed and angle, holding force and 

opening angle of the robotic arm). As enough data are available and robust models are built, the 

cyber module could passively receive data for analysis and apply models for prediction. 

However, for abnormal operations, untypical failures, and irregular maintenances, no previous 

experiences are available to the cyber module and it could actively adjust actions by trial-and-

error to achieve the best result (e.g., the robotic arm adjust its holding force and opening angle to 

catch a bigger and heavier block). Then these complex situations become simple situations with 

available solutions. As shown, deep learning and reinforcement learning techniques are required 

whether it is with inputs and outputs to find mapping functions, with only inputs to find mapping 

functions and outputs, or learning directly from interactions with environments. 
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5.4 Planning Agent Design 

The planning function provides the mechanisms that construct the actions needed to achieve 

goals and objectives [100]. In this design, Agent_Planning selects optimal actions and 

determines the action plan according to the received optimal policy from Agent_Analysis. An 

update of the optimal policy with the action plan is sent back to Agent_Analysis for references 

and the action plan is sent to Agent_Execution for implementation. Thus, the action plan 

represented by orchestrated steps is generated from Agent_Planning, governed by optimal 

policies computed from Agent_Analysis or Agent_Self-Learning and described in 

Agent_Knowledge, and finally executed through Agent_Execution, in order to adapt the system 

from current state to desired state. Consider the scenario of a robotic arm sorting blocks into bins 

described previously in Section 2.1 (Figure 2-1). Agent_Planning works in complex situations 

where the regular action plan needs to be adapted. For example, a bigger black block comes for 

the robotic arm. As monitored engineering features (e.g., dimension and mass) of objects have 

changed, Agent_Planning has to provide an adapted action plan according to Agent_Analysis by 

considering changes of some types of parameters (e.g., holding force and opening angle of the 

gripper). The other case is with large monitoring data of the same type of black block, 

Agent_Planning will update the regular action plan according to Agent_Self-Learning. 

In the Agent_Planning data model (Figure 5-4), the PlanningAgent class implements 

methods receiveOptimalPolicy and updateOptimalPolicy to communicate with the AnalysisAgent 

class, and the method sendActionPlan to communicate with the ExecutionAgent class. The 

updateOptimalPolicy method provides feedbacks to the AnalysisAgent class to recompute 

optimal policies or for references of the next same situation. The PlanningAgent class 

implements the PlanningDecision interface to decide if the computed action in the optimal 
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policy is really optimal for execution, then updates the optimal policy by replacing the computed 

action with the optimal action, and finally sends the action plan to the ExecutionAgent class. The 

PlanningDecision interface maintains optimal planning decisions with executable state-action 

pairs compared to computed optimal policies recommended by the AnalysisAgent class. 

<<interface>>

PlanningDecision

attributePlanningDecision:

methodPlanningDecision()

  selectOptimalAction(currentState)

  determineActionPlan(optimalAction)

PlanningAgent

(Agent_Planning)

attributePlanning:

methodPlanning()

  sendActionPlan(optimalAction)

  receiveOptimalPolicy(currentState, computedAction)

  updateOptimalPolicy(currentState, optimalAction)

 

Figure 5-4: The Agent_Planning data model 
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5.5 Execution Agent Design 

The execution function provides the mechanisms that control the execution of a plan with 

considerations for dynamic updates [100]. In this design, Agent_Execution directly interacts with 

actuators and carries out actions or action plans on systems according to results from 

Agent_Analysis or Agent_Planning. Different situations are identified at the system level. One is 

the simple situation with normal operations, Agent_Execution receives optimal actions from and 

sends back updates to Agent_Analysis. In normal operations, self-optimization happens for 

improving and optimizing system performance and operations. The other is the complex 

situation with abnormal operations, Agent_Execution receives action plans from Agent_Planning. 

In abnormal operations, if the situation is unrecoverable, Agent_Execution performs action plans 

for self-protection; if the situation is recoverable, Agent_Execution performs action plans for 

self-healing or self-optimization. Self-configuration can happen in any of the above situations 

and is required for system reconfiguration. 

In the Agent_Execution data model (Figure 5-5), the ExecutionAgent class implements 

the method receiveActionPlan to communicate with the AnalysisAgent class or the 

PlanningAgent class, and the method performActionPlan is realized through the 

SelfManageableService class. The SelfManageableService class is aggregated by classes that 

describe its service types to realize system level self-manageable behaviours. For example, 

classes DeviceManagement and TaskManagement are designed for management of devices and 

tasks to perform action plans on devices and tasks. These classes are realized or implemented 

through different interfaces. For example, interfaces ParameterSerivce and LifecycleService are 

collections of desired behaviours or operations offered for classes DeviceManagement and 
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TaskManagement to use. Classes DeviceManagement and TaskManagement may have one or 

more types of devices and tasks, and in each type one or more objects may be instantiated.   

1..1 1..1

SelfManageableService

attributeSelfManageableService:

methodSelfManageableService()

DeviceManagement

attributeDeviceManagement:

methodDeviceManagement()

TaskManagement

attributeTaskManagement: 

methodTaskManagement()

<<interface>>

ParameterService

attributeParameterService:

methodParameterService()

<<interface>>

LifecycleService

attributeLifecycleService: 

methodLifecycleService()

ExecutionAgent

(Agent_Execution)

attributeExecution:

methodExecution()

  receiveActionPlan(optimalAction)

  performActionPlan(optimalAction) 1..1

1..*

  listSelfManageableServiceType:

1..*

 

Figure 5-5: The Agent_Execution data model 
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5.6 Knowledge Agent Design 

The knowledge source is an implementation of a set of information required to realize system 

functionalities [100]. In this design, Agent_Knowledge maintains data sets, information centers, 

or knowledge repositories, providing support to and receiving updates from other agents or 

entities. Agent_Knowledge either directly manages all sources of desired data or indirectly 

cooperates with other databases to support the functioning of the multi-agent computing model.  

In the Agent_Knowledge data model (Figure 5-6), the KnowledgeAgent class has three 

types of knowledge including SelfRelatedKnowledge, ProblemSolvingKnowledge, and 

ServiceProvidingKnowledge. They all have abstract attributes (e.g., types of knowledge) and 

methods (e.g., provide support and update database of knowledge). The SelfRelatedKnowledge 

class mainly describes the operating environment and the system engineering properties, and the 

real-time operation behaviours. It’s all about the system itself, its operations, and the operating 

environment, which is taken care of by Agent_Monitoring. The ProblemSolvingKnowledge class 

provides goals, policies, rules, models, etc. which are directly in support of problem-solving 

tasks in Agent_Analysis and Agent_Planning. In general, goals describe what is desired, or the 

best to be envisioned; policies describe how to achieve it, or optimal actions that can be 

performed for state transition; rules describe actions to be taken under verified conditions for 

monitored events; models describe representations of more complex cases that can provide 

possible solutions to those cases [100], [138]. The ServiceProvidingKnowledge class serves the 

role in Agent_Execution to provide desired services in response to request for system adaptation. 

Certain kinds of services include parameter services (e.g., adjust the frequency of a sensor node 

transceiver to transmit and receive sensory data), life-cycle services (e.g., start, stop, or remove a 

sensor node in the network), etc.  
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1..1

1..1

1..1

1..1

1..11..1

SelfRelatedKnowledge

attributeSelfRelatedKnowledge:

methodSelfRelatedKnowledge()

ProblemSolvingKnowledge

attributeProblemSolvingKnowledge:

methodProblemSolvingKnowledge()

ServiceProvidingKnowledge

attributeServiceProvidingKnowledge:

methodServiceProvidingKnowledge()

KnowledgeAgent

(Agent_Knowledge)

attributeKnowledge:

methodKnowledge()

  provideKnowledgeSupport()

  updateKnowledgeDatabase()

  listKnowledgeType:
  listProblemSolvingKnowledgeType:

  listSelfRelatedKnowledgeType:

  listServiceProvidingKnowledgeType:

 

Figure 5-6: The Agent_Knowledge data model 
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5.7 Summary 

In this chapter, the architecture modelling framework for the high-level cyber module was 

proposed. The high-level cyber module design deploys autonomic computing reference 

architecture into the modelling framework with the implementation of multi-agent modelling 

techniques. It is designed as multi-agent computing model consisting of Monitoring Agent, 

Analysis Agent, Self-Learning Agent, Planning Agent, Execution Agent, and Knowledge Agent. 

The design results in a new computing module for high-level muti-agent based automation 

architectures, aiming at achieving run-time distributed intelligence in system design and module 

reconfiguration.  
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Chapter Six: Low-Level Physical Module Architecture Modelling 

6.1 Introduction 

The low-level self-manageable architecture design shown in Figure 6-1 deploys autonomic 

computing self-managing properties into the modelling framework with the implementation of 

IEC 61499 FB modelling techniques. The key system self-managing properties envisioned by 

autonomic computing are self-configuration, self-healing, self-optimization, and self-protection. 

For the architecture implementation, the IEC 61499 FB modelling technique is applied by using 

object-oriented and event-driven function blocks to realize real-time adaption of automation 

logic and control algorithms (i.e., IEC 61499 Function Block Model in Figure 6-1) and the multi-

agent modelling technique is used by embedding the multi-agent system into IEC 61499 FBs to 

support self-management capabilities of the low-level system architecture (i.e., Self-Manageable 

Service Model in Figure 6-1). The key feature of this proposed self-manageable architecture 

design is the separation of the self-manageable service execution from the control application 

execution. More specifically, one execution path is responsible for control applications (built as 

IEC 61499 FBs for control purposes) and a second execution path is responsible for self-

manageable services (designed as embedded multi-agent models for system configuration, 

optimization, healing, and protection purposes). The design results in a new agent-embedded 

design pattern for modelling IEC 61499 FB based control solutions that are capable of self-

management in real-time adaptation. 

In this chapter, an overview of IEC 61499 reference architecture with exiting design 

patterns will be discussed, and then the proposed hybrid model with agent-embedded design 
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pattern is introduced. A self-manageable system programed in IEC 61499 is expected to be 

modelled by applying both existing and proposed design patterns. 

Device_X Device_Y Device_Z

Application

Communication Network

Low-Level Physical Module 

(Agent Embedded IEC 61499 FB Model)

High-Level Cyber Module

(Multi-Agent MAPLE-K Model)

Manageability Interfaces

IEC 61499 Function Block Model 

for Control Application Execution

Self-Manageable Service Model 

for Service Agent Execution

Change Detected

Service Activated

Quick Response

Real-time Adaption

FB FB FB

Agent

_SMS

Agent

_SX

 

Figure 6-1: The proposed low-level architecture modelling framework   
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6.2 Developing Low-level Control Systems in IEC 61499 Function Blocks 

6.2.1 IEC 61499 Reference Architecture 

Figure 6-2 provides an overview of the IEC 61499 reference architecture [6]. A function block is 

an object-oriented modelling element with event-driven execution. An application model (Figure 

6-2a) is defined as a network of interconnected FBs linked by event/data flows and distributed 

over resources and devices. A resource model (Figure 6-2b) is defined to support the execution 

of one or more application fragments. A device model (Figure 6-2c) is defined to support one or 

more resources to exchange data through interface services internally (i.e., the process interface 

to enable interaction via input/output points in local devices) and externally (i.e., the 

communication interface to enable interaction via networks with resources in remote devices). A 

system model (Figure 6-2d) is a collection of interconnected devices interacting with each other 

through communication networks. 

(b) Resource Model

Communication Interface

Process Interface

Scheduling Function

SIFB1 FB SIFB2

(a) Application Model

FB1 FB2 FB3

Event Flow

Data Flow

(d) System Model

Device X Device Y Device Z

Application

Communication NetworkCommunication Interface

Process Interface

Resource A

(c) Device Model

Resource B Resource C

Application

 

Figure 6-2: The IEC 61499 reference architecture 
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A typical system programmed under the IEC 61499 reference architecture is designed as: 

a) the control logic built by function blocks as applications, and b) physical devices 

encapsulating required resources for implementation. In the IEC 61499 FB data model (Figure 6-

3), classes System, Device, Resource, Application are main entities of the model. Component 

encapsulation is realized through CFBs (designed and implemented as a physical network of FB 

instances) and SubApps (designed as a logical network of FB types and then implemented by FB 

instantiation). Interface declaration is achieved by SIFBs (encapsulation of FB interaction with 

external services) and adapters (encapsulation of FB interaction with internal services). SIFBs 

are implemented as a pair of application-initiated requester remaining passive until receiving 

input events by the application, and resource-initiated responder sending output events to act on 

the device (e.g., design patterns publish/subscribe, client/server). Adapters are realized through a 

pair of plug to group required interfaces on the high-level FB side and socket to group provided 

interfaces on the low-level FB side. 
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SubApp Adapter

FBGrouping

AdapterPlug

AdapterSocket

SIFBRequester

SIFBResponder

System Device Resource

Application

1..1 1..*

1..*1..*1..1 1..1

1..11..11..1

1..*

FBType

BFB CFB SIFB

1..* 1..1 0..*0..10..1

0..*

1..*1..1
1..1

1..*

 

Figure 6-3: The IEC 61499 function block class diagram 

6.2.2 Interface Declaration Model 

A. IEC 61499 SIFB Models 

SIFBs represent the interfaces to services provided by managed components of low-level 

hardware systems so that the application deployed to several devices can get access to 

inputs/outputs of and communicate with managed components [6]. That means SIFBs are 

activated not only by the input events but also by the managed components. Two types of SIFBs 

are defined as a pair (Figure 6-4): a) SIFB requester, an application-initiated type which remains 

passive until receiving input events by the application; b) SIFB responder, a resource-initiated 
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type which sends output events to act on the device [6]. SIFBs are one type of FBs and their 

dynamic behaviours are defined as service sequence diagrams as shown in Figure 6-4. The 

difference of these two types is in the data transfer part, in which the type depends on either 

applications or resources trig the data transfer (the green part in Figure 6-4 and Figure 6-5). 
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Service Initiation
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Service Termination

EI_1(+)

DI_1

EO_1(+)

DO_1

EI_2,  , EI_m(+)

DI_2,  , DI_p

EI_1(-)

EO_2,  , EO_n(+)

DO_2,  , DO_q

EO_1(-)

DO_1

DI_1

 

Figure 6-4: IEC 61499 SIFB requester/responder models 

IEC 61499 SIFBs are used to access to hardware systems (e.g., devices, network 

segments) which BFBs and CFBs cannot. Two SIFB communication patterns are designed for 

low-level physical module architecture modelling (Figure 6-5): the publish/subscribe model for 
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unidirectional communication (the red part in Figure 6-5) and the client/server model for 

bidirectional communication (the blue part in Figure 6-5) [6]. The publish/subscribe model is 

based on the n-to-n architecture in which one publisher can send messages to one or more 

subscribers and one subscriber can receive messages from one or more publishers. The inputs of 

the publish SIFB match the outputs of the subscribe SIFB. The client/server model is based on 

the n-to-1 architecture in which one or more clients communicate with one server in both 

sending and receiving messages. The inputs of the client SIFB match the outputs of the server 

SIFB and the outputs of the client SIFB match the inputs of the server SIFB. 

Requester Responder

SIFB 
requester

REQ

INIT INITO

CNF

QI

SD_1

QO

RD_n

PARAMS

... ...

SD_m

STATUS

RD_1

EVENT

EVENT

BOOL

ANY

ANY

ANY

EVENT

EVENT

BOOL

ANY

ANY

ANY

SIFB 
responder

RSP

INIT INITO

IND

QI

SD_1

QO

RD_m

PARAMS

... ...

SD_n

STATUS

RD_1

EVENT

EVENT

BOOL

ANY

ANY

ANY

EVENT

EVENT

BOOL

ANY

ANY

ANY

Publish/Subscribe

Client/Server

Service 
Sequence

Service 
Sequence

T

Application ApplicationResource Resource

INIT(+)

PARAMS

INITO(+)

STATUS

REQ(+)

SD_1,  , SD_m

INIT(-)

CNF(+)

RD_1,  , RD_n

INITO(-)

STATUS

Service Initiation

Data Transfer

Service Termination

Service Initiation

Data Transfer

Service Termination

INIT(+)

PARAMS

INITO(+)

STATUS

RSP(+)

SD_1,  , SD_n

INIT(-)

IND(+)

RD_1,  , RD_m

INITO(-)

STATUS

PARAMSPARAMS

 

Figure 6-5: Communication patterns of IEC 61499 SIFB requester/responder models 
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For example, Figure 6-6 describes a simple control loop where the application is 

deployed into two devices. As sensors and actuators interact with managed components and/or 

operating environments, SIFBs are required to program the control application to communicate 

with those external services. This example can be seen as an abstraction of several scenarios. For 

example, the previously described scenario of a robotic arm sorting blocks into bins (Figure 2-1), 

the attached 3D sensor detects the object position, shapes, colors, etc. and transmits data to the 

robot control which controls the end gripper to perform desired actions. 

Device X Device Y Device Z

Application

Communication Network

Managed Components

Sensor

REQ CNF

StateIn StateOut

INIT INITO

SIFB_publish

REQ CNF

SentData1

SentData2

Control

RSP IND

DataOut1

INIT INITO

DataIn1

DataIn2 DataOut2

SIFB_subscribe

RSP IND

ReceivedData1

ReceivedData2

Actuator

ParamIn1

REQ CNF

ParamIn2

ParamOut

 

Figure 6-6: An example of IEC 61499 SIFB models 

B. IEC 61499 Adapter Models 

The IEC 61499 adapter models are defined for encapsulation of FB interaction with internal 

services which is different from the SIFB models for external services [6]. Two types of adapters 

are defined as a pair (Figure 6-7): a) adapter plug, to group required interfaces on the high-level 

FB side; b) adapter socket, to group provided interfaces on the low-level FB side [6]. Input 

interfaces of the plug are output interfaces of the socket and output interfaces of the plug are 
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input interfaces of the socket. Figure 6-7 shows the static structure of the adapter in a form of FB 

and their dynamic behaviours are defined as service sequence diagrams as shown between them.  

Adapter
plug

EI EO

DI DO

Adapter
socket

EO EI

DIDO

EI

DI

Plug Socket
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DI

DO

DO
EO

DO

 

Figure 6-7: IEC 61499 adapter plug/socket models 

The following example shows how IEC 61499 adapter models are applied in the low-

level physical module architecture modelling. Three types of sensor nodes (i.e., sink node, 

anchor node, and mobile node) were designed for Agent_Monitoring in Section 5.2. Figure 6-8 

shows a generic form of IEC 61499 FB implementation without adapters for sensor nodes. Two 

clusters (i.e., AnchorNodeCluster and MobileNodelCluster) are designed to manage clustered 

anchor nodes and mobile nodes, respectively. Different types of sensor nodes (i.e., 

AnchorNode1, AnchorNode2, MobileNodel1, MobileNode2) in each cluster are designed to 

communicate with the sink node (i.e., SinkNode). FBs are linked with event communications in 

solid blue lines and data communications in dash red lines. As a consequence, without applying 

adapters, the design of such a simple sensor network system could become very complicated 

with so many unclear communicating connections. Furthermore, if dynamically adding more 

sensor nodes, e.g., MobileNode3, the MobileNodelCluster has to be redesigned to provide 

available interfaces to the added sensor nodes. That is absolutely not acceptable for industrial 

systems to be self-manageable, especially these sensor nodes can be dynamically reconfigured. 

In Figure 6-9, two adapters for two clusters are designed as an example: ACAdapter_plug and 
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ACAdapter_socket, MCAdapter_plug and MCAdapter_socket. The IEC 61499 FB 

implementation with adapters is shown in Figure 6-10. The method to design adapters usually 

starts from the high-level FB side to group required interfaces as a plug and then the low-level 

FB side to group provided interfaces as a socket. Both are denoted with “>>” and its name. 

Compared with the same application in Figure 6-8, the system architecture is much easier to 

understand. More importantly, the control algorithms will be independent from any particular 

instances and therefore dynamically reconfiguring sensor nodes becomes possible if they share 

the same type of adapters. For example, several autonomous mobile robots are added to the 

scenario described previously in Section 2.1 (Figure 2-1) to be responsible for carrying sorting 

bins to desired areas (Figure 7-1), and these mobile robots or untethered vehicles can share the 

same mobile node adapters.  
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Figure 6-8: IEC 61499 FB application without adapters 
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Figure 6-9: IEC 61499 adapter design 
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Figure 6-10: IEC 61499 FB application with adapters 
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6.2.3 Component Encapsulation Model 

There are two ways to encapsulate FBs to build applications, either through CFBs or SubApps. 

IEC 61499 CFB is defined as a network of FB instances through event and data connections [6]. 

IEC 61499 SubApp is a means to group application components in the top-down/bottom-up 

manner and share their common public interfaces [6]. Compared to typed CFB models which 

new types are created during each adaptation of applications, the IEC 61499 SubApp model 

supports application adaptation on all hierarchic levels for reuse and reconfiguration which is 

much faster for application development and structure modelling. 

To continue sensor node FB models discussed in Section 6.2.2 and go into some details 

about these two models applied in the control application programming. Figure 6-11 shows the 

example. For both, there are three interconnected component FB types (i.e., SinkNode, 

AnchorNodeCluster, and MobileNodeCluster) to be encapsulated as a CFB or SubApp for the 

sensor node, and these component FB types can be instantiated as multiple instances. The 

difference is: a) the CFB_SensorNode1 is physically a network of instances of three component 

FB types (i.e., sinknode1, anchornodecluster1, and mobilenodecluster1) which means the 

internal structure cannot be changed after the CFB is developed; b) the SubApp_SensorNode is 

logically a network of desired FB types which means it can be an empty one in a top-down 

design or the same as the CFB in a bottom-up design. The advantage of SubApps over CFBs is 

in dynamical configuration of sensor nodes in which SubApps can be scalable, adaptable, and 

distributable.  
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Figure 6-11: Comparison of IEC 61499 CFB and SubApp models 

6.2.4 IEC 61499 Application Model Design 

IEC 61499 application model design is the core in system design. As stated before, the system is 

designed as two parts, the control logic built by function blocks as applications and the physical 

devices encapsulating required resources for application implementation. In this section, how 

various FB models mentioned in previous sections are used in the application model design will 

be discussed. For example, the sensor-control-actuator FB model previously discussed in Section 

6.2.2. Figure 6-12 shows the example in a generic form. From a physical view, the sensor-

actuator represents the hardware part (i.e., 3D sensor attached to the robotic arm) and the control 

represents the software part (i.e., control application). However, logically the data/events flow 

from the sensor to the control and then to the actuator (i.e., the attached 3D sensor detects the 

object position, shapes, colors, etc. and transmits data to the robot control which controls the end 

gripper to perform desired actions). Actually, a good application-oriented design is to separate 

each part into different devices, model each part as SubApps, and group common interfaces as 
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adapters. SIFBs are used since each part are mapped to networks for communication. Compared 

to the one in Figure 6-6 which no adapter is designed and the sensor and the control are deployed 

into one device, each part in the new design is loosely coupled, can be dynamically configured, 

and is able to share the same type of interfaces.  
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Figure 6-12: Design of an IEC 61499 application model for distributed automation  
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6.3 Self-Manageable Service Model for Architecture Design in IEC 61499 

6.3.1 Self-Manageable Service Model 

In the proposed low-level architecture modelling framework (Figure 6-13), the self-manageable 

service model is design as a multi-agent system embedded in IEC 61499 FBs. Two new agent 

types are designed: a) the self-manageable service execution agent Agent_SMS; b) self-

manageable agents including Agent_SC, Agent_SO, Agent_SH, and Agent_SP. In general, 

Agent_SMS is mainly responsible for monitoring system states and responding to changes by 

deciding the adequate behaviours to perform (i.e., activate one or more self-manageable agents 

and execute self-manageable services). The second type of agent is primary concerned with 

generating self-manageable service action plans upon requests: a) Agent_SC for 

configuring/reconfiguring functions, structures, and process to adapt to dynamical changes; b) 

Agent_SO for improving and optimizing performance and operations with respect to predefined 

goals; c) Agent_SH for detecting and recovering from disturbances and faults to maximize 

system availability; and d) Agent_SP for identifying and protecting against safety and security 

attacks to preserve system integrity.  

A detailed procedure is shown in Table 6-1 for the implementation of the self-

manageable service model. An example of this process is illustrated in Figure 6-13. The self-

configuration process begins with a single change request that results in the old FB_S being 

replaced by two new FB_S1 and FB_S2 in the Application residing in Device_Y and Device_Z. 

The self-manageable service is activated as Agent_SMS detects the change request and 

communicates to Agent_SC to request the self-configuration service. Agent_SC generates the 

action plan and sends it back to Agent_SMS for execution on the application. 
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Figure 6-13: The low-level self-manageable architecture modelling framework 

Table 6-1: Algorithm for the proposed self-manageable service model 

Algorithm 2: the self-manageable service model 

01 Input: Current State //control application real-time event/data 

02 Output: Action Plan // control application self-manageable services 

03 Initialize Agent_SMS 

04  Read currentSate to detect changes  

05  //rea-time control application execution event/data 

06  Call SelfManageableAgents to request self-manageable agents for response 

07   Case normal operations of 

08   //no changes or changes in the reasonable range 

09    Condition: Execute Agent_SO for optimization  

10                            Execute Agent_SC for reconfiguration 

11   Case abnormal operations of 

12   //changes affecting predefined system capabilities 

13    Condition Recoverable: Execute Agent_SH for healing 

14                                                 Execute Agent_SC for reconfiguration 

15    Condition Unrecoverable: Execute Agent_SP for protection 

16                                                     Execute Agent_SC for reconfiguration 

17  Return actionPlan generated by self-manageable agents  

18  Call IEC61499FunctionBlockSystem to execute self-manageable services for adaptation 

19   Start/Stop/Update IEC 61499 FB System 

20   Create/Modify/Delete IEC 61499 FB System Element 

21   //including device, resource, application, function block, event/data 
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6.3.2 Self-Manageable Service Execution Agent Design 

Agent_SMS plays a key role in requesting one or more self-manageable agents to respond to 

changes and executing self-manageable services provided by self-manageable agents to adapt 

IEC 61499 FB based systems. In Figure 6-14, the Agent_SMS class implements two interfaces 

(i.e., the SelfManageableAgents interface and the IEC61499FunctionBlockSystem interface) to 

realize its predefined functions. Typical attributes of the Agent_SMS class include previousState, 

executedAction, currentState, plannedAction, and computedAction. Typical methods are 

receiveCurrentState, initializeSMAgent, and executeAgentSMS.  

Self-ManageableServiceExecutionAgent 

(Agent_SMS)

attributeAgentSMS:

methodAgentSMS()

  previousState: State

  executedAction: Action

  plannedAction: Action

  currentState: State

  executeAgentSMS(currentState, computedAction)

  initializeSMAgent(currentState)

  computedAction: Action

  receiveCurrentState(currentState)

State

attributeState:

methodState()

Action

attributeAction:

methodAction()

<<interface>>

Self-ManageableAgents 

attributeSelfManageableAgents:

methodSelfManageableAgents()

  sendReqDecision(currentState, changeRequest)

  selectSMAgents(currentState, changeRequest)

  listSelfManageableAgentsType:

  receiveChangeRequest(currentState)

1..1

1..1

1..1

1..1
<<interface>>

IEC61499FunctionBlockSystem 

attributeIEC61499FBSystem:

methodIEC61499FBSystem()

  create/modify/deleteIEC61499FBSystemElement()

  listIEC61499FBSystemElement:

  start/stop/updateIEC61499FBSystem()

 

Figure 6-14: The SelfManageableServiceExecutionAgent data model 

6.3.3 Self-Manageable Agents Interface Design 

The SelfManageableAgents interface in Figure 6-15 provides access to communicate with self-

manageable agents for self-manageable services in the low-level physical module. One typical 

attribute is the list of self-manageable agent types (i.e., Agent_SC, Agent_SO, Agent_SH, and 
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Agent_SP). Each agent is responsible for their own tasks. Typical methods are 

receiveChangeRequest to get the change request from Agent_SMS, selectSMAgents to choose 

which agent to perform the self-manageable service according to currentState and 

changeRequest, and sendReqDecision to ask the selected agent to perform required tasks. For 

each self-manageable agent class, typical methods include receiving the request decision from 

the SelfManageableAgents interface, generating the self-manageable service action plan, and 

returning the plan to Agent_SMS for execution. 

<<interface>>

Self-ManageableAgents 

attributeSelfManageableAgents:

methodSelfManageableAgents()

  sendReqDecision(currentState, changeRequest)

  selectSMAgents(currentState, changeRequest)

  listSelfManageableAgentsType:

  receiveChangeRequest(currentState)

Self-ConfigurationAgent 

(Agent_SC)

attributeAgentSC:

methodAgentSC()

 returnAgentSCResult(currentState,computedAction)

  executeAgentSC(currentState, changeRequest)

  receiveReqDecision(currentState, changeRequest)

Self-OptimizationAgent 

(Agent_SO)

attributeAgentSO:

methodAgentSO()

 returnAgentSOResult(currentState,computedAction)

  executeAgentSO(currentState, changeRequest)

  receiveReqDecision(currentState, changeRequest)

Self-HealingAgent 

(Agent_SH)

attributeAgentSH:

methodAgentSH()

 returnAgentSHResult(currentState,computedAction)

  executeAgentSH(currentState, changeRequest)

  receiveReqDecision(currentState, changeRequest)

Self-ProtectionAgent 

(Agent_SP)

attributeAgentSP:

methodAgentSP()

 returnAgentSPResult(currentState,computedAction)

  executeAgentSP(currentState, changeRequest)

  receiveReqDecision(currentState, changeRequest)

1..1

1..1

1..1

1..1

1..1

1..1

 

Figure 6-15: The SelfManageableAgents data model 

6.3.4 IEC 61499 Function Block System Interface Design 

The IEC61499FunctionBlockSystem interface in Figure 6-16 provides access to executing self-

manageable services to adapt IEC 61499 FB based systems. The typical attribute is a list of 

system elements, e.g., devices, resources, applications, and FBs. Typical methods are 
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start/stop/updateIEC61499FBSystem and create/modify/deleteIEC61499FBSystemElement. The 

classes Device, Resource, Application, FunctionBlock with Event/Data are main entities that 

Agent_SMS can execute the self-manageable service action plan on. In the Device class, typical 

methods include add/remove/resetDevice and start/stop/killDevice. In the Resource class, typical 

methods include create/modify/deleteResource and start/stop/killResource. For the Application 

class, typical methods are create/modify/deleteApplication and start/stop/killApplication. For the 

EventData class, typical methods are read/write/resetEDValue and 

create/modify/deleteEDConnection. For the FucntionBlock class, typical attributes are FBType 

(e.g., BFB, CFB, and SIFB), FBInstance, FBConnection, and FBGrouping (e.g., plug and socket 

adapters), and typical methods are to create, modify, and delete those attributes.  

Resource

attributeResource:

methodResource()

  create/modify/deleteResource()

  start/stop/killResource()

EventData

attributeEventData:

methodEventData()

  read/write/resetEDValue()

  create/modify/deleteEDConnection()

Application

attributeApplication:

methodApplication()

  create/modify/deleteApplication()

  start/stop/killApplication()

Device

attributeDevice:

methodApplication()

  add/remove/resetDevice()

  start/stop/killDevice()

FunctionBlock

attributeFunctionBlock:

methodFunctionBlock()

  create/modify/deleteFBType()

  create/modify/deleteFBGrouping()

  listFBType:

  listFBInstance:

  listFBConnection:

  create/modify/deleteFBInstance()

  listFBGrouping:

  create/modify/deleteFBConnection()

1..1 1..*

<<interface>>

IEC61499FunctionBlockSystem 

attributeIEC61499FBSystem:

methodIEC61499FBSystem()

  create/modify/deleteIEC61499FBSystemElement()

  listIEC61499FBSystemElement:

  start/stop/updateIEC61499FBSystem()

1..* 1..1

1..*

1..*

1..*

1..*

1..*1..1

1..*

1..1

1..*

1..1

 

Figure 6-16: The IEC61499FunctionBlockSystem data model 
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6.3.5 Agent-Embedded Function Block Design Pattern 

An agent-embedded IEC 61499 FB model is designed to support self-management capabilities of 

the low-level physical module. The key feature of this proposed model is the separation of the 

self-manageable service execution from the control application execution. More specifically, one 

execution path is responsible for control applications (built as IEC 61499 FBs for control 

purposes) and a second execution path is responsible for self-manageable services (designed as 

embedded multi-agent models for system configuration, optimization, healing, and protection 

purposes). 

The agent-embedded function block (Figure 6-17a) is proposed as a new design pattern 

for IEC 61499 to build self-manageable control solutions. The basic FB type is used to create a 

new type called Agent_X FB, including Agent_SMS FB, Agent_SC FB, Agent_SO FB, Agent_SH 

FB, and Agent_SP FB. Agent_SMS FB has at least two key state/action pairs in its execution 

control chart: a) REQ for requesting one or more self-manageable agents to respond to changes 

(implementing the SelfManageableAgents interface); b) EXE for executing self-manageable 

services provided by self-manageable agents to adapt FB based control systems (implementing 

the IEC61499FunctionBlockSystem interface). Self-manageable agents embedded in IEC 61499 

FBs are either initialized by management events to be active for predefined tasks or deactivated 

in a sleep state. With this design pattern acting as meta-application for management purposes, the 

new agent-embedded FB types can be introduced to build self-manageable control applications 

(Figure 6-17b). In practice, in order for one IEC 61499 FB based application to be self-

manageable, the Agent_SMS FB type is required with one or more self-manageable agents for 

different tasks (i.e., configuration, optimization, healing, or protection). 
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(a) Agent-Embedded FB Type (b) Application Design with Agent-Embedded FBs  

Figure 6-17: The agent-embedded IEC 61499 FB model 

The design pattern of the agent-embedded FB module developed in IEC 61499 FB 

modelling tool Eclipse 4diac is shown in Figure 6-18. The module is designed as a template by 

using IEC 61499 sub-application type (i.e., SubApp) and the inside is designed as a network of 

agent-embedded FBs Agent_SMS, Agent_SC, Agent_SO, Agent_SH, and Agent_SP by using IEC 

61499 basic FB type (i.e., BFB).  
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Figure 6-18: Interface and FB network design of the agent-embedded FB module 

The interaction between the module and the external segments through the 

communication network (Figure 6-2d) are achieved by using the default IEC 61499 SIFB type 

(e.g., publish/subscribe, client/server). In Figure 6-19a, the internal agent-agent communication 

interface is designed as an AgentInterface adapter pair plug and socket for encapsulation of FB 

interaction with internal services by using IEC 61499 adapter type (i.e., adapter). Therefore, the 



 

98 

agent-embedded FB module in Figure 6-18 can also be designed with adapters in Figure 6-19b 

for the benefits discussed in Section 6.2. 

(a) Agent Communication Interface Adapter Design

(b) FB Network of Agent-Embedded FB Module with Adapters  

Figure 6-19: FB network design of the agent-embedded FB module with adapters  
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6.4 Summary 

In this chapter, the architecture modelling framework for the low-level physical module was 

proposed. The low-level physical module design deploys autonomic computing self-managing 

properties into the modelling framework with the implementation of IEC 61499 FB modelling 

techniques. It is designed as agent-embedded IEC 61499 FB model with Self-Manageable 

Service Execution Agent, Self-Configuration Agent, Self-Healing Agent, Self-Optimization Agent, 

and Self-Protection Agent. The design results in a new design pattern to separate the execution of 

control applications and self-manageable services for low-level FB modelled automation 

solutions, aiming at realizing real-time adaption of automation logic and control algorithms. 
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Chapter Seven: Architecture Modelling Evaluation 

7.1 Introduction 

The major research focus in this thesis is on the design methods for system architecture 

modelling that enable industrial automation and control systems to be distributed and intelligent. 

Central to this work is a layered architecture design that focuses on the integration of multi-agent 

modelling and IEC 61499 FB modelling. In the proposed architecture modelling framework, a 

multi-agent computing model is designed for the high-level architecture with the aim of 

providing system intelligence by communicating and computing cores of cyber modules. An 

agent-embedded IEC 61499 FB model is developed for the low-level architecture in order to 

offer real-time adaptation by distributed and intelligent control of physical modules. It aims to 

enable systems to automatically discover alternative solutions, flexibly coordinate reconfigurable 

modules, and actively deploy corresponding functions, to quickly respond to frequent changes 

and intelligently adapt to evolving requirements in dynamic environments. 

In this chapter, scenarios are first provided to illustrate the proposed modelling 

framework. Then a multi-agent simulation model based on the agent modelling tool NetLogo is 

developed and an experimental testbed on the Jetson Nano and Raspberry Pi platforms is 

designed for demonstration and evaluation. Finally, the performance is theoretically analyzed to 

evaluate the proposed architecture modelling framework. 
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7.2 Illustrative Example Demonstration 

7.2.1 Typical Industrial Scenario 

A simplified but typical scenario was described in Section 2.1 (Figure 2-1) and was enriched 

throughout the following chapters to explain the proposed architecture modelling framework. In 

this section, this typical industrial scenario will be used to wrap up the design of multi-layer 

automation architectures that aims to enable real-time adaptation at the device level and run-time 

intelligence throughout the whole system. Figure 7-1 shows the extended industrial automation 

scenario in which the system is designed to sort objects into corresponding bins with a group of 

autonomous mobile robots to deliver objects to the conveyor system and to carry bins back to 

storage areas. A detailed description is shown as follows: 

• a group of autonomous mobile robots are designed to be able to deliver objects to the 

conveyor for sorting; 

• the programmable robotic arm can rotate and translate to grasp and place objects from the 

conveyor into corresponding bins on the fly; 

• the task for the robotic arm is to pick up one type of object from the conveyor and then place 

them into the corresponding type of the bin; 

• the other group of autonomous mobile robots are designed to be able to carry the full bins 

back to storage areas according to the flashing LED lights; 

• the group of autonomous mobile robots are attached with wireless sensor networks for 

understanding the surrounding environment (e.g., localization and navigation); and  

• the system is designed and programmed to achieve its purposes with the help of all other 

necessary software/hardware that are not mentioned here. 
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Figure 7-1: An extended industrial automation scenario 

According to the proposed architecture modelling framework (Figure 5-1 and Figure 6-

1), the system is generally designed as a two-layer architecture model to support real-time 

adaptation at the device level and run-time intelligence throughout the whole system. The high-

level cyber module is designed as a multi-agent computing model consisting of Monitoring 

Agent, Analysis Agent, Self-Learning Agent, Planning Agent, Execution Agent, and Knowledge 

Agent. Multi-agent modelling uses autonomous and cooperative agents to achieve run-time 

intelligence in system design and module reconfiguration. The low-level physical module is 

designed as an agent-embedded IEC 61499 FB model with Self-Manageable Service Execution 

Agent, Self-Configuration Agent, Self-Healing Agent, Self-Optimization Agent, and Self-

Protection Agent. IEC 61499 FB modelling applies object-oriented and event-driven FBs to 

realize real-time adaptation of automation logic and control algorithms.  

7.2.2 High-Level Cyber Module Design 

The high-level cyber module is expected to reside somewhere in the “Cloud” where the whole 

system is managed with enabling techniques for run-time intelligence. 
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Agent_Monitoring. It is designed to collect data on the operating environment properties, 

the system engineering properties, and the real-time operation behaviours of each system 

module, typically through sensors or sensor networks. For the industrial automation scenario 

shown in Figure 7-1, these data can be environmental conditions (e.g., temperature/humidity that 

may affect autonomous mobile robots operating due to battery degradation, or unexpected 

obstacle on the ground that prevents autonomous mobile robots from moving around), 

engineering properties (e.g., moving speed and load capacity of autonomous mobile robots, tear 

or wear on most frequently used parts), and working states (e.g., idle time percentage of 

autonomous mobile robots or the robotic arm and cooperation efficiency between them, if best 

path found each time for autonomous mobile robots, sorting efficiency of the robotic arm). 

Agent_Analysis. It is designed to model system operating situations to understand current 

operation states and to predict future situations. In simple operations, if nothing monitored 

changed by comparing current states with pre-set values, the system will go directly for 

execution as planned. For example, the incoming stream of objects monitored as the same type 

(e.g., black block), the robotic arm will perform sorting as planned. However, in complex 

operations, as monitored states changed, the system has to go through new analysis and planning 

before execution. For example, a simple case is one red block mixed in the stream of black 

blocks and the robotic arm needs to distinguish between them and then sort each into the 

corresponding bins.  

Agent_Self-Learning. It is designed to employ artificial intelligence to support 

Agent_Analysis as traditionally only predefined rules, policies, and goals are considered with 

limited situations. Agent_Self-Learning can either learn primitive skills from sensory data or 

learn from past experience to cope with new tasks or to optimize existing performances. For 
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example, the robotic arm starts working with some predefined knowledge of normal operations 

through training sensory data (e.g., reach, grasp, and place objects). At the beginning of these 

simple situations, Agent_Self-Learning could actively collect data for analysis and build models 

for prediction or optimization (e.g., rotation speed and angle, holding force and opening angle of 

the robotic arm). As enough data is available and robust models are built, Agent_Self-Learning 

could passively receive data for analysis and apply models for prediction or optimization. 

However, for complex situations with no previous experiences available, Agent_Self-Learning 

could actively adjust actions by trial-and-error to achieve the best result (e.g., the robotic arm 

adjusts its holding force and opening angle to catch a bigger and heavier block). Then these 

complex situations become simple situations with available solutions. Agent_Self-Learning is 

key to the cyber module to enable the system to become intelligent to handle dynamic situations 

as not all situations can be considered at the beginning of the system design. 

Agent_Planning. It is designed to determine the optimal action plan with a series of 

actions to achieve goals, generally working in complex situations where the regular action plan 

needs to be adapted. For example, a bigger black block comes for the robotic arm. As monitored 

engineering features (e.g., dimension and mass) of objects have changed, Agent_Planning has to 

provide an adapted action plan according to Agent_Analysis by considering changes of some 

types of parameters (e.g., holding force and opening angle of the gripper). The other case is with 

large monitoring data of the same type of objects, Agent_Planning will update the regular action 

plan according to Agent_Self-Learning. 

Agent_Execution. It is designed to work with actuators to carry out action plans. For 

example, the autonomous mobile robot delivers a bigger and heavier object to the conveyor 

system and at the same time, the robotic arm increases the holding force and opening angle of the 
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gripper to try to catch that object. As monitored states of the object delivered from the 

autonomous mobile robots to the conveyor system changed, the action plan needs to be adapted 

accordingly for execution.  

Agent_Knowledge. It is designed to either directly manage all sources of desired data or 

indirectly cooperate with other databases to support the functioning of the multi-agent computing 

model. For example, the change detected and its corresponding solution generated by the cyber 

module will be stored and accessible to Agent_Knowledge for the future same scenario (e.g., 

irregular objects are shared between the robotic arm and autonomous mobile robots, and the 

specific path for moving irregular objects will also be shared among autonomous mobile robots). 

7.2.3 Low-Level Physical Module Design 

The low-level physical module is expected to be attached to the “Edge” where each automation 

module is programmed with control algorithms capable of real-time adaptation. Considering the 

industrial automation scenario shown in Figure 7-1, the system is developed based on the 

proposed agent-embedded IEC 61499 FB modelled control solutions to support self-management 

capabilities (Figure 6-1). The conveyor section shown in Figure 7-1 is the most critical one of the 

whole conveyor system where a backup motor (the same as the primary motor) is connected to 

this section. In abnormal operations (e.g., change of motors), as requested from the system, 

Agent_SMS can initiate Agent_SH for self-healing or Agent_SP for self-protection. Generally, 

Agent_SH activates the backup motor running plan in a recoverable situation where only the 

primary motor is not working, and Agent_SP gives out warning signals in an unrecoverable 

situation (e.g., the backup motor stops working again because of system damage, or the two 

motor working together due to fake failure of the primary motor). In normal operations (e.g., 

regular operating states), as per the system’s request, Agent_SO can be initiated to provide an 
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optimized service plan for Agent_SMS. For example, the motor speed is reduced due to a variety 

of different objects coming as the robotic arm requires more time to ensure sorting precision, and 

the motor speed can increase a little bit to increase sorting efficiency if same objects coming in a 

period of time. Agent_SC can be initialized in each situation for system reconfiguration.   
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7.3 Multi-Agent Simulation Model 

The simulation of the proposed design can help facilitate understanding of how the system 

designed under the proposed architecture modelling framework will perform when actually being 

implemented. In this section, the simulation model is developed for an automated conveyor 

system by using the multi-agent modelling tool NetLogo to demonstrate the proposed system 

design. NetLogo is a multi-agent programmable modelling environment for the simulation of 

multi-agent systems that involves a large number of agents [183-184]. 

7.3.1 Development of Agent-Based Model  

The automated conveyor system consists of a series of conveyor sections and part storage bins 

that are connected by part diverters (Figure 7-2). Conveyor sections of the same type (main 

sections and entrance/exit sections) are designed to be the same length and to operate at the same 

fixed speed. Part storage bins are designed as the destinations for incoming parts, which could 

also represent part workstations with corresponding re-routing to storage bins and/or conveyor 

sections for more complex simulations. The diverters are controlled by individual diverter 

controllers as highlighted in Figure 7-2. Each of these controllers includes a processor (i.e., an 

IEC 61499 device), an input sensor (e.g., an imaging device to detect the part type), and one or 

more diverter actuators. The objective of the automated conveyor system is to sort parts into 

storage bins based on part types (i.e., each part type is assigned to a unique storage bin). The 

automated conveyor system is also designed with extra part storage bins (i.e., 7 storage bins and 

at most 6 part types) and storage loops for the part types to circulate through the conveyor loop 

in case any disturbance happens (e.g., a new part type or a conveyor section failure). The 

automated conveyor system designed in the experiments could be regarded as part of typical 
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industrial systems, e.g., working together with robotic arms and autonomous mobile robots as 

described before in Figure 7-1. 

 

Figure 7-2: The automated conveyor system 

To simulate reconfigurable automated conveyor systems of the type shown in Figure 7-2, 

the multi-agent simulation model is developed in NetLogo 6.3 as shown in Figure 7-3 (Appendix 

A). The automated conveyor system simulation model allows the user to specify the automated 

conveyor system layout, the number of part types, the initial diverter controller specifications, 

the system processing and agent response delays, the conveyor section failures, and the system 

mean time to failures. In the simulation model (Figure 7-3), conveyor sections are represented by 

white rectangular; diverter sections are represented by yellow squares with directional arrows 

showing the current position of the diverter; storage bins are represented by red squares; input 
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and output part sensors are represented by green squares; parts are represented by boxes with a 

letter and a unique colour assigned to each part type.  

For the experiments in this research, main conveyor sections are designed as 7 part 

spaces long and entrance/exit conveyor sections are designed as 3 part spaces long. The system 

operates at a fixed speed with 1 part space per second or tick. Part arrival times are sampled from 

an exponential distribution based on a mean arrival time and each part is randomly assigned a 

part type that is sampled from a discrete uniform distribution with a range of 1 to n. Parts are 

transported through the system on the conveyor sections and routed to their assigned storage bins 

by the diverter controllers. The part routing policy is determined through two-levels as proposed 

in this thesis (Figure 5-1 and Figure 6-1): high-level cyber module for the overall system (e.g., 

part types [a, b, c, d] to storage bins [1, 2, 6, 3]) and low-level physical module at the execution 

(e.g., part type c re-routed to storage bin 5 due to conveyor section 4 failure or new part type e to 

storage bin 5). The system performance show in Figure 7-3 is measured by average number of 

parts in the system (L), average part arrival time to the system (1/λ), and average wait time spent 

by parts in the system (W), in which the simulation compares favourably with the theoretical 

model by Little’s Law (L = λW) [185]. 

In additional to the automated conveyor system simulation, the agents designed in the 

self-manageable service model (Figure 6-13) and represented by “Function Block” (Figure 7-3) 

are simulated as individual Netlogo agents. Each of the service agents interacts directly with the 

automated conveyor system to monitor its operations and execute self-manageable services (i.e., 

self-configuration, self-optimization, self-healing, and self-protection). These self-manageable 

services are achieved by dynamically updating and changing the global conveyor-sections list 

(i.e., input file to configure conveyor system layouts), part-types list (i.e., part types introduced 
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to the system), diverter-states list (i.e., reconfiguring diverter states), and diverter-connections 

list (i.e., removing/establishing connections between diverters) in the program. The agents 

designed in the high-level MAPLE-K model (Figure 5-1) and represented by “Person” (Figure 7-

3) are simulated as NetLogo agents to demonstrate the integrations among them. Currently, these 

agents are developed for the simulation of the automated conveyor system, and then are further 

required to be designed as external Python procedures. 

 

Figure 7-3: Agent-based simulation model for the automated conveyor system 

To validate the proposed architecture modelling framework, especially the low-level self-

manageable architecture model, a series of three experiments (7 typical tests in Figure 7-4) are 
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performed to test the system self-managing functionality by introducing random disturbances 

(one disturbance per time): a) introduction of a new part type (i.e., increase number-part-types 

from the simulation interface), b) failure of a conveyor section (i.e., select conveyor-section-

failure from the simulation interface), and c) optimizing part routing (i.e., switch optimization-

path on from the simulation interface). As discussed before, each system has its initial design 

with predefined running conditions and adaptation logics. The major advantage of the proposed 

design over the traditional design is that these programmed control solutions are able to be 

improved and enriched intelligently during runtime through self-learning from system running 

conditions and operation histories. It is the same with the simulation experiments, in which the 

system is running with initial conditions while random disturbances are introduced to simulate 

the stochastic nature of real operations. Details are discussed in the following sections. 

Test 6 in Figure 7-10

Agent_SMS

Agent_SP, Agent_SC, Agent_SO, Agent_SH

Test 1 in Figure 7-5

Agent_SMS

 Agent_SC

Test 5 in Figure 7-9

Agent_SMS

Agent_SP, Agent_SC, Agent_SO

Test 4 in Figure 7-8

Agent_SMS

Agent_SP, Agent_SC

Test 7 in Figure 7-11

Agent_SMS

Agent_SO

Test 3 in Figure 7-7

Agent_SMS

Agent_SP

Test 2 in Figure 7-6

Agent_SMS

Agent_SC, Agent_SO

 

Figure 7-4: Typical tests in performed three experiments 
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7.3.2 Introduction of A New Part Type 

The first experiment, the introduction of a new part type, involves tests of the self-configuration 

capability that is considered fundamental for system intelligent reconfiguration. Agent_SC 

initiates the self-configuration process upon receiving a <request: new part type e> message 

from Agent_SMS and maintains the present diverter controller configuration while it processes 

the request. In the case of a new part type introduced, this results in parts of the new type 

circulating around the conveyor loops until the reconfiguration is completed by Agent_SC with 

an <inform: reconfiguration completed> message to Agent_SMS.  

A typical self-configuration scenario (Test 1) is shown in Figure 7-5: an interaction 

between Agent_SMS and Agent_SC in response to a new part type arriving at the automated 

conveyor system. In this test, Agent_SMS is monitoring the operating state of the automated 

conveyor system. When it senses the arrival of a new part type (i.e., system reconfiguration 

required), Agent_SMS sends a message to Agent_SC to initialize the agent and request the 

change, indicating that a new part type e has been introduced to the system (system initially 

running with part types [a, b, c, d]). Agent_SC responds to the request and works on a solution to 

the change. Once the new routing is determined, Agent_SC informs Agent_SMS with the 

reconfiguration plan and Agent_SMS responds to Agent_SC for acknowledgement and executes 

the reconfiguration to the diverter controllers. 
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(a) Agent-Based Model for A New Part Type (b) Agent_SMS and Agent_SC Interaction Diagram  

Figure 7-5: Introduction of a new part type: Test 1 

In Test 1 (Figure 7-5), except storage bins [1, 2, 6, 3] for initial part types [a, b, c, d] 

occupied, several system configurations exist for the new part type e in blue (i.e., increase 

number-part-types from 4 to 5), which means in the simulation the new part type e circulates 

through conveyor loops to find extra storage bins (bins [4, 5, 7] in red circle) automatically 

governed by the proposed design. There are several loops to reach each extra storage bin, e.g.: 

• route 1 conveyor sections [1->2->10->8->18] or else to storage bin 7,  

• route 2 conveyor sections [1->2->3->11->16] or else to storage bin 5, and 

• route 3 conveyor sections [1->2->3->4->5->15] or else to storage bin 4. 

In most cases, the optimal system configuration is required for the new part type if 

possible. In Test 2 (Figure 7-6), once Agent_SC has determined that several system 

configurations are possible, it sends a <request: optimize routing> message to Agent_SO (Figure 

7-6b) for self-optimization. In this case, self-optimization involves finding an optimum routing 

of the new part type to storage bins (e.g., Test 7 in Section 7.3.4 describes one possible self-
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optimization approach). The resulting routing strategy (e.g., red circle route 2 conveyor sections 

[1->2->3->11->16] to storage bin 5) is then used by Agent_SC to execute the diverter controller 

reconfiguration. For the automated conveyor system, this involves updating the execution control 

charts (ECC) of the diverter controller FBs to ensure that parts are diverted to the appropriate 

storage bin or conveyor section based on the upstream conveyor section’s output sensor signal. 

(a) Agent-Based Model for A New Part Type (b) Agent_SMS, Agent_SC, and Agent_SO Interaction Diagram  

Figure 7-6: Introduction of a new part type: Test 2 

7.3.3 Responding to A Conveyor Section Failure 

In this experiment, an equipment failure such as a conveyor section failure is introduced to the 

simulation to test one or more self-management capabilities. As shown in Figure 7-2, the 

importance of each conveyor section in the automated conveyor system is different. For 

example, conveyor sections 1 and 2 are more important than others (e.g., conveyor sections 3 

and 4) as failures in these conveyor sections will cause the system to stop running. For this 

experiment, different simulations are run for different test cases.  
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A very simple case (Test 3) is that failures occur in entrance conveyor sections (e.g., grey 

section 2 in red circle) as shown in Figure 7-7a. In this case, the system reconfiguration is not 

possible (i.e., no extra route available), and Agent_SMS will send a <request: conveyor section 2 

failure> message to Agent_SP directly for the self-protection plan (e.g., full system shutdown). 

Agent_SH could also be trigged in parallel to respond to the conveyor section failure if the 

malfunction can be healed automatically (e.g., Test 6 in Figure 7-10). 

(a) Agent-Based Model for A Conveyor Section Failure (b) Agent_SMS and Agent_SP Interaction Diagram

Agent-SMS Agent-SP

request: conveyor section 2 failure

inform: processing request

processing 

request

inform: protection completed

inform: acknowledged

 

Figure 7-7: Responding to a conveyor section failure: Test 3 

The simulation snapshot shown in Figure 7-8 shows another typical scenario (Test 4): an 

interaction between Agent_SMS, Agent_SP, and Agent_SC in response to a non-important 

conveyor section failure that is in healing (grey section 4 in red circle). In this case, Agent_SMS 

is monitoring the operating state of the automated conveyor system. When it senses the failure of 

a conveyor section that is not healed (i.e., operation protection and system reconfiguration 
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required), Agent_SMS sends a <request: conveyor section 4 failure>message to Agent_SP to 

initialize the agent and request the change (operation protection first), indicating that the 

incoming parts (green boxes in blue circle) using that failed conveyor section have to be re-

routed. Agent_SP responds to the request and then coordinates with Agent_SC to re-route 

incoming parts (if system reconfiguration possible). Once the new routing is determined, 

Agent_SC informs Agent_SP that the system can be reconfigured with a new routing (Test 1 in 

Figure 7-5). Then Agent_SMS works together with Agent_SP and Agent_SC to execute the 

reconfiguration plan to solve the problem (i.e., the incoming parts are re-routed from storage bin 

3 to bin 5 or 7 in blue circle). In this process, if system reconfiguration not possible (i.e., no extra 

route available), Agent_SP will inform Agent_SMS to execute the self-protection plan (Test 3 in 

Figure 7-7). In this scenario, Agent_SH could also be trigged in parallel to respond to the 

conveyor section failure if the malfunction can be healed automatically (e.g., Test 6 in Figure 7-

10). 

(a) Agent-Based Model for A Conveyor Section Failure (b) Agent_SMS, Agent_SP, and Agent_SC Interaction Diagram  

Figure 7-8: Responding to a conveyor section failure: Test 4 



 

118 

In Test 4 (Figure 7-8), the system is initially running with part types [a, b, c, d] to storage 

bins [1, 2, 6, 3]. Due to conveyor section 4 failure (i.e., set conveyor-section-failure as 4), the 

green part type d to storage bin 3 requires re-routing, which means in the simulation the part type 

d circulates through conveyor loops to find extra storage bins (bins [5, 7] in blue circle) 

automatically governed by the proposed design. Several system configurations exist, e.g.:  

• route 1 conveyor sections [1->2->3->11->16] or else to storage bin 5,  

• route 2 conveyor sections [1->2->10->8->18] or else to storage bin 7, and  

• route 3 conveyor sections [1->2->3->11->7->8->18] or else to storage bin 7. 

The remaining process after self-protection for conveyor section 4 will be the same case 

in Test 2 (Figure 7-6). One of the optimal re-routing strategies (e.g., route 1 conveyor sections 

[1->2->3->11->16) to storage bin 5) is selected for re-routing the incoming green part type from 

storage bin 3 to 5. In this case, self-optimization involves finding an optimum routing of the new 

part type to storage bins (e.g., Test 7 in Section 7.3.4 describes one possible self-optimization 

approach). 

(a) Agent-Based Model for A Conveyor Section Failure (b) Agent_SMS, Agent_SP, Agent_SC, and Agent_SO Interaction Diagram

Agent-SMS Agent-SP

request: conveyor section 4 failure

inform: processing request

processing 

request

inform: reconfiguration completed

inform: acknowledged

Agent-SC

processing 

request

request: re-route parts

inform: processing request

Agent-SO

processing 

requestrequest: optimize routing

inform: re-routing completed inform: routing completed

inform: processing request

inform: acknowledged
inform: acknowledged

 

Figure 7-9: Responding to a conveyor section failure: Test 5 
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In a complex scenario (Test 6) as shown in Figure 7-10, all agents are called upon to first 

protect the automated conveyor system from further damage, configure the system to operate in a 

degraded state, heal the failure conveyor section, and optimize the system configuration for 

normal operation. In this test, the failed section (grey section 11) may have occurred because of a 

conveyor malfunction (failed conveyor motor, broken belt, etc.), an input or output sensor 

failure, or a blockage.  

As with the previous case, Agent_SMS identifies the disturbance; however, given that this 

case involves equipment failure or malfunction, it prioritizes self-protection and send a <request: 

conveyor section 11 failure> message to Agent_SP, as illustrated in Figure 7-10. Once this 

request is received, Agent_SP first determines if a full system shutdown is required (e.g., if an 

entrance conveyor section such as conveyor section 1 or 2 is affected). In this case, it would shut 

down the conveyor system and then requests Agent_SH to plan for a repair of the system (Test 3 

in Figure 7-7). If Agent_SP determines that it is safe to continue to operate, it sends Agent-SC a 

request to re-route the parts and then requests Agent_SH to plan for a repair of the system (Test 4 

in Figure 7-8). Once Agent_SC has determined that several system configurations are possible, it 

send a <request: optimize routing> message to Agent_SO for an optimum routing of part types 

to storage bins (Test 5 in Figure 7-9). An example of one possible self-optimization approach 

that could be used by Agent_SO is described in Section 7.3.4 (Test 7 in Figure 7-11). 

To highlight this two-part process (system keeps running while operation protected and 

failure in healing), the agent interactions is shown in Figure 7-10. The whole process starts with 

self-protection in case any incoming part uses the conveyor section with failures and ends with 

self-healing to recover the conveyor section from failures, and the self-configuration and self-

optimization process for available optimal system reconfigurations is repeated between them. 
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This repetitive re-routing process is initiated by Agent_SP and Agent_SH. First, Agent_SC and 

Agent_SO perform a reconfiguration of the diverter controllers that accounts for the new state of 

the automated conveyor system requested by Agent_SP. Once the reconfiguration is completed, 

the automated conveyor system operates in a degraded state (i.e., parts are routed around the 

failed conveyor section and placed in available storage bins) until Agent_SH has managed the 

repair. For example, this may involve sending a message to a maintenance person and waiting 

for the repair to be performed. Once the failed conveyor section is back on-line, Agent_SH 

requests Agent_SC and Agent_SO to re-route the parts, and the same process that was initiated by 

Agent_SP to place the system in a degraded state is repeated. However, at this point, the system 

will be placed back in its normal operating state. 

 

Figure 7-10: All agent interaction diagram in Test 6 
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7.3.4 Optimizing Part Routing 

As described in the previous sections, the reconfiguration process involves a self-optimization 

step that is performed by the self-optimization agent, Agent_SO. Depending on the nature of the 

optimization to be performed, a wide variety of optimization algorithms or heuristics can be used 

by Agent_SO. For example, dynamic programming theory-based approaches such as Dijkstra’s 

algorithm [186] can provide an optimal shortest path solution. However, given the computational 

complexity of optimal shortest path approaches, a variety of heuristic approaches have been 

proposed for real-time applications that include strategies such as limiting the area searched, 

decomposing the search problem, and limiting the links searched [187]. For this experiment, a 

heuristic shortest path approach is chosen and developed within the multi-agent simulation 

model given the real-time nature of the automated conveyor system application.  

The goal of the part routing heuristic is to find the shortest routes to each part storage bin 

for any given automated conveyor system configuration. To accomplish this, the part routing 

agent-based model (Figure 7-11) uses two NetLogo agent types to encapsulate the shortest path 

functionality within Agent_SO: a) a single fixed-position entrance agent (the blue circle in 

Figure 7-11) that represents the automated conveyor system entrance conveyor section, and b) 

mobile diverter agents (green triangles in Figure 7-11) that represent each of the conveyor 

system’s diverters. The directed links point to each diverter agent’s upstream diverter agent(s) or 

entrance agent. 

The part routing heuristic is initialized by Agent_SC providing Agent_SO with a list of 

diverters and their corresponding upstream diverter sections: e.g., the initial state shown in 

Figure 7-11a corresponds to the normal operating state of the automated conveyor system 

(entrance conveyor + 8 diverters). On setup, the diverter agents first create directed links to all 
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directly preceding diverter and/or entrance agents (i.e., conveyor sections that feed parts to the 

diverter). As the model runs, each of the diverter agents perform a sequence of three behaviours 

during each simulation step: a) point to the diverter (or entrance) agent(s) feeding the parts; b) 

move one step forward; and c) maintain a minimum spacing between agents. 

(a) Initial Setup (b) Agent Positions After 10 Steps  

Figure 7-11: The part routing agent-based model: Test 7 

Figure 7-11b shows the new positions of the diverter agents after 10 simulation steps. 

Once the simulation has stabilized (typically after 30-40 steps for this set of inputs), a pattern 

emerges that corresponds to the shortest distances from the entrance to each of the diverters. An 

example of this pattern for the normal operating state of the automated conveyor system is 

shown in Figure 7-12. At the top of the figure, a sorted list, P, is generated that shows the order 

of diverter agents by their distance to the entrance agent: i.e., a minimum distance routing order 

for the system configuration with the diverter order from closest to furthest is diverter 1, 

diverters 2 or 6, diverters 3 or 5 or 7, and diverters 4 or 8. Therefore, there are totally 24 possible 
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shortest routings (Ptotal = 1*(2*1)*(3*2*1)*(2*1)) determined by the part routing agent-based 

model and the P = [1 2 6 3 5 7 4 8] routing order is one of the optimal part routing strategies. 

 

Figure 7-12: The final positions of the diverter agents in Test 7 

To test the routing heuristic, the automated conveyor system simulation was run with and 

without optimized part routing. More specifically, two part routing outputs are compared: a) the 

optimized routing determined using the part routing heuristic, and b) the ordered part routing, R 

= [1 2 3 4 5 6 7 8]. In each experiment, 100 replications of the simulation were run to account for 

the stochastic nature of the part arrivals. 

The results of the experiments are summarized in Figure 7-13. As would be expected, the 

optimized routing shows improved performance (wait time decreased about 10-15%) over a strict 

ordered routing. However, the degree of improvement varies with the number of part types in the 

default system layout (7 storage bins for max 6 part types in the simulation). With two part types, 

the ordered routing, R = [1 2], is a member of the set of possible optimized routings (i.e., P1 = [1 

2] and P2 = [1 6]). Although the ordered routing, R = [1 2 3 4 5 6], is not a member of the set of 
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possible optimized routings for six part types, it shares the same list of diverters as every 

member of the set of possible optimized routings. In other words, if Pi is the ith member of the set 

of possible optimized routings for six part types, R is equivalent to all members of the set of 

optimized part routings Pi: i.e., ∀𝑖, 𝑅 = 𝑃𝑖. 

 

Figure 7-13: Wait time performance for the ordered and optimized routing options (mean and 

95% confidence intervals) in Test 7 
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7.4 Experimental Testbed Design 

The agent-based simulation model discussed in Section 7.3 demonstrated how the proposed 

design works and how better it works. In this section, an experimental testbed (Appendix B) is 

designed to illustrate how the IEC 61499 FB based systems are modelled through the proposed 

self-manageable architecture (e.g., programming controllers in Figure 7.2). The design tool 

SPADE is used to develop multi-agent models and the Eclipse 4diac design tool is used to 

develop IEC 61499 FB models.  

Jetson Nano and Raspberry Pi are both small, powerful single-board computers designed 

to program applications and power devices, in which Jetson Nano is generally considered more 

powerful than Raspberry Pi in all aspects especially the capability of edge computing [188]-

[189]. They are selected for the experiments as they meet the following requirements: a) 

availability (commercially accessible and relatively cheap) and b) extensibility (multi-using 

platforms with rich features and functions). The agent modelling tool SPADE (i.e., Smart Python 

Agent Development Environment) is a multi-agent systems platform written in Python and based 

on instant messaging [190]. The FB modelling tool Eclipse 4diac is an IEC 61499 engineering 

environment for developing FB based distributed automation and control applications [79]. They 

are selected for the experiments as they are open-sourced and powerful enough engineering 

solutions development environments. 

7.4.1 Testbed Setup 

The proposed testbed setup in Figure 7-14 includes: a) the signaling platform represented by 

Raspberry Pi (#3 in Figure 7-14) powered LEDs (#2 in Figure 7-14) in blue, green, red, and 

yellow; b) the sorting platform represented by Raspberry Pi (#3 in Figure 7-14) powered Motors 
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(#4 in Figure 7-14); and c) the carrying platform represented by Jetson Nano powered JetBot (#1 

in Figure 7-14). In this experiment, JetBot powered by Jetson Nano is designed to represent the 

high-level cyber module and can move intelligently for a series of tasks (e.g., collision 

avoidance, road following, and object detection). LEDs and Motors powered by Raspberry Pi are 

designed to represent low-level physical modules and are controlled by agent-embedded IEC 

61499 FB modelled applications.  

1
2

3

4 3

3

4

JetBot by Jetson Nano1

2

3

4 Motor

Raspberry Pi

LED
 

Figure 7-14: Experimental testbed design 

The full system configuration under the proposed architecture modelling framework 

developed in Eclipse 4diac is shown in Figure 7-15. 

 

Figure 7-15: The full system configuration in Eclipse 4diac 
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In Figure 7-15, the FB networks for LEDs (Figure 7-16) and Motors (Figures 7-17 and 7-

18) designed in Eclipse 4diac are shown as follows. In each application, FB IX and QX are used 

to read input and write output signals in the system and publish/subscribe SIFBs are used to 

communicate with each other through communication services (e.g., Ethernet). 

 

Figure 7-16: FB network design for LEDs in Eclipse 4diac 

 

Figure 7-17: FB network design for Motor1 in Eclipse 4diac 
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Figure 7-18: FB network design for Motor2 in Eclipse 4diac 

JetBot powered by Jetson Nano is programmed in Python using JupyterLab for remote 

control from a PC. The communication with LEDs and Motors designed in Eclipse 4diac is 

shown in Figure 7-19. The agent-embedded FB module, as discussed in Section 6.3.5 (Figures 6-

18 and 6-19), is designed in the above low-level control application for self-management 

capabilities and the agent interactions were simulated in the agent-based model in Section 7.3. 

 

Figure 7-19: Communication network design for JetBot in Eclipse 4diac 

7.4.2 Test Scenarios 

For the test process, the signaling platform randomly selects a colored LED and turns it on for a 

few seconds. The color and duration are communicated to the carrying platform. Next, JetBot 

moves to the sorting platform and sends a message to the Motor, specifying the rotation direction 
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and duration. The Motor executes the command and sends back a confirmation message to 

JetBot. 

To test the system self-managing capabilities, a simple single direction of rotation 

scenario is introduced: only a blue LED randomly flashes to request clockwise rotation of 

Motor1 (Figure 7-20). This is extended to multi-direction rotation: a green LED is added for the 

counterclockwise rotation of Motor1 (Figure 7-20). Applying the proposed architecture 

modelling framework, new IEC 61499 FBs can be added to self-configure control applications, 

and resources can be re-distributed accordingly to support this change.  

 

Figure 7-20: Test scenario with two LEDs and one motor in Eclipse 4diac 

A more complicated scenario is to add another sorting line (i.e., Motor2) for low-speed 

rotation with high precision (Figure 7-21). The existing control system can be easily 

reconfigured and redeployed to the new line with the proposed architecture modelling 

framework. Self-optimization can also be achieved in both lines due to operation data collected 

from the old line. One self-healing case is the system can quickly update its IEC 61499 FB 

modelled application when detecting that the blue LED is broken and replaced with a yellow 

one. For the self-protection feature, for example, a much heavier bin blocks the line operation, 

and the system will automatically shut down for protection. 
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Figure 7-21: Test scenario with four LEDs and two motors in Eclipse 4diac 
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7.5 Performance Evaluation Analysis 

In Section 7.3.4, Test 7 has shown that the system designed under the proposed architecture 

modelling framework has improved performances. In this section, a theoretical analysis is further 

performed. The time performance of control application programs is a very critical factor in 

evaluating the automation and control system design, especially the program execution time, 

scan time, and response time [10]. Traditionally, the program execution time is the time for 

control code execution and is under control by the watchdog timer. The scan time is the time to 

perform all the functions internal to the control structure, depending mainly on the program 

execution time, I/O channels, and the peripherals. The response time is the time that occurs 

between a variation from the regular system operating states and the corresponding reaction of 

the control application programs. 

The time performance of control applications programs can be affected by several 

factors, e.g., performance of hardware modules (e.g., devices capability) and software modules 

(e.g., algorithms complexity). In this research, only the design of control application programs 

under different architectures is considered for the time performance evaluation, assuming all 

other aspects the same. Therefore, performance evaluation will be conducted through 

comparisons of execution time of control applications programmed in IEC 61131-3 function 

block diagrams (IEC 61131-3 FBD), IEC 61499 function blocks (IEC 61499 FB), and agent-

embedded IEC 61499 function blocks (Agent-embedded IEC 61499 FB), under two different 

circumstances, i.e., regular running conditions and adaptation required conditions. 
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7.5.1 Regular Running Conditions 

In regular running conditions, the execution time of automation and control systems (e.g., PLC 

and DCS) is the sum of working time caused by several steps in which the control application 

programs are executed. For the time performance evaluation in this research, the following 

categories of the time performance for the design of automation and control systems under 

different architectures are considered critical: 

• Device Sensor/Actuator Reaction Time (T_Reaction): the reaction time required for 

corresponding actions from the end devices (i.e., sensors and actuators), and the delay 

resulted from their responses. 

• Fieldbus Input/Output Refresh Time (T_Refresh): the refresh time required for fieldbus 

inputs/outputs through industrial communication networks. 

• Control Algorithm Execution Time (T_Exection): the execution time required for the control 

algorithms to deliver predefined functions. 

• Algorithm Input/Output Update Time (T_Update): the update time required for the inputs 

read to and the outputs wrote from the control algorithms. 

• Algorithm Execution Result Propagation Time (T_Propagation): the propagation time 

required for the algorithm execution result to be communicated over industrial 

communication networks. 

The execution time of a typical IEC 61131-3 FBD programmed system (e.g., PLC) under 

regular running conditions (T_RegularFBD) includes: 1) Device Sensor/Actuator Reaction Time 

(T_Reaction), 2) Fieldbus Input/Output Refresh Time (T_Refresh), 3) Control Algorithm 

Execution Time (T_Exection), 4) Algorithm Input/Output Update Time (T_Update), and 5) 

Algorithm Execution Result Propagation Time (T_Propagation). T_RegularFBD is defined as: 
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𝑇𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝐹𝐵𝐷 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑅𝑒𝑓𝑟𝑒𝑠ℎ(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑈𝑝𝑑𝑎𝑡𝑒(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

(7.1) 

The execution time of the equivalent system programmed in IEC 61499 FB (e.g., DCS) 

under regular running conditions (T_RegularFB) includes: 1) Device Sensor/Actuator Reaction 

Time (T_Reaction), 2) Control Algorithm Execution Time (T_Exection), and 3) Algorithm 

Execution Result Propagation Time (T_Propagation). T_RegularFB is defined as: 

𝑇𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝐹𝐵 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

                                                  (7.2) 

The execution time of the equivalent system programmed in agent-embedded IEC 61499 

FB (e.g., DICS) under regular running conditions (T_RegularAgentFB) is the same as 

T_RegularFB as no change requests to trigger the execution of high-level and low-level multi-

agent modules. More specifically, the self-manageable sub-application designed in low-level IEC 

61499 FBs only works as the management events (e.g., change request) trigger the execution 

(Chapter 6), which will be considered as adaptation required conditions. The MAPLE-K model 

designed in the high-level cyber module can work during regular running conditions to collect 

and analyze data (Chapter 5). However, no extra time required as it is working in parallel with 

the main control applications and if an adaptation required, it falls in the consideration of 

adaptation required conditions (T_SMSEvaluation). T_RegularAgentFB is defined as: 

𝑇𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝐴𝑔𝑒𝑛𝑡𝐹𝐵 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

                                         (7.3) 

In regular running conditions, the execution time of equivalent automation and control 

systems designed under different architectures are not the same (Table 7-1). Assuming that 

T_Reaction, T_Execution, and T_Propagation are the same, T_RegularFBD (Eq. 7.1) with extra 

T_Refresh and T_Update is bigger than T_RegularFB (Eq. 7.2) and T_RegularAgentFB (Eq. 
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7.3). The main time performance gain in two IEC 61499 cases results from the elimination of 

traditional scan cycles in IEC 61131-3, especially in this case, no extra time-consuming 

execution for T_Refresh and T_Update. As previously discussed, IEC 61499 applies the event-

driven execution mechanism, which means the execution of the FB based control application 

programs is assumed to start immediately whenever input events arrive and to end immediately 

whenever output events emit. However, in IEC 61131-3, continuous I/O refresh (T_Refresh) over 

the industrial communication network and the delay to update inputs/outputs in control 

application programs require more time and resource. Another reason is IEC 61131-3 adopts 

global memory to exchange data in program organization units (i.e., POU includes programs, 

functions, and function blocks in IEC 61131-3), while IEC 61499 encapsulates global data 

directly and locally into function blocks. It is convenient to list variables in global memory in the 

development phase but is time-consuming during runtime and not easy for module reuse. 

Table 7-1: Execution time comparison in regular running conditions 

Design Architectures IEC 61131-3 FBD IEC 61499 FB Agent-embedded IEC 61499 FB 

Evaluation Metrics T_RegularFBD T_RegularFB T_RegularAgentFB 

T_Reaction 1 1 1 

T_Refresh 1 0 0 

T_Exection 1 1 1 

T_Update 1 0 0 

T_Propagation 1 1 1 

7.5.2 Adaptation Required Conditions 

Adaptation required conditions in this research can be understood as the conditions in which the 

system is required to adjust itself and respond to frequent changes and evolving requirements. 

The adaptation tasks occur in different formats (typically system reconfiguration, e.g., failure 

recovery) and are caused by various factors (e.g., the high-level request to update function 
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modules for system upgrade, low-level request to adjust parameter values due to state 

variations). 

As reviewed before, the automation and control system adaptation is commonly classified 

into the dimensions of simple, dynamic, and intelligent reconfiguration [23]. In general, simple 

reconfiguration (at least IEC 61131-3 required) aims at avoiding software-coupling issues during 

reconfiguration; the dynamic (at least IEC 61499 required) focuses on reconfiguration during 

runtime to satisfy the timing criteria; and the intelligent exploits distributed artificial intelligence 

to reconfigure automatically [23]. Reconfiguration can be understood as the automation and 

control system adapt itself (software/hardware) to respond to changes on the fly or to satisfy new 

requirements by adopting different techniques (i.e., simple, dynamic, and intelligent). Under the 

proposed multi-agent modelling framework towards IEC 61499 FB based distributed intelligent 

automation, self-management is used in this research to describe such system adaptation, 

including self-configuration, self-optimization, self-healing, and self-protection. 

Under adaptation required conditions, the system is required to perform adaptation to 

respond to frequent changes and evolving requirements in dynamic environments. The following 

categories of the time performance for the design of automation and control systems under 

different architectures are considered critical: 

• Evaluation of Frequent Changes and Evolving Requirements (T_Evaluation): the time 

required for the evaluation of frequent changes and evolving requirements and thus the right 

decision is made for system adaptation. It is expected that this type of evaluation occurs in 

the higher management level with human interaction as these changes and requirements 

should be complex enough that the system cannot handle itself. For example, decision of 
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system overall function upgrade for advanced capabilities, in this case the system itself may 

not detect any change request from monitoring its operations.  

• Execution of System Reconfiguration or Self-Management Plans (T_Reconfiguration or 

T_Selfmanagement): the time required for the execution of system reconfiguration or self-

management plans and thus the system adaptation is performed. 

• Validation of System Adaptation (T_Validation): the time required for the validation of that 

the system is adapted in time with desired and expected behaviours. This is the final step to 

ensure that the adaptation is validated.  

There are three more time performance evaluation metrics considered for the proposed 

two-layer design architecture (Figure 4-1b). They are explained as follows: 

• Self-Manageable Service Evaluation Time (T_SMSEvaluation): the time required for 

MAPLE-K agents of the high-level cyber module to evaluate changes and requirements and 

thus to deliver system adaptation actions (Figure 5-1). It is expected that this type of 

evaluation occurs in the high-level cyber module which is directly related to automation and 

control systems and focuses on system software modules. That means this type of evaluation 

can be done by the multi-agent module automatically through monitoring and analyzing 

system states without human interactions. For example, bug fix in the system control 

applications, in this case the system detect and fix the bug to maintain its stable operations. 

• Self-Manageable Service Request Time (T_SMSRequest): the time required for the self-

manageable service execution agent of the low-level physical module to achieve its 

predefined functions and satisfy the request (Figure 6-13). The request time includes 

implementation of two interface functions, i.e., requesting self-manageable agents for self-
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manageable services in the low-level physical module and executing self-manageable 

services to adapt IEC 61499 FB based systems (Figure 6-14). 

• Self-Manageable Service Response Time (T_SMSResponse): the time required for the self-

manageable agents of the low-level physical module to deliver their predefined self-

manageable services to respond to the request from the self-manageable service execution 

agent (Figure 6-13). The response time includes one or more self-manageable agents to 

execute their own algorithms to respond to the request from self-manageable service 

execution agent (Figure 6-15). 

The adaptation time of a typical IEC 61131-3 FBD programmed system under adaptation 

required conditions (T_AdaptationFBD) is defined as:  

𝑇𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐹𝐵𝐷 = 𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐹𝐵𝐷) + 𝑇𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝐹𝐵𝐷) + 𝑇𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝐹𝐵𝐷)                          (7.4) 

The adaptation time of the equivalent system programmed in IEC 61499 FB under 

adaptation required conditions (T_AdaptationFB) is defined as: 

𝑇𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐹𝐵 = 𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐹𝐵) + 𝑇𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝐹𝐵)  + 𝑇𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐹𝐵)                                   (7.5) 

The adaptation time of the equivalent system programmed in agent-embedded IEC 61499 

FB under adaptation required conditions (T_AdaptationAgentFB) is defined as: 

𝑇𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑔𝑒𝑛𝑡𝐹𝐵 = 𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) + 𝑇𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) + 𝑇𝑆𝑒𝑙𝑓𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) +

𝑇𝑆𝑀𝑆𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) + 𝑇𝑆𝑀𝑆𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) + 𝑇𝑆𝑀𝑆𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝐴𝑔𝑒𝑛𝑡𝐹𝐵)                                   (7.6)  

In adaptation required conditions (consider one adaptation in Eqs. 7.4, 7.5, and 7.6), the 

adaptation time of equivalent automation and control systems designed under different 

architectures are not the same (Table 7-2). Assume that in this research T_Evaluation and 

T_Validation are the same for the three system design architectures. For T_Evaluation, as 

described before, it usually occurs in a large time scale (e.g., day/week) and the capabilities of 
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management platforms (e.g., ERP/PLM) are expected to be the same. For T_Validation, 

generally speaking, it can be within a large time scale for complex tests (e.g., the initial system 

validation test) or be in real-time or at least in parallel during system runtime. These two metrics 

are not the focus of this research. 

As summarized in Table 7-2, the system designed under the IEC 61131-3 architecture 

(more specifically programmed in FBD) are manually reconfigured using simple reconfiguration 

techniques offline while the system designed under the IEC 61499 architecture (programmed in 

FB) can apply dynamic reconfiguration techniques to reconfigure online semi-automatically. It 

should be expected to have some performance gain from IEC 61499 FB programmed systems 

compared to the IEC 61131-3 FBD programmed ones (e.g., the time required for adaptation 

T_AdaptationFBD in Eq. 7.4 greater than T_AdaptationFB in Eq. 7.5), as the IEC 61499 design 

helps reduce the impact and increase the predictability of system reconfiguration and maintain 

system consistency and stability [23].  

Table 7-2: Execution time comparison in adaptation required conditions 

Design Architectures IEC 61131-3 FBD IEC 61499 FB Agent-embedded IEC 61499 FB 

Evaluation Metrics T_AdaptationFBD T_AdaptationFB T_AdaptationAgentFB 

T_Evaluation 1 1 1 

T_Validation 1 1 1 

T_Reconfiguration 
simple; offline; 

manually. 

dynamic; online; 

semi-automatically. 
n/a 

T_Selfmanagement n/a n/a intelligent; online; automatically. 

T_SMSEvaluation n/a n/a intelligent; real-time; automatically. 

T_SMSRequest n/a n/a intelligent; real-time; automatically. 

T_SMSResponse n/a n/a intelligent; real-time; automatically. 
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For the proposed IEC 61499 architecture (programmed in agent-embedded FB), it aims at 

intelligent, online, and automatic system self-management (or traditionally saying 

reconfiguration) by adopting a two-layer architecture with multi-agent cyber module modelling 

to achieve run-time intelligence and IEC 61499 function block physical module modelling to 

realize real-time adaption. Although, more items (T_SMSEvaluation, T_SMSRequest, and 

T_SMSResponse) in Eq. (7.6), they all occurs in software algorithm execution level and are 

expected to be within a small time scale. As described before for T_SMSEvaluation in Eq. 7.6, 

this type of evaluation occurs in the high-level cyber module and is done by multi-agent 

MAPLE-K module automatically through monitoring and analyzing system states regularly 

without human interactions. This proposed multi-agent cyber module applies machine learning 

techniques for system operation state analysis and helps reduce work in the higher management 

evaluation (T_Evaluaiton). For the request and response in the low-level physical module 

(T_SMSRequest and T_SMSResponse) performed by the agent-embedded IEC 61499 FB-based 

sub-application, it is designed to be able to handle simple and straightforward tasks with correct 

alternative solutions during runtime. That means this type of execution by the agent-embedded 

IEC 61499 FB-based sub-applications in the low-level physical module can be done 

automatically for real-time adaptation through monitoring system states without exchanging 

large amount of data with the high-level cyber module for analytics and learning (reducing real-

time communication burden). For example, parameter change of the control application, in this 

case the system adjust the parameter to maintain its stable operations. 

As analyzed before for the proposed IEC 61499 architecture (programmed in agent-

embedded FB), the performance improvement should come not only from the reduced adaptation 

time (i.e., T_AdaptationAgentFB in Eq. 7.6 less than T_AdaptationFB in Eq. 7.5 or 
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T_AdaptationFBD in Eq. 7.4) but also from the increased solution quality (e.g., data analytics 

and machine learning from agent modules). As in this type of architecture design, the multi-agent 

cyber module improves a lot in evaluation of changes and new requirements, and the agent-

embedded IEC 61499 FB physical module improves a lot in quick response to changes and new 

requirements.  

7.5.3 Performance Evaluation Estimation 

In previous sections, the execution time in regular running conditions (Eqs. 7.1, 7.2, and 7.3) and 

the adaptation time in adaptation required conditions (Eqs. 7.4, 7.5, and 7.6) are analyzed for the 

automation and control systems designed under three different architectures (IEC 61131-3 FBD, 

IEC 61499 FB, and Agent-embedded IEC 61499 FB). In this section, the total time performance 

is formulated as Eqs. 7.7, 7.8, and 7.9 by considering only key aspects and focusing on control 

application programs. The item [rand()%2] in these equations represents that not all nodes (a 

general and abstract representation of subsystems, devices, or applications) in the system need to 

be adapted.  

𝑇𝑇𝑜𝑡𝑎𝑙𝐹𝐵𝐷 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑅𝑒𝑓𝑟𝑒𝑠ℎ(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑈𝑝𝑑𝑎𝑡𝑒(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

+ ∑(𝑇𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑗)) × [𝑟𝑎𝑛𝑑𝑗()%2]

𝑚

𝑗=1

                                                            (7.7) 

𝑇𝑇𝑜𝑡𝑎𝑙𝐹𝐵 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

+ ∑(𝑇𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑗)) × [𝑟𝑎𝑛𝑑𝑗()%2]

𝑚

𝑗=1

                                                            (7.8) 
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𝑇𝑇𝑜𝑡𝑎𝑙𝐴𝑔𝑒𝑛𝑡𝐹𝐵 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

+ ∑(𝑇𝑆𝑒𝑙𝑓𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(𝑗)+𝑇𝑆𝑀𝑆𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑗)) × [𝑟𝑎𝑛𝑑𝑗()%2]

𝑚

𝑗=1

+ ∑(𝑇𝑆𝑀𝑆𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘) + 𝑇𝑆𝑀𝑆𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑘)) × [𝑟𝑎𝑛𝑑𝑘()%2]

𝑙

𝑘=1

                                  (7.9) 

The total time performance of the system programmed in IEC 61131-3 FBD is defined in 

Eq. 7.7 as T_TotalFBD and the system programmed in IEC 61499 FB is defined in Eq. 7.8 as 

T_TotalFB. For the proposed design architecture in this research, the total performance 

T_TotalAgentFB is defined in Eq. 7.9, in which as described before the two-layer self-

manageable system architecture design (T_Selfmanagement and T_SMSEvaluation from the 

cyber module and T_SMSRequest and T_SMSResponse from the physical module) is proposed to 

replace the traditional reconfiguration architecture design (T_Reconfiguraiton in Eq. 7.7 and 

7.8). The estimated performance evaluation are shown in Figure 7-22. With increased system 

nodes (this matches the fact that the industrial automation and control systems are becoming 

more and more complex in Industry 4.0), the time performance gain of the proposed system 

architecture design tends to become larger and larger. Figure 7-22 presented here is for graphical 

display of previous discussions to show the performance gain trend and the real case is not 

supposed to be exactly the same. 
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Figure 7-22: Estimated performance evaluation under different system design architectures 

In this research, only the performance evaluated by system execution time and adaptation 

time during runtime is considered. One thing should be noted that the time and effort required in 

the system design phase programming in IEC 61499 FB compared to IEC 61131-3 (e.g., FBD) 

are considered intensive, especially for the proposed two-layer multi-agent and IEC 61499 FB 

hybrid design architecture. Besides challenges identified in the literature review, one major issue 

is that it is not easy to incorporate artificial intelligence frameworks and techniques into systems 

design and to apply advanced data analytics to enable learning capabilities and intelligent 

behaviours of next-generation automation and control systems.  
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7.6 Summary 

In this chapter, demonstration of the typical industrial scenario, development of the multi-agent 

simulation model, design of the experimental testbed, and the performance evaluation analysis 

were discussed to show that the proposed architecture modelling framework is feasible and 

effective. The proposed design was tested through various experiments on the multi-agent 

simulation model based on the agent modelling tool NetLogo and the experimental testbed on the 

Jetson Nano and Raspberry Pi platforms. The proposed design was further evaluated 

theoretically through performance analysis of regular execution time and adaptation time in two 

typical conditions (i.e., regular running conditions and adaptation required conditions) for 

systems designed under three comparable architectures (i.e., IEC 61131-3 FBD, IEC 61499 FB, 

and Agent-embedded IEC 61499 FB). Through the above demonstration, simulation, experiment, 

and evaluation, it demonstrates the ability of the proposed architecture to respond to major 

challenges in Industry 4.0. 
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Chapter Eight: Conclusions and Future Work 

8.1 Conclusions 

The research presented in this thesis explored the design of a two-layer self-manageable 

architecture to enable real-time adaptation at the device level and run-time intelligence 

throughout the whole system. To achieve this, multi-agent modelling techniques were applied by 

using autonomous and cooperative agents to achieve run-time intelligence in system design and 

module reconfiguration, and IEC 61499 function block modelling techniques were applied by 

using object-oriented and event-driven function blocks to realize real-time adaption of 

automation logic and control algorithms. The main reason behind that is the autonomous, 

cooperative, and distributed multi-agent modelling approach matches the object-oriented, event-

driven, and application-based IEC 61499 function block architecture design, which holds the 

most promise of achieving industrial cyber-physical systems to be self-manageable in Industry 

4.0. The major research work and contributions are summarized as follows:  

1) High-Level Cyber Module Design 

One major contribution is the multi-agent MAPLE-K computing model for the high-level iCPS 

architecture design with the introduction of a self-learning agent for high-level cyber module 

learning capabilities. The design applied multi-agent modelling techniques to implement the 

autonomic computing reference architecture (i.e., traditional MAPE-K model) and empowered 

the architecture with self-learning capabilities (i.e., proposed MAPLE-K model). The traditional 

MAPE-K loop design is based on fixed, predefined rules, policies, goals, etc., which is 

knowledge-intensive in the early design by considering limited possible adaptation scenarios and 

is inflexible to be reconfigured during the system runtime. The proposed design leveraged the 
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industrial computing tools and models by introducing the self-learning agent to empower the 

system learning capabilities for adaptation at runtime.  

2) Low-Level Physical Module Design 

The other major contribution is the self-manageable IEC 61499 function block model for the 

low-level iCPS architecture design with the introduction of a new agent-embedded function 

block design pattern for low-level physical module self-managing capabilities. The design 

deployed autonomic computing self-managing properties into IEC 61499 function block 

modelling framework by forming a meta-application (i.e., proposed agent-embedded function 

block application) to self-manage control applications. Traditionally, system configuration is 

achieved simply (i.e., avoiding software-coupling issues) or dynamically (i.e., satisfying timing 

criteria) through device management SIFBs to access standardized management functions (e.g., 

START and KILL in application execution, CREATE and DELETE for function block instances). 

The proposed design incorporated the agent-embedded design pattern into traditional function 

block application design with the separation of typical control application execution and 

intelligent self-manageable service execution.  

3) Architecture Modelling Evaluation 

The proposed architecture modelling framework was demonstrated through various experiments 

on the multi-agent simulation model developed in the agent modelling environment NetLogo and 

the experimental testbed designed on the Jetson Nano and Raspberry Pi platforms. The multi-

agent simulation model focused on low-level system self-managing capabilities. The simulation 

results showed that with the proposed design, the system is able to self-manage adaptation 

autonomously to respond to typical changes and requirements (e.g., new tasks, system failures, 

and operation optimization) with better performances. The experimental testbed design focused 
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on high-level system computing capabilities with self-learning features. The experiment showed 

that the proposed architecture modelling framework is feasible (i.e., from context monitoring, 

data analysis and machine learning, to action planning and execution) with available embedded 

devices (e.g., Jetson Nano). The performance evaluation of regular execution time and adaptation 

time in two typical conditions for systems designed under three different architectures were 

further  theoretically analyzed.  

To note that, it is possible in implementation that several physical modules (i.e., agent-

embedded IEC 61499 FB model) can be attached to one cyber module (i.e., multi-agent 

MAPLE-K model), and several cyber modules are managed by the higher-level management 

platforms (e.g., ERP). It depends on system architectures and is similar to that each sub-system 

root node that cyber module works on is an aggregation of several distributed nodes that built as 

physical modules. Humans are not expected to interact too much with these two levels during 

system operation, but with higher-level management platforms. The typical data flow in the 

system is that the low-level physical module interacts directly with operating states for real-time 

operation and adaptation (higher real-time requirements) while the high-level cyber module 

manages several physical modules’ operations for system run-time intelligence (high real-time 

requirements) and the management platform is responsible for strategic decision-making (low 

real-time requirements). All these matches the objective of designing self-manageable iCPS to 

enable real-time adaptation at the device level and run-time intelligence throughout the whole 

system with computing intelligence distributed over different system levels to satisfy different 

timing requirements. 
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8.2 Future Work 

The research work in this thesis is an attempt to investigate the design of self-manageable system 

architecture modelling for IEC 61499 based distributed intelligent automation by employing 

multi-agent modelling and function block modelling techniques. The research result is a two-

layer architecture model that is characterized of the high-level multi-agent modelled cyber 

module design and the low-level agent-embedded IEC 61499 FB modelled physical module 

design. The future work around this research is expected to continue from the following aspects:  

1) Interaction Interface Design and Implementation 

Interaction interface design and implementation is a key aspect in the system architecture design 

as communicating and computing flows from homogeneous and heterogeneous system modules 

(e.g., agent-agent, FB-FB, agent-FB) are connected together through interaction interfaces. 

Future work is required for the middle-level interface module sandwiched between the high-level 

cyber module and the low-level physical module. The work on hybrid interaction interfaces (i.e., 

agent-FB) needs special attention. Only by understanding the characteristics of this type of 

interface (e.g., interface design and implementation patterns) can the multi-layer system design 

architecture modelled by multi-agent systems and IEC 61499 FBs be achieved.  

2) Implementation of Autonomic Computing Framework 

Deploying autonomic computing reference architecture and self-managing properties into the 

modelling framework is crucial to achieve distributed intelligent iCPS. However, proper 

implementation of multi-agent modelling and IEC 61499 FB modelling (i.e., balancing powerful 

but not reliable agents and time-critical, predictable, and stable FB based controls) is not an easy 

task. Questions that need to be answered are: e.g., how to ensure agents in the high-level cyber 

module are programmed with enough self-learning capabilities and are designed in modules for 
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reuse; how to ensure agents embedded in IEC 61499 FBs are programmed with generic, 

lightweight, and robust algorithms as the low-level physical module has to guarantee system 

responsiveness, correctness, safety, reliability, etc.   

3) Development of Integrated Engineering Environments 

An integrated engineering environment is required for design and development, verification and 

validation, evaluation and implementation of hybrid multi-agent and IEC 61499 FB modelled 

systems. Such integrated engineering environment can be based on one major design modelling 

tool (e.g., Eclipse 4diac) with added function modules (e.g., design simulation and evaluation), 

open interfaces to the external (e.g., agent modelling software), and rich function block libraries 

(e.g., to include the proposed computing modules and self-manageable sub-applications as 

templates). Future work on enriching integrated engineering environments serves the key role in 

industrializing the IEC 61499 standard and promoting its related research.  
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Appendices 

Appendix A Multi-Agent Simulation Model 

Appendix A.1 NetLogo Agent Based Simulation Model  

__includes ["communication.nls" "agents.nls"] 

 

breed [ diverters diverter ] 

breed [ parts part ] 

breed [ SMSAgents SMSAgent ]   ;; Self-Manageable Service Execution Agent 

breed [ SCAgents SCAgent ]     ;; Self-Configuration Agent 

breed [ SOAgents SOAgent ]     ;; Self-Optimization Agent 

breed [ SHAgents SHAgent ]     ;; Self-Healing Agent 

breed [ SPAgents SPAgent ]     ;; Self-Protection Agent 

 

globals 

[ 

  no-messages        ;; tally of the number of messages sent (used by communication.nls) 

  part-types         ;; a word containing a list of the part types in the system 

  no-conveyors       ;; number of conveyor sections 

  diverter-states    ;; nested list of diverter states [[<L> <C> <R>][<L> <C> <R>]...] 

  diverter-order     ;; a list of the diverters, sorted by shortest path 

  ave-wait-time      ;; average time (in ticks) that parts spend in the system 

  parts-completed    ;; number of parts that have made it to a storage bin 

  ave-no-parts       ;; average number of parts in the system 

  next-arrival       ;; arrival time of the next part 

  conv-failure       ;; time (in ticks) when conveyor failure occurs 

] 

 

patches-own 

[ 

  conveyor-number    ;; conveyor number (this is also the diverter number for Type 2) 

  diverter?          ;; TRUE if a diverter patch 

  in-sensor?         ;; TRUE if an input sensor patch 

  out-sensor?        ;; TRUE if an output sensor patch 

  storage-bin?       ;; TRUE if a storage bin patch 

  bin-number         ;; storage bin number 

  div-number         ;; diverter number 

  inbound            ;; inbound diverter list 

  direction          ;; direction (heading) for patch 

  operating?         ;; TRUE if operating, FALSE if failed 

  connections        ;; a list of conveyor link connections for input sensor patches 

  part-at-bin        ;; used to check part types exiting storage bin 

] 

 

diverters-own 

[ 

  diverter-number    ;; diverter number 

] 
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parts-own 

[ 

  part-type          ;; part type identifier (currently we are using lower case letters) 

  time-in            ;; time (in ticks) when part entered the system 

  wait-time          ;; time (in ticks) that the part spent in the system 

] 

 

SMSAgents-own 

[ 

  incoming-queue     ;; incoming message queue 

  proc-delay         ;; processing delay time (currently used to simulate a processing delay) 

] 

 

SCAgents-own 

[ 

  incoming-queue     ;; incoming message queue 

  proc-delay         ;; processing delay time (currently used to simulate a processing delay) 

] 

 

SOAgents-own 

[ 

  incoming-queue     ;; incoming message queue 

  proc-delay         ;; processing delay time (currently used to simulate a processing delay) 

] 

 

SHAgents-own 

[ 

  incoming-queue     ;; incoming message queue 

  proc-delay         ;; processing delay time (currently used to simulate a processing delay) 

] 

 

SPAgents-own 

[ 

  incoming-queue     ;; incoming message queue 

  proc-delay         ;; processing delay time (currently used to simulate a processing delay) 

] 

 

to setup 

  clear-all 

  reset-timer 

  set Conveyor-Section-Failure 1 

  setup-lagents 

  setup-hagents 

  setup-hconnections 

  set no-messages 0 

  set ave-wait-time 0 

  set parts-completed 0 

  set next-arrival 0 

  ask patches 

  [ 

    set diverter? FALSE 

    set in-sensor? FALSE 

    set out-sensor? FALSE 

    set storage-bin? FALSE 

  ] 

  reset-ticks 
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  create-conveyor "input.txt" 

  ;setup-diverters "connections.txt" 

  ;configure-diverters Number-Part-Types 

  ;set diverter-order [1 2 3 4 5 6]  ;; ordered list (and section 8 failure) 

  ifelse Optimize-Path = TRUE 

  [ set diverter-order [1 2 6 3 5 7 4 8] ] ;; normal 

  [ set diverter-order [1 2 3 4 5 6 7 8] ] ;; ordered list 

  diverter-config 

  set conv-failure random-exponential MTTF 

end 

 

to go 

  ;; Create a new part with probability = Part-Arrival 

  if ticks >= next-arrival 

  [ 

    new-part Number-Part-Types 

    set next-arrival ( random-exponential Mean-Arrival-Time ) + ticks 

  ] 

  ask parts 

  [ 

    set heading direction 

    if out-sensor? = TRUE [ diverter-control ] 

    if storage-bin? = TRUE [ store-part ] 

    if operating? = TRUE 

    [ 

      if not any? parts-on patch-ahead 1 [ forward 1 ] 

      ;forward 1 

    ] 

  ] 

  ask SMSAgents 

  [ 

    monitor-part-types 

    monitor-conveyor-status Conveyor-Section-Failure 

  ] 

  calculate-parts-in-system 

  manage-messages ;; might want to add an update period here (with interface slider) 

  ;; Conveyor section failure 

  if ticks > conv-failure and Conveyor-Section-Failure = 1 and Conveyor-Failures = TRUE [ set Conveyor-Section-

Failure 4 ] 

  tick 

end 

 

to create-conveyor [ file-name ] 

  ;; This procedure is used to setup conveyor sections by reading the input file "file-name". The format 

  ;; of the input is described in the Info tab and is listed below. This procedure is called on startup 

  ;; and can also be called to add additional sections at run time. 

  let x-in 0              ;; entrance xcor 

  let y-in 0              ;; entrance ycor 

  let c-length 0          ;; length of conveyor 

  let c-number 0          ;; conveyor number 

  let pathway 0           ;; direction (0 up, 90 right, 180 down, 270 left) 

  let conveyor-type 0     ;; 1 - basic, 2 - with diverter, 3 - with storage bin 

  set diverter-states []  ;; nested list of diverter states [[<L> <C> <R>][<L> <C> <R>]...] 

  let diverter-temp []    ;; temporary list of diverter states for one conveyor section 

  set no-conveyors 0 

  let i 0 
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  file-open file-name 

  while [ not file-at-end? ] 

  [ 

    set x-in file-read 

    set y-in file-read 

    set c-length file-read 

    set c-number file-read 

    set pathway file-read 

    set conveyor-type file-read 

    set diverter-temp lput file-read diverter-temp          ;; Left entry 

    set diverter-temp lput file-read diverter-temp          ;; Centre entry 

    set diverter-temp lput file-read diverter-temp          ;; Right entry 

    set diverter-states lput diverter-temp diverter-states  ;; nested diverter states entry 

    set diverter-temp []                                    ;; reset the temp variable 

    set i 0 

    set no-conveyors no-conveyors + 1 

    while [ i < c-length] 

    [ 

      ask patch x-in y-in 

      [ 

        (ifelse 

          i = 0 and conveyor-type < 3             ;; input sensor (conveyor belt) 

          [ 

            set pcolor 67 

            set in-sensor? TRUE 

            set plabel c-number 

            set plabel-color black 

          ] 

          i = 0 and conveyor-type = 3             ;; input sensor (storage bin) 

          [ 

            set pcolor 67 

            set in-sensor? TRUE 

            set storage-bin? TRUE 

            set inbound [] 

            set plabel c-number 

            set plabel-color black 

          ] 

          i = c-length - 2 and conveyor-type = 2  ;; output sensor 

          [ set pcolor 67 set out-sensor? TRUE ] 

          i = c-length - 1 and conveyor-type = 2  ;; diverter 

          [ set pcolor 45 set diverter? TRUE ] 

          i = c-length - 1 and conveyor-type = 3  ;; storage bin 

          [ set pcolor 15  

            set storage-bin? TRUE  

            set plabel c-number - 11 

            set plabel-color black 

          ] 

          i = c-length - 1 and conveyor-type = 1  ;; output sensor 

          [ set pcolor 67 set out-sensor? TRUE ] 

          [ set pcolor 9 ]                        ;; conveyor belt 

        ) 

        set conveyor-number c-number 

        set direction pathway 

        set operating? TRUE 

      ] 

      (ifelse 
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        pathway = 0   [ set y-in y-in + 1 ] 

        pathway = 90  [ set x-in x-in + 1 ] 

        pathway = 180 [ set y-in y-in - 1 ] 

        pathway = 270 [ set x-in x-in - 1 ] 

      ) 

      set i i + 1 

    ] 

    ;; Diverter 

    if conveyor-type = 2 

    [ 

      create-diverters 1 

      [ 

        (ifelse 

          pathway = 0   [ setxy x-in (y-in - 1) ] 

          pathway = 90  [ setxy (x-in - 1) y-in ] 

          pathway = 180 [ setxy x-in (y-in + 1) ] 

          pathway = 270 [ setxy (x-in + 1) y-in ] 

        ) 

        set shape "arrow" 

        set color black 

        set diverter-number c-number 

        set heading direction 

      ] 

    ] 

  ] 

  set i 1 

  let div-no 1 

  let no-div 0 

  while [ i <= no-conveyors ] 

  [ 

    ;; Number the diverters 

    ask patches with [ conveyor-number = i and diverter? = TRUE ] 

    [ 

      set div-number div-no 

      ask neighbors4 with [ out-sensor? = TRUE ] [ set div-number div-no ] 

      set no-div div-no 

      set div-no div-no + 1 

    ] 

    set i i + 1 

  ] 

  file-close 

end 

 

to new-part [ no-types ] 

  ;; This procedure is used to introduce new parts into the system. Parts are placed at the input sensor location of 

  ;; conveyor 1. Currently, three part types are possible ("a", "b", or "c") - the part types are selected randomly. 

  let x-parts 0 

  let y-parts 0 

  let p-type random no-types 

  let part-here? FALSE 

  ask patches with [ in-sensor? = TRUE and conveyor-number = 1 ] 

  [ 

    set x-parts pxcor 

    set y-parts pycor 

    if count parts-here > 0 [ set part-here? TRUE ] 

  ] 
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  if part-here? = FALSE 

  [ 

 

  create-parts 1 

  [ 

    set xcor x-parts 

    set ycor y-parts 

    set shape "box" 

    set time-in ticks 

    (ifelse 

      p-type = 0 [set color grey set part-type "a"] 

      p-type = 1 [set color orange set part-type "b"] 

      p-type = 2 [set color brown set part-type "c"] 

      p-type = 3 [set color turquoise set part-type "d"] 

      p-type = 4 [set color blue set part-type "e"] 

      p-type = 5 [set color magenta set part-type "f"] 

    ) 

  ] 

  ] 

end 

 

to setup-lagents 

  ;; This procedure is used to setup the self-management service agents 

  create-SMSAgents 1 

  [ 

    set incoming-queue [] 

    set proc-delay 0 

    set shape "fb" 

    set size 4 

    set xcor 0 

    set ycor -12 

    set color brown 

    set label "Agent-SMS" 

  ] 

  create-SCAgents 1 

  [ 

    set incoming-queue [] 

    set proc-delay 0 

    set shape "fb" 

    set size 4 

    set xcor -12 

    set ycor -6 

    set color cyan 

    set label "Agent-SC" 

  ] 

  create-SOAgents 1 

  [ 

    set incoming-queue [] 

    set proc-delay 0 

    set shape "fb" 

    set size 4 

    set xcor -12 

    set ycor -18 

    set color cyan 

    set label "Agent-SO" 

  ] 
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  create-SHAgents 1 

  [ 

    set incoming-queue [] 

    set proc-delay 0 

    set shape "fb" 

    set size 4 

    set xcor 12 

    set ycor -6 

    set color cyan 

    set label "Agent-SH" 

  ] 

  create-SPAgents 1 

  [ 

    set incoming-queue [] 

    set proc-delay 0 

    set shape "fb" 

    set size 4 

    set xcor 12 

    set ycor -18 

    set color cyan 

    set label "Agent-SP" 

  ] 

end 

 

to setup-hagents 

  ;;to create multiple agents 

  ;;turtle 5 Agent_Monitoring 

  create-turtles 1 

  [ 

    set shape "person" 

    set color red 

    set size 4 

    setxy -12 32 

    set label "Agent_Monitoring" 

    set label-color white 

  ] 

  ;;turtle 6 Agent_Analysis 

  create-turtles 1 

  [ 

    set shape "person" 

    set color orange 

    set size 4 

    setxy 0 32 

    set label "Agent_Analysis" 

    set label-color white 

  ] 

  ;;turtle 7 Agent_SelfLearning 

  create-turtles 1 

  [ 

    set shape "person" 

    set color yellow 

    set size 4 

    setxy 16 34 

    set label "Agent_SelfLearning" 

    set label-color white 

  ] 
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  ;;turtle 8 Agent_Planning 

  create-turtles 1 

  [ 

    set shape "person" 

    set color blue 

    set size 4 

    setxy 0 18 

    set label "Agent_Planning" 

    set label-color white 

  ] 

  ;;turtle 9 Agent_Execution 

  create-turtles 1 

  [ 

    set shape "person" 

    set color violet 

    set size 4 

    setxy -12 18 

    set label "Agent_Execution" 

    set label-color white 

  ] 

  ;;turtle 10 Agent_Knowledge 

  create-turtles 1 

  [ 

    set shape "person" 

    set color green 

    set size 4 

    setxy 12 25 

    set label "Agent_Knowledge" 

    set label-color white 

  ] 

end 

 

to setup-hconnections 

  ;;to create workflow links 

  ask turtle 5 [ create-link-to turtle 6 ] 

  ask turtle 6 [ create-link-to turtle 7 ] 

  ask turtle 7 [ create-link-to turtle 6 ] 

  ask turtle 6 [ create-link-to turtle 8 ] 

  ask turtle 8 [ create-link-to turtle 6 ] 

  ask turtle 6 [ create-link-to turtle 9 ] 

  ask turtle 9 [ create-link-to turtle 6 ] 

  ask turtle 8 [ create-link-to turtle 9 ] 

 

  ;;to create database links 

  ask turtle 10 [ create-link-to turtle 5 ] 

  ask turtle 10 [ create-link-to turtle 6 ] 

  ask turtle 10 [ create-link-to turtle 7 ] 

  ask turtle 10 [ create-link-to turtle 8 ] 

  ask turtle 10 [ create-link-to turtle 9 ] 

  ask turtle 10 [ create-link-from turtle 5 ] 

  ask turtle 10 [ create-link-from turtle 6 ] 

  ask turtle 10 [ create-link-from turtle 7 ] 

  ask turtle 10 [ create-link-from turtle 8 ] 

  ask turtle 10 [ create-link-from turtle 9 ] 

 

end 
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to diverter-control 

  ;; This procedure checks actuates the exit diverter based on the part type. 

  ;; First, a check is performed to see if there is an exact match (indicating that the 

  ;; direction corresponds to the storage bin location). If a direct match is not found, 

  ;; a check is performed to see if the part type is included in one of the remaining paths. 

  ;; Note: This code will need to be modified so that the part will continue along the 

  ;; conveyor if no matches are found. 

  let diverted? FALSE 

  let next-diverter 0 

  ask patch-ahead 1 [set next-diverter conveyor-number] 

  (ifelse 

    ;; Exact matches (i.e., arrived at storage bin) 

    part-type = item 0 connections and diverted? = FALSE 

    [ actuate-diverter next-diverter ((heading - 90) mod 360) set diverted? TRUE ] 

    part-type = item 1 connections and diverted? = FALSE 

    [ actuate-diverter next-diverter (heading) set diverted? TRUE ] 

    part-type = item 2 connections and diverted? = FALSE 

    [ actuate-diverter next-diverter ((heading + 90) mod 360) set diverted? TRUE ] 

    ;; Part type included in one of the remaining paths 

    ;member? part-type item 0 connections and diverted? = FALSE 

    part-type = first item 0 connections and diverted? = FALSE 

    [ actuate-diverter next-diverter ((heading - 90) mod 360) set diverted? TRUE ] 

    ;member? part-type item 1 connections and diverted? = FALSE 

    part-type = first item 1 connections and diverted? = FALSE 

    [ actuate-diverter next-diverter (heading) set diverted? TRUE ] 

    ;member? part-type item 2 connections and diverted? = FALSE 

    part-type = first item 2 connections and diverted? = FALSE 

    [ actuate-diverter next-diverter ((heading + 90) mod 360) set diverted? TRUE ] 

    ;; Part type is not included (follow the path with the most options) 

    [ 

      let part-path find-longest connections 

      (ifelse 

        part-path = 0 [ actuate-diverter next-diverter ((heading - 90) mod 360) ] 

        part-path = 1 [ actuate-diverter next-diverter (heading) ] 

        part-path = 2 [ actuate-diverter next-diverter ((heading + 90) mod 360) ] 

      ) 

    ] 

   ) 

end 

 

to actuate-diverter [ d-number d-position ] 

  ;; This procedure actuates the direction of the diverter <d-number> to position <d-position>. The direction of the 

diverter 

  ;; patch is the key parameter for control here. However, a diverter turtle is also used to show the diverter direction. 

  ask patches with [ diverter? = TRUE and conveyor-number = d-number ] [ set direction d-position ] 

  ask diverters with [ diverter-number = d-number ] [ set heading direction ] 

end 

 

to store-part 

  ;; This procedure is used to collect parts in the storage bin 

  ;; Currently, parts are just removed; however, eventually statistics can be collected by this procedure. 

  ifelse part-at-bin = 0 

  [ set part-at-bin part-type ] 

  [ 

    if part-type != part-at-bin [ show (word "B(" conveyor-number "): " part-at-bin " exited: " part-type) ] 
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  ] 

  set wait-time ticks - time-in 

  calculate-wait-time wait-time 

  die 

end 

 

to-report find-longest [ connect-list ] 

  ;; This procedure is used to check the "connections" list for the path with the most options. 

  let i 0 

  let longest-path 0 

  let longest-index 0 

  while [ i < 3 ] 

  [ 

    if length item i connect-list > longest-path 

    [ 

      set longest-index i 

      set longest-path length item i connect-list 

    ] 

    set i i + 1 

  ] 

  report longest-index 

end 

 

to send-message [ sender receiver performative content ] 

  ;; This procedure is used to send agent-to-agent FIPA messages. 

  ;; The sender and receiver variables are the "who" for the self-management agents: 

  ;;   0 = Agent-SMS 

  ;;   1 = Agent-SC 

  ;;   2 = Agent-SO 

  ;;   3 = Agent-SH 

  ;;   4 = Agent-SP 

  ask turtle sender 

  [ 

    let somemsg create-message performative 

    set somemsg add-receiver receiver somemsg 

    set somemsg add-content content somemsg 

    if show_messages [ show (word ticks ": " somemsg) ] 

    send somemsg 

  ] 

end 

 

to manage-messages 

  ;; This procedure is used by the self-management to manage incoming messages. 

  ask turtle 0 ;; Agent-SMS 

  [ 

    (ifelse 

      length incoming-queue > 0 and member? "completed" get-content get-message-no-remove 

      [ 

        send-message who 1 "inform" "acknowledge" 

        remove-msg 

      ] 

      length incoming-queue > 0 and member? "inform" get-performative get-message-no-remove 

      [ remove-msg ] 

    ) 

  ] 

  ask turtle 1 ;; Agent-SC 
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  [ 

    (ifelse 

      length incoming-queue > 0 and member? "new part type" get-content get-message-no-remove and proc-delay = 

0 

      ;length incoming-queue > 0 and member? "new part type" get-content get-message-no-remove 

      [ 

        processing-delay TRUE 

        send-message who 0 "inform" "processing request" 

        ask my-links [die] 

        create-link-to turtle 0 

        ask my-links 

        [ 

          set color green 

          set label "inform: processing request" 

        ] 

      ] 

      ;length incoming-queue > 0 and member? "new part type" get-content get-message-no-remove and timer > proc-

delay 

      length incoming-queue > 0 and member? "new part type" get-content get-message-no-remove and bernoulli 

Agent-Delay 

      [ add-storage-bin ] 

      ;length incoming-queue > 0 and member? "re-route parts" get-content get-message-no-remove and timer > proc-

delay 

      length incoming-queue > 0 and member? "re-route parts" get-content get-message-no-remove and bernoulli 

Agent-Delay 

      [ add-storage-bin ] 

      length incoming-queue > 0 and member? "inform" get-performative get-message-no-remove 

      [ remove-msg ] 

    ) 

  ] 

  ask turtle 2 ;; Agent-SO 

  [ 

    if length incoming-queue > 0 

    [ 

      ;show (word "Agent-SO received message from " identify-sender get-sender get-message-no-remove) 

      ;show (word get-performative get-message-no-remove ": " get-content get-message) 

    ] 

  ] 

  ask turtle 3 ;; Agent-SH 

  [ 

    if length incoming-queue > 0 

    [ 

      ;show (word "Agent-SH received message from " identify-sender get-sender get-message-no-remove) 

      ;show (word get-performative get-message-no-remove ": " get-content get-message) 

    ] 

  ] 

  ask turtle 4 ;; Agent-SP 

  [ 

    (ifelse 

      length incoming-queue > 0 and member? "failure" get-content get-message-no-remove and proc-delay = 0 

      [ 

        processing-delay TRUE 

        send-message who 0 "inform" "processing request" 

        ask my-links [die] 

        create-link-to turtle 0 

        ask my-links 
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        [ 

          set color green 

          set label "inform: processing request" 

        ] 

      ] 

      ;length incoming-queue > 0 and member? "failure" get-content get-message-no-remove and timer > proc-delay 

      length incoming-queue > 0 and member? "failure" get-content get-message-no-remove and ticks > proc-delay 

      [ request-re-route ] 

      length incoming-queue > 0 and member? "inform" get-performative get-message-no-remove 

      [ remove-msg ] 

    ) 

  ] 

end 

 

to-report identify-sender [ sender ] 

  (ifelse 

    sender = "0" [ report "Agent-SMS" ] 

    sender = "1" [ report "Agent-SC" ] 

    sender = "2" [ report "Agent-SO" ] 

    sender = "3" [ report "Agent-SH" ] 

    sender = "4" [ report "Agent-SP" ] 

   ) 

end 

 

to conveyor-failure [ c-number ] 

  ;; This procedure is used to change the state of a conveyor section to "failed": 

  ;;   c-number: conveyor section number 

  ;show (word "Diverter States (pre): " diverter-states) 

  ask patches with [ conveyor-number = c-number ] 

  [ 

    ;update-diverter-state c-number direction 

    set operating? FALSE 

    set pcolor pcolor - 2 

  ] 

  ask patches with [ conveyor-number = c-number and out-sensor? = TRUE] 

  [ 

    update-diverter-state c-number direction 

  ] 

  ;show (word "Diverter States (post): " diverter-states) 

end 

 

to processing-delay [ start? ] 

  ;; This procedure is used to simulate processing delay 

  ifelse start? = TRUE 

  [ 

;    set proc-delay timer + random-float ProcessingDelay 

;    if show_messages = TRUE [ show (word "Processing Delay = " (proc-delay - timer) " seconds") ] 

    set proc-delay ticks + random ProcessingDelay 

    if show_messages = TRUE [ show (word "Processing Delay = " (proc-delay - ticks) " ticks") ] 

  ] 

  [ set proc-delay 0 ] 

end 

 

to-report downstream-conveyor [ orientation ] 

  ;; This procedure is used to identify the conveyor section downstream from the calling 

  ;; conveyor section in diverter direction "orientation". This procedure is called 
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  ;; from the diverter patch of the conveyor section. 

  ;; **** this procedure has an error: if there are two conveyor sections with the same direction 

  ;;      (e.g., at a T intersection), it cannot determine which is the downstream. To correct this 

  ;;      it is assumed that the true downstream conveyor section has a higher conveyor number. 

  let my-number conveyor-number 

  let downstream 0 

  let last-downstream 0 

  ask neighbors4 

  [ 

    if conveyor-number > 0  ;; blank patches have conveyor-number = 0 

    [ 

      if direction = orientation and conveyor-number != my-number 

      [ 

        if conveyor-number > last-downstream [ set downstream conveyor-number ] 

      ] 

    ] 

  ] 

  report downstream 

end 

 

to update-diverter-state [ failed orientation ] 

  ;; This procedure is used to update the diverter-states list when a conveyor section failure occurs. 

  ;; - failed section: diverter set to [0 0 0] 

  ;; - upstream section: diverter direction leading to failed conveyor section set to 0 

  ;; - downstream section: diverter set to [0 0 0] 

  let new-state [] 

  let difference 0 

  ;; 1. set failed conveyor section's diverter to [0 0 0] 

  set diverter-states remove-item ( failed - 1 ) diverter-states 

  set diverter-states insert-item ( failed - 1 ) diverter-states [0 0 0] 

  ;; 2. find upstream conveyor section and set its diverter to block entrance to the failed section 

  ask patches with [ diverter? = TRUE ] 

  [ 

    if downstream-conveyor orientation = failed 

    [ 

      ;show conveyor-number 

      ;show direction 

      set new-state item ( conveyor-number - 1 ) diverter-states 

      ;show new-state 

      let my-number conveyor-number 

      let my-direction 0 

      ask patches with [conveyor-number = my-number and out-sensor? = TRUE] [set my-direction direction] 

      set difference orientation - my-direction 

      ;show difference 

      (ifelse 

        difference = -90 or difference = 270 

        [ 

          ;show "L" 

          set new-state remove-item 0 new-state 

          set new-state insert-item 0 new-state 0 

          set diverter-states remove-item ( conveyor-number - 1 ) diverter-states 

          set diverter-states insert-item ( conveyor-number - 1 ) diverter-states new-state 

          ;show new-state 

        ] 

        difference = 0 

        [ 
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          ;show "C" 

          set new-state remove-item 1 new-state 

          set new-state insert-item 1 new-state 0 

          set diverter-states remove-item ( conveyor-number - 1 ) diverter-states 

          set diverter-states insert-item ( conveyor-number - 1 ) diverter-states new-state 

          ;show new-state 

        ] 

        difference = 90 or difference = -270 

        [ 

          ;show "R" 

          set new-state remove-item 2 new-state 

          set new-state insert-item 2 new-state 0 

          set diverter-states remove-item ( conveyor-number - 1 ) diverter-states 

          set diverter-states insert-item ( conveyor-number - 1 ) diverter-states new-state 

          ;show new-state 

        ] 

      ) 

    ] 

  ] 

  ;; 3. set downstream conveyor section's diverter to [0 0 0] 

  ;; - for now, just go with the next index (ideally the downstream-conveyor procedure should be used) 

  set diverter-states remove-item failed diverter-states 

  set diverter-states insert-item failed diverter-states [0 0 0] 

 

end 

 

to config-diverters [ no-part-types ] 

  ;; This procedure is used to setup the diverter controllers. 

  ;; - The output sensor, out-sensor?, of the conveyor preceding the diverter checks the part type 

  ;; - The diverter is setup based on its outputs (i.e., do not enter, storage bin, next conveyor) 

  ;; This procedure takes the number of part types as input and assigns a unique "a-z" letter to each type. 

  ;; The possible diverter states are defined by the diverter-states nested list: 

  ;;   [[<L><C><R>][<L><C><R>] ... [<L><C><R>]] 

  ;; where L=left, C=centre, R=right for each diverter and 0 = do not enter, 1 = part bin, and 2 = next conveyor 

  ;; This procedure sets each diverter's controller by assigning parts to the <L>, <C>, and <R> slots of the diverter's 

  ;; connections variable: i.e., "-" do not enter, "<single part type ... e.g., "a">" for storage bin, <all-types> for next 

conveyor 

  let all-types "abcdefghijklmnopqrstuvwxyz" 

  set part-types substring all-types 0 no-part-types 

  let assigned 0 

  let i 1 

  ;; Reset all of the diverter controls (i.e., the connections variables) 

  ask patches with [ out-sensor? = TRUE ] [ set connections ["?" "?" "?"] ] 

  ;; 1. Read diverter-states "0" values and set corresponding connections to "-" 

  ;ask patches with [ out-sensor? = TRUE ] 

  while [ i <= length diverter-states ] 

  [ 

    ask patches with [ out-sensor? = TRUE and conveyor-number = i ] 

    [ 

      if item 0 item ( conveyor-number - 1) diverter-states = 0 

      [ 

        set connections remove-item 0 connections 

        set connections insert-item 0 connections "-" 

      ] 

      if item 1 item ( conveyor-number - 1) diverter-states = 0 

      [ 
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        set connections remove-item 1 connections 

        set connections insert-item 1 connections "-" 

      ] 

      if item 2 item ( conveyor-number - 1) diverter-states = 0 

      [ 

        set connections remove-item 2 connections 

        set connections insert-item 2 connections "-" 

      ] 

      ;show (word "Diverter " conveyor-number ": " connections) 

    ] 

    set i i + 1 

  ] 

  ;; 2. Read diverter-states "1" values and set corresponding connections to each part type 

  ;ask patches with [ out-sensor? = TRUE ] 

  (ifelse 

    Optimize-Path = FALSE 

    [ 

      set i 1 

      while [ i <= length diverter-states ] 

      [ 

        ask patches with [ out-sensor? = TRUE and conveyor-number = i ] 

        [ 

          (ifelse 

            item 0 item ( conveyor-number - 1) diverter-states = 1 and assigned < no-part-types 

            [ 

              set connections remove-item 0 connections 

              set connections insert-item 0 connections (item assigned part-types) 

              set assigned assigned + 1 

            ] 

            item 0 item ( conveyor-number - 1) diverter-states = 1 and assigned = no-part-types 

            [ 

              set connections remove-item 0 connections 

              set connections insert-item 0 connections "-" 

            ] 

          ) 

          (ifelse 

            item 1 item ( conveyor-number - 1) diverter-states = 1 and assigned < no-part-types 

            [ 

              set connections remove-item 1 connections 

              set connections insert-item 1 connections (item assigned part-types) 

              set assigned assigned + 1 

            ] 

            item 1 item ( conveyor-number - 1) diverter-states = 1 and assigned = no-part-types 

            [ 

              set connections remove-item 1 connections 

              set connections insert-item 1 connections "-" 

            ] 

          ) 

          (ifelse 

            item 2 item ( conveyor-number - 1) diverter-states = 1 and assigned < no-part-types 

            [ 

              set connections remove-item 2 connections 

              set connections insert-item 2 connections (item assigned part-types) 

              set assigned assigned + 1 

            ] 

            item 2 item ( conveyor-number - 1) diverter-states = 1 and assigned = no-part-types 
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            [ 

              set connections remove-item 2 connections 

              set connections insert-item 2 connections "-" 

            ] 

          ) 

          ;show (word "Diverter " conveyor-number ": " connections) 

        ] 

        set i i + 1 

      ] 

    ] 

    ;; **** is there a way of assigning to more than one out-sensor? (without exceeding assigned) 

    Optimize-Path = TRUE 

    [ 

      set i 1 

      while [ i <= length diverter-order ] 

      [ 

        ask patches with [ out-sensor? = TRUE and div-number = i ] 

        [ 

          if item 0 item ( conveyor-number - 1) diverter-states = 1 and assigned < no-part-types 

          [ 

            set connections remove-item 0 connections 

            set connections insert-item 0 connections (item assigned part-types) 

            ;set assigned assigned + 1 

          ] 

          if item 1 item ( conveyor-number - 1) diverter-states = 1 and assigned < no-part-types 

          [ 

            set connections remove-item 1 connections 

            set connections insert-item 1 connections (item assigned part-types) 

            ;set assigned assigned + 1 

          ] 

          if item 2 item ( conveyor-number - 1) diverter-states = 1 and assigned < no-part-types 

          [ 

            set connections remove-item 2 connections 

            set connections insert-item 2 connections (item assigned part-types) 

            ;set assigned assigned + 1 

          ] 

        ] 

        set assigned assigned + 1 

        set i i + 1 

      ] 

      set i 1 

      while [ i <= length diverter-order ] 

      [ 

        ask patches with [ out-sensor? = TRUE and div-number = i ] 

        [ 

          if item 0 item ( conveyor-number - 1) diverter-states = 1 and item 0 connections = "?" 

          [ 

            set connections remove-item 0 connections 

            set connections insert-item 0 connections "-" 

          ] 

          if item 1 item ( conveyor-number - 1) diverter-states = 1 and item 1 connections = "?" 

          [ 

            set connections remove-item 1 connections 

            set connections insert-item 1 connections "-" 

          ] 

          if item 2 item ( conveyor-number - 1) diverter-states = 1 and item 2 connections = "?" 
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          [ 

            set connections remove-item 2 connections 

            set connections insert-item 2 connections "-" 

          ] 

        ] 

        set i i + 1 

      ] 

    ] 

  ) 

  ;; 3. Read diverter-states "2" values 

  ;; **** possible update - if more than one "2", look to see what is down each and prioritize: e.g., 

  ;;      - "a" on left, "b" on centre: "abc" left, "bac" centre 

  ;; **** this section needs to be updated **** 

  ;; - check downstream conveyor section output sensor 

  ;;   - e.g., ask patches with [ conveyor-number = 2 and diverter? = TRUE ] [ show downstream-conveyor 90 ] 

  ;; - is there a "2" (pass through) variable? 

  ;;   - YES: set to all remaining part-types 

  ;;   - NO: set to all "1" part types of the downstream section 

  set i 1 

  let c-number 0 

  let c-direction 0 

  let index 0 

  let downstream [] 

  let through-path? TRUE 

  let stored-parts "" 

  while [ i <= length diverter-states ] 

  [ 

    ask patches with [ out-sensor? = TRUE and conveyor-number = i ] 

    [ 

      set c-number conveyor-number 

      set c-direction direction 

      if item 0 item ( conveyor-number - 1) diverter-states = 2 

      [ 

        ;; This code is used to get the downstream diverter states list 

        ask patches with [ conveyor-number = i and diverter? = TRUE ] 

        [ 

          set index downstream-conveyor (diverter-direction c-direction 0) 

          ask patches with [ conveyor-number = index and out-sensor? = TRUE ] 

          [ 

            set downstream connections 

            set stored-parts diverted-parts 

          ] 

          ;show (word "D " c-number " Left " index " " item (index - 1) diverter-states " " downstream " " stored-parts) 

          ifelse member? 2 item (index - 1) diverter-states 

          [set through-path? TRUE] 

          [set through-path? FALSE] 

        ] 

        (ifelse 

          through-path? 

          [ 

            set connections remove-item 0 connections 

            set connections insert-item 0 connections (remove diverted-parts part-types) 

          ] 

          [ 

            set connections remove-item 0 connections 

            set connections insert-item 0 connections stored-parts 
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          ] 

        ) 

      ] 

      if item 1 item ( conveyor-number - 1) diverter-states = 2 

      [ 

        ask patches with [ conveyor-number = i and diverter? = TRUE ] 

        [ 

          set index downstream-conveyor (diverter-direction c-direction 1) 

          ask patches with [ conveyor-number = index and out-sensor? = TRUE ] 

          [ 

            set downstream connections 

            set stored-parts diverted-parts 

          ] 

          ;show (word "D " c-number " Centre " index " " item (index - 1) diverter-states " " downstream " " stored-

parts) 

          ifelse member? 2 item (index - 1) diverter-states 

          [set through-path? TRUE] 

          [set through-path? FALSE] 

        ] 

        (ifelse 

          through-path? 

          [ 

            set connections remove-item 1 connections 

            set connections insert-item 1 connections (remove diverted-parts part-types) 

          ] 

          [ 

            set connections remove-item 1 connections 

            set connections insert-item 1 connections stored-parts 

          ] 

        ) 

      ] 

      if item 2 item ( conveyor-number - 1) diverter-states = 2 

      [ 

        ask patches with [ conveyor-number = i and diverter? = TRUE ] 

        [ 

          set index downstream-conveyor (diverter-direction c-direction 2) 

          ask patches with [ conveyor-number = index and out-sensor? = TRUE ] 

          [ 

            set downstream connections 

            set stored-parts diverted-parts 

          ] 

          ;show (word "D " c-number " Right " index " " item (index - 1) diverter-states " " downstream " " stored-parts) 

          ifelse member? 2 item (index - 1) diverter-states 

          [set through-path? TRUE] 

          [set through-path? FALSE] 

        ] 

        (ifelse 

          through-path? 

          [ 

            set connections remove-item 2 connections 

            set connections insert-item 2 connections (remove diverted-parts part-types) 

          ] 

          [ 

            set connections remove-item 2 connections 

            set connections insert-item 2 connections stored-parts 

          ] 
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        ) 

      ] 

      ;show (word "Diverter " conveyor-number ": " connections) 

    ] 

    set i i + 1 

  ] 

end 

 

to-report bernoulli [probability] 

  ;; This procedure enables the Bernoulli distribution: i.e., a discrete probability distribution 

  ;; with two outcomes (heads/tails, success/failure, true/false). 

  report ifelse-value (random-float 1 < probability) [true] [false] 

end ;; end of bernoulli 

 

to-report diverter-direction [ c-direction d-position ] 

  ;; This procedure is used to return the "Left", "Centre", or "Right" diverter direction based on 

  ;; the conveyor direction (c-direction) and the diverter position (d-position) 

  (ifelse 

    d-position = 0 [ set c-direction c-direction - 90 ]  ;; Left 

    d-position = 2 [ set c-direction c-direction + 90 ]  ;; Right 

  ) 

  if c-direction = -90 [ set c-direction 270 ] 

  if c-direction = 360 [ set c-direction 0 ] 

  report c-direction 

end 

 

to-report diverted-parts 

  ;; This procedure returns the list of part types that are diverted. 

  ;; It is a patch context procedure that is called at a conveyor's output sensor. 

  ;show (word "D: " conveyor-number " States: " item (conveyor-number - 1) diverter-states " Connections: " 

connections) 

  let i 0 

  let diverted "" 

  while [ i < 3 ] 

  [ 

    if item i item (conveyor-number - 1) diverter-states = 1 

    [ 

      set diverted word diverted item i connections 

    ] 

    set i i + 1 

  ] 

  report diverted 

end 

 

to identify-upstream 

  ;; This procedure is used to identify each diverter's upstream diverters 

  ;; It appears to work in most cases. There are still some errors when a conveyor section fails. 

  let i 1 

  let no-div count patches with [ div-number > 0 ] 

  let conv-no 0 

  let temp-inbound [] 

  set i 1 

  while [ i <= no-div ] 

  [ 

    ask patches with [ div-number = i ] 

    [ 
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      set temp-inbound [] 

      ask neighbors4 with [ out-sensor? = TRUE ] 

      [ 

        ;show conveyor-number 

        set conv-no conveyor-number 

        ask patches with [ conveyor-number = conv-no and in-sensor? = TRUE and operating? = TRUE ] 

        [ 

          ask neighbors4 with [ diverter? = TRUE and operating? = TRUE] 

          [ 

            set temp-inbound lput div-number temp-inbound 

          ] 

        ] 

      ] 

      set inbound temp-inbound 

      show (word "Diverter " i ": " inbound) 

    ] 

    set i i + 1 

  ] 

end 

 

to-report through-list [ c-list ] 

  ;; This procedure determines the part list that can pass through the "through parts" position of a diverter. 

  ;; **** sort in order of downstream? 

  let i 0 

  let t-list part-types 

  let temp "" 

  while [ i < length part-types ] 

  [ 

    if member? item i part-types c-list 

    [ 

      set temp item i part-types 

      set t-list remove temp t-list 

      set t-list (word temp t-list) 

    ] 

    set i i + 1 

  ] 

  report t-list 

end 

 

to diverter-config 

  ;; This is a new diverter configuration procedure. The procedure cycles through each of the diverters to setup their 

  ;; connections list (that is used by the diverter-control procedure to control the diverter position when a part 

arrives). 

  ;; The diverter-states list is used to setup each of the diverter connections lists: (1) "no entry" positions, (2) "storage 

  ;; bin" positions, and (3) "through parts" positions. 

  let all-types "abcdefghijklmnopqrstuvwxyz" 

  set part-types substring all-types 0 Number-Part-Types 

  let assigned 0 

  let i 1 

  let j 0 

  let assigned? FALSE 

  ;; Reset all of the diverter controls (i.e., the connections variables) 

  ask patches with [ out-sensor? = TRUE ] [ set connections ["?" "?" "?"] ] 

  ;; 1. "No Entry" diverter positions 

  while [ i <= length diverter-order ] 

  [ 
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    ask patches with [ out-sensor? = TRUE and div-number = i ] 

    [ 

      if item 0 item ( conveyor-number - 1 ) diverter-states = 0 

      [ 

        set connections remove-item 0 connections 

        set connections insert-item 0 connections "-" 

      ] 

      if item 1 item ( conveyor-number - 1 ) diverter-states = 0 

      [ 

        set connections remove-item 1 connections 

        set connections insert-item 1 connections "-" 

      ] 

      if item 2 item ( conveyor-number - 1 ) diverter-states = 0 

      [ 

        set connections remove-item 2 connections 

        set connections insert-item 2 connections "-" 

      ] 

    ] 

    set i i + 1 

  ] 

  ;; 2. "Storage Bin" diverter positions 

  let no-divs 0 

  let divs-assigned 0 

  while [ j < length part-types ] 

  [ 

    set i 1 

    set assigned? FALSE 

    ;show (word "Part: " item j part-types) 

    while [ i <= length diverter-order ] 

    [ 

      set no-divs count patches with [ out-sensor? = TRUE and div-number = item ( i - 1 ) diverter-order ] 

      set divs-assigned 0 

      ask patches with [ out-sensor? = TRUE and div-number = item ( i - 1 ) diverter-order ] 

      [ 

        if item 0 item ( conveyor-number - 1 ) diverter-states = 1 and item 0 connections = "?" and assigned? = FALSE 

        [ 

          set connections remove-item 0 connections 

          set connections insert-item 0 connections item j part-types 

          set divs-assigned divs-assigned + 1 

          if divs-assigned = no-divs [ set assigned? TRUE ] 

        ] 

        if item 1 item ( conveyor-number - 1 ) diverter-states = 1 and item 1 connections = "?" and assigned? = FALSE 

        [ 

          set connections remove-item 1 connections 

          set connections insert-item 1 connections item j part-types 

          set divs-assigned divs-assigned + 1 

          if divs-assigned = no-divs [ set assigned? TRUE ] 

        ] 

        if item 2 item ( conveyor-number - 1 ) diverter-states = 1 and item 2 connections = "?" and assigned? = FALSE 

        [ 

          set connections remove-item 2 connections 

          set connections insert-item 2 connections item j part-types 

          set divs-assigned divs-assigned + 1 

          if divs-assigned = no-divs [ set assigned? TRUE ] 

        ] 

        ;show (word "D(" div-number "): " connections) 
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      ] 

      set i i + 1 

    ] 

    set j j + 1 

  ] 

  ;; 3. "Through Parts" diverter positions 

  let downstream 0 

  let conv-direction 0 

  let t-list "" 

  ;set i 1 

  ;while [ i <= length diverter-order ] 

  set i length diverter-order 

  while [ i >= 0 ] 

  [ 

    ask patches with [ out-sensor? = TRUE and div-number = i ] 

    [ 

      if item 0 item ( conveyor-number - 1) diverter-states = 2 or ( item 0 item ( conveyor-number - 1) diverter-states 

= 1 and item 0 connections = "?" ) 

      [ 

        set conv-direction diverter-direction direction 0 

        ask patches with [ diverter? = TRUE and div-number = i ] 

        [ 

          set downstream downstream-conveyor conv-direction 

          ask patches with [ out-sensor? = TRUE and conveyor-number = downstream ] [ set t-list through-list 

connections ] 

        ] 

        set connections remove-item 0 connections 

        set connections insert-item 0 connections t-list 

        ;show (word "D(" div-number "): " connections) 

        ;show (word "Diverter: " div-number " Downstream: " downstream " Through List: " t-list) 

      ] 

      if item 1 item ( conveyor-number - 1) diverter-states = 2 or ( item 1 item ( conveyor-number - 1) diverter-states 

= 1 and item 1 connections = "?" ) 

      [ 

        set conv-direction diverter-direction direction 1 

        ask patches with [ diverter? = TRUE and div-number = i ] 

        [ 

          set downstream downstream-conveyor conv-direction 

          ask patches with [ out-sensor? = TRUE and conveyor-number = downstream ] [ set t-list through-list 

connections ] 

        ] 

        set connections remove-item 1 connections 

        set connections insert-item 1 connections t-list 

        ;show (word "D(" div-number "): " connections) 

        ;show (word "Diverter: " div-number " Downstream: " downstream " Through List: " t-list) 

      ] 

      if item 2 item ( conveyor-number - 1) diverter-states = 2 or ( item 2 item ( conveyor-number - 1) diverter-states 

= 1 and item 2 connections = "?" ) 

      [ 

        set conv-direction diverter-direction direction 2 

        ask patches with [ diverter? = TRUE and div-number = i ] 

        [ 

          set downstream downstream-conveyor conv-direction 

          ask patches with [ out-sensor? = TRUE and conveyor-number = downstream ] [ set t-list through-list 

connections ] 

        ] 
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        set connections remove-item 2 connections 

        set connections insert-item 2 connections t-list 

        ;show (word "D(" div-number "): " connections) 

        ;show (word "Diverter: " div-number " Downstream: " downstream " Through List: " t-list) 

      ] 

      ;set connections clean-connections connections 

      set connections clean-up connections 

    ] 

    ;set i i + 1 

    set i i - 1 

  ] 

end 

 

to-report clean-connections [ c-list ] 

  ;; This procedure is used by diverter-config to order the "through parts" list so that the downstream diverters 

  ;; are prioritized. 

  let i 0 

  let j 0 

  let temp-first "" 

  let temp-item "" 

  while [ i < length c-list ] 

  [ 

    set temp-first first item i c-list 

    ;show (word "(" i "):" temp-first) 

    set j 0 

    while [ j < length c-list ] 

    [ 

      ;if j != i and temp-first != "-" and length item j c-list > 2 

      if j != i and temp-first != "-" 

      [ 

        set temp-item item j c-list 

        set temp-item remove temp-first temp-item 

        set c-list remove-item j c-list 

        set c-list insert-item j c-list temp-item 

      ] 

      set j j + 1 

    ] 

    set i i + 1 

  ] 

  report c-list 

end 

 

to-report clean-up [ c-list ] 

  let i 0 

  let j 0 

  let temp "" 

  let temp-item "" 

  while [ i < length c-list ] 

  [ 

    set temp item i c-list 

    if length temp = 1 and member? temp part-types 

    [ 

      ;show (word "single at (" i "): " temp) 

      set j 0 

      while [ j < 3 ] 

      [ 
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        if j != i and member? temp item j c-list 

        [ 

          set temp-item item j c-list 

          set temp-item remove temp temp-item 

          set c-list remove-item j c-list 

          set c-list insert-item j c-list temp-item 

        ] 

        set j j + 1 

      ] 

    ] 

    set i i + 1 

  ] 

  ;; **** next sort in order of downstream? **** 

  report c-list 

end 

 

to calculate-wait-time [ time-in-system ] 

  let sum-of-times ave-wait-time * parts-completed 

  set sum-of-times sum-of-times + time-in-system 

  set parts-completed parts-completed + 1 

  set ave-wait-time sum-of-times / parts-completed 

end 

 

to calculate-parts-in-system 

  let parts-in-system count parts 

  let sum-of-parts 0 

  if ticks > 0 

  [ 

    set sum-of-parts ave-no-parts * ( ticks - 1 ) 

    set ave-no-parts ( sum-of-parts + parts-in-system ) / ticks 

  ] 

End 

Appendix A.2 NetLogo Routing Optimization Model 

;; this separate model for routing optimization by Agent_SO 

;; a diverters.txt file below is read in running the model 

;; 8 

;; 1 0 

;; 1 1 

;; 1 2 

;; 1 3 

;; 2 2 4 

;; 2 1 5 

;; 1 6 

;; 1 7 

 

breed [ entrances entrance ] 

breed [ diverters diverter ] 

 

globals 

[ 

  no-diverters 

] 
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entrances-own 

[ 

  to-entrance 

] 

 

diverters-own 

[ 

  inbound 

  to-entrance 

] 

 

to setup 

  clear-all 

  reset-ticks 

  create-entrances 1 

  [ 

    set color blue 

    set shape "circle" 

    set size 1 

    setxy 0 (max-pycor - Spacing / 2) 

    set to-entrance 0 

  ] 

  setup-diverters 

end 

 

to go 

  ask diverters with [ length inbound > 0 ] 

  [ 

    space-out 

    set to-entrance distance entrance 0 

    ;set label (word who "(" precision to-entrance 1 ")") 

    set label who 

    ;let new-heading get-heading 

    let new-heading get-direction 

    if (item 0 new-heading) > Spacing 

    [ 

      set heading item 1 new-heading 

      fd 1 

    ] 

  ] 

  ;ask entrances [ set label closest-diverters ] 

  ask patch 3 14 [ set plabel closest-diverters ] 

  tick 

end 

 

to setup-diverters 

  file-open "diverters.txt" 

  let i 1  ;; diverter index 

  let j 1  ;; inbound connection index 

  let n 0  ;; number of inbound connections 

  set no-diverters file-read 

  create-diverters no-diverters 

  [ 

    set color green 

    set shape "triangle 2" 

    set size 1.5 
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    set to-entrance distance entrance 0 

    ;set label (word who "(" precision to-entrance 1 ")") 

    set inbound [] 

    set to-entrance distance entrance 0 

  ] 

  ;layout-circle diverters 15 

  let d-spacing max-pxcor * 2 / (no-diverters + 1) 

  set i 1 

  while [ i <= no-diverters ] 

  [ 

    ask diverter i [ setxy (i * d-spacing + -1 * max-pxcor) (Spacing / 2 - max-pycor) ] 

    set i i + 1 

  ] 

  set i 1 

  while [ not file-at-end? ] 

  [ 

    set n file-read 

    set j 0 

    while [ j < n ] 

    [ 

      ask diverter i [ set inbound lput file-read inbound ] 

      set j j + 1 

    ] 

    set i i + 1 

  ] 

  set i 1 

  while [ i <= no-diverters ] 

  [ 

    ask diverter i 

    [ 

      set j 0 

      while [ j < length inbound ] 

      [ 

        create-link-to turtle (item j inbound) 

        set j j + 1 

      ] 

    ] 

    set i i + 1 

  ] 

  file-close 

end 

 

to space-out 

  let i 0 

  while [ i <= no-diverters ] 

  [ 

    if i != who 

    [ 

      if distance turtle i <= ( Spacing / 2 ) 

      [ 

        face turtle i 

        rt 180 

        fd 1 

      ] 

    ] 

    set i i + 1 
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  ] 

end 

 

to-report get-heading 

  let i 0 

  let headings [] 

  let x-cor 0 

  let y-cor 0 

  while [ i < length inbound ] 

  [ 

    ask turtle (item i inbound) 

    [ 

      set x-cor x-cor + xcor 

      set y-cor y-cor + ycor 

    ] 

    set i i + 1 

  ] 

  set x-cor x-cor / length inbound 

  set y-cor y-cor / length inbound 

  ;show (word "x_mean = " x-cor " y_mean = " y-cor) 

  set headings lput ( distancexy x-cor y-cor ) headings 

  set headings lput ( atan (x-cor - xcor) (y-cor - ycor) ) headings 

  ;show (word "Heading: " headings) 

  report headings 

end 

 

to-report get-direction 

  let i 0 

  let min-distance 1000 

  let headings [] 

  let x-cor 0 

  let y-cor 0 

  while [ i < length inbound ] 

  [ 

    ask turtle (item i inbound) 

    [ 

      if to-entrance < min-distance 

      [ 

        set min-distance to-entrance 

        set x-cor xcor 

        set y-cor ycor 

      ] 

    ] 

    set i i + 1 

  ] 

  set headings lput ( distancexy x-cor y-cor ) headings 

  set headings lput ( atan (x-cor - xcor) (y-cor - ycor) ) headings 

  report headings 

end 

 

to-report closest-diverters 

  let distances [] 

  let positions [] 

  let i 0 

  let div-no 0 

  ask diverters with [ length inbound > 0 ] [ set distances lput distance turtle 0 distances ] 
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  set distances sort distances 

  while [ i < length distances ] 

  [ 

    ask diverters with [ distance turtle 0 = item i distances ] 

    [ 

      set positions lput who positions 

    ] 

    set i i + 1 

  ] 

  report positions 

end 

Appendix A.3 Input for Agent-Based Simulation Model 

The Setup button initialises the conveyor system by reading the “input.txt” file. Each line of the file specifies a 

conveyor section:  

 

<entrance xcor> <entrance ycor> <length> <number> <direction> ... ... <type> <left> <centre> <right> 

 

The length parameter (length of the conveyor section) is specified in number of patches. The number parameter 

assigns a unique conveyor section number to each conveyor section: this number should be an integer that is greater 

than 0 (all “blank” patches are assigned conveyor-number = 0 as a default). The direction parameter specifies the 

conveyor section direction: 0 = up; 90 = right; 180 = down; 270 = left.  

 

The left, centre, and right parameters specify the options for the three possible directions of the conveyor section’s 

diverter (i.e., for conveyor sections with a diverter): 0 = “do not enter”, 1 = “storage bin exit”, 2 = “exit to another 

conveyor section”. 

 

input.txt file: 

 

-14 10 3 1 90 1 0 2 0 

-10 10 7 2 90 2 1 2 2 

-3 10 8 3 90 2 1 2 2 

5 10 8 4 90 2 0 1 2 

12 9 8 5 180 2 0 1 2 

11 2 8 6 270 2 1 2 0 

3 2 8 7 270 2 1 2 0 

-5 2 7 8 270 2 0 1 2 

-11 3 8 9 0 2 0 0 2 

-4 9 7 10 180 1 0 1 2 

4 9 7 11 180 1 0 1 2 

-4 11 3 12 0 3 0 0 0 

4 11 3 13 0 3 0 0 0 

13 10 3 14 90 3 0 0 0 

12 1 3 15 180 3 0 0 0 

4 1 3 16 180 3 0 0 0 

-4 1 3 17 180 3 0 0 0 

-12 2 3 18 270 3 0 0 0 

 

The user specifies the number of part types using the Number-Part-Types slider. The part types are identified by 

letters: e.g., three part types would result in an “a”, a “b”, and a “c” part type. When the simulation is initialised by 

the Setup button, the diverter parameters noted above are used in combination with the list of part types to configure 

the diverters. The diverters (specified with the “connections” list) use the same format; however, the left, centre, 

right fields are specified in terms of part types. For example, “-” signifies “do not enter”, and the part identifier 

specifies the path for the part type (e.g., “a” for part type “a”, “abc” for part types “a”, “b”, or “c”).  
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connections.txt file: 

 

"abc" 

"-" "abc" "-" 

"a" "abc" "abc" 

"b" "-" "abc" 

"-" "c" "abc" 

"-" "abc" "-" 

"-" "-" "abc" 

"-" "-" "abc" 

"-" "-" "abc" 

Appendix A.4 Procedures for Low-Level Self-Manageable Agents 

;; This file contains the procedures for the self-management agents 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; Agent-SMS (Self-Manageable Service Execution Agent) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to monitor-part-types 

  ;; This procedure is used to determine if any new part types are introduced to the conveyor system 

  ;; If a new part is introduced, a message is sent to Agent-SC. As well, the new part type is added 

  ;; to the list of part types "part-types". 

  let new-part? FALSE 

  let new-type "" 

  ask parts 

  [ 

    if not member? part-type part-types  

    [  

      set new-part? TRUE  

      set new-type part-type 

      set part-types word part-types part-type 

    ] 

  ] 

  if new-part?  

  [  

    send-message who 1 "request" (word "new part type " new-type)  

    ask my-links [die] 

    create-link-to turtle 1 

    ask my-links 

    [ 

      set color yellow 

      set label (word "request: new part type " new-type) 

    ] 

  ] 

end 

 

to monitor-conveyor-status [ c-number ] 

  ;; This procedure is used to determine if a conveyor section has failed. 

  ;; It is assumed that conveyor-number = 1 is the entrance conveyor section, and as such, 

  ;; is not included as a possible failure mode (otherwise, there would be no possible diversion). 

  let failure? FALSE 

  if c-number > 1 

  [ 
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    ask patches with [ conveyor-number = c-number ] 

    [    

      if operating?  

      [  

        conveyor-failure c-number 

        ifelse Optimize-Path = TRUE 

        [ set diverter-order [1 4 2 5 6 3 7 8] ] ;; just for diverter section 4 for now 

        [ set diverter-order [1 2 3 4 5 6 7 8] ] ;; ordered list 

        set failure? TRUE 

      ] 

    ] 

  ] 

  if failure? 

  [ 

    send-message who 4 "request" (word "conveyor section " c-number " failure")  

    ask my-links [die] 

    create-link-to turtle 4 

    ask my-links 

    [ 

      set color yellow 

      set label (word "request: conveyor section " c-number " failure") 

    ] 

  ] 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; Agent-SC (Self-Configuration Agent) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to add-storage-bin 

  ;; This procedure is used to add a new storage bin when a new part is introduced. 

  remove-msg 

  processing-delay FALSE 

  ;config-diverters Number-Part-Types 

  diverter-config 

  send-message who 0 "inform" "reconfiguration completed" 

  ask my-links [die] 

  create-link-to turtle 0 

  ask my-links 

  [ 

    set color green 

    set label "inform: reconfiguration completed" 

  ] 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; Agent-SO (Self-Optimization Agent) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;; This procedure is used to optimize routing when several system configurations available. 

;; A separate simulation model is developed for routing optimization. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; Agent-SH (Self-Healing Agent) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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to divert-parts 

  ;; This procedure is used to divert parts when a conveyor section has failed. 

  ;; For now, a "contingency based approach is used.  

  ;; Only a failure of conveyor section 4 is considered for now. 

end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; Agent-SP (Self-Protection Agent) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

to request-re-route 

  ;; This procedure is used to request the SC agent to re-route parts when a conveyor section 

  ;; failure occurs. 

  remove-msg 

  processing-delay FALSE 

  send-message who 1 "request" "re-route parts"  

  ask my-links [die] 

  create-link-to turtle 1 

  ask my-links 

  [ 

    set color yellow 

    set label (word "request: re-route-parts") 

  ] 

end 

Appendix A.5 Communication for Agent-Based Model 

;;; File to be included in NetLogo Mutliagent Models 

;;; Communication for NetLogo Multiagent models 

;;; Includes primitives for message creation and handling in NetLogo  

;;; Adapted version for NetLogo 4 (2008) I. Sakellariou  

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; COMMUNICATION 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;; MESSAGE PROCESSING ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Sending messages 

;; (One man's send is another man's receive..) 

;; The second commented out line presents an alternative send implementation.  

;; The commented out line represents an alternative method.  

;; Problem: What if the agent I am sending the message is "killed"  

;; Solution: Nothing Happens. Could yield an error message. Alternative: create a safe send. 

to send [msg] 

  let recipients get-receivers msg 

  let recv 0 

  set no-messages no-messages + 1 ;add +1 to the total message count 

  foreach recipients [ 

   ;set recv turtle (read-from-string ?) 

   i -> set recv turtle (read-from-string i) 

   if recv != nobody [without-interruption [ask recv [receive msg]]] ;; read-from-string is required to convert the 

string to number 

  ] 

  ;;interaction-plot-msg msg 0 
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end 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; Message reception deals with updating incoming-queue 

to receive [msg] 

   if show_messages [show msg] 

   set incoming-queue lput msg incoming-queue 

end  

 

;; This reporter returns the next message in the list and removes it from the queue 

to-report get-message 

  if empty? incoming-queue [report "no_message"] 

  let nextmsg first incoming-queue 

  remove-msg 

  report nextmsg      

end  

 

;; This reporter returns the next message in the list WITHOUT removing it from the queue 

to-report get-message-no-remove 

  if empty? incoming-queue [report "no_message"] 

  report first incoming-queue 

end 

 

;; Explicit remove-msg  

;; This is needed since reporters *cannot* change a variable's values (apparently).  

to remove-msg 

  set incoming-queue but-first incoming-queue 

end  

 

;; broadcasting to all agents of breed t-breed 

to broadcast-to [t-breed msg] 

  foreach [who] of t-breed [ 

     ;send add-receiver ? msg  

    ;send [x -> add-receiver x msg]  

    x -> send add-receiver x msg 

  ] 

end  

 

;; Creating messages and adding the sender 

to-report create-message [performative] 

 report (list performative (word "sender:" who) )  

end  

 

to-report create-reply [performative msg] 

let msgOut 0 

     

 set msgOut create-message performative 

 set msgOut add-receiver (get-sender msg) msgOut 

 report msgOut 

end  

 

;; Accessing information on messages 

;; Reports the sender of a message 

to-report get-sender [msg] 

  ;report remove "sender:" first (filter [not is-number? ? and member? "sender:" ?] msg)  

  report remove "sender:" first (filter [x -> not is-number? x and member? "sender:" x] msg) 
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  ;;report item ((position "sender:" msg) + 1) msg  

end 

 

;; Reports (returns) the content of a message 

to-report get-content [msg] 

  report item (position "content:" msg + 1) msg  

end 

 

;; Reports the list of receivers of a message 

to-report get-receivers [msg] 

  ;report map [remove "receiver:" ?] filter [not is-number? ? and member? "receiver:" ?] msg 

  report map [? -> remove "receiver:" ?] filter [? -> not is-number? ? and member? "receiver:" ?] msg 

end  

 

;; reports the message performative  

to-report get-performative [msg] 

  report first msg 

end  

 

;;; Adding fields to a message 

;; Adding a sender to a message 

to-report add-sender [sender msg] 

  report add msg "sender:" sender 

end 

 

;; add a receiver 

to-report add-receiver [receiver msg] 

  report add msg "receiver:" receiver 

end 

 

;; adding multiple recipients 

to-report add-multiple-receivers [receivers msg] 

  foreach receivers 

  [ 

    ;set msg add-receiver ? msg 

    set msg [x -> add-receiver x msg] 

  ] 

  report msg 

end 

 

;; Adding content to a message  

to-report add-content [content msg] 

  report add msg "content:" content 

end 

 

;; Primitive Add command  

to-report add [msg field value] 

  ifelse field = "content:" 

  [report lput value lput field msg] 

  [report lput (word field value) msg] 

end         
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Appendix B Experimental Testbed Setup 

Appendix B.1 General Steps for Testbed Setup 

The general steps to set up the testbed are provided below: 

  

Step 1 to set up Raspberry Pi: a) flash a microSD card with the Raspbian operating system for Raspberry Pi; b) 

connect Raspberry Pi to a monitor with a keyboard and a mouse; c) plug Raspberry Pi to a power supply; d) connect 

Raspberry Pi to the Internet through wifi for remote access (SSH); e) install Python and related machine learning 

packages. 

 

Step 2 to set up SPADE: a) create instant messaging service accounts for agents’ real-time communication through 

XMPP in which free XMPP/Jabber instant messaging service Jabber.de is used; b) program agents and agent 

behaviours. 

 

Step 3 to set up low-level devices: a) connect LEDs to Raspberry Pi; b) connect DC Motor to a motor driver and 

then Raspberry Pi; c) connect Stepper Motor to a motor driver and then Raspberry Pi; d) plug DC Motor and Stepper 

Motor to a power supply. 

 

Step 4 to set up high-level JetBot: a) set up hardware including Jetson Nano, body, motor, camera, power, wifi, 

display etc. modules; b) set up software including flashing JetBot image, booting Jetson Nano, connecting to wifi, 

remote programming through JupyterLab. 

 

Step 5 to develop low-level device control applications: a) design agent-embedded function block applications 

through Eclipse 4diac for motors and LEDs; b) compile and deploy function block applications to Raspberry Pi. 

 

Step 6 to develop high-level JetBot control applications: a) design required multi-agent functions for JetBot; b) 

develop programs through JupyterLab and deploy to Jetson Nano to run JetBot. 

 

Step 7 to run designed experiments to demonstrate the feasibility of the proposed architecture modelling framework. 

Appendix B.2 High-Level JetBot Modelling Test 

#Tests included in this appendix are based on and referred to 

#SparkFun (https://learn.sparkfun.com/tutorials/assembly-guide-for-sparkfun-jetbot-ai-kit/all) and  

#Nvidia (https://jetbot.org/) tutorials. 

#to assemble and program JetBot for basic motion, collision avoidance, road following and object detection, etc. 

 

#Key programs are shown as follows. For full applications, see references. 

 

a) Basi Motion 

 

from jetbot import Robot 

import time 

#initialize a robot instance from Robot class 

robot = Robot() 

 

#program JetBot to move forward and backward, and turn left and right 

#call forward, backward, left, right, and stop methods 

robot.forward(speed=0.3) 

time.sleep(1.0) 

robot.stop() 
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robot.right(speed=0.3) 

time.sleep(1.0) 

robot.stop() 

 

robot.backward(speed=0.3) 

time.sleep(1.0) 

robot.stop() 

 

robot.left(speed=0.3) 

time.sleep(1.0) 

robot.stop() 

 

#control left and right motors separately 

#call the set_motor method 

robot.set_motors(0.3, 0.6) 

time.sleep(1.0) 

robot.stop() 

 

b) Collision Avoidance 

 

#Step 1 Data Collection 

#collect sample data to teach JetBot two scenarios: blocked scenarios representing dangerous areas to go ahead 

#and free scenarios representing safe areas to move into. 

 

import traitlets 

import ipywidgets.widgets as widgets 

from IPython.display import display 

from jetbot import Camera, bgr8_to_jpeg 

 

#display live camera feed 

#set image size as 224px by 224px for an appropriate scale dataset 

camera = Camera.instance(width=224, height=224) 

image = widgets.Image(format='jpeg', width=224, heigh=224) 

#link camera with image 

camera_link = traitlets.dlink((camera, 'value'), (image, 'value'), transform=bgr8_to_jpeg) 

#display images 

display(image) 

 

import os 

#create directories to store images 

blocked_directory = 'dataset/blocked' 

free_directory = 'dataset/free' 

#error message if wrong directories 

try: 

    os.makedirs(free_directory) 

    os.makedirs(blocked_directory) 

except FileExistsError: 

print('Directories not created because they already exist') 

 

#Step 2 Model Training 

#neural network model of image classifier is trained under open source deep learning framework PyTorch 

 

#PyTorch is an optimized tensor library for deep learning using GPUs and CPUs 

#import Python packages from PyTorch 

#torch package includes data structures for multi-dimensional tensors and mathematical operations 

import torch 
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import torch.optim as optim 

import torch.nn.functional as F 

 

#torchvision package includes datasets, model architectures, and image transformations. 

import torchvision 

import torchvision.datasets as datasets 

import torchvision.models as models 

import torchvision.transforms as transforms 

 

#create dataset instance for training 

dataset = datasets.ImageFolder( 

    'dataset', 

    transforms.Compose([ 

        transforms.ColorJitter(0.1, 0.1, 0.1, 0.1), 

        transforms.Resize((224, 224)), 

        transforms.ToTensor(), 

        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) 

    ]) 

) 

 

#split dataset into train and test sets. 

train_dataset, test_dataset = torch.utils.data.random_split(dataset, [len(dataset) - 50, 50]) 

#create data loaders to load data in batches 

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=0) 

test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=8, shuffle=True, num_workers=0) 

 

#define neural network for image classification 

#torchvision package provides a collection of pre-trained models can be repurposed and reused for new tasks 

 

#Deep Residual Learning for Image Recognition (ResNet models) 

#resnet18, resnet34, resnet50, resnet101, resnet152 

model = models.resnet18(pretrained=true) 

 

#repurpose and reuse model to 2 classes 

model.fc = torch.nn.Linear(512, 2) 

#execute model on GPU 

device = torch.device('cuda') 

model = model.to(device) 

 

#train neural network model 

NUM_EPOCHS = 30 

BEST_MODEL_PATH = 'best_model.pth' 

best_accuracy = 0.0 

 

optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) 

 

for epoch in range(NUM_EPOCHS): 

 

    for images, labels in iter(train_loader): 

        images = images.to(device) 

        labels = labels.to(device) 

        optimizer.zero_grad() 

        outputs = model(images) 

        loss = F.cross_entropy(outputs, labels) 

        loss.backward() 

        optimizer.step() 
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    test_error_count = 0.0 

     

    for images, labels in iter(test_loader): 

        images = images.to(device) 

        labels = labels.to(device) 

        outputs = model(images) 

        test_error_count += float(torch.sum(torch.abs(labels - outputs.argmax(1)))) 

     

    test_accuracy = 1.0 - float(test_error_count) / float(len(test_dataset)) 

    print('%d: %f' % (epoch, test_accuracy)) 

     

    if test_accuracy > best_accuracy: 

        torch.save(model.state_dict(), BEST_MODEL_PATH) 

        best_accuracy = test_accuracy 

 

#Step 3 Model Deployment 

#TensorRT is an optimized neural network model built on Nvidia’s parallel programming model CUDA  

#for reduced precision but high accuracy, and easily deployable to embedded platforms 

 

#initialize PyTorch model (resnet18 model) 

import torch 

import torchvision 

 

model = torchvision.models.resnet18(pretrained=False) 

model.fc = torch.nn.Linear(512, 2) 

model = model.cuda().eval().half() 

 

#load model weights into CPU and then transfer to GPU 

model.load_state_dict(torch.load('best_model.pth')) 

device = torch.device('cuda') 

 

#build TensorRT model 

from torch2trt import torch2trt 

data = torch.zeros((1, 3, 224, 224)).cuda().half() 

model_trt = torch2trt(model, [data], fp16_mode=True) 

 

#save optimized model 

torch.save(model_trt.state_dict(), 'best_model_trt.pth') 

 

c) Road Following 

 

#Step 1 Data Collection 

#collect sample data to teach JetBot to follow a path using regression instead of classification. 

 

IPython Libraries for display and widgets 

import ipywidgets 

import traitlets 

import ipywidgets.widgets as widgets 

from IPython.display import display 

 

#camera and motor interfaces for JetBot 

from jetbot import Robot, Camera, bgr8_to_jpeg 

 

#basic Python packages for image annotation 

from uuid import uuid1 
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import os 

import json 

import glob 

import datetime 

import numpy as np 

import cv2 

import time 

 

from jupyter_clickable_image_widget import ClickableImageWidget 

 

DATASET_DIR = 'dataset_xy' 

 

#error message if wrong directories 

try: 

    os.makedirs(DATASET_DIR) 

except FileExistsError: 

    print('Directories not created because they already exist') 

 

camera = Camera() 

 

#create image preview 

camera_widget = ClickableImageWidget(width=camera.width, height=camera.height) 

snapshot_widget = ipywidgets.Image(width=camera.width, height=camera.height) 

traitlets.dlink((camera, 'value'), (camera_widget, 'value'), transform=bgr8_to_jpeg) 

 

#create widgets 

count_widget = ipywidgets.IntText(description='count') 

 

#update counts at initialization 

count_widget.value = len(glob.glob(os.path.join(DATASET_DIR, '*.jpg'))) 

 

def save_snapshot(_, content, msg): 

    if content['event'] == 'click': 

        data = content['eventData'] 

        x = data['offsetX'] 

        y = data['offsetY'] 

         

        #save to disk 

        dataset.save_entry(category_widget.value, camera.value, x, y) 

        uuid = 'xy_%03d_%03d_%s' % (x, y, uuid1()) 

        image_path = os.path.join(DATASET_DIR, uuid + '.jpg') 

        with open(image_path, 'wb') as f: 

            f.write(camera_widget.value) 

         

        #display saved snapshot 

        snapshot = camera.value.copy() 

        snapshot = cv2.circle(snapshot, (x, y), 8, (0, 255, 0), 3) 

        snapshot_widget.value = bgr8_to_jpeg(snapshot) 

        count_widget.value = len(glob.glob(os.path.join(DATASET_DIR, '*.jpg'))) 

         

camera_widget.on_msg(save_snapshot) 

 

data_collection_widget = ipywidgets.VBox([ipywidgets.HBox([camera_widget, snapshot_widget]),count_widget]) 

 

display(data_collection_widget) 
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#disconnect camera 

camera.stop() 

 

#Step 2 Model Training 

#use PyTorch deep learning framework to train ResNet18 neural network model for JetBot road following 

 

import torch 

import torch.optim as optim 

import torch.nn.functional as F 

import torchvision 

import torchvision.datasets as datasets 

import torchvision.models as models 

import torchvision.transforms as transforms 

import glob 

import PIL.Image 

import os 

import numpy as np 

 

#create dataset instance 

#create torch.utils.data.Dataset to implement _len_ and _getitem_ functions 

def get_x(path, width): 

    """Gets the x value from the image filename""" 

    return (float(int(path.split("_")[1])) - width/2) / (width/2) 

 

def get_y(path, height): 

    """Gets the y value from the image filename""" 

    return (float(int(path.split("_")[2])) - height/2) / (height/2) 

 

class XYDataset(torch.utils.data.Dataset): 

     

    def __init__(self, directory, random_hflips=False): 

        self.directory = directory 

        self.random_hflips = random_hflips 

        self.image_paths = glob.glob(os.path.join(self.directory, '*.jpg')) 

        self.color_jitter = transforms.ColorJitter(0.3, 0.3, 0.3, 0.3) 

     

    def __len__(self): 

        return len(self.image_paths) 

     

    def __getitem__(self, idx): 

        image_path = self.image_paths[idx] 

         

        image = PIL.Image.open(image_path) 

        width, height = image.size 

        x = float(get_x(os.path.basename(image_path), width)) 

        y = float(get_y(os.path.basename(image_path), height)) 

       

        if float(np.random.rand(1)) > 0.5: 

            image = transforms.functional.hflip(image) 

            x = -x 

         

        image = self.color_jitter(image) 

        image = transforms.functional.resize(image, (224, 224)) 

        image = transforms.functional.to_tensor(image) 

        image = image.numpy()[::-1].copy() 

        image = torch.from_numpy(image) 
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        image = transforms.functional.normalize(image, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) 

         

        return image, torch.tensor([x, y]).float() 

     

dataset = XYDataset('dataset_xy', random_hflips = False) 

 

#split dataset into train and test sets (90% vs 10%) 

test_percent = 0.1 

num_test = int(test_percent * len(dataset)) 

train_dataset, test_dataset = torch.utils.data.random_split(dataset, [len(dataset) - num_test, num_test]) 

 

#create data loaders to load data in batches 

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = 8, shuffle = True, num_workers = 0) 

test_loader = torch.utils.data.DataLoader(test_dataset, batch_size = 8, shuffle = True, num_workers = 0) 

 

#define neural network model 

#ResNet18 in PyTorch TorchVision 

model = models.resnet18(pretrained=True) 

 

#transfer model for execution on GPU 

model.fc = torch.nn.Linear(512, 2) 

device = torch.device('cuda') 

model = model.to(device) 

 

#train regression to get the best model 

NUM_EPOCHS = 70 

BEST_MODEL_PATH = 'best_steering_model_xy.pth' 

best_loss = 1e9 

 

optimizer = optim.Adam(model.parameters()) 

 

for epoch in range(NUM_EPOCHS): 

     

    model.train() 

    train_loss = 0.0 

    for images, labels in iter(train_loader): 

        images = images.to(device) 

        labels = labels.to(device) 

        optimizer.zero_grad() 

        outputs = model(images) 

        loss = F.mse_loss(outputs, labels) 

        train_loss += float(loss) 

        loss.backward() 

        optimizer.step() 

    train_loss /= len(train_loader) 

     

    model.eval() 

    test_loss = 0.0 

    for images, labels in iter(test_loader): 

        images = images.to(device) 

        labels = labels.to(device) 

        outputs = model(images) 

        loss = F.mse_loss(outputs, labels) 

        test_loss += float(loss) 
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    test_loss /= len(test_loader) 

     

    print('%f, %f' % (train_loss, test_loss)) 

    if test_loss < best_loss: 

        torch.save(model.state_dict(), BEST_MODEL_PATH) 

        best_loss = test_loss 

 

#Step 3 Model Deployment 

#upload neural network model file to JetBot notebook directory 

#initialize the PyTorch model 

import torchvision 

import torch 

 

model = torchvision.models.resnet18(pretrained=False) 

model.fc = torch.nn.Linear(512, 2) 

 

#load model weights into CPU and then transfer to GPU 

model.load_state_dict(torch.load('best_steering_model_xy.pth')) 

device = torch.device('cuda') 

model = model.to(device) 

model = model.eval().half() 

 

#create pre-processing function to match image format between model and camera 

import torchvision.transforms as transforms 

import torch.nn.functional as F 

import cv2 

import PIL.Image 

import numpy as np 

 

mean = torch.Tensor([0.485, 0.456, 0.406]).cuda().half() 

std = torch.Tensor([0.229, 0.224, 0.225]).cuda().half() 

 

def preprocess(image): 

    image = PIL.Image.fromarray(image) 

    image = transforms.functional.to_tensor(image).to(device).half() 

    image.sub_(mean[:, None, None]).div_(std[:, None, None]) 

return image[None, ...] 

 

#create robot instance to drive motor 

from jetbot import Robot 

robot = Robot() 

 

#define neural network execution function to process camera value changes 

#pre-process the camera image; execute the neural network;  

#compute the approximate steering value; control the motors. 

angle = 0.0 

angle_last = 0.0 

 

def execute(change): 

    global angle, angle_last 

    image = change['new'] 

    xy = model(preprocess(image)).detach().float().cpu().numpy().flatten() 

    x = xy[0] 

    y = (0.5 - xy[1]) / 2.0 
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    x_slider.value = x 

    y_slider.value = y 

     

    speed_slider.value = speed_gain_slider.value 

     

    angle = np.arctan2(x, y) 

    pid = angle * steering_gain_slider.value + (angle - angle_last) * steering_dgain_slider.value 

    angle_last = angle 

     

    steering_slider.value = pid + steering_bias_slider.value 

     

    robot.left_motor.value = max(min(speed_slider.value + steering_slider.value, 1.0), 0.0) 

    robot.right_motor.value = max(min(speed_slider.value - steering_slider.value, 1.0), 0.0) 

     

execute({'new': camera.value}) 

 

#attach execution function to camera for processing 

camera.observe(execute, names='value') 

 

#unattach execution function to stop robot 

import time 

camera.unobserve(execute, names='value') 

time.sleep(0.1)  

robot.stop() 

 

d) Object Detection 

 

#the model is sourced from the TensorFlow Object Detection API  

#and optimized through Nvidia TensorRT on Jetson Nano 

 

#compute detections on single camera image 

#import ObjectDetector class 

from jetbot import ObjectDetector 

model = ObjectDetector('ssd_mobilenet_v2_coco.engine') 

 

#initialize JetBot camera 

from jetbot import Camera 

camera = Camera.instance(width=300, height=300) 

 

#execute neural network model 

detections = model(camera.value) 

print(detections) 

 

#display detections in text areas 

#create detection widgets 

from IPython.display import display 

import ipywidgets.widgets as widgets 

 

detections_widget = widgets.Textarea() 

detections_widget.value = str(detections) 

display(detections_widget) 

 

#print out the first image 

image_number = 0 

object_number = 0 

print(detections[image_number][object_number]) 
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#control JetBot to follow central object 

#Step1: detect object matching specified class 

#Step2: select target object in the center of camera's field of vision 

#Step3: steer JetBot towards target object, otherwise wander 

#Step4: turn left if object blocked 

 

#load pre-trained collision detection model 

import torch 

import torchvision 

import torch.nn.functional as F 

import cv2 

import numpy as np 

 

collision_model = torchvision.models.alexnet(pretrained=False) 

collision_model.classifier[6] = torch.nn.Linear(collision_model.classifier[6].in_features, 2) 

collision_model.load_state_dict(torch.load('../collision_avoidance/best_model.pth')) 

device = torch.device('cuda') 

collision_model = collision_model.to(device) 

 

mean = 255.0 * np.array([0.485, 0.456, 0.406]) 

stdev = 255.0 * np.array([0.229, 0.224, 0.225]) 

normalize = torchvision.transforms.Normalize(mean, stdev) 

 

def preprocess(camera_value): 

    global device, normalize 

    x = camera_value 

    x = cv2.resize(x, (224, 224)) 

    x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB) 

    x = x.transpose((2, 0, 1)) 

    x = torch.from_numpy(x).float() 

    x = normalize(x) 

    x = x.to(device) 

    x = x[None, ...] 

return x 

 

#create robot instance to drive motor 

from jetbot import Robot 

robot = Robot() 

 

#display control widgets and connect model execution function to camera updates 

from jetbot import bgr8_to_jpeg 

 

blocked_widget = widgets.FloatSlider(min=0.0, max=1.0, value=0.0, description='blocked') 

image_widget = widgets.Image(format='jpeg', width=300, height=300) 

label_widget = widgets.IntText(value=1, description='tracked label') 

speed_widget = widgets.FloatSlider(value=0.4, min=0.0, max=1.0, description='speed') 

turn_gain_widget = widgets.FloatSlider(value=0.8, min=0.0, max=2.0, description='turn gain') 

 

display(widgets.VBox([widgets.HBox([image_widget, blocked_widget]), label_widget, speed_widget, 

turn_gain_widget])) 

 

width = int(image_widget.width) 

height = int(image_widget.height) 

 

def detection_center(detection): 
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    """Computes the center x, y coordinates of the object""" 

    bbox = detection['bbox'] 

    center_x = (bbox[0] + bbox[2]) / 2.0 - 0.5 

    center_y = (bbox[1] + bbox[3]) / 2.0 - 0.5 

    return (center_x, center_y) 

     

def norm(vec): 

    """Computes the length of the 2D vector""" 

    return np.sqrt(vec[0]**2 + vec[1]**2) 

 

def closest_detection(detections): 

    """Finds the detection closest to the image center""" 

    closest_detection = None 

    for det in detections: 

        center = detection_center(det) 

        if closest_detection is None: 

            closest_detection = det 

        elif norm(detection_center(det)) < norm(detection_center(closest_detection)): 

            closest_detection = det 

    return closest_detection 

         

def execute(change): 

    image = change['new'] 

     

    #execute collision model to determine if blocked 

    collision_output = collision_model(preprocess(image)).detach().cpu() 

    prob_blocked = float(F.softmax(collision_output.flatten(), dim=0)[0]) 

    blocked_widget.value = prob_blocked 

     

    #turn left if blocked 

    if prob_blocked > 0.5: 

        robot.right(0.3) 

        image_widget.value = bgr8_to_jpeg(image) 

        return 

         

    #compute all detected objects 

    detections = model(image) 

     

    #draw all detections on image 

    for det in detections[0]: 

        bbox = det['bbox'] 

        cv2.rectangle(image, (int(width * bbox[0]), int(height * bbox[1])), (int(width * bbox[2]), int(height * 

bbox[3])), (255, 0, 0), 2) 

     

    #select detections that match selected class label 

    matching_detections = [d for d in detections[0] if d['label'] == int(label_widget.value)] 

     

    #get detection closest to center of field of view and draw it 

    det = closest_detection(matching_detections) 

    if det is not None: 

        bbox = det['bbox'] 

        cv2.rectangle(image, (int(width * bbox[0]), int(height * bbox[1])), (int(width * bbox[2]), int(height * 

bbox[3])), (0, 255, 0), 5) 

         

    #otherwise go forward if no target detected 

    if det is None: 
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        robot.forward(float(speed_widget.value)) 

         

    #otherwise steer towards target 

    else: 

        # move robot forward and steer proportional target's x-distance from center 

        center = detection_center(det) 

        robot.set_motors( 

            float(speed_widget.value + turn_gain_widget.value * center[0]), 

            float(speed_widget.value - turn_gain_widget.value * center[0]) 

        ) 

     

    #update image widget 

    image_widget.value = bgr8_to_jpeg(image) 

     

execute({'new': camera.value}) 

 

#connect execution function to each camera frame update 

camera.unobserve_all() 

camera.observe(execute, names='value') 

 

#unattach execution function to stop robot 

import time 

camera.unobserve(execute, names='value') 

time.sleep(0.1)  

robot.stop() 

 
e) Management Agent Test 

# SPADE program for the management agent 

# This agent receives messages from LEDs and send messages to Motors. 

 

from spade.agent import Agent 

from spade.behaviour import CyclicBehaviour 

from spade.template import Template 

from spade.message import Message 

from spade import quit_spade 

import asyncio 

 

color_target = {"blue": ("DCAgent CW", "testagent@jabber.de"),  

                         "green": ("DCAgent CCW", "testagent@jabber.de"), 

                         "red": ("StepperAgent CW", "receiveragent@jabber.de"),  

                         "yellow": ("StepperAgent CCW", "receivergent@jabber.de") 

                        } 

 

class ManagerAgent(Agent):  # extends the Agent class from Python 

    # define a behaviour class that extends CyclicBehaviour from Spade.  

    class ManageBehaviour(CyclicBehaviour): 

 

        async def on_start(self):  # on_start() function executes once when a behaviour instance is added to an agent 

            template = Template()  # set the template to match incoming messages. This ensures receive() works. 

            template.set_metadata("performative", "inform") 

 

        async def run(self):  # in CyclicBehaviour run() runs indefinitely until the behaviour is stopped. 

            message_from_led = await self.receive(20)   

            if not message_from_led:   

                # If no message is received from LED agent, quit Spade 

                print("No message from LED agent") 
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                await self.agent.stop() 

                quit_spade() 

 

            else: 

                # extracting color from message, converting to target agent and direction 

                color = "".join(letter for letter in message_from_led.body if letter.isalpha()) 

                target_direction = color_target[color] 

                target_agent = target_direction[1] 

                target_name = target_direction[0].split()[0] 

                direction = target_direction[0].split()[1] 

                # extracting on-time from message from LED agent 

                run_time_string = "".join(letter for letter in message_from_led.body if not letter.isalpha()) 

                # creating a message to motor based on color, direction, and on-time 

                message_to_motor = Message(to=target_agent) 

                message_to_motor.set_metadata("performative", "inform") 

                message_to_motor.body = direction+" "+run_time_string 

                print("Message {} received from LED agent. Sending message {} to {}". 

                      format(message_from_led.body, message_to_motor.body, target_name)) 

                await self.send(message_to_motor)  # sends message to appropriate motor 

                # wait 30 seconds for motor to complete operation and send a confirmation message to manager 

                message_from_motor = await self.receive(30) 

                # if no message is received from motor agent, quit spade 

                if not message_from_motor: 

                    print("No confirmation from motor, quitting Spade ...") 

                    await self.agent.stop() 

                    quit_spade() 

 

                # if message from motor agent does not contain the phrase "Done", quit Spade 

                elif "Done" not in message_from_motor.body: 

                    print("Keyword 'Done' not in message from motor, quitting Spade ...") 

                    await self.agent.stop() 

                    quit_spade() 

 

                # if confirmation received from motor agent, send a "continue" message to LED agent 

                else: 

                    print("Confirmation received from {}, resuming operation ...".format(target_name)) 

                    await asyncio.sleep(2) 

                    message_to_led = Message(to="senderagent@jabber.de") 

                    message_to_led.set_metadata("performative", "inform") 

                    message_to_led.body = "continue" 

                    await self.send(message_to_led) 

 

    async def setup(self): 

        manage_behaviour = self.ManageBehaviour() 

        self.add_behaviour(manage_behaviour) 

 

agent = ManagerAgent("manageragent@jabber.de", "managerlyu")  # initiate the manager agent 

future = agent.start()  # runs manager agent behaviour 

future.result() 

Appendix B.3 Low-level Devices Modelling Test 

# Tests in this appendix include low-level device setup and programming of LEDs and Motors in Raspberry Pi. 
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a) LED Test 

 

# LED Test with Raspberry Pi 3 

# Blue --> GPIO 14, Green --> GPIO 15, Red --> GPIO 18, Yellow --> GPIO 23 

 

import RPi.GPIO as GPIO 

import time 

 

# Set up GPIO pins 

GPIO.setmode(GPIO.BCM) 

GPIO.setwarnings(False) 

GPIO.setup(14, GPIO.OUT) # Blue GPIO 14 

GPIO.setup(15, GPIO.OUT) # Green GPIO 15 

GPIO.setup(18, GPIO.OUT) # Red GPIO 18 

GPIO.setup(23, GPIO.OUT) # Yellow GPIO 23 

 

# Turn on LED lights 

print("LED On") 

GPIO.output(14, GPIO.HIGH) 

time.sleep(1) 

GPIO.output(15, GPIO.HIGH) 

time.sleep(1) 

GPIO.output(18, GPIO.HIGH) 

time.sleep(1) 

GPIO.output(23, GPIO.HIGH) 

 

time.sleep(3) 

 

# Turn off LED lights 

print("LED Off") 

GPIO.output(23, GPIO.LOW) 

time.sleep(1) 

GPIO.output(18, GPIO.LOW) 

time.sleep(1) 

GPIO.output(15, GPIO.LOW) 

time.sleep(1) 

GPIO.output(14, GPIO.LOW) 

 

# Reset GPIO pins 

GPIO.cleanup() 

 

 

# SPADE program to control LEDs 

# This agent lights up LEDs with random colors (motor rotation direction) and durations (motor rotation time) 

 

import RPi.GPIO as GPIO 

import time 

import random 

import asyncio 

from spade.agent import Agent 

from spade.behaviour import CyclicBehaviour 

from spade.message import Message 

from spade.template import Template 

from spade import quit_spade 

 

class LedAgent(Agent):  
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    async def setup(self):     

        self.lightbehaviour = self.LightBehaviour() 

        self.add_behaviour(self.lightbehaviour) 

         

    class LightBehaviour(CyclicBehaviour):  

        async def on_start(self): 

            template = Template() 

            template.set_metadata("performative", "inform") 

            message_to_manager = Message(to="manageragent@jabber.de")      

            message_to_manager.set_metadata("performative", "inform") 

            # creating lists of colors and pins          

            color_list = ["blue", "green", "red", "yellow"] 

            GPIO.setmode(GPIO.BCM) 

            pin_list = [14, 15, 18, 23] 

            color_pin = dict(zip(color_list, pin_list)) 

            color = random.choice(color_list) 

            # use integers for LED on-times 

            on_time = random.randint(1, 4) 

            pin = color_pin[color] 

            print("Turning led on for first time: {}, {}".format(color,str(on_time))) 

            # initiating the GPIO pins on the pi 

            GPIO.setup(pin_list, GPIO.OUT) 

            # turning the pin high 

            GPIO.output(pin, GPIO.HIGH) 

            # keeping the pin high and LED lit for on_time seconds 

            await asyncio.sleep(on_time) 

            # turning pin LOW turns off LED 

            GPIO.output(pin, GPIO.LOW) 

            # cleaning up prepares for next loop 

            GPIO.cleanup(pin_list) 

            mylist = [color, on_time] 

            # message to manager consists of color and on_time both strings 

            message_to_manager.body = mylist[0]+" "+str(mylist[1]) 

            self.message_to_manager = message_to_manager 

             

        async def run(self): 

            await self.send(self.message_to_manager)  # start by sending first message to manager 

            print("Message to manager agent: {}".format(self.message_to_manager.body)) 

            color_list = ["blue", "green", "red", "yellow"] 

            GPIO.setmode(GPIO.BCM) 

            pin_list = [14, 15, 18, 23] 

            color_pin = dict(zip(color_list, pin_list)) 

            color = random.choice(color_list) 

            on_time = random.randint(1, 10) 

            pin = color_pin[color] 

            GPIO.setup(pin_list, GPIO.OUT) 

            message_from_manager = await self.receive(20) 

 

            if not message_from_manager:   

                # if no message is received from manager, quit Spade 

                print("No message from manager, quitting Spade ...") 

                await self.agent.stop() 

                quit_spade() 

 

            elif "continue" not in message_from_manager.body:   
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                # if message from manager does not say "continue" quit Spade 

                print("Keyword 'continue' not in message from manager, quitting Spade ...") 

                await self.agent.stop() 

                quit_spade() 

 

            else: 

                await asyncio.sleep(2)  # pause for two seconds to manage timing issues 

                print("Confirmation received from manager, turning {} on for {} seconds ...".format(color, str(on_time))) 

                GPIO.output(pin, GPIO.HIGH) 

                await asyncio.sleep(on_time) 

                GPIO.output(pin, GPIO.LOW) 

                GPIO.cleanup(pin_list) 

                mylist = [color, on_time] 

                self.message_to_manager.body = mylist[0]+" "+str(mylist[1])          

 

agent = LedAgent("senderagent@jabber.de", "senderlyu") # initiate LED agent 

future = agent.start() # run LED agent behaviour 

future.result() 

 

b) Stepper Motor Test 

 

# Stepper Motor Test with Raspberry Pi 3 

# STEP --> GPIO 14 (Blue), DIR --> GPIO 15 (Yellow) 

# Phidgets Bipolar 12V Stepper Motor: https://www.phidgets.com/?tier=3&catid=24&pcid=21&prodid=340. 

# Texas Instruments DRV8825 Stepper Motor Driver: https://www.pololu.com/product/2133. 

. 

# Set up connections 

# VMOT and GND to 12V Power Supply 

# A1, A2, B1, B2 to Step Motor 

# SLEEP and RESET to RPi 5V, GND to RPi GND 

# STEP to RPi GPIO 14, DIR to RPi GPIO 15 

 

import RPi.GPIO as GPIO 

import time 

 

# Set up GPIO pins 

GPIO.setmode(GPIO.BCM) 

GPIO.setwarnings(False) 

GPIO.setup(14, GPIO.OUT) # GPIO 14 to STEP 

GPIO.setup(15, GPIO.OUT) # GPIO 15 to DIR 

 

# Drive the motor clockwise 

print("ClockWise Rotation") 

GPIO.output(14, GPIO.HIGH) # Set STEP 

GPIO.output(15, GPIO.HIGH) # Set DIR 

 

for x in range(10000): 

    GPIO.output(14, GPIO.HIGH) 

    time.sleep(0.0002) 

    GPIO.output(14, GPIO.LOW) 

    time.sleep(0.0002) 

  

time.sleep(2) 

 

# Drive the motor counterclockwise 

print("CounterClockWise Rotation") 
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GPIO.output(14, GPIO.LOW) # Set STEP 

GPIO.output(15, GPIO.LOW) # Set DIR 

 

for x in range(10000): 

    GPIO.output(14, GPIO.HIGH) 

    time.sleep(0.0002) 

    GPIO.output(14, GPIO.LOW) 

    time.sleep(0.0002)  

     

# Reset GPIO pins 

GPIO.cleanup() 

 

 

# SPADE program to control the stepper motor 

# This agent runs the stepper in the direction and for the duration sent by the manager agent 

 

import RPi.GPIO as GPIO 

import time 

import asyncio 

from spade.agent import Agent 

from spade.behaviour import CyclicBehaviour 

from spade.message import Message 

from spade import quit_spade 

from spade.template import Template 

 

class StepperAgent(Agent): 

    async def setup(self): 

        template = Template() 

        template.set_metadata("performative", "inform") 

        self.stepbehaviour = self.StepBehaviour() 

        self.add_behaviour(self.stepbehaviour, template) 

     

    class StepBehaviour(CyclicBehaviour):   

        async def on_start(self): 

            message_to_manager = Message(to="manageragent@jabber.de") 

            message_to_manager.set_metadata("performative", "inform") 

            message_to_manager.body = "Stepper Done"   

            # create a message that is sent to manager when motor has completed operation 

            self.message_to_manager = message_to_manager 

             

        async def run(self): 

            for attempt in range(10):  # agent attempts to receive message from manager 10 times. 

                message_from_manager = await self.receive(10) 

                if message_from_manager: 

                    break 

                if not message_from_manager:  # If no message is received quit spade with a message 

                print("No message from manager, quitting Spade ...") 

                await self.agent.stop() 

                quit_spade() 

 

            # if message received, extract on time as an integer and direction as a string 

            on_time = int("".join(letter for letter in message_from_manager.body if letter.isdigit())) 

            direction = "".join(letter for letter in message_from_manager.body if letter.isalpha()) 

 

            if direction == "CW": 

                time_start = time.perf_counter() 
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                time_elapsed = 0 

                sleep_time = 0.0002  # time between pulses to motor based on experiments 

                print("Message received from manager. Running Stepper {} for {} seconds ...".format(direction, on_time)) 

                while time_elapsed <= on_time: 

                    time_elapsed = time.perf_counter() - time_start 

                    # Initiating GPIO pins on the raspberry pi 

                    GPIO.setmode(GPIO.BCM) 

                    pin_list = [14, 15] 

                    GPIO.setup(pin_list, GPIO.OUT) 

                    GPIO.output(pin_list, GPIO.LOW) 

                    GPIO.output(15, GPIO.HIGH)  # sets direction HIGH 

                    # full stepping: Enable LOW, M1, M2, M3 LOW 

                    GPIO.output(14, GPIO.HIGH) 

                    time.sleep(sleep_time) 

                    GPIO.output(14, GPIO.LOW) 

                    time.sleep(sleep_time) 

                GPIO.cleanup()  # After the motor is run, clean up GPIO pins for the next loop 

                await self.send(self.message_to_manager)   

                # sends a message to manager, indicating the motor agent has finished operating 

             

            elif direction == "CCW": 

                time_start = time.perf_counter() 

                time_elapsed = 0 

                sleep_time = 0.0002 

                print("Message received from manager. Running Stepper {} for {} seconds ...".format(direction, on_time)) 

                while time_elapsed <= on_time: 

                    time_elapsed = time.perf_counter() - time_start 

                    GPIO.setmode(GPIO.BCM) 

                    pin_list = [14, 15] 

                    GPIO.setup(pin_list, GPIO.OUT) 

                    GPIO.output(15, GPIO.LOW)  # sets direction LOW 

                    # full stepping: Enable LOW, M1, M2, M3 LOW 

                    GPIO.output(14, GPIO.HIGH) 

                    time.sleep(sleep_time) 

                    GPIO.output(14, GPIO.LOW) 

                    time.sleep(sleep_time) 

 

                GPIO.cleanup() 

                await self.send(self.message_to_manager)  

                # sends confirmation message to manager, indicating motor has completed operation 

         

agent = StepperAgent("receiveragent@jabber.de", "receiverlyu")  

future = agent.start()  # runs the agent behaviours 

future.result() 

 

c) DC Motor Test 

 

# DC Motor Test with Raspberry Pi Zero 

# PWMA--> GPIO 14 (Blue), STBY--> GPIO 15 (White), AI1--> GPIO 18 (Red), AI2--> GPIO 23 (Black) 

# Phidgets 12V DC Motor: https://www.phidgets.com/?tier=3&catid=20&pcid=17&prodid=1139. 

# TB6612FNG DC Motor Driver on a SparkFun Breakout Board: https://www.sparkfun.com/products/14450. 

 

# Set up Connections 

# VM and GND to 12V Power Supply 

# A01 and A02 to DC Motor 

# VCC to RPi 5V, GND to RPi GND,  



 

214 

# PWMA to RPi GPIO 14, STBY to RPi GPIO 15, AIN1 to RPi GPIO 18, AIN2 to RPi GPIO 23 

 

import time 

import RPi.GPIO as GPIO 

 

# Set up GPIO pins 

GPIO.setmode(GPIO.BCM) 

GPIO.setwarnings(False) 

 

GPIO.setup(14, GPIO.OUT) # GPIO 14 to PWMA 

GPIO.setup(23, GPIO.OUT) # GPIO 23 to AIN2 

GPIO.setup(18, GPIO.OUT) # GPIO 18 to AIN1 

GPIO.setup(15, GPIO.OUT) # GPIO 15 to STBY 

 

# Drive the motor clockwise 

print("ClockWise Rotation") 

GPIO.output(18, GPIO.HIGH) # Set AIN1 

GPIO.output(23, GPIO.LOW) # Set AIN2 

 

# Set the motor speed 

GPIO.output(14, GPIO.HIGH) # Set PWMA 

 

# Disable STBY 

GPIO.output(15, GPIO.HIGH) 

 

time.sleep(5) 

 

# Drive the motor counterclockwise 

print("CounterClockWise Rotation") 

GPIO.output(18, GPIO.LOW) # Set AIN1 

GPIO.output(23, GPIO.HIGH) # Set AIN2 

 

# Set the motor speed 

GPIO.output(14, GPIO.HIGH) # Set PWMA 

 

# Disable STBY 

GPIO.output(15, GPIO.HIGH) 

 

time.sleep(5) 

 

# Reset all the GPIO pins 

GPIO.cleanup() 

 

 

# SPADE program to control the DC motor 

# This agent runs the DC motor in the direction and for the duration sent by the manager agent 

 

from spade.agent import Agent 

from spade.behaviour import CyclicBehaviour 

from spade.template import Template 

from spade.message import Message 

from spade import quit_spade 

import asyncio 

import RPi.GPIO as GPIO 

import time 
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class DCAgent(Agent):  # extends the Agent class from Python 

 

    async def setup(self): 

        template = Template()  # set the template to match incoming messages. This ensures receive() works. 

        template.set_metadata("performative", "inform") 

        self.dc_behaviour = self.DC_Behaviour() 

        self.add_behaviour(self.dc_behaviour, template) 

     

    class DC_Behaviour(CyclicBehaviour): 

         

        async def on_start(self): # on_start() function executes once when a behaviour instance is added to an agent 

            message_to_manager = Message(to="manageragent@jabber.de") 

            message_to_manager.set_metadata("performative", "inform") 

            message_to_manager.body = "DC Done"   

            # create a message that indicates DC motor has completed operation 

            self.message_to_manager = message_to_manager 

             

        async def run(self):  # in CyclicBehaviour run() runs indefinitely until the behaviour is stopped. 

            # attempt to receive message from manager 10 times. This helps with the timing of operations 

            for attempt in range(10): 

                message_from_manager = await self.receive(10) # Waiting 10 seconds for message from manager 

                if message_from_manager: 

                    break 

                # if no message is received from manager, quit Spade 

                if not message_from_manager: 

                print("No message from manager agent, quitting Spade ...") 

                await self.agent.stop() 

                quit_spade() 

 

            # extract on_time (as integer) and direction (as a string) from message  

            on_time = int("".join(letter for letter in message_from_manager.body if letter.isdigit())) 

            direction = "".join(letter for letter in message_from_manager.body if letter.isalpha()) 

 

            if direction == "CW": 

                print("Message received from manager. Running DC motor {} for {} seconds ...".format(direction, on_time)) 

                # initiate GPIO pins 

                GPIO.setmode(GPIO.BCM) 

                pin_list = [14, 15, 18, 23] 

                GPIO.setup(pin_list, GPIO.OUT) 

                GPIO.output(pin_list, GPIO.LOW) 

                GPIO.output(14, GPIO.HIGH)  # PWMA HIGH 

                GPIO.output(15, GPIO.HIGH)  # SYTBY HIGH 

                # CW; AI1 HIGH, AI2 LOW 

                GPIO.output(18, GPIO.HIGH) 

                GPIO.output(23, GPIO.LOW) 

                time.sleep(on_time) 

                GPIO.output(14, GPIO.LOW) #PWMA LOW for short brake 

                GPIO.cleanup()  # clean up GPIO pins for next operation 

                await self.send(self.message_to_manager)  # send completion confirmation to manager agent 

             

            elif direction == "CCW": 

                print("Message received from manager. Running DC motor {} for {} seconds ...".format(direction, on_time)) 

                GPIO.setmode(GPIO.BCM) 

                pin_list = [14, 15, 18, 23] 

                GPIO.setup(pin_list, GPIO.OUT) 
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                GPIO.output(pin_list, GPIO.LOW) 

                GPIO.output(14, GPIO.HIGH)  # PWMA HIGH 

                GPIO.output(15, GPIO.HIGH)  # SYTBY HIGH 

                # CCW; AI1 LOW, AI2 HIGH 

                GPIO.output(18, GPIO.LOW) 

                GPIO.output(23, GPIO.HIGH) 

                time.sleep(on_time) 

                GPIO.output(14, GPIO.LOW) #PWMA LOW for short brake 

                GPIO.cleanup() 

                await self.send(self.message_to_manager) 

      

agent = DCAgent("testagent@jabber.de", "testlyu")  # initiate the DC motor agent 

future = agent.start()  # Run the DC motor agent behaviour 

future.result() 

 

 

 

 

 

  


