
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2023-07-21

Multi-Agent Modelling of Industrial

Cyber-Physical Systems for IEC 61499

Based Distributed Intelligent Automation

Lyu, Guolin

Lyu, G. (2023). Multi-agent modelling of industrial cyber-physical systems for IEC 61499 based

distributed intelligent automation (Doctoral thesis, University of Calgary, Calgary, Canada).

Retrieved from https://prism.ucalgary.ca.

https://hdl.handle.net/1880/116791

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Multi-Agent Modelling of Industrial Cyber-Physical Systems for IEC 61499 Based Distributed

Intelligent Automation

by

Guolin Lyu

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN MECHANICAL AND MANUFACTURING ENGINEERING

CALGARY, ALBERTA

JULY, 2023

© Guolin Lyu 2023

ii

Abstract

Traditional industrial automation systems developed under IEC 61131-3 in centralized

architectures are statically programmed with determined procedures to perform predefined tasks

in structured environments. Major challenges are that these systems designed under traditional

engineering techniques and running on legacy automation platforms are unable to automatically

discover alternative solutions, flexibly coordinate reconfigurable modules, and actively deploy

corresponding functions, to quickly respond to frequent changes and intelligently adapt to

evolving requirements in dynamic environments.

The core objective of this research is to explore the design of multi-layer automation

architectures to enable real-time adaptation at the device level and run-time intelligence

throughout the whole system under a well-integrated modelling framework. Central to this goal

is the research on the integration of multi-agent modelling and IEC 61499 function block

modelling to form a new automation infrastructure for industrial cyber-physical systems. Multi-

agent modelling uses autonomous and cooperative agents to achieve run-time intelligence in

system design and module reconfiguration. IEC 61499 function block modelling applies object-

oriented and event-driven function blocks to realize real-time adaption of automation logic and

control algorithms. In this thesis, the design focuses on a two-layer self-manageable architecture

modelling: a) the high-level cyber module designed as multi-agent computing model consisting

of Monitoring Agent, Analysis Agent, Self-Learning Agent, Planning Agent, Execution Agent,

and Knowledge Agent; and b) the low-level physical module designed as agent-embedded IEC

61499 function block model with Self-Manageable Service Execution Agent, Self-Configuration

Agent, Self-Healing Agent, Self-Optimization Agent, and Self-Protection Agent. The design

iii

results in a new computing module for high-level multi-agent based automation architectures and

a new design pattern for low-level function block modelled control solutions.

The architecture modelling framework is demonstrated through various tests on the

multi-agent simulation model developed in the agent modelling environment NetLogo and the

experimental testbed designed on the Jetson Nano and Raspberry Pi platforms. The performance

evaluation of regular execution time and adaptation time in two typical conditions for systems

designed under three different architectures are also analyzed. The results demonstrate the ability

of the proposed architecture to respond to major challenges in Industry 4.0.

iv

Acknowledgements

There are many people whom I would like to acknowledge for the support they provided in my

pursuit of the PhD degree and in making this dissertation possible.

First and foremost, I would like to thank my supervisor, Dr. Robert Brennan, for his

guidance, advice, patience, and support in my research project. Thanks very much for providing

this valuable opportunity and putting the much appreciated effort in my research, especially for

the numerous discussions, reviews, and revisions of research articles, and for the work on

building simulation models. For their generous financial supports, I would like to thank the

Natural Sciences and Engineering Research Council of Canada, Spartan Controls, the Suncor

Energy Foundation, the Faculty of Graduate Studies, and the Department of Mechanical and

Manufacturing Engineering.

I would like to thank Dr. Paul Tu and Dr. Simon Li for being my supervisory committee

members, Dr. Peter Goldsmith and Dr. Laleh Behjat for serving on the candidate examination

committee, Dr. Mahdis Bisheban, Dr. Arne Dankers, and Dr. Petr Kadera for serving on the final

examination committee. Thanks very much for putting efforts in the exam and offering advice on

the research. I would also like to thank Dr. Deyi Xue for the research work on compute-aided

product modelling and Dr. Alireza Fazlirad for helping the initial multi-agent modelling

experimental testbed design.

Many thanks go to Bethe and Johnny Andreasen for help and encouragement in returning

to the PhD program in early 2018 with Dr. Brennan and for love and support to my family. I also

appreciate all help from my friends, visiting scholars, research colleges, and support staff in my

pursuit of the PhD degree at the University of Calgary.

v

Most importantly, my wife Angyue deserves special thanks for the love and support she

provided which made all the difference in the past years. Thank our little girl Sophie for bringing

so much joy to us since late 2020. I would also like to thank my parents, parents-in-law, and all

family members for the constant love and support that they have provided.

Thank you all for being part of this journey and for the witness to every step.

vi

Dedication

To my grandparents, especially my maternal grandmother who passed away in 2021 while I was

so far away from home.

vii

Table of Contents

Abstract ... ii
Acknowledgements .. iv
Dedication .. vi
Table of Contents .. vii
List of Tables .. x

List of Figures .. xi
List of Abbreviations ... xiv

CHAPTER ONE: INTRODUCTION ... 1
1.1 Research Background ... 1
1.2 Thesis Structure .. 5

CHAPTER TWO: RESEARCH MOTIVATION ... 7

2.1 Problem Statement .. 7
2.2 Objectives and Methodologies .. 13
2.3 Anticipated Contributions ... 14

CHAPTER THREE: LITERATURE REVIEW ... 17
3.1 Introduction ... 17

3.2 Initiation of IEC 61499 Standards .. 19
3.2.1 IEC 61499 Theoretical Fundamentals .. 19
3.2.2 IEC 61499 Function Block Models .. 20

3.3 Execution of IEC 61499 Function Blocks .. 22
3.3.1 Execution Semantics of IEC 61499 Function Blocks .. 22

3.3.2 Semantic-Correct Mapping for IEC 61499 Function Blocks 23
3.4 Transition to IEC 61499 Based Systems .. 26

3.4.1 Challenges with Transition to IEC 61499 Based Systems ... 26
3.4.2 Methods of Transformation to IEC 61499 Based Systems .. 28

3.5 Integration with IEC 61499 Enabling Technologies .. 32
3.5.1 Design Paradigms for Modelling IEC 61499 Based Systems 32
3.5.2 Computing Paradigms for Modelling IEC 61499 Based Systems 36

3.6 Implementation of IEC 61499 Engineering Environments .. 43
3.6.1 Development of IEC 61499 Engineering Environments .. 43

3.6.2 Application of IEC 61499 Engineering Environments .. 45
3.7 Summary ... 47

CHAPTER FOUR: ARCHITECTURE MODELLING FRAMEWORK 49

4.1 Introduction ... 49
4.2 Modelling Framework .. 50

4.2.1 Multi-Layer Macro Architecture .. 51
4.2.2 Multi-Layer Micro Architecture ... 53

4.3 Summary ... 57

CHAPTER FIVE: HIGH-LEVEL CYBER MODULE ARCHITECTURE MODELLING 59
5.1 Introduction ... 59

viii

5.2 Monitoring Agent Design ... 61

5.3 Analysis Agent Design ... 63

5.3.1 Analysis Agent Modelling .. 63
5.3.2 Self-Learning Agent Modelling ... 65

5.4 Planning Agent Design ... 68
5.5 Execution Agent Design ... 70
5.6 Knowledge Agent Design ... 72

5.7 Summary ... 74

CHAPTER SIX: LOW-LEVEL PHYSICAL MODULE ARCHITECTURE MODELLING 75
6.1 Introduction ... 75
6.2 Developing Low-level Control Systems in IEC 61499 Function Blocks 77

6.2.1 IEC 61499 Reference Architecture .. 77

6.2.2 Interface Declaration Model ... 79
6.2.3 Component Encapsulation Model .. 87

6.2.4 IEC 61499 Application Model Design ... 88
6.3 Self-Manageable Service Model for Architecture Design in IEC 61499 90

6.3.1 Self-Manageable Service Model .. 90
6.3.2 Self-Manageable Service Execution Agent Design ... 92
6.3.3 Self-Manageable Agents Interface Design ... 92

6.3.4 IEC 61499 Function Block System Interface Design ... 93
6.3.5 Agent-Embedded Function Block Design Pattern ... 95

6.4 Summary ... 99

CHAPTER SEVEN: ARCHITECTURE MODELLING EVALUATION 101
7.1 Introduction ... 101

7.2 Illustrative Example Demonstration ... 102

7.2.1 Typical Industrial Scenario ... 102
7.2.2 High-Level Cyber Module Design ... 103
7.2.3 Low-Level Physical Module Design .. 106

7.3 Multi-Agent Simulation Model .. 108
7.3.1 Development of Agent-Based Model ... 108
7.3.2 Introduction of A New Part Type ... 113

7.3.3 Responding to A Conveyor Section Failure ... 115
7.3.4 Optimizing Part Routing ... 121

7.4 Experimental Testbed Design ... 125
7.4.1 Testbed Setup ... 125
7.4.2 Test Scenarios ... 128

7.5 Performance Evaluation Analysis ... 131

7.5.1 Regular Running Conditions .. 132

7.5.2 Adaptation Required Conditions .. 134
7.5.3 Performance Evaluation Estimation ... 140

7.6 Summary ... 143

CHAPTER EIGHT: CONCLUSIONS AND FUTURE WORK .. 145
8.1 Conclusions ... 145
8.2 Future Work .. 148

ix

REFERENCES ... 151

APPENDICES .. 163

Appendix A Multi-Agent Simulation Model .. 163
Appendix A.1 NetLogo Agent Based Simulation Model .. 163
Appendix A.2 NetLogo Routing Optimization Model .. 186
Appendix A.3 Input for Agent-Based Simulation Model ... 190
Appendix A.4 Procedures for Low-Level Self-Manageable Agents 191

Appendix A.5 Communication for Agent-Based Model ... 193
Appendix B Experimental Testbed Setup ... 196

Appendix B.1 General Steps for Testbed Setup .. 196
Appendix B.2 High-Level JetBot Modelling Test .. 196
Appendix B.3 Low-level Devices Modelling Test .. 208

x

List of Tables

Table 3-1: IEC 61499 review/keynote papers and their scopes .. 18

Table 3-2: Overview of the IEC 61499 standard publications ... 20

Table 3-3: Comparison of key aspects of IEC 61499 and IEC 61131-3 21

Table 3-4: IEC 61499 FB execution semantics .. 23

Table 3-5: Main challenges for industrial adoption of IEC 61499 ... 26

Table 3-6: Projects of developing IEC 61499 engineering environments 43

Table 3-7: Applications of typical IEC 61499 engineering environments 46

Table 5-1: Algorithm for the proposed multi-agent MAPLE-K model .. 60

Table 6-1: Algorithm for the proposed self-manageable service model 91

Table 7-1: Execution time comparison in regular running conditions 134

Table 7-2: Execution time comparison in adaptation required conditions 138

xi

List of Figures

Figure 1-1: Structure of the thesis ... 6

Figure 2-1: A simplified and typical industrial automation scenario ... 7

Figure 3-1: IEC 61499 function block model ... 21

Figure 4-1: Multi-layer system architecture modelling framework .. 51

Figure 5-1: The proposed high-level architecture modelling framework 60

Figure 5-2: The Agent_Monitoring data model .. 62

Figure 5-3: The Agent_Analysis data model ... 65

Figure 5-4: The Agent_Planning data model .. 69

Figure 5-5: The Agent_Execution data model .. 71

Figure 5-6: The Agent_Knowledge data model .. 73

Figure 6-1: The proposed low-level architecture modelling framework 76

Figure 6-2: The IEC 61499 reference architecture ... 77

Figure 6-3: The IEC 61499 function block class diagram .. 79

Figure 6-4: IEC 61499 SIFB requester/responder models ... 80

Figure 6-5: Communication patterns of IEC 61499 SIFB requester/responder models 81

Figure 6-6: An example of IEC 61499 SIFB models ... 82

Figure 6-7: IEC 61499 adapter plug/socket models .. 83

Figure 6-8: IEC 61499 FB application without adapters .. 85

Figure 6-9: IEC 61499 adapter design .. 86

Figure 6-10: IEC 61499 FB application with adapters ... 86

Figure 6-11: Comparison of IEC 61499 CFB and SubApp models ... 88

Figure 6-12: Design of an IEC 61499 application model for distributed automation 89

Figure 6-13: The low-level self-manageable architecture modelling framework 91

Figure 6-14: The SelfManageableServiceExecutionAgent data model ... 92

xii

Figure 6-15: The SelfManageableAgents data model ... 93

Figure 6-16: The IEC61499FunctionBlockSystem data model ... 94

Figure 6-17: The agent-embedded IEC 61499 FB model ... 96

Figure 6-18: Interface and FB network design of the agent-embedded FB module 97

Figure 6-19: FB network design of the agent-embedded FB module with adapters 98

Figure 7-1: An extended industrial automation scenario .. 103

Figure 7-2: The automated conveyor system .. 109

Figure 7-3: Agent-based simulation model for the automated conveyor system 111

Figure 7-4: Typical tests in performed three experiments .. 112

Figure 7-5: Introduction of a new part type: Test 1 .. 114

Figure 7-6: Introduction of a new part type: Test 2 .. 115

Figure 7-7: Responding to a conveyor section failure: Test 3 .. 116

Figure 7-8: Responding to a conveyor section failure: Test 4 .. 117

Figure 7-9: Responding to a conveyor section failure: Test 5 .. 118

Figure 7-10: All agent interaction diagram in Test 6 .. 120

Figure 7-11: The part routing agent-based model: Test 7 ... 122

Figure 7-12: The final positions of the diverter agents in Test 7.. 123

Figure 7-13: Wait time performance for the ordered and optimized routing options (mean and

95% confidence intervals) in Test 7 .. 124

Figure 7-14: Experimental testbed design .. 126

Figure 7-15: The full system configuration in Eclipse 4diac .. 126

Figure 7-16: FB network design for LEDs in Eclipse 4diac ... 127

Figure 7-17: FB network design for Motor1 in Eclipse 4diac .. 127

Figure 7-18: FB network design for Motor2 in Eclipse 4diac .. 128

Figure 7-19: Communication network design for JetBot in Eclipse 4diac 128

Figure 7-20: Test scenario with two LEDs and one motor in Eclipse 4diac 129

xiii

Figure 7-21: Test scenario with four LEDs and two motors in Eclipse 4diac 130

Figure 7-22: Estimated performance evaluation under different system design architectures ... 142

xiv

List of Abbreviations

Symbol Definition

iCPS Industrial Cyber-Physical Systems

IIoTS Industrial Internet of Things and Services

PLC Programmable Logic Controller

IEC International Electrotechnical Commission

IL Instruction List

ST Structured Text

LD Ladder Diagram

FBD Function Block Diagram

SFC Sequential Function Chart

HMI Human-Machine Interface

IPMCS Industrial Process Measurement and Control System

FB Function Block

BFB Basic Function Block

SIFB Service Interface Function Block

CFB Composite Function Block

ECC Execution Control Chart

POU Program Organization Unit

RTFM Real-Time For the Masses

XML eXtensible Markup Language

XSD XML Schema Definition

OOD Object-Oriented Design

CBD Component-Based Design

SOA Service-Oriented Architecture

SubApp Sub-Application

MAS Multi-Agent Systems

WSN Wireless Sensor Networks

HLC High-Level Control

LLC Low-Level Control

NIST National Institute of Standards and Technology

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

OPA Open Process Automation

DCS Distributed Control Systems

DICS Distributed Intelligent Control Systems

SCADA Supervisory Control and Data Acquisition Systems

PLM Product Lifecycle Management

MES Manufacturing Execution Systems

ERP Enterprise Resource Planning

SPADE Smart Python Agent Development Environment

1

Chapter One: Introduction

1.1 Research Background

Industrial automation plays a fundamental role in global industry. From a broad view, industrial

automation systems have been evolving through a series of industrial revolutions: beginning with

water- and steam-powered mechanical manufacturing systems, and followed by electricity-

powered mass production systems, then developing into information technology enabled

mechatronic systems, until now integrated with communicating and computing capabilities to

form industrial cyber-physical systems [1]-[2]. During these revolutions, industrial systems have

gradually been automated and empowered from simply replacing heavy and repetitive labor

work by machines, to applying computerized procedures and processes to control machines, to

machines that are capable of intelligent behaviours. One of the most critical motivations for

companies to continuously develop, deploy, and advance their automation systems is to remain

competitive (e.g., balancing conflicts of mass customized product varieties and short production

lead times, or low cost and high quality) in the global market. Especially over the last few

decades, industrial automation systems empowered by information technology and intelligent

electronics have significantly improved companies’ performances in meeting challenges and

achieving goals (e.g., business, societal, and environmental). In the past decade, the

manufacturing industry has marched into a new era and is leading the way to the fourth industrial

revolution (i.e., Industry 4.0 [1]), of which some key features, e.g., integration of industrial cyber

and physical systems (iCPS), application of industrial internet of things and services (IIoTS), are

required for the development of next-generation industrial systems.

2

Traditional industrial automation systems developed in centralized architectures (e.g.,

several automation processes controlled by a single controller) are statically programmed with

determined procedures (e.g., system functions and module interactions designed at early stages

considering limited available requirements) to perform predefined tasks in structured

environments (e.g., system operating as initially designed and difficult to adapt during runtime).

However, current industrial environments create many challenges for these systems, especially

when viewed in the context of Industry 4.0. In particular, systems designed under traditional

engineering techniques and running on legacy automation platforms are unable to automatically

discover alternative solutions, flexibly coordinate reconfigurable modules, and actively deploy

corresponding functions, to quickly respond to frequent changes and intelligently adapt to

evolving requirements in dynamic environments. To address this challenge, research is required

on the design and modelling of automation architectures that are responsive to frequent changes

and adaptive to evolving requirements in a distributed and intelligent way during runtime.

Frequent changes and evolving requirements result from both the supply chain aspect (e.g.,

customer requirements and manufacturing resources) and the industrial system aspect (e.g.,

software update and hardware maintenance). A distributed and intelligent solution requires that

systems are flexible in self-managing distributed architectures (e.g., dynamic configuration of

decentralized modules and scalable solutions to meet challenges) and are adaptable in self-

organizing intelligent behaviours (e.g., balancing limited available resources and complex

assigned workloads to improve overall utilization and to ensure required priority) in response to

frequent changes and evolving requirements.

In order to realize the promise of Industry 4.0, an autonomous, distributed, and

cooperative approach to automation and control is required, that matches the intelligent,

3

concurrent, and stochastic nature of next-generation industrial systems. Recently, industrial

systems have been evolving into a new form (i.e., industrial cyber-physical systems, iCPS), in

which cyber and physical components collaborate with each other and are empowered for

intelligence by communicating and computing cores [2]. This new type of iCPS appears to hold

the most promise of achieving modern industrial automation systems in the Industry 4.0 era, to

be flexible in reconfiguration of distributed system architectures and to be intelligent in

adaptation to changes in dynamic environments. Central to this work on distributed intelligent

automation, is the academic research on and industrial application of the standards IEC 61131-3

[3]-[4] and IEC 61499 [5]-[6]. Furthermore, recent work in software design and hardware

development have also helped reshape industrial automation systems [7]. In past decades, the

IEC 61131-3 standard has been widely used in developing industrial automation systems, mainly

focusing on the design of scan-based centralized and closed system architectures. However, as

envisioned for the next-generation industrial automation systems to be portable, interoperable,

and configurable, a new standard IEC 61499 was proposed for programming distributed

industrial automation solutions [8]-[9]. IEC 61499 has been a promising alternative to IEC

61131-3 as it offers some key features, e.g., application-based distributed architecture design,

object-oriented function block modelling, and event-driven control application execution, to

address challenges (e.g., scan-based and device-centered centralized architecture,

implementation/vendor dependent feedback connection and device communication) IEC 61131-3

is facing under current industrial environments.

In this research, the core objective is to explore the design of multi-layer automation

architectures to enable real-time adaptation at the device level and run-time intelligence

throughout the whole system under a well-integrated modelling framework. Central to this goal

4

is the research on the integration of multi-agent modelling and IEC 61499 function block

modelling, together with other enabling techniques, to form a new automation infrastructure for

iCPS. Multi-agent modelling uses autonomous and cooperative agents to achieve run-time

intelligence in system design and module reconfiguration. IEC 61499 function block modelling

applies object-oriented and event-driven function blocks to realize real-time adaption of

automation logic and control algorithms. In this thesis, a multi-agent architecture modelling

framework to realize IEC 61499 based distributed intelligent automation is proposed. The design

will focus on a two-layer self-manageable architecture modelling.

5

1.2 Thesis Structure

The thesis is structured as follows (Figure 1-1). Following this introduction, the research

motivation is described in Chapter Two, which outlines the research problem, objectives,

methodologies, and expected contributions. Chapter Three is a literature review of five major

topics on IEC 61499 function block modelling for distributed automation systems, in which

design methods (e.g., object-oriented modelling technique), computing paradigms (e.g.,

autonomic computing framework), and engineering environments (e.g., Eclipse 4diac) are

analyzed and will be applied in this thesis. The following chapters focus on deploying autonomic

computing in the proposed architecture modelling framework, including: a) the reference

architecture employed in the high-level cyber module and implemented as multi-agent systems,

b) the self-managing properties employed in the low-level physical module and implemented as

agent-embedded IEC 61499 function blocks. The design results in a new computing module for

high-level multi-agent based automation architectures and a new design pattern for low-level

function block modelled control solutions. In Chapter Seven, the proposed architecture

modelling framework is demonstrated and evaluated through various experiments on the multi-

agent simulation model and the designed experimental testbed. Chapter Eight closes the thesis

with conclusions and future work.

6

Chapter 3

Literature Review

Multi-Agent Modelling, IEC 61499 Function

Blocks, Distributed intelligent Automation.

Chapter 2

Research Motivation

Research Problem, Objectives, Methods, and

Controbutions.

Chapter 1

Introduction

Research Background

Chapter 4

Architecture Modelling Framework

Multi-Layer System Architecture Modelling

with Focus on Two-Layer System Control

Architecture Design

Chapter 5

High-Level Architecture Modelling

Multi-Agent MAPLE-K Model for the High-

Level Cyber Module.

Chapter 6

Low-Level Architecture Modelling

Agent-Embedded IEC 61499 FB Model for

the Low-Level Physical Module.

Chapter 7

Architecture Modelling Evaluation

Simulation and Experimental Design, and

Performance Evaluation.

Chapter 8

Conclusions and Future Work

Cloncluding Remarks

Figure 1-1: Structure of the thesis

7

Chapter Two: Research Motivation

2.1 Problem Statement

Traditional industrial automation systems developed in centralized architectures are statically

programmed with determined procedures to perform predefined tasks in structured

environments. Figure 2-1 shows a simplified but typical industrial automation scenario, in which

the system is originally programmed to sort specific blocks into corresponding bins. Details are

described below to explain the research motivation:

• a programmable robotic arm can rotate and translate to grasp and place blocks from a

conveyor into bins on the fly on a workbench;

• the task for the robotic arm is to pick up one type of block from the conveyor and then place

them into the corresponding type of the bin on the workbench; and

• engineers pre-program specific working procedures for robotic arms to finish specific tasks.

Robotic Arm

Conveyor System

Sorting Bins

B1

B2

B3

B4

Figure 2-1: A simplified and typical industrial automation scenario

8

This type of scenario is common for many industrial applications, such as assembly lines

in automotive manufacturing and sorting systems in distribution centres. They are considered as

traditional industrial automation systems with enough automated capabilities to replace repetitive

labour work or with some degree of flexibility for programmable controls. Typical features of

these systems can be summarized as:

• static programming with determined procedures (i.e., pre-programmed procedures);

• structured environments (i.e., same blocks and bins on a specific workbench);

• a set of predefined tasks/behaviours (i.e., reach, grasp, and place); and

• centralized coordinating control (i.e., centralized pace control of the robotic arm and the

conveyor).

For traditional industrial automation systems, control units or automation functions have

been programmed in IEC 61131-3 and executed in programmable logic controllers (PLCs) for

decades [3], [10]. PLCs originated in the late 1960s and were programmed in Boolean formats or

relay-derived ladder logic, as automated machines at that time were controlled by complex relays

and were hard for maintenance and reconfiguration. In the early 1980s, the introduction of IEC

61131-3 standardized the programming aspects (e.g., languages, data types, input/output) for

PLCs. Especially, the International Electrotechnical Commission (IEC) defined five

programming languages, including: two textual programing languages, instruction list (IL) and

structured text (ST); two graphical programing languages, ladder diagram (LD) and function

block diagram (FBD); and an additional set of graphical and equivalent textual elements,

sequential function chart (SFC) [3], [10]. In the 1990s, PLCs welcomed programmable human-

machine interfaces (HMI) to replace traditional pushbutton styles for better human machine

interaction (e.g., troubleshooting). The recent two decades saw the emergence of advanced

9

software and hardware technologies, and IEC 61131-3 cannot sufficiently support the design of

distributed intelligent industrial systems. The IEC 61499, a new and improved standard based on

extended function block concept of IEC 61131-3 was developed in the 2000s for the

implementation of distributed industrial process measurement and control systems (IPMCSs) to

support flexibility, portability, interoperability, and reconfigurability [8]-[9].

Although IEC 61131-3 still dominates the design of legacy systems, current industrial

environments have created many challenges for these legacy systems, especially when viewed in

the context of Industry 4.0. Major issues for example are: a) current PLC technologies are not

suitable for building distributed intelligent automation system architectures; b) automation

programming languages of IEC 61131-3 used in current PLCs are implemented by each vendor

and thus prevent interoperability; c) current IEC 61131-3 programmed PLC systems are difficult

in adaption and in response to changes while maintaining predictable and stable operations

during runtime. Consider the scenario in Figure 2-1 by adding additional elements:

• there is a speed change of the conveyor which delivers blocks;

• there is one red block mixed into those same type of black blocks;

• there is also a red bin for those red blocks right behind the black bin; and

• there is a different shape (e.g., cylinder) mixed into those blocks.

In traditional industrial systems, all interactions and functions are designed at the

development stage by considering limited available requirements. Although some of above cases

may be considered at the beginning (e.g., encoders to measure conveyor speed), such type of

case may occur unexpectedly and thus beyond the design capability of the system. This could

result in modifying affected functions offline according to changes of design specifications or

new requirements. That means industrial systems designed under traditional engineering

10

techniques and running on legacy automation platforms are unable to automatically discover

alternative solutions, flexibly coordinate reconfigurable modules, and actively deploy

corresponding functions, to quickly respond to frequent changes and intelligently adapt to

evolving requirements in dynamic environments. Consider the scenario in Figure 2-1 and see

what will happen next:

• the robotic arm could miss blocks from the conveyor because of pace changes between

them;

• the robotic arm could also pick up the wrong red block and place it into the black bin as

usual, not the red one; and

• the robotic arm could not be able to pick up different shapes (e.g., cylinders).

With predetermined procedures in structured environments for predefined tasks, even

when the system is operating normally, errors could still happen because of those frequent

changes and evolving requirements that may not all be considered at the very beginning.

Therefore, as envisioned in this research, a well-integrated design framework to model

automation architectures is required for the development of next-generation industrial systems in

the Industry 4.0 era, that are responsive to frequent changes and adaptive to evolving

requirements in a distributed and intelligent way during runtime. That means under the new

architecture modelling framework:

• the robotic arm can detect speed changes of the conveyor through communication to

coordinate the pace;

• the robotic arm can distinguish between red and black blocks, and other shapes;

• the robotic arm can learn from past experience on black blocks to transfer sorting skills to

the red block, or in more complex situations to pick up and put it into the red bin; and

11

• the robotic arm can learn from raw sensory data with black blocks to achieve skills to pick

up different shapes (e.g., cylinders).

The challenges associated with this type of scenario are becoming critical requirements

for developing next-generation industrial automation systems. In the Industry 4.0 era, such

systems should be modelled with open architectures to support portability, interoperability, and

reconfigurability, which is the vision of IEC 61499 compared to the traditional IEC 61131-3

standard. As reviewed in Chapter Three, research on IEC 61499 based industrial automation

systems was mainly focused on function block execution semantics and transformation

techniques for IEC 61131-3 based systems to IEC 61499 based ones. Until recently, there are

studies on the integration with IEC 61499 enabling technologies of design and computing

paradigms for modelling industrial automation systems. Recent advances in hardware (e.g.,

smart control devices) and software (e.g., mobile automation apps) provide new opportunities to

develop such industrial automation systems. Furthermore, artificial intelligence/machine learning

techniques have created a set of computational tools (e.g., deep learning and deep reinforcement

learning) that can empower the system to be intelligent to a certain human level.

In summary, industrial communicating and computing techniques have evolved into a

new era, in which service-oriented and event-based programming, machine learning and data

analytics, etc. are widely applied in the system design. A new paradigm is required to bring all

these together to realize distributed intelligent system architectures envisioned by Industry 4.0. In

light of the recent work in the area of industrial automation systems, especially the research on:

• the standard of IEC 61499 for the application-based distributed architecture design that

applies object-oriented function block modelling and event-driven control application

execution; and

12

• the vision of Industry 4.0 for a smart and networked world that leverages the integration of

industrial cyber and physical systems (iCPS) and the application of industrial internet of

things and services (IIoTS).

This research will continue to enrich design methods and computing frameworks for

building self-managing industrial systems and to integrate multi-agent modelling with IEC

61499 function block modelling for programming distributed automation solutions. The question

that this research is trying to ask and help answer can be stated as follows:

“How to achieve self-manageable industrial cyber-physical systems for IEC

61499 based distributed intelligent automation (i.e., to explore the design of

multi-layer automation architectures to enable real-time adaptation at the device

level and run-time intelligence throughout the whole system by integrating multi-

agent modelling and IEC 61499 function block modelling)”

13

2.2 Objectives and Methodologies

As stated in the research question, the long-term goal is to achieve self-manageable industrial

cyber-physical systems for IEC 61499 based distributed intelligent automation. However, in this

research the core objective is to explore the design of multi-layer automation architectures to

enable real-time adaptation at the device level and run-time intelligence throughout the whole

system under a well-integrated modelling framework.

Central to this goal is the research on the integration of multi-agent modelling and IEC

61499 function block modelling, together with other enabling techniques, to form a new

automation infrastructure for iCPS. The major research methodologies focus on system

architecture modelling including high-level cyber module and low-level physical module through

deploying autonomic computing into architecture design [11]-[13]. In detail, the reference

architecture is employed in the cyber module design and implemented as multi-agent systems,

resulting in a new computing module with self-learning capabilities for high-level multi-agent-

based automation architectures [11], [13]. This methodology uses autonomous and cooperative

agents to achieve run-time intelligence in system design and module reconfiguration. The self-

managing properties are employed in physical module design and implemented as agent-

embedded IEC 61499 function blocks, resulting in a new design pattern with embedded agent

intelligence for low-level function block modelled control solutions [12]-[13]. This methodology

applies object-oriented and event-driven function blocks to realize real-time adaption of

automation logic and control algorithms. The proposed design are evaluated through simulation

model development and experimental testbed design to show expected system capabilities to

respond to major challenges in Industry 4.0 [13]-[15].

14

2.3 Anticipated Contributions

As stated before, the core objective of this research is to explore the design of multi-layer

automation architectures to enable real-time adaptation at the device level and run-time

intelligence throughout the whole system under a well-integrated modelling framework. A multi-

agent modelling framework of iCPS for IEC 61499 based distributed intelligent automation is

proposed in this thesis, focusing on a two-layer self-manageable architecture modelling. This

research is expected to result in the following contributions:

1) High-Level iCPS Architecture. This architecture will use a multi-agent modelling framework

to support autonomic computing (i.e., Monitoring, Analysis, Planning, Execution, and

Knowledge). Instead of modelling these elements as services, a multi-agent model is applied

so that it can actively interact with each other, operating environments, and system modules

to achieve real-time communication and computation.

2) Self-Learning Agent. The traditional autonomic computing framework will be enhanced with

the introduction of a self-learning agent. Traditionally, only predefined rules, policies, and

goals are provided by Analysis with limited situations. The system can work in some simple

situations with predefined knowledge whereas in most cases it is far less capable of dealing

with real-time dynamic situations. Furthermore, recent advances in artificial intelligence

have created a set of computational tools (e.g., deep learning and deep reinforcement

learning) that can empower the system to be intelligent to a certain human level. These

artificial intelligence techniques are leveraged to enable system self-learning capabilities.

3) Low-Level iCPS Architecture. This architecture will be based on the IEC 61499 function

block modelling framework for event-driven distributed execution. Instead of programming

automation systems in IEC 61131-3 in a centralized way, IEC 61499 function block

15

modelling for distributed automation is applied, which allows more flexibility, portability,

interoperability, and reconfigurability. Also, node intelligence is embedded into function

blocks to reduce data transmitting bandwidth and processing load.

4) Self-Management Agents. A new agent-embedded design pattern for modelling IEC 61499

function block based control applications will be introduced that provides self-management

capabilities for real-time adaptation. These self-manageable agents embedded in IEC 61499

function blocks are either initialized to be active for predefined tasks (i.e., self-configuration,

self-optimization, self-healing, and self-protection) or deactivated in a sleep state. With this

design pattern, the new agent-embedded function block types can be introduced to build

self-manageable control applications.

16

[This page intentionally left blank]

17

Chapter Three: Literature Review

3.1 Introduction

Real-time control units or automation functions are mainly programmed under IEC 61131-3 or

IEC 61499 and executed in PLCs or intelligent embedded devices. IEC 61131-3 dominates the

design of traditional industrial automation systems and faces a lot of challenges, while IEC

61499 is developed for programming next-generation industrial automation systems to support

portability, interoperability, and configurability. Table 3-1 provides a list of published review

papers or keynotes on the IEC 61499 research. As stated before, the main theme of this thesis is

to explore the design of architecture modelling frameworks for IEC 61499 based distributed

intelligent automation. Therefore, this chapter will focus on two major topics [16]-[18]:

• how IEC 61499 has evolved as a standalone standard for programming next-generation

industrial automation systems (Section 3.2, 3.3, and 3.4); and

• how IEC 61499 has interacted with enabling technologies to realize distributed intelligent

automation (Section 3.4, 3.5, and 3.6).

Before the summary in Section 3.7, the two major topics are further detailed into five

sub-topics. In these sub-topics, this research is based on the IEC 61499 reference architecture

(Section 3.2), focuses on design and computing paradigms for modelling IEC 61499 based

systems (Section 3.5), and applies one of the IEC 61499 engineering environments for

implementation (Section 3.6). Discussions on IEC 61499 function block execution and system

transition are for an overview purpose. These five sub-topics are as follows:

• how the IEC 61499 standard is envisioned for programming next-generation industrial

automation systems (Section 3.2);

18

• how each IEC 61499 FB is activated through event scheduling for determined execution

(Section 3.3);

• how existing systems programmed in IEC 61131-3 can be transitioned to IEC 61499 based

systems (Section 3.4);

• how IEC 61499 has integrated with enabling technologies for distributed intelligent

automation (Section 3.5); and

• how engineering environments for IEC 61499 have been implemented (Section 3.6).

Table 3-1: IEC 61499 review/keynote papers and their scopes

Reference Scope

[Georg and Hussain 2006] [19] Modelling techniques for distributed control systems based on IEC 61499.

[Zoitl et al. 2007] [20] Execution, verification, reconfiguration, and industrial adoption of IEC 61499.

[Thramboulidis 2007] [21] Analysis of inefficiencies of the IEC 61499 model in factory automation.

[Hall et al. 2007] [22] Challenges to industry adoption of IEC 61499 event-based function blocks.

[Brennan et al. 2008] [23] Dynamic and intelligent reconfiguration of IEC 61499 based industrial automation.

[Zoitl and Vyatkin 2009 [24] Modelling of distribution and architecture-centric design issues in IEC 61499.

[Zoitl et al. 2009] [25] Comparative study of IEC 61131-3 and IEC 61499 for distributed automation systems.

[Hanisch et al. 2009] [26] Formal modelling and verification of IEC 61499 function blocks.

[Vyatkin 2009] [27] The IEC 61499 standard and its semantics for distributed automation systems.

[Vyatkin 2011] [28] IEC 61499 as enabler of distributed and intelligent automation.

[Strasser et al. 2011] [29] Design and execution issues in IEC 61499 distributed automation systems.

[Strasser et al. 2012] [30] Launch and takeoff of the IEC 61499 function block standard.

[Christensen et al. 2012a] [31] Overview of the second edition of the IEC 61499 function block standard.

[Christensen et al. 2012b] [32] Software tools and running platforms of the IEC 61499 function block standard.

[Thramboulidis 2015] [33] Service-oriented architectures for IEC 61499 industrial automation systems.

[Sinha et al. 2019] [34] Static formal methods for industrial automation systems in IEC 61499/IEC 61131-3.

[Prenzel et al. 2020] [35] Comparative study of IEC 61499 runtime environments.

[Lyu and Brennan 2020 [17] Transformation methods, modelling techniques, and implementation tools in IEC 61499.

[Sonnleithner et al. 2021] [36] Summary of a catalog of suboptimal structures or patterns in IEC 61499 applications.

19

3.2 Initiation of IEC 61499 Standards

3.2.1 IEC 61499 Theoretical Fundamentals

The theoretical fundamentals to develop IEC 61499 originated from its predecessor the IEC

61131-3 standard. IEC 61131-3 has been designed with a scan-based centralized and closed

architecture for PLCs in industrial automation for decades [4]. With advanced modelling

methodologies, complex engineering requirements, and emerging software and hardware

technologies, the IEC 61131-3 standard cannot sufficiently support the design of intelligent

distributed automation systems. However, the defined programing languages, especially the

concept of function blocks, are well established and widely utilized in industrial automation

practices. Therefore, the IEC 61499 standard based on extended function block concept of IEC

61131-3 is developed and continues to be improved.

An overview of the IEC 61499 standard publications is shown in Table 3-2. IEC 61499-1

defines a generic architecture in terms of implementable reference models, textual syntax and

graphical representations, and their guidelines for the use of function blocks in industrial

automation [6]. IEC 61499-2 defines software tool requirements to support engineering tasks of

IEC 61499 based systems [37]. IEC 61499-4 defines rules for the development of compliance

profiles to realize key requirements of IEC 61499 based systems, devices and software tools

[38]. IEC 61499-3 is a technical report and has been withdrawn [39].

20

Table 3-2: Overview of the IEC 61499 standard publications

Title Topic Type Publication Status

IEC 61499-1

Function Blocks for IPMCSs

- Part 1: Architecture

Publicly Available

Specification
Edition 1.0, 2000 Replaced

Function Blocks

- Part 1: Architecture

International

Standard

Edition 1.0, 2005 Revised

Edition 2.0, 2012 Valid

IEC 61499-2

Function Blocks for IPMCSs

- Part 2: Software Tools Requirements

Publicly Available

Specification
Edition 1.0, 2001 Replaced

Function Blocks

- Part 2: Software Tools Requirements

International

Standard

Edition 1.0, 2005 Revised

Edition 2.0, 2012 Valid

IEC 61499-3
Function Blocks

- Part 3: Tutorial Information
Technical Report Edition 1.0, 2004

Withdrawn

2008

IEC 61499-4

Function Blocks for IPMCSs

- Part 4: Rules for Compliance Profiles

Publicly Available

Specification
Edition 1.0, 2002 Replaced

Function Blocks

- Part 4: Rules for Compliance Profiles

International

Standard

Edition 1.0, 2005 Revised

Edition 2.0, 2013 Valid

3.2.2 IEC 61499 Function Block Models

As stated before, IEC 61499 has been proposed for the development and implementation of

distributed IPMCSs to support flexibility, portability, interoperability, and reconfigurability [40]-

[43]. Compared to the traditional IEC 61131-3 standard, it provides an open reference

architecture to design distributed IPMCSs with some key features, e.g., object-oriented

modelling by using function blocks as basic elements and event-driven execution by using

data/events as inputs/outputs.

The IEC 61499 standard [6] defines three types of function blocks (FBs): a) basic

function block (BFB) defined as an event-driven state machine for execution of algorithms with

inputs/outputs; b) service interface function block (SIFB) defined as a service sequence diagram

for encapsulation of FB interaction with external services; and c) composite function block

(CFB) defined as a network of FB instances through event and data connections. A FB model is

first trigged by an input event with available input data, then executed through evaluating states

(i.e., through the execution control chart (ECC)) and functioning algorithms (i.e., through the

schedule function), and finally updated with data/event outputs (Figure 3-1). A typical system

programmed under the IEC 61499 reference architecture is designed as: a) the control logic built

21

by function blocks as applications, and b) physical devices encapsulating required resources for

implementation. The reference architecture will be further discussed in Section 6.2.

START INIT

REQ1

REQ2

ALG EVNT

1

1

REQ1

REQ2

INIT

1

ALG1 EVNT1

ALG2 EVNT2

Output Event

Output Data

Input Event

Input Data

Execution Control

Chart (hidden)

Internal Data

(hidden)

Algorithms

(hidden)

Type Name

Instance Name

Figure 3-1: IEC 61499 function block model

In conclusion, both IEC 61131-3 and IEC 61499 have evolved with their own key

characteristics and employment of emerging technologies to fulfill new industrial requirements.

Table 3-3 provides a comparison of key aspects of IEC 61499 and IEC 61131-3.

Table 3-3: Comparison of key aspects of IEC 61499 and IEC 61131-3

 IEC 61499 IEC 61131-3

Modelling Paradigm Object-Oriented Object-Oriented (supported)

Modelling Component Function Blocks (FBs) Program Organization Units (POUs)

Input and Output Events, Data Data

Execution Mechanism Event Driven Scan Based (cyclic or periodic)

Data Type Adopted from IEC 61131-3 Defined, e.g., integers, strings, etc.

Engineering Approach Application Centered Device Centered (in practice)

Architecture Characteristic Open Closed

Structure Style Process Type Subroutine Type

Communication Paradigm Publish/Subscribe, Client/Server Shared Memory, Communication Service

Communication Mechanism Messages Shared/Global Variables

Modelling Level Programming of Complete System Programming of Single Controller

Programming Language
No specific language defined, but

IEC 61131-3 ones recommended
IL, ST, FBD, LD, SFC

22

3.3 Execution of IEC 61499 Function Blocks

Design modelling and execution semantics of IEC 61499 applications have been researched and

reviewed in numerous published papers [27]-[29], [44]-[45]. Research in this area addresses the

question of how each FB in the FB network is activated through event scheduling to realize

determined execution. In this section, some typical execution models are summarized and then

recent research on semantic-correct mapping for IEC 61499 will be reviewed.

3.3.1 Execution Semantics of IEC 61499 Function Blocks

Some typical execution models for IEC 61499 FBs are summarized in Table 3-4. The non-

preemptive multi-threading resource (NPMTR) model implemented in FBRT/FBDK is event-

trigged [46], whereas the cyclic execution model implemented in ISaGRAF and Cycle RT is

PLC-like cyclic-scan [47]-[48]. Both FUBER and 4diac FORTE implement the sequential

execution model with the main difference of the former using local event buffer, whereas the

latter using global event buffer [49]-[51]. In the parallel execution model, aligning the FB

execution speed with global instantaneous events distinguishes the synchronous and the

asynchronous [51]-[53]. The hybrid model views a distributed IEC 61499 system as a collection

of synchronous compositions of FBs communicating with each other over an asynchronous

network [54].

23

Table 3-4: IEC 61499 FB execution semantics

References Execution Model Main Idea Implementation

[Sünder et al. 2006b]

[46]

Non-Preemptive Multi-

Threading Resource

(NPMTR)

Depth-first event scheduling for

execution of a targeted FB with

an emitted event immediately.

FBRT/FBDK

[Vyatkin and Chouinard 2008;

Tata and Vyatkin 2009]

[47]-[48]

Cyclic Execution

Scheduling events for periodical

execution of each FB in the FBN

in a cyclic way.

ISaGRAF

Cyclic RT

[Cengic et al. 2006b;

Vyatkin and Dubinin 2007;

Vyatkin et al. 2007]

[49]-[51]

Sequential Execution

Breadth-first event scheduling for

execution of FBs with a sequence

of emitted events in ways of local

or global event buffer.

FUBER

4diac FORTE

[Vyatkin et al. 2007;

Dubinin and Vyatkin 2008;

Yoong et al. 2009;

Yoong et al. 2015]

[51]-[54]

Parallel Execution

Scheduling events for parallel

execution of multiple FBs on

multi-core processor architectures

in synchronous, asynchronous, or

hybrid ways.

Prototype

Complier

3.3.2 Semantic-Correct Mapping for IEC 61499 Function Blocks

A refactoring approach to ECCs in BFBs by removing deadlock states was proposed and

implemented through graph transformations with a set of defined rules [55]. The proposed

method can be extended to FB networks and applied to semantic-correct transformation of

control programs. Then semantics-robust design patterns for IEC 61499 to solve the portability

problem were further proposed [56]. The general idea is to transform original FB applications

executed in some source model to resulting FB applications in target models with the same

behaviour. Dai et al. proposed a design recovery, semantic analysis, and code generation

framework based on ontology models for IEC 61499 [57]-[58]. The key difference between two

studies is whether the design process starts with a single IEC 61499 platform [57], e.g., either

FBDK or nxtSTUDIO, or multiple IEC 61499 platforms [58], e.g., both FBDK and nxtSTUDIO.

Lindgren et al. proposed a mapping of IEC 61499 FBs to the real-time for the masses

kernel (i.e., RTFM-kernel) for predictable real-time execution to address the execution problem

of IEC 61499 FBs for light-weight controllers with limited resources [59]. Then a generic

runtime system, i.e., RTFM-RT, to execute RTFM-core programs on threaded platforms for

24

predictable IEC 61499 execution was developed [60]. The proposed mapping from IEC 61499

FBs to RTFM task and resource models is used for the execution under RTFM-RT. RTFM-core,

RTFM-kernel, and RTFM-RT are parts of the RTFM-lang framework [61]. The implementation

difference is that the RTFM-kernel directly exploits the peripheral hardware, whereas the

RTFM-RT utilizes available threading architectures for scheduling and representing tasks,

resources, or baselines [62]. Furthermore, based on the mapping of IEC 61499 FBs to RTFM

task and resource models, a rea-time semantics for IEC 61499 to realize timing semantics [60]

and a technique to assess the end-to-end response time of IEC 61499 distributed applications

over switched Ethernet [63] were also proposed.

Yoong et al. proposed a synchronous approach for mapping of IEC 61499 FBs with the

synchronous language Esterel primitives to support precise execution semantics and formal

verification [53]. Then a tool was developed to translate IEC 61499 FBs to Esterel primitives for

verification of both control and data properties in FB programs [64]. Two design patterns were

further proposed and characterized as time-predictable, determinist, and reactive [65]. One is the

order synchronous design pattern for intra-resource FBs and the other is the delayed synchronous

design pattern for inter-resource FBs with parallel execution. Sinha et al. proposed a syntactic

extension defined as hierarchical and concurrent execution control chart (HCECC) to IEC 61499

[66]. HCECCs introduce parallel and refined operators to allow explicit modelling of

concurrency and hierarchy for ECCs in IEC 61499 BFBs and then are translated to IEC 61499

CFBs with synchronous execution semantics. Based on successful mapping between IEC 61499

FBs and synchronous primitives, an implementation scheme to define formal modelling and

simulation verification for execution semantics of IEC 61499 FB networks via fixed point

semantics [67] and a time-stamped discrete-event-based execution semantics for IEC 61499 FBs

25

with real-time constraints and deterministic execution behaviours [68] were proposed.

In conclusion, research in this area is concerned with the standard itself, i.e., FB

execution to solve semantics ambiguities. The FB execution semantics define rules for

behaviours of FB execution. Semantics ambiguities could lead to nondeterministic behaviours of

the same application executing in different IEC 61499 implementations [49]. Research on

semantic analysis for IEC 61499 has focused on formal modelling of IEC 61499 FBs, then

semantic-correct mapping between IEC 61499 FBs and proposed models through defined

transformation rules, and finally simulation verification of execution semantics.

26

3.4 Transition to IEC 61499 Based Systems

3.4.1 Challenges with Transition to IEC 61499 Based Systems

IEC 61499 is promised to enable distributed architecture design for programming future

industrial automation systems. Although, not as widely adopted by industry as IEC 61131-3, IEC

61499 is gaining more popularity than before in industry. For example, automation and control

solution providers Schneider and Rockwell are leading in industrializing IEC 61499 with

nxtControl [69] and ISaGRAF [70] kits, respectively. If the industrial adoption of IEC 61499 is

viewed in the context of the three-phase S-shaped Logistic Curve [71], it was in the first

“Launch” phase when promoted by innovators before 2012 (i.e., Ed. 2.0 published), and is now

in the transition to the second “Takeoff” phase associated with early adopters. There is still a

long way to go to reach the third “Maturity” phase until some key issues are fully solved. As

well, some of the challenges with wide industrial adoption that were identified in the early years

of the standard (e.g., [72]) remained during the publication of Ed. 2.0 (e.g., [30]). In conclusion

of recent research on IEC 61499, three main types of challenges for industrial adoption are

identified in Table 3-5: a) industrial concerns on business development, b) technical issues

related to standard itself, and c) societal aspects of trained personnel.

Table 3-5: Main challenges for industrial adoption of IEC 61499

Main Challenge Detailed Explanation

Industrial Concerns

Large amount of existing IEC 61131-3 based systems

Little demand for a completely new design approach

Huge cost incurred by introducing new technologies

Technical Issues

Few proved methods to redesign existing systems

Same execution semantics but different system behaviours

Better integration for efficient domain-specific design practice

Societal Aspects

New qualification requirements for control engineers

New course design for teaching and learning IEC 61499

New industrial training for applying and using IEC 61499

27

Considering these critical factors, much effort has been put into realizing successful and

wide industrial adoption of IEC 61499. Some reasonable solutions are suggested as follows:

a) To redesign existing IEC 61131-3 based systems for compliance with IEC 61499.

Redesign is an intermediate step to transform existing systems programmed in IEC 61131-3 to

IEC 61499 based systems to ensure they address industrial concerns on cost/benefit analysis and

confidence/time for system transition. One example of work on this is Peltola et al.’s evaluation

of IEC 61499 for the batch process industry [73]. The most recent research on the potential

transitional path towards full adoption of IEC 61499 is the IEC 61499 CPS-izer proposed in

Daedalus: a small-footprint controller capable of interacting with legacy systems through

communication buses [74]. Daedalus is a pioneer European initiative for real-time distributed

intelligence and cloud enabled CPS design modelling [75]. In Section 3.4.2, research on IEC

61499 transformation methods will be discussed in detail.

b) To provide feasible methods, techniques, and guidelines for designing IEC 61499

based systems. Design is concerned with system modelling from the perspective of technical

issues. One of the most critical technical issues is execution semantics, which has been

thoroughly researched before IEC 61499 Ed. 2.0 (e.g., [29]). This work led to significant

technical changes in the second edition: e.g., concurrency issues in execution control for

deterministic execution, data consistency in sampling, declaration of temporary variables,

network and segment types [31]-[32]. Recent research is more focused on IEC 61499 design

modelling by integrating enabling technologies (e.g., service-oriented architecture, autonomic

computing, and cloud computing) for advanced system capabilities (e.g., solutions as services in

the cloud in Daedalus Digital Marketplace [76], system self-managing features enabled by

autonomic service management [77]) in Industry 4.0. In Section 3.5, research on this aspect will

28

be discussed in detail.

c) To providing qualified courses and hands-on training programs for students and

engineers to learn and use IEC 61499. Teaching, learning and training are focused on societal

aspects to support IEC 61499 applications based on available engineering environments. One

great practice led by Zoitl et al. [78] is IEC 61499 workshops and events with hands-on courses

and programs using Eclipse 4diac kit [79]. Another practice, initiated by Vyatkin et al. [80], is a

hands-on training program to learn IEC 61499 using Schneider nxtControl kit [69]. An earlier

hands-on tutorial [81] was presented to use Holobloc kit [82] to design distributed control

applications. In Section 3.6, research on IEC 61499 system implementation will be discussed in

detail.

3.4.2 Methods of Transformation to IEC 61499 Based Systems

Given the predominance of IEC 61131-3 based systems, there has been considerable interest in

methods to transform IEC 61131-3 models to IEC 61499. For example, in this section, model-

driven, object/class-oriented, and ontology-based approaches, and commination paradigms are

identified and discussed. However, the effort of programming and complexity of implementation

for the two standards for different types of applications are different [83]. Therefore, selection

between the IEC 61499 event-driven execution model and the IEC 61131-3 cyclic execution

model is application dependent [25].

A. Model-Driven Approach

Sünder et al. provided concepts, rules, and methods for transformation of existing IEC 61131-3

automation projects into IEC 61499 control logic [84]-[85]. Transformation concepts include one

based on equivalence of executing elements and another according to equivalence of resource

elements. Transformation rules regarding aspects of configurations, resources, programs,

29

functions, and FBs are defined. Transformation methods are suggested as the one mapping POUs

with ECCs in BFBs and the other mapping POUs with FB networks in CFBs. Based on this

initial study, a model-driven automatic transformation approach was presented to test the second

method for transformation of FBDs [86]. The proposed model to model transformation translates

the input IEC 61131-3 source model through internal E-core models and finally into the output

IEC 61499 target model. The implementation is realized through well matched libraries of both

standards, input/output models as XML files, and XSD files as meta models. Further research

focused on providing semantic correct transformations and two auxiliary transformations were

studied to solve semantic issues [87]. One is the static transformation by converting IEC 61131-3

FBs into simple FBs to solve library differences between two standards, and the other is the

project dependent transformation by extracting execution orders of IEC 61131-3 FBs to solve

execution sequence problems. Wenger et al. also proposed an automatic reengineering approach

to migrate IEC 61131-3 based control applications into IEC 61499 [88]. The process was tested

as proof of concept for sorting stations programmed in CoDeSys V2.3 [89] and reengineered into

Eclipse 4diac software tools.

B. Object/Class -Oriented Approach

Dai and Vyatkin proposed two types of design patterns to redesign IEC 61131-3 PLCs using IEC

61499 FBs [90]-[91]. The object-oriented approach considers each device distributed in the

system and the class-oriented approach considers each service provided by all devices. For both,

FB represents a class of its objects (i.e., devices), encapsulates data and methods, and can be

instantiated. The object-oriented approach creates each individual instance of one FB for each

device, whereas the class-oriented approach creates a single instance of one FB to serve all

devices of this class. As a result, the difference is whether to create only one instance or different

30

instances of one FB to serve all or each of its devices. The object-oriented approach also includes

conversion of PLC code into an ECC and reuse of PLC code in an algorithm.

C. Ontology-Based Approach

Semantic web technologies were used for automatic transformation of IEC 61131-3 based

control systems to IEC 61499 based ones [92]-[94]. The whole process starts from importing

IEC 61131-3 source code files into the IEC 61131-3 ontological knowledge base, then maps the

ontology between IEC 61131-3 and IEC 61499 knowledge bases and ends by generating IEC

61149 target code files from the IEC 61149 ontological knowledge base. The key part is

ontology mapping, which includes mapping IEC 61131-3 resources to IEC 61499 devices,

mapping IEC 61131-3 tasks to IEC 61499 resources, mapping IEC 61131-3 programs with

functions/FBs to IEC 61499 CFBs, mapping IEC 61131-3 programs without functions/FBs to

IEC 61499 BFBs, mapping IEC 61131-3 SFC programs to ECCs inside IEC 61499 BFBs, and

mapping IEC 61131-3 FBD programs to IEC 61499 CFBs. Formal IEC 61131-3 models are

defined so that correct execution semantics is recreated in IEC 61499 models.

D. Communication Paradigms

One of key elements to realize system transformation from IEC 61131-3 to IEC 61499 is the

communication paradigm [95]. In IEC 61499, two paradigms, i.e., publish/subscribe for

unidirectional communication and client/server for bidirectional communication, are defined.

The publish/subscribe model is based on the n-to-n architecture in which one publisher can send

messages to one or more subscribers and one subscriber can receive messages from one or more

publishers. The client/server model is based on the n-to-1 architecture in which one or more

clients communicate with one server in both sending and receiving messages. In IEC 61131-5,

there are also some communication paradigms, e.g., programmed data acquisition and

31

interlocked control, for defined functions or FBs [96]. Campanelli et al. proposed an architecture

model LowEffort-INTegration (LE-INT) for coexistence of IEC 61131-3 and IEC 61499 in the

same engineering environment [97]-[98]. The architecture model is based on SIFBs in IEC

61499 and specific FBs from programmed data acquisition (i.e., USEND, URCV, BSEND, and

BRCV) and interlocked control (i.e., SEND and RCV). The architecture model is more effective

in modular automation and control systems to realize two types of system integration: a)

transformation of a centralized IEC 61131-3 system or several independent ones to a distributed

system based on both standards; and b) insertion of one or more IEC 61131-3 systems in an

existing distributed IEC 61499 system.

E. Discussion

In conclusion, recent research has focused on applying a variety of approaches (e.g., model-

driven, object/class-oriented, and ontology-based approaches, and communication paradigms) to

model system transformations from IEC 61131-3 to IEC 61499. From the research aspect, work

in this area is concerned with redesigning components/systems, translating codes/models, and the

syntax level using XML-based model-driven approaches to the semantic level using knowledge-

based ontology-driven methods. The main differences are how and what they use to describe

models and to what degree. From the industry aspect, research on system redesign provides

alternative solutions and feasible guidelines for wide industry adoption of IEC 61499. Industrial

partners can either reuse their accumulated knowledge (e.g., generic problem/solution templates,

best practices and guidelines) or can have enough time/effort for a smooth transition preparing

for new challenges in the Industry 4.0 era. Typical cases for example are CPS-izer research from

Daedalus and nxtControl implementation from Schneider, both supporting hybrid system design

(co-existence of IEC 61131-3 and IEC 61499).

32

3.5 Integration with IEC 61499 Enabling Technologies

Industrial automation is envisioned to be realized through iCPS that are built from and depend on

the integration and interaction of computational and physical components [2]. The iCPS

paradigm together with its enabling technologies (e.g., service-oriented architecture [99],

autonomic computing [100], and cloud computing [101]) is transforming the way human,

machine, information, and environment interacting with each other, leading to Industry 4.0. This

section will focus on how IEC 61499 has been integrated with its enabling technologies for

distributed intelligent automation. Two perspectives are provided: a) design paradigms including

object-oriented design, component-based design, and service-oriented architecture (Section

3.5.1); and b) computing paradigms including distributed intelligence, autonomic computing, and

cloud computing (Section 3.5.2).

3.5.1 Design Paradigms for Modelling IEC 61499 Based Systems

A. Object-Oriented Design

The object-oriented design (OOD) applies object-oriented programming features (e.g.,

inheritance, instantiation, encapsulation, and polymorphism) to design industrial control

programs and automation applications. In OOD, data structures are modelled based on

interacting objects which may contain data fields (i.e., attributes) and code procedures (i.e.,

methods). Objects are instances of their classes which define data formats and available

procedures.

IEC 61499 FBs have some object-oriented features, for example, mapping types with

classes, instances with objects, events with methods, and data with parameters/variables. FBs

encapsulate data structures and internal algorithms, and can be instantiated working copies by

33

type definitions. FBs are triggered by input events with available data, implemented through

control algorithms in BFBs or service sequences in SIFBs, and finally updated with events/data

outputs. Since CFB is a network of FB instances, data exchange among its composited FBs is

through publish/subscribe SIFBs [102]. Polymorphism and inheritance are not often used in

automation programming due to issues raised by computation cost and execution determinism

[103], except that adapters provide a kind of inheritance for similar FBs to share common

interfaces.

Vyatkin et al. proposed a conceptual OOD framework for modelling automation software

based on IEC 61499 for potential benefits of intellectual property encapsulation and reuse [104].

Dai and Vyatkin proposed an object-oriented approach, including conversion of PLC code into

an ECC and reuse of PLC code in an algorithm, to redesign distributed PLC control systems

using IEC 61499 FBs [90]-[91]. Two cases of modern building management systems [105] and

airport baggage handling systems [102] were studied by using OOD to model IEC 61499 based

system architectures.

B. Component-Based Design

The component-based design (CBD) utilizes coarse-grained and loose-coupled components with

certain well-defined functions and pre-defined communication interfaces from a cohesive set of

fine-grained objects. Compared with OOD, CBD models a system with functional components

rather than physical objects; multiple functions share a single algorithm with one generic event

input instead of using dedicated events and algorithms for each method call [102].

Proposed frameworks for modelling component-based distributed automation systems are

mainly based on the automation component/object (AC/AO) concept and then toward intelligent

control [106]-[109]. AC is an attempt to generalize the FB concept to represent a modelling unit

34

of hardware and software for the performance of automation and control functions [104], [110]-

[112]. In general, BFBs can be considered as software components, whereas SIFBs and CFBs

cannot if without well-described interfaces and behaviours [85]. For other elements (e.g.,

applications, resources, and devices) may not be considered as software components, either [85].

Black and Vyatkin proposed a component-based architecture of an embedded intelligent

control implementation with IEC 61499 [113]. The key parts of the architecture are reusable

intelligent software components encapsulated in IEC 61499 FBs, especially the introduction of

simulation components for predictive behaviours. The proposed architecture is scalable,

reconfigurable, and fault tolerant, and paves the way to self-configuration. Dai and Vyatkin

proposed a multi-layer component-based design pattern for improved reusability of distributed

automation programs, including low-level basic control and interface layer, service layer, and

high-level intelligent control layer [114]. Zoitl and Prähofer proposed design guidelines and

patterns for building hierarchical automation solutions with IEC 61499, in which two concepts

were focused for hierarchical component architectures: adapters and SubApp [115]-[116]. The

IEC 61499 adapters models (i.e., typed interface accepting adapters plug and typed interface

providing adapters socket) are in the form of FBs functioning as interfaces to hub input/output

events and data [115]-[116]. The IEC 61499 SubApp model is a means to group application

components in the top-down/bottom-up manner and share their common public interfaces [115]-

[116]. Compared to typed CFB models which new types are created during each adaptation of

applications, the IEC 61499 SubApp model supports application adaptation on all hierarchic

levels for reuse and configuration which is much faster for application development and structure

modelling [115]-[116].

35

C. Service-Oriented Architecture

The service-oriented architecture (SOA) paradigm approaches software system design as a

network of loose-coupled and discoverable services with formal interfaces communicating

through messages [99]. A systematic literature review of SOA research on IEC 61499 based

industrial automation systems is provided in [33]. Therefore, Section 3.5.2 will focus on recent

research on SOA with computing paradigms for IEC 61499 based iCPS.

D. Discussion

From a broad perspective, OOD, CBD, and SOA are closely related. Designs are modelled

through IEC 61499 FBs with mapping, creation, composition, and execution of FBs as

objects/components/services on different modelling levels. By evaluating these studies, common

features of proposed methods can be summarized as: a) multi-layer or service-oriented

architecture is employed; b) communication or interface/adapter design is focused; c)

reconfiguration, reuse, and flexibility is aimed. Theoretically, IEC 61499 adopts object-oriented

programming features in designing control programs and automation applications. For

distributed system architecture modelling, component-based architectures with a higher level of

abstraction are commonly applied in practice to incorporate system design, simulation, and

validation. SOA is widely adopted in automation system design for advanced capabilities, e.g.,

autonomy and interoperability, due to rapid development of computing and networking

technologies. Therefore, research on this aspect is tightly concerned with computing paradigms

and iCPS in Industry 4.0. That, as a result, requires emphasis on interfaces or adapters design in

IEC 61499.

36

3.5.2 Computing Paradigms for Modelling IEC 61499 Based Systems

A. Distributed Intelligence

Distributed intelligence is a major step for distributed and intelligent automation, usually realized

through multi-agent systems (MAS). With this computing paradigm, distributed and intelligent

automation is commonly achieved through autonomous and cooperative agents that are capable

of operating independently or in collaboration with others to respond to system requests or

changes and to achieve individual or shared goals [117]-[118]. Multi-agent modelling plays a

key role in the development of complex industrial automation systems, allowing a decentralized

way to design distributed and intelligent systems [117]-[119]. This approach is being applied in

several domains of industrial applications: e.g., factory and building automation, power and

energy systems [120]-[121].

Integration of intelligent software agents with low-level control functions provides a

promising way to design distributed automation systems; however, real-time adaptation is a great

challenge at this level given real-time constraints [119], [122]. Incorporating with IEC 61499

FBs, research has focused on real-time distributed control for dynamic and intelligent

reconfiguration, including reconfiguration models, implementation architectures, software

platforms and evaluation methods [23], [118], [123]-[128]. For example, a three-layered FB and

agent-based model for dynamic and intelligent reconfiguration of real-time distributed control

systems was proposed, in which the architecture includes IEC 61499 FB models for low-level

real-time control, mobile agents to model middle-level monitoring and activation systems, and

software agents designed for high-level planning, scheduling, and configuration [123]. A

reconfigurable concurrent FB model was also proposed to separate two control paths: IEC 61499

FB modelled control application execution and multi-agent modelled configuration control

37

operation [124]. One recent research in this area is applying wireless sensor networks (WSN) to

model distributed intelligent sensing and control systems. For example, Cai et al. proposed an

application-oriented middleware architecture (AoMA) for distributed intelligent sensing and

control of industrial WSN through MAS and IEC 61499 FBs [129]-[130]. Three main agents are

designed to facilitate upper-level management, including device management agent, service

mapping agent, and task management agent. IEC 61499 FBs are used as modelling tools for

lower-level implementation, including node intelligence in BFBs, data acquisition/hardware

control in SIFBs, and modular tasks in CFBs.

Khalgui et al. proposed an architecture of reconfigurable multi-agent systems for IEC

61499 based distributed control systems [131]. Two types of agents implemented in extensive

markup languages are provided: reconfiguration agents modelled by nested state machines for

local automatic reconfiguration and coordination agents defined by coordination matrices and

communication protocols for managing reconfiguration behaviours. Guellouz et al. proposed a

reconfiguration FB approach which is a series of guidelines in the design, modelling, and

verification of IEC 61499 FB based reconfiguration control systems [132]. The key idea is to

propose a new design pattern reconfiguration FB defined as event-triggered software

components to control and execute reconfiguration tasks. As a result, compared to IEC 61499 FB

model with input/output control events and execution control charts, it adds reconfiguration

events to the interface and the master-slave execution control chart to define reconfiguration

functions.

Bonci et al. proposed a relational-model multi-agent system (RMAS) architecture that

focused on multi-agent systems: the goal of this approach is to develop IEC 61499 FB based

distributed intelligent applications to realise self-manageable iCPS in industry 4.0 [133]. The

38

RMAS architecture was first proposed to implement multi-agent systems for modelling,

simulation, and control of iCPS. The architecture is designed on data-centric, event-based, and

publish-subscribe paradigms and the core of the architecture is a generic agent skeleton structure

that contains the genotype of RMAS units which in essence are relational active database

management systems. Then the resulting architecture was proposed to serve as a middleware

architecture for autonomic computing that will enable iCPS with self-management capabilities

[134]. Recently, the RMAS architecture was further analysed to match the IEC 61499 reference

models, focusing on integration of RMAS with IEC 61499 FB model, resource model, and

device management model [135]-[136].

Furthermore, MAS and SOA are considered as key enabling technologies to model IEC

61499 based iCPS with cloud and autonomous computing capabilities [77], [120], [137].

B. Autonomic Computing

In previous chapters the evolution of iCPS in Industry 4.0 characterized as distributed and

intelligent to be able to self-manage were discussed. IEC 61499 based iCPS are not only

designed with fundamental features (e.g., distributed to be flexible, configurable, portable, and

interoperable) but also envisioned for advanced capabilities (e.g., learning abilities, self-

managing capabilities). Learning abilities to perform intelligent behaviours require iCPS to be

self-manageable with flexible architectures (e.g., hardware and software) and adaptable

strategies (e.g., rules and knowledge). The goal is to support real-time self-configuration, self-

healing, self-optimization, and self-protection for responsiveness to changes [23], [100], [118],

[138]. It is summarized as: a) self-configuration of configuring and reconfiguring functions,

structures, and processes to adapt to dynamical changes; b) self-optimization of improving and

optimizing performances and operations with respect to predefined goals; c) self-healing of

39

detecting and recovering from disturbances and faults to maximize system availability; and d)

self-protection of identifying and protecting against safety and security attacks to preserve

system integrity [100].

Recent research has been focused on system autonomic service management modelling

with consideration of IEC 61499. Mubarak and Göhner proposed an agent-based architecture for

self-manageable industrial automation systems in which self-healing is illustrated by an example

of passenger lift design [139]. The proposed architecture is developed with agents deployed on

three levels: the control and supervision level, the self-management functionality level, and the

automation system connection level. Lepuschitz et al. proposed an automation agent architecture

for low-level control (LLC) self-reconfiguration of IEC 61499 based applications [140]. The

approach is to use ontological representation of low-level functions on the high-level control

(HLC) to enable HLC to reason and initiate reconfiguration processes for LLC. Strasser and

Froschauer discussed a general concept for autonomous recovery of applications in IEC 61499

based intelligent automation and control systems [141]. The proposed framework facilitates the

exchange of hardware components with no need for extra configuration. Kaindl et al. proposed

an agent-based architecture containing self-representation for automation systems to support self-

configuration and monitoring [142]. The approach is based on the concept of automation agents

composed of hardware and software components. In software components, the real-time LLC is

implemented using IEC 61499 FBs and the high-level control is for agents’ configuration,

monitoring, and communication.

Dai et al. proposed a service-oriented execution environment architecture, i.e., function

block service runtime (FBSR), to support the SOA-based design of the IEC 61499 model [143].

For software services in iCPS, detailed definitions of common interfaces and feasible solutions

40

of dynamical discovery were further developed [144]. Inspired by autonomic computing, Dai et

al. proposed a knowledge-driven autonomic service management architecture for self-

optimization of resource utilization [77] and a cloud-based decision support system for self-

healing in distributed automation systems using fault tree analysis [137]. FBSR was then

extended to introduce concurrent models of computation for modelling distributed automation

systems in the iCPS view [145] and used to test a new feature, i.e., rea-time data acquisition

support for IEC 61499 based iCPS, to monitor and optimize industrial processes with real-time

feedback data [146].

C. Cloud Computing

Recently cloud computing has emerged as a new computing paradigm for iCPS [101]. As

defined by the National Institute of Standards and Technology (NIST), cloud computing enables

ubiquitous, convenient, on-demand network access to a shared pool of configurable computing

resources that can be rapidly provisioned and released with minimal management effort or

service provider interaction [147]. Cloud computing employs a multi-layer architecture including

application, platform, infrastructure, and hardware layers, and is realized through different

service models including software as a service (SaaS), platform as a service (PaaS), and

infrastructure as a service (IaaS) [147]. For modelling iCPS, integration of the cyber (i.e., cloud)

and the physical (i.e., devices) are enabled by encapsulating services in design entities (e.g., IEC

61499 FBs). Furthermore, to realize distributed and intelligent industrial automation, the

capability of computing plays a critical role. Cloud computing provides a promising solution to

model both system architectures and computing resources.

Karnouskos et al. proposed a SOA-based architecture for empowering future

collaborative cloud-based industrial automation [148]. They envisioned that future industrial

41

automation systems would be virtualized as cloud-based composition of cyber-physical services

for multi-system interaction and cross-layer collaboration in both architectures and behaviours.

Dai et al. proposed a configurable cloud-based validation environment for interoperability tests

between various distributed automation systems from the bottom protocol level to the top system

level [149]. The testing framework is implemented in a multi-layer infrastructure in which

testing models are designed as IEC 61499 FBs. Demin et al. proposed a cloud-based framework

for designing an IEC 61499 based application as a web service in SOA [150]. SOA and cloud

computing make it possible to convert FBs to services and then deploy them to the cloud for as

needed use.

To support IEC 61499 with runtime monitoring, behavioral types as extensions to IEC

61499 were proposed in [151]. Compared with traditional types (e.g., strings and integers) which

model interfaces on a syntactic level, behavioral types extend the expressiveness of interface

specifications by adding regular expression-based, protocol-like usages of components [151].

This work was further developed into a cloud-based monitoring framework to check timed

properties described as behavioral types of IEC 61499 based industrial automation systems

[152]. More features (i.e., Event, Var, and Watch) were proposed to support both

publish/subscribe and client/server models for IEC 61499 based iCPS [146].

D. Discussion

In conclusion, the key idea of the above research is to introduce distributed intelligence, cloud

computing, and autonomic computing frameworks combined with SOA in the design modelling

of iCPS to support flexibility and interoperability and to realize self-management capabilities.

Research on design paradigms focuses on how to model IEC 61499 based systems while

research on computing paradigms focuses on how intelligent IEC 61499 modelled systems will

42

be. More specifically, industrial multi-agent solutions (e.g., [153]) allow distributed intelligence

which means decentralized architectures and inherent capabilities for system self-adaption to

changes. Usually, multi-layered architectures are employed with high-level industrial agents and

low-level automation devices for modelling iCPS. One issue is the communication between the

high-level and the low-level. Cloud computing allows design entities encapsulated as services

and deployed into the cloud. Most IEC 61499 research on this aspect is focused more on cloud-

based system design and modelling; studies on sharing computing resources in the cloud (e.g.,

local intelligence dynamically linked to remote runtime functionalities in the cloud for sharing

[75]) is as important towards distributed intelligent automation. Rather than accessing computing

resources completely in the cloud, low-level intelligence can be achieved for real-time response

and control through agent-embedded devices (e.g., node intelligence in WSN [130]). Autonomic

computing enables system self-managing capabilities which are key components towards

distributed intelligent systems. Current research mainly focuses on part of them theoretically,

i.e., self-configuration, self-healing, and self-optimization. Design tests and implementation

cases are still required for validation.

43

3.6 Implementation of IEC 61499 Engineering Environments

3.6.1 Development of IEC 61499 Engineering Environments

Since the publication of the IEC 61499 standard, academic activities and industrial practices on

developing engineering environments to implement IEC 61499 FB models have been conducted.

Typical projects for IEC 61499 engineering environments development are listed in Table 3-6.

Table 3-6: Projects of developing IEC 61499 engineering environments

Developer Product Type1 Grade2 Capability3 Status Technology Comment

Schneider

nxtControl

[69]

nxtSTUDIO ST

IND P; I; C. Active
Microsoft .NET Framework;
XML DTD; ST.

Comprehensive industrial solution

packages; Hardware independent

engineering.

nxtIECRT RP
nxtLIB LB

nxtHMI RP

Rockwell
ISaGRAF

[70]

Workbench ST
IND C Active

Microsoft Visual Studio Shell;

Virtual Machine.

First commercial software

environment.
Runtime RP

ISaVIEW RP

Eclipse

4diac [79]

4diac IDE ST
OPS P; I; C. Active Eclipse Framework; C++. Open source solutions. 4diac FORTE RP

4diac LIB LB
Holobloc

[82]
FBDK ST

IND P; I; C. Active
Oracle Java SE Platform;

XML DTD.
First IEC 61499 feasibility

demonstration. FBRT RP

Automation
of Things

[154]

FourZeroTM

Runtime
RP

IND C Active C++; 4diac FORTE

Distributed and task-oriented

architecture; Hardware and topology

independent program; Real and
virtual application creation.

FourZeroTM
Studio

ST

Yueyi

Automation
[155]

FBB ST

IND C Active

Microsoft .NET Framework;

ST, LD;
C++; HTML/JavaScript.

Service based runtime and dynamic

reconfiguration; Real-time
monitoring and data management.

FBSRT RP

FBDL RP

NOJA

Power [156]
SGA ST IND P; I; C. Active

Eclipse 4diac Framework; User

Defined Analogue; Dynamic
Data Types.

Interaction with IEC 61850 et al.;

System access to database; Query
and control IEC 61499/SGA devices.

PRETzel

[157]
BlokIDE ST ACA C Active Microsoft VS 2010/2013

Synchronous execution; Formal

verification; Static timing analysis;
Highly efficient code.

O3neida

[158]-[159]

Workbench
ST OPS C Inactive Java; NetBeans; Eclipse.

Experimental use for Automation

Objects. FBench

Fuber [160] FUBER RP OPS C Inactive Java; BeanShell. An IEC 61499 interpreter.

SEG [161]
CORFU

RP ACA C Inactive
Unified Modelling Language;
Model Integrated Mechatronics.

An IEC 61499 runtime embedded
tool. Archimedes

UDESC

[162]-[163]

ICARU_FB RP
OPS P; I; C Inactive XML DTD.

Dynamic reconfiguration; Code

simplicity. GASR-FBE ST
1 ST: Software Tool; RP: Runtime Platform; LB: Library of software components.
2 ACA: Academic; IND: Industrial; OPS: Open Source.
3 P: Portability; I: Interoperability: C: Configurability. Not formally tested because of license issues.

Engineering environments usually includes three components [28], [32]: a) software tools

(ST), i.e., an integrated development environment to model designs; b) runtime platforms (RP),

i.e., a runtime environment to execute programs; c) libraries of software components (LB), i.e., a

44

library to store elements. Furthermore, these implementations can be classified into three

categories: a) IEC 61499 based, e.g., Holobloc FBDK/FBRT; b) IEC 61131 based but IEC 61499

supported, e.g., ISaGRAF Workbench/Runtime; and c) IEC 61499 and/or IEC 61131 based (i.e.,

hybrid), e.g., nxtControl nxtSTUDIO/nxtIECRT. As proposed in IEC 61499-4, three key features

are expected in developing those IEC 61499 engineering environments [39]: a) configurability,

i.e., multi-source devices can be manipulated by multi-source software tools; b) portability, i.e.,

multi-source libraries can be used among multi-source software tools; and c) interoperability,

i.e., multi-source devices can be exchanged among multi-source runtime platforms.

A brief description of these engineering environments is as follows. The Schneider

nxtControl includes a) nxtSTUDIO to integrate automation tasks, b) nxtLIB to offers

prefabricated software objects, c) nxtIECRT to support hybrid control paradigms, and d) nxtHMI

together with SCADA to enable multi-client/multi-server visualization [69]. The Rockwell

ISaGRAF includes a) ISaGRAF Workbench to provide plug-in functions, b) ISaGRAF Runtime

to execute target independent code generated by control applications, and c) ISaVIEW as a plug-

in for HMI [70]. The Eclipse 4diac includes a) 4diac IDE based on the Eclipse framework, b)

4diac FORTE supporting online reconfiguration of applications and real-time execution of FB

types, and c) 4diac LIB containing FBs, adapters, and sub-applications [79]. The Holobloc

FBDK/FBRT were developed to support fundamental features of IEC 61499 based on design

patterns (e.g., proxy, local multicast, tagged data, time-stamped messaging,

model/view/controller/diagnostics [164]) [82]. The FourZeroTM platform developed by

Automation of Things includes a) FourZeroTM Studio and b) FourZeroTM Runtime with key

features, for example, distributed and task-oriented architecture, hardware and topology

independent programming, and real-time monitoring and management [154]. The platform

45

developed by Yueyi Automation is based on the core model FBSR [143]. It includes a) data link

FBDL, b) execution environment FBSRT, and c) FB builder FBB for real-time monitoring,

dynamic reconfiguration, and data management [155]. The IEC 61499 design toolset Smart Grid

Automation (SGA) from NOJA Power is based on Eclipse 4diac framework and focused on

distributed power system automation applications in smart grid [156]. The PRETzel BlokIDE is

academic software tool based on several research results, e.g., research on hierarchical and

concurrent execution control chart (HCECC) for IEC 61499 [66] and efficient C code generation

from IEC 614999 FBs [54], [165]. It is a design environment for model-driven engineering of

programmable electronics integrated with IEC 61499 to allow automatic code generation,

synchronous execution, formal verification, and static timing analysis [157]. Other projects are

not currently active now but still valuable reference implementation [158]-[163].

3.6.2 Application of IEC 61499 Engineering Environments

Applications of IEC 61499 engineering environments for industrial practices or academic

experiments are common now (Table 3-7). In general, IEC 61499 has achieved successes in

some typical domains, e.g., smart factory, smart building, smart grid, as envisioned in [30]. For

smart factory, examples are design of IEC 61499 based control systems using ISaGRAF

Workbench for shoe manufacturing plants [166] and using Eclipse 4diac IDE for Pick & Place

stations [79]. Another typical example in current research is the design modelling of airport

baggage handling systems using Holobloc FBDK/FBRT (e.g., [102], [113]). For smart building,

nxtControl nxtSTUDIO is used to design IEC 61499 based building management systems for

energy-efficient lighting system control (e.g., [105], [167]). For smart grid, solutions based on

the combination of IEC 61499 FB implementation and IEC 61850 interoperable communication

are researched by groups of Vyatkin et al. using Holobloc FBDK (e.g., [168]) or nxtControl

46

nxtSTUDIO (e.g., [169]), and groups of Strasser et al. using Eclipse 4diac IDE (e.g., [170]). An

industrial application is NOJA Power’s Automatic Circuit Reclosers (ACR) running applications

developed by its IEC 61499 design toolset SGA [156]. Recently, the standards working group of

Open Process Automation (OPA) Forum is examining the IEC 61499 standard, and

ExxonMobile, as a member of OPA Forum, is establishing the test bed to evaluate candidate

components and standards including IEC 61499 for distributed FB applications [171].

Table 3-7: Applications of typical IEC 61499 engineering environments

No. IEC 61499 Application Software

1 Meat processing plant and fertilizer production plant [172].

Holobloc
2 Airport baggage handling systems [113].

3 Smart grid automation through IEC 61850/IEC 61499 logical nodes [168].

4 Design of the control system of the transport line in a shoe manufacturing plant [173].

5 IEC 61499 based distributed control and IEC 61850 based automation for smart grids [79]. Eclipse

4diac 6 The Pick & Place station for the design of IEC 61499 compliant control applications [79].

7 Control engineering for heating, ventilation and air-conditioning, lighting control [69]. Schneider

nxtControl 8 Fertilizer production plant [69].

9 Food processing embedded machine control [174].

Rockwell

ISaGRAF

10 Research center data acquisition and control on a drying test bench [174].

11 Control of hydraulic parameters of district heating region “Zemliane” in Sofia [175].

12 High-speed train monitoring and control [176].

13 Railway safety functions in the mining transport system [177].

14 I-8000 wastewater treatment system [177].

15 Adaptive automation control for customized shoes manufacturing [166].

In conclusion, IEC 61499 has gained more popularity in academia and industry since the

second edition published in 2012. Various IEC 61499 engineering environments have been

developed to support IEC 61499 applications in a variety of domains. Capabilities of each IEC

61499 engineering environments may vary but each serves an important role in promoting IEC

61499 for distributed automation, especially in smart factory, smart grid, and smart building

areas. These IEC 61499 engineering environments such as Eclipse 4diac kit are also a critical

component in hands-on training programs in teaching and learning. One great thing to mention is

that Schneider nxtControl includes a new module nxtServices in its kit to provide know-how

services of IEC 61499 projects.

47

3.7 Summary

In this chapter, major topics of research on IEC 61499 were reviewed. First, an overview of the

IEC 61499 standard focusing on its development background, proposed reference architecture

models, and FB execution semantics was reviewed. Then, challenges and methods of

transforming existing IEC 61131-3 programmed systems to IEC 61499 based systems were

discussed. By analyzing recent research on integration with IEC 61499 enabling technologies,

perspectives of design methods (i.e., object-oriented design, component-based design, and

service-oriented architecture) and computing frameworks (i.e., distributed intelligence,

autonomic computing, and cloud computing) for modelling IEC 61499 based systems were

provided. This thesis is based on studies in this section and further developed to propose a

framework to model self-manageable iCPS for IEC 61499 distributed intelligent automation. At

the end of this chapter, several implemented IEC 61499 engineering environments were listed, in

which Eclipse 4diac will be used for experiments in the research. The reason to choose Eclipse

4diac is that it is now the most popular, comprehensive, and capable engineering environment

with active and open-source features (i.e., free for academic use), required elements (i.e., ST, RP,

and LB) and capabilities (i.e., C, P, and I) defined by IEC 61499.

48

[This page intentionally left blank]

49

Chapter Four: Architecture Modelling Framework

4.1 Introduction

As stated in previous chapters, industrial cyber-physical systems (iCPS), in which cyber and

physical components collaborate with each other and are empowered for intelligence by

communicating and computing cores, appears to hold the most promise of achieving next-

generation industrial automation systems to be distributed and intelligent in the Industry 4.0 era.

In this thesis, the research question is how to achieve self-manageable iCPS for IEC 61499 based

distributed intelligent automation. More specifically, how to model such type of systems that are

responsive to frequent changes and adaptive to evolving requirements in a distributed and

intelligent way through integration of multi-agent modelling and IEC 61499 FB modelling. Thus,

the core objective of the research is to explore the design of multi-layer automation architectures

to enable real-time adaptation at the device level and run-time intelligence throughout the whole

system under a well-integrated modelling framework.

In this chapter, a multi-layer architecture modelling framework will be explored and the

following chapters will focus on part of this modelling framework, that is the design of a two-

layer self-manageable architecture modelling for distributed and intelligent automation.

50

4.2 Modelling Framework

The legacy industrial automation systems are typically designed as a 5-level architecture: a) low

levels 0, 1, and 2 focus on industrial automation control and monitoring by applying, e.g.,

sensors and actuators (Field Devices, Level 0), programmable logical controllers and distributed

control systems (PLC/DCS, Level 1), and supervisory control and data acquisition systems

(SCADA, Level 2); b) high levels 3 and 4 focus on manufacturing and enterprise operations

management and decision-making support by applying, e.g., manufacturing execution systems

(MES, Level 3) and enterprise resource planning (ERP, Level 4) [178]. As envisioned in

Industry 4.0, the development of next-generation industry systems will be leveraged by the

integration of industrial cyber and physical systems (iCPS) and the application of industrial

internet of things and services (IIoTS), both of that are enabled by industrial computing and

communicating technologies and powered by artificial intelligence and data analytics. In this

thesis, these industrial computing and communicating frameworks will be applied to form a

feasible design of multi-layer automation architectures to enable real-time adaptation at the

device level and run-time intelligence throughout the whole system under a well-integrated

modelling framework.

The proposed multi-layer system architecture modelling framework is shown in Figure 4-

1. The macro architecture (Figure 4-1a) is designed as a multi-layer model by deploying cloud

computing [101], fog computing [179], and edge computing [180] into the framework. The

micro architecture (Figure 4-1b) is designed as a multi-layer model by applying multi-agent

based autonomic computing and agent-embedded IEC 61499 FB modelling to the framework

[11]-[15]. In the following sections, a brief introduction to the proposed architecture modelling

framework will be provided.

51

Cloud Layer

Fog Layer

Edge Layer

R
ea

l-
T

im
e

In
te

ra
ct

io
n

 (
e.

g
.,

C
o
m

m
u
n
ic

at
io

n
,
C

o
n
n
ec

ti
o
n

)
H

ig
h

 R
ea

l-
T

im
e

R
eq

u
ir

em
en

ts

Middleware Platforms

for Bridging Different Platforms Together

(e.g., Protocol Gateways, Smart I/Os, Server

and Storage, Data Processing)

Management Platforms

for Strategic Decision Support

(e.g., Enterprise Resource Planning, Product

Lifecycle Management)

Automation Platforms

for Process Measurement and Control

(e.g., Robotics, Sensors and Controllers,

Embedded Computing Systems)

Hidden Layer

Hidden Layer

Hidden Layer

Low-Level Physical Module

(Agent Embedded IEC 61499 FB Model)

High-Level Cyber Module

(Multi-Agent MAPLE-K Model)

Middle-Level Interface Module

(Manageability Interface Model)

Agent

_SMS

Agent

_SX

FB FB FB

Monitoring Agent Self-Learning Agent

Analysis Agent

Planning AgentExecution Agent

Knowledge Agent

(a) Macro Architecture (b) Micro Architecture

L
o

w
 R

ea
l-

T
im

e

R
eq

u
ir

em
en

ts

Figure 4-1: Multi-layer system architecture modelling framework

4.2.1 Multi-Layer Macro Architecture

The multi-layer macro architecture is designed with three key layers, i.e., Cloud Layer, Fog

Layer, and Edge Layer, in distributing intelligence from top to bottom across the whole system.

As it is not the focus of the research and some key concepts have been reviewed before, this

section will provide a general ideal of the multi-layer macro architecture.

A. Cloud Layer

Cloud Layer is a network of cloud computing enabled management platforms for strategic

decision support. Legacy product lifecycle management platforms (e.g., ERP, MES) can either

be migrated to industrial clouds (e.g., public cloud, cooperate cloud) as accessible services, or

furthermore, be powered with advanced computing platforms (e.g., plug-in modules like

52

machine learning tools) for enterprise-wide management, planning, and optimization. This layer

mainly relies on powerful data centers to deal with high-volume, historical, advanced data

processing and analysis, aiming at complex pattern detection to provide optimal solutions for

mid- to long- term decision-making support.

B. Fog Layer

Fog Layer is a network of fog computing enabled middleware platforms for bridging different

platforms together. Middleware platforms (e.g., protocol gateways, smart I/Os, servers and

storage) play a crucial role in connecting different platforms and optimizing their

communications. This layer mainly works on balancing local computing, communication, and

storage resources to deal with mid-volume, lightweight, streaming data preprocessing and

analysis, aiming at providing latency acceptable, solution reasonable, and near real-time

responses.

C. Edge Layer

Edge Layer is a network of edge computing enabled automation platforms for process

measurement and control. Automation platforms are home to front-end devices (e.g., sensors,

actuators, controllers) with embedded computing intelligence (e.g., single board computers like

Jetson Nano and Raspberry Pi) and available communicating connectivity (e.g., WiFi and

Zigbee). This layer mainly focuses on built-in capabilities to deal with low volume, raw

streaming data preprocessing and analysis, aiming at providing real-time adaptation for self-

management. This thesis focuses on Edge Layer and will explore a detailed design of this layer

architecture modelling.

53

D. Hidden Layers

Hidden Layers designed in the proposed architecture modelling framework represent other

possible layers that are either a new emerging system layer to envision a future system

architecture, or more detailed layers of an existing system layer.

4.2.2 Multi-Layer Micro Architecture

The multi-layer micro architecture is a detailed layered system architecture of Edge Layer in the

multi-layer macro architecture. The multi-layer micro architecture is designed with three layered

modules, i.e., high-level cyber module, middle-level interface module, and low-level physical

module. The multi-layer micro architecture design deploys autonomic computing in the

architecture modelling framework, including: a) the reference architecture employed in the high-

level cyber module and implemented as multi-agent systems, and b) the self-managing properties

employed in the low-level physical module and implemented as agent-embedded IEC 61499

FBs. The design results in a new computing module for high-level multi-agent based automation

architectures and a new design pattern for low-level function block modelled control solutions.

The objective is to achieve multi-agent enabled, IEC 61499 FB based distributed intelligent

automation and control.

A. High-Level Cyber Module

The high-level cyber module design deploys autonomic computing reference architecture into

the modelling framework with the implementation of multi-agent modelling techniques. The core

of the reference architecture for autonomic computing is structured by different modules,

including autonomic managers of five architectural elements Monitoring, Analysis, Planning,

Execution, and Knowledge (i.e., MAPE-K) as an intelligent control loop, managed resources of

software or hardware entities (e.g., databases, networks, and applications), and touchpoints of

54

sensors and effectors for monitoring and controlling managed resources by autonomic managers

[100]. Furthermore, the architectural element Self-Learning is introduced in this research to the

traditional autonomic computing reference architecture. For the architecture implementation,

multi-agent modelling techniques are applied by using autonomous and cooperative agents to

achieve run-time distributed intelligence in system design and module reconfiguration.

Therefore, the high-level cyber module is designed as multi-agent computing model

(Figure 4-1b, top) consisting of Monitoring Agent, Analysis Agent, Self-Learning Agent,

Planning Agent, Execution Agent, and Knowledge Agent. An overview of these agents is shown

as follows:

• Monitoring Agent: monitoring and collecting system operation data, engineering data, and

operating environment data through sensors.

• Analysis Agent: pre-analyzing collected data for modeling complex situations to understand

current system operations and to predict better future states.

• Self-Learning Agent: designed under open-source artificial intelligence frameworks to

deploy various machine learning models and employ rich data analytics tools aiming at

gaining insights of system operations.

• Planning Agent: selecting a series of action steps and generating an optimal action plan to

respond to changes and to achieve goals.

• Execution Agent: implementing action plans and controlling execution processes through

actuators.

• Knowledge Agent: maintaining data sets or knowledge repositories to provide support to and

receive updates from other agents or entities.

55

B. Low-Level Physical Module

The low-level physical module design deploys autonomic computing self-managing properties

into the modelling framework with the implementation of IEC 61499 FB modelling techniques.

The key system self-managing properties envisioned by autonomic computing are self-

configuration, self-healing, self-optimization, and self-protection [100]. For the architecture

implementation, IEC 61499 FB modelling techniques are applied by using object-oriented and

event-driven function blocks to realize real-time adaption of automation logic and control

algorithms. Furthermore, a new design pattern, i.e., agent-embedded IEC 61499 FB model, is

proposed for self-manageable services with the separation of control application execution and

self-manageable service agent execution.

Thus, the low-level physical module is designed as agent-embedded IEC 61499 FB

model (Figure 4-1b, bottom) with Self-Manageable Service Execution Agent (Agent_SMS), Self-

Configuration Agent, Self-Healing Agent, Self-Optimization Agent, and Self-Protection Agent

(Agent_SX). An overview of these agents is shown as follows:

• Self-Manageable Service Execution Agent: monitoring system states and responding to

changes by deciding the adequate behaviors to perform (i.e., activate one or more self-

manageable agents and execute self-manageable services).

• Self-Configuration Agent: configuring/reconfiguring functions, structures, and process to

adapt to dynamical changes.

• Self-Healing Agent: detecting and recovering from disturbances and faults to maximize

system availability.

• Self-Optimization Agent: improving and optimizing performance and operations with respect

to predefined goals.

56

• Self-Protection Agent: identifying and protecting against safety and security attacks to

preserve system integrity.

C. Middle-Level Interface Module

The middle-level interface module serves as middleware for communication and connection of

the high-level cyber module and the low-level physical module. Depending on the

implementation of the high-level cyber module and the low-level physical module, the design

will vary [122]. Although not the focus of this research, communication and connection of agent-

agent, agent-FB, FB-FB will be discussed in related chapters.

57

4.3 Summary

In this chapter, the architecture modelling framework was proposed. The proposed multi-layer

system architecture modelling framework includes three key layers (i.e., Cloud Layer, Fog Layer,

and Edge Layer) from the macro view. The modelling framework employs the three-level

industrial computing framework with consideration of the traditional industrial system

architecture. The thesis focuses on the multi-layer micro architecture modelling by detailing

Edge Layer that is mainly responsible for industrial automation and control platforms. The micro

architecture, under the vision of Industry 4.0 that leverages the integration of industrial cyber and

physical systems (iCPS) and the application of industrial internet of things and services (IIoTS),

is designed as a multi-layer model by applying multi-agent based autonomic computing and

agent-embedded IEC 61499 FB modelling to the framework. The design results in a new

computing module for high-level muti-agent based automation architectures and a new design

pattern for low-level FB modelled control solutions. In the following chapters, details of the

design of this two-layer architecture modelling will be discussed.

58

[This page intentionally left blank]

59

Chapter Five: High-Level Cyber Module Architecture Modelling

5.1 Introduction

In the proposed high-level architecture modelling framework (Figure 5-1), the cyber module is

designed as multi-agent MAPLE-K model in which the intelligent control loop (i.e., the

MAPLE-K loop) is performed. A detailed algorithm is shown in Table 5-1. Generally, the cyber

module starts from current state monitoring of the operating environment properties, the system

engineering properties, and the real-time operation behaviours of the physical module (e.g.,

through sensors); continues to data analysis by analyzing or self-learning intelligence by learning

from the collected environmental, engineering, and operational data; and ends with action

planning and execution for responses (e.g., through actuators); while the knowledge base

provides support to and receives updates from the whole process. The cyber module can be

proactive (i.e., actively collects data for analysis and builds models for prediction) or reactive

(i.e., passively receives data for analysis and applies models for prediction). For example, sensor

nodes in regular operating states, the cyber module could work in a reactive way to save energy

or resources; whereas sensor nodes detect fluctuations in operation, the cyber module could work

in a proactive way to obtain more information in order to respond to changes. In the following

chapters, simple and complex situations will be used and they are different simply based on if

regular system operation requires adaptation (e.g., change or new requirement request).

60

Low-Level Physical Module

(Agent Embedded IEC 61499 FB Model)

High-Level Cyber Module

(Multi-Agent MAPLE-K Model)

Manageability Interfaces

Monitoring Agent

(Agent_Monitoring)

Execution Agent

(Agent_Execution)

Analysis Agent

(Agent_Analysis)

Planning Agent

(Agent_Planning)

Knowledge Agent

(Agent_Knowledge)

Self-Learning Agent

(Agent_Self-Learning)

Send/Receive

Current State

Send/Receive Optimal Action

Knowledge

Support/Update

Knowledge

Support/Update

Update Optimal Action

Send/Receive Optimal Policy

Update Optimal Policy

Send/Receive

Action Plan

Initialize Learning Agent

Return Learning Result

Knowledge Support/Update

Knowledge Support/Update

Knowledge Support/Update

Figure 5-1: The proposed high-level architecture modelling framework

Table 5-1: Algorithm for the proposed multi-agent MAPLE-K model

Algorithm 1: Multi-Agent MAPLE-K model

01 Input: Current State //system running status

02 Output: Action Plan //system updating plan

03 Initialize Agent_Knowledge //run upon request from other agents

04 Invoke reasonEngine

05 Query knowledgeBase

06 Update knowledgeBase

07 Initialize Agent_Monitoring

08 Call SensorNode for state perception

09 Read currentState

10 Send currentState to Agent_Analysis

11 Initialize Agent_Analysis

12 Receive currentState from Agent_Monitoring

13 Call AnalysisDecision for pre-analysis

14 Compute the comparison result of current and planned state/action

15 Return decisionResult

16 If decision result is positive Then

17 Send optimalAction in planned optimalPolicy to Agent_Execution directly

18 Else

19 Call Agent_Self-Learning for deep learning/reinforcement learning

20 Return selflearningResult

21 Send computed optimalPolicy to Agent_Planning

22 End

23 Initialize Agent_Planning

24 Receive computed optimalPolicy from Agent_Analysis

25 Call PlanningDecision for optimal action plan

26 Update computed optimalPolicy

27 Send actionPlan in updated optimalPolicy to Agent_Execution

28 Initialize Agent_Execution

29 If decision result in AnalysisDecision is positive Then

30 Execute optimalAction in planned optimalPolicy from Agent_Analysis

31 Else

32 Execute actionPlan in updated optimalPolicy from Agent_Planning

33 End

61

5.2 Monitoring Agent Design

The monitoring function provides the mechanisms that collect, aggregate, filter, and report data

that represents the system’s current state in either passive or active way [100]. In this design,

Agent_Monitoring collects data on the operating environment properties, the system engineering

properties, and the real-time operation behaviours of the physical module through sensors, which

is used by Agent_Analysis for data analysis, model building, behaviour learning and prediction.

Sensory data are classified into three types: the internal engineering properties (i.e., machine

health like tear on parts), the external environment properties (i.e., environmental conditions like

temperature), and the real-time operation behaviours (i.e., working states like efficiency), which

represent three key sources from industrial systems.

Wireless sensor networks (WSNs) is one of the key enablers in the design of iCPS which

are built of wireless networked sensor nodes (mainly composed of sensing, processing,

transceiver, and power units) and are capable of distributed communication and intelligent

control [181]. Sensor nodes are considered in the proposed architectural model as they can be

deployed in the system as interfaces through which cyber and physical modules of iCPS can

collaborate with each other to perceive system states, adapt to changes, and maintain its

operation. For example, several autonomous mobile robots are added to the scenario described

previously in Section 2.1 (Figure 2-1) to be responsible for carrying sorting bins to desired areas

(Figure 7-1). Wireless sensors will be a good way to be attached for tracking these autonomous

mobile robots and monitoring their working conditions. Sensor nodes are generally classified

into regular sensor nodes and sink nodes [182]. For regular sensor nodes, those with fixed

locations are referred to as anchor nodes whereas those without fixed locations are referred to as

mobile nodes. Regular sensor nodes collect raw data and transmit to sink nodes before

62

transmitting to Agent_Analysis for advanced data analytics. As raw data aggregators and

processors, sink nodes have advantages over regular sensor nodes in aspects of the data

processing capability, the data transmitting bandwidth, and the battery supplying life [182].

In the Agent_Monitoring data model (Figure 5-2), the MonitoringAgent class perceives

current states from the SensorNode class by implementing the method perceiveCurrentState and

then sends to the AnalysisAgent class by implementing the method sendCurrentState. The

SensorNode class is a part of the MonitoringAgent class, in which one MonitoringAgent have one

or more SensorNode whereas one SensorNode belongs to one MonitoringAgent. Three subclasses

SinkNode, AnchorNode, and MobileNode are inherited from the superclass SensorNode, and can

be instantiated their own objects. The SinkNode class has an aggregation relationship with the

AnchorNode class and the MobileNode class, in which one AnchorNode or MobileNode has only

one SinkNode each time whereas one SinkNode can have zero or more of both. The SensorNode

class is aggregated by the Engineering class, the Environment class, and the Operation class,

which represent three different types of sensory data.

Environment

attributeEnvironment:

methodEnvironment()

Operation

attributeOperation:

methodOperation()

SensorNode

 listSensorNode:

attributeSensorNode:

methodSensorNode()

SinkNode

 listSinkNode:

attributeSinkNode:

methodSinkNode()

MobileNode

 listMobileNode:

attributeMobileNode:

methodMobileNode()

AnchorNode

 listAnchorNode:

attributeAnchorNode:

methodAnchorNode()

1..1

1..1

0..*

0..*

Engineering

attributeEngineering:

methodEngineering()

1..*

1..*

1..*

1..*

1..*

1..*
MonitoringAgent

(Agent_Monitoring)

attributeMonitoring:

methodMonitoring()

 sendCurrentState(currentState)

 perceiveCurrentState(currentState)

1..*

1..1

Figure 5-2: The Agent_Monitoring data model

63

5.3 Analysis Agent Design

5.3.1 Analysis Agent Modelling

The analysis function provides the mechanisms that correlate and model complex situations to

learn about system operations and predict future situations, thus it deals with the ability to

understand the current context and to determine a better system state [100]. In this design,

Agent_Analysis is a model of data analysis, model building, behaviour learning and prediction

according to previous and current states, executed and planned actions, and is aimed at providing

an optimal policy with optimal actions for the current state. Agent_Analysis receives the current

state from Agent_Monitoring and sends optimal policies to Agent_Planning for action plans or

sends optimal actions directly to Agent_Execution for implementation.

Two situations are identified: a) simple situations with normal operations,

Agent_Analysis receives data from Agent_Monitoring for analysis or sends desired results

directly to Agent_Execution for immediate implementation; b) complex situations with abnormal

operations, Agent_Analysis receives data from Agent_Monitoring for analysis and sends desired

results to Agent_Planning for optimal action plans. Consider the scenario of a robotic arm

sorting blocks into bins described previously in Section 2.1 (Figure 2-1):

a) simple situations with normal operations. For example, the default setting of the

robotic arm is to grasp black blocks and place them into the black bin. If nothing monitored

changed, there will be no change in Agent_Analysis and Agent_Execution will implement the

regular action plan.

b) complex situations with abnormal operations. For example, mixed black and red

blocks come for the robotic arm to sort into corresponding black and red bins. The system has to

distinguish different colored blocks and then sort them into different bins. As color change

64

detected by Agent_Monitoring and analyzed by Agent_Analysis, the action plan has to be revised

by Agent_Planning before being implemented by Agent_Execution. In this case, as color

changed, the analysis and planning will require a little bit more effort than in simple situations.

In the Agent_Analysis data model (Figure 5-3), the AnalysisAgent class implements the

AnalysisDecision interface and the SelfLearningAgent interface. Typical attributes are

previousState and executedAction, currentState and plannedAction, and computedAction. Typical

methods are receiveCurrentState to communicate with the MonitoringAgent class,

sendOptimalPolicy to communicate with the PlanningAgent or ExecutionAgent class, and

initializeSelfLearningAgent to invoke the SelfLearningAgent interface. The AnalysisDecision

interface is implemented for simple situations with optimal decisions available or complex

situations as data pre-analysis before initializing SelfLearningAgent. Typical methods

implemented in the AnalysisDecision interface are selectComputedAction, compareStateAction,

and returnDecisionResult, in which the plannedAction and the computedAction are usually the

same in simple situations while are different in the complex situations.

65

<<interface>>

AnalysisDecision

 compareStateAction(previousState, currentState,
executedAction, plannedAction, computedAction)

attributeAnalysisDecision:

 returnDecisionResult(currentState)

AnalysisAgent

(Agent_Analysis)

attributeAnalysis:

methodAnalysis()

 previousState: State

 executedAction: Action

 plannedAction: Action

 currentState: State

 sendOptimalPolicy(currentState, computedAction)

 receiveCurrentState(currentState)

 initializeSelfLearningAgent(decisionResult)
<<interface>>

SelfLearningAgent

 selectLearningAgent(decisionResult)

attributeSelfLearningAgent:

methodSelfLearningAgent()

<<interface>>

DeepLearning

attributeDeepLearning:

methodDeepLearning()

<<interface>>

ReinforcementLearning

attributeReinforcementfLearning:

methodReinforcementLearning()

 returnDeepLearningResult(currentState)

 performReinforcementLearning(currentState) performDeepLearning(currentState)

 returnReinforcementLearningResult(currentState)

 returnSelfLearningResult(currentState)

 selectComputedAction(currentState)

methodAnalysisDecision()

 computedAction: Action

Action

attributeAction:

methodAction()

State

attributeState

methodState()

1..1
1..1

1..1
1..1

Figure 5-3: The Agent_Analysis data model

5.3.2 Self-Learning Agent Modelling

Agent_Self-Learning is a model to support Agent_Analysis for artificial intelligence so that the

system can be intelligent to a certain human level. Agent_Self-Learning is designed under open-

source machine learning frameworks to deploy various learning models. In this research, it will

not focus on details of machine learning models and algorithms, but on different levels of

capabilities expected for Agent_Self-Learning. The SelfLearningAgent interface is realized

through two sub-interfaces DeepLearning and ReinforcementLearning which are invoked by the

66

method selectLearningAgent (Figure 5-3). Consider the scenario of a robotic arm sorting blocks

into bins described previously in Section 2.1 (Figure 2-1):

a) To learn primitive skills from sensory data. For example, the robotic arm learns to

move to the black block, pick up the black block, and place the black block into the black bin

from its perception of the operating environment. Primitive skills like reach, grasp, and place are

acquired through learning models like deep reinforcement learning.

b) To learn from past experience to cope with new tasks. Tasks are reasonable planning

of a collection of primitive skills/actions. Past experience of similar tasks can lead fast learning

for new tasks. Therefore, this type of learning can be achieved through deep learning models like

transfer learning. Considering the complexity of new tasks, two cases are further identified:

b1) To deal with a simple new task. For example, a bigger black block comes for the

robotic arm. The system can use the same learning model with a change of some types of

parameters (e.g., holding force and opening angle of the gripper) since engineering features (e.g.,

dimension and mass) of objects have changed. The whole task is still similar with reach, grasp,

and place skills.

b2) To deal with a complex new task. For example, mixed black and red blocks come for

the robotic arm to sort to black and red bins. The previous learning model cannot use because the

system has to distinguish colored blocks and then sort them into different bins. Therefore, instead

of model transfer, meta-model learning is required to add more primitive skills to form a new

learning model for block sorting.

Traditionally, only predefined rules, policies, and goals are provided by Agent_Analysis

with limited situations. The cyber module can work in some simple situations with predefined

knowledge whereas in most cases it is far less capable of dealing with real-time dynamic

67

situations. Therefore, Agent_Self-Learning is proposed to perform two types of machine learning

models: a) deep learning to autonomically use existing data to train algorithms to find patterns

and then make predictions about new data; b) reinforcement learning to autonomically adjust

actions in the environment to maximize cumulative rewards.

As proposed, the cyber module can be proactive or reactive in consideration of available

data and models for analysis. One practical scenario for the previously described case of a

robotic arm sorting blocks into bins (Figure 2-1) is as follows. The industrial system starts

working with some predefined knowledge of normal operations (e.g., the robotic arm

programmed to sorting blocks into bins), typical failures (e.g., the robotic arm could fail to catch

the block on the fly), and regular maintenances (e.g., scheduled maintenance after thousands of

picks). At the beginning of these simple situations, the cyber module could actively collect data

for analysis and build models for prediction (e.g., rotation speed and angle, holding force and

opening angle of the robotic arm). As enough data are available and robust models are built, the

cyber module could passively receive data for analysis and apply models for prediction.

However, for abnormal operations, untypical failures, and irregular maintenances, no previous

experiences are available to the cyber module and it could actively adjust actions by trial-and-

error to achieve the best result (e.g., the robotic arm adjust its holding force and opening angle to

catch a bigger and heavier block). Then these complex situations become simple situations with

available solutions. As shown, deep learning and reinforcement learning techniques are required

whether it is with inputs and outputs to find mapping functions, with only inputs to find mapping

functions and outputs, or learning directly from interactions with environments.

68

5.4 Planning Agent Design

The planning function provides the mechanisms that construct the actions needed to achieve

goals and objectives [100]. In this design, Agent_Planning selects optimal actions and

determines the action plan according to the received optimal policy from Agent_Analysis. An

update of the optimal policy with the action plan is sent back to Agent_Analysis for references

and the action plan is sent to Agent_Execution for implementation. Thus, the action plan

represented by orchestrated steps is generated from Agent_Planning, governed by optimal

policies computed from Agent_Analysis or Agent_Self-Learning and described in

Agent_Knowledge, and finally executed through Agent_Execution, in order to adapt the system

from current state to desired state. Consider the scenario of a robotic arm sorting blocks into bins

described previously in Section 2.1 (Figure 2-1). Agent_Planning works in complex situations

where the regular action plan needs to be adapted. For example, a bigger black block comes for

the robotic arm. As monitored engineering features (e.g., dimension and mass) of objects have

changed, Agent_Planning has to provide an adapted action plan according to Agent_Analysis by

considering changes of some types of parameters (e.g., holding force and opening angle of the

gripper). The other case is with large monitoring data of the same type of black block,

Agent_Planning will update the regular action plan according to Agent_Self-Learning.

In the Agent_Planning data model (Figure 5-4), the PlanningAgent class implements

methods receiveOptimalPolicy and updateOptimalPolicy to communicate with the AnalysisAgent

class, and the method sendActionPlan to communicate with the ExecutionAgent class. The

updateOptimalPolicy method provides feedbacks to the AnalysisAgent class to recompute

optimal policies or for references of the next same situation. The PlanningAgent class

implements the PlanningDecision interface to decide if the computed action in the optimal

69

policy is really optimal for execution, then updates the optimal policy by replacing the computed

action with the optimal action, and finally sends the action plan to the ExecutionAgent class. The

PlanningDecision interface maintains optimal planning decisions with executable state-action

pairs compared to computed optimal policies recommended by the AnalysisAgent class.

<<interface>>

PlanningDecision

attributePlanningDecision:

methodPlanningDecision()

 selectOptimalAction(currentState)

 determineActionPlan(optimalAction)

PlanningAgent

(Agent_Planning)

attributePlanning:

methodPlanning()

 sendActionPlan(optimalAction)

 receiveOptimalPolicy(currentState, computedAction)

 updateOptimalPolicy(currentState, optimalAction)

Figure 5-4: The Agent_Planning data model

70

5.5 Execution Agent Design

The execution function provides the mechanisms that control the execution of a plan with

considerations for dynamic updates [100]. In this design, Agent_Execution directly interacts with

actuators and carries out actions or action plans on systems according to results from

Agent_Analysis or Agent_Planning. Different situations are identified at the system level. One is

the simple situation with normal operations, Agent_Execution receives optimal actions from and

sends back updates to Agent_Analysis. In normal operations, self-optimization happens for

improving and optimizing system performance and operations. The other is the complex

situation with abnormal operations, Agent_Execution receives action plans from Agent_Planning.

In abnormal operations, if the situation is unrecoverable, Agent_Execution performs action plans

for self-protection; if the situation is recoverable, Agent_Execution performs action plans for

self-healing or self-optimization. Self-configuration can happen in any of the above situations

and is required for system reconfiguration.

In the Agent_Execution data model (Figure 5-5), the ExecutionAgent class implements

the method receiveActionPlan to communicate with the AnalysisAgent class or the

PlanningAgent class, and the method performActionPlan is realized through the

SelfManageableService class. The SelfManageableService class is aggregated by classes that

describe its service types to realize system level self-manageable behaviours. For example,

classes DeviceManagement and TaskManagement are designed for management of devices and

tasks to perform action plans on devices and tasks. These classes are realized or implemented

through different interfaces. For example, interfaces ParameterSerivce and LifecycleService are

collections of desired behaviours or operations offered for classes DeviceManagement and

71

TaskManagement to use. Classes DeviceManagement and TaskManagement may have one or

more types of devices and tasks, and in each type one or more objects may be instantiated.

1..1 1..1

SelfManageableService

attributeSelfManageableService:

methodSelfManageableService()

DeviceManagement

attributeDeviceManagement:

methodDeviceManagement()

TaskManagement

attributeTaskManagement:

methodTaskManagement()

<<interface>>

ParameterService

attributeParameterService:

methodParameterService()

<<interface>>

LifecycleService

attributeLifecycleService:

methodLifecycleService()

ExecutionAgent

(Agent_Execution)

attributeExecution:

methodExecution()

 receiveActionPlan(optimalAction)

 performActionPlan(optimalAction) 1..1

1..*

 listSelfManageableServiceType:

1..*

Figure 5-5: The Agent_Execution data model

72

5.6 Knowledge Agent Design

The knowledge source is an implementation of a set of information required to realize system

functionalities [100]. In this design, Agent_Knowledge maintains data sets, information centers,

or knowledge repositories, providing support to and receiving updates from other agents or

entities. Agent_Knowledge either directly manages all sources of desired data or indirectly

cooperates with other databases to support the functioning of the multi-agent computing model.

In the Agent_Knowledge data model (Figure 5-6), the KnowledgeAgent class has three

types of knowledge including SelfRelatedKnowledge, ProblemSolvingKnowledge, and

ServiceProvidingKnowledge. They all have abstract attributes (e.g., types of knowledge) and

methods (e.g., provide support and update database of knowledge). The SelfRelatedKnowledge

class mainly describes the operating environment and the system engineering properties, and the

real-time operation behaviours. It’s all about the system itself, its operations, and the operating

environment, which is taken care of by Agent_Monitoring. The ProblemSolvingKnowledge class

provides goals, policies, rules, models, etc. which are directly in support of problem-solving

tasks in Agent_Analysis and Agent_Planning. In general, goals describe what is desired, or the

best to be envisioned; policies describe how to achieve it, or optimal actions that can be

performed for state transition; rules describe actions to be taken under verified conditions for

monitored events; models describe representations of more complex cases that can provide

possible solutions to those cases [100], [138]. The ServiceProvidingKnowledge class serves the

role in Agent_Execution to provide desired services in response to request for system adaptation.

Certain kinds of services include parameter services (e.g., adjust the frequency of a sensor node

transceiver to transmit and receive sensory data), life-cycle services (e.g., start, stop, or remove a

sensor node in the network), etc.

73

1..1

1..1

1..1

1..1

1..11..1

SelfRelatedKnowledge

attributeSelfRelatedKnowledge:

methodSelfRelatedKnowledge()

ProblemSolvingKnowledge

attributeProblemSolvingKnowledge:

methodProblemSolvingKnowledge()

ServiceProvidingKnowledge

attributeServiceProvidingKnowledge:

methodServiceProvidingKnowledge()

KnowledgeAgent

(Agent_Knowledge)

attributeKnowledge:

methodKnowledge()

 provideKnowledgeSupport()

 updateKnowledgeDatabase()

 listKnowledgeType:
 listProblemSolvingKnowledgeType:

 listSelfRelatedKnowledgeType:

 listServiceProvidingKnowledgeType:

Figure 5-6: The Agent_Knowledge data model

74

5.7 Summary

In this chapter, the architecture modelling framework for the high-level cyber module was

proposed. The high-level cyber module design deploys autonomic computing reference

architecture into the modelling framework with the implementation of multi-agent modelling

techniques. It is designed as multi-agent computing model consisting of Monitoring Agent,

Analysis Agent, Self-Learning Agent, Planning Agent, Execution Agent, and Knowledge Agent.

The design results in a new computing module for high-level muti-agent based automation

architectures, aiming at achieving run-time distributed intelligence in system design and module

reconfiguration.

75

Chapter Six: Low-Level Physical Module Architecture Modelling

6.1 Introduction

The low-level self-manageable architecture design shown in Figure 6-1 deploys autonomic

computing self-managing properties into the modelling framework with the implementation of

IEC 61499 FB modelling techniques. The key system self-managing properties envisioned by

autonomic computing are self-configuration, self-healing, self-optimization, and self-protection.

For the architecture implementation, the IEC 61499 FB modelling technique is applied by using

object-oriented and event-driven function blocks to realize real-time adaption of automation

logic and control algorithms (i.e., IEC 61499 Function Block Model in Figure 6-1) and the multi-

agent modelling technique is used by embedding the multi-agent system into IEC 61499 FBs to

support self-management capabilities of the low-level system architecture (i.e., Self-Manageable

Service Model in Figure 6-1). The key feature of this proposed self-manageable architecture

design is the separation of the self-manageable service execution from the control application

execution. More specifically, one execution path is responsible for control applications (built as

IEC 61499 FBs for control purposes) and a second execution path is responsible for self-

manageable services (designed as embedded multi-agent models for system configuration,

optimization, healing, and protection purposes). The design results in a new agent-embedded

design pattern for modelling IEC 61499 FB based control solutions that are capable of self-

management in real-time adaptation.

In this chapter, an overview of IEC 61499 reference architecture with exiting design

patterns will be discussed, and then the proposed hybrid model with agent-embedded design

76

pattern is introduced. A self-manageable system programed in IEC 61499 is expected to be

modelled by applying both existing and proposed design patterns.

Device_X Device_Y Device_Z

Application

Communication Network

Low-Level Physical Module

(Agent Embedded IEC 61499 FB Model)

High-Level Cyber Module

(Multi-Agent MAPLE-K Model)

Manageability Interfaces

IEC 61499 Function Block Model

for Control Application Execution

Self-Manageable Service Model

for Service Agent Execution

Change Detected

Service Activated

Quick Response

Real-time Adaption

FB FB FB

Agent

_SMS

Agent

_SX

Figure 6-1: The proposed low-level architecture modelling framework

77

6.2 Developing Low-level Control Systems in IEC 61499 Function Blocks

6.2.1 IEC 61499 Reference Architecture

Figure 6-2 provides an overview of the IEC 61499 reference architecture [6]. A function block is

an object-oriented modelling element with event-driven execution. An application model (Figure

6-2a) is defined as a network of interconnected FBs linked by event/data flows and distributed

over resources and devices. A resource model (Figure 6-2b) is defined to support the execution

of one or more application fragments. A device model (Figure 6-2c) is defined to support one or

more resources to exchange data through interface services internally (i.e., the process interface

to enable interaction via input/output points in local devices) and externally (i.e., the

communication interface to enable interaction via networks with resources in remote devices). A

system model (Figure 6-2d) is a collection of interconnected devices interacting with each other

through communication networks.

(b) Resource Model

Communication Interface

Process Interface

Scheduling Function

SIFB1 FB SIFB2

(a) Application Model

FB1 FB2 FB3

Event Flow

Data Flow

(d) System Model

Device X Device Y Device Z

Application

Communication NetworkCommunication Interface

Process Interface

Resource A

(c) Device Model

Resource B Resource C

Application

Figure 6-2: The IEC 61499 reference architecture

78

A typical system programmed under the IEC 61499 reference architecture is designed as:

a) the control logic built by function blocks as applications, and b) physical devices

encapsulating required resources for implementation. In the IEC 61499 FB data model (Figure 6-

3), classes System, Device, Resource, Application are main entities of the model. Component

encapsulation is realized through CFBs (designed and implemented as a physical network of FB

instances) and SubApps (designed as a logical network of FB types and then implemented by FB

instantiation). Interface declaration is achieved by SIFBs (encapsulation of FB interaction with

external services) and adapters (encapsulation of FB interaction with internal services). SIFBs

are implemented as a pair of application-initiated requester remaining passive until receiving

input events by the application, and resource-initiated responder sending output events to act on

the device (e.g., design patterns publish/subscribe, client/server). Adapters are realized through a

pair of plug to group required interfaces on the high-level FB side and socket to group provided

interfaces on the low-level FB side.

79

SubApp Adapter

FBGrouping

AdapterPlug

AdapterSocket

SIFBRequester

SIFBResponder

System Device Resource

Application

1..1 1..*

1..*1..*1..1 1..1

1..11..11..1

1..*

FBType

BFB CFB SIFB

1..* 1..1 0..*0..10..1

0..*

1..*1..1
1..1

1..*

Figure 6-3: The IEC 61499 function block class diagram

6.2.2 Interface Declaration Model

A. IEC 61499 SIFB Models

SIFBs represent the interfaces to services provided by managed components of low-level

hardware systems so that the application deployed to several devices can get access to

inputs/outputs of and communicate with managed components [6]. That means SIFBs are

activated not only by the input events but also by the managed components. Two types of SIFBs

are defined as a pair (Figure 6-4): a) SIFB requester, an application-initiated type which remains

passive until receiving input events by the application; b) SIFB responder, a resource-initiated

80

type which sends output events to act on the device [6]. SIFBs are one type of FBs and their

dynamic behaviours are defined as service sequence diagrams as shown in Figure 6-4. The

difference of these two types is in the data transfer part, in which the type depends on either

applications or resources trig the data transfer (the green part in Figure 6-4 and Figure 6-5).

Event OutputsEvent Inputs

Data OutputsData Inputs

SIFB
requester

EI_m

EI_1 EO_1

EO_n

Service Sequence

Diagram

Algorithms

Internal Data

DI_1

DI_p

DO_1

DO_q

... ...

... ...

Event OutputsEvent Inputs

Data OutputsData Inputs

SIFB
responder

EI_m

EI_1 EO_1

EO_n

Algorithms

Internal Data

DI_1

DI_p

DO_1

DO_q

... ...

... ...

Service Sequence

Diagram

Application ApplicationResource

T

Resource

EI_1(+)

DI_1

EO_1(+)

DO_1

EI_2, , EI_m(+)

DI_2, , DI_p

EI_1(-)

EO_2, , EO_n(+)

DO_2, , DO_q

EO_1(-)

DO_1

DI_1

Service Initiation

Data Transfer

Service Termination

Service Initiation

Data Transfer

Service Termination

EI_1(+)

DI_1

EO_1(+)

DO_1

EI_2, , EI_m(+)

DI_2, , DI_p

EI_1(-)

EO_2, , EO_n(+)

DO_2, , DO_q

EO_1(-)

DO_1

DI_1

Figure 6-4: IEC 61499 SIFB requester/responder models

IEC 61499 SIFBs are used to access to hardware systems (e.g., devices, network

segments) which BFBs and CFBs cannot. Two SIFB communication patterns are designed for

low-level physical module architecture modelling (Figure 6-5): the publish/subscribe model for

81

unidirectional communication (the red part in Figure 6-5) and the client/server model for

bidirectional communication (the blue part in Figure 6-5) [6]. The publish/subscribe model is

based on the n-to-n architecture in which one publisher can send messages to one or more

subscribers and one subscriber can receive messages from one or more publishers. The inputs of

the publish SIFB match the outputs of the subscribe SIFB. The client/server model is based on

the n-to-1 architecture in which one or more clients communicate with one server in both

sending and receiving messages. The inputs of the client SIFB match the outputs of the server

SIFB and the outputs of the client SIFB match the inputs of the server SIFB.

Requester Responder

SIFB
requester

REQ

INIT INITO

CNF

QI

SD_1

QO

RD_n

PARAMS

... ...

SD_m

STATUS

RD_1

EVENT

EVENT

BOOL

ANY

ANY

ANY

EVENT

EVENT

BOOL

ANY

ANY

ANY

SIFB
responder

RSP

INIT INITO

IND

QI

SD_1

QO

RD_m

PARAMS

... ...

SD_n

STATUS

RD_1

EVENT

EVENT

BOOL

ANY

ANY

ANY

EVENT

EVENT

BOOL

ANY

ANY

ANY

Publish/Subscribe

Client/Server

Service
Sequence

Service
Sequence

T

Application ApplicationResource Resource

INIT(+)

PARAMS

INITO(+)

STATUS

REQ(+)

SD_1, , SD_m

INIT(-)

CNF(+)

RD_1, , RD_n

INITO(-)

STATUS

Service Initiation

Data Transfer

Service Termination

Service Initiation

Data Transfer

Service Termination

INIT(+)

PARAMS

INITO(+)

STATUS

RSP(+)

SD_1, , SD_n

INIT(-)

IND(+)

RD_1, , RD_m

INITO(-)

STATUS

PARAMSPARAMS

Figure 6-5: Communication patterns of IEC 61499 SIFB requester/responder models

82

For example, Figure 6-6 describes a simple control loop where the application is

deployed into two devices. As sensors and actuators interact with managed components and/or

operating environments, SIFBs are required to program the control application to communicate

with those external services. This example can be seen as an abstraction of several scenarios. For

example, the previously described scenario of a robotic arm sorting blocks into bins (Figure 2-1),

the attached 3D sensor detects the object position, shapes, colors, etc. and transmits data to the

robot control which controls the end gripper to perform desired actions.

Device X Device Y Device Z

Application

Communication Network

Managed Components

Sensor

REQ CNF

StateIn StateOut

INIT INITO

SIFB_publish

REQ CNF

SentData1

SentData2

Control

RSP IND

DataOut1

INIT INITO

DataIn1

DataIn2 DataOut2

SIFB_subscribe

RSP IND

ReceivedData1

ReceivedData2

Actuator

ParamIn1

REQ CNF

ParamIn2

ParamOut

Figure 6-6: An example of IEC 61499 SIFB models

B. IEC 61499 Adapter Models

The IEC 61499 adapter models are defined for encapsulation of FB interaction with internal

services which is different from the SIFB models for external services [6]. Two types of adapters

are defined as a pair (Figure 6-7): a) adapter plug, to group required interfaces on the high-level

FB side; b) adapter socket, to group provided interfaces on the low-level FB side [6]. Input

interfaces of the plug are output interfaces of the socket and output interfaces of the plug are

83

input interfaces of the socket. Figure 6-7 shows the static structure of the adapter in a form of FB

and their dynamic behaviours are defined as service sequence diagrams as shown between them.

Adapter
plug

EI EO

DI DO

Adapter
socket

EO EI

DIDO

EI

DI

Plug Socket

EI

DI

DO

DO
EO

DO

Figure 6-7: IEC 61499 adapter plug/socket models

The following example shows how IEC 61499 adapter models are applied in the low-

level physical module architecture modelling. Three types of sensor nodes (i.e., sink node,

anchor node, and mobile node) were designed for Agent_Monitoring in Section 5.2. Figure 6-8

shows a generic form of IEC 61499 FB implementation without adapters for sensor nodes. Two

clusters (i.e., AnchorNodeCluster and MobileNodelCluster) are designed to manage clustered

anchor nodes and mobile nodes, respectively. Different types of sensor nodes (i.e.,

AnchorNode1, AnchorNode2, MobileNodel1, MobileNode2) in each cluster are designed to

communicate with the sink node (i.e., SinkNode). FBs are linked with event communications in

solid blue lines and data communications in dash red lines. As a consequence, without applying

adapters, the design of such a simple sensor network system could become very complicated

with so many unclear communicating connections. Furthermore, if dynamically adding more

sensor nodes, e.g., MobileNode3, the MobileNodelCluster has to be redesigned to provide

available interfaces to the added sensor nodes. That is absolutely not acceptable for industrial

systems to be self-manageable, especially these sensor nodes can be dynamically reconfigured.

In Figure 6-9, two adapters for two clusters are designed as an example: ACAdapter_plug and

84

ACAdapter_socket, MCAdapter_plug and MCAdapter_socket. The IEC 61499 FB

implementation with adapters is shown in Figure 6-10. The method to design adapters usually

starts from the high-level FB side to group required interfaces as a plug and then the low-level

FB side to group provided interfaces as a socket. Both are denoted with “>>” and its name.

Compared with the same application in Figure 6-8, the system architecture is much easier to

understand. More importantly, the control algorithms will be independent from any particular

instances and therefore dynamically reconfiguring sensor nodes becomes possible if they share

the same type of adapters. For example, several autonomous mobile robots are added to the

scenario described previously in Section 2.1 (Figure 2-1) to be responsible for carrying sorting

bins to desired areas (Figure 7-1), and these mobile robots or untethered vehicles can share the

same mobile node adapters.

85

SinkNode

RSP_MC IND_MC

AC_to_S S_to_AC

RSP_AC IND_AC

MC_to_S S_to_MC

AnchorNodeCluster

S_to_AC

A1_to_AC

A2_to_AC

AC_to_S

AC_to_A1

AC_to_A2

RSP_A1

IND_S

RSP_A2

IND_A1

RSP_S

IND_A2

MobileNodeCluster

S_to_MC

M1_to_MC

M2_to_MC

MC_to_S

MC_to_M1

MC_to_M2

RSP_M1

IND_S

RSP_M2

IND_M1

RSP_S

IND_M2

AnchorNode1

AC_to_A1 A1_to_AC

IND_AC RSP_AC

AnchorNode2

AC_to_A2 A2_to_AC

IND_AC RSP_AC

MobileNode1

MC_to_M1 M1_to_MC

IND_MC RSP_MC

MobileNode2

MC_to_M2 M2_to_MC

IND_MC RSP_MC

Figure 6-8: IEC 61499 FB application without adapters

86

ACAdapter_socket

AC_to_S S_to_AC

RSP_AC IND_AC

AnchorNodeCluster

S_to_AC

A1_to_AC

A2_to_AC

AC_to_S

AC_to_A1

AC_to_A2

RSP_A1

IND_S

RSP_A2

IND_A1

RSP_S

IND_A2

MCAdapter_socket

MC_to_S S_to_MC

RSP_MC IND_MC

MobileNodeCluster

S_to_MC

M1_to_MC

M2_to_MC

MC_to_S

MC_to_M1

MC_to_M2

RSP_M1

IND_S

RSP_M2

IND_M1

RSP_S

IND_M2

SinkNode

RSP_MC IND_MC

AC_to_S S_to_AC

RSP_AC IND_AC

MC_to_S S_to_MC

ACAdapter_plug

S_to_AC AC_to_S

IND_S RSP_S

MCAdapter_plug

S_to_MC MC_to_S

IND_S RSP_S

Figure 6-9: IEC 61499 adapter design

SinkNode

ACAdapter_plug >>

MCAdapter_plug >>

AnchorNodeCluster

A1Adapter_plug >>

A2Adapter_plug >>

<< ACAdapter_socket

MobileNodeCluster

M1Adapter_plug >>

M2Adapter_plug >>

<< MCAdapter_socket

AnchorNode1

<< A1Adapter_socket

AnchorNode2

<< A2Adapter_socket

MobileNode1

<< M1Adapter_socket

MobileNode2

<< M2Adapter_socket

Figure 6-10: IEC 61499 FB application with adapters

87

6.2.3 Component Encapsulation Model

There are two ways to encapsulate FBs to build applications, either through CFBs or SubApps.

IEC 61499 CFB is defined as a network of FB instances through event and data connections [6].

IEC 61499 SubApp is a means to group application components in the top-down/bottom-up

manner and share their common public interfaces [6]. Compared to typed CFB models which

new types are created during each adaptation of applications, the IEC 61499 SubApp model

supports application adaptation on all hierarchic levels for reuse and reconfiguration which is

much faster for application development and structure modelling.

To continue sensor node FB models discussed in Section 6.2.2 and go into some details

about these two models applied in the control application programming. Figure 6-11 shows the

example. For both, there are three interconnected component FB types (i.e., SinkNode,

AnchorNodeCluster, and MobileNodeCluster) to be encapsulated as a CFB or SubApp for the

sensor node, and these component FB types can be instantiated as multiple instances. The

difference is: a) the CFB_SensorNode1 is physically a network of instances of three component

FB types (i.e., sinknode1, anchornodecluster1, and mobilenodecluster1) which means the

internal structure cannot be changed after the CFB is developed; b) the SubApp_SensorNode is

logically a network of desired FB types which means it can be an empty one in a top-down

design or the same as the CFB in a bottom-up design. The advantage of SubApps over CFBs is

in dynamical configuration of sensor nodes in which SubApps can be scalable, adaptable, and

distributable.

88

SinkNode

ACAdapter_plug >>

MCAdapter_plug >>

AnchorNodeCluster

>> ACAdapter_socket

MobileNodeCluster

>> MCAdapter_socket

SubApp_SensorNode

SinkNode

ACAdapter_plug >>

MCAdapter_plug >>

>> ACAdapter_socket

MobileNodeCluster

>> MCAdapter_socket

sinknode1

anchornodecluster1

mobilenodecluster1

A1Adapter_plug >>

A2Adapter_plug >>

M1Adapter_plug >>

M2Adapter_plug >>

CFB_SensorNode1

AnchorNodeCluster

Figure 6-11: Comparison of IEC 61499 CFB and SubApp models

6.2.4 IEC 61499 Application Model Design

IEC 61499 application model design is the core in system design. As stated before, the system is

designed as two parts, the control logic built by function blocks as applications and the physical

devices encapsulating required resources for application implementation. In this section, how

various FB models mentioned in previous sections are used in the application model design will

be discussed. For example, the sensor-control-actuator FB model previously discussed in Section

6.2.2. Figure 6-12 shows the example in a generic form. From a physical view, the sensor-

actuator represents the hardware part (i.e., 3D sensor attached to the robotic arm) and the control

represents the software part (i.e., control application). However, logically the data/events flow

from the sensor to the control and then to the actuator (i.e., the attached 3D sensor detects the

object position, shapes, colors, etc. and transmits data to the robot control which controls the end

gripper to perform desired actions). Actually, a good application-oriented design is to separate

each part into different devices, model each part as SubApps, and group common interfaces as

89

adapters. SIFBs are used since each part are mapped to networks for communication. Compared

to the one in Figure 6-6 which no adapter is designed and the sensor and the control are deployed

into one device, each part in the new design is loosely coupled, can be dynamically configured,

and is able to share the same type of interfaces.

Physical View

Logical View

Design View

Actuator

>> ParamaterIn_socket

REQ CNF

ParamaterOut_plug >>

INIT INITO

ReceivedData_plug >>

SIFB_responder

REQ CNF

INIT INITO

>> ReceivedData_socket

SubApp_Actuator in Device Z

Sensor

REQ CNF

>> StateIn_socket

StateOut_plug >>

INIT INITO

SIFB_requester

REQ CNF

>> SentData_socket

INIT INITO

SentData_plug >>

SubApp_Sensor in Device X

SIFB_requester

REQ CNF

>> SentData_socket

INIT INITO

SentData_plug >>ReceivedData_plug >>

SIFB_responder

REQ CNF

INIT INITO

>> ReceivedData_socket

Control

RSP IND

INIT INITO

>> DataIn_socket

DataOut_plug >>

SubApp_Control in Device Y

Sensor

REQ CNF

StateIn StateOut

INIT INITO

Control

RSP IND

DataOut

INIT INITO

DataIn

Actuator

ParamIn

REQ CNF

ParamOut

INIT INITO

Control

RSP IND

DataOut

INIT INITO

DataIn

Sensor

REQ CNF

StateIn StateOut

INIT INITO

Actuator

ParamIn

REQ CNF

ParamOut

INIT INITO

Figure 6-12: Design of an IEC 61499 application model for distributed automation

90

6.3 Self-Manageable Service Model for Architecture Design in IEC 61499

6.3.1 Self-Manageable Service Model

In the proposed low-level architecture modelling framework (Figure 6-13), the self-manageable

service model is design as a multi-agent system embedded in IEC 61499 FBs. Two new agent

types are designed: a) the self-manageable service execution agent Agent_SMS; b) self-

manageable agents including Agent_SC, Agent_SO, Agent_SH, and Agent_SP. In general,

Agent_SMS is mainly responsible for monitoring system states and responding to changes by

deciding the adequate behaviours to perform (i.e., activate one or more self-manageable agents

and execute self-manageable services). The second type of agent is primary concerned with

generating self-manageable service action plans upon requests: a) Agent_SC for

configuring/reconfiguring functions, structures, and process to adapt to dynamical changes; b)

Agent_SO for improving and optimizing performance and operations with respect to predefined

goals; c) Agent_SH for detecting and recovering from disturbances and faults to maximize

system availability; and d) Agent_SP for identifying and protecting against safety and security

attacks to preserve system integrity.

A detailed procedure is shown in Table 6-1 for the implementation of the self-

manageable service model. An example of this process is illustrated in Figure 6-13. The self-

configuration process begins with a single change request that results in the old FB_S being

replaced by two new FB_S1 and FB_S2 in the Application residing in Device_Y and Device_Z.

The self-manageable service is activated as Agent_SMS detects the change request and

communicates to Agent_SC to request the self-configuration service. Agent_SC generates the

action plan and sends it back to Agent_SMS for execution on the application.

91

FB_S2

FB_C FB_A

FB_S1

FB_S FB_C FB_A

Intelligent

Device_X Device_Y Device_Z

Application

Communication Network

IEC 61499 Function Block Model

Self-Manageable Service Model

Change Detected

/

Service Activated

Quick Response

/

Real-time Adaption

Reconfiguration

Low-Level Physical Module

(Agent Embedded IEC 61499 FB Model)

High-Level Cyber Module

(Multi-Agent MAPLE-K Model)

Manageability Interfaces

Agent Communication

Self-Configuration

Agent (Agent_SC)

Self-Optimization Agent

(Agent_SO)

Self-Healing Agent

(Agent_SH)

Self-Protection Agent

(Agent_SP)

Self-Manageable Service

Execution Agent (Agent_SMS)

Agent Communication

Figure 6-13: The low-level self-manageable architecture modelling framework

Table 6-1: Algorithm for the proposed self-manageable service model

Algorithm 2: the self-manageable service model

01 Input: Current State //control application real-time event/data

02 Output: Action Plan // control application self-manageable services

03 Initialize Agent_SMS

04 Read currentSate to detect changes

05 //rea-time control application execution event/data

06 Call SelfManageableAgents to request self-manageable agents for response

07 Case normal operations of

08 //no changes or changes in the reasonable range

09 Condition: Execute Agent_SO for optimization

10 Execute Agent_SC for reconfiguration

11 Case abnormal operations of

12 //changes affecting predefined system capabilities

13 Condition Recoverable: Execute Agent_SH for healing

14 Execute Agent_SC for reconfiguration

15 Condition Unrecoverable: Execute Agent_SP for protection

16 Execute Agent_SC for reconfiguration

17 Return actionPlan generated by self-manageable agents

18 Call IEC61499FunctionBlockSystem to execute self-manageable services for adaptation

19 Start/Stop/Update IEC 61499 FB System

20 Create/Modify/Delete IEC 61499 FB System Element

21 //including device, resource, application, function block, event/data

92

6.3.2 Self-Manageable Service Execution Agent Design

Agent_SMS plays a key role in requesting one or more self-manageable agents to respond to

changes and executing self-manageable services provided by self-manageable agents to adapt

IEC 61499 FB based systems. In Figure 6-14, the Agent_SMS class implements two interfaces

(i.e., the SelfManageableAgents interface and the IEC61499FunctionBlockSystem interface) to

realize its predefined functions. Typical attributes of the Agent_SMS class include previousState,

executedAction, currentState, plannedAction, and computedAction. Typical methods are

receiveCurrentState, initializeSMAgent, and executeAgentSMS.

Self-ManageableServiceExecutionAgent

(Agent_SMS)

attributeAgentSMS:

methodAgentSMS()

 previousState: State

 executedAction: Action

 plannedAction: Action

 currentState: State

 executeAgentSMS(currentState, computedAction)

 initializeSMAgent(currentState)

 computedAction: Action

 receiveCurrentState(currentState)

State

attributeState:

methodState()

Action

attributeAction:

methodAction()

<<interface>>

Self-ManageableAgents

attributeSelfManageableAgents:

methodSelfManageableAgents()

 sendReqDecision(currentState, changeRequest)

 selectSMAgents(currentState, changeRequest)

 listSelfManageableAgentsType:

 receiveChangeRequest(currentState)

1..1

1..1

1..1

1..1
<<interface>>

IEC61499FunctionBlockSystem

attributeIEC61499FBSystem:

methodIEC61499FBSystem()

 create/modify/deleteIEC61499FBSystemElement()

 listIEC61499FBSystemElement:

 start/stop/updateIEC61499FBSystem()

Figure 6-14: The SelfManageableServiceExecutionAgent data model

6.3.3 Self-Manageable Agents Interface Design

The SelfManageableAgents interface in Figure 6-15 provides access to communicate with self-

manageable agents for self-manageable services in the low-level physical module. One typical

attribute is the list of self-manageable agent types (i.e., Agent_SC, Agent_SO, Agent_SH, and

93

Agent_SP). Each agent is responsible for their own tasks. Typical methods are

receiveChangeRequest to get the change request from Agent_SMS, selectSMAgents to choose

which agent to perform the self-manageable service according to currentState and

changeRequest, and sendReqDecision to ask the selected agent to perform required tasks. For

each self-manageable agent class, typical methods include receiving the request decision from

the SelfManageableAgents interface, generating the self-manageable service action plan, and

returning the plan to Agent_SMS for execution.

<<interface>>

Self-ManageableAgents

attributeSelfManageableAgents:

methodSelfManageableAgents()

 sendReqDecision(currentState, changeRequest)

 selectSMAgents(currentState, changeRequest)

 listSelfManageableAgentsType:

 receiveChangeRequest(currentState)

Self-ConfigurationAgent

(Agent_SC)

attributeAgentSC:

methodAgentSC()

 returnAgentSCResult(currentState,computedAction)

 executeAgentSC(currentState, changeRequest)

 receiveReqDecision(currentState, changeRequest)

Self-OptimizationAgent

(Agent_SO)

attributeAgentSO:

methodAgentSO()

 returnAgentSOResult(currentState,computedAction)

 executeAgentSO(currentState, changeRequest)

 receiveReqDecision(currentState, changeRequest)

Self-HealingAgent

(Agent_SH)

attributeAgentSH:

methodAgentSH()

 returnAgentSHResult(currentState,computedAction)

 executeAgentSH(currentState, changeRequest)

 receiveReqDecision(currentState, changeRequest)

Self-ProtectionAgent

(Agent_SP)

attributeAgentSP:

methodAgentSP()

 returnAgentSPResult(currentState,computedAction)

 executeAgentSP(currentState, changeRequest)

 receiveReqDecision(currentState, changeRequest)

1..1

1..1

1..1

1..1

1..1

1..1

Figure 6-15: The SelfManageableAgents data model

6.3.4 IEC 61499 Function Block System Interface Design

The IEC61499FunctionBlockSystem interface in Figure 6-16 provides access to executing self-

manageable services to adapt IEC 61499 FB based systems. The typical attribute is a list of

system elements, e.g., devices, resources, applications, and FBs. Typical methods are

94

start/stop/updateIEC61499FBSystem and create/modify/deleteIEC61499FBSystemElement. The

classes Device, Resource, Application, FunctionBlock with Event/Data are main entities that

Agent_SMS can execute the self-manageable service action plan on. In the Device class, typical

methods include add/remove/resetDevice and start/stop/killDevice. In the Resource class, typical

methods include create/modify/deleteResource and start/stop/killResource. For the Application

class, typical methods are create/modify/deleteApplication and start/stop/killApplication. For the

EventData class, typical methods are read/write/resetEDValue and

create/modify/deleteEDConnection. For the FucntionBlock class, typical attributes are FBType

(e.g., BFB, CFB, and SIFB), FBInstance, FBConnection, and FBGrouping (e.g., plug and socket

adapters), and typical methods are to create, modify, and delete those attributes.

Resource

attributeResource:

methodResource()

 create/modify/deleteResource()

 start/stop/killResource()

EventData

attributeEventData:

methodEventData()

 read/write/resetEDValue()

 create/modify/deleteEDConnection()

Application

attributeApplication:

methodApplication()

 create/modify/deleteApplication()

 start/stop/killApplication()

Device

attributeDevice:

methodApplication()

 add/remove/resetDevice()

 start/stop/killDevice()

FunctionBlock

attributeFunctionBlock:

methodFunctionBlock()

 create/modify/deleteFBType()

 create/modify/deleteFBGrouping()

 listFBType:

 listFBInstance:

 listFBConnection:

 create/modify/deleteFBInstance()

 listFBGrouping:

 create/modify/deleteFBConnection()

1..1 1..*

<<interface>>

IEC61499FunctionBlockSystem

attributeIEC61499FBSystem:

methodIEC61499FBSystem()

 create/modify/deleteIEC61499FBSystemElement()

 listIEC61499FBSystemElement:

 start/stop/updateIEC61499FBSystem()

1..* 1..1

1..*

1..*

1..*

1..*

1..*1..1

1..*

1..1

1..*

1..1

Figure 6-16: The IEC61499FunctionBlockSystem data model

95

6.3.5 Agent-Embedded Function Block Design Pattern

An agent-embedded IEC 61499 FB model is designed to support self-management capabilities of

the low-level physical module. The key feature of this proposed model is the separation of the

self-manageable service execution from the control application execution. More specifically, one

execution path is responsible for control applications (built as IEC 61499 FBs for control

purposes) and a second execution path is responsible for self-manageable services (designed as

embedded multi-agent models for system configuration, optimization, healing, and protection

purposes).

The agent-embedded function block (Figure 6-17a) is proposed as a new design pattern

for IEC 61499 to build self-manageable control solutions. The basic FB type is used to create a

new type called Agent_X FB, including Agent_SMS FB, Agent_SC FB, Agent_SO FB, Agent_SH

FB, and Agent_SP FB. Agent_SMS FB has at least two key state/action pairs in its execution

control chart: a) REQ for requesting one or more self-manageable agents to respond to changes

(implementing the SelfManageableAgents interface); b) EXE for executing self-manageable

services provided by self-manageable agents to adapt FB based control systems (implementing

the IEC61499FunctionBlockSystem interface). Self-manageable agents embedded in IEC 61499

FBs are either initialized by management events to be active for predefined tasks or deactivated

in a sleep state. With this design pattern acting as meta-application for management purposes, the

new agent-embedded FB types can be introduced to build self-manageable control applications

(Figure 6-17b). In practice, in order for one IEC 61499 FB based application to be self-

manageable, the Agent_SMS FB type is required with one or more self-manageable agents for

different tasks (i.e., configuration, optimization, healing, or protection).

96

Execution Control

Agent_X

ECC Agent_X

EI

DI

EO

DO

Algorithms

Algorithm Agent_X

Internal Data

Internal Data Agent_X

START INIT

REQ

EXE

ALG EVNT

1

1

REQ

EXE

INIT

1

ALG_exe EVNT_exe

ALG_req EVNT_req

FB FB FB

Agent

_SMS

Agent

_SX

FB FB FB

(a) Agent-Embedded FB Type (b) Application Design with Agent-Embedded FBs

Figure 6-17: The agent-embedded IEC 61499 FB model

The design pattern of the agent-embedded FB module developed in IEC 61499 FB

modelling tool Eclipse 4diac is shown in Figure 6-18. The module is designed as a template by

using IEC 61499 sub-application type (i.e., SubApp) and the inside is designed as a network of

agent-embedded FBs Agent_SMS, Agent_SC, Agent_SO, Agent_SH, and Agent_SP by using IEC

61499 basic FB type (i.e., BFB).

97

Figure 6-18: Interface and FB network design of the agent-embedded FB module

The interaction between the module and the external segments through the

communication network (Figure 6-2d) are achieved by using the default IEC 61499 SIFB type

(e.g., publish/subscribe, client/server). In Figure 6-19a, the internal agent-agent communication

interface is designed as an AgentInterface adapter pair plug and socket for encapsulation of FB

interaction with internal services by using IEC 61499 adapter type (i.e., adapter). Therefore, the

98

agent-embedded FB module in Figure 6-18 can also be designed with adapters in Figure 6-19b

for the benefits discussed in Section 6.2.

(a) Agent Communication Interface Adapter Design

(b) FB Network of Agent-Embedded FB Module with Adapters

Figure 6-19: FB network design of the agent-embedded FB module with adapters

99

6.4 Summary

In this chapter, the architecture modelling framework for the low-level physical module was

proposed. The low-level physical module design deploys autonomic computing self-managing

properties into the modelling framework with the implementation of IEC 61499 FB modelling

techniques. It is designed as agent-embedded IEC 61499 FB model with Self-Manageable

Service Execution Agent, Self-Configuration Agent, Self-Healing Agent, Self-Optimization Agent,

and Self-Protection Agent. The design results in a new design pattern to separate the execution of

control applications and self-manageable services for low-level FB modelled automation

solutions, aiming at realizing real-time adaption of automation logic and control algorithms.

100

[This page intentionally left blank]

101

Chapter Seven: Architecture Modelling Evaluation

7.1 Introduction

The major research focus in this thesis is on the design methods for system architecture

modelling that enable industrial automation and control systems to be distributed and intelligent.

Central to this work is a layered architecture design that focuses on the integration of multi-agent

modelling and IEC 61499 FB modelling. In the proposed architecture modelling framework, a

multi-agent computing model is designed for the high-level architecture with the aim of

providing system intelligence by communicating and computing cores of cyber modules. An

agent-embedded IEC 61499 FB model is developed for the low-level architecture in order to

offer real-time adaptation by distributed and intelligent control of physical modules. It aims to

enable systems to automatically discover alternative solutions, flexibly coordinate reconfigurable

modules, and actively deploy corresponding functions, to quickly respond to frequent changes

and intelligently adapt to evolving requirements in dynamic environments.

In this chapter, scenarios are first provided to illustrate the proposed modelling

framework. Then a multi-agent simulation model based on the agent modelling tool NetLogo is

developed and an experimental testbed on the Jetson Nano and Raspberry Pi platforms is

designed for demonstration and evaluation. Finally, the performance is theoretically analyzed to

evaluate the proposed architecture modelling framework.

102

7.2 Illustrative Example Demonstration

7.2.1 Typical Industrial Scenario

A simplified but typical scenario was described in Section 2.1 (Figure 2-1) and was enriched

throughout the following chapters to explain the proposed architecture modelling framework. In

this section, this typical industrial scenario will be used to wrap up the design of multi-layer

automation architectures that aims to enable real-time adaptation at the device level and run-time

intelligence throughout the whole system. Figure 7-1 shows the extended industrial automation

scenario in which the system is designed to sort objects into corresponding bins with a group of

autonomous mobile robots to deliver objects to the conveyor system and to carry bins back to

storage areas. A detailed description is shown as follows:

• a group of autonomous mobile robots are designed to be able to deliver objects to the

conveyor for sorting;

• the programmable robotic arm can rotate and translate to grasp and place objects from the

conveyor into corresponding bins on the fly;

• the task for the robotic arm is to pick up one type of object from the conveyor and then place

them into the corresponding type of the bin;

• the other group of autonomous mobile robots are designed to be able to carry the full bins

back to storage areas according to the flashing LED lights;

• the group of autonomous mobile robots are attached with wireless sensor networks for

understanding the surrounding environment (e.g., localization and navigation); and

• the system is designed and programmed to achieve its purposes with the help of all other

necessary software/hardware that are not mentioned here.

103

Robotic Arm

Conveyor System

Sorting Bins

B1

B2

B3

B4

MR1

MR3

MR2

MR4

Mobile

RobotS

LEDs

Figure 7-1: An extended industrial automation scenario

According to the proposed architecture modelling framework (Figure 5-1 and Figure 6-

1), the system is generally designed as a two-layer architecture model to support real-time

adaptation at the device level and run-time intelligence throughout the whole system. The high-

level cyber module is designed as a multi-agent computing model consisting of Monitoring

Agent, Analysis Agent, Self-Learning Agent, Planning Agent, Execution Agent, and Knowledge

Agent. Multi-agent modelling uses autonomous and cooperative agents to achieve run-time

intelligence in system design and module reconfiguration. The low-level physical module is

designed as an agent-embedded IEC 61499 FB model with Self-Manageable Service Execution

Agent, Self-Configuration Agent, Self-Healing Agent, Self-Optimization Agent, and Self-

Protection Agent. IEC 61499 FB modelling applies object-oriented and event-driven FBs to

realize real-time adaptation of automation logic and control algorithms.

7.2.2 High-Level Cyber Module Design

The high-level cyber module is expected to reside somewhere in the “Cloud” where the whole

system is managed with enabling techniques for run-time intelligence.

104

Agent_Monitoring. It is designed to collect data on the operating environment properties,

the system engineering properties, and the real-time operation behaviours of each system

module, typically through sensors or sensor networks. For the industrial automation scenario

shown in Figure 7-1, these data can be environmental conditions (e.g., temperature/humidity that

may affect autonomous mobile robots operating due to battery degradation, or unexpected

obstacle on the ground that prevents autonomous mobile robots from moving around),

engineering properties (e.g., moving speed and load capacity of autonomous mobile robots, tear

or wear on most frequently used parts), and working states (e.g., idle time percentage of

autonomous mobile robots or the robotic arm and cooperation efficiency between them, if best

path found each time for autonomous mobile robots, sorting efficiency of the robotic arm).

Agent_Analysis. It is designed to model system operating situations to understand current

operation states and to predict future situations. In simple operations, if nothing monitored

changed by comparing current states with pre-set values, the system will go directly for

execution as planned. For example, the incoming stream of objects monitored as the same type

(e.g., black block), the robotic arm will perform sorting as planned. However, in complex

operations, as monitored states changed, the system has to go through new analysis and planning

before execution. For example, a simple case is one red block mixed in the stream of black

blocks and the robotic arm needs to distinguish between them and then sort each into the

corresponding bins.

Agent_Self-Learning. It is designed to employ artificial intelligence to support

Agent_Analysis as traditionally only predefined rules, policies, and goals are considered with

limited situations. Agent_Self-Learning can either learn primitive skills from sensory data or

learn from past experience to cope with new tasks or to optimize existing performances. For

105

example, the robotic arm starts working with some predefined knowledge of normal operations

through training sensory data (e.g., reach, grasp, and place objects). At the beginning of these

simple situations, Agent_Self-Learning could actively collect data for analysis and build models

for prediction or optimization (e.g., rotation speed and angle, holding force and opening angle of

the robotic arm). As enough data is available and robust models are built, Agent_Self-Learning

could passively receive data for analysis and apply models for prediction or optimization.

However, for complex situations with no previous experiences available, Agent_Self-Learning

could actively adjust actions by trial-and-error to achieve the best result (e.g., the robotic arm

adjusts its holding force and opening angle to catch a bigger and heavier block). Then these

complex situations become simple situations with available solutions. Agent_Self-Learning is

key to the cyber module to enable the system to become intelligent to handle dynamic situations

as not all situations can be considered at the beginning of the system design.

Agent_Planning. It is designed to determine the optimal action plan with a series of

actions to achieve goals, generally working in complex situations where the regular action plan

needs to be adapted. For example, a bigger black block comes for the robotic arm. As monitored

engineering features (e.g., dimension and mass) of objects have changed, Agent_Planning has to

provide an adapted action plan according to Agent_Analysis by considering changes of some

types of parameters (e.g., holding force and opening angle of the gripper). The other case is with

large monitoring data of the same type of objects, Agent_Planning will update the regular action

plan according to Agent_Self-Learning.

Agent_Execution. It is designed to work with actuators to carry out action plans. For

example, the autonomous mobile robot delivers a bigger and heavier object to the conveyor

system and at the same time, the robotic arm increases the holding force and opening angle of the

106

gripper to try to catch that object. As monitored states of the object delivered from the

autonomous mobile robots to the conveyor system changed, the action plan needs to be adapted

accordingly for execution.

Agent_Knowledge. It is designed to either directly manage all sources of desired data or

indirectly cooperate with other databases to support the functioning of the multi-agent computing

model. For example, the change detected and its corresponding solution generated by the cyber

module will be stored and accessible to Agent_Knowledge for the future same scenario (e.g.,

irregular objects are shared between the robotic arm and autonomous mobile robots, and the

specific path for moving irregular objects will also be shared among autonomous mobile robots).

7.2.3 Low-Level Physical Module Design

The low-level physical module is expected to be attached to the “Edge” where each automation

module is programmed with control algorithms capable of real-time adaptation. Considering the

industrial automation scenario shown in Figure 7-1, the system is developed based on the

proposed agent-embedded IEC 61499 FB modelled control solutions to support self-management

capabilities (Figure 6-1). The conveyor section shown in Figure 7-1 is the most critical one of the

whole conveyor system where a backup motor (the same as the primary motor) is connected to

this section. In abnormal operations (e.g., change of motors), as requested from the system,

Agent_SMS can initiate Agent_SH for self-healing or Agent_SP for self-protection. Generally,

Agent_SH activates the backup motor running plan in a recoverable situation where only the

primary motor is not working, and Agent_SP gives out warning signals in an unrecoverable

situation (e.g., the backup motor stops working again because of system damage, or the two

motor working together due to fake failure of the primary motor). In normal operations (e.g.,

regular operating states), as per the system’s request, Agent_SO can be initiated to provide an

107

optimized service plan for Agent_SMS. For example, the motor speed is reduced due to a variety

of different objects coming as the robotic arm requires more time to ensure sorting precision, and

the motor speed can increase a little bit to increase sorting efficiency if same objects coming in a

period of time. Agent_SC can be initialized in each situation for system reconfiguration.

108

7.3 Multi-Agent Simulation Model

The simulation of the proposed design can help facilitate understanding of how the system

designed under the proposed architecture modelling framework will perform when actually being

implemented. In this section, the simulation model is developed for an automated conveyor

system by using the multi-agent modelling tool NetLogo to demonstrate the proposed system

design. NetLogo is a multi-agent programmable modelling environment for the simulation of

multi-agent systems that involves a large number of agents [183-184].

7.3.1 Development of Agent-Based Model

The automated conveyor system consists of a series of conveyor sections and part storage bins

that are connected by part diverters (Figure 7-2). Conveyor sections of the same type (main

sections and entrance/exit sections) are designed to be the same length and to operate at the same

fixed speed. Part storage bins are designed as the destinations for incoming parts, which could

also represent part workstations with corresponding re-routing to storage bins and/or conveyor

sections for more complex simulations. The diverters are controlled by individual diverter

controllers as highlighted in Figure 7-2. Each of these controllers includes a processor (i.e., an

IEC 61499 device), an input sensor (e.g., an imaging device to detect the part type), and one or

more diverter actuators. The objective of the automated conveyor system is to sort parts into

storage bins based on part types (i.e., each part type is assigned to a unique storage bin). The

automated conveyor system is also designed with extra part storage bins (i.e., 7 storage bins and

at most 6 part types) and storage loops for the part types to circulate through the conveyor loop

in case any disturbance happens (e.g., a new part type or a conveyor section failure). The

automated conveyor system designed in the experiments could be regarded as part of typical

109

industrial systems, e.g., working together with robotic arms and autonomous mobile robots as

described before in Figure 7-1.

Figure 7-2: The automated conveyor system

To simulate reconfigurable automated conveyor systems of the type shown in Figure 7-2,

the multi-agent simulation model is developed in NetLogo 6.3 as shown in Figure 7-3 (Appendix

A). The automated conveyor system simulation model allows the user to specify the automated

conveyor system layout, the number of part types, the initial diverter controller specifications,

the system processing and agent response delays, the conveyor section failures, and the system

mean time to failures. In the simulation model (Figure 7-3), conveyor sections are represented by

white rectangular; diverter sections are represented by yellow squares with directional arrows

showing the current position of the diverter; storage bins are represented by red squares; input

110

and output part sensors are represented by green squares; parts are represented by boxes with a

letter and a unique colour assigned to each part type.

For the experiments in this research, main conveyor sections are designed as 7 part

spaces long and entrance/exit conveyor sections are designed as 3 part spaces long. The system

operates at a fixed speed with 1 part space per second or tick. Part arrival times are sampled from

an exponential distribution based on a mean arrival time and each part is randomly assigned a

part type that is sampled from a discrete uniform distribution with a range of 1 to n. Parts are

transported through the system on the conveyor sections and routed to their assigned storage bins

by the diverter controllers. The part routing policy is determined through two-levels as proposed

in this thesis (Figure 5-1 and Figure 6-1): high-level cyber module for the overall system (e.g.,

part types [a, b, c, d] to storage bins [1, 2, 6, 3]) and low-level physical module at the execution

(e.g., part type c re-routed to storage bin 5 due to conveyor section 4 failure or new part type e to

storage bin 5). The system performance show in Figure 7-3 is measured by average number of

parts in the system (L), average part arrival time to the system (1/λ), and average wait time spent

by parts in the system (W), in which the simulation compares favourably with the theoretical

model by Little’s Law (L = λW) [185].

In additional to the automated conveyor system simulation, the agents designed in the

self-manageable service model (Figure 6-13) and represented by “Function Block” (Figure 7-3)

are simulated as individual Netlogo agents. Each of the service agents interacts directly with the

automated conveyor system to monitor its operations and execute self-manageable services (i.e.,

self-configuration, self-optimization, self-healing, and self-protection). These self-manageable

services are achieved by dynamically updating and changing the global conveyor-sections list

(i.e., input file to configure conveyor system layouts), part-types list (i.e., part types introduced

111

to the system), diverter-states list (i.e., reconfiguring diverter states), and diverter-connections

list (i.e., removing/establishing connections between diverters) in the program. The agents

designed in the high-level MAPLE-K model (Figure 5-1) and represented by “Person” (Figure 7-

3) are simulated as NetLogo agents to demonstrate the integrations among them. Currently, these

agents are developed for the simulation of the automated conveyor system, and then are further

required to be designed as external Python procedures.

Figure 7-3: Agent-based simulation model for the automated conveyor system

To validate the proposed architecture modelling framework, especially the low-level self-

manageable architecture model, a series of three experiments (7 typical tests in Figure 7-4) are

112

performed to test the system self-managing functionality by introducing random disturbances

(one disturbance per time): a) introduction of a new part type (i.e., increase number-part-types

from the simulation interface), b) failure of a conveyor section (i.e., select conveyor-section-

failure from the simulation interface), and c) optimizing part routing (i.e., switch optimization-

path on from the simulation interface). As discussed before, each system has its initial design

with predefined running conditions and adaptation logics. The major advantage of the proposed

design over the traditional design is that these programmed control solutions are able to be

improved and enriched intelligently during runtime through self-learning from system running

conditions and operation histories. It is the same with the simulation experiments, in which the

system is running with initial conditions while random disturbances are introduced to simulate

the stochastic nature of real operations. Details are discussed in the following sections.

Test 6 in Figure 7-10

Agent_SMS

Agent_SP, Agent_SC, Agent_SO, Agent_SH

Test 1 in Figure 7-5

Agent_SMS

 Agent_SC

Test 5 in Figure 7-9

Agent_SMS

Agent_SP, Agent_SC, Agent_SO

Test 4 in Figure 7-8

Agent_SMS

Agent_SP, Agent_SC

Test 7 in Figure 7-11

Agent_SMS

Agent_SO

Test 3 in Figure 7-7

Agent_SMS

Agent_SP

Test 2 in Figure 7-6

Agent_SMS

Agent_SC, Agent_SO

Figure 7-4: Typical tests in performed three experiments

113

7.3.2 Introduction of A New Part Type

The first experiment, the introduction of a new part type, involves tests of the self-configuration

capability that is considered fundamental for system intelligent reconfiguration. Agent_SC

initiates the self-configuration process upon receiving a <request: new part type e> message

from Agent_SMS and maintains the present diverter controller configuration while it processes

the request. In the case of a new part type introduced, this results in parts of the new type

circulating around the conveyor loops until the reconfiguration is completed by Agent_SC with

an <inform: reconfiguration completed> message to Agent_SMS.

A typical self-configuration scenario (Test 1) is shown in Figure 7-5: an interaction

between Agent_SMS and Agent_SC in response to a new part type arriving at the automated

conveyor system. In this test, Agent_SMS is monitoring the operating state of the automated

conveyor system. When it senses the arrival of a new part type (i.e., system reconfiguration

required), Agent_SMS sends a message to Agent_SC to initialize the agent and request the

change, indicating that a new part type e has been introduced to the system (system initially

running with part types [a, b, c, d]). Agent_SC responds to the request and works on a solution to

the change. Once the new routing is determined, Agent_SC informs Agent_SMS with the

reconfiguration plan and Agent_SMS responds to Agent_SC for acknowledgement and executes

the reconfiguration to the diverter controllers.

114

(a) Agent-Based Model for A New Part Type (b) Agent_SMS and Agent_SC Interaction Diagram

Figure 7-5: Introduction of a new part type: Test 1

In Test 1 (Figure 7-5), except storage bins [1, 2, 6, 3] for initial part types [a, b, c, d]

occupied, several system configurations exist for the new part type e in blue (i.e., increase

number-part-types from 4 to 5), which means in the simulation the new part type e circulates

through conveyor loops to find extra storage bins (bins [4, 5, 7] in red circle) automatically

governed by the proposed design. There are several loops to reach each extra storage bin, e.g.:

• route 1 conveyor sections [1->2->10->8->18] or else to storage bin 7,

• route 2 conveyor sections [1->2->3->11->16] or else to storage bin 5, and

• route 3 conveyor sections [1->2->3->4->5->15] or else to storage bin 4.

In most cases, the optimal system configuration is required for the new part type if

possible. In Test 2 (Figure 7-6), once Agent_SC has determined that several system

configurations are possible, it sends a <request: optimize routing> message to Agent_SO (Figure

7-6b) for self-optimization. In this case, self-optimization involves finding an optimum routing

of the new part type to storage bins (e.g., Test 7 in Section 7.3.4 describes one possible self-

115

optimization approach). The resulting routing strategy (e.g., red circle route 2 conveyor sections

[1->2->3->11->16] to storage bin 5) is then used by Agent_SC to execute the diverter controller

reconfiguration. For the automated conveyor system, this involves updating the execution control

charts (ECC) of the diverter controller FBs to ensure that parts are diverted to the appropriate

storage bin or conveyor section based on the upstream conveyor section’s output sensor signal.

(a) Agent-Based Model for A New Part Type (b) Agent_SMS, Agent_SC, and Agent_SO Interaction Diagram

Figure 7-6: Introduction of a new part type: Test 2

7.3.3 Responding to A Conveyor Section Failure

In this experiment, an equipment failure such as a conveyor section failure is introduced to the

simulation to test one or more self-management capabilities. As shown in Figure 7-2, the

importance of each conveyor section in the automated conveyor system is different. For

example, conveyor sections 1 and 2 are more important than others (e.g., conveyor sections 3

and 4) as failures in these conveyor sections will cause the system to stop running. For this

experiment, different simulations are run for different test cases.

116

A very simple case (Test 3) is that failures occur in entrance conveyor sections (e.g., grey

section 2 in red circle) as shown in Figure 7-7a. In this case, the system reconfiguration is not

possible (i.e., no extra route available), and Agent_SMS will send a <request: conveyor section 2

failure> message to Agent_SP directly for the self-protection plan (e.g., full system shutdown).

Agent_SH could also be trigged in parallel to respond to the conveyor section failure if the

malfunction can be healed automatically (e.g., Test 6 in Figure 7-10).

(a) Agent-Based Model for A Conveyor Section Failure (b) Agent_SMS and Agent_SP Interaction Diagram

Agent-SMS Agent-SP

request: conveyor section 2 failure

inform: processing request

processing

request

inform: protection completed

inform: acknowledged

Figure 7-7: Responding to a conveyor section failure: Test 3

The simulation snapshot shown in Figure 7-8 shows another typical scenario (Test 4): an

interaction between Agent_SMS, Agent_SP, and Agent_SC in response to a non-important

conveyor section failure that is in healing (grey section 4 in red circle). In this case, Agent_SMS

is monitoring the operating state of the automated conveyor system. When it senses the failure of

a conveyor section that is not healed (i.e., operation protection and system reconfiguration

117

required), Agent_SMS sends a <request: conveyor section 4 failure>message to Agent_SP to

initialize the agent and request the change (operation protection first), indicating that the

incoming parts (green boxes in blue circle) using that failed conveyor section have to be re-

routed. Agent_SP responds to the request and then coordinates with Agent_SC to re-route

incoming parts (if system reconfiguration possible). Once the new routing is determined,

Agent_SC informs Agent_SP that the system can be reconfigured with a new routing (Test 1 in

Figure 7-5). Then Agent_SMS works together with Agent_SP and Agent_SC to execute the

reconfiguration plan to solve the problem (i.e., the incoming parts are re-routed from storage bin

3 to bin 5 or 7 in blue circle). In this process, if system reconfiguration not possible (i.e., no extra

route available), Agent_SP will inform Agent_SMS to execute the self-protection plan (Test 3 in

Figure 7-7). In this scenario, Agent_SH could also be trigged in parallel to respond to the

conveyor section failure if the malfunction can be healed automatically (e.g., Test 6 in Figure 7-

10).

(a) Agent-Based Model for A Conveyor Section Failure (b) Agent_SMS, Agent_SP, and Agent_SC Interaction Diagram

Figure 7-8: Responding to a conveyor section failure: Test 4

118

In Test 4 (Figure 7-8), the system is initially running with part types [a, b, c, d] to storage

bins [1, 2, 6, 3]. Due to conveyor section 4 failure (i.e., set conveyor-section-failure as 4), the

green part type d to storage bin 3 requires re-routing, which means in the simulation the part type

d circulates through conveyor loops to find extra storage bins (bins [5, 7] in blue circle)

automatically governed by the proposed design. Several system configurations exist, e.g.:

• route 1 conveyor sections [1->2->3->11->16] or else to storage bin 5,

• route 2 conveyor sections [1->2->10->8->18] or else to storage bin 7, and

• route 3 conveyor sections [1->2->3->11->7->8->18] or else to storage bin 7.

The remaining process after self-protection for conveyor section 4 will be the same case

in Test 2 (Figure 7-6). One of the optimal re-routing strategies (e.g., route 1 conveyor sections

[1->2->3->11->16) to storage bin 5) is selected for re-routing the incoming green part type from

storage bin 3 to 5. In this case, self-optimization involves finding an optimum routing of the new

part type to storage bins (e.g., Test 7 in Section 7.3.4 describes one possible self-optimization

approach).

(a) Agent-Based Model for A Conveyor Section Failure (b) Agent_SMS, Agent_SP, Agent_SC, and Agent_SO Interaction Diagram

Agent-SMS Agent-SP

request: conveyor section 4 failure

inform: processing request

processing

request

inform: reconfiguration completed

inform: acknowledged

Agent-SC

processing

request

request: re-route parts

inform: processing request

Agent-SO

processing

requestrequest: optimize routing

inform: re-routing completed inform: routing completed

inform: processing request

inform: acknowledged
inform: acknowledged

Figure 7-9: Responding to a conveyor section failure: Test 5

119

In a complex scenario (Test 6) as shown in Figure 7-10, all agents are called upon to first

protect the automated conveyor system from further damage, configure the system to operate in a

degraded state, heal the failure conveyor section, and optimize the system configuration for

normal operation. In this test, the failed section (grey section 11) may have occurred because of a

conveyor malfunction (failed conveyor motor, broken belt, etc.), an input or output sensor

failure, or a blockage.

As with the previous case, Agent_SMS identifies the disturbance; however, given that this

case involves equipment failure or malfunction, it prioritizes self-protection and send a <request:

conveyor section 11 failure> message to Agent_SP, as illustrated in Figure 7-10. Once this

request is received, Agent_SP first determines if a full system shutdown is required (e.g., if an

entrance conveyor section such as conveyor section 1 or 2 is affected). In this case, it would shut

down the conveyor system and then requests Agent_SH to plan for a repair of the system (Test 3

in Figure 7-7). If Agent_SP determines that it is safe to continue to operate, it sends Agent-SC a

request to re-route the parts and then requests Agent_SH to plan for a repair of the system (Test 4

in Figure 7-8). Once Agent_SC has determined that several system configurations are possible, it

send a <request: optimize routing> message to Agent_SO for an optimum routing of part types

to storage bins (Test 5 in Figure 7-9). An example of one possible self-optimization approach

that could be used by Agent_SO is described in Section 7.3.4 (Test 7 in Figure 7-11).

To highlight this two-part process (system keeps running while operation protected and

failure in healing), the agent interactions is shown in Figure 7-10. The whole process starts with

self-protection in case any incoming part uses the conveyor section with failures and ends with

self-healing to recover the conveyor section from failures, and the self-configuration and self-

optimization process for available optimal system reconfigurations is repeated between them.

120

This repetitive re-routing process is initiated by Agent_SP and Agent_SH. First, Agent_SC and

Agent_SO perform a reconfiguration of the diverter controllers that accounts for the new state of

the automated conveyor system requested by Agent_SP. Once the reconfiguration is completed,

the automated conveyor system operates in a degraded state (i.e., parts are routed around the

failed conveyor section and placed in available storage bins) until Agent_SH has managed the

repair. For example, this may involve sending a message to a maintenance person and waiting

for the repair to be performed. Once the failed conveyor section is back on-line, Agent_SH

requests Agent_SC and Agent_SO to re-route the parts, and the same process that was initiated by

Agent_SP to place the system in a degraded state is repeated. However, at this point, the system

will be placed back in its normal operating state.

Figure 7-10: All agent interaction diagram in Test 6

121

7.3.4 Optimizing Part Routing

As described in the previous sections, the reconfiguration process involves a self-optimization

step that is performed by the self-optimization agent, Agent_SO. Depending on the nature of the

optimization to be performed, a wide variety of optimization algorithms or heuristics can be used

by Agent_SO. For example, dynamic programming theory-based approaches such as Dijkstra’s

algorithm [186] can provide an optimal shortest path solution. However, given the computational

complexity of optimal shortest path approaches, a variety of heuristic approaches have been

proposed for real-time applications that include strategies such as limiting the area searched,

decomposing the search problem, and limiting the links searched [187]. For this experiment, a

heuristic shortest path approach is chosen and developed within the multi-agent simulation

model given the real-time nature of the automated conveyor system application.

The goal of the part routing heuristic is to find the shortest routes to each part storage bin

for any given automated conveyor system configuration. To accomplish this, the part routing

agent-based model (Figure 7-11) uses two NetLogo agent types to encapsulate the shortest path

functionality within Agent_SO: a) a single fixed-position entrance agent (the blue circle in

Figure 7-11) that represents the automated conveyor system entrance conveyor section, and b)

mobile diverter agents (green triangles in Figure 7-11) that represent each of the conveyor

system’s diverters. The directed links point to each diverter agent’s upstream diverter agent(s) or

entrance agent.

The part routing heuristic is initialized by Agent_SC providing Agent_SO with a list of

diverters and their corresponding upstream diverter sections: e.g., the initial state shown in

Figure 7-11a corresponds to the normal operating state of the automated conveyor system

(entrance conveyor + 8 diverters). On setup, the diverter agents first create directed links to all

122

directly preceding diverter and/or entrance agents (i.e., conveyor sections that feed parts to the

diverter). As the model runs, each of the diverter agents perform a sequence of three behaviours

during each simulation step: a) point to the diverter (or entrance) agent(s) feeding the parts; b)

move one step forward; and c) maintain a minimum spacing between agents.

(a) Initial Setup (b) Agent Positions After 10 Steps

Figure 7-11: The part routing agent-based model: Test 7

Figure 7-11b shows the new positions of the diverter agents after 10 simulation steps.

Once the simulation has stabilized (typically after 30-40 steps for this set of inputs), a pattern

emerges that corresponds to the shortest distances from the entrance to each of the diverters. An

example of this pattern for the normal operating state of the automated conveyor system is

shown in Figure 7-12. At the top of the figure, a sorted list, P, is generated that shows the order

of diverter agents by their distance to the entrance agent: i.e., a minimum distance routing order

for the system configuration with the diverter order from closest to furthest is diverter 1,

diverters 2 or 6, diverters 3 or 5 or 7, and diverters 4 or 8. Therefore, there are totally 24 possible

123

shortest routings (Ptotal = 1*(2*1)*(3*2*1)*(2*1)) determined by the part routing agent-based

model and the P = [1 2 6 3 5 7 4 8] routing order is one of the optimal part routing strategies.

Figure 7-12: The final positions of the diverter agents in Test 7

To test the routing heuristic, the automated conveyor system simulation was run with and

without optimized part routing. More specifically, two part routing outputs are compared: a) the

optimized routing determined using the part routing heuristic, and b) the ordered part routing, R

= [1 2 3 4 5 6 7 8]. In each experiment, 100 replications of the simulation were run to account for

the stochastic nature of the part arrivals.

The results of the experiments are summarized in Figure 7-13. As would be expected, the

optimized routing shows improved performance (wait time decreased about 10-15%) over a strict

ordered routing. However, the degree of improvement varies with the number of part types in the

default system layout (7 storage bins for max 6 part types in the simulation). With two part types,

the ordered routing, R = [1 2], is a member of the set of possible optimized routings (i.e., P1 = [1

2] and P2 = [1 6]). Although the ordered routing, R = [1 2 3 4 5 6], is not a member of the set of

124

possible optimized routings for six part types, it shares the same list of diverters as every

member of the set of possible optimized routings. In other words, if Pi is the ith member of the set

of possible optimized routings for six part types, R is equivalent to all members of the set of

optimized part routings Pi: i.e., ∀𝑖, 𝑅 = 𝑃𝑖.

Figure 7-13: Wait time performance for the ordered and optimized routing options (mean and

95% confidence intervals) in Test 7

125

7.4 Experimental Testbed Design

The agent-based simulation model discussed in Section 7.3 demonstrated how the proposed

design works and how better it works. In this section, an experimental testbed (Appendix B) is

designed to illustrate how the IEC 61499 FB based systems are modelled through the proposed

self-manageable architecture (e.g., programming controllers in Figure 7.2). The design tool

SPADE is used to develop multi-agent models and the Eclipse 4diac design tool is used to

develop IEC 61499 FB models.

Jetson Nano and Raspberry Pi are both small, powerful single-board computers designed

to program applications and power devices, in which Jetson Nano is generally considered more

powerful than Raspberry Pi in all aspects especially the capability of edge computing [188]-

[189]. They are selected for the experiments as they meet the following requirements: a)

availability (commercially accessible and relatively cheap) and b) extensibility (multi-using

platforms with rich features and functions). The agent modelling tool SPADE (i.e., Smart Python

Agent Development Environment) is a multi-agent systems platform written in Python and based

on instant messaging [190]. The FB modelling tool Eclipse 4diac is an IEC 61499 engineering

environment for developing FB based distributed automation and control applications [79]. They

are selected for the experiments as they are open-sourced and powerful enough engineering

solutions development environments.

7.4.1 Testbed Setup

The proposed testbed setup in Figure 7-14 includes: a) the signaling platform represented by

Raspberry Pi (#3 in Figure 7-14) powered LEDs (#2 in Figure 7-14) in blue, green, red, and

yellow; b) the sorting platform represented by Raspberry Pi (#3 in Figure 7-14) powered Motors

126

(#4 in Figure 7-14); and c) the carrying platform represented by Jetson Nano powered JetBot (#1

in Figure 7-14). In this experiment, JetBot powered by Jetson Nano is designed to represent the

high-level cyber module and can move intelligently for a series of tasks (e.g., collision

avoidance, road following, and object detection). LEDs and Motors powered by Raspberry Pi are

designed to represent low-level physical modules and are controlled by agent-embedded IEC

61499 FB modelled applications.

1
2

3

4 3

3

4

JetBot by Jetson Nano1

2

3

4 Motor

Raspberry Pi

LED

Figure 7-14: Experimental testbed design

The full system configuration under the proposed architecture modelling framework

developed in Eclipse 4diac is shown in Figure 7-15.

Figure 7-15: The full system configuration in Eclipse 4diac

127

In Figure 7-15, the FB networks for LEDs (Figure 7-16) and Motors (Figures 7-17 and 7-

18) designed in Eclipse 4diac are shown as follows. In each application, FB IX and QX are used

to read input and write output signals in the system and publish/subscribe SIFBs are used to

communicate with each other through communication services (e.g., Ethernet).

Figure 7-16: FB network design for LEDs in Eclipse 4diac

Figure 7-17: FB network design for Motor1 in Eclipse 4diac

128

Figure 7-18: FB network design for Motor2 in Eclipse 4diac

JetBot powered by Jetson Nano is programmed in Python using JupyterLab for remote

control from a PC. The communication with LEDs and Motors designed in Eclipse 4diac is

shown in Figure 7-19. The agent-embedded FB module, as discussed in Section 6.3.5 (Figures 6-

18 and 6-19), is designed in the above low-level control application for self-management

capabilities and the agent interactions were simulated in the agent-based model in Section 7.3.

Figure 7-19: Communication network design for JetBot in Eclipse 4diac

7.4.2 Test Scenarios

For the test process, the signaling platform randomly selects a colored LED and turns it on for a

few seconds. The color and duration are communicated to the carrying platform. Next, JetBot

moves to the sorting platform and sends a message to the Motor, specifying the rotation direction

129

and duration. The Motor executes the command and sends back a confirmation message to

JetBot.

To test the system self-managing capabilities, a simple single direction of rotation

scenario is introduced: only a blue LED randomly flashes to request clockwise rotation of

Motor1 (Figure 7-20). This is extended to multi-direction rotation: a green LED is added for the

counterclockwise rotation of Motor1 (Figure 7-20). Applying the proposed architecture

modelling framework, new IEC 61499 FBs can be added to self-configure control applications,

and resources can be re-distributed accordingly to support this change.

Figure 7-20: Test scenario with two LEDs and one motor in Eclipse 4diac

A more complicated scenario is to add another sorting line (i.e., Motor2) for low-speed

rotation with high precision (Figure 7-21). The existing control system can be easily

reconfigured and redeployed to the new line with the proposed architecture modelling

framework. Self-optimization can also be achieved in both lines due to operation data collected

from the old line. One self-healing case is the system can quickly update its IEC 61499 FB

modelled application when detecting that the blue LED is broken and replaced with a yellow

one. For the self-protection feature, for example, a much heavier bin blocks the line operation,

and the system will automatically shut down for protection.

130

Figure 7-21: Test scenario with four LEDs and two motors in Eclipse 4diac

131

7.5 Performance Evaluation Analysis

In Section 7.3.4, Test 7 has shown that the system designed under the proposed architecture

modelling framework has improved performances. In this section, a theoretical analysis is further

performed. The time performance of control application programs is a very critical factor in

evaluating the automation and control system design, especially the program execution time,

scan time, and response time [10]. Traditionally, the program execution time is the time for

control code execution and is under control by the watchdog timer. The scan time is the time to

perform all the functions internal to the control structure, depending mainly on the program

execution time, I/O channels, and the peripherals. The response time is the time that occurs

between a variation from the regular system operating states and the corresponding reaction of

the control application programs.

The time performance of control applications programs can be affected by several

factors, e.g., performance of hardware modules (e.g., devices capability) and software modules

(e.g., algorithms complexity). In this research, only the design of control application programs

under different architectures is considered for the time performance evaluation, assuming all

other aspects the same. Therefore, performance evaluation will be conducted through

comparisons of execution time of control applications programmed in IEC 61131-3 function

block diagrams (IEC 61131-3 FBD), IEC 61499 function blocks (IEC 61499 FB), and agent-

embedded IEC 61499 function blocks (Agent-embedded IEC 61499 FB), under two different

circumstances, i.e., regular running conditions and adaptation required conditions.

132

7.5.1 Regular Running Conditions

In regular running conditions, the execution time of automation and control systems (e.g., PLC

and DCS) is the sum of working time caused by several steps in which the control application

programs are executed. For the time performance evaluation in this research, the following

categories of the time performance for the design of automation and control systems under

different architectures are considered critical:

• Device Sensor/Actuator Reaction Time (T_Reaction): the reaction time required for

corresponding actions from the end devices (i.e., sensors and actuators), and the delay

resulted from their responses.

• Fieldbus Input/Output Refresh Time (T_Refresh): the refresh time required for fieldbus

inputs/outputs through industrial communication networks.

• Control Algorithm Execution Time (T_Exection): the execution time required for the control

algorithms to deliver predefined functions.

• Algorithm Input/Output Update Time (T_Update): the update time required for the inputs

read to and the outputs wrote from the control algorithms.

• Algorithm Execution Result Propagation Time (T_Propagation): the propagation time

required for the algorithm execution result to be communicated over industrial

communication networks.

The execution time of a typical IEC 61131-3 FBD programmed system (e.g., PLC) under

regular running conditions (T_RegularFBD) includes: 1) Device Sensor/Actuator Reaction Time

(T_Reaction), 2) Fieldbus Input/Output Refresh Time (T_Refresh), 3) Control Algorithm

Execution Time (T_Exection), 4) Algorithm Input/Output Update Time (T_Update), and 5)

Algorithm Execution Result Propagation Time (T_Propagation). T_RegularFBD is defined as:

133

𝑇𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝐹𝐵𝐷 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑅𝑒𝑓𝑟𝑒𝑠ℎ(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑈𝑝𝑑𝑎𝑡𝑒(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

(7.1)

The execution time of the equivalent system programmed in IEC 61499 FB (e.g., DCS)

under regular running conditions (T_RegularFB) includes: 1) Device Sensor/Actuator Reaction

Time (T_Reaction), 2) Control Algorithm Execution Time (T_Exection), and 3) Algorithm

Execution Result Propagation Time (T_Propagation). T_RegularFB is defined as:

𝑇𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝐹𝐵 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

 (7.2)

The execution time of the equivalent system programmed in agent-embedded IEC 61499

FB (e.g., DICS) under regular running conditions (T_RegularAgentFB) is the same as

T_RegularFB as no change requests to trigger the execution of high-level and low-level multi-

agent modules. More specifically, the self-manageable sub-application designed in low-level IEC

61499 FBs only works as the management events (e.g., change request) trigger the execution

(Chapter 6), which will be considered as adaptation required conditions. The MAPLE-K model

designed in the high-level cyber module can work during regular running conditions to collect

and analyze data (Chapter 5). However, no extra time required as it is working in parallel with

the main control applications and if an adaptation required, it falls in the consideration of

adaptation required conditions (T_SMSEvaluation). T_RegularAgentFB is defined as:

𝑇𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝐴𝑔𝑒𝑛𝑡𝐹𝐵 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

 (7.3)

In regular running conditions, the execution time of equivalent automation and control

systems designed under different architectures are not the same (Table 7-1). Assuming that

T_Reaction, T_Execution, and T_Propagation are the same, T_RegularFBD (Eq. 7.1) with extra

T_Refresh and T_Update is bigger than T_RegularFB (Eq. 7.2) and T_RegularAgentFB (Eq.

134

7.3). The main time performance gain in two IEC 61499 cases results from the elimination of

traditional scan cycles in IEC 61131-3, especially in this case, no extra time-consuming

execution for T_Refresh and T_Update. As previously discussed, IEC 61499 applies the event-

driven execution mechanism, which means the execution of the FB based control application

programs is assumed to start immediately whenever input events arrive and to end immediately

whenever output events emit. However, in IEC 61131-3, continuous I/O refresh (T_Refresh) over

the industrial communication network and the delay to update inputs/outputs in control

application programs require more time and resource. Another reason is IEC 61131-3 adopts

global memory to exchange data in program organization units (i.e., POU includes programs,

functions, and function blocks in IEC 61131-3), while IEC 61499 encapsulates global data

directly and locally into function blocks. It is convenient to list variables in global memory in the

development phase but is time-consuming during runtime and not easy for module reuse.

Table 7-1: Execution time comparison in regular running conditions

Design Architectures IEC 61131-3 FBD IEC 61499 FB Agent-embedded IEC 61499 FB

Evaluation Metrics T_RegularFBD T_RegularFB T_RegularAgentFB

T_Reaction 1 1 1

T_Refresh 1 0 0

T_Exection 1 1 1

T_Update 1 0 0

T_Propagation 1 1 1

7.5.2 Adaptation Required Conditions

Adaptation required conditions in this research can be understood as the conditions in which the

system is required to adjust itself and respond to frequent changes and evolving requirements.

The adaptation tasks occur in different formats (typically system reconfiguration, e.g., failure

recovery) and are caused by various factors (e.g., the high-level request to update function

135

modules for system upgrade, low-level request to adjust parameter values due to state

variations).

As reviewed before, the automation and control system adaptation is commonly classified

into the dimensions of simple, dynamic, and intelligent reconfiguration [23]. In general, simple

reconfiguration (at least IEC 61131-3 required) aims at avoiding software-coupling issues during

reconfiguration; the dynamic (at least IEC 61499 required) focuses on reconfiguration during

runtime to satisfy the timing criteria; and the intelligent exploits distributed artificial intelligence

to reconfigure automatically [23]. Reconfiguration can be understood as the automation and

control system adapt itself (software/hardware) to respond to changes on the fly or to satisfy new

requirements by adopting different techniques (i.e., simple, dynamic, and intelligent). Under the

proposed multi-agent modelling framework towards IEC 61499 FB based distributed intelligent

automation, self-management is used in this research to describe such system adaptation,

including self-configuration, self-optimization, self-healing, and self-protection.

Under adaptation required conditions, the system is required to perform adaptation to

respond to frequent changes and evolving requirements in dynamic environments. The following

categories of the time performance for the design of automation and control systems under

different architectures are considered critical:

• Evaluation of Frequent Changes and Evolving Requirements (T_Evaluation): the time

required for the evaluation of frequent changes and evolving requirements and thus the right

decision is made for system adaptation. It is expected that this type of evaluation occurs in

the higher management level with human interaction as these changes and requirements

should be complex enough that the system cannot handle itself. For example, decision of

136

system overall function upgrade for advanced capabilities, in this case the system itself may

not detect any change request from monitoring its operations.

• Execution of System Reconfiguration or Self-Management Plans (T_Reconfiguration or

T_Selfmanagement): the time required for the execution of system reconfiguration or self-

management plans and thus the system adaptation is performed.

• Validation of System Adaptation (T_Validation): the time required for the validation of that

the system is adapted in time with desired and expected behaviours. This is the final step to

ensure that the adaptation is validated.

There are three more time performance evaluation metrics considered for the proposed

two-layer design architecture (Figure 4-1b). They are explained as follows:

• Self-Manageable Service Evaluation Time (T_SMSEvaluation): the time required for

MAPLE-K agents of the high-level cyber module to evaluate changes and requirements and

thus to deliver system adaptation actions (Figure 5-1). It is expected that this type of

evaluation occurs in the high-level cyber module which is directly related to automation and

control systems and focuses on system software modules. That means this type of evaluation

can be done by the multi-agent module automatically through monitoring and analyzing

system states without human interactions. For example, bug fix in the system control

applications, in this case the system detect and fix the bug to maintain its stable operations.

• Self-Manageable Service Request Time (T_SMSRequest): the time required for the self-

manageable service execution agent of the low-level physical module to achieve its

predefined functions and satisfy the request (Figure 6-13). The request time includes

implementation of two interface functions, i.e., requesting self-manageable agents for self-

137

manageable services in the low-level physical module and executing self-manageable

services to adapt IEC 61499 FB based systems (Figure 6-14).

• Self-Manageable Service Response Time (T_SMSResponse): the time required for the self-

manageable agents of the low-level physical module to deliver their predefined self-

manageable services to respond to the request from the self-manageable service execution

agent (Figure 6-13). The response time includes one or more self-manageable agents to

execute their own algorithms to respond to the request from self-manageable service

execution agent (Figure 6-15).

The adaptation time of a typical IEC 61131-3 FBD programmed system under adaptation

required conditions (T_AdaptationFBD) is defined as:

𝑇𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐹𝐵𝐷 = 𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐹𝐵𝐷) + 𝑇𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝐹𝐵𝐷) + 𝑇𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝐹𝐵𝐷) (7.4)

The adaptation time of the equivalent system programmed in IEC 61499 FB under

adaptation required conditions (T_AdaptationFB) is defined as:

𝑇𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐹𝐵 = 𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐹𝐵) + 𝑇𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝐹𝐵) + 𝑇𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐹𝐵) (7.5)

The adaptation time of the equivalent system programmed in agent-embedded IEC 61499

FB under adaptation required conditions (T_AdaptationAgentFB) is defined as:

𝑇𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑔𝑒𝑛𝑡𝐹𝐵 = 𝑇𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) + 𝑇𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) + 𝑇𝑆𝑒𝑙𝑓𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) +

𝑇𝑆𝑀𝑆𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) + 𝑇𝑆𝑀𝑆𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) + 𝑇𝑆𝑀𝑆𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝐴𝑔𝑒𝑛𝑡𝐹𝐵) (7.6)

In adaptation required conditions (consider one adaptation in Eqs. 7.4, 7.5, and 7.6), the

adaptation time of equivalent automation and control systems designed under different

architectures are not the same (Table 7-2). Assume that in this research T_Evaluation and

T_Validation are the same for the three system design architectures. For T_Evaluation, as

described before, it usually occurs in a large time scale (e.g., day/week) and the capabilities of

138

management platforms (e.g., ERP/PLM) are expected to be the same. For T_Validation,

generally speaking, it can be within a large time scale for complex tests (e.g., the initial system

validation test) or be in real-time or at least in parallel during system runtime. These two metrics

are not the focus of this research.

As summarized in Table 7-2, the system designed under the IEC 61131-3 architecture

(more specifically programmed in FBD) are manually reconfigured using simple reconfiguration

techniques offline while the system designed under the IEC 61499 architecture (programmed in

FB) can apply dynamic reconfiguration techniques to reconfigure online semi-automatically. It

should be expected to have some performance gain from IEC 61499 FB programmed systems

compared to the IEC 61131-3 FBD programmed ones (e.g., the time required for adaptation

T_AdaptationFBD in Eq. 7.4 greater than T_AdaptationFB in Eq. 7.5), as the IEC 61499 design

helps reduce the impact and increase the predictability of system reconfiguration and maintain

system consistency and stability [23].

Table 7-2: Execution time comparison in adaptation required conditions

Design Architectures IEC 61131-3 FBD IEC 61499 FB Agent-embedded IEC 61499 FB

Evaluation Metrics T_AdaptationFBD T_AdaptationFB T_AdaptationAgentFB

T_Evaluation 1 1 1

T_Validation 1 1 1

T_Reconfiguration
simple; offline;

manually.

dynamic; online;

semi-automatically.
n/a

T_Selfmanagement n/a n/a intelligent; online; automatically.

T_SMSEvaluation n/a n/a intelligent; real-time; automatically.

T_SMSRequest n/a n/a intelligent; real-time; automatically.

T_SMSResponse n/a n/a intelligent; real-time; automatically.

139

For the proposed IEC 61499 architecture (programmed in agent-embedded FB), it aims at

intelligent, online, and automatic system self-management (or traditionally saying

reconfiguration) by adopting a two-layer architecture with multi-agent cyber module modelling

to achieve run-time intelligence and IEC 61499 function block physical module modelling to

realize real-time adaption. Although, more items (T_SMSEvaluation, T_SMSRequest, and

T_SMSResponse) in Eq. (7.6), they all occurs in software algorithm execution level and are

expected to be within a small time scale. As described before for T_SMSEvaluation in Eq. 7.6,

this type of evaluation occurs in the high-level cyber module and is done by multi-agent

MAPLE-K module automatically through monitoring and analyzing system states regularly

without human interactions. This proposed multi-agent cyber module applies machine learning

techniques for system operation state analysis and helps reduce work in the higher management

evaluation (T_Evaluaiton). For the request and response in the low-level physical module

(T_SMSRequest and T_SMSResponse) performed by the agent-embedded IEC 61499 FB-based

sub-application, it is designed to be able to handle simple and straightforward tasks with correct

alternative solutions during runtime. That means this type of execution by the agent-embedded

IEC 61499 FB-based sub-applications in the low-level physical module can be done

automatically for real-time adaptation through monitoring system states without exchanging

large amount of data with the high-level cyber module for analytics and learning (reducing real-

time communication burden). For example, parameter change of the control application, in this

case the system adjust the parameter to maintain its stable operations.

As analyzed before for the proposed IEC 61499 architecture (programmed in agent-

embedded FB), the performance improvement should come not only from the reduced adaptation

time (i.e., T_AdaptationAgentFB in Eq. 7.6 less than T_AdaptationFB in Eq. 7.5 or

140

T_AdaptationFBD in Eq. 7.4) but also from the increased solution quality (e.g., data analytics

and machine learning from agent modules). As in this type of architecture design, the multi-agent

cyber module improves a lot in evaluation of changes and new requirements, and the agent-

embedded IEC 61499 FB physical module improves a lot in quick response to changes and new

requirements.

7.5.3 Performance Evaluation Estimation

In previous sections, the execution time in regular running conditions (Eqs. 7.1, 7.2, and 7.3) and

the adaptation time in adaptation required conditions (Eqs. 7.4, 7.5, and 7.6) are analyzed for the

automation and control systems designed under three different architectures (IEC 61131-3 FBD,

IEC 61499 FB, and Agent-embedded IEC 61499 FB). In this section, the total time performance

is formulated as Eqs. 7.7, 7.8, and 7.9 by considering only key aspects and focusing on control

application programs. The item [rand()%2] in these equations represents that not all nodes (a

general and abstract representation of subsystems, devices, or applications) in the system need to

be adapted.

𝑇𝑇𝑜𝑡𝑎𝑙𝐹𝐵𝐷 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑅𝑒𝑓𝑟𝑒𝑠ℎ(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑈𝑝𝑑𝑎𝑡𝑒(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

+ ∑(𝑇𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑗)) × [𝑟𝑎𝑛𝑑𝑗()%2]

𝑚

𝑗=1

 (7.7)

𝑇𝑇𝑜𝑡𝑎𝑙𝐹𝐵 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

+ ∑(𝑇𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑗)) × [𝑟𝑎𝑛𝑑𝑗()%2]

𝑚

𝑗=1

 (7.8)

141

𝑇𝑇𝑜𝑡𝑎𝑙𝐴𝑔𝑒𝑛𝑡𝐹𝐵 = ∑(𝑇𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑖) + 𝑇𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖))

𝑛

𝑖=1

+ ∑(𝑇𝑆𝑒𝑙𝑓𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(𝑗)+𝑇𝑆𝑀𝑆𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑗)) × [𝑟𝑎𝑛𝑑𝑗()%2]

𝑚

𝑗=1

+ ∑(𝑇𝑆𝑀𝑆𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘) + 𝑇𝑆𝑀𝑆𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑘)) × [𝑟𝑎𝑛𝑑𝑘()%2]

𝑙

𝑘=1

 (7.9)

The total time performance of the system programmed in IEC 61131-3 FBD is defined in

Eq. 7.7 as T_TotalFBD and the system programmed in IEC 61499 FB is defined in Eq. 7.8 as

T_TotalFB. For the proposed design architecture in this research, the total performance

T_TotalAgentFB is defined in Eq. 7.9, in which as described before the two-layer self-

manageable system architecture design (T_Selfmanagement and T_SMSEvaluation from the

cyber module and T_SMSRequest and T_SMSResponse from the physical module) is proposed to

replace the traditional reconfiguration architecture design (T_Reconfiguraiton in Eq. 7.7 and

7.8). The estimated performance evaluation are shown in Figure 7-22. With increased system

nodes (this matches the fact that the industrial automation and control systems are becoming

more and more complex in Industry 4.0), the time performance gain of the proposed system

architecture design tends to become larger and larger. Figure 7-22 presented here is for graphical

display of previous discussions to show the performance gain trend and the real case is not

supposed to be exactly the same.

142

Time

Node

T_RegularFBD

T_AdaptationFBD

T_AdaptationFB

T_AdaptationAgentFB

T_RegularFB

T_RegularAgentFB

T_TotalFBD

T_TotalFB

T_TotalAgentFB

T_Delta

IEC 61131-3 FBD

IEC 61499 FB/AgentFB

Figure 7-22: Estimated performance evaluation under different system design architectures

In this research, only the performance evaluated by system execution time and adaptation

time during runtime is considered. One thing should be noted that the time and effort required in

the system design phase programming in IEC 61499 FB compared to IEC 61131-3 (e.g., FBD)

are considered intensive, especially for the proposed two-layer multi-agent and IEC 61499 FB

hybrid design architecture. Besides challenges identified in the literature review, one major issue

is that it is not easy to incorporate artificial intelligence frameworks and techniques into systems

design and to apply advanced data analytics to enable learning capabilities and intelligent

behaviours of next-generation automation and control systems.

143

7.6 Summary

In this chapter, demonstration of the typical industrial scenario, development of the multi-agent

simulation model, design of the experimental testbed, and the performance evaluation analysis

were discussed to show that the proposed architecture modelling framework is feasible and

effective. The proposed design was tested through various experiments on the multi-agent

simulation model based on the agent modelling tool NetLogo and the experimental testbed on the

Jetson Nano and Raspberry Pi platforms. The proposed design was further evaluated

theoretically through performance analysis of regular execution time and adaptation time in two

typical conditions (i.e., regular running conditions and adaptation required conditions) for

systems designed under three comparable architectures (i.e., IEC 61131-3 FBD, IEC 61499 FB,

and Agent-embedded IEC 61499 FB). Through the above demonstration, simulation, experiment,

and evaluation, it demonstrates the ability of the proposed architecture to respond to major

challenges in Industry 4.0.

144

[This page intentionally left blank]

145

Chapter Eight: Conclusions and Future Work

8.1 Conclusions

The research presented in this thesis explored the design of a two-layer self-manageable

architecture to enable real-time adaptation at the device level and run-time intelligence

throughout the whole system. To achieve this, multi-agent modelling techniques were applied by

using autonomous and cooperative agents to achieve run-time intelligence in system design and

module reconfiguration, and IEC 61499 function block modelling techniques were applied by

using object-oriented and event-driven function blocks to realize real-time adaption of

automation logic and control algorithms. The main reason behind that is the autonomous,

cooperative, and distributed multi-agent modelling approach matches the object-oriented, event-

driven, and application-based IEC 61499 function block architecture design, which holds the

most promise of achieving industrial cyber-physical systems to be self-manageable in Industry

4.0. The major research work and contributions are summarized as follows:

1) High-Level Cyber Module Design

One major contribution is the multi-agent MAPLE-K computing model for the high-level iCPS

architecture design with the introduction of a self-learning agent for high-level cyber module

learning capabilities. The design applied multi-agent modelling techniques to implement the

autonomic computing reference architecture (i.e., traditional MAPE-K model) and empowered

the architecture with self-learning capabilities (i.e., proposed MAPLE-K model). The traditional

MAPE-K loop design is based on fixed, predefined rules, policies, goals, etc., which is

knowledge-intensive in the early design by considering limited possible adaptation scenarios and

is inflexible to be reconfigured during the system runtime. The proposed design leveraged the

146

industrial computing tools and models by introducing the self-learning agent to empower the

system learning capabilities for adaptation at runtime.

2) Low-Level Physical Module Design

The other major contribution is the self-manageable IEC 61499 function block model for the

low-level iCPS architecture design with the introduction of a new agent-embedded function

block design pattern for low-level physical module self-managing capabilities. The design

deployed autonomic computing self-managing properties into IEC 61499 function block

modelling framework by forming a meta-application (i.e., proposed agent-embedded function

block application) to self-manage control applications. Traditionally, system configuration is

achieved simply (i.e., avoiding software-coupling issues) or dynamically (i.e., satisfying timing

criteria) through device management SIFBs to access standardized management functions (e.g.,

START and KILL in application execution, CREATE and DELETE for function block instances).

The proposed design incorporated the agent-embedded design pattern into traditional function

block application design with the separation of typical control application execution and

intelligent self-manageable service execution.

3) Architecture Modelling Evaluation

The proposed architecture modelling framework was demonstrated through various experiments

on the multi-agent simulation model developed in the agent modelling environment NetLogo and

the experimental testbed designed on the Jetson Nano and Raspberry Pi platforms. The multi-

agent simulation model focused on low-level system self-managing capabilities. The simulation

results showed that with the proposed design, the system is able to self-manage adaptation

autonomously to respond to typical changes and requirements (e.g., new tasks, system failures,

and operation optimization) with better performances. The experimental testbed design focused

147

on high-level system computing capabilities with self-learning features. The experiment showed

that the proposed architecture modelling framework is feasible (i.e., from context monitoring,

data analysis and machine learning, to action planning and execution) with available embedded

devices (e.g., Jetson Nano). The performance evaluation of regular execution time and adaptation

time in two typical conditions for systems designed under three different architectures were

further theoretically analyzed.

To note that, it is possible in implementation that several physical modules (i.e., agent-

embedded IEC 61499 FB model) can be attached to one cyber module (i.e., multi-agent

MAPLE-K model), and several cyber modules are managed by the higher-level management

platforms (e.g., ERP). It depends on system architectures and is similar to that each sub-system

root node that cyber module works on is an aggregation of several distributed nodes that built as

physical modules. Humans are not expected to interact too much with these two levels during

system operation, but with higher-level management platforms. The typical data flow in the

system is that the low-level physical module interacts directly with operating states for real-time

operation and adaptation (higher real-time requirements) while the high-level cyber module

manages several physical modules’ operations for system run-time intelligence (high real-time

requirements) and the management platform is responsible for strategic decision-making (low

real-time requirements). All these matches the objective of designing self-manageable iCPS to

enable real-time adaptation at the device level and run-time intelligence throughout the whole

system with computing intelligence distributed over different system levels to satisfy different

timing requirements.

148

8.2 Future Work

The research work in this thesis is an attempt to investigate the design of self-manageable system

architecture modelling for IEC 61499 based distributed intelligent automation by employing

multi-agent modelling and function block modelling techniques. The research result is a two-

layer architecture model that is characterized of the high-level multi-agent modelled cyber

module design and the low-level agent-embedded IEC 61499 FB modelled physical module

design. The future work around this research is expected to continue from the following aspects:

1) Interaction Interface Design and Implementation

Interaction interface design and implementation is a key aspect in the system architecture design

as communicating and computing flows from homogeneous and heterogeneous system modules

(e.g., agent-agent, FB-FB, agent-FB) are connected together through interaction interfaces.

Future work is required for the middle-level interface module sandwiched between the high-level

cyber module and the low-level physical module. The work on hybrid interaction interfaces (i.e.,

agent-FB) needs special attention. Only by understanding the characteristics of this type of

interface (e.g., interface design and implementation patterns) can the multi-layer system design

architecture modelled by multi-agent systems and IEC 61499 FBs be achieved.

2) Implementation of Autonomic Computing Framework

Deploying autonomic computing reference architecture and self-managing properties into the

modelling framework is crucial to achieve distributed intelligent iCPS. However, proper

implementation of multi-agent modelling and IEC 61499 FB modelling (i.e., balancing powerful

but not reliable agents and time-critical, predictable, and stable FB based controls) is not an easy

task. Questions that need to be answered are: e.g., how to ensure agents in the high-level cyber

module are programmed with enough self-learning capabilities and are designed in modules for

149

reuse; how to ensure agents embedded in IEC 61499 FBs are programmed with generic,

lightweight, and robust algorithms as the low-level physical module has to guarantee system

responsiveness, correctness, safety, reliability, etc.

3) Development of Integrated Engineering Environments

An integrated engineering environment is required for design and development, verification and

validation, evaluation and implementation of hybrid multi-agent and IEC 61499 FB modelled

systems. Such integrated engineering environment can be based on one major design modelling

tool (e.g., Eclipse 4diac) with added function modules (e.g., design simulation and evaluation),

open interfaces to the external (e.g., agent modelling software), and rich function block libraries

(e.g., to include the proposed computing modules and self-manageable sub-applications as

templates). Future work on enriching integrated engineering environments serves the key role in

industrializing the IEC 61499 standard and promoting its related research.

150

[This page intentionally left blank]

151

References

[1] H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for implementing the strategic initiative

INDUSTRIE 4.0: Securing the future of German manufacturing industry,” Final Report of INDUSTRIE 4.0

Working Group, Frankfurt, Germany, Apr. 2013.

[2] NSF, “Cyber-Physical Systems.” Accessed: Dec. 05, 2022. [Online]. Available:

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286.

[3] R. Lewis, Programming industrial control systems using IEC 1131-3, 2nd ed., London, UK: The Institution

of Engineering and Technology, 1998.

[4] IEC 61131-3, Programmable controllers - Part 3: Programing Languages, International Standard, 3rd ed.,

Geneva, Switzerland: International Electrotechnical Commission, 2013.

[5] R. Lewis, Modelling control systems using IEC 61499: Applying function blocks to distributed systems, 1st

ed., London, UK: The Institution of Engineering and Technology, 2001.

[6] IEC 61499-1, Function blocks - Part 1: Architecture, International Standard, 2nd ed., Geneva, Switzerland:

International Electrotechnical Commission, 2012.

[7] V. Vyatkin, “Software engineering in industrial automation: State-of-the-art review,” IEEE Transactions on

Industrial Informatics, vol. 9, no. 3, pp. 1234-1249, Aug. 2013.

[8] R. N. Nagel and R. Dove, 21st century manufacturing enterprise strategy: An industry-led view, Bethlehem,

PA, USA: Iacocca Institute, 1991.

[9] J. H. Christensen, “Holonic manufacturing systems: Initial architecture and standards directions,” In

Proceedings of 1st European Conference on Holonic Manufacturing Systems, Hannover, Germany, Dec.

1994.

[10] F. Bonfatti, P. Monari, and U. Sampieri, IEC 61131-3 programming methodology: Software engineering

methods for industrial automated systems, ICS Triplex ISaGRAF Inc., 2003.

[11] G. Lyu, A. Fazlirad, and R. W. Brennan, “Multi-agent modelling of cyber-physical systems for IEC 61499

based distributed automation,” In Proceedings of 30th International Conference on Flexible Automation and

Intelligent Manufacturing, Athens, Greece, June 2021, Procedia Manufacturing, vol. 51, pp. 1200-1206.

[12] G. Lyu and R. W. Brennan, “Multi-agent based IEC 61499 function block modelling for distributed

intelligent automation,” In Proceedings of 31st International Conference on Flexible Automation and

Intelligent Manufacturing, Detroit, USA, June 2022, Lecture Notes in Mechanical Engineering, vol. 2, pp.

395-407.

[13] G. Lyu and R. W. Brennan, “Multi-agent modelling of cyber-physical systems for IEC 61499 based

distributed intelligent automation,” International Journal of Computer Integrated Manufacturing. (Under

Review).

[14] G. Lyu and R. W. Brennan, “Evaluating a self-manageable architecture for industrial automation systems,” In

Proceedings of 32ed International Conference on Flexible Automation and Intelligent Manufacturing, Porto,

Portugal, June 2023. (In Publication).

[15] G. Lyu and R. W. Brennan, “Evaluating a self-manageable architecture for industrial automation systems,”

Robotics and Computer-Integrated Manufacturing. (In Publication).

[16] G. Lyu and R. W. Brennan, “Towards IEC 61499 based distributed intelligent automation: design and

computing perspectives,” In Proceedings of 17th IEEE International Conference on Industrial Informatics,

Helsinki-Espoo, Finland, July 2019, pp. 160-163.

[17] G. Lyu and R. W. Brennan, “Towards IEC 61499 based distributed intelligent automation: a literature

review,” IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp. 2295-2306, Aug. 2020.

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286

152

[18] R. W. Brennan and G. Lyu, “IEC 61499 and the promise of holonic systems,” In Proceedings of 9th

International Conference on Industrial Applications of Holonic and Multi-Agent Systems, Linz, Austria, Aug.

2019, pp. 3-12.

[19] F. Georg and T. Hussain, “Modeling techniques for distributed control systems based on the IEC 61499

standard - current approaches and open problems,” In Proceedings of IEEE 8th International Workshop on

Discrete Event Systems, Ann Arbor, MI, USA, July. 2006, pp. 176-181.

[20] A. Zoitl, T. Strasser, K. Hall, R. Staron, C. Sünder, and B. Favre-Bulle, “The past, present, and future of IEC

61499,” In Holonic and Multi-Agent Systems for Manufacturing, V. Mařík, V. Vyatkin, and A.W. Colombo,

Eds., Berlin Heidelberg, German: Springer, 2007, pp. 15-28.

[21] K. Thramboulidis, “IEC 61499 in factory automation,” In Advances in Computer, Information, and Systems

Sciences, and Engineering, K. Elleithy, T. Sobh, A. Mahmood, M. Iskander, and M. Karim, Eds., Dordrecht,

Netherlands: Springer, 2007, pp. 115-124.

[22] K. Hall, R.J. Staron, and A. Zoitl, “Challenges to industry adoption of the IEC 61499 standard on event-

based function blocks,” In Proceedings of 5th IEEE International Conference on Industrial Informatics,

Vienna, Austria, July 2007, pp. 823-828.

[23] R. W. Brennan, P. Vrba, P. Tichy, A. Zoitl, C. Sünder, T. Strasser, and V. Mařík, “Developments in dynamic

and intelligent reconfiguration of industrial automation,” Computers in Industry, vol. 59, no. 6, pp. 533-547,

Aug. 2008.

[24] A. Zoitl and V. Vyatkin, “IEC 61499 architecture for distributed automation: The ‘glass half full’ view,”

IEEE Industrial Electronics Magazine, vol.3, no. 4, pp. 7-23, Dec. 2009.

[25] A. Zoitl, T. Strasser, C. Sünder, and T. Baier, “Is IEC 61499 in harmony with IEC 61131-3?” IEEE

Industrial Electronics Magazine, vol.3, no. 4, pp. 49-55, Dec. 2009.

[26] H. M. Hanisch, M. Hirsch, D. Missal, S. Preuße, and C. Gerber, “One decade of IEC 61499 modeling and

verification - results and open issues,” IFAC Proceedings Volumes, vol. 42, no. 4, pp. 211-216, Jan. 2009.

[27] V. Vyatkin, “The IEC 61499 standard and its semantics,” IEEE Industrial Electronics Magazine, vol.3, no. 4,

pp. 40-48, Dec. 2009.

[28] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent automation: State-of-the-art review,” IEEE

Transactions on Industrial Informatics, vol. 7, no. 4, pp. 768-781, Nov. 2011.

[29] T. Strasser, A. Zoitl, J. H. Christensen, and C. Sünder, “Design and execution issues in IEC 61499 distributed

automation and control systems,” IEEE Transactions on Systems, Man, and Cybernetics - Part C:

Applications and Reviews, vol. 41, no. 1, pp. 41-51, Jan. 2011.

[30] T. Strasser, J. H. Christensen, A. Valente, J. Chouinard, E. Chapanzano, A. Valentini, H. Mayer, V. Vyatkin,

and A. Zoitl, “The IEC 61499 function block standard: Launch and takeoff,” ISA Automation Week, Orlando,

FL, USA, Sept. 2012.

[31] J. H. Christensen, T. Strasser, A. Valentini, V. Vyatkin, and A. Zoitl, “The IEC 61499 function block

standard: Overview of the second edition,” ISA Automation Week, Orlando, FL, USA, Sept. 2012a.

[32] J. H. Christensen, T. Strasser, A. Valentini, V. Vyatkin, and A. Zoitl, “The IEC 61499 function block

standard: Software tools and runtime platforms,” ISA Automation Week, Orlando, FL, USA, Sept. 2012b.

[33] K. Thramboulidis, “Service-oriented architecture in industrial automation systems - the case of IEC 61499: A

review,” arXiv preprint, arXiv:1506.04615, June 2015.

[34] R. Sinha, S. Patil, L. Gomes, and V. Vyatkin, “A survey of static formal methods for building dependable

industrial automation systems,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 3772-3783,

July 2019.

[35] L. Prenzel, A. Zoitl, and J. Provost, “IEC 61499 runtime environments: A state of the art comparison,” In

Proceedings of 17th International Conference on Computer Aided Systems Theory, Las Palmas de Gran

Canaria, Spain, Feb. 2019, Lecture Notes in Computer Science, vol. 12014, pp. 453-460, Apr. 2020.

153

[36] L. Sonnleithner, M. Oberlehner, E. Kutsia, A. Zoitl, and S. Bácsi,”Do you smell it too? Towards bad smells

in IEC 61499 applications,” In Proceedings of 26th IEEE International Conference on Emerging

Technologies and Factory Automation, Vasteras, Sweden, Sept. 2021, pp. 1-4.

[37] IEC 61499-2, Function blocks - Part 2: Software tools requirements, International Standard, 2nd ed., Geneva,

Switzerland: International Electrotechnical Commission, 2012.

[38] IEC 61499-4, Function blocks - Part 4: Rules for compliance profiles, International Standard, 2nd ed.,

Geneva, Switzerland: International Electrotechnical Commission, 2013.

[39] IEC 61499-3, Function blocks - Part 3: Tutorial information, Technical Report, 1st ed., Geneva, Switzerland:

International Electrotechnical Commission, 2004.

[40] V. Vyatkin, IEC 61499 function blocks for embedded and distributed control systems design, 2nd ed.,

Durham, NC, USA: International Society of Automation, 2007.

[41] A. Zoitl, Real-time execution for IEC 61499, Durham, NC, USA: International Society of Automation, 2008.

[42] A. Zoitl and R. Lewis, Modelling control systems using IEC 61499, 2nd ed., London, UK: The Institution of

Engineering and Technology, 2014.

[43] A. Zoitl and T. Strasser, Eds., Distributed control applications: Guidelines, design patterns, and application

examples with the IEC 61499, Boca Raton, FL, USA: CRC Press, 2017.

[44] G. Cengic and K. Akesson, “On formal analysis of IEC 61499 applications, Part A: modeling,” IEEE

Transactions on Industrial Informatics, vol. 6, no. 2, pp. 136-144, May 2010a.

[45] G. Cengic and K. Akesson, “On formal analysis of IEC 61499 applications, Part B: execution semantics,”

IEEE Transactions on Industrial Informatics, vol. 6, no. 2, pp. 145-154, May 2010b.

[46] C. Sünder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. W. Brennan, A. Valentini, L. Ferrarini, T. Strasser, J.

L. M. Lastra, and F. Auinger, “Usability and interoperability of IEC 61499 based distributed automation

systems,” In Proceedings of 4th IEEE International Conference on Industrial Informatics, Singapore, Aug.

2006b, pp. 31-37.

[47] V. Vyatkin and J. Chouinard, “On comparisons of the ISaGRAF implementation of IEC 61499 with FBDK

and other implementations,” In Proceedings of 6th IEEE International Conference on Industrial Informatics,

Daejeon, Korea, July 2008, pp. 264-269.

[48] P. Tata and V. Vyatkin, “Proposing a novel IEC 61499 runtime framework implementing the cyclic

execution semantics,” In Proceedings of 7th IEEE International Conference on Industrial Informatics,

Cardiff, Wales, UK, June 2009, pp. 416-421.

[49] G. Cengic, O. Ljungkrantz, and K. Akesson, “Formal modeling of function block applications running in IEC

61499 execution runtime,” In Proceedings of 11th IEEE International Conference on Emerging Technologies

and Factory Automation, Prague, Czech Republic, Sept. 2006b, pp. 1269-1276.

[50] V. Vyatkin and V. Dubinin, “Sequential axiomatic model for execution of basic function blocks in IEC

61499,” In Proceedings of 5th IEEE International Conference on Industrial Informatics, Vienna, Austria,

June 2007, pp. 1183-1188.

[51] V. Vyatkin, V. Dubinin, C. Veber, and L. Ferrarini, “Alternatives for execution semantics of IEC 61499,” In

Proceedings of 5th IEEE International Conference on Industrial Informatics, Vienna, Austria. June 2007, pp.

1151-1156.

[52] V. Dubinin and V. Vyatkin, “On definition of a formal model for IEC 61499 function blocks,” EURASIP

Journal on Embedded Systems, vol. 2008, pp. 1-10, Apr. 2008.

[53] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, “A synchronous approach for IEC 61499 function block

implementation,” IEEE Transactions on Computers, vol. 58, no. 12, pp. 1599-1614, Dec. 2009.

[54] L. H. Yoong, P. S. Roop, Z. E. Bhatti, and M. Kuo, Model-driven design using IEC 61499: A synchronous

approach for embedded and automation systems, Switzerland: Springer, 2015.

154

[55] V. Vyatkin and V. Dubinin, “Refactoring of execution control charts in basic function blocks of the IEC

61499 standard,” IEEE Transactions on Industrial Informatics, vol. 6, no. 2, pp. 155-165, May 2010.

[56] V. Dubinin and V. Vyatkin, “Semantics-robust design patterns for IEC 61499,” IEEE Transactions on

Industrial Informatics, vol. 8, no. 2, pp. 279-290, May 2012.

[57] W. Dai, V. Dubinin, and V. Vyatkin, “IEC 61499 ontology model for semantic analysis and code

generation,” In Proceedings of 9th IEEE International Conference on Industrial Informatics, Caparica,

Lisbon, Portugal, July 2011a, pp. 597-602.

[58] W. Dai, V. Vyatkin and V. Dubinin, “Ontology-based design recovery and migration between IEC 61499-

compliant tools,” In Proceedings of 37th Annual Conference of the IEEE Industrial Electronics Society,

Melbourne, Australia, Nov. 2011b, pp. 4332-4337.

[59] P. Lindgren, M. Lindner, A. Lindner, J. Eriksson, and V. Vyatkin, “Real-time execution of function blocks

for internet of things using the RTFM-kernel,” In Proceedings of 19th IEEE International Conference on

Emerging Technology and Factory Automation, Barcelona, Spain, Sept. 2014, pp. 1-6.

[60] P. Lindgren, M. Lindner, A. Lindner, V. Vyatkin, D. Pereira, and L.M. Pinho, “A real-time semantics for the

IEC 61499 standard,” In Proceedings of 20th IEEE International Conference on Emerging Technologies and

Factory Automation, Luxembourg, Sept. 2015, pp. 1-6.

[61] J. Eriksson, F. Häggström, S. Aittamaa, A. Kruglyak, and P. Lindgren, “Real-time for the masses, step 1:

Programming API and static priority SRP kernel primitives,” In Proceedings of 8th IEEE International

Symposium on Industrial Embedded Systems, Porto, Portugal, June 2013, pp. 110-113.

[62] A. Lindner, M. Lindner, and P. Lindgren, “RTFM-RT: A threaded runtime for RTFM-core-towards

execution of IEC 61499,” In Proceedings of 20th IEEE International Conference on Emerging Technologies

and Factory Automation, Luxembourg, Sept. 2015, pp. 1-8.

[63] P. Lindgren, J. Eriksson, M. Lindner, A. Lindner, D. Pereira, L. M. Pinho, “End-to-end response time of IEC

61499 distributed applications over switched Ethernet,” IEEE Transactions on Industrial Informatics, vol.

13, no. 1, pp. 287-297, Feb. 2017.

[64] L. H. Yoong and P. S. Roop, “Verifying IEC 61499 function blocks using Esterel,” IEEE Embedded Systems

Letters, vol. 2, no. 1, pp. 1-4, Mar. 2010.

[65] M. Kuo and P. S. Roop. “New design patterns for time-predictable execution of function blocks,” In

Distributed Control Applications: Guidelines, Design Patterns, and Application Examples with the IEC

61499, A. Zoitl and T. Strasser, Eds., Boca Raton, FL, USA: CRC Press, 2017, pp. 69-95.

[66] R. Sinha, P. S. Roop, G. Shaw, Z. Salcic, and M. Kuo, “Hierarchical and concurrent ECCs for IEC 61499

function blocks,” IEEE Transactions on Industrial Informatics, vol. 12, no. 1, pp. 59-68, Feb. 2016.

[67] D. Li, Z. Zhai, Z. Pang, V. Vyatkin, and C. Liu, “Synchronous-reactive semantic modeling and verification

for function block networks,” IEEE Transactions on Industrial Informatics, vol 13, no. 6, pp. 3389-3398,

Dec. 2017.

[68] W. Dai, C. Pang, V. Vyatkin, J. H. Christensen, and X. Guan, “Discrete-event-based deterministic execution

semantics with timestamps for industrial cyber-physical systems,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 16, no. 99, pp. 1-12, Aug. 2017b.

[69] Schneider Electric nxtControl. Accessed: Dec. 05, 2022. [Online]. Available:

https://www.nxtcontrol.com/en/.

[70] Rockwell Automation ISaGRAF. Accessed: Dec. 05, 2022. [Online]. Available: http://www.isagraf.com/.

[71] C. Shapiro and H. R. Varian, Information rules: A strategic guide to the network economy, Boston, MA,

USA: Harvard Business Press, 1999.

[72] S. Sierla, J. H. Christensen, K. Koskinen, and J. Peltola, “Educational approaches for the industrial

acceptance of IEC 61499,” In Proceedings of 12th IEEE International Conference on Emerging

Technologies and Factory Automation, Patras, Greece, Sept. 2007, pp. 482-489.

http://www.isagraf.com/index.htm

155

[73] J. Peltola, J. H. Christensen, S. Sierla, and K. Koskinen, “A migration path to IEC 61499 for the batch

process industry,” In Proceedings of 5th IEEE International Conference on Industrial Informatics, Vienna,

Austria, June 2007, pp. 811-816.

[74] F. A. Cabadini, G. Montalbano, G. Kollegger, H. Mayer, and V. Vytakin, “IEC-61499 distributed automation

for the next generation of manufacturing systems,” In the Digital Shopfloor: Industrial Automation in the

Industry 4.0 Era - Performance Analysis and Applications, J. Soldatos, O. Lazaro, and F. Cavadini, Eds.,

Denmark: River Publishers, 2019, pp. 103-127.

[75] Daedalus. Accessed: Dec. 05, 2022. [Online]. Available: http://www.daedalus.iec61499.eu/.

[76] A. Barni, A. Brusaferri, F. A. Cavadini, G. Landolfi, S. Patil, D. Piga, S. Spinelli, and V. Vyatkin, “Fostering

the creation of a digital ecosystem by a distributed IEC-61499 based automation platform,” In Proceedings of

17th IEEE International Conference on Industrial Informatics, Helsinki-Espoo, Finland, July 2019, pp. 635-

640.

[77] W. Dai, V. Dubinin, J. H. Christensen, V. Vyatkin, and X. Guan, “Toward self-manageable and adaptive

industrial cyber-physical systems with knowledge-driven autonomic service management,” IEEE

Transactions on Industrial Informatics, vol. 13, no. 2, pp. 725-736, Apr. 2017a

[78] Geeking IEC 61499. Accessed: Dec. 05, 2022. [Online]. Available: https://2019.ieee-

indin.org/workshops/ws1-geeking-iec61499/.

[79] Eclipse 4diac. Accessed: Dec. 05, 2022. [Online]. Available: https://www.eclipse.org/4diac/.

[80] Flexbridge. Accessed: Dec. 05, 2022. [Online]. Available: https://training.flexbridge.se/.

[81] J. Fischer and T. O. Boucher, “Workbook for designing distributed control applications using Rockwell

Automation’s HOLOBLOC prototyping software.” Accessed: Dec. 05, 2022. [Online]. Available:

http://www.diit.unict.it/users/scava/dispense/II_270/TutorialFDBK.pdf.

[82] Holobloc. Accessed: Dec. 05, 2022. [Online]. Available: https://www.holobloc.com/.

[83] P. Gsellmann, M. Melik-Merkumians, and G. Schitter, “Comparison of code measures of IEC 61131-3 and

61499 standards for typical automation applications,” In Proceedings of 23rd IEEE International Conference

on Emerging Technologies and Factory Automation, Torino, Italy, Sept. 2018, pp. 1047-1050.

[84] C. Sünder, M. Wenger, C. Hanni, I. Gosetti, H. Steininger, and J. Fritsche, “Transformation of existing IEC

61131-3 automation projects into control logic according to IEC 61499,” In Proceedings of 13th IEEE

International Conference on Emerging Technologies and Factory Automation, Hamburg, Germany, Sept.

2008a, pp. 369-376.

[85] C. Sünder, A. Zoitl, J. H. Christensen, H. Steininger, and J. Rritsche, “Considering IEC 61131-3 and IEC

61499 in the context of component frameworks,” In Proceedings of 6th IEEE International Conference on

Industrial Informatics, Daejeon, Korea, July 2008b, pp. 277-282.

[86] M. Wenger, A. Zoitl, C. Sünder, and H. Steininger, “Transformation of IEC 61131-3 to IEC 61499 based on

a model driven development approach,” In Proceedings of 7th IEEE International Conference on Industrial

Informatics, Cardiff, Wales, UK, June 2009a, pp. 715-720.

[87] M. Wenger, A. Zoitl, C. Sünder, and H. Steininger, “Semantic correct transformation of IEC 61131-3 models

into the IEC 61499 standard,” In Proceedings of 14th IEEE International Conference on Emerging

Technologies and Factory Automation, Mallorca, Spain, Sept. 2009b, pp. 1-7.

[88] M. Wenger, A. Zoitl, and G. Schitter, “Automatic reengineering of IEC 61131-based control applications into

IEC 61499. In Distributed Control Applications: Guidelines, Design Patterns, and Application Examples

with the IEC 61499, A. Zoitl and T. Strasser, Eds., Boca Raton, FL, USA: CRC Press, 2017, pp. 97-121.

[89] CoDeSys. Accessed: Dec. 05, 2022. [Online]. Available: https://www.codesys.com/.

[90] W. Dai and V. Vyatkin, “Redesign distributed IEC 61131-3 PLC system in IEC 61499 function blocks,” In

Proceedings of 15th IEEE International Conference on Emerging Technologies and Factory Automation,

Bilbao, Spain, Sept. 2010, pp. 1-8.

http://www.daedalus.iec61499.eu/
https://training.flexbridge.se/
http://www.diit.unict.it/users/scava/dispense/II_270/TutorialFDBK.pdf

156

[91] W. Dai and V. Vyatkin, “Redesign distributed PLC control systems using IEC 61499 function blocks,” IEEE

Transactions on Automation Science and Engineering, vol. 9, no. 2, pp. 390-401, Apr. 2012a.

[92] W. Dai and V. Vyatkin, “Ontology model for migration from IEC 61131-3 PLC to IEC 61499 function

block,” In Proceedings of 6th IEEE International Symposium on Electronic Design, Test and Application,

Queenstown, New Zealand, Jan. 2011, pp. 172-175.

[93] W. Dai and V. Vyatkin, “Transformation from PLC to distributed control using ontology mapping,” In

Proceedings of 10th IEEE International Conference on Industrial Informatics, Beijing, China, Sept. 2012b,

pp. 436-441.

[94] W. Dai, V. Dubinin, and V. Vyatkin, “Migration from PLC to IEC 61499 using semantic web technologies,”

IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 3, pp. 277-291, Mar. 2014a.

[95] W. Dai, V. Vyatkin, and J. H. Christensen, “Essential elements for programming of distributed automation

and control systems,” In Proceedings of 18th IEEE International Conference on Emerging Technologies and

Factory Automation, Cagliari, Italy, Sept. 2013, pp. 1-8.

[96] IEC 61131-5, Programmable controllers - Part 5: Communications, International Standard, 1st ed., Geneva,

Switzerland: International Electrotechnical Commission, 2000.

[97] S. Campanelli, P. Foglia, and C. A. Prete, “Integration of existing IEC 61131-3 systems in an IEC 61499

distributed solution,” In Proceedings of 17th IEEE International Conference on Emerging Technologies and

Factory Automation, Krakow, Poland, Sept. 2012, pp. 1-8.

[98] S. Campanelli, P. Foglia, and C. A. Prete, “An architecture to integrate IEC 61131-3 systems in an IEC

61499 distributed solution,” Computers in Industry, vol. 72, pp. 47-67, Sept. 2015.

[99] F. Jammes and H. Smit, “Service-oriented paradigms in industrial automation,” IEEE Transactions on

Industrial Informatics, vol. 1, no. 1, pp. 62-70, Feb. 2005.

[100] IBM, An architectural blueprint for autonomic computing, IBM White Paper Autonomic Computing, 4th ed.,

June 2006.

[101] O. Givehchi, H. Trsek, and J. Jasperneite, “Cloud computing for industrial automation systems - a

comprehensive overview,” In Proceedings of 18th IEEE International Conference on Emerging Technologies

and Factory Automation, Cagliari, Italy, Sept. 2013, pp. 1-4.

[102] W. Dai, V. Vyatkin, and J. H. Christensen, “Applying IEC 61499 design paradigms: Object-oriented

programming, component-based design, and service-oriented architecture,” In Distributed Control

Applications: Guidelines, Design Patterns, and Application Examples with the IEC 61499, A. Zoitl and T.

Strasser, Eds., Boca Raton, FL, USA: CRC Press, 2017c, pp. 39-68.

[103] W. Dai, J. Peltola, V. Vyatkin, and C. Pang, “Service-oriented distributed control software design for process

automation systems,” In Proceedings of 2014 IEEE International Conference on Systems, Man and

Cybernetics, San Diego, CA, USA, Oct. 2014b, pp. 3637-3642.

[104] V. Vyatkin, J. H. Christensen, and J. L. M. Lastra, “OOONEIDA: An open, object-oriented knowledge

economy for intelligent industrial automation,” IEEE Transactions on Industrial Informatics, vol. 1, no. 1,

pp. 4-17, Feb. 2005.

[105] V. Vyatkin, C. Pang, Y. Deng, M. Sorouri, and H. Mayer, “System-level architecture for building automation

systems: Object-orientated design and simulation,” In Proceedings of 39th IEEE Annual Conference of

Industrial Electronics Society, Vienna, Austria, Nov. 2013, pp. 5334-5339.

[106] G. Cengic, O. Ljungkrantz, and K. Akesson, “A framework for component based distributed control software

development using IEC 61499,” In Proceedings of 11th IEEE International Conference on Emerging

Technologies and Factory Automation, Prague, Czech Republic, Sept. 2006a, pp. 782-789.

[107] C. Sünder, A. Zoitl, M. Rainbauer, and B. Favre-Bulle, “Hierarchical control modelling architecture for

modular distributed automation systems,” In Proceedings of 4th IEEE International Conference on Industrial

Informatics, Singapore, Aug. 2006a, pp. 12-17.

157

[108] W. Lepuschitz and A. Zoitl, “An engineering method for batch process automation using a component-

oriented design based on IEC 61499,” In Proceedings of 13th IEEE International Conference Emerging

Technologies and Factory Automation, Hamburg, Germany, Sept. 2008, pp. 207-214.

[109] R. Hametner, A. Zoitl, and M. Semo, “Automation component architecture for the efficient development of

industrial automation systems,” In Proceedings of 6th IEEE International Conference on Automation Science

and Engineering, Toronto, Canada, Aug. 2010, pp. 156-161.

[110] V. Vyatkin, “Intelligent mechatronic components: Control system engineering using an open distributed

architecture,” In Proceedings of 8th IEEE International Conference on Emerging Technologies and Factory

Automation, Lisbon, Portugal, Sept. 2003, vol. 2, pp. 277-284.

[111] O. J. L. Orozco and J. L. M. Lastra, “Adding function blocks of IEC 61499 semantic description to

automation objects,” In Proceedings of 11th IEEE International Conference on Emerging Technologies and

Factory Automation, Prague, Czech Republic, Sept. 2006, pp. 537-544.

[112] R. W. Brennan, L. Ferrarini, J. Martinez, and V. Vyatkin, “Automation objects: Enabling embedded

intelligence in real-time mechatronic systems,” International Journal of Manufacturing Research, vol. 1, no.

4, pp. 379-381, 2006.

[113] G. Black and V. Vyatkin, “Intelligent component-based automation of baggage handling systems with IEC

61499,” IEEE Transactions on Automation Science and Engineering, vol. 7, no. 2, pp. 337-351, Apr. 2010.

[114] W. Dai and V. Vyatkin, “A component-based design pattern for improving reusability of automation

programs,” In Proceedings of 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna,

Austria, Nov. 2013, pp. 4328-4333.

[115] A. Zoitl and H. Prähofer, “Building hierarchical automation solutions in the IEC 61499 modeling language,”

In Proceedings of 9th IEEE International Conference on Industrial Informatics, Caparica, Lisbon, Portugal,

July 2011, pp. 557-564.

[116] A. Zoitl and H. Prähofer, “Guidelines and patterns for building hierarchical automation solutions in the IEC

61499 modeling language,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2387-2396, Nov.

2013.

[117] V. Mařík and D. McFarlane, “Industrial adoption of agent-based technologies,” IEEE Intelligent Systems,

vol. 20, no. 1, pp. 27-35, Jan. 2005.

[118] R. W. Brennan, “Toward real-time distributed intelligent control: A survey of research themes and

applications,” IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews, vol.

37, no. 5, pp. 744-765, Sept. 2007.

[119] P. Leitão, V. Mařík, and P. Vrba, “Past, present, and future of industrial agent applications,” IEEE

Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2360-2372, Nov. 2013.

[120] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial automation based on cyber-physical systems

technologies: Prototype implementations and challenges,” Computers in Industry, vol. 81, pp. 11-25, Sept.

2016a.

[121] P. Leitão, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W. Colombo, “Smart agents in industrial

cyber-physical systems,” Proceedings of the IEEE, vol. 104, no. 5, pp. 1086-1101, May 2016b.

[122] IEEE Std 2660.1-2020, IEEE recommended practice for industrial agents: Integration of software agents

and low-level automation functions, International Standard, Piscataway, NJ: IEEE Industrial Electronics

Society, 2021.

[123] R. W. Brennan, M. Fletcher, and D. H. Norrie, “An agent-based approach to reconfiguration of real-time

distributed control systems,” IEEE Transactions on Robotics and Automation, vol 18, no. 4, pp. 444-451,

Aug. 2002a.

[124] R. W. Brennan, X. Zhang, Y. Xu, and D. H. Norrie, “A reconfigurable concurrent function block model and

its implementation in real-time Java,” Integrated Computer-Aided Engineering, vol. 9, no. 3, pp. 263-279,

Jan. 2002b.

158

[125] S. Olsen, J. Wang, A. Ramirez-Serrano, and R. W. Brennan, “Contingencies-based reconfiguration of

distributed factory automation,” Robotics and Computer-Integrated Manufacturing, vol. 21, no. 4-5, pp. 379-

390, Aug. 2005.

[126] J. Chouinard and R. W. Brennan, “Software for next generation automation and control,” In Proceedings of

4th IEEE International Conference on Industrial Informatics, Singapore, Aug. 2006, pp. 886-891.

[127] J. J. Scarlett and R. W. Brennan, “A new evaluation method of communication for distributed control,” In

Proceedings of IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its

Applications, Prague, Czech Republic, June 2006, pp. 97-102.

[128] J. J. Scarlett and R. W. Brennan, “Evaluating a new communication protocol for real-time distributed

control,” Robotics and Computer-Integrated Manufacturing, vol. 27, no. 3, pp. 627-635, June 2011.

[129] N. Cai and R. W. Brennan, “Distributed sensing and control architecture for automotive factory automation,”

In Proceedings of 4th International Conference on Industrial Applications of Holonic and Multi-Agent

Systems, Linz, Austria, Aug. 2009, pp. 165-174.

[130] N. Cai, M. Gholami, L. Yang, and R. W. Brennan, “Application-oriented intelligent middleware for

distributed sensing and control,” IEEE Transactions on Systems, Man, and Cybernetics - Part C:

Applications and Reviews, vol. 42, no. 6, pp. 947-956, Nov. 2012.

[131] M. Khalgui, O. Mosbahi, Z. Li, and HM Hanisch, “Reconfiguration of distributed embedded-control

systems,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 4, pp. 684-694, July 2010.

[132] S. Guellouz, A. Benzina, M. Khalgui, G. Frey, Z. Li, and V. Vyatkin, “Designing efficient reconfigurable

control systems using IEC61499 and symbolic model checking,” IEEE Transactions on Automation Science

and Engineering, vol. 16, no. 3 pp. 1110-1124, Nov. 2018.

[133] A. Bonci, M. Pirani, and S. Longhi, “A database-centric framework for the modeling, simulation, and control

of cyber-physical systems in the factory of the future,” Journal of Intelligent Systems, vol. 27, no. 4, pp. 659-

679, Oct. 2018.

[134] A. Bonci, S. Longhi, and M. Pirani, “RMAS architecture for autonomic computing in cyber-physical

systems,” In Proceedings of IECON 2019-45th Annual Conference of the IEEE Industrial Electronics

Society, Lisbon, Portugal, Oct. 2019, pp. 2996-3003.

[135] A. Bonci, S. Longhi, E. Lorenzoni, and M. Pirani, “RMAS architecture for industrial agents in IEC 61499,”

Procedia Manufacturing, vol. 42, pp. 84-90, Jan. 2020.

[136] A. Bonci, S. Longhi, and M. Pirani, “IEC 61499 device management model through the lenses of RMAS,”

Procedia Computer Science, vol. 180, pp. 656-665, Jan. 2021.

[137] W. Dai, L. Riliskis, P. Wang, V. Vyatkin, and X. Guan, “A cloud-based decision support system for self-

healing in distributed automation systems using fault tree analysis,” IEEE Transactions on Industrial

Informatics, vol. 14, no. 3, pp. 989-1000, Mar. 2018.

[138] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing - degrees, models, and

applications,” ACM Computing Surveys (CSUR), vol. 40, no. 3, pp. 1-28, Aug. 2008.

[139] H. Mubarak and P. Göhner, “An agent-oriented approach for self-management of industrial automation

systems,” In Proceedings of 8th IEEE International Conference on Industrial Informatics, Osaka, Japan, July

2010, pp. 721-726.

[140] W. Lepuschitz, A. Zoitl, M. Vallée, and M. Merdan, “Toward self-reconfiguration of manufacturing systems

using automation agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, vol. 41, no. 1, pp. 52-69, Jan. 2011.

[141] T. Strasser and R. Froschauer, “Autonomous application recovery in distributed intelligent automation and

control systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,

vol. 42, no. 6, pp. 1054-1070, Nov. 2012.

159

[142] H. Kaindl, M. Vallée, and E. Arnautovic, “Self-representation for self-configuration and monitoring in agent-

based flexible automation systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43,

no. 1, pp. 164-175, Jan. 2013.

[143] W. Dai, V. Vyatkin, J. H. Christensen, and V. Dubinin, “Bridging service-oriented architecture and IEC

61499 for flexibility and interoperability,” IEEE Transactions on Industrial Informatics, vol. 11, no. 3, pp.

771-781, June 2015a.

[144] W. Dai, W. Huang, and V. Vyatkin, “Enabling plug-and-play software components in industrial cyber-

physical systems by adopting service-oriented architecture paradigm,” In Proceedings of 42nd Annual

Conference of the IEEE Industrial Electronics Society, Florence, Italy, Oct. 2016, pp. 5253-5258.

[145] W. Dai, V. Vyatkin, C. Chen, and X. Guan, “Modeling distributed automation systems in cyber-physical

view,” In Proceedings of 10th IEEE International Conference on Industrial Electronics and Applications,

Auckland, New Zealand, June 2015b, pp. 984-989.

[146] W. Huang, W. Dai, P. Wang, and V. Vyatkin, “Real-time data acquisition support for IEC 61499 based

industrial cyber-physical systems,” In Proceedings of 43rd Annual Conference of the IEEE Industrial

Electronics Society, Beijing, China, Oct. 2017, pp. 6689-6694.

[147] P. Mell and T. Grance, The NIST definition of cloud computing, The National Institute of Standards and

Technology, Gaithersburg, MD, USA, Special Publication 800-145, Sept. 2011.

[148] S. Karnouskos, A. W. Colombo, T. Bangemann, K. Manninen, R. Camp, M. Tilly, P. Stluka, F. Jammes, J.

Delsing, and J. Eliasson, “A SOA-based architecture for empowering future collaborative cloud-based

industrial automation,” In Proceedings of 38th Annual Conference of the IEEE Industrial Electronics Society,

Montreal, Canada, Oct. 2012, pp. 5766-5772.

[149] W. Dai, L. Riliskis, V. Vyatkin, E. Osipov, and J. Delsing, “A configurable cloud-based testing infrastructure

for interoperable distributed automation systems,” In Proceedings of 40th Annual Conference of the IEEE

Industrial Electronics Society, Dallas, TX, USA, Oct. 2014c, pp. 2492-2498.

[150] E. Demin, S. Patil, V. Dubinin, and V. Vyatkin, “IEC 61499 distributed control enhanced with cloud-based

web-services,” In Proceedings of 10th IEEE International Conference on Industrial Electronics and

Applications, Auckland, New Zealand, June 2015, pp. 972-977.

[151] M. Wenger, A. Zoitl, and J. O. Blech, “Behavioral type-based monitoring for IEC 61499,” In Proceedings of

20th IEEE International Conference on Emerging Technologies and Factory Automation, Luxembourg, Sept.

2015a, pp. 1-8.

[152] M. Wenger, A. Zoitl, J. O. Blech, I. Peake, and L. Fernando, “Cloud based monitoring of timed events for

industrial automation,” In Proceedings of 21st IEEE International Conference on Parallel and Distributed

Systems, Melbourne, Australia, Dec. 2015b, pp. 827-830.

[153] A. D. Rocha, J. Tripa, D. Alemao, R. S. Peres, and J. Barata, “Agent-based plug and produce cyber-physical

production system - test case,” In Proceedings of 17th IEEE International Conference on Industrial

Informatics, Helsinki-Espoo, Finland, July 2019, pp. 1545-1551.

[154] Automation of Things. Accessed: Dec. 05, 2022. [Online]. Available: https://aot-me.com/.

[155] Yueyi Automation. Accessed: Dec. 05, 2022. [Online]. Available: http://www.iec61499.cn/.

[156] NOJA Power. Accessed: Dec. 05, 2022. [Online]. Available: https://www.nojapower.com/product/software.

[157] PRETzel BlokIDE. Accessed: Dec. 05, 2022. [Online]. Available: http://pretzel.ece.auckland.ac.nz/.

[158] O3neida Workbench. Accessed: Dec. 05, 2022. [Online]. Available: http://oooneida-wb.sourceforge.net/.

[159] O3neida FBench. Accessed: Dec. 05, 2022. [Online]. Available: http://oooneida-fbench.sourceforge.net/.

[160] Fuber. Accessed: Dec. 05, 2022. [Online]. Available: https://sourceforge.net/projects/fuber/.

[161] SEG. Accessed: Aug. 20, 2019. [Online]. Available: http://seg.ece.upatras.gr/.

[162] UDESC ICARU_FB. Accessed: Dec. 05, 2022. [Online]. Available: https://sourceforge.net/projects/icarufb/.

http://www.iec61499.cn/
http://pretzel.ece.auckland.ac.nz/
http://oooneida-wb.sourceforge.net/
http://oooneida-fbench.sourceforge.net/
http://seg.ece.upatras.gr/
https://sourceforge.net/projects/icarufb/

160

[163] UDESC GASR-FBE. Accessed: Dec. 05, 2022. [Online]. Available: https://sourceforge.net/projects/gasrfbe/.

[164] J. H. Christensen, “Design patterns, frameworks, and methodologies,” In Distributed Control Applications:

Guidelines, Design Patterns, and Application Examples with the IEC 61499, A. Zoitl and T. Strasser, Eds.,

Boca Raton, FL, USA: CRC Press, 2017, pp. 27-37.

[165] L. H. Yoong, P. S. Roop, and Z. Salcic, “Implementing constrained cyber-physical systems with IEC 61499,”

ACM Transactions on Embedded Computing Systems, vol. 11, no. 4, Dec. 2012, Article 78.

[166] A. Brusaferri, A. Ballarino, and E. Carpanzano, “Reconfigurable knowledge-based control solutions for

responsive manufacturing systems,” Studies in Informatics and Control, vol. 20, no. 1, pp. 31-42, Mar. 2011.

[167] R. Baniya, M. Maksimainen, S. Sierla, C. Pang, C. W. Yang, and V. Vyatkin, “Smart indoor lighting control:

Power, illuminance, and color quality,” In Proceedings of 23rd IEEE International Symposium on Industrial

Electronics, Istanbul, Turkey, June 2014, pp. 1745-1750.

[168] G. Zhabelova and V. Vyatkin, “Multiagent smart grid automation architecture based on IEC 61850/61499

intelligent logical nodes,” IEEE Transactions on Industrial Electronics, vol. 59, no. 5, pp. 2351-2362,

May 2012.

[169] G. Zhabelova, C. W. Yang, S. Patil, C. Pang, J. Yan, A. Shalyto, and V. Vyatkin, “Cyber-physical

components for heterogeneous modelling, validation and implementation of smart grid intelligence,” In

Proceedings of 12th IEEE International Conference on Industrial Informatics, Porto Alegre, Brazil, July

2014, pp. 411-417.

[170] F. Andrén, R. Bründlinger, T. Strasser, “IEC 61850/61499 control of distributed energy resources: Concept,

guidelines, and implementation,” IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 1008-1017,

Dec. 2014.

[171] OPA Forum. Accessed: Dec. 05, 2022. [Online]. Available:

https://www.controlglobal.com/articles/2018/opa-forum-expands-open-interoperable-standard-for-process-

control-device-interfaces-part-2/.

[172] P. Tait, “A path to industrial adoption of distributed control technology,” In Proceedings of 3rd IEEE

International Conference on Industrial Informatics, Perth, Australia. Aug. 2005, pp. 86-91.

[173] M. Colla, A. Brusaferri, and E. Carpanzano, “Applying the IEC-61499 model to the shoe manufacturing

sector,” In Proceedings of 11th IEEE International Conference on Emerging Technologies and Factory

Automation, Prague, Czech Republic, Sept. 2006, pp. 1301-1308.

[174] Centris Technologies. Accessed: Dec. 05, 2022. [Online]. Available: https://www.centristech.com/en/.

[175] Kibernetika. Accessed: Dec. 05, 2022. [Online]. Available: http://www.kibernetika-bg.com/.

[176] EKE Electronics. Accessed: Dec. 05, 2022. [Online]. Available: https://www.eke-electronics.com/.

[177] ICP DAS USA. Accessed: Dec. 05, 2022. [Online]. Available: https://www.icpdas-usa.com/.

[178] B. Scholten, The road to integration: A guide to applying the ISA-95 standard in manufacturing, Paris,

France: International Society of Automation, 2007.

[179] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, “A systematic survey of industrial Internet of Things

security: requirements and fog computing opportunities,” IEEE Communications Surveys & Tutorials, vol.

22, no. 4, pp. 2489-2520, July 2020.

[180] W. Dai, H. Nishi, V. Vyatkin, V. Huang, Y. Shi, and X. Guan, “Industrial edge computing: enabling

embedded intelligence,” IEEE Industrial Electronics Magazine, vol. 13, no. 4, pp. 48-56, Dec. 2019.

[181] C. Y. Lin, S. Zeadally, T. S. Chen, and C. Y. Chang, “Enabling cyber physical systems with wireless sensor

networking technologies,” International Journal of Distributed Sensor Networks, vol. 8, no. 5, pp. 1-21, May

2012.

[182] M. S. Taboun and R. W. Brennan, “An embedded multi-agent systems based industrial wireless sensor

network,” Sensors, vol. 17, no. 9, pp. 2112, Sept. 2017.

https://sourceforge.net/projects/gasrfbe/
https://www.controlglobal.com/articles/2018/opa-forum-expands-open-interoperable-standard-for-process-control-device-interfaces-part-2/
https://www.controlglobal.com/articles/2018/opa-forum-expands-open-interoperable-standard-for-process-control-device-interfaces-part-2/
https://www.centristech.com/en/
http://www.kibernetika-bg.com/
https://www.eke-electronics.com/
https://www.icpdas-usa.com/

161

[183] U. Wilensky and W. Rand, An introduction to agent-based modeling: Modeling natural, social, and

engineered complex systems with NetLogo, Cambridge, MA, USA: The MIT Press, 2015.

[184] I. Sakellariou, P. Kefalas, and I. Stamatopoulou, “Enhancing NetLogo to simulate BDI communicating

agents,” Lecture Notes in Artificial Intelligence, vol. 5138, pp. 263-275, Oct. 2008.

[185] J. D. C. Little, “A proof for the queuing formula: L = W,” Operations Research, vol. 9, no.3, pp. 383-387,

June 1961.

[186] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, pp.

269-271, Jan. 1959.

[187] L. Fu, D. Sun, and R. Rilett, “Heuristic shortest path algorithms for transportation applications: State of the

art,” Computers & Operations Research, vol. 33, no. 11, pp. 3324-3343, Nov. 2006.

[188] Jetson Nano. Accessed: Dec. 05, 2022. [Online]. Available: https://jetbot.org/master/.

[189] Raspberry Pi. Accessed: Dec. 05, 2022. [Online]. Available: https://www.raspberrypi.org/.

[190] SPADE. Accessed: Dec. 05, 2022. [Online]. Available: https://pypi.org/project/spade/.

https://www.raspberrypi.org/
https://pypi.org/project/spade/

162

[This page intentionally left blank]

163

Appendices

Appendix A Multi-Agent Simulation Model

Appendix A.1 NetLogo Agent Based Simulation Model

__includes ["communication.nls" "agents.nls"]

breed [diverters diverter]

breed [parts part]

breed [SMSAgents SMSAgent] ;; Self-Manageable Service Execution Agent

breed [SCAgents SCAgent] ;; Self-Configuration Agent

breed [SOAgents SOAgent] ;; Self-Optimization Agent

breed [SHAgents SHAgent] ;; Self-Healing Agent

breed [SPAgents SPAgent] ;; Self-Protection Agent

globals

[

 no-messages ;; tally of the number of messages sent (used by communication.nls)

 part-types ;; a word containing a list of the part types in the system

 no-conveyors ;; number of conveyor sections

 diverter-states ;; nested list of diverter states [[<L> <C> <R>][<L> <C> <R>]...]

 diverter-order ;; a list of the diverters, sorted by shortest path

 ave-wait-time ;; average time (in ticks) that parts spend in the system

 parts-completed ;; number of parts that have made it to a storage bin

 ave-no-parts ;; average number of parts in the system

 next-arrival ;; arrival time of the next part

 conv-failure ;; time (in ticks) when conveyor failure occurs

]

patches-own

[

 conveyor-number ;; conveyor number (this is also the diverter number for Type 2)

 diverter? ;; TRUE if a diverter patch

 in-sensor? ;; TRUE if an input sensor patch

 out-sensor? ;; TRUE if an output sensor patch

 storage-bin? ;; TRUE if a storage bin patch

 bin-number ;; storage bin number

 div-number ;; diverter number

 inbound ;; inbound diverter list

 direction ;; direction (heading) for patch

 operating? ;; TRUE if operating, FALSE if failed

 connections ;; a list of conveyor link connections for input sensor patches

 part-at-bin ;; used to check part types exiting storage bin

]

diverters-own

[

 diverter-number ;; diverter number

]

164

parts-own

[

 part-type ;; part type identifier (currently we are using lower case letters)

 time-in ;; time (in ticks) when part entered the system

 wait-time ;; time (in ticks) that the part spent in the system

]

SMSAgents-own

[

 incoming-queue ;; incoming message queue

 proc-delay ;; processing delay time (currently used to simulate a processing delay)

]

SCAgents-own

[

 incoming-queue ;; incoming message queue

 proc-delay ;; processing delay time (currently used to simulate a processing delay)

]

SOAgents-own

[

 incoming-queue ;; incoming message queue

 proc-delay ;; processing delay time (currently used to simulate a processing delay)

]

SHAgents-own

[

 incoming-queue ;; incoming message queue

 proc-delay ;; processing delay time (currently used to simulate a processing delay)

]

SPAgents-own

[

 incoming-queue ;; incoming message queue

 proc-delay ;; processing delay time (currently used to simulate a processing delay)

]

to setup

 clear-all

 reset-timer

 set Conveyor-Section-Failure 1

 setup-lagents

 setup-hagents

 setup-hconnections

 set no-messages 0

 set ave-wait-time 0

 set parts-completed 0

 set next-arrival 0

 ask patches

 [

 set diverter? FALSE

 set in-sensor? FALSE

 set out-sensor? FALSE

 set storage-bin? FALSE

]

 reset-ticks

165

 create-conveyor "input.txt"

 ;setup-diverters "connections.txt"

 ;configure-diverters Number-Part-Types

 ;set diverter-order [1 2 3 4 5 6] ;; ordered list (and section 8 failure)

 ifelse Optimize-Path = TRUE

 [set diverter-order [1 2 6 3 5 7 4 8]] ;; normal

 [set diverter-order [1 2 3 4 5 6 7 8]] ;; ordered list

 diverter-config

 set conv-failure random-exponential MTTF

end

to go

 ;; Create a new part with probability = Part-Arrival

 if ticks >= next-arrival

 [

 new-part Number-Part-Types

 set next-arrival (random-exponential Mean-Arrival-Time) + ticks

]

 ask parts

 [

 set heading direction

 if out-sensor? = TRUE [diverter-control]

 if storage-bin? = TRUE [store-part]

 if operating? = TRUE

 [

 if not any? parts-on patch-ahead 1 [forward 1]

 ;forward 1

]

]

 ask SMSAgents

 [

 monitor-part-types

 monitor-conveyor-status Conveyor-Section-Failure

]

 calculate-parts-in-system

 manage-messages ;; might want to add an update period here (with interface slider)

 ;; Conveyor section failure

 if ticks > conv-failure and Conveyor-Section-Failure = 1 and Conveyor-Failures = TRUE [set Conveyor-Section-

Failure 4]

 tick

end

to create-conveyor [file-name]

 ;; This procedure is used to setup conveyor sections by reading the input file "file-name". The format

 ;; of the input is described in the Info tab and is listed below. This procedure is called on startup

 ;; and can also be called to add additional sections at run time.

 let x-in 0 ;; entrance xcor

 let y-in 0 ;; entrance ycor

 let c-length 0 ;; length of conveyor

 let c-number 0 ;; conveyor number

 let pathway 0 ;; direction (0 up, 90 right, 180 down, 270 left)

 let conveyor-type 0 ;; 1 - basic, 2 - with diverter, 3 - with storage bin

 set diverter-states [] ;; nested list of diverter states [[<L> <C> <R>][<L> <C> <R>]...]

 let diverter-temp [] ;; temporary list of diverter states for one conveyor section

 set no-conveyors 0

 let i 0

166

 file-open file-name

 while [not file-at-end?]

 [

 set x-in file-read

 set y-in file-read

 set c-length file-read

 set c-number file-read

 set pathway file-read

 set conveyor-type file-read

 set diverter-temp lput file-read diverter-temp ;; Left entry

 set diverter-temp lput file-read diverter-temp ;; Centre entry

 set diverter-temp lput file-read diverter-temp ;; Right entry

 set diverter-states lput diverter-temp diverter-states ;; nested diverter states entry

 set diverter-temp [] ;; reset the temp variable

 set i 0

 set no-conveyors no-conveyors + 1

 while [i < c-length]

 [

 ask patch x-in y-in

 [

 (ifelse

 i = 0 and conveyor-type < 3 ;; input sensor (conveyor belt)

 [

 set pcolor 67

 set in-sensor? TRUE

 set plabel c-number

 set plabel-color black

]

 i = 0 and conveyor-type = 3 ;; input sensor (storage bin)

 [

 set pcolor 67

 set in-sensor? TRUE

 set storage-bin? TRUE

 set inbound []

 set plabel c-number

 set plabel-color black

]

 i = c-length - 2 and conveyor-type = 2 ;; output sensor

 [set pcolor 67 set out-sensor? TRUE]

 i = c-length - 1 and conveyor-type = 2 ;; diverter

 [set pcolor 45 set diverter? TRUE]

 i = c-length - 1 and conveyor-type = 3 ;; storage bin

 [set pcolor 15

 set storage-bin? TRUE

 set plabel c-number - 11

 set plabel-color black

]

 i = c-length - 1 and conveyor-type = 1 ;; output sensor

 [set pcolor 67 set out-sensor? TRUE]

 [set pcolor 9] ;; conveyor belt

)

 set conveyor-number c-number

 set direction pathway

 set operating? TRUE

]

 (ifelse

167

 pathway = 0 [set y-in y-in + 1]

 pathway = 90 [set x-in x-in + 1]

 pathway = 180 [set y-in y-in - 1]

 pathway = 270 [set x-in x-in - 1]

)

 set i i + 1

]

 ;; Diverter

 if conveyor-type = 2

 [

 create-diverters 1

 [

 (ifelse

 pathway = 0 [setxy x-in (y-in - 1)]

 pathway = 90 [setxy (x-in - 1) y-in]

 pathway = 180 [setxy x-in (y-in + 1)]

 pathway = 270 [setxy (x-in + 1) y-in]

)

 set shape "arrow"

 set color black

 set diverter-number c-number

 set heading direction

]

]

]

 set i 1

 let div-no 1

 let no-div 0

 while [i <= no-conveyors]

 [

 ;; Number the diverters

 ask patches with [conveyor-number = i and diverter? = TRUE]

 [

 set div-number div-no

 ask neighbors4 with [out-sensor? = TRUE] [set div-number div-no]

 set no-div div-no

 set div-no div-no + 1

]

 set i i + 1

]

 file-close

end

to new-part [no-types]

 ;; This procedure is used to introduce new parts into the system. Parts are placed at the input sensor location of

 ;; conveyor 1. Currently, three part types are possible ("a", "b", or "c") - the part types are selected randomly.

 let x-parts 0

 let y-parts 0

 let p-type random no-types

 let part-here? FALSE

 ask patches with [in-sensor? = TRUE and conveyor-number = 1]

 [

 set x-parts pxcor

 set y-parts pycor

 if count parts-here > 0 [set part-here? TRUE]

]

168

 if part-here? = FALSE

 [

 create-parts 1

 [

 set xcor x-parts

 set ycor y-parts

 set shape "box"

 set time-in ticks

 (ifelse

 p-type = 0 [set color grey set part-type "a"]

 p-type = 1 [set color orange set part-type "b"]

 p-type = 2 [set color brown set part-type "c"]

 p-type = 3 [set color turquoise set part-type "d"]

 p-type = 4 [set color blue set part-type "e"]

 p-type = 5 [set color magenta set part-type "f"]

)

]

]

end

to setup-lagents

 ;; This procedure is used to setup the self-management service agents

 create-SMSAgents 1

 [

 set incoming-queue []

 set proc-delay 0

 set shape "fb"

 set size 4

 set xcor 0

 set ycor -12

 set color brown

 set label "Agent-SMS"

]

 create-SCAgents 1

 [

 set incoming-queue []

 set proc-delay 0

 set shape "fb"

 set size 4

 set xcor -12

 set ycor -6

 set color cyan

 set label "Agent-SC"

]

 create-SOAgents 1

 [

 set incoming-queue []

 set proc-delay 0

 set shape "fb"

 set size 4

 set xcor -12

 set ycor -18

 set color cyan

 set label "Agent-SO"

]

169

 create-SHAgents 1

 [

 set incoming-queue []

 set proc-delay 0

 set shape "fb"

 set size 4

 set xcor 12

 set ycor -6

 set color cyan

 set label "Agent-SH"

]

 create-SPAgents 1

 [

 set incoming-queue []

 set proc-delay 0

 set shape "fb"

 set size 4

 set xcor 12

 set ycor -18

 set color cyan

 set label "Agent-SP"

]

end

to setup-hagents

 ;;to create multiple agents

 ;;turtle 5 Agent_Monitoring

 create-turtles 1

 [

 set shape "person"

 set color red

 set size 4

 setxy -12 32

 set label "Agent_Monitoring"

 set label-color white

]

 ;;turtle 6 Agent_Analysis

 create-turtles 1

 [

 set shape "person"

 set color orange

 set size 4

 setxy 0 32

 set label "Agent_Analysis"

 set label-color white

]

 ;;turtle 7 Agent_SelfLearning

 create-turtles 1

 [

 set shape "person"

 set color yellow

 set size 4

 setxy 16 34

 set label "Agent_SelfLearning"

 set label-color white

]

170

 ;;turtle 8 Agent_Planning

 create-turtles 1

 [

 set shape "person"

 set color blue

 set size 4

 setxy 0 18

 set label "Agent_Planning"

 set label-color white

]

 ;;turtle 9 Agent_Execution

 create-turtles 1

 [

 set shape "person"

 set color violet

 set size 4

 setxy -12 18

 set label "Agent_Execution"

 set label-color white

]

 ;;turtle 10 Agent_Knowledge

 create-turtles 1

 [

 set shape "person"

 set color green

 set size 4

 setxy 12 25

 set label "Agent_Knowledge"

 set label-color white

]

end

to setup-hconnections

 ;;to create workflow links

 ask turtle 5 [create-link-to turtle 6]

 ask turtle 6 [create-link-to turtle 7]

 ask turtle 7 [create-link-to turtle 6]

 ask turtle 6 [create-link-to turtle 8]

 ask turtle 8 [create-link-to turtle 6]

 ask turtle 6 [create-link-to turtle 9]

 ask turtle 9 [create-link-to turtle 6]

 ask turtle 8 [create-link-to turtle 9]

 ;;to create database links

 ask turtle 10 [create-link-to turtle 5]

 ask turtle 10 [create-link-to turtle 6]

 ask turtle 10 [create-link-to turtle 7]

 ask turtle 10 [create-link-to turtle 8]

 ask turtle 10 [create-link-to turtle 9]

 ask turtle 10 [create-link-from turtle 5]

 ask turtle 10 [create-link-from turtle 6]

 ask turtle 10 [create-link-from turtle 7]

 ask turtle 10 [create-link-from turtle 8]

 ask turtle 10 [create-link-from turtle 9]

end

171

to diverter-control

 ;; This procedure checks actuates the exit diverter based on the part type.

 ;; First, a check is performed to see if there is an exact match (indicating that the

 ;; direction corresponds to the storage bin location). If a direct match is not found,

 ;; a check is performed to see if the part type is included in one of the remaining paths.

 ;; Note: This code will need to be modified so that the part will continue along the

 ;; conveyor if no matches are found.

 let diverted? FALSE

 let next-diverter 0

 ask patch-ahead 1 [set next-diverter conveyor-number]

 (ifelse

 ;; Exact matches (i.e., arrived at storage bin)

 part-type = item 0 connections and diverted? = FALSE

 [actuate-diverter next-diverter ((heading - 90) mod 360) set diverted? TRUE]

 part-type = item 1 connections and diverted? = FALSE

 [actuate-diverter next-diverter (heading) set diverted? TRUE]

 part-type = item 2 connections and diverted? = FALSE

 [actuate-diverter next-diverter ((heading + 90) mod 360) set diverted? TRUE]

 ;; Part type included in one of the remaining paths

 ;member? part-type item 0 connections and diverted? = FALSE

 part-type = first item 0 connections and diverted? = FALSE

 [actuate-diverter next-diverter ((heading - 90) mod 360) set diverted? TRUE]

 ;member? part-type item 1 connections and diverted? = FALSE

 part-type = first item 1 connections and diverted? = FALSE

 [actuate-diverter next-diverter (heading) set diverted? TRUE]

 ;member? part-type item 2 connections and diverted? = FALSE

 part-type = first item 2 connections and diverted? = FALSE

 [actuate-diverter next-diverter ((heading + 90) mod 360) set diverted? TRUE]

 ;; Part type is not included (follow the path with the most options)

 [

 let part-path find-longest connections

 (ifelse

 part-path = 0 [actuate-diverter next-diverter ((heading - 90) mod 360)]

 part-path = 1 [actuate-diverter next-diverter (heading)]

 part-path = 2 [actuate-diverter next-diverter ((heading + 90) mod 360)]

)

]

)

end

to actuate-diverter [d-number d-position]

 ;; This procedure actuates the direction of the diverter <d-number> to position <d-position>. The direction of the

diverter

 ;; patch is the key parameter for control here. However, a diverter turtle is also used to show the diverter direction.

 ask patches with [diverter? = TRUE and conveyor-number = d-number] [set direction d-position]

 ask diverters with [diverter-number = d-number] [set heading direction]

end

to store-part

 ;; This procedure is used to collect parts in the storage bin

 ;; Currently, parts are just removed; however, eventually statistics can be collected by this procedure.

 ifelse part-at-bin = 0

 [set part-at-bin part-type]

 [

 if part-type != part-at-bin [show (word "B(" conveyor-number "): " part-at-bin " exited: " part-type)]

172

]

 set wait-time ticks - time-in

 calculate-wait-time wait-time

 die

end

to-report find-longest [connect-list]

 ;; This procedure is used to check the "connections" list for the path with the most options.

 let i 0

 let longest-path 0

 let longest-index 0

 while [i < 3]

 [

 if length item i connect-list > longest-path

 [

 set longest-index i

 set longest-path length item i connect-list

]

 set i i + 1

]

 report longest-index

end

to send-message [sender receiver performative content]

 ;; This procedure is used to send agent-to-agent FIPA messages.

 ;; The sender and receiver variables are the "who" for the self-management agents:

 ;; 0 = Agent-SMS

 ;; 1 = Agent-SC

 ;; 2 = Agent-SO

 ;; 3 = Agent-SH

 ;; 4 = Agent-SP

 ask turtle sender

 [

 let somemsg create-message performative

 set somemsg add-receiver receiver somemsg

 set somemsg add-content content somemsg

 if show_messages [show (word ticks ": " somemsg)]

 send somemsg

]

end

to manage-messages

 ;; This procedure is used by the self-management to manage incoming messages.

 ask turtle 0 ;; Agent-SMS

 [

 (ifelse

 length incoming-queue > 0 and member? "completed" get-content get-message-no-remove

 [

 send-message who 1 "inform" "acknowledge"

 remove-msg

]

 length incoming-queue > 0 and member? "inform" get-performative get-message-no-remove

 [remove-msg]

)

]

 ask turtle 1 ;; Agent-SC

173

 [

 (ifelse

 length incoming-queue > 0 and member? "new part type" get-content get-message-no-remove and proc-delay =

0

 ;length incoming-queue > 0 and member? "new part type" get-content get-message-no-remove

 [

 processing-delay TRUE

 send-message who 0 "inform" "processing request"

 ask my-links [die]

 create-link-to turtle 0

 ask my-links

 [

 set color green

 set label "inform: processing request"

]

]

 ;length incoming-queue > 0 and member? "new part type" get-content get-message-no-remove and timer > proc-

delay

 length incoming-queue > 0 and member? "new part type" get-content get-message-no-remove and bernoulli

Agent-Delay

 [add-storage-bin]

 ;length incoming-queue > 0 and member? "re-route parts" get-content get-message-no-remove and timer > proc-

delay

 length incoming-queue > 0 and member? "re-route parts" get-content get-message-no-remove and bernoulli

Agent-Delay

 [add-storage-bin]

 length incoming-queue > 0 and member? "inform" get-performative get-message-no-remove

 [remove-msg]

)

]

 ask turtle 2 ;; Agent-SO

 [

 if length incoming-queue > 0

 [

 ;show (word "Agent-SO received message from " identify-sender get-sender get-message-no-remove)

 ;show (word get-performative get-message-no-remove ": " get-content get-message)

]

]

 ask turtle 3 ;; Agent-SH

 [

 if length incoming-queue > 0

 [

 ;show (word "Agent-SH received message from " identify-sender get-sender get-message-no-remove)

 ;show (word get-performative get-message-no-remove ": " get-content get-message)

]

]

 ask turtle 4 ;; Agent-SP

 [

 (ifelse

 length incoming-queue > 0 and member? "failure" get-content get-message-no-remove and proc-delay = 0

 [

 processing-delay TRUE

 send-message who 0 "inform" "processing request"

 ask my-links [die]

 create-link-to turtle 0

 ask my-links

174

 [

 set color green

 set label "inform: processing request"

]

]

 ;length incoming-queue > 0 and member? "failure" get-content get-message-no-remove and timer > proc-delay

 length incoming-queue > 0 and member? "failure" get-content get-message-no-remove and ticks > proc-delay

 [request-re-route]

 length incoming-queue > 0 and member? "inform" get-performative get-message-no-remove

 [remove-msg]

)

]

end

to-report identify-sender [sender]

 (ifelse

 sender = "0" [report "Agent-SMS"]

 sender = "1" [report "Agent-SC"]

 sender = "2" [report "Agent-SO"]

 sender = "3" [report "Agent-SH"]

 sender = "4" [report "Agent-SP"]

)

end

to conveyor-failure [c-number]

 ;; This procedure is used to change the state of a conveyor section to "failed":

 ;; c-number: conveyor section number

 ;show (word "Diverter States (pre): " diverter-states)

 ask patches with [conveyor-number = c-number]

 [

 ;update-diverter-state c-number direction

 set operating? FALSE

 set pcolor pcolor - 2

]

 ask patches with [conveyor-number = c-number and out-sensor? = TRUE]

 [

 update-diverter-state c-number direction

]

 ;show (word "Diverter States (post): " diverter-states)

end

to processing-delay [start?]

 ;; This procedure is used to simulate processing delay

 ifelse start? = TRUE

 [

; set proc-delay timer + random-float ProcessingDelay

; if show_messages = TRUE [show (word "Processing Delay = " (proc-delay - timer) " seconds")]

 set proc-delay ticks + random ProcessingDelay

 if show_messages = TRUE [show (word "Processing Delay = " (proc-delay - ticks) " ticks")]

]

 [set proc-delay 0]

end

to-report downstream-conveyor [orientation]

 ;; This procedure is used to identify the conveyor section downstream from the calling

 ;; conveyor section in diverter direction "orientation". This procedure is called

175

 ;; from the diverter patch of the conveyor section.

 ;; **** this procedure has an error: if there are two conveyor sections with the same direction

 ;; (e.g., at a T intersection), it cannot determine which is the downstream. To correct this

 ;; it is assumed that the true downstream conveyor section has a higher conveyor number.

 let my-number conveyor-number

 let downstream 0

 let last-downstream 0

 ask neighbors4

 [

 if conveyor-number > 0 ;; blank patches have conveyor-number = 0

 [

 if direction = orientation and conveyor-number != my-number

 [

 if conveyor-number > last-downstream [set downstream conveyor-number]

]

]

]

 report downstream

end

to update-diverter-state [failed orientation]

 ;; This procedure is used to update the diverter-states list when a conveyor section failure occurs.

 ;; - failed section: diverter set to [0 0 0]

 ;; - upstream section: diverter direction leading to failed conveyor section set to 0

 ;; - downstream section: diverter set to [0 0 0]

 let new-state []

 let difference 0

 ;; 1. set failed conveyor section's diverter to [0 0 0]

 set diverter-states remove-item (failed - 1) diverter-states

 set diverter-states insert-item (failed - 1) diverter-states [0 0 0]

 ;; 2. find upstream conveyor section and set its diverter to block entrance to the failed section

 ask patches with [diverter? = TRUE]

 [

 if downstream-conveyor orientation = failed

 [

 ;show conveyor-number

 ;show direction

 set new-state item (conveyor-number - 1) diverter-states

 ;show new-state

 let my-number conveyor-number

 let my-direction 0

 ask patches with [conveyor-number = my-number and out-sensor? = TRUE] [set my-direction direction]

 set difference orientation - my-direction

 ;show difference

 (ifelse

 difference = -90 or difference = 270

 [

 ;show "L"

 set new-state remove-item 0 new-state

 set new-state insert-item 0 new-state 0

 set diverter-states remove-item (conveyor-number - 1) diverter-states

 set diverter-states insert-item (conveyor-number - 1) diverter-states new-state

 ;show new-state

]

 difference = 0

 [

176

 ;show "C"

 set new-state remove-item 1 new-state

 set new-state insert-item 1 new-state 0

 set diverter-states remove-item (conveyor-number - 1) diverter-states

 set diverter-states insert-item (conveyor-number - 1) diverter-states new-state

 ;show new-state

]

 difference = 90 or difference = -270

 [

 ;show "R"

 set new-state remove-item 2 new-state

 set new-state insert-item 2 new-state 0

 set diverter-states remove-item (conveyor-number - 1) diverter-states

 set diverter-states insert-item (conveyor-number - 1) diverter-states new-state

 ;show new-state

]

)

]

]

 ;; 3. set downstream conveyor section's diverter to [0 0 0]

 ;; - for now, just go with the next index (ideally the downstream-conveyor procedure should be used)

 set diverter-states remove-item failed diverter-states

 set diverter-states insert-item failed diverter-states [0 0 0]

end

to config-diverters [no-part-types]

 ;; This procedure is used to setup the diverter controllers.

 ;; - The output sensor, out-sensor?, of the conveyor preceding the diverter checks the part type

 ;; - The diverter is setup based on its outputs (i.e., do not enter, storage bin, next conveyor)

 ;; This procedure takes the number of part types as input and assigns a unique "a-z" letter to each type.

 ;; The possible diverter states are defined by the diverter-states nested list:

 ;; [[<L><C><R>][<L><C><R>] ... [<L><C><R>]]

 ;; where L=left, C=centre, R=right for each diverter and 0 = do not enter, 1 = part bin, and 2 = next conveyor

 ;; This procedure sets each diverter's controller by assigning parts to the <L>, <C>, and <R> slots of the diverter's

 ;; connections variable: i.e., "-" do not enter, "<single part type ... e.g., "a">" for storage bin, <all-types> for next

conveyor

 let all-types "abcdefghijklmnopqrstuvwxyz"

 set part-types substring all-types 0 no-part-types

 let assigned 0

 let i 1

 ;; Reset all of the diverter controls (i.e., the connections variables)

 ask patches with [out-sensor? = TRUE] [set connections ["?" "?" "?"]]

 ;; 1. Read diverter-states "0" values and set corresponding connections to "-"

 ;ask patches with [out-sensor? = TRUE]

 while [i <= length diverter-states]

 [

 ask patches with [out-sensor? = TRUE and conveyor-number = i]

 [

 if item 0 item (conveyor-number - 1) diverter-states = 0

 [

 set connections remove-item 0 connections

 set connections insert-item 0 connections "-"

]

 if item 1 item (conveyor-number - 1) diverter-states = 0

 [

177

 set connections remove-item 1 connections

 set connections insert-item 1 connections "-"

]

 if item 2 item (conveyor-number - 1) diverter-states = 0

 [

 set connections remove-item 2 connections

 set connections insert-item 2 connections "-"

]

 ;show (word "Diverter " conveyor-number ": " connections)

]

 set i i + 1

]

 ;; 2. Read diverter-states "1" values and set corresponding connections to each part type

 ;ask patches with [out-sensor? = TRUE]

 (ifelse

 Optimize-Path = FALSE

 [

 set i 1

 while [i <= length diverter-states]

 [

 ask patches with [out-sensor? = TRUE and conveyor-number = i]

 [

 (ifelse

 item 0 item (conveyor-number - 1) diverter-states = 1 and assigned < no-part-types

 [

 set connections remove-item 0 connections

 set connections insert-item 0 connections (item assigned part-types)

 set assigned assigned + 1

]

 item 0 item (conveyor-number - 1) diverter-states = 1 and assigned = no-part-types

 [

 set connections remove-item 0 connections

 set connections insert-item 0 connections "-"

]

)

 (ifelse

 item 1 item (conveyor-number - 1) diverter-states = 1 and assigned < no-part-types

 [

 set connections remove-item 1 connections

 set connections insert-item 1 connections (item assigned part-types)

 set assigned assigned + 1

]

 item 1 item (conveyor-number - 1) diverter-states = 1 and assigned = no-part-types

 [

 set connections remove-item 1 connections

 set connections insert-item 1 connections "-"

]

)

 (ifelse

 item 2 item (conveyor-number - 1) diverter-states = 1 and assigned < no-part-types

 [

 set connections remove-item 2 connections

 set connections insert-item 2 connections (item assigned part-types)

 set assigned assigned + 1

]

 item 2 item (conveyor-number - 1) diverter-states = 1 and assigned = no-part-types

178

 [

 set connections remove-item 2 connections

 set connections insert-item 2 connections "-"

]

)

 ;show (word "Diverter " conveyor-number ": " connections)

]

 set i i + 1

]

]

 ;; **** is there a way of assigning to more than one out-sensor? (without exceeding assigned)

 Optimize-Path = TRUE

 [

 set i 1

 while [i <= length diverter-order]

 [

 ask patches with [out-sensor? = TRUE and div-number = i]

 [

 if item 0 item (conveyor-number - 1) diverter-states = 1 and assigned < no-part-types

 [

 set connections remove-item 0 connections

 set connections insert-item 0 connections (item assigned part-types)

 ;set assigned assigned + 1

]

 if item 1 item (conveyor-number - 1) diverter-states = 1 and assigned < no-part-types

 [

 set connections remove-item 1 connections

 set connections insert-item 1 connections (item assigned part-types)

 ;set assigned assigned + 1

]

 if item 2 item (conveyor-number - 1) diverter-states = 1 and assigned < no-part-types

 [

 set connections remove-item 2 connections

 set connections insert-item 2 connections (item assigned part-types)

 ;set assigned assigned + 1

]

]

 set assigned assigned + 1

 set i i + 1

]

 set i 1

 while [i <= length diverter-order]

 [

 ask patches with [out-sensor? = TRUE and div-number = i]

 [

 if item 0 item (conveyor-number - 1) diverter-states = 1 and item 0 connections = "?"

 [

 set connections remove-item 0 connections

 set connections insert-item 0 connections "-"

]

 if item 1 item (conveyor-number - 1) diverter-states = 1 and item 1 connections = "?"

 [

 set connections remove-item 1 connections

 set connections insert-item 1 connections "-"

]

 if item 2 item (conveyor-number - 1) diverter-states = 1 and item 2 connections = "?"

179

 [

 set connections remove-item 2 connections

 set connections insert-item 2 connections "-"

]

]

 set i i + 1

]

]

)

 ;; 3. Read diverter-states "2" values

 ;; **** possible update - if more than one "2", look to see what is down each and prioritize: e.g.,

 ;; - "a" on left, "b" on centre: "abc" left, "bac" centre

 ;; **** this section needs to be updated ****

 ;; - check downstream conveyor section output sensor

 ;; - e.g., ask patches with [conveyor-number = 2 and diverter? = TRUE] [show downstream-conveyor 90]

 ;; - is there a "2" (pass through) variable?

 ;; - YES: set to all remaining part-types

 ;; - NO: set to all "1" part types of the downstream section

 set i 1

 let c-number 0

 let c-direction 0

 let index 0

 let downstream []

 let through-path? TRUE

 let stored-parts ""

 while [i <= length diverter-states]

 [

 ask patches with [out-sensor? = TRUE and conveyor-number = i]

 [

 set c-number conveyor-number

 set c-direction direction

 if item 0 item (conveyor-number - 1) diverter-states = 2

 [

 ;; This code is used to get the downstream diverter states list

 ask patches with [conveyor-number = i and diverter? = TRUE]

 [

 set index downstream-conveyor (diverter-direction c-direction 0)

 ask patches with [conveyor-number = index and out-sensor? = TRUE]

 [

 set downstream connections

 set stored-parts diverted-parts

]

 ;show (word "D " c-number " Left " index " " item (index - 1) diverter-states " " downstream " " stored-parts)

 ifelse member? 2 item (index - 1) diverter-states

 [set through-path? TRUE]

 [set through-path? FALSE]

]

 (ifelse

 through-path?

 [

 set connections remove-item 0 connections

 set connections insert-item 0 connections (remove diverted-parts part-types)

]

 [

 set connections remove-item 0 connections

 set connections insert-item 0 connections stored-parts

180

]

)

]

 if item 1 item (conveyor-number - 1) diverter-states = 2

 [

 ask patches with [conveyor-number = i and diverter? = TRUE]

 [

 set index downstream-conveyor (diverter-direction c-direction 1)

 ask patches with [conveyor-number = index and out-sensor? = TRUE]

 [

 set downstream connections

 set stored-parts diverted-parts

]

 ;show (word "D " c-number " Centre " index " " item (index - 1) diverter-states " " downstream " " stored-

parts)

 ifelse member? 2 item (index - 1) diverter-states

 [set through-path? TRUE]

 [set through-path? FALSE]

]

 (ifelse

 through-path?

 [

 set connections remove-item 1 connections

 set connections insert-item 1 connections (remove diverted-parts part-types)

]

 [

 set connections remove-item 1 connections

 set connections insert-item 1 connections stored-parts

]

)

]

 if item 2 item (conveyor-number - 1) diverter-states = 2

 [

 ask patches with [conveyor-number = i and diverter? = TRUE]

 [

 set index downstream-conveyor (diverter-direction c-direction 2)

 ask patches with [conveyor-number = index and out-sensor? = TRUE]

 [

 set downstream connections

 set stored-parts diverted-parts

]

 ;show (word "D " c-number " Right " index " " item (index - 1) diverter-states " " downstream " " stored-parts)

 ifelse member? 2 item (index - 1) diverter-states

 [set through-path? TRUE]

 [set through-path? FALSE]

]

 (ifelse

 through-path?

 [

 set connections remove-item 2 connections

 set connections insert-item 2 connections (remove diverted-parts part-types)

]

 [

 set connections remove-item 2 connections

 set connections insert-item 2 connections stored-parts

]

181

)

]

 ;show (word "Diverter " conveyor-number ": " connections)

]

 set i i + 1

]

end

to-report bernoulli [probability]

 ;; This procedure enables the Bernoulli distribution: i.e., a discrete probability distribution

 ;; with two outcomes (heads/tails, success/failure, true/false).

 report ifelse-value (random-float 1 < probability) [true] [false]

end ;; end of bernoulli

to-report diverter-direction [c-direction d-position]

 ;; This procedure is used to return the "Left", "Centre", or "Right" diverter direction based on

 ;; the conveyor direction (c-direction) and the diverter position (d-position)

 (ifelse

 d-position = 0 [set c-direction c-direction - 90] ;; Left

 d-position = 2 [set c-direction c-direction + 90] ;; Right

)

 if c-direction = -90 [set c-direction 270]

 if c-direction = 360 [set c-direction 0]

 report c-direction

end

to-report diverted-parts

 ;; This procedure returns the list of part types that are diverted.

 ;; It is a patch context procedure that is called at a conveyor's output sensor.

 ;show (word "D: " conveyor-number " States: " item (conveyor-number - 1) diverter-states " Connections: "

connections)

 let i 0

 let diverted ""

 while [i < 3]

 [

 if item i item (conveyor-number - 1) diverter-states = 1

 [

 set diverted word diverted item i connections

]

 set i i + 1

]

 report diverted

end

to identify-upstream

 ;; This procedure is used to identify each diverter's upstream diverters

 ;; It appears to work in most cases. There are still some errors when a conveyor section fails.

 let i 1

 let no-div count patches with [div-number > 0]

 let conv-no 0

 let temp-inbound []

 set i 1

 while [i <= no-div]

 [

 ask patches with [div-number = i]

 [

182

 set temp-inbound []

 ask neighbors4 with [out-sensor? = TRUE]

 [

 ;show conveyor-number

 set conv-no conveyor-number

 ask patches with [conveyor-number = conv-no and in-sensor? = TRUE and operating? = TRUE]

 [

 ask neighbors4 with [diverter? = TRUE and operating? = TRUE]

 [

 set temp-inbound lput div-number temp-inbound

]

]

]

 set inbound temp-inbound

 show (word "Diverter " i ": " inbound)

]

 set i i + 1

]

end

to-report through-list [c-list]

 ;; This procedure determines the part list that can pass through the "through parts" position of a diverter.

 ;; **** sort in order of downstream?

 let i 0

 let t-list part-types

 let temp ""

 while [i < length part-types]

 [

 if member? item i part-types c-list

 [

 set temp item i part-types

 set t-list remove temp t-list

 set t-list (word temp t-list)

]

 set i i + 1

]

 report t-list

end

to diverter-config

 ;; This is a new diverter configuration procedure. The procedure cycles through each of the diverters to setup their

 ;; connections list (that is used by the diverter-control procedure to control the diverter position when a part

arrives).

 ;; The diverter-states list is used to setup each of the diverter connections lists: (1) "no entry" positions, (2) "storage

 ;; bin" positions, and (3) "through parts" positions.

 let all-types "abcdefghijklmnopqrstuvwxyz"

 set part-types substring all-types 0 Number-Part-Types

 let assigned 0

 let i 1

 let j 0

 let assigned? FALSE

 ;; Reset all of the diverter controls (i.e., the connections variables)

 ask patches with [out-sensor? = TRUE] [set connections ["?" "?" "?"]]

 ;; 1. "No Entry" diverter positions

 while [i <= length diverter-order]

 [

183

 ask patches with [out-sensor? = TRUE and div-number = i]

 [

 if item 0 item (conveyor-number - 1) diverter-states = 0

 [

 set connections remove-item 0 connections

 set connections insert-item 0 connections "-"

]

 if item 1 item (conveyor-number - 1) diverter-states = 0

 [

 set connections remove-item 1 connections

 set connections insert-item 1 connections "-"

]

 if item 2 item (conveyor-number - 1) diverter-states = 0

 [

 set connections remove-item 2 connections

 set connections insert-item 2 connections "-"

]

]

 set i i + 1

]

 ;; 2. "Storage Bin" diverter positions

 let no-divs 0

 let divs-assigned 0

 while [j < length part-types]

 [

 set i 1

 set assigned? FALSE

 ;show (word "Part: " item j part-types)

 while [i <= length diverter-order]

 [

 set no-divs count patches with [out-sensor? = TRUE and div-number = item (i - 1) diverter-order]

 set divs-assigned 0

 ask patches with [out-sensor? = TRUE and div-number = item (i - 1) diverter-order]

 [

 if item 0 item (conveyor-number - 1) diverter-states = 1 and item 0 connections = "?" and assigned? = FALSE

 [

 set connections remove-item 0 connections

 set connections insert-item 0 connections item j part-types

 set divs-assigned divs-assigned + 1

 if divs-assigned = no-divs [set assigned? TRUE]

]

 if item 1 item (conveyor-number - 1) diverter-states = 1 and item 1 connections = "?" and assigned? = FALSE

 [

 set connections remove-item 1 connections

 set connections insert-item 1 connections item j part-types

 set divs-assigned divs-assigned + 1

 if divs-assigned = no-divs [set assigned? TRUE]

]

 if item 2 item (conveyor-number - 1) diverter-states = 1 and item 2 connections = "?" and assigned? = FALSE

 [

 set connections remove-item 2 connections

 set connections insert-item 2 connections item j part-types

 set divs-assigned divs-assigned + 1

 if divs-assigned = no-divs [set assigned? TRUE]

]

 ;show (word "D(" div-number "): " connections)

184

]

 set i i + 1

]

 set j j + 1

]

 ;; 3. "Through Parts" diverter positions

 let downstream 0

 let conv-direction 0

 let t-list ""

 ;set i 1

 ;while [i <= length diverter-order]

 set i length diverter-order

 while [i >= 0]

 [

 ask patches with [out-sensor? = TRUE and div-number = i]

 [

 if item 0 item (conveyor-number - 1) diverter-states = 2 or (item 0 item (conveyor-number - 1) diverter-states

= 1 and item 0 connections = "?")

 [

 set conv-direction diverter-direction direction 0

 ask patches with [diverter? = TRUE and div-number = i]

 [

 set downstream downstream-conveyor conv-direction

 ask patches with [out-sensor? = TRUE and conveyor-number = downstream] [set t-list through-list

connections]

]

 set connections remove-item 0 connections

 set connections insert-item 0 connections t-list

 ;show (word "D(" div-number "): " connections)

 ;show (word "Diverter: " div-number " Downstream: " downstream " Through List: " t-list)

]

 if item 1 item (conveyor-number - 1) diverter-states = 2 or (item 1 item (conveyor-number - 1) diverter-states

= 1 and item 1 connections = "?")

 [

 set conv-direction diverter-direction direction 1

 ask patches with [diverter? = TRUE and div-number = i]

 [

 set downstream downstream-conveyor conv-direction

 ask patches with [out-sensor? = TRUE and conveyor-number = downstream] [set t-list through-list

connections]

]

 set connections remove-item 1 connections

 set connections insert-item 1 connections t-list

 ;show (word "D(" div-number "): " connections)

 ;show (word "Diverter: " div-number " Downstream: " downstream " Through List: " t-list)

]

 if item 2 item (conveyor-number - 1) diverter-states = 2 or (item 2 item (conveyor-number - 1) diverter-states

= 1 and item 2 connections = "?")

 [

 set conv-direction diverter-direction direction 2

 ask patches with [diverter? = TRUE and div-number = i]

 [

 set downstream downstream-conveyor conv-direction

 ask patches with [out-sensor? = TRUE and conveyor-number = downstream] [set t-list through-list

connections]

]

185

 set connections remove-item 2 connections

 set connections insert-item 2 connections t-list

 ;show (word "D(" div-number "): " connections)

 ;show (word "Diverter: " div-number " Downstream: " downstream " Through List: " t-list)

]

 ;set connections clean-connections connections

 set connections clean-up connections

]

 ;set i i + 1

 set i i - 1

]

end

to-report clean-connections [c-list]

 ;; This procedure is used by diverter-config to order the "through parts" list so that the downstream diverters

 ;; are prioritized.

 let i 0

 let j 0

 let temp-first ""

 let temp-item ""

 while [i < length c-list]

 [

 set temp-first first item i c-list

 ;show (word "(" i "):" temp-first)

 set j 0

 while [j < length c-list]

 [

 ;if j != i and temp-first != "-" and length item j c-list > 2

 if j != i and temp-first != "-"

 [

 set temp-item item j c-list

 set temp-item remove temp-first temp-item

 set c-list remove-item j c-list

 set c-list insert-item j c-list temp-item

]

 set j j + 1

]

 set i i + 1

]

 report c-list

end

to-report clean-up [c-list]

 let i 0

 let j 0

 let temp ""

 let temp-item ""

 while [i < length c-list]

 [

 set temp item i c-list

 if length temp = 1 and member? temp part-types

 [

 ;show (word "single at (" i "): " temp)

 set j 0

 while [j < 3]

 [

186

 if j != i and member? temp item j c-list

 [

 set temp-item item j c-list

 set temp-item remove temp temp-item

 set c-list remove-item j c-list

 set c-list insert-item j c-list temp-item

]

 set j j + 1

]

]

 set i i + 1

]

 ;; **** next sort in order of downstream? ****

 report c-list

end

to calculate-wait-time [time-in-system]

 let sum-of-times ave-wait-time * parts-completed

 set sum-of-times sum-of-times + time-in-system

 set parts-completed parts-completed + 1

 set ave-wait-time sum-of-times / parts-completed

end

to calculate-parts-in-system

 let parts-in-system count parts

 let sum-of-parts 0

 if ticks > 0

 [

 set sum-of-parts ave-no-parts * (ticks - 1)

 set ave-no-parts (sum-of-parts + parts-in-system) / ticks

]

End

Appendix A.2 NetLogo Routing Optimization Model

;; this separate model for routing optimization by Agent_SO

;; a diverters.txt file below is read in running the model

;; 8

;; 1 0

;; 1 1

;; 1 2

;; 1 3

;; 2 2 4

;; 2 1 5

;; 1 6

;; 1 7

breed [entrances entrance]

breed [diverters diverter]

globals

[

 no-diverters

]

187

entrances-own

[

 to-entrance

]

diverters-own

[

 inbound

 to-entrance

]

to setup

 clear-all

 reset-ticks

 create-entrances 1

 [

 set color blue

 set shape "circle"

 set size 1

 setxy 0 (max-pycor - Spacing / 2)

 set to-entrance 0

]

 setup-diverters

end

to go

 ask diverters with [length inbound > 0]

 [

 space-out

 set to-entrance distance entrance 0

 ;set label (word who "(" precision to-entrance 1 ")")

 set label who

 ;let new-heading get-heading

 let new-heading get-direction

 if (item 0 new-heading) > Spacing

 [

 set heading item 1 new-heading

 fd 1

]

]

 ;ask entrances [set label closest-diverters]

 ask patch 3 14 [set plabel closest-diverters]

 tick

end

to setup-diverters

 file-open "diverters.txt"

 let i 1 ;; diverter index

 let j 1 ;; inbound connection index

 let n 0 ;; number of inbound connections

 set no-diverters file-read

 create-diverters no-diverters

 [

 set color green

 set shape "triangle 2"

 set size 1.5

188

 set to-entrance distance entrance 0

 ;set label (word who "(" precision to-entrance 1 ")")

 set inbound []

 set to-entrance distance entrance 0

]

 ;layout-circle diverters 15

 let d-spacing max-pxcor * 2 / (no-diverters + 1)

 set i 1

 while [i <= no-diverters]

 [

 ask diverter i [setxy (i * d-spacing + -1 * max-pxcor) (Spacing / 2 - max-pycor)]

 set i i + 1

]

 set i 1

 while [not file-at-end?]

 [

 set n file-read

 set j 0

 while [j < n]

 [

 ask diverter i [set inbound lput file-read inbound]

 set j j + 1

]

 set i i + 1

]

 set i 1

 while [i <= no-diverters]

 [

 ask diverter i

 [

 set j 0

 while [j < length inbound]

 [

 create-link-to turtle (item j inbound)

 set j j + 1

]

]

 set i i + 1

]

 file-close

end

to space-out

 let i 0

 while [i <= no-diverters]

 [

 if i != who

 [

 if distance turtle i <= (Spacing / 2)

 [

 face turtle i

 rt 180

 fd 1

]

]

 set i i + 1

189

]

end

to-report get-heading

 let i 0

 let headings []

 let x-cor 0

 let y-cor 0

 while [i < length inbound]

 [

 ask turtle (item i inbound)

 [

 set x-cor x-cor + xcor

 set y-cor y-cor + ycor

]

 set i i + 1

]

 set x-cor x-cor / length inbound

 set y-cor y-cor / length inbound

 ;show (word "x_mean = " x-cor " y_mean = " y-cor)

 set headings lput (distancexy x-cor y-cor) headings

 set headings lput (atan (x-cor - xcor) (y-cor - ycor)) headings

 ;show (word "Heading: " headings)

 report headings

end

to-report get-direction

 let i 0

 let min-distance 1000

 let headings []

 let x-cor 0

 let y-cor 0

 while [i < length inbound]

 [

 ask turtle (item i inbound)

 [

 if to-entrance < min-distance

 [

 set min-distance to-entrance

 set x-cor xcor

 set y-cor ycor

]

]

 set i i + 1

]

 set headings lput (distancexy x-cor y-cor) headings

 set headings lput (atan (x-cor - xcor) (y-cor - ycor)) headings

 report headings

end

to-report closest-diverters

 let distances []

 let positions []

 let i 0

 let div-no 0

 ask diverters with [length inbound > 0] [set distances lput distance turtle 0 distances]

190

 set distances sort distances

 while [i < length distances]

 [

 ask diverters with [distance turtle 0 = item i distances]

 [

 set positions lput who positions

]

 set i i + 1

]

 report positions

end

Appendix A.3 Input for Agent-Based Simulation Model

The Setup button initialises the conveyor system by reading the “input.txt” file. Each line of the file specifies a

conveyor section:

<entrance xcor> <entrance ycor> <length> <number> <direction> <type> <left> <centre> <right>

The length parameter (length of the conveyor section) is specified in number of patches. The number parameter

assigns a unique conveyor section number to each conveyor section: this number should be an integer that is greater

than 0 (all “blank” patches are assigned conveyor-number = 0 as a default). The direction parameter specifies the

conveyor section direction: 0 = up; 90 = right; 180 = down; 270 = left.

The left, centre, and right parameters specify the options for the three possible directions of the conveyor section’s

diverter (i.e., for conveyor sections with a diverter): 0 = “do not enter”, 1 = “storage bin exit”, 2 = “exit to another

conveyor section”.

input.txt file:

-14 10 3 1 90 1 0 2 0

-10 10 7 2 90 2 1 2 2

-3 10 8 3 90 2 1 2 2

5 10 8 4 90 2 0 1 2

12 9 8 5 180 2 0 1 2

11 2 8 6 270 2 1 2 0

3 2 8 7 270 2 1 2 0

-5 2 7 8 270 2 0 1 2

-11 3 8 9 0 2 0 0 2

-4 9 7 10 180 1 0 1 2

4 9 7 11 180 1 0 1 2

-4 11 3 12 0 3 0 0 0

4 11 3 13 0 3 0 0 0

13 10 3 14 90 3 0 0 0

12 1 3 15 180 3 0 0 0

4 1 3 16 180 3 0 0 0

-4 1 3 17 180 3 0 0 0

-12 2 3 18 270 3 0 0 0

The user specifies the number of part types using the Number-Part-Types slider. The part types are identified by

letters: e.g., three part types would result in an “a”, a “b”, and a “c” part type. When the simulation is initialised by

the Setup button, the diverter parameters noted above are used in combination with the list of part types to configure

the diverters. The diverters (specified with the “connections” list) use the same format; however, the left, centre,

right fields are specified in terms of part types. For example, “-” signifies “do not enter”, and the part identifier

specifies the path for the part type (e.g., “a” for part type “a”, “abc” for part types “a”, “b”, or “c”).

191

connections.txt file:

"abc"

"-" "abc" "-"

"a" "abc" "abc"

"b" "-" "abc"

"-" "c" "abc"

"-" "abc" "-"

"-" "-" "abc"

"-" "-" "abc"

"-" "-" "abc"

Appendix A.4 Procedures for Low-Level Self-Manageable Agents

;; This file contains the procedures for the self-management agents

;;

;;;;;;; Agent-SMS (Self-Manageable Service Execution Agent)

;;

to monitor-part-types

 ;; This procedure is used to determine if any new part types are introduced to the conveyor system

 ;; If a new part is introduced, a message is sent to Agent-SC. As well, the new part type is added

 ;; to the list of part types "part-types".

 let new-part? FALSE

 let new-type ""

 ask parts

 [

 if not member? part-type part-types

 [

 set new-part? TRUE

 set new-type part-type

 set part-types word part-types part-type

]

]

 if new-part?

 [

 send-message who 1 "request" (word "new part type " new-type)

 ask my-links [die]

 create-link-to turtle 1

 ask my-links

 [

 set color yellow

 set label (word "request: new part type " new-type)

]

]

end

to monitor-conveyor-status [c-number]

 ;; This procedure is used to determine if a conveyor section has failed.

 ;; It is assumed that conveyor-number = 1 is the entrance conveyor section, and as such,

 ;; is not included as a possible failure mode (otherwise, there would be no possible diversion).

 let failure? FALSE

 if c-number > 1

 [

192

 ask patches with [conveyor-number = c-number]

 [

 if operating?

 [

 conveyor-failure c-number

 ifelse Optimize-Path = TRUE

 [set diverter-order [1 4 2 5 6 3 7 8]] ;; just for diverter section 4 for now

 [set diverter-order [1 2 3 4 5 6 7 8]] ;; ordered list

 set failure? TRUE

]

]

]

 if failure?

 [

 send-message who 4 "request" (word "conveyor section " c-number " failure")

 ask my-links [die]

 create-link-to turtle 4

 ask my-links

 [

 set color yellow

 set label (word "request: conveyor section " c-number " failure")

]

]

end

;;

;;;;;;; Agent-SC (Self-Configuration Agent)

;;

to add-storage-bin

 ;; This procedure is used to add a new storage bin when a new part is introduced.

 remove-msg

 processing-delay FALSE

 ;config-diverters Number-Part-Types

 diverter-config

 send-message who 0 "inform" "reconfiguration completed"

 ask my-links [die]

 create-link-to turtle 0

 ask my-links

 [

 set color green

 set label "inform: reconfiguration completed"

]

end

;;

;;;;;;; Agent-SO (Self-Optimization Agent)

;;

;; This procedure is used to optimize routing when several system configurations available.

;; A separate simulation model is developed for routing optimization.

;;

;;;;;;; Agent-SH (Self-Healing Agent)

;;

193

to divert-parts

 ;; This procedure is used to divert parts when a conveyor section has failed.

 ;; For now, a "contingency based approach is used.

 ;; Only a failure of conveyor section 4 is considered for now.

end

;;

;;;;;;; Agent-SP (Self-Protection Agent)

;;

to request-re-route

 ;; This procedure is used to request the SC agent to re-route parts when a conveyor section

 ;; failure occurs.

 remove-msg

 processing-delay FALSE

 send-message who 1 "request" "re-route parts"

 ask my-links [die]

 create-link-to turtle 1

 ask my-links

 [

 set color yellow

 set label (word "request: re-route-parts")

]

end

Appendix A.5 Communication for Agent-Based Model

;;; File to be included in NetLogo Mutliagent Models

;;; Communication for NetLogo Multiagent models

;;; Includes primitives for message creation and handling in NetLogo

;;; Adapted version for NetLogo 4 (2008) I. Sakellariou

;;

;;;;;;; COMMUNICATION

;;

;;;; MESSAGE PROCESSING ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;

;; Sending messages

;; (One man's send is another man's receive..)

;; The second commented out line presents an alternative send implementation.

;; The commented out line represents an alternative method.

;; Problem: What if the agent I am sending the message is "killed"

;; Solution: Nothing Happens. Could yield an error message. Alternative: create a safe send.

to send [msg]

 let recipients get-receivers msg

 let recv 0

 set no-messages no-messages + 1 ;add +1 to the total message count

 foreach recipients [

 ;set recv turtle (read-from-string ?)

 i -> set recv turtle (read-from-string i)

 if recv != nobody [without-interruption [ask recv [receive msg]]] ;; read-from-string is required to convert the

string to number

]

 ;;interaction-plot-msg msg 0

194

end

;;;

;;; Message reception deals with updating incoming-queue

to receive [msg]

 if show_messages [show msg]

 set incoming-queue lput msg incoming-queue

end

;; This reporter returns the next message in the list and removes it from the queue

to-report get-message

 if empty? incoming-queue [report "no_message"]

 let nextmsg first incoming-queue

 remove-msg

 report nextmsg

end

;; This reporter returns the next message in the list WITHOUT removing it from the queue

to-report get-message-no-remove

 if empty? incoming-queue [report "no_message"]

 report first incoming-queue

end

;; Explicit remove-msg

;; This is needed since reporters *cannot* change a variable's values (apparently).

to remove-msg

 set incoming-queue but-first incoming-queue

end

;; broadcasting to all agents of breed t-breed

to broadcast-to [t-breed msg]

 foreach [who] of t-breed [

 ;send add-receiver ? msg

 ;send [x -> add-receiver x msg]

 x -> send add-receiver x msg

]

end

;; Creating messages and adding the sender

to-report create-message [performative]

 report (list performative (word "sender:" who))

end

to-report create-reply [performative msg]

let msgOut 0

 set msgOut create-message performative

 set msgOut add-receiver (get-sender msg) msgOut

 report msgOut

end

;; Accessing information on messages

;; Reports the sender of a message

to-report get-sender [msg]

 ;report remove "sender:" first (filter [not is-number? ? and member? "sender:" ?] msg)

 report remove "sender:" first (filter [x -> not is-number? x and member? "sender:" x] msg)

195

 ;;report item ((position "sender:" msg) + 1) msg

end

;; Reports (returns) the content of a message

to-report get-content [msg]

 report item (position "content:" msg + 1) msg

end

;; Reports the list of receivers of a message

to-report get-receivers [msg]

 ;report map [remove "receiver:" ?] filter [not is-number? ? and member? "receiver:" ?] msg

 report map [? -> remove "receiver:" ?] filter [? -> not is-number? ? and member? "receiver:" ?] msg

end

;; reports the message performative

to-report get-performative [msg]

 report first msg

end

;;; Adding fields to a message

;; Adding a sender to a message

to-report add-sender [sender msg]

 report add msg "sender:" sender

end

;; add a receiver

to-report add-receiver [receiver msg]

 report add msg "receiver:" receiver

end

;; adding multiple recipients

to-report add-multiple-receivers [receivers msg]

 foreach receivers

 [

 ;set msg add-receiver ? msg

 set msg [x -> add-receiver x msg]

]

 report msg

end

;; Adding content to a message

to-report add-content [content msg]

 report add msg "content:" content

end

;; Primitive Add command

to-report add [msg field value]

 ifelse field = "content:"

 [report lput value lput field msg]

 [report lput (word field value) msg]

end

196

Appendix B Experimental Testbed Setup

Appendix B.1 General Steps for Testbed Setup

The general steps to set up the testbed are provided below:

Step 1 to set up Raspberry Pi: a) flash a microSD card with the Raspbian operating system for Raspberry Pi; b)

connect Raspberry Pi to a monitor with a keyboard and a mouse; c) plug Raspberry Pi to a power supply; d) connect

Raspberry Pi to the Internet through wifi for remote access (SSH); e) install Python and related machine learning

packages.

Step 2 to set up SPADE: a) create instant messaging service accounts for agents’ real-time communication through

XMPP in which free XMPP/Jabber instant messaging service Jabber.de is used; b) program agents and agent

behaviours.

Step 3 to set up low-level devices: a) connect LEDs to Raspberry Pi; b) connect DC Motor to a motor driver and

then Raspberry Pi; c) connect Stepper Motor to a motor driver and then Raspberry Pi; d) plug DC Motor and Stepper

Motor to a power supply.

Step 4 to set up high-level JetBot: a) set up hardware including Jetson Nano, body, motor, camera, power, wifi,

display etc. modules; b) set up software including flashing JetBot image, booting Jetson Nano, connecting to wifi,

remote programming through JupyterLab.

Step 5 to develop low-level device control applications: a) design agent-embedded function block applications

through Eclipse 4diac for motors and LEDs; b) compile and deploy function block applications to Raspberry Pi.

Step 6 to develop high-level JetBot control applications: a) design required multi-agent functions for JetBot; b)

develop programs through JupyterLab and deploy to Jetson Nano to run JetBot.

Step 7 to run designed experiments to demonstrate the feasibility of the proposed architecture modelling framework.

Appendix B.2 High-Level JetBot Modelling Test

#Tests included in this appendix are based on and referred to

#SparkFun (https://learn.sparkfun.com/tutorials/assembly-guide-for-sparkfun-jetbot-ai-kit/all) and

#Nvidia (https://jetbot.org/) tutorials.

#to assemble and program JetBot for basic motion, collision avoidance, road following and object detection, etc.

#Key programs are shown as follows. For full applications, see references.

a) Basi Motion

from jetbot import Robot

import time

#initialize a robot instance from Robot class

robot = Robot()

#program JetBot to move forward and backward, and turn left and right

#call forward, backward, left, right, and stop methods

robot.forward(speed=0.3)

time.sleep(1.0)

robot.stop()

197

robot.right(speed=0.3)

time.sleep(1.0)

robot.stop()

robot.backward(speed=0.3)

time.sleep(1.0)

robot.stop()

robot.left(speed=0.3)

time.sleep(1.0)

robot.stop()

#control left and right motors separately

#call the set_motor method

robot.set_motors(0.3, 0.6)

time.sleep(1.0)

robot.stop()

b) Collision Avoidance

#Step 1 Data Collection

#collect sample data to teach JetBot two scenarios: blocked scenarios representing dangerous areas to go ahead

#and free scenarios representing safe areas to move into.

import traitlets

import ipywidgets.widgets as widgets

from IPython.display import display

from jetbot import Camera, bgr8_to_jpeg

#display live camera feed

#set image size as 224px by 224px for an appropriate scale dataset

camera = Camera.instance(width=224, height=224)

image = widgets.Image(format='jpeg', width=224, heigh=224)

#link camera with image

camera_link = traitlets.dlink((camera, 'value'), (image, 'value'), transform=bgr8_to_jpeg)

#display images

display(image)

import os

#create directories to store images

blocked_directory = 'dataset/blocked'

free_directory = 'dataset/free'

#error message if wrong directories

try:

 os.makedirs(free_directory)

 os.makedirs(blocked_directory)

except FileExistsError:

print('Directories not created because they already exist')

#Step 2 Model Training

#neural network model of image classifier is trained under open source deep learning framework PyTorch

#PyTorch is an optimized tensor library for deep learning using GPUs and CPUs

#import Python packages from PyTorch

#torch package includes data structures for multi-dimensional tensors and mathematical operations

import torch

198

import torch.optim as optim

import torch.nn.functional as F

#torchvision package includes datasets, model architectures, and image transformations.

import torchvision

import torchvision.datasets as datasets

import torchvision.models as models

import torchvision.transforms as transforms

#create dataset instance for training

dataset = datasets.ImageFolder(

 'dataset',

 transforms.Compose([

 transforms.ColorJitter(0.1, 0.1, 0.1, 0.1),

 transforms.Resize((224, 224)),

 transforms.ToTensor(),

 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

])

)

#split dataset into train and test sets.

train_dataset, test_dataset = torch.utils.data.random_split(dataset, [len(dataset) - 50, 50])

#create data loaders to load data in batches

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=0)

test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=8, shuffle=True, num_workers=0)

#define neural network for image classification

#torchvision package provides a collection of pre-trained models can be repurposed and reused for new tasks

#Deep Residual Learning for Image Recognition (ResNet models)

#resnet18, resnet34, resnet50, resnet101, resnet152

model = models.resnet18(pretrained=true)

#repurpose and reuse model to 2 classes

model.fc = torch.nn.Linear(512, 2)

#execute model on GPU

device = torch.device('cuda')

model = model.to(device)

#train neural network model

NUM_EPOCHS = 30

BEST_MODEL_PATH = 'best_model.pth'

best_accuracy = 0.0

optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

for epoch in range(NUM_EPOCHS):

 for images, labels in iter(train_loader):

 images = images.to(device)

 labels = labels.to(device)

 optimizer.zero_grad()

 outputs = model(images)

 loss = F.cross_entropy(outputs, labels)

 loss.backward()

 optimizer.step()

199

 test_error_count = 0.0

 for images, labels in iter(test_loader):

 images = images.to(device)

 labels = labels.to(device)

 outputs = model(images)

 test_error_count += float(torch.sum(torch.abs(labels - outputs.argmax(1))))

 test_accuracy = 1.0 - float(test_error_count) / float(len(test_dataset))

 print('%d: %f' % (epoch, test_accuracy))

 if test_accuracy > best_accuracy:

 torch.save(model.state_dict(), BEST_MODEL_PATH)

 best_accuracy = test_accuracy

#Step 3 Model Deployment

#TensorRT is an optimized neural network model built on Nvidia’s parallel programming model CUDA

#for reduced precision but high accuracy, and easily deployable to embedded platforms

#initialize PyTorch model (resnet18 model)

import torch

import torchvision

model = torchvision.models.resnet18(pretrained=False)

model.fc = torch.nn.Linear(512, 2)

model = model.cuda().eval().half()

#load model weights into CPU and then transfer to GPU

model.load_state_dict(torch.load('best_model.pth'))

device = torch.device('cuda')

#build TensorRT model

from torch2trt import torch2trt

data = torch.zeros((1, 3, 224, 224)).cuda().half()

model_trt = torch2trt(model, [data], fp16_mode=True)

#save optimized model

torch.save(model_trt.state_dict(), 'best_model_trt.pth')

c) Road Following

#Step 1 Data Collection

#collect sample data to teach JetBot to follow a path using regression instead of classification.

IPython Libraries for display and widgets

import ipywidgets

import traitlets

import ipywidgets.widgets as widgets

from IPython.display import display

#camera and motor interfaces for JetBot

from jetbot import Robot, Camera, bgr8_to_jpeg

#basic Python packages for image annotation

from uuid import uuid1

200

import os

import json

import glob

import datetime

import numpy as np

import cv2

import time

from jupyter_clickable_image_widget import ClickableImageWidget

DATASET_DIR = 'dataset_xy'

#error message if wrong directories

try:

 os.makedirs(DATASET_DIR)

except FileExistsError:

 print('Directories not created because they already exist')

camera = Camera()

#create image preview

camera_widget = ClickableImageWidget(width=camera.width, height=camera.height)

snapshot_widget = ipywidgets.Image(width=camera.width, height=camera.height)

traitlets.dlink((camera, 'value'), (camera_widget, 'value'), transform=bgr8_to_jpeg)

#create widgets

count_widget = ipywidgets.IntText(description='count')

#update counts at initialization

count_widget.value = len(glob.glob(os.path.join(DATASET_DIR, '*.jpg')))

def save_snapshot(_, content, msg):

 if content['event'] == 'click':

 data = content['eventData']

 x = data['offsetX']

 y = data['offsetY']

 #save to disk

 dataset.save_entry(category_widget.value, camera.value, x, y)

 uuid = 'xy_%03d_%03d_%s' % (x, y, uuid1())

 image_path = os.path.join(DATASET_DIR, uuid + '.jpg')

 with open(image_path, 'wb') as f:

 f.write(camera_widget.value)

 #display saved snapshot

 snapshot = camera.value.copy()

 snapshot = cv2.circle(snapshot, (x, y), 8, (0, 255, 0), 3)

 snapshot_widget.value = bgr8_to_jpeg(snapshot)

 count_widget.value = len(glob.glob(os.path.join(DATASET_DIR, '*.jpg')))

camera_widget.on_msg(save_snapshot)

data_collection_widget = ipywidgets.VBox([ipywidgets.HBox([camera_widget, snapshot_widget]),count_widget])

display(data_collection_widget)

201

#disconnect camera

camera.stop()

#Step 2 Model Training

#use PyTorch deep learning framework to train ResNet18 neural network model for JetBot road following

import torch

import torch.optim as optim

import torch.nn.functional as F

import torchvision

import torchvision.datasets as datasets

import torchvision.models as models

import torchvision.transforms as transforms

import glob

import PIL.Image

import os

import numpy as np

#create dataset instance

#create torch.utils.data.Dataset to implement _len_ and _getitem_ functions

def get_x(path, width):

 """Gets the x value from the image filename"""

 return (float(int(path.split("_")[1])) - width/2) / (width/2)

def get_y(path, height):

 """Gets the y value from the image filename"""

 return (float(int(path.split("_")[2])) - height/2) / (height/2)

class XYDataset(torch.utils.data.Dataset):

 def __init__(self, directory, random_hflips=False):

 self.directory = directory

 self.random_hflips = random_hflips

 self.image_paths = glob.glob(os.path.join(self.directory, '*.jpg'))

 self.color_jitter = transforms.ColorJitter(0.3, 0.3, 0.3, 0.3)

 def __len__(self):

 return len(self.image_paths)

 def __getitem__(self, idx):

 image_path = self.image_paths[idx]

 image = PIL.Image.open(image_path)

 width, height = image.size

 x = float(get_x(os.path.basename(image_path), width))

 y = float(get_y(os.path.basename(image_path), height))

 if float(np.random.rand(1)) > 0.5:

 image = transforms.functional.hflip(image)

 x = -x

 image = self.color_jitter(image)

 image = transforms.functional.resize(image, (224, 224))

 image = transforms.functional.to_tensor(image)

 image = image.numpy()[::-1].copy()

 image = torch.from_numpy(image)

202

 image = transforms.functional.normalize(image, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

 return image, torch.tensor([x, y]).float()

dataset = XYDataset('dataset_xy', random_hflips = False)

#split dataset into train and test sets (90% vs 10%)

test_percent = 0.1

num_test = int(test_percent * len(dataset))

train_dataset, test_dataset = torch.utils.data.random_split(dataset, [len(dataset) - num_test, num_test])

#create data loaders to load data in batches

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = 8, shuffle = True, num_workers = 0)

test_loader = torch.utils.data.DataLoader(test_dataset, batch_size = 8, shuffle = True, num_workers = 0)

#define neural network model

#ResNet18 in PyTorch TorchVision

model = models.resnet18(pretrained=True)

#transfer model for execution on GPU

model.fc = torch.nn.Linear(512, 2)

device = torch.device('cuda')

model = model.to(device)

#train regression to get the best model

NUM_EPOCHS = 70

BEST_MODEL_PATH = 'best_steering_model_xy.pth'

best_loss = 1e9

optimizer = optim.Adam(model.parameters())

for epoch in range(NUM_EPOCHS):

 model.train()

 train_loss = 0.0

 for images, labels in iter(train_loader):

 images = images.to(device)

 labels = labels.to(device)

 optimizer.zero_grad()

 outputs = model(images)

 loss = F.mse_loss(outputs, labels)

 train_loss += float(loss)

 loss.backward()

 optimizer.step()

 train_loss /= len(train_loader)

 model.eval()

 test_loss = 0.0

 for images, labels in iter(test_loader):

 images = images.to(device)

 labels = labels.to(device)

 outputs = model(images)

 loss = F.mse_loss(outputs, labels)

 test_loss += float(loss)

203

 test_loss /= len(test_loader)

 print('%f, %f' % (train_loss, test_loss))

 if test_loss < best_loss:

 torch.save(model.state_dict(), BEST_MODEL_PATH)

 best_loss = test_loss

#Step 3 Model Deployment

#upload neural network model file to JetBot notebook directory

#initialize the PyTorch model

import torchvision

import torch

model = torchvision.models.resnet18(pretrained=False)

model.fc = torch.nn.Linear(512, 2)

#load model weights into CPU and then transfer to GPU

model.load_state_dict(torch.load('best_steering_model_xy.pth'))

device = torch.device('cuda')

model = model.to(device)

model = model.eval().half()

#create pre-processing function to match image format between model and camera

import torchvision.transforms as transforms

import torch.nn.functional as F

import cv2

import PIL.Image

import numpy as np

mean = torch.Tensor([0.485, 0.456, 0.406]).cuda().half()

std = torch.Tensor([0.229, 0.224, 0.225]).cuda().half()

def preprocess(image):

 image = PIL.Image.fromarray(image)

 image = transforms.functional.to_tensor(image).to(device).half()

 image.sub_(mean[:, None, None]).div_(std[:, None, None])

return image[None, ...]

#create robot instance to drive motor

from jetbot import Robot

robot = Robot()

#define neural network execution function to process camera value changes

#pre-process the camera image; execute the neural network;

#compute the approximate steering value; control the motors.

angle = 0.0

angle_last = 0.0

def execute(change):

 global angle, angle_last

 image = change['new']

 xy = model(preprocess(image)).detach().float().cpu().numpy().flatten()

 x = xy[0]

 y = (0.5 - xy[1]) / 2.0

204

 x_slider.value = x

 y_slider.value = y

 speed_slider.value = speed_gain_slider.value

 angle = np.arctan2(x, y)

 pid = angle * steering_gain_slider.value + (angle - angle_last) * steering_dgain_slider.value

 angle_last = angle

 steering_slider.value = pid + steering_bias_slider.value

 robot.left_motor.value = max(min(speed_slider.value + steering_slider.value, 1.0), 0.0)

 robot.right_motor.value = max(min(speed_slider.value - steering_slider.value, 1.0), 0.0)

execute({'new': camera.value})

#attach execution function to camera for processing

camera.observe(execute, names='value')

#unattach execution function to stop robot

import time

camera.unobserve(execute, names='value')

time.sleep(0.1)

robot.stop()

d) Object Detection

#the model is sourced from the TensorFlow Object Detection API

#and optimized through Nvidia TensorRT on Jetson Nano

#compute detections on single camera image

#import ObjectDetector class

from jetbot import ObjectDetector

model = ObjectDetector('ssd_mobilenet_v2_coco.engine')

#initialize JetBot camera

from jetbot import Camera

camera = Camera.instance(width=300, height=300)

#execute neural network model

detections = model(camera.value)

print(detections)

#display detections in text areas

#create detection widgets

from IPython.display import display

import ipywidgets.widgets as widgets

detections_widget = widgets.Textarea()

detections_widget.value = str(detections)

display(detections_widget)

#print out the first image

image_number = 0

object_number = 0

print(detections[image_number][object_number])

205

#control JetBot to follow central object

#Step1: detect object matching specified class

#Step2: select target object in the center of camera's field of vision

#Step3: steer JetBot towards target object, otherwise wander

#Step4: turn left if object blocked

#load pre-trained collision detection model

import torch

import torchvision

import torch.nn.functional as F

import cv2

import numpy as np

collision_model = torchvision.models.alexnet(pretrained=False)

collision_model.classifier[6] = torch.nn.Linear(collision_model.classifier[6].in_features, 2)

collision_model.load_state_dict(torch.load('../collision_avoidance/best_model.pth'))

device = torch.device('cuda')

collision_model = collision_model.to(device)

mean = 255.0 * np.array([0.485, 0.456, 0.406])

stdev = 255.0 * np.array([0.229, 0.224, 0.225])

normalize = torchvision.transforms.Normalize(mean, stdev)

def preprocess(camera_value):

 global device, normalize

 x = camera_value

 x = cv2.resize(x, (224, 224))

 x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)

 x = x.transpose((2, 0, 1))

 x = torch.from_numpy(x).float()

 x = normalize(x)

 x = x.to(device)

 x = x[None, ...]

return x

#create robot instance to drive motor

from jetbot import Robot

robot = Robot()

#display control widgets and connect model execution function to camera updates

from jetbot import bgr8_to_jpeg

blocked_widget = widgets.FloatSlider(min=0.0, max=1.0, value=0.0, description='blocked')

image_widget = widgets.Image(format='jpeg', width=300, height=300)

label_widget = widgets.IntText(value=1, description='tracked label')

speed_widget = widgets.FloatSlider(value=0.4, min=0.0, max=1.0, description='speed')

turn_gain_widget = widgets.FloatSlider(value=0.8, min=0.0, max=2.0, description='turn gain')

display(widgets.VBox([widgets.HBox([image_widget, blocked_widget]), label_widget, speed_widget,

turn_gain_widget]))

width = int(image_widget.width)

height = int(image_widget.height)

def detection_center(detection):

206

 """Computes the center x, y coordinates of the object"""

 bbox = detection['bbox']

 center_x = (bbox[0] + bbox[2]) / 2.0 - 0.5

 center_y = (bbox[1] + bbox[3]) / 2.0 - 0.5

 return (center_x, center_y)

def norm(vec):

 """Computes the length of the 2D vector"""

 return np.sqrt(vec[0]**2 + vec[1]**2)

def closest_detection(detections):

 """Finds the detection closest to the image center"""

 closest_detection = None

 for det in detections:

 center = detection_center(det)

 if closest_detection is None:

 closest_detection = det

 elif norm(detection_center(det)) < norm(detection_center(closest_detection)):

 closest_detection = det

 return closest_detection

def execute(change):

 image = change['new']

 #execute collision model to determine if blocked

 collision_output = collision_model(preprocess(image)).detach().cpu()

 prob_blocked = float(F.softmax(collision_output.flatten(), dim=0)[0])

 blocked_widget.value = prob_blocked

 #turn left if blocked

 if prob_blocked > 0.5:

 robot.right(0.3)

 image_widget.value = bgr8_to_jpeg(image)

 return

 #compute all detected objects

 detections = model(image)

 #draw all detections on image

 for det in detections[0]:

 bbox = det['bbox']

 cv2.rectangle(image, (int(width * bbox[0]), int(height * bbox[1])), (int(width * bbox[2]), int(height *

bbox[3])), (255, 0, 0), 2)

 #select detections that match selected class label

 matching_detections = [d for d in detections[0] if d['label'] == int(label_widget.value)]

 #get detection closest to center of field of view and draw it

 det = closest_detection(matching_detections)

 if det is not None:

 bbox = det['bbox']

 cv2.rectangle(image, (int(width * bbox[0]), int(height * bbox[1])), (int(width * bbox[2]), int(height *

bbox[3])), (0, 255, 0), 5)

 #otherwise go forward if no target detected

 if det is None:

207

 robot.forward(float(speed_widget.value))

 #otherwise steer towards target

 else:

 # move robot forward and steer proportional target's x-distance from center

 center = detection_center(det)

 robot.set_motors(

 float(speed_widget.value + turn_gain_widget.value * center[0]),

 float(speed_widget.value - turn_gain_widget.value * center[0])

)

 #update image widget

 image_widget.value = bgr8_to_jpeg(image)

execute({'new': camera.value})

#connect execution function to each camera frame update

camera.unobserve_all()

camera.observe(execute, names='value')

#unattach execution function to stop robot

import time

camera.unobserve(execute, names='value')

time.sleep(0.1)

robot.stop()

e) Management Agent Test

SPADE program for the management agent

This agent receives messages from LEDs and send messages to Motors.

from spade.agent import Agent

from spade.behaviour import CyclicBehaviour

from spade.template import Template

from spade.message import Message

from spade import quit_spade

import asyncio

color_target = {"blue": ("DCAgent CW", "testagent@jabber.de"),

 "green": ("DCAgent CCW", "testagent@jabber.de"),

 "red": ("StepperAgent CW", "receiveragent@jabber.de"),

 "yellow": ("StepperAgent CCW", "receivergent@jabber.de")

 }

class ManagerAgent(Agent): # extends the Agent class from Python

 # define a behaviour class that extends CyclicBehaviour from Spade.

 class ManageBehaviour(CyclicBehaviour):

 async def on_start(self): # on_start() function executes once when a behaviour instance is added to an agent

 template = Template() # set the template to match incoming messages. This ensures receive() works.

 template.set_metadata("performative", "inform")

 async def run(self): # in CyclicBehaviour run() runs indefinitely until the behaviour is stopped.

 message_from_led = await self.receive(20)

 if not message_from_led:

 # If no message is received from LED agent, quit Spade

 print("No message from LED agent")

208

 await self.agent.stop()

 quit_spade()

 else:

 # extracting color from message, converting to target agent and direction

 color = "".join(letter for letter in message_from_led.body if letter.isalpha())

 target_direction = color_target[color]

 target_agent = target_direction[1]

 target_name = target_direction[0].split()[0]

 direction = target_direction[0].split()[1]

 # extracting on-time from message from LED agent

 run_time_string = "".join(letter for letter in message_from_led.body if not letter.isalpha())

 # creating a message to motor based on color, direction, and on-time

 message_to_motor = Message(to=target_agent)

 message_to_motor.set_metadata("performative", "inform")

 message_to_motor.body = direction+" "+run_time_string

 print("Message {} received from LED agent. Sending message {} to {}".

 format(message_from_led.body, message_to_motor.body, target_name))

 await self.send(message_to_motor) # sends message to appropriate motor

 # wait 30 seconds for motor to complete operation and send a confirmation message to manager

 message_from_motor = await self.receive(30)

 # if no message is received from motor agent, quit spade

 if not message_from_motor:

 print("No confirmation from motor, quitting Spade ...")

 await self.agent.stop()

 quit_spade()

 # if message from motor agent does not contain the phrase "Done", quit Spade

 elif "Done" not in message_from_motor.body:

 print("Keyword 'Done' not in message from motor, quitting Spade ...")

 await self.agent.stop()

 quit_spade()

 # if confirmation received from motor agent, send a "continue" message to LED agent

 else:

 print("Confirmation received from {}, resuming operation ...".format(target_name))

 await asyncio.sleep(2)

 message_to_led = Message(to="senderagent@jabber.de")

 message_to_led.set_metadata("performative", "inform")

 message_to_led.body = "continue"

 await self.send(message_to_led)

 async def setup(self):

 manage_behaviour = self.ManageBehaviour()

 self.add_behaviour(manage_behaviour)

agent = ManagerAgent("manageragent@jabber.de", "managerlyu") # initiate the manager agent

future = agent.start() # runs manager agent behaviour

future.result()

Appendix B.3 Low-level Devices Modelling Test

Tests in this appendix include low-level device setup and programming of LEDs and Motors in Raspberry Pi.

209

a) LED Test

LED Test with Raspberry Pi 3

Blue --> GPIO 14, Green --> GPIO 15, Red --> GPIO 18, Yellow --> GPIO 23

import RPi.GPIO as GPIO

import time

Set up GPIO pins

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(14, GPIO.OUT) # Blue GPIO 14

GPIO.setup(15, GPIO.OUT) # Green GPIO 15

GPIO.setup(18, GPIO.OUT) # Red GPIO 18

GPIO.setup(23, GPIO.OUT) # Yellow GPIO 23

Turn on LED lights

print("LED On")

GPIO.output(14, GPIO.HIGH)

time.sleep(1)

GPIO.output(15, GPIO.HIGH)

time.sleep(1)

GPIO.output(18, GPIO.HIGH)

time.sleep(1)

GPIO.output(23, GPIO.HIGH)

time.sleep(3)

Turn off LED lights

print("LED Off")

GPIO.output(23, GPIO.LOW)

time.sleep(1)

GPIO.output(18, GPIO.LOW)

time.sleep(1)

GPIO.output(15, GPIO.LOW)

time.sleep(1)

GPIO.output(14, GPIO.LOW)

Reset GPIO pins

GPIO.cleanup()

SPADE program to control LEDs

This agent lights up LEDs with random colors (motor rotation direction) and durations (motor rotation time)

import RPi.GPIO as GPIO

import time

import random

import asyncio

from spade.agent import Agent

from spade.behaviour import CyclicBehaviour

from spade.message import Message

from spade.template import Template

from spade import quit_spade

class LedAgent(Agent):

210

 async def setup(self):

 self.lightbehaviour = self.LightBehaviour()

 self.add_behaviour(self.lightbehaviour)

 class LightBehaviour(CyclicBehaviour):

 async def on_start(self):

 template = Template()

 template.set_metadata("performative", "inform")

 message_to_manager = Message(to="manageragent@jabber.de")

 message_to_manager.set_metadata("performative", "inform")

 # creating lists of colors and pins

 color_list = ["blue", "green", "red", "yellow"]

 GPIO.setmode(GPIO.BCM)

 pin_list = [14, 15, 18, 23]

 color_pin = dict(zip(color_list, pin_list))

 color = random.choice(color_list)

 # use integers for LED on-times

 on_time = random.randint(1, 4)

 pin = color_pin[color]

 print("Turning led on for first time: {}, {}".format(color,str(on_time)))

 # initiating the GPIO pins on the pi

 GPIO.setup(pin_list, GPIO.OUT)

 # turning the pin high

 GPIO.output(pin, GPIO.HIGH)

 # keeping the pin high and LED lit for on_time seconds

 await asyncio.sleep(on_time)

 # turning pin LOW turns off LED

 GPIO.output(pin, GPIO.LOW)

 # cleaning up prepares for next loop

 GPIO.cleanup(pin_list)

 mylist = [color, on_time]

 # message to manager consists of color and on_time both strings

 message_to_manager.body = mylist[0]+" "+str(mylist[1])

 self.message_to_manager = message_to_manager

 async def run(self):

 await self.send(self.message_to_manager) # start by sending first message to manager

 print("Message to manager agent: {}".format(self.message_to_manager.body))

 color_list = ["blue", "green", "red", "yellow"]

 GPIO.setmode(GPIO.BCM)

 pin_list = [14, 15, 18, 23]

 color_pin = dict(zip(color_list, pin_list))

 color = random.choice(color_list)

 on_time = random.randint(1, 10)

 pin = color_pin[color]

 GPIO.setup(pin_list, GPIO.OUT)

 message_from_manager = await self.receive(20)

 if not message_from_manager:

 # if no message is received from manager, quit Spade

 print("No message from manager, quitting Spade ...")

 await self.agent.stop()

 quit_spade()

 elif "continue" not in message_from_manager.body:

211

 # if message from manager does not say "continue" quit Spade

 print("Keyword 'continue' not in message from manager, quitting Spade ...")

 await self.agent.stop()

 quit_spade()

 else:

 await asyncio.sleep(2) # pause for two seconds to manage timing issues

 print("Confirmation received from manager, turning {} on for {} seconds ...".format(color, str(on_time)))

 GPIO.output(pin, GPIO.HIGH)

 await asyncio.sleep(on_time)

 GPIO.output(pin, GPIO.LOW)

 GPIO.cleanup(pin_list)

 mylist = [color, on_time]

 self.message_to_manager.body = mylist[0]+" "+str(mylist[1])

agent = LedAgent("senderagent@jabber.de", "senderlyu") # initiate LED agent

future = agent.start() # run LED agent behaviour

future.result()

b) Stepper Motor Test

Stepper Motor Test with Raspberry Pi 3

STEP --> GPIO 14 (Blue), DIR --> GPIO 15 (Yellow)

Phidgets Bipolar 12V Stepper Motor: https://www.phidgets.com/?tier=3&catid=24&pcid=21&prodid=340.

Texas Instruments DRV8825 Stepper Motor Driver: https://www.pololu.com/product/2133.

.

Set up connections

VMOT and GND to 12V Power Supply

A1, A2, B1, B2 to Step Motor

SLEEP and RESET to RPi 5V, GND to RPi GND

STEP to RPi GPIO 14, DIR to RPi GPIO 15

import RPi.GPIO as GPIO

import time

Set up GPIO pins

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(14, GPIO.OUT) # GPIO 14 to STEP

GPIO.setup(15, GPIO.OUT) # GPIO 15 to DIR

Drive the motor clockwise

print("ClockWise Rotation")

GPIO.output(14, GPIO.HIGH) # Set STEP

GPIO.output(15, GPIO.HIGH) # Set DIR

for x in range(10000):

 GPIO.output(14, GPIO.HIGH)

 time.sleep(0.0002)

 GPIO.output(14, GPIO.LOW)

 time.sleep(0.0002)

time.sleep(2)

Drive the motor counterclockwise

print("CounterClockWise Rotation")

212

GPIO.output(14, GPIO.LOW) # Set STEP

GPIO.output(15, GPIO.LOW) # Set DIR

for x in range(10000):

 GPIO.output(14, GPIO.HIGH)

 time.sleep(0.0002)

 GPIO.output(14, GPIO.LOW)

 time.sleep(0.0002)

Reset GPIO pins

GPIO.cleanup()

SPADE program to control the stepper motor

This agent runs the stepper in the direction and for the duration sent by the manager agent

import RPi.GPIO as GPIO

import time

import asyncio

from spade.agent import Agent

from spade.behaviour import CyclicBehaviour

from spade.message import Message

from spade import quit_spade

from spade.template import Template

class StepperAgent(Agent):

 async def setup(self):

 template = Template()

 template.set_metadata("performative", "inform")

 self.stepbehaviour = self.StepBehaviour()

 self.add_behaviour(self.stepbehaviour, template)

 class StepBehaviour(CyclicBehaviour):

 async def on_start(self):

 message_to_manager = Message(to="manageragent@jabber.de")

 message_to_manager.set_metadata("performative", "inform")

 message_to_manager.body = "Stepper Done"

 # create a message that is sent to manager when motor has completed operation

 self.message_to_manager = message_to_manager

 async def run(self):

 for attempt in range(10): # agent attempts to receive message from manager 10 times.

 message_from_manager = await self.receive(10)

 if message_from_manager:

 break

 if not message_from_manager: # If no message is received quit spade with a message

 print("No message from manager, quitting Spade ...")

 await self.agent.stop()

 quit_spade()

 # if message received, extract on time as an integer and direction as a string

 on_time = int("".join(letter for letter in message_from_manager.body if letter.isdigit()))

 direction = "".join(letter for letter in message_from_manager.body if letter.isalpha())

 if direction == "CW":

 time_start = time.perf_counter()

213

 time_elapsed = 0

 sleep_time = 0.0002 # time between pulses to motor based on experiments

 print("Message received from manager. Running Stepper {} for {} seconds ...".format(direction, on_time))

 while time_elapsed <= on_time:

 time_elapsed = time.perf_counter() - time_start

 # Initiating GPIO pins on the raspberry pi

 GPIO.setmode(GPIO.BCM)

 pin_list = [14, 15]

 GPIO.setup(pin_list, GPIO.OUT)

 GPIO.output(pin_list, GPIO.LOW)

 GPIO.output(15, GPIO.HIGH) # sets direction HIGH

 # full stepping: Enable LOW, M1, M2, M3 LOW

 GPIO.output(14, GPIO.HIGH)

 time.sleep(sleep_time)

 GPIO.output(14, GPIO.LOW)

 time.sleep(sleep_time)

 GPIO.cleanup() # After the motor is run, clean up GPIO pins for the next loop

 await self.send(self.message_to_manager)

 # sends a message to manager, indicating the motor agent has finished operating

 elif direction == "CCW":

 time_start = time.perf_counter()

 time_elapsed = 0

 sleep_time = 0.0002

 print("Message received from manager. Running Stepper {} for {} seconds ...".format(direction, on_time))

 while time_elapsed <= on_time:

 time_elapsed = time.perf_counter() - time_start

 GPIO.setmode(GPIO.BCM)

 pin_list = [14, 15]

 GPIO.setup(pin_list, GPIO.OUT)

 GPIO.output(15, GPIO.LOW) # sets direction LOW

 # full stepping: Enable LOW, M1, M2, M3 LOW

 GPIO.output(14, GPIO.HIGH)

 time.sleep(sleep_time)

 GPIO.output(14, GPIO.LOW)

 time.sleep(sleep_time)

 GPIO.cleanup()

 await self.send(self.message_to_manager)

 # sends confirmation message to manager, indicating motor has completed operation

agent = StepperAgent("receiveragent@jabber.de", "receiverlyu")

future = agent.start() # runs the agent behaviours

future.result()

c) DC Motor Test

DC Motor Test with Raspberry Pi Zero

PWMA--> GPIO 14 (Blue), STBY--> GPIO 15 (White), AI1--> GPIO 18 (Red), AI2--> GPIO 23 (Black)

Phidgets 12V DC Motor: https://www.phidgets.com/?tier=3&catid=20&pcid=17&prodid=1139.

TB6612FNG DC Motor Driver on a SparkFun Breakout Board: https://www.sparkfun.com/products/14450.

Set up Connections

VM and GND to 12V Power Supply

A01 and A02 to DC Motor

VCC to RPi 5V, GND to RPi GND,

214

PWMA to RPi GPIO 14, STBY to RPi GPIO 15, AIN1 to RPi GPIO 18, AIN2 to RPi GPIO 23

import time

import RPi.GPIO as GPIO

Set up GPIO pins

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(14, GPIO.OUT) # GPIO 14 to PWMA

GPIO.setup(23, GPIO.OUT) # GPIO 23 to AIN2

GPIO.setup(18, GPIO.OUT) # GPIO 18 to AIN1

GPIO.setup(15, GPIO.OUT) # GPIO 15 to STBY

Drive the motor clockwise

print("ClockWise Rotation")

GPIO.output(18, GPIO.HIGH) # Set AIN1

GPIO.output(23, GPIO.LOW) # Set AIN2

Set the motor speed

GPIO.output(14, GPIO.HIGH) # Set PWMA

Disable STBY

GPIO.output(15, GPIO.HIGH)

time.sleep(5)

Drive the motor counterclockwise

print("CounterClockWise Rotation")

GPIO.output(18, GPIO.LOW) # Set AIN1

GPIO.output(23, GPIO.HIGH) # Set AIN2

Set the motor speed

GPIO.output(14, GPIO.HIGH) # Set PWMA

Disable STBY

GPIO.output(15, GPIO.HIGH)

time.sleep(5)

Reset all the GPIO pins

GPIO.cleanup()

SPADE program to control the DC motor

This agent runs the DC motor in the direction and for the duration sent by the manager agent

from spade.agent import Agent

from spade.behaviour import CyclicBehaviour

from spade.template import Template

from spade.message import Message

from spade import quit_spade

import asyncio

import RPi.GPIO as GPIO

import time

215

class DCAgent(Agent): # extends the Agent class from Python

 async def setup(self):

 template = Template() # set the template to match incoming messages. This ensures receive() works.

 template.set_metadata("performative", "inform")

 self.dc_behaviour = self.DC_Behaviour()

 self.add_behaviour(self.dc_behaviour, template)

 class DC_Behaviour(CyclicBehaviour):

 async def on_start(self): # on_start() function executes once when a behaviour instance is added to an agent

 message_to_manager = Message(to="manageragent@jabber.de")

 message_to_manager.set_metadata("performative", "inform")

 message_to_manager.body = "DC Done"

 # create a message that indicates DC motor has completed operation

 self.message_to_manager = message_to_manager

 async def run(self): # in CyclicBehaviour run() runs indefinitely until the behaviour is stopped.

 # attempt to receive message from manager 10 times. This helps with the timing of operations

 for attempt in range(10):

 message_from_manager = await self.receive(10) # Waiting 10 seconds for message from manager

 if message_from_manager:

 break

 # if no message is received from manager, quit Spade

 if not message_from_manager:

 print("No message from manager agent, quitting Spade ...")

 await self.agent.stop()

 quit_spade()

 # extract on_time (as integer) and direction (as a string) from message

 on_time = int("".join(letter for letter in message_from_manager.body if letter.isdigit()))

 direction = "".join(letter for letter in message_from_manager.body if letter.isalpha())

 if direction == "CW":

 print("Message received from manager. Running DC motor {} for {} seconds ...".format(direction, on_time))

 # initiate GPIO pins

 GPIO.setmode(GPIO.BCM)

 pin_list = [14, 15, 18, 23]

 GPIO.setup(pin_list, GPIO.OUT)

 GPIO.output(pin_list, GPIO.LOW)

 GPIO.output(14, GPIO.HIGH) # PWMA HIGH

 GPIO.output(15, GPIO.HIGH) # SYTBY HIGH

 # CW; AI1 HIGH, AI2 LOW

 GPIO.output(18, GPIO.HIGH)

 GPIO.output(23, GPIO.LOW)

 time.sleep(on_time)

 GPIO.output(14, GPIO.LOW) #PWMA LOW for short brake

 GPIO.cleanup() # clean up GPIO pins for next operation

 await self.send(self.message_to_manager) # send completion confirmation to manager agent

 elif direction == "CCW":

 print("Message received from manager. Running DC motor {} for {} seconds ...".format(direction, on_time))

 GPIO.setmode(GPIO.BCM)

 pin_list = [14, 15, 18, 23]

 GPIO.setup(pin_list, GPIO.OUT)

216

 GPIO.output(pin_list, GPIO.LOW)

 GPIO.output(14, GPIO.HIGH) # PWMA HIGH

 GPIO.output(15, GPIO.HIGH) # SYTBY HIGH

 # CCW; AI1 LOW, AI2 HIGH

 GPIO.output(18, GPIO.LOW)

 GPIO.output(23, GPIO.HIGH)

 time.sleep(on_time)

 GPIO.output(14, GPIO.LOW) #PWMA LOW for short brake

 GPIO.cleanup()

 await self.send(self.message_to_manager)

agent = DCAgent("testagent@jabber.de", "testlyu") # initiate the DC motor agent

future = agent.start() # Run the DC motor agent behaviour

future.result()

