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Resumo

Este trabalho apresenta o formalismo de modelação DS-Pnet (Dataflow, Sinais e redes 
de  Petri),  criado  para  o  desenvolvimento  de  sistemas  ciber-físicos,  combinando  as 
características das redes de Petri e dataflows para possibilitar a modelação de sistemas 
mistos, contendo partes reativas e operações de processamento de dados. Herdando as 
potencialidades  da  classe  de  redes  de  Petri  progenitora  IOPT,  incluindo  a  interface 
externa composta por sinais e eventos de entrada e saída, a adição de operações de fluxo 
de  dados  (dataflow)  contribuiu  para  melhorar  a  capacidade  de  modelação  para 
especificar  a  transformação  matemática  de  dados  e  expressar  graficamente  as 
dependências  entre  sinais.  Sistemas  centrados  em  dados,  que  não  requerem 
controladores reativos podem ser modelados usando apenas dataflows.

A composição  de modelos  baseada em componentes  permite  reutilizar  componentes 
previamente  desenvolvidos,  criar  bibliotecas  de  componentes  e  decompor 
hierarquicamente modelos em diversos sub-sistemas.  
Foi definida uma semântica de execução precisa, tendo em conta a relação entre nós de 
dataflow  e  rede  de  Petri,  que  oferece  uma  abstração  para  definir  a  interface  entre 
controladores  reativos  e  sinais  de  entrada  e  saída,  incluindo  sensores  e  atuadores 
analógicos.

O novo formalismo é suportado por um conjunto de ferramentas com interface Web, 
IOPT-Flow, que oferece ferramentas para criar e editar modelos, simular a execução de 
modelos  diretamente  no navegador  Web,  para  além de ferramentas  de  validação de 
modelos  e  geração  automática  de  código  (C,  VHDL e  JavaScript)  que  produzem 
hardware e software para correr em dispositivos computacionais embutidos.
Foi criado um novo protocolo de comunicação para automatizar a implementação de 
sistemas ciber-físicos distribuídos compostos por redes de componentes remotos que 
comunicam usando a Internet. A ferramenta de edição pode ser ligada diretamente a 
dispositivos embutidos remotos que executam modelos DS-Pnet, permitindo importar 
componentes remotos para novos modelos, contribuindo para simplificar a criação de 
aplicações  distribuídas  onde  a  comunicação  entre  componentes  localizados  em  nós 
diferentes é especificada pelo desenho de arcos.

São apresentadas  várias  aplicações  que foram elaboradas  para  validar  o  formalismo 
proposto e as ferramentas associadas, incluindo soluções implementadas em hardware, 
aplicações industriais e aplicações de software distribuídas.

Palavras-chave: Redes  de  Petri,  fluxo  de  dados,  sistemas  ciber-físicos,  sistemas 
embutidos, automação de design
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Abstract

This work presents the DS-Pnet modeling formalism  (Dataflow, Signals and Petri nets), 
designed for the development of cyber-physical systems, combining the characteristics 
of Petri nets and dataflows to support the modeling of mixed systems containing both 
reactive parts and data processing operations. Inheriting the features of the parent IOPT 
Petri net class, including an external interface composed of input and output signals and 
events,  the addition of dataflow operations brings enhanced modeling capabilities to 
specify  mathematical  data  transformations  and graphically  express  the  dependencies 
between  signals. Data-centric  systems,  that  do  not  require  reactive  controllers,  are 
designed using pure dataflow models.

Component  based  model  composition  enables  reusing  existing  components,  create 
libraries  of  previously  tested  components  and  hierarchically  decompose  complex 
systems into smaller sub-systems.
A precise  execution  semantics  was  defined,  considering  the  relationship  between 
dataflow and Petri net nodes, providing an abstraction to define the interface between 
reactive controllers and input and output signals, including analog sensors and actuators.

The new formalism is supported by the IOPT-Flow Web based tool framework, offering 
tools to design and edit models, simulate model execution on the Web browser, plus 
model-checking and software/hardware automatic code generation tools to implement 
controllers running on embedded devices (C,VHDL and JavaScript).
A new communication protocol was created to permit the automatic implementation of 
distributed  cyber-physical  systems  composed  of  networks  of  remote  components 
communicating over the Internet. The editor tool connects directly to remote embedded 
devices running DS-Pnet models and may import remote components into new models, 
contributing to simplify the creation of distributed cyber-physical applications, where 
the communication between distributed components is specified just by drawing arcs.

Several application examples were designed to validate the proposed formalism and the 
associated  framework,  ranging  from  hardware  solutions,  industrial  applications  to 
distributed software applications.

Keywords: Petri nets, dataflows, cyber-physical systems, embedded systems, design 
automation
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1 Introduction

1.1 Background and motivation

The emergence of low cost computing platforms lead to the vast proliferation of 

embedded systems with increasing levels of sophistication, automating many tasks that 

were previously performed by human operators, with applications in the domains of 

industrial  systems,  home  appliances,  medical  devices,  automatic  vending  machines, 

security  and  surveillance  applications,  in-vehicle  systems  and  entertainment 

applications,  among  others.  The  fast  dissemination  of  the  Internet  and  the  wide 

availability of inexpensive networking technology brought Internet connectivity to the 

recent  generations  of  embedded devices,  contributing to  the birth  of  the  Internet  of 

Things.

Applications  running  on mobile  computing  devices  may  be  employed  for  the 

remote monitoring and operation of solutions employing distributed networks of remote 

devices, often taking advantage of public data provided by existing infrastructure, as 

smart grids and city traffic control systems. These capabilities enable the development 

of even more sophisticated systems, including access to automatic payment systems and 

connection to social media platforms.

Over the past decades, model based formalisms have been successfully used to the 

development of embedded system controllers, helping to cope with the increasing levels 

of complexity involved. With this approach, instead of directly writing software code or 

hardware descriptions, developers start with the design of high level models that specify 

the  desired  system  behavior  and  data  structures  employed,  frequently  based  on 

graphical  formalisms as  Petri  nets  [29][30][31][32][33],  UML activity  diagrams and 

statecharts [34][35][36].

1
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With thousands of academic publications, Petri nets have been the focus of many 

research groups leading to the advent of a growing number of Petri net classes adapted 

to different fields. However, most of these classes only support autonomous systems 

and are only used for simulation and model-checking purposes  [37][38]. In contrast, 

non-autonomous classes, as IOPT nets  [29] and NCES [39], use inputs and outputs to 

communicate with the external world, going beyond the realm of simulation to allow 

the implementation of real controllers running on physical hardware [8][14].

Non autonomous Petri nets offer a feature set very well adapted to the design of 

embedded system controllers. System state can be mapped to places and the behavioral 

rules that define system evolution are specified using transitions. Petri nets inherently 

handle the concepts of parallelism, concurrency and synchronization, frequently used in 

embedded system controller  design.  The design of systems containing multiple  sub-

systems  that  compete  for  shared  resources  usually  starts  with  the  definition  of 

independent state machines for each sub-system, without concurrency concerns. Next, 

the  critical  sections  that  require  exclusive  access  to  the  shared  resources  are 

synchronized  with  additional  places  that  work  as  semaphores.  This  method  avoids 

possible state explosion problems that would occur trying to design entire systems using 

a single state machine.

To perform their job, controllers must communicate with the controlled systems 

and the external world,  involving the transmission of different types of information, 

including sensor gauged data, drive mechanical actuators and communicate with users. 

As a result, the external interface of the non autonomous models must cover a wide 

range of data types to support both digital and analog signals and events. The controller 

models react to these events and changes in input signals, producing the consequent 

output responses. However, the values read from the input sensors usually require some 

sort of signal processing and conditioning before being ready for decision making. For 

example, input signals may require units conversion, noise filtering and threshold cross 

checking. In the same way, output values are generally calculated with basis on the 

system state and input values.

Although Petri nets excel in the specification of reactive systems, most Petri net 

classes  have  struggled  to  provide  a  good  solution  for  signal  processing  and  data 

manipulation.  The most  frequent  solution  relies  on  text  inscriptions  associated  with 

places and transitions where the user may insert mathematical expressions [29] or code 

snippets written using the syntax of traditional programming languages  [40][41][42]. 

Unfortunately, this solution cripples the core advantages of a graphical formalism: the 

relationships and dependencies between different signals are hidden inside textual code 
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expressions, frequently hidden from the main view to avoid screen clutter, contributing 

to reduce model readability.

High level Petri  nets  offer an interesting data processing solution,  storing data 

inside  tokens,  that  may  be  manipulated  upon  transition  firing.  Unfortunately  this 

solution  has  several  drawbacks.  First,  when  a  model  employs  interdependent 

calculations  it  imposes  propagation  delays,  as  new  calculated  values  will  only  be 

available  on  the  next  execution  step.  Second,  as  a  single  place  may  store  multiple 

tokens,  it  conducts  to  iterative  execution  semantic  algorithms  that  increase  the 

complexity of hardware implementation and do not guarantee a fixed step-execution 

time.

From another side, the functionality of the embedded systems has been constantly 

improving, leading to more complex controller models, raising the need for structuring 

mechanisms  that  enable  the  sub-division  of  complex  controllers  into  several 

components. Using this strategy, a controller can be composed from an hierarchy of 

sub-systems  and  the  behavior  of  each  sub-system  can  be  specified  using  simpler 

models.  Component  models  may  be  individually  tested  and  model-checked,  with 

benefits  in  terms  of  development  time.  Finally,  the  components  can  be  instantiated 

multiple times in the same project, or reused on future projects, taking advantage of the 

design and model-checking effort previously carried, allowing the creation of libraries 

containing frequently used components.

Almost  all  modeling  formalisms,  programming  languages  and  hardware 

description  languages  include  structuring  mechanisms  to  enable  the  top-down 

decomposition  of  complex  systems  into  simpler  components  [36][43][44],  or  the 

bottom-up composition of new applications from existing components. In all cases, the 

mechanisms used to pass information between components and encapsulate local data 

inside each component play a crucial role.

Most of the traditional Petri net classes and associated tool frameworks [40][41]

[45] offer  structuring  mechanisms,  employing  concepts  as  node  fusion  and  macro 

nodes. However these mechanisms present several drawbacks relatively to the input and 

output signals used in electronic devices, where information flows in a unidirectional 

way. In these circumstances, the behavior of a system depends only on the inputs and 

internal  state,  and  is  not  affected  by  external  systems  connected  to  the  outputs.  In 

contrast, the traditional Petri net structuring mechanisms permit adding external input 

arcs to the output nodes of module, inducing effects in the internal module behavior that 

conduct to results not foreseen by the original model designer. For example, an external 

arc may prevent a transition from firing, completely blocking a module execution. This 
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problem has already been presented by other authors  [39][46] discussing the NCES 

Petri net class.

Modern embedded systems, built  on top of networks combining computational 

sub-systems and physical devices, enter in the field of Cyber-Physical Systems (CPS) 

[47][48],  dealing  not  only  with  classic  control  problems  and  the  idiosyncrasies  of 

communication networks and computational systems, but specifically with the problems 

that  arise  at  the  intersection  between  physical  and  computational  sub-systems. 

Applications  of  CPS frequently  listed in  the  literature,  include distributed  industrial 

systems,  smart  electrical  grids,  in-vehicle  systems  and  traffic  control  systems,  bio-

medical and health-care systems, smart sensor networks and industrial robot systems, 

using the same network infrastructure that is usually employed in the Internet of Things 

(IoT) [49].

Involving  both  mechanical  sub-systems  and  computational  devices,  Cyber-

Physical Systems are viewed as an interdisciplinary field, requiring the collaborative 

work from different  engineering disciplines,  including mechanics,  computer  science, 

computer engineering, systems engineering and electronics. These disciplines approach 

problems from different perspectives, use different terminologies and employ different 

tools, raising the need for new development formalisms that may appeal to designers 

coming from different backgrounds. Again, model based development formalisms may 

be  used  as  a  common  ground:  high  level  graphical  models  may  be  used  to  create 

information systems and specify system behavior in a way that is easily understood by 

all people involved, hiding the low level details required by the traditional programming 

languages used in embedded-system design.

Around the time this  work was started,  the IEEE Control systems society had 

recently identified a list of areas in need for CPS research [50], including the need for 

new abstractions and architectures  [51][52][53],  distributed computation models  and 

verification and validation tools, to support the rapid development of CPS applications. 

The work presented in this document is a contribution in that direction.
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1.2 Preliminary contributions

The  problems  addressed  in  this  work  were  identified  along  several  years  of 

research and development in related fields. This work resulted in several contributions 

to the IOPT tools framework, available on-line at «http://gres.uninova.pt/IOPT-Tools/», 

whose results were disseminated over 24 publications, including conference and journal 

papers, two book chapters and a user manual.

Contributions to a first-generation of IOPT support tools, include an automatic 

generator of debug screens for the Animator tool  [3] and a DDR memory interface to 

support Animator graphical user interfaces on FPGA platforms [2][4].

Contributions to the IOPT Petri net class have been added to the current IOPT 

meta-model  [5][17] descriptions,  include  new  syntax  rules  for  mathematical 

expressions,  the  addition  of  output  actions  associated  with  transition  firing  and 

definition of arrays:

a) Changes in mathematical expressions include the support for new operators and 

the  definition  of  a  new  hierarchical  syntax,  to  support  multiple  automatic  code 

generators in a language independent way.

b) Transition actions allow the definition of output signal values using arithmetic 

expressions. transition output signals memorize the last affected value and are a part of 

the system state vector, along with place marking and signals associated with output 

events. In order to simplify state-space computation, the expressions used to calculate 

transition output signals can only contain literal values and other system-state variables.

c) Arrays are used for two purposes: First, constant arrays enable the definition of 

general purpose functions with one or two integer arguments, storing a table of pre-

calculated function values, that can be used by both the software code generators and 

the hardware description code generators. Second, variable arrays, whose contents can 

change  during  model  execution,  enable  the  application  of  the  IOPT formalism  to 

problems  that  deal  with  large  amounts  of  data.  In  order  to  support  hardware 

implementations, arrays indexes are always performed using a single range variable. As 

a  consequence,  simultaneous  concurrent  access  to  different  array  positions  must  be 

explicitly dealt by the model designer.

Contribution to several prototypes of the cloud based IOPT tools framework [13]

[16][20][21][23],  including contributions  to  the  IOPT Tools  editor  [24],  the  C code 

generator [8], the VHDL code generator [14], the state-space [6][7] and model-checking 
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subsystem  [9][15],  a  simulator  [19] and  a  debugger  based  on  a  remote  debug  and 

monitoring communication protocol [18][22].

Four  application  papers,  describing  FPGA based  prototypes  in  the  field  of 

industrial electronics, consisting of a controller for a high-voltage Marx pulse generator 

[1][10][11] and a brush-less DC motor controller  [12], played an important role in the 

identification of the research questions and underlying problems described in this text:

a)  The controllers  implemented  in  both  prototypes  presented  a  relatively  high 

level  of complexity and a modular  approach was employed in each case.  The final 

systems were built using the composition of smaller components, communicating with 

each other and the external world using input and output signals. In both cases, the 

component  instantiation and signal  connections  was performed by manually writing 

VHDL code.

b)  In  both  prototypes,  several  modules  were  first  designed  in  paper  using  a 

dataflow approach and were manually translated to the chosen development language: 

direct VHDL in the first case and IOPT models in the second. These dataflows were 

even employed in the resulting papers as a simplified graphical description of some of 

the components (PWM generator, etc.) and as a diagram to depict the entire systems.

The work presented in this document is focused around the DS-Pnet (Dataflows, 

Signals  and  Petri  nets)  modeling  formalism  and  the  associated  IOPT-Flow  tool 

framework [26][27]. DS-Pnets combine the characteristics of the IOPT Petri net class 

with dataflows and model composition based on components. Dataflow nodes are used 

to specify mathematical operations and the dependencies between signals in a graphical 

way, replacing the expressions that were previously inserted into place and transition 

annotations.

As both the DS-Pnet modeling formalism and the IOPT-Flow tool chain inherit 

the results of the preliminary contributions, these contributions cannot be dissociated 

from the final results presented in this document. Using a simplistic approach, the DS-

Pnet  formalism  can  be  viewed  as  the  union  of  IOPTnets,  Dataflows  and  model 

composition  based  on  components.  This  way,  DS-Pnets  incorporate  all  preliminary 

contributions to the IOPTnet class and the design of the new tool-chain benefited from 

the previous experience and knowledge acquired during the development of the parent 

IOPT-Tools framework. Although most code was rewritten, the new tools were designed 

using similar algorithms and design patterns, including the editor, simulator and remote 

debugger.
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Finally, it  is important to recall  that the contributions described in this section 

were based on previous work that started on the Uninova/CTS GRES research group, 

with the definition of the IOPT class  [29][54] and the creation of the first-generation 

support tools, including a version of the Snoopy Petri net editor  [55] with support for 

the IOPT class, an automatic C code generation tool [56][57], a VHDL code generation 

tool  [58], an Animator tool  [59] for interactive user interface design, with support for 

VHDL hardware  implementations  [60] and  a  Split  tool  [61] to  support  distributed 

execution [62].

1.3 Research questions

Based  on  the  problems  identified  during  the  preliminary  work  phase,  the 

following research questions were formulated:

Research question 1

Which modeling formalisms can be used in association with Petri nets to support 

the  design  of  cyber-physical  systems,  including  both  the  control  logic  and  data 

operations ?

Hypothesis

a) Cyber-physical systems and embedded systems can be designed through the 

composition of multiple components, or function blocks, connected through input and 

output signals and events. The individual function blocks can be designed using IOPT 

nets, a low-level Petri net class designed for embedded system controller development.

b) The addition of a complementary modeling formalism to define data structures 

and mathematical operations, used in synergy with the Petri nets, enables the definition 

of complete embedded systems, including the control logic (Petri nets) and data. An 

higher level  synchronous dataflow, describing a network of mathematical  operations 

applied to input signals, output signals, internal signals and system state variables, can 

be used to define the data part of the embedded systems.

Research question 2

Which syntax rules  and execution semantics must  obey the complete  systems, 

composed of multiple  function blocks  containing control  logic  (Petri  nets)  and data 

parts (dataflow) to ensure deterministic execution on a) monolithic implementations and 

b) distributed environments ? 
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Hypothesis

a)  By composing  the  entire  systems into  a  flat  model  containing  all  function 

blocks, it is possible to identify global loops inside the synchronous dataflow Petri net 

nodes, that would prevent deterministic execution.

b) A set of syntactic and semantic rules to regulate the bidirectional interaction 

between the Petri net nodes and dataflow components must be defined.

c) The loops identified in a) can be broken by inserting registered internal signals. 

These registered internal signals may be used to define part of the dataflow system state 

vector.

d)  Syntactic  and  Semantic  rules  must  be  applied  to  the  external  interface  of 

function blocks to enable execution correctness in distributed environments.

e) Analyze the advantages of possible automatic code generation strategies based 

on individual components or on flat models of the entire system, according to the target 

architecture (software or hardware).

Research question 3

How to model check the systems described in R.Q. 2 ?

Hypothesis

a) The construction of the state-space graph of the individual function blocks and 

the complete systems, enables model checking and property verification. The definition 

of the execution semantics and the identification of all system state variables is enough 

to allow state-space computation.

b) The relationships between the state-space of the entire system and state-space 

of individual function blocks must be studied, in order to find expedite ways to perform 

model checking and verify certain system properties.
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1.4 Research method

In order to answer the previous research questions and verify the hypothesis, the 
following steps were executed:

1  –  During  a  preliminary  phase,  contributing  to  the  IOPT tools  framework, 
knowledge about the state of the art was acquired, permitting the identification of gaps 
and unsolved problems

2 – Formulate research questions based on the identified problems

3 – Elaborate a set of hypothesis to answer the research questions

4 – According to the formulated hypothesis, create a new development formalism 
and study the respective execution semantic rules 

5 – Create a set of support tools to enable the application the new formalism to the 
design of cyber-physical systems

6  -  Define  criteria  to  compare  validation  application  results  with  other 
development technologies

6 – Using the tools created in 5, design a set of validation applications 

8 – Analyze results and validate the hypothesis

1.5 Overview of the IOPT-Flow framework

This section presents an overview of the DS-Pnet modeling formalism and the 

associated IOPT-Flow tool framework, addressesing the goals that lead to the creation 

of the new tools and potential areas of application.

The DS-Pnet  (Dataflow,  Signals  and Petri  nets)  modeling  formalism  [26] was 

designed to  support  the  creation  of  distributed  Cyber-Physical  systems.  Based on a 

combination  of  Petri  nets  and  dataflows,  it  supports  the  design  of  mixed  systems 

containing both data-processing and reactive parts. Derived from the parent IOPT net 

class  [29],  it  enables  the  use  of  low  level  Petri  nets  to  design  the  state  machines 

employed  by  CPS  and  embedded  controllers,  taking  advantage  of  the  well  known 

properties of Petri  nets,  with good support for concurrency and synchronization and 

availability of diverse model-checking tools. DS-Pnets inherit the concept of input and 

output signals and events from IOPT nets and the respective data types, required to 

create non-autonomous models that communicate with the physical world. All concepts 
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of the parent  IOPT Petri  net  class may be mapped into DS-Pnets and an automatic 

translation tool has been created.

Composed of signals and events, the external interface of a DS-Pnet model may 

be  used  to  read  sensors,  manipulate  actuators  or  communicate  with  other  DS-Pnet 

models, under the form of components, that may be placed locally or distributed on 

remote locations, enabling the creation of CPS applications over networks of distributed 

components.

In order to appeal to a wider base of users coming from different engineering 

backgrounds, the text inscriptions that traditionally have been used by other Petri net 

dialects  to  specify  processing  instructions,  were  replaced  by  graphical  dataflows. 

Dataflow  languages  have  been  used  in  varied  areas  of  engineering,  and  popular 

prototyping  software  packages  as  Matlab  and  Simulink  [63] offer  dataflow 

functionality.  Regarding industrial  automation,  the most popular graphical  languages 

used on programmable logic controllers, Ladder diagram [64] and Grafcet [65], can be 

emulated  respectively  using  dataflows  and  Petri  nets.  Developers  coming  from  an 

industrial  automation  background  may  use  a  library  «Ladder»  folder  containing 

dataflow operations implementing traditional Ladder constructs. Figure 1 presents a DS-

Pnet model using dataflow operations to emulate Ladder contacts and a «T-On» timer 

component frequently used in Ladder diagrams.

Dataflow graphs offer several advantages, presenting a graphical representation of 

the  dependencies  between  input,  output  and  intermediate  signals  that  contribute  to 

improve  model  readability.  Like  functional  programming  languages,  it  restricts  the 

number  of  signal  value  assignments  to  a  single  expression,  contributing  to  reduce 

modeling mistakes. By employing a synchronous execution paradigm, assuming that all 
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mathematical  operations  are  executed  instantaneously,  it  allows  signal  propagation 

though multiple internal computational nodes in a single execution step.

The dataflow part of DS-Pnet model is composed of arcs and operations. Data 

flow  nodes,  called  operations,  are  used  to  perform  data  processing  by  applying 

mathematical transformations to input data and producing one or more results. Arcs are 

used to connect signals between different nodes, including input and output signals and 

events, Petri net place and transition nodes, dataflow operations and components.

In order  to simplify the creation of complex models,  DS-Pnets  support  model 

composition based on components. Any DS-Pnet model may be used as a component to 

create  higher  level  applications.  In  the  same  way  as  DS-Pnet  models,  the  external 

interface  of  components  is  composed  of  input  and  output  signals  and  events. 

Components may be used as building blocks to compose high level applications, chosen 

from libraries  of  existing  components,  or  used  for  the  top-down  decomposition  of 

complex systems into simpler sub-systems. As each component may contain internal 

data,  under the form of internal signals and Petri net state variables, and processing 

instructions implemented using transitions and dataflow operations, components can be 

viewed as objects where method execution is triggered by input events, or as actors 

communicating with each other using input and output signals [66]. 

A DS-Pnet component may be native or foreign. Native components are designed 

using  DS-Pnet  models.  Foreign  components  are  used  to  encapsulate  external  sub-

systems  designed  using  other  modeling  formalisms  and  development  languages. 

Foreign components are created using empty DS-P models, containing just the input and 

output  signals  and  events  that  define  the  component  interface,  and  selecting  the 

«foreing» target implementation property.  When the automatic code generation tools 

find this property, they will create a set of data structures and stub functions where the 

developer may insert code to initialize and execute the components. 

On  hardware  projects,  foreign  components  permit  using  existing  integrated 

circuits  and IP modules  defined using hardware description languages  into  DS-Pnet 

applications.  On  software  projects,  foreign  components  permit  using  external  code 

software  inside DS-Pnet  applications,  including existing  algorithms developed using 

standard programming languages, access any resources provided by computer operating 

systems, and communicate with legacy embedded platforms.

Components  may  run  locally  or  remotely.  Remote  components  provide  an 

abstraction to permit the rapid development of distributed Cyber-physical systems. The 

controllers built using the C code generated automatically contain a minimalist HTTP 

server  implementing  a  JSON/HTTP  protocol  for  remote  debug,  monitoring  and 
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operation. This  way,  the  model  edition  tools  can  connect  directly  to  the  controllers 

running on the embedded computing devices to request the list of available components 

and download the respective DS-Pnet models. Remote components may be inserted into 

the  new  application  models  and  used  in  the  same  way  as  local  components.  The 

connection between local  and remote components is  performed using dataflow arcs. 

This  way, the operation of reading remote sensors or driving remote actuators  is  as 

simple as drawing arcs (after importing components from remote servers to the new 

application model), and all communication details are dealt by the automatic C code 

generation tool.

Remote components can be used to create an abstraction for physical devices, 

including sensors, actuators, motors and entire mechanical systems, greatly simplifying 

the  creation  of  CPS applications.  Remote  foreign  components  may be  also  used  to 

interface  with  legacy  industrial  devices,  including  programmable  logic  controllers, 

variable speed drives and numeric controlled machinery. To assist the integration of DS-

Pnet  applications  in  industrial  environments,  a  foreign  component  implementing  a 

gateway  for  the  ModBUS  [67] industrial  field-bus  was  developed,  enabling  the 

communication and control of almost all industrial automation devices present on the 

market.

In order to ensure deterministic operation,  the execution semantics of DS-Pnet 

models was analyzed, studying the bi-directional relationship between dataflow Petri 

net  nodes.  Dataflow operations  may  read  the  system state  under  the  form of  place 

marking and events triggered by transition firing. The evolution of the Petri net part of 

the models is conditioned by transition guards, transition input events and synchronous 

channels  between transitions,  defined using  dataflow arcs  that  end at  the  respective 

transitions. A set of executions rules was defined, used as a basis for the automatic code 

generation tools.

The  execution  semantics  of  distributed  execution  of  Cyber-Physical  Systems 

composed be networks of remote components presents a different level of problems. In 

addition to the usual concurrency problems presented by parallel execution architectures 

and  differences  in  performance  between  nodes  running  on  heterogeneous  hardware 

platforms, the choice of the Internet as a communication medium brings new concerns, 

including  variable  network  latency  delays,  unpredictable  network  bandwidth  and 

possible data loss.

These problems were solved using an  approach borrowed from the IEC61499 

international standard for distributed control systems [68][69]. In both cases, DS-Pnet 

components  and  IEC61499  function-blocks,  the  communication  between  distributed 
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modules is performed using signals and events. However, the IEC61499 function blocks 

usually communicate over local networks using industry standard field-buses and offer 

two types  of function blocks for Internet communication:  publishers/subscribers  and 

master/slave [70]. In contrast, the proposed DS-Pnet communication protocol is based 

on HTTP and does not enforce any usage patterns, employing the same approach for 

both local nets and long distance Internet connections. 

Four forms of remote component users were typified, the observer, the client, the 

master  and  the  administrator,  with  details  presented  in  the  corresponding  chapter. 

Observers just subscribe changes from remote component output signals, for example to 

monitor sensors or the internal state of remote sub-systems. Multiple observers may 

subscribe the same values without conflicts. In contrast, all other usage types may suffer 

from conflicts and synchronization problems.

Events play a critical role to manage synchronization and concurrency problems. 

In a  typical  use case,  when an application wants  to  invoke a  certain  methods on a 

remote component, it first passes parameter data through input signals and then sends an 

event  that  will  trigger  an  action  on  the  remote  side.  The  remote  component  might 

answer immediately with another event to acknowledge the request reception, or might 

just place an answer on output signals and trigger a completion event.

The responsibility to avoid synchronization errors and ensure the correct behavior 

lies on both developers, the component designer and application designer. As long as the 

parameter  signals  hold  the  correct  values  when  the  events  are  triggered,  the 

communication middle-ware ensures that these values do not arrive out of order. In case 

of network problems and communication fails, both the component and applications are 

informed by setting predefined values on the signals received from the network.

The suitability of the proposed solution depends on each specific application and 

the  type  of  network  employed:  global  broadband  Internet  or  local  intranets  with 

guaranteed  network  bandwidth.  Real-time  applications  must  be  executed  on  local 

dedicated networks but non time-critical applications may run over the Internet.

In the near future,  with the proliferation of the Internet  of Things and Cyber-

Physical Systems, a wide range of publicly accessible information services will become 

available.  For  example,  municipalities  might  publish  in  quasi-real-time  weather 

information, traffic control information, including data about road semaphores, airports 

arrival  times,  civil  protection and emergency service information,  etc.  From another 

side, trends in industrial information systems, with projects in Industry 4.0 initiative 

[71],  involve  the  interconnection  between manufacturing  automation  sub-systems  to 
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accounting/management  systems,  and  even  the  vertical  interconnection  between  the 

information systems of different partners in the same supply chain.

In all these cases, the entities publishing the data have lost control about the client 

applications that are using the information for different purposes. As a consequence, the 

same CPS component may receive simultaneous requests from multiple applications, 

often with conflicting consequences.  In fact,  the same component will  be shared by 

multiple CPS applications, that may not be aware of each other. For example, the timing 

schedule information about a single semaphore might be monitored by multiple CPS 

applications running on in-vehicle systems or smart-phones from nearby car drivers. In 

the same way, each driver’s CPS application might want to register the local position 

and desired travel destination on a central traffic control system in order to obtain the 

best routes and help optimize traffic management. In another example, an hospital might 

offer a public service to schedule doctor appointments and applications running on the 

patients  smart-phones  might  try  to  negotiate  available  slots  according to  the patient 

personal schedule restrictions.

To solve  this  problem,  an  extension  to  the  current  communication  protocol  is 

proposed, allowing multiple CPS applications to share the same remote component in a 

transparent way. With this solution, each application views the same component as if it 

was being used exclusively, but the remote server assigns the component to a single 

application at a time. This is achieved by assigning special properties to the events of 

the component  interface used to initiate  and terminate requests.  The server  will  put 

requests on a queue and store parameter input data from each application. Client users 

might be assigned different priorities, in order to provide different levels of quality of 

service.

After the definition of the DS-Pnet formalism and the corresponding execution 

semantics, a tool framework was created to assist the development of distributed Cyber-

physical systems, called IOPT-Flow [27]. The scope of the new tools and formalisms is 

not restricted to CPS systems and can be employed to develop traditional embedded 

controllers,  general  purpose  digital  circuits,  and  even  to  software  applications.  The 

IOPT-Flow Web based tool-chain  supports  all  development  phases,  including model 

design and edition, simulation, automatic code generation (C, Javascipt and VHDL), 

and remote debug and monitoring.

The front end of tool framework, available at http://gres.uninova.pt/iopt-flow, is 

the model editor, with menu options to invoke all the other tools. In addition to the usual 

graphical  edition  functions,  creation  of  Petri  net  and  dataflow  nodes,  arc  drawing, 

property edition, copy&paste, undo&redo, it offers functions to automate several tasks 
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that otherwise would require user attention and effort, as the creation of semaphores to 

lock  critical  zones  and  complementary  places.  For  the  rapid  development  of  new 

applications,  an hierarchical library of pre-designed components and frequently used 

dataflow operations is offered.

Users may store models in a public directory, download the model files to the 

personal computer,  or create personal user accounts to store data on private folders. 

Multiple users working cooperatively can copy selected parts  of models  to a public 

clipboard that is shared among users. Other users may import the contents of shared 

clipboard and paste it into other models.

The simulator tool executes the model being edited directly on the Web browser. It 

greatly contributes to reduce development time, as a simulation session can start in just 

a few seconds after a model has been changed. In contrast, testing models on prototype 

hardware often requires long delays recompiling software and hardware synthesis tools 

typically  take  many  minutes  to  generate  bit-stream  files.  In  addition,  the  physical 

devices  employed  in  Cyber-Physical  systems  are  prone  to  suffer  damages  due  to 

controller mistakes, risking to cripple expensive hardware. Thus, the controller models 

must be extensively tested and well debugged before being executed on the real devices.

The core of the simulator employs the output of the Javascript automatic code 

generator, that produces new Javascript code for each model, according to the execution 

semantic  rules.  Models  may be run step-by-step,  or continuously,  and the user  may 

associate breakpoints to transitions or dataflow operations.

Simulation history is continuously stored and presented as graphical waveforms. 

For faster debug sessions, users may navigate through the saved history and replay it, or 

export waveform data in a spreadsheet format. To automate regression tests, users may 

store waveform data on the server and replay simulations after changing models, with 

automatic detection of changes in the resulting waveforms. 

The automatic code generation sub-system employs a multiple step process. The 

first step, implemented in the editor, creates a flat model containing the nodes of all 

component sub-models, analyzes the dependencies between internal signals and define a 

precise execution sequence by assigning scheduling information to each dataflow node 

and Petri net transition. The second step produces a programming-language independent 

XML file containing information about the data-structures and processing instructions 

required to implement the model semantics. A third step employs XSL transformation to 

convert  the  XML document  to  the  syntax  of  the  target  programming languages:  C, 

Javascript or VHDL.
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In  addition  to  the  code  responsible  for  model  execution,  the  output  of  the  C 

software  code  generator  also  includes  an  optional  HTTP server,  to  support  remote 

debug,  monitoring,  integration  on  CPS  networks,  and  the  creation  of  remote  user 

interfaces. When a model employs distributed components, located on remote servers, 

client  code  is  also  added  to  the  project,  automatically  subscribing  and  transmitting 

events and signal changes to the remote components, according to application model 

topology and the arcs connected to these components, fully automating the design of 

CPS networks.

The  underlying  communication  protocol,  based  on  JSON  over  HTTP,  was 

optimized to  support  CPS applications,  using HTTP server  side  events  to  minimize 

latency (and connection keep-alive connections in the future). The HTTP protocol was 

selected due to the availability of client code for Web based applications (AJAX), the 

existence  of  libraries  on  many  programming  languages.  It  also  benefits  from easy 

gateway traversing, as most router policies have HTTP ports open by default and proxy 

services may be employed otherwise. JSON was chosen over XML due to compactness 

and easy integration on JavaScript applications, to produce Web based front-end user 

interfaces.

The  ability  to  remotely  monitor  and  debug  distributed  CPS  applications  has 

paramount importance, as components are often located at far-away locations and the 

computing devices often lack hardware resources to create user interfaces. The IOPT-

Flow tool-chain provides a remote debugger/monitor application, with a user interface 

similar to the simulator, enabling the visualization of the system state in quasi-real-time, 

pause execution run step-by-step, reset the model state and force input values. When 

monitoring distributed CPS, implemented as a network of multiple nodes, the user may 

open  several  windows,  attached  to  each  node,  just  by  directing  the  Web  browser 

location to the respective node URL.

As  previously  mentioned,  the  adoption  success  of  a  development  language 

depends as much on the set of associated libraries as on the language intrinsic qualities. 

The availability of well debugged components suitable for specific tasks can greatly 

reduce  application  development  time.  The  IOPT-Flow framework  currently  offers  a 

small but growing library of components, that were required to implement the sample 

applications presented in this text. There are folders dedicated to ladder diagram, timers, 

counters,  PWM generators,  Boolean  logic,  arithmetic  functions,  UARTs,  arrays  and 

tables, a ModBUS gateway, graphical user interface widgets, sound playback, random 

number generators, data file logging and access, etc.
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When possible, components should be implemented as DS-Pnet models, using the 

internal  language  capabilities.  However,  certain  features  require  access  to  external 

resources  and  must  be  coded  using  foreign/external  components.  This  problem  is 

common to many programming languages that resort  to “native” code to implement 

certain  functions.  For  example,  to  access  operating  system resources,  including  the 

system date  and  time  information,  file-system and  database  access,  communication 

ports, use the graphical and sound sub-systems and generally to access hardware device-

drivers.  The implementation of  foreign components  depends on the  target  hardware 

architectures and operating systems employed, posing compatibility issues when porting 

applications to different hardware. The same problem arises during the creation of new 

automatic code generators for different programming languages. Hence, the resort to 

foreign  components  must  be  avoided,  by  identifying  a  minimal  set  that  supports 

specific fields of application. This minimal set could then become a «standard» library 

that must be supported by all code generators and target architectures.

Several example applications were developed using DS-Pnets and the IOPT-Flow 

toolchain, used to demonstrate, test and validate the proposed concepts: a closed-loop 

driver for a Brushless DC servo motor, implemented on a FPGA using the VHDL code 

generated automatically; a simplified «pong» game implemented using C software and 

the  graphical  user  interface  widget  components,  an  industrial  application  using  the 

modbus protocol to access a legacy programmable logic controller  and a distributed 

CPS  industrial  application.  A master  thesis  student  used  the  tools  to  implement  a 

component  library  with  different  types  of  events,  including  atomic  and  compound 

events, defined by sequences of atomic events.

Comparing  with  traditional  development  languages,  the  example  applications 

were created in a much shorter time period, due to the automatic code generation and 

the ability to hide distribution implementation details. For instance, the game example 

was  completely  developed in  just  a  few hours.  Communication  between distributed 

nodes is handled transparently, just by connecting arcs to remote components, a task 

that would require a greater coding effort with traditional programming languages and 

development tools. As the low level details are hidden, it opens the field of distributed 

industrial  automation  and  cyper-physical  system  development  to  a  wider  audience, 

without deep knowledge about computer programming and communication protocols.

Some of the early results have already been published, including a conference 

paper presenting the DS-Pnet formalism and the respective execution semantic rules, a 

conference paper presenting the tool framework and a controller-plant example,  and 

journal paper presenting the tools and the servo motor driver application. Additional 
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publications  about  the  new  communication  protocol  and  application  to  CPS 

development are planned for the near future.  This work inherits  many concepts and 

ideas  from  a  preliminary  work  on  the  parent  class  IOPTnets  and  the  IOPT tools 

framework. Several publications about the preliminary PhD work have been published 

during the first years and are listed in a corresponding section.

1.6 Contributions and publications

The following list presents the main contributions resulting from this work:

1  –  The  DS-Pnet  modeling  formalism,  combining  low  level  Petri  net  and 

dataflows to support the design of mixed systems containing reactive parts that evolve 

according to external events and a data processing part to perform signal processing, 

data manipulation and deal with analog sensors.

2 – The specification of the DS-Pnet execution semantic rules, used to define a 

precise  evaluation  sequence  to  calculate  dataflow  operations  and  transition  firing, 

leading to the elaboration of a deterministic execution algorithm.

3 – Automatic code generation tools based on the results from 2, generating C, 

JavaScript and VHDL. The code generated automatically may be used to simulate the 

model execution, employed in the core of state-space calculation tools [7], but mainly to 

implement real controllers to deploy on embedded hardware and distributed CPS nodes. 

A multi-step code generation architecture separates semantics from the target language 

syntax, simplifying the future creation of code generators for different languages.

4 – The IOPT-Flow Web based integrated development environment, supporting 

the  DS-Pnet  formalism,  including  a  graphical  editor,  a  simulator  with  waveform 

visualization capability and test automation based on previous stored waveforms, a Petri 

net  model  checking  sub-system,  a  remote  debugger  and  automatic  distributed  code 

generation tools, among others.

5  –  A JSON/HTTP communication  protocol  optimized  for  distributed  cyber-

physical system implementation and remote debug and monitoring of DS-Pnet systems. 

The C code produced by the automatic code generation tool includes a minimalist HTTP 

server to support the remote debug and monitoring and communication with other CPS 

nodes. In the same way, the code produced for models that employ remote components 

contains client networking software to communicate with the remote nodes. As a result, 

distributed cyber-physical systems may be created just by importing remote components 

into  new  models  and  connecting  arcs  –  the  communication  code  is  generated 

automatically. 
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6 – A node-split tool to divide models into sub-models that will run on different 

distributed  nodes,  supporting  workflows  that  start  with  the  design  of  a  centralized 

models, that are simulated and debugged before being split into distributed nodes.

7  –  Propose a  new mechanism to share  the  same component  among multiple 

distributed applications, with the definition of two new event properties. Component 

sharing is transparent for the application models, as if they were being exclusively used.

8  –  A  growing  component  library  containing  both  native  components 

(implemented as DS-Pnet models) and foreign components created outside of the IOPT-

Flow environment. The foreign library components extend the core functionality of DS-

Pnets, with the addition of arrays and matrices, file input and output, random numbers, 

graphical user interface widgets,  audio samples and a  communication interface with 

industrial devices based on the ModBUS communication protocol.

9 – Support for foreign components (in both the C and VHDL code generators), 

permitting the use of virtually any existing software package or hardware device from 

DS-Pnet models, building an interface composed of signals and events to invoke code 

written using other formalisms. This way, existing algorithms, object-oriented classes 

and hardware subsystems may be integrated in distributed cyber-physical systems in a 

transparent way.

In  addition  to  the  publications  listed  in  the  preliminary  contributions  section, 

covering  the  IOPT-Tools  framework  whose  results  were  applied  in  this  work,  new 

results about the DS-Pnets and the IOPT-Flow tool chain have been published:

1  -  Pereira,  F.;  Gomes,  L.;  “Combining  data-flows  and  petri  nets  for  cyber-

physical systems specification”, Technological Innovation for Cyber-Physical Systems - 

7th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical 

and  Industrial  Systems,  DoCEIS  2016,  Proceedings.  Vol.  470  2016.  p.  65-76

(IFIP Advances in Information and Communication Technology; Vol. 470)  [26]

2 – Pereira,  F.;  Gomes, L.;  "The IOPT-Flow framework pairing Petri  nets  and 

data-flows  for  embedded  controller  development",  IECON  2016  -  42nd  Annual 

Conference of the IEEE Industrial Electronics Society, Florence, 2016, pp. 4832-4837.

doi: 10.1109/IECON.2016.7794152  [27]

3  -  Pereira  F.;  Gomes,  L.;  "The  IOPT-Flow Modeling  Framework Applied  to 

Power Electronics Controllers," in IEEE Transactions on Industrial Electronics, vol. 64, 

no. 3, pp. 2363-2372, March 2017; doi: 10.1109/TIE.2016.2620101  [28]
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Publication 1 presents the DS-Pnets and the respective execution semantic rules, 

publication 2 covers model-checking DS-Pnet models using a controller-plant strategy 

and the third covers the first validation application presented on chapter 7.

1.7 Document structure

Chapter 2 contains literature review about related topics.

Chapter  3  presents  the  DS-Pnet  modeling  formalism,  presenting  all  types  of 

available nodes, arcs and the respective attributes. Focusing on the graphical aspect of 

the formalism, it presents typical constructions formed by the combination of dataflow 

operations and Petri net nodes. This chapter also presents a formal definition of the DS-

Pnet formalism and the execution semantic rules, leading to the elaboration of a pseudo-

code algorithm to execute DS-Pnet models.

Chapter  4  presents  details  about  the  automatic  code  generation  tools  and 

algorithms, used to produce code that execute the model semantics for simulation and 

deployment on embedded hardware.

Chapter  5  discusses  the  execution  of  distributed  DS-Pnet  models  containing 

remote  components,  communicating  over  the  internet  and  presents  the  underlying 

JSON/HTTP protocol.

Chapter 6 presents the IOPT-Flow tool framework, containing information about 

the capabilities of each tool and relevant implementation details. A component library 

and an incipient “standard” library containing foreign components that bring enhanced 

functionality  to  DS-Pnet  models.  This  chapter  also  discusses  the  available  model-

checking options and the usage of controller-plant systems to permit the verification of 

pertinent system properties, without incurring in state explosion problems.

Chapter  7  presents  a  set  of  validation  applications  and  discusses  the  results 

obtained, comparing with other development languages and tools.

Finally, chapter 8 presents the conclusions and future work. 
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2 Literature Review

This  chapter  presents  a  literature  survey  about  related  topics.  This  list  is 

complemented by related work sections on all papers published during the preliminary 

work  and  the  publications  focusing  on  the  DS-Pnet  class,  that  contain  references 

relevant to each specific topic and application examples.

2.1 Petri nets

The  Petri  net  [30][31][72] modeling  language,  proposed  by  Carl  Adam Petri, 

frequently  used  to  represent  distributed  systems,  has  been  widely  accepted  by  the 

scientific  community,  referenced by many thousands of  research  papers  from many 

research areas, including biology, physics, mathematics, business processes, computer 

science,  hardware  design and industrial  automation.  Over  the  years,  many Petri  net 

classes have been created, with extensions for various applications [29][39][40][41][45]

[46][73].

The  original  Petri  nets  consisted  of  graphs  containing  places  and  transitions 

connected through Arcs, from which figure  2 presents an example. Arcs starting in a 

place and ending in a transition are called input arcs and output arcs have origin in a 

transition and terminate in a place. Places may hold marks, often called tokens, and the 

state of the system, often called the net marking, consists in the current configuration of 

tokens hold in all places. State changes occur when a transition fires, consuming tokens 

from the input places and producing new tokens, added to the output places. A transition 

may only fire when all  places connected through input arcs hold tokens.  When this 

condition  holds  true,  the  transition  is  said  to  be  enabled.  Conflicts  between several 

enabled  transitions  may  occur  if  they  share  the  same  input  places:  if  one  of  the 

transitions fires, it will consume tokens necessary to fire the others.
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However, although a transition may be enabled, nothing forces this transition to 

fire and when multiple transitions are enabled, any of them may (or not) fire. This way, 

the execution semantics of the original Petri net class is non deterministic. The majority 

of  the  net  classes  derived  from  the  original  Petri  net  class,  inherit  this  execution 

semantics and are usually used only for simulation. For each Petri net class typically 

there is a software simulator application, that may be used to perform the so called 

token-game: enabled transitions are highlighted using a different color and the user may 

pick the next transition to fire. In alternative, the simulator may choose to fire random 

enabled transitions and after some time, a graph with the history of recorded markings 

may be obtained.

2.2 Model checking

Over the years, an entire branch of mathematics has evolved around Petri nets, a 

sub-set of the general graph theory, and many properties, lemmas and theorems have 

been  studied  [31][32][33][46][72][74].  For  this  purpose,  instead  of  the  graphical 

representation,  vector  and  matrix  representations  of  the  Petri  net  and  respective 

markings are often employed. Figure  3 presents an incidence matrix corresponding to 

the net on figure  2. Each column correspond to a place and each line to a transition. 

Negative  numbers  correspond  to  tokens  removed  from  inputs  places  and  positive 

numbers to tokens added to output places.
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 Fig. 2: Petri net example.
Places drawn as yellow circles, transitions as blue bars and arcs as arrows.



P1 P2 P3 P4 P5 P6 P7 P8 P8N P9

Start -1 1 0 1 0 0 0 0 0 0

Task1 0 -1 1 0 0 0 0 0 0 0

Task2 0 0 0 -1 1 0 0 0 0 0

Wait 0 0 -1 0 -1 1 0 0 0 0

Task3 0 0 0 0 0 -1 2 0 0 0

Lock 0 0 0 0 0 0 -1 1 -1 0

Task4 0 0 0 0 0 0 0 -1 1 1

End 1 0 0 0 0 0 0 0 0 -2

 Fig. 3: Incidence matrix

Using  the  matrix  representation,  many  properties  can  be  verified,  including 

liveness, boundedness, invariants, reversibility, traps and siphons, among many others. 

Petri net theory textbooks  [30][72][75] cover this subject with extensive detail. Using 

the  matrix  representation  it  is  also  possible  to  synthesize  controllers  to  impose 

restrictions that prevent the reachability of undesirable states [76].

Many  properties  are  better  analysed  using  state-space  graphs,  also  called 

reachability trees. For example, deadlocks and livelocks are easily found on the state-

space graph and many reachability  problems are usually  checked on the state-space 

graphs, with the help from languages like linear temporal logic (LTL) or computational 

tree logic (CTL) [37][46][77]. Unfortunately, real world applications frequently produce 

very large state-space graphs,  with many milling states.  This way, many state-space 

reduction  techniques  have  been  developed  and  concepts  like  strongly  connected 

components  [38], stubborn sets  [78] and other partial order reduction techniques  [37]

[46], among others.

Most  Petri  net  classes  have  an associated state-space computation and model-

checking  tool.  Popular  model  checking  applications,  include  the  SESA[46][79], 

Ina/Tina [37], PEP [80], Maria [81], Lola [82], Romeo [83] and PROD [84] tools. The 

Petri net tool database web page can be consulted for a detailed list [85].

2.3 Execution semantics and non-autonomous properties

As previously stated, the traditional Petri net classes exhibit a non deterministic 

execution semantics and are used predominantly for simulation and property analysis. 

However, the goals of the work proposed in this document go beyond simulation and 

aim the implementation of the real controllers for embedded systems running on the 

physical hardware platforms and demand determinism. In addition, the typical Petri net 

classes are autonomous closed systems that do not interact with the external world, but 
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embedded system controllers do communicate with the controlled systems (the plant), 

with the users and the surrounding environment.

To solve these issues, several Petri net classes have been proposed. Among those, 

the signal/nets systems (SNS)  [46][86], the net condition/event systems (NCES)  [39], 

signal interpreted Petri nets (SIPN) [87][88], and Input/Output Place/Transition (IOPT) 

nets  [29] are more referenced in the academic literature. Other formalisms that inherit 

concepts from the Petri nets, as the Grafcet PLC programming language  [65][89] and 

the signal transition graphs (STG) [90][91] used for digital hardware design, also try to 

solve these issues.

The signal/event nets and NCES classes employ mixed execution semantics. In 

these classes, direct connections between transitions may be established using events, 

forming synchronous channels, where a master transition generates an event received by 

slave  transitions.  Master  transitions  exhibit  a  spontaneous  behavior,  similar  to  the 

standard Petri net transition semantics, but the slave transitions have a forced semantics, 

meaning that an enabled slave transition must fire immediately upon receiving an event.  

This way, the master transitions display an undeterministic spontaneous behavior but the 

slave transitions obey a maximal step semantics. Some simulation tools may offer a 

choice  of  multiple  execution  semantics  to  apply  to  the  spontaneous  transitions, 

including random and interleaving transition firing.

To overcome the autonomous nature of Petri nets, some tools and the underlying 

Petri net classes rely on code segments that may be added to places and transitions. 

These  code  segments  correspond  to  procedures  written  in  foreign  high  level 

programming  languages,  as  Java  [41] and  StandardML  [40][42],  to  support 

mathematical  computations,  manipulate  operating-system  resources  and  perform 

communication  with  the  external  world,  including  the  creation  of  graphical  user 

interfaces and network communication. Code segments may be executed whenever a 

transition is fired, when a place receives a new token, or continuously when a place is 

marked.  Theoretically  these  code  segments  can  read  and  write  interface  signals, 

enabling the creation of embedded system controllers. Unfortunately, the code segments 

implementing external communication fall outside the scope of the associated model 

checking tools, that proceed ignoring the effects of such communication operations or 

simply cannot be applied at all.

Extensions to the original Petri net class tend to keep the graphical syntax and 

employ  inscriptions  on  places,  transitions  and  arcs  to  implement  the  extended 

functionality. For instance, timing information [73], transition guard condition and input 

and output operations [29][39][40][41][45]. This way, the existing tools can ignore the 
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inscriptions and process only the standard Petri net components. Many properties can be 

verified just by inspecting the net topology and the respective matrices or state-space 

graphs, without considering the inscriptions.

2.4 Low level and high level net classes

Petri nets are usually classified as low level or high level nets [40][41][42], from 

which the Coloured Petri net class should distinguished as the most well known high 

level class. The main difference between both types resides on the tokens. Low level 

tokens carry no data, and places only need to record the number of tokens present. On 

the opposite, high level tokens can hold variables or even complex data structures: a 

token can be seen as an object with an associated data type. A low level net can be seen 

as a particular case of a high level net where all tokens are assigned a void data type.

In the same way as  tokens,  high level  places also have associated data  types, 

corresponding to the types of tokens stored inside. Arcs may be assigned names and 

mathematical expressions to establish relations between token values. In the same way, 

transition guards  may be used  to  express  restrictions  on the token values.  Figure  4 

displays a simple Coloured Petri net.

Observing figure  4, transition T1 picks two tokens from places P1 and P2 and 

produces a new token for place P3 with the sum of the two values. The input arcs have 

inscribed names «a» and «b», used to reference tokens inside places P1 and P2 and the 

output arc has an expression «a+b» representing the sum of two tokens. In order to fire 

T1, places P1 and P3 must hold tokens satisfying the guard condition «a <> b», that are 

removed from the input places and a new token with the respective sum is added to P3. 

For example, a token with value 21 and another with value 55 may be removed from 

places P1 and P3, producing a new token with value 76 on P3.

Although the execution semantics of high level Petri nets continues to respect all 

rules of low level nets, it can be seen as a dataflow, where arcs transport data stored in 
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places  and  the  transitions  perform  transformations  to  the  data.  This  characteristic 

represents an enormous value for embedded system controller design, and some authors 

have employed high level nets for this purpose [42][56][92].

As an example, an industrial production line can be modeled using high level nets. 

Individual parts travel on a conveyor belt and multiple machines may apply operations 

on those parts. The parts can be modeled using tokens, containing information about 

each part, as the serial number and the types of operations that must be performed. Each 

machine may be modeled using a transition, that applies transformations to the tokens 

according to the operations performed on the physical parts.  Buffer zones that store 

parts waiting to be processed may be modeled by places that store tokens.

2.5 High level net execution strategies

When the token data types are restricted to very small sets of colors, it is possible 

to  unfold an high level  net  into an equivalent  low level  net  [93][94],  that  although 

larger, can be processed with the standard low-level Petri net tools, including automatic 

code generators. However, when the cardinality of the data types employed is larger, 

this technique results in an explosion on the size of the resulting low level nets that 

would be impractical. For instance, if the integer numbers used in the figure 4 example, 

were limited to a simple 8bit (byte) data type, the resulting low level net would contain 

65280  transitions.  If  16  bit  integers  were  used,  then  232–216 transitions  would  be 

required.

The traditional high level Petri net execution strategies employed by simulators 

[95], typically rely on software loops to cyclically evaluate all tokens contained in all 

input places of a transition, in order to evaluate guard conditions and arc expression 

relations. If the maximal bound of all places are restricted to a single token, or a limited 

number of tokens, then the maximum execution time required to evaluate any transition 

can be predicted. However, for transitions with multiple input places and large bounds, 

then the combinatorial nature of the required processing would impose large execution 

times, unsuitable for real-time controller implementations, or very complex hardware 

implementations consuming large silicon areas. Imposing restrictions on the high level 

nets might help solve this problem: for instance, defining place capacities to limit the 

maximum number of tokens (just 1), or defining FIFO or prioritized place semantics 

where only a single token is ready for use on any single execution step. However, with 

these restrictions, most of the advantages of high level nets would be lost, continuing to 

demand  more  resources.  In  this  sense,  dataflow  formalisms  offer  a  more  intuitive 

graphical syntax to express mathematical transformations.
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2.6 Model composition and hierarchical structuring

As other graphical modeling languages, complex Petri net models tend to loose 

readability due to the large number of nodes, long arcs with potential  crossings and 

multiple overlapping inscriptions. In this respect, models designed using high level nets 

tend to become more compact and, consequently, easier to read.

Almost all Petri net dialects and the respective tools support several techniques to 

increase  readability  and  simplify  the  design  of  complex  models.  The  most  simple 

solution consists in the subdivision of models into several pages [55], containing groups 

of nodes responsible for the behaviour of different sub-systems. Connection between 

pages  is  obtained  through  the  insertion  of  multiples  copies  of  the  same  nodes  on 

different pages, using the concept of node-references. For example, a place on one page 

may be re-used on another page using a place-reference with the same identifier. Arcs 

connected to the node-references are interpreted as arcs connected to the original node. 

Any tool processing the complete net can start by joining all pages into a flat model and 

fusing all node-references to the original nodes.

Model composition based on hierarchical structuring techniques not only helps to 

enhance readability,  but also contributes to simplify the design of complex systems, 

enabling  the  usage  of  top-down,  bottom-up  or  even  object  oriented  development 

strategies.  The  potential  to  re-use  existing  components,  previously  tested,  greatly 

contributes  to  reduce  development  time  and  cost.  Extensible  module  libraries  of 

“prefabricated” components may be created, grouped into families for many specific 

scientific fields. Observing the history of computing over the past decades, it is possible 

to  detect  a  pattern  associated  with  the  most  successful  development  languages  and 

formalisms: the availability of good libraries to support the target development fields. 

Notorious  examples  are  Fortran,  Java  and  C#,  PHP,  Pyton,  Perl,  VisualBasic, 

Matlab/Simulink [63] and LabView [96].

The  node-fusion  concept  is  also  on  the  basis  of  the  hierarchical  structuring 

techniques  offered  by many Petri  net  classes  [30][40][97][98].  Components  are  just 

simpler  Petri  net  models,  and  the  communication  interface  between  different 

components is established by node-fusion: a place from the component model is fused 

with  other  place  from  the  top  container  model,  and  the  same  can  be  applied  to 

transitions. When multiple components are used, the same node can be shared between 

more than one component.  Some Petri  net  classes  use the concept  of macro nodes, 

where a single node representing an entire sub-model  [55][88][98] also rely on node-

fusion, but in this particular case the communication interface consists only in a single 

node.
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The nodes used to define the interface are conceptually viewed as input or output 

nodes. For instance, a component might expect the sudden appearance of new tokens on 

input places and produce tokens to add to output places. A similar process is used when 

transitions are used to establish the communication interface: arcs connected to input 

transitions  expect  receiving  new tokens  produced by these  transitions,  while  output 

transitions  remove  tokens  from  internal  places.  When  multiple  components  are 

connected, the same node is viewed as output by one module and must be seen as input  

by the other modules. However, most tools do not strictly enforce this policy, meaning 

that  it  may  be  possible  to  add  external  input  arcs  to  the  output  transitions  of  a 

component, and there is no warranty that all tokens placed into output places will be 

consumed by external transitions. As a consequence, it may not be possible to properly 

model-check the individual component models, as output places may exhibit infinite 

bounds and the component execution may be blocked by external arcs added to output 

transitions.  The  model-checking  tools  associated  with  these  Petri  net  classes  will 

typically  start  by  merging  all  components  into  a  single  flat  model  and  property 

verification is only applied on the final model.

Some Petri  net  dialects  employ the  concept  of  reference  nets  [41],  a  form of 

model composition, supporting inscriptions to instantiate new nets, that stay associated 

with tokens in a main model. This way, when a transition containing a form of «new 

net:name()» inscription is fired, the execution of new model is dynamically started on a 

parallel  thread,  and a  reference  to  this  net  may be  associated  to  a  new token.  The 

opposite  action  may  occur  when  a  token  referencing  a  net  is  consumed  by  other 

transition.

2.7 Model composition based in signal and event communication

The  problems  related  by  node-fusion  based  model  structuring  have  been 

previously  discussed  by  other  authors  [39],  leading  the  emergence  of  model 

composition strategies based on input and output signals and events  [39][46][86][87]

[88][99]. From these, the NCES Petri net class has been the most disseminated.

Compounded NCES models are no longer a Petri net, but are equivalent to set of 

parallel  Petri  net  models.  In  addition  to  the  standard  Petri  net  arcs,  NCES add the 

concepts condition arcs and event arcs, used to establish the communication between 

components.

Condition arcs, equivalent to the test/read arcs defined in other Petri net classes 

[29], read the number of tokens from an input place but do not remove any tokens. As a 

consequence, condition arcs do not cause conflicts between competing transitions and 
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when used to inter-component communication, do not suffer from the same problems as 

node-fusion. Condition arcs start in a place inside one component and will typically be 

connected to a transition on a different component. As the target transition does not 

remove  tokens  from the  source  place,  the  execution  of  the  first  component  is  not 

affected by the second.

The  value  of  condition  arcs  is  interpreted  by  transitions  as  simple  Boolean 

condition and the formalist  does not offer any syntax constructs to  model the logic 

operators «not», «and», «or» and «xor». This way, designers have to resort on solutions 

based  on  the  net  topology,  drawing  multiple  transitions  to  form  parallel  or  series 

configurations, that greatly reduce readability and increase model size.

The other communication method offered by NCES and SNS are event arcs, used 

to form synchronous channels between transitions from different components.  Event 

arcs have two fundamental differences from condition arcs. First, condition arcs start in 

places and finish on transitions, but event arcs connect two transitions, a master to a 

slave. Second, the behavior of event arcs force the firing of enabled slave transitions, 

while  condition  arcs  only  prevent  firing.  This  effect  has  deep  consequences  on  the 

execution semantics of NCES/SNS, as the master transitions - transitions that only have 

normal and condition input arcs - exhibit a spontaneous behavior, but slave transitions 

are executed in maximal steps. Transitions connected though event arcs are considered 

synchronous, meaning that if the master transition fires, all enabled slave transitions 

will fire in the same execution step.

In addition to the inter-module communication, condition arcs can also be viewed 

as  external  input  signals,  preventing  the  firing  of  transitions,  with  a  semantics 

equivalent to a guard expression. This way, it would be possible to implement automatic 

code generator tools for embedded system controllers, using condition arcs to model 

input sensor reading. Unfortunately, the formalism also does not offer syntax constructs 

to perform mathematical operations, and would require an auxiliary formalism. These 

problems have been addressed in the signal interpreted Petri net class [87][88].

Model checking and simulation tools are available for the NCES, SNS and SIPN 

classes [79][100], and the applications to embedded systems and industrial automation, 

using automatic code generation have been presented [87][101][102].

The use of signal and event communication for inter-component communication 

provides additional advantages, as it permits the definition of proxy component models 

to encapsulate external systems designed with other development formalisms. This way, 

it is theoretically possible to employ virtually any existing system as a component, as 

long as the external interface can be specified using input and output signals and events, 
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ranging from existing integrated circuits, IP cores designed using traditional hardware 

description languages (HDL)  [103],  systems implemented using programmable logic 

controllers  and  almost  any system designed/modelled  using  other  languages.  In  the 

same way, component models defined using this strategy can also potentially be used by 

other projects. For example, the code produced by the automatic code generators can be 

directly inserted into other projects using the same target language [12].

2.8 The IEC61499 standard

In recent years the IEC61499 standard for distributed control and automation [68]

[69][70] has been assuming growing importance, as it defines the concept of function 

blocks with an external interface composed of signals and events, but does not impose 

rigid formalisms for the internal block implementations. This standard has been adopted 

by several automation controller manufacturers and compatible products are available 

on the market [104][105].

The standard defines several types of function blocks  [70]. Composite function 

blocks used to implement the entire systems containing multiple function blocks, basic 

function blocks implementing the component modules, and service interface function 

blocks (SIFB) to encapsulate systems designed using other development languages or 

low level sub-systems to access operating systems resources and networking devices.

Basic function blocks are divided into two parts: an execution control chart (ECC) 

and an algorithmic part. The ECCs are state machines reacting to external input events 

that trigger the execution of algorithms to process input data. The algorithms may be 

implemented  using  many  programming  languages,  as  Java,  traditional  PLC graphic 

languages  as  ladder,  grafcet  or  text  based  PLC  languages  as  instruction  list  and 

structured text [64].

Each function block may be implemented on separate execution units, forming 

distributed topologies, or GALS systems [106][107][108]. A request to a function block 

typically uses a variant of the following communication pattern: a) input data is made 

available at the input signals of the function block, b) an input event is generated to 

trigger  the  request  execution,  c)  the  function  block ECC checks pre-conditions  and 

reads input data,  d) the necessary algorithms are executed by the function block, e) 

result data is made available at the output signals, f) an output event is generated to 

inform  that  the  results  are  ready.  Slow  requests  requiring  many  data  processing 

operations or long delays due to communication latencies, or even complex processes 

involving non trivial state machines, might require more complicated communication 

protocols.  For  example,  intermediary  events  to  acknowledge  request  reception  and 
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inform the client that processing has started, might be generated before the results are 

ready.

As the standard offers some degree of flexibility in the formalisms used internally 

to specify the function blocks logic and algorithms, several authors have proposed the 

use of Petri nets, as NCES  [109][110][111]  and other formalisms  [112][113][114] to 

implement the function blocks state machines. These solutions bring the advantages of 

formal verification and model-checking to the IEC61499 world.

To take advantage of the growing IEC61499 ecosystem, compatibility with this 

standard should be a desired goal of any new model composition proposed formalism. 

Compatibility can be obtained using automatic code generation techniques to translate 

models  to  the standard-sanctioned languages,  creating real  basic  function blocks,  or 

creating SIFBs proxy function blocks to encapsulate code produced by the normal code 

generators. 

2.9 Automatic code generation

Traditionally, model based development formalisms have been used for simulation 

and formal property verification, in order to identify and correct design mistakes before 

reaching  the  low-level  prototype  implementation  phase.  After  the  simulation  and 

verification  phase  have  successfully  completed,  the  prototype  software  code  or 

hardware descriptions were typically written manually, translating model semantics to 

low level code for the selected architectures. As the final coding was a human task, 

these  formalisms  could  omit  many  implementation  details,  and  many  system 

requirements  could  be  specified  using  an  informal  syntax  based  on  simple  text 

comments.  This  approach  is  frequently  found  in  the  literature  and  the  execution 

semantics of many modeling formalisms does not even ensure determinism.

From  another  side,  the  concepts  presented  in  this  work,  and  preliminary 

development,  aim to support  all  steps of embedded systems controller  development, 

from  the  early  model  design  and  edition  to  the  final  controllers  deployment  on 

hardware. As a consequence, the syntax and semantic rules of the proposed formalisms 

must enable the precise specification of all requirements and implementation details, in 

order to fully support automatic code generation tools.

Ideally, the proposed formalisms should support an incremental refinement of the 

implementation details, in order to enable the rapid specification of higher-level initial 

models that later can be improved with the addition of lower-level details. For example, 

a controller can be fully simulated and model checked without assigning any physical 

pins  to  the  model  inputs  and  outputs,  but  these  assignments  must  be  set  before 
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generating the final code for the prototype implementation. Complex models, composed 

of many components can also benefit from a similar approach, by employing a top-

down strategy and starting with simplified versions of each component, that late could 

be replaced by refined versions. Automated model-checking tools  [15] can be used to 

perform regression tests and detect behavioral changes between versions.

However, support for deployment on physical embedded devices, either by using 

interpretation or automatic code generation strategies, has been offered for a long time: 

the languages  and formalisms used by the industrial  programmable logic controllers 

would be almost useless without it  [65]. In the world of digital hardware design, the 

usage of high level formalisms with graphical syntax has long been used [35][91][115]. 

In  the  software  world,  model  based  development  frameworks  have  been  gaining 

traction, with many tools supporting UML based languages [34][35][36], as the Ecore 

Modeling Framework (EMF) from the Eclipse foundation [116][117]. The EMF tool-kit 

include a family of meta-models and transformation technologies that support automatic 

code generation in arbitrary languages [118][119].

Commercial modeling applications, as the Matlab and Simulink tools  [63], also 

support automatic code generation for both software and hardware targets, including 

personal computers, many digital signal processors and micro-controllers and even for 

FPGAs  [120].  However,  the  licenses  for  the  automatic  code  generation  tools  are 

expensive,  some  implementations  are  not  standalone,  requiring  the  presence  of  a 

companion computer running parts of the application and graphical user interfaces, and 

the resulting code may not be easily tailored to fit the requirements. From another side, 

the  modeling  languages  implemented  by  these  tools  cover  a  very  broad  range  of 

applications and offer a complex mixture of multiple formalisms, that is not supported 

by formal model-checking tools.

Several tool frameworks originated from the academic community also support 

interpretation and automatic code generation. From one side, the simulation tools for 

formalisms  that  support  code  segments,  can  be  used  for  rapid  prototype 

implementations, employing an interpreted strategy [40][41]. From another side, several 

automatic code generation tools have been presented in the literature, supporting Petri 

net based formalisms [8][14][56][87][101][102] and UML statecharts [34][35][36].

2.10 UML statecharts and activity diagrams

In  addition  to  Petri  nets,  statecharts  [121] are  the  other  family  of  modeling 

formalisms  that  have  been  frequently  proposed  for  embedded  system  development 

[115], with several tools based on the UML standards  [122]. The tool-chains include 
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model-checking  tools,  simulators  and  automatic  code  generators  [34][35][36].  The 

UML standard also defines an activity diagram formalism, that in version 1 was based 

on  flowcharts,  but  version  2  adopted  a  Petri  net  semantics  [123] and  all  the 

considerations about Petri nets can by applied to version 2. The conversion of statechart 

models to the equivalent Petri nets and the reverse, have been studied by  [123][124]

[125][126][127].

2.11 Model file formats 

The  importance  of  the  data  formats  used  to  store  model  files  should  not  be 

neglected,  as  the availability  of libraries and tool  frameworks to  process  those files 

largely depends on the chosen formats.

XML [128] and JSON [129] based formats are supported by nearly every modern 

programming language and tool-chains. In the case of XML based formats, there exist 

libraries to store/parse files from/to DOM trees, syntax checking tools based in XML 

schemas [130] and RelaxNG grammars [131], query languages based on Xquery [132] 

and  Xpath  [133] to  quickly  find  data  inside  complex  documents  and  XSL 

transformations [134][135], useful to convert files between different grammars and even 

to implement automatic code generators [14].

The Petri net Mark-up Language (PNML) file format  [136][137] defines a base 

syntax to represent Petri nets, with two grammar variants for low level (P/T) nets and 

high level nets. It defines the simple grammar for the basic nodes and arcs, that can be 

extended through annotations to support the particular features of each Petri net class. 

The annotations  have  a  common structure,  including graphical  attributes  and a  text 

string, that may be visualized on any Petri net editor, independently of the respective 

semantic  that  may  be  completely  ignored  by some tools.  This  way,  PNML models 

designed using any tool could, in principle, be read and visualized by other tools, and be 

processed by analysis tools that work only on the topological node relations.

Unfortunately, many Petri net tools do not adhere to the PNML standard and even 

the original members of PNML committee seem to have been moving away from it, 

preferring the native XSI/XMI [138] XML based formats used internally by the Eclipse 

Modeling framework [116][117]. However, most tools allow import and export PNML 

models, and, as both the PNML and XSI/XML formats are based on XML, it is possible  

to create XSL or MOFscript [118] transformations to perform the conversion. 
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2.12 Reactive systems and synchronous dataflows

The modeling languages that have been discussed in this section, mostly Petri nets 

and statecharts, offer very good capabilities to specify the control logic of embedded 

system  controllers,  or  general  discrete  event  system  controllers,  that  are  usually 

implemented using digital  systems.  However,  real  embedded systems almost  always 

employ  mixed  architectures  combining  digital  and  analog  subsystems,  dealing  with 

analog sensors, analog actuators, motion devices, timing and other variables that are 

better represented as analog values than using purely Boolean logic. Although previous 

work on the IOPT class [29] and preliminary contributions already provide some degree 

of support analog subsystems through the use of integer range signals and arithmetic 

expressions [5][24], the text based formalisms employed lack the intuitiveness of other 

graphical alternatives.

From  another  side,  dataflow  languages  [139],  that  primarily  focus  on  the 

movement of data between execution/operation blocks, provide a very intuitive way to 

express the dependencies between signals and enable the implementation of concurrent 

computation  architectures  that  take  advantage  of  the  parallel  capabilities  offered  by 

reconfigurable  hardware  platforms.  Instead  of  specifying  imperative  sequences  of 

calculations, dataflow languages identity a set of mathematical operations and define the 

relations between intermediary computed values: every time an input signal changes, all 

dependent signals must be immediately recalculated. 

For example, the spreadsheet applications employ a dataflow semantics: when the 

contents of a cell are changed, any other cells that reference this cell must be recursively 

recalculated.  Graphical  dataflows  are  directed  graphs  that  use  nodes  to  express 

mathematical operations and data-processing modules, connected using arcs that define 

the signal relationships and dependencies to form data paths.

Although  dataflow  languages  have  long  been  abandoned  for  general  purpose 

computation, the underlying concepts have been recognized as an effective solution for 

digital signal processing, linear systems control and digital circuit design  [140][141]. 

The  recent  availability  of  multi-core  personal  computers,  may  one  day  bring  these 

concepts  back  from the  shadows,  due  to  the  ability  to  deal  with  concurrency  and 

parallelism.

Synchronous dataflows (SDF), a particular type of dataflows designed for digital 

signal processing applications, where each node always produces and consumes a fixed 

number  of  tokens,  were  presented  in  [142],  covering  many  aspects  ranging  from 

computation  scheduling,  parallel  implementations,  automatic  code  generation  and 
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correctness  verification  [143].  The  synchronous  data  flow  concepts  have  been 

implemented  in  the  languages  LUSTRE  [144],  Signal  [145] and  Esterel  [146]. 

Applications for embedded system development have been presented in [147], and the 

association to state machines in [148].

Reactive systems were defined as systems that react to external events, as opposed 

to transformational systems that continuously apply computations over input signals to 

produce outputs [149][150]. A synchronous approach has been proposed for both kinds 

of  systems,  using  two  syntax  styles:  statecharts  and  dataflow  [151],  employing  an 

instantaneous execution paradigm where computation times are considered negligible. 

Applications of the synchronous paradigm to model  real-time reactive systems have 

been  presented,  including  problems  related  to  model  composition  and  detection  of 

signal loops, calculation scheduling in composite models, correctness verification, code 

generation  [152][153][154][155][156],  and  implementation  of  IEC61499  function 

blocks [157].

2.13 Matlab/Simulink

As previously mentioned, the Matlab and Simulink commercial tools  [63][120], 

have been used to model embedded system controllers [158]. These tools support a vast 

mix of different modeling formalisms, including block diagrams, flowcharts, Petri nets, 

multiple solver algorithms to support different execution semantics, and even support 

automatic  code  generation  for  software  and  hardware  targets.  Requirements  based 

verification  tools  are  available  at  [159].  Simulink  offers  blocks  for  TCP/IP 

communication that may be used to implement distributed applications that have been 

used to model cyber-physical systems.

Although Matlab/Simulink can be viewed as a technology  that competes with the 

proposed framework, used to build the same type of solutions, including automatic code 

generation tools, both solutions can also be used in a complementary way. During the 

preliminary work a new code generator to produce Matlab code from IOPT models was 

created,  that  builds  Matlab-system objects  (http://gres.uninova.pt/IOPT-Tools/)  to  be 

used in Simulink. The resulting Simulink blocks offer an external interface composed of 

the same input and output signals and events as the original IOPT model, applies the 

same execution semantics and lets the used define the initial marking of each instance. 

The system objects may be connected to other Simulink blocks and used for simulation 

and submitted to the Matlab code generation tools.

A similar  code  generator  for  the  new  formalism  might  created  for  the  new 

formalism. This way, DS-Pnet models might be used in Simulink projects and Simulink 

35



might also be used to simulate and validate DS-Pnet systems. This is specially important 

when  a  controller-plant  strategy  is  used  to  model  the  interactions  between  the 

controllers  and  controlled  systems,  as  the  controlled  system  models  may  involve 

dynamic systems that require the employ of the mathematical solvers offered by Matlab. 

In  the  same  way,  there  are  thousands  of  available  Matlab/Simulink  well-debugged 

models that may be immediately used to model the system plants, without the need to 

design  new  models.  The  code  generated  automatically  may  be  combined  with  the 

existing plan models for simulation and detect design flaws.

2.14 Cyber-physical systems

Cyber-physical systems (CPS) is a multi-disciplinary field that studies systems 

composed  of  networks  of  physical  and computational  sub-systems,  often  exhibiting 

closed  feedback  loops  between  both  types  of  sub-systems,  covering  the  areas  of 

software and hardware development, mechatronics, communications, and automation, 

among  others.  Although  there  is  no  standard  definition  of  CPS,  the  most  common 

definition  found  in  the  literature  is  «CPSs  are  defined  as  the  systems  that  offer 

integrations of computation, networking, and physical processes» [48][51].

CPS  are  often  considered  an  evolution  of  embedded  systems.  However,  the 

previous generation of embedded systems were envisioned as part of a single equipment 

or machine and were often contained inside a physical system. In contradiction, CPS are 

often  implemented  as  distributed  heterogeneous  systems  containing  multiple  sub-

systems  that  may  extend  through  the  Internet,  mixing  physical  systems  as  sensors, 

motors and actuators, computing nodes located on the cloud and user interfaces running 

on mobile computing devices.

Over the last 10 years CPS have been identified as a target for future research, 

indicating challenges and future roadmaps  [50][51][52][53]. A frequent concern is the 

need for new modeling formalisms capable to offer a new abstraction able to express 

timing  and  spacial  restrictions  and  deal  with  the  networking  communications  and 

interconnections between physical and computational devices in a transparent way. This 

work is a step in that direction.

As  a  result,  CPS have  been  the  subject  of  extensive  research  work  from the 

academic  community,  that  resulted  in  numerous  publications,  covering  the  areas  of 

modeling,  simulation,  verification,  tool  frameworks,  hardware  platforms,  security, 

reliability,  real-time  requirements,  privacy  and  multiple  fields  of  application.  The 

development formalisms proposed to implement CPS systems range from the traditional 

programming  languages  to  modeling  using  differential  equations,  synchronous 
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dataflows, actors and aspects, Ptolomy II  [160], Matlab and Simulink, among others. 

Good surveys about these publications can be found in [47],[48] and [161]. 

A 5 level guideline for the implementation of CPS solutions has been proposed 

[71] with the following levels: 1) Smart connection level; 2) Data-to-information level; 

3) Cyber-level; 4) Cognition level; and 5) Configuration Level. Although the solutions 

proposed in this work do not enforce any type of guidelines or specific workflow, the 

developers  are  free  to  employ  the  mechanisms  offered  by  the  new  formalism  and 

associated tools to follow any desired guidelines.

In  the  particular  case  of  the  5C  architecture  proposed  by  [71],  the  new 

communication  protocol  and  the  networking  layer  included  by  the  automatically 

generated code provide a good solution to implement the first level, as communication 

between  distributed  physical  devices  and  computational  nodes  is  modeled  in  a 

transparent way. Level 2 can be implemented using dataflow transformations, used to 

condition,  filter  and  pre-proccess  data  read  from  local  sensors  in  order  to  extract 

relevant information that is forwarded to higher-level computing nodes. In the same 

way,  the  cyber  level  can  be  implemented  using  higher-level  DS-Pnet  models  and 

algorithms  implemented  using  foreign  components.  The  user-interface  component 

library used to implement remote used interfaces and data visualization, in association 

with  the  remote  debug  and monitoring  tools  help  the  creation  of  decisions  support 

systems in level 4. Finally, the same tools can be used to implement supervisory control 

systems,  that  will  be  further  augmented  in  the  future  with  the  addition  of  dynamic 

reconfiguration capabilities.

The  concept  of  CPS  has  been  identified  by  the  American  National  Science 

Foundation  as an infrastructure to build the smart systems on the 21th century and 

dedicated numerous initiatives to  the subject  [162].  However,  the concept  has  since 

been adopted by other entities and lead to several research projects  [163][164][165]

[166]  and major initiatives as the European Industry 4.0 [167].
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3 The DS-PNET Modeling Formalism

3.1 Language core

The DS-Pnet  (Dataflows,  Signals  and Petri  nets)  modeling  language  [26] was 

designed to support  the development  of cyber-physical  systems, employing a  mixed 

approach combining Petri nets [30][31] and dataflows [139][142]. Petri nets are used to 

model  the reactive part  of the controllers whose state  evolves according to external 

events, and dataflows are used to specify data processing operations, used to perform 

mathematical  transformations  on  input  signals,  and  calculate  output  values.  Model 

composition based on components,  communicating with each other  using input  and 

output signals and events, enable the creation of reusable component libraries and the 

implementation of distributed cyber-physical systems containing networks of remote 

components communicating through the Internet.

A DS-Pnet model can be divided in two parts. The Petri net part of a DS-Pnet 

model is a non-autonomous low level Petri net, inheriting the main characteristics of the 

parent  IOPT  Petri  net  class  [29],  including  a  maximal  step  execution  semantics, 

transition  priorities,  transition  guards  and  transition  input  events.  The  dataflow part 

inherits principles from synchronous dataflows, where the execution time of dataflow 

operations  is  considered  instantaneous,  with  no  propagation  delays.  The  external 

interface of DS-Pnet models (and components) also inherits the characteristics of IOPT-

nets,  including the input and output signals and events and the Boolean and integer 

range data-types.

Dataflow and Petri net nodes interact with each other in a bidirectional way. From 

one side, dataflow operations may be used as guard expressions or as transition input 

events  to  prevent  transition  firing.  From another  side,  dataflow operations  may use 
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place marking and events triggered by transition firing to calculate output values. To 

ensure deterministic execution, a set of semantic rules has been defined, specifying the 

relationships between the Petri net nodes and dataflow nodes, presented at the end of 

this chapter.

Tables 1 and 2 present the Petri net and dataflow elements available in DS-Pnets.

Place Low-level Petri net place that may hold a positive integer number of tokens

Characteristics:
- Unique identifier
- Initial Marking: Zero or positive integer number 
- Name: Text String
- Comment: Text String
- Graphical position {X,Y}

Transition Low level Petri net Transition

Characteristics:
- Unique Identifier
- Priority: Integer number
- Name: Text String
- Comment: Text String
- Graphical position {X,Y} 

Petri  net 
Arc

Traditional Petri net arc used exclusively to connect places and transitions

Characteristics:
- Unique Identifier
- Inscription/weight: natural number
- Source and target node identifiers
- Visualization mode: Graphic / Symbolic

Table 1: Petri net elements

Signal Signal – Variable used to convey information whose value varies with time

Characteristics:
- Signal name: valid unique identifier
- Data-type: Boolean or Integer range (min, max)
- I/O Mode: Input (green), output (red) or internal (gray)
- Comment: Text String
- Graphical position {X,Y}

Event Event – Represents an instantaneous happening that occurs during a single 
execution step

Characteristics:
- Event name: valid unique identifier
- I/O Mode: Input (green), output (red) or internal (gray)
- Comment: Text String
- Graphical position {X,Y}

Operation Dataflow  node,  called  operation,  calculates  one  or  more  output  values 
using mathematical expressions combining inputs and literal values.
Contains a set of anchors to connect read arcs.
Input anchors are drawn as green and outputs as red.
Model designers may choose trapezoid/arrow, circle or rectangle shapes.
A  collapsed  visualization  mode,  where  only  the  math-expressions  are 
visible, helps reduce clutter.

Characteristics:
- Unique identifier
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- Name: text string
- Comment: text string
- Shape: Trapezoid, Rectangle or Circle
- Size: Natural number
- Inputs: Name, data-type, dynamic-type, dynamic-name
- Outputs: Name, math-expression, data-type, dynamic-type, dynamic-mode
- Visibility: Graphical / collapsed
- Lock: Locked / Editable
- Graphical position {X,Y}

Read Arc Read arc - used to transmit data between nodes:
Transmit data when connecting dataflow nodes, input and output signals
Transmit events when connecting events and transitions
Also used to read place marking without removing tokens from the input 
place (test-arc) 

Characteristics:
- Unique Identifier
- Visualization mode: Graphic / Symbolic
- Source and target nodes

Table 2: Dataflow nodes

The Petri net elements of a DS-Pnet model behave as traditional low level P/T net 

nodes [30]. The state of the Petri net part of a model is defined by the number of tokens 

in each place, called the net marking, whose evolution depends on the transiton firing 

sequence. 

Transition firing is controlled by the set of arcs ending at the respective transition, 

that may be Petri net arcs or read arcs. A transition is enabled when all input places hold 

enough  tokens  to  satisfy  the  weights  inscribed  in  the  respective  arcs.  However, 

transition firing may be subsequently inhibited by read arcs, in form of guards, input 

events, test arcs and synchronous channels. Table 3 presents a list of possible constructs 

built using read arcs and Petri net arcs. It is important to notice that Petri net arcs are 

drawn with an arrow near the target node, read arcs transmitting events finish with a 

diamond and read arcs transmitting Boolean guard-condition values finish with a circle. 

This graphical format was chosen for compatibility with the existing NCES Petri net 

class that used a similar graphical notation [39].

Execution of a DS-Pnet model is performed in discrete steps, called execution-

steps.  In  each step all  dataflow nodes  and transitions  are  evaluated.  Due to  the bi-

directional interactions between transitions and dataflow operations and master-slave 

dependencies imposed by synchronous channels, a deterministic evaluation sequence 

was defined, attributing a set of micro-step and nano-step numbers to each transition 

and dataflow node. The simulation and automatic code generation tools employ these 

numbers to schedule the calculations of dataflow nodes and to evaluate the transition 

firing,  ensuring that  all  values required to calculate  a  certain result  were previously 

obtained.
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Petri net arc Traditional  Petri  net  arc – firing is only possible when the 
number of tokens on the input place is equal or exceeds the 
arc weight inscription.
Input tokens are removed from the input place upon firing.
When all input places hold enough tokens, the transition is 
said to be “enabled”.

Test Arc A read arc tests if a place is marked and holds at least one 
token.
Firing is inhibited when the place has no tokens. Upon firing 
no tokens are removed from the input  place.  The read arc 
transmits  the  value  of  the  place  marking  on  the  previous 
execution  step.  As  read  arcs  have  no  weight  inscription, 
multiple-token  marking  conditions  may  be  specified  using 
dataflow comparative operations. 

Guard 
condition

Read arcs starting on dataflow operations or starting directly 
on signals define transition guards. A transition may only fire 
when all guard conditions hold true.

Input Event Read arcs  starting  on  a  event  or  a  dataflow operation that 
produces  an  event  result,  define  transition  input  events.  A 
transition may only fire when the event was triggered during 
the present execution step.

Synchronous 
channel

A read arc connecting two transitions defines a synchronous 
channel. When the master transition fires, it  emits an event 
received by the slave. The slave transition can only fire if the 
master has fired on the same execution step.  However, the 
master transition may fire independently of the slave.

Table 3: Transition firing inhibition constructs

Cyclic dependencies between dataflow nodes or transitions, considered modeling 

errors, are detected during micro-step/nano-step assignment, discussed at the end of this 

chapter. For example, the inputs of a dataflow operation may not depend on other values 

that  were  calculated  based  on  it's  own  results.  In  the  same  way,  the  master-slave 

relationships between transitions connected though synchronous-channels cannot form 

loops.  To avoid  cyclic  dependencies,  a  delay  operator,  inherited  from  synchronous 

dataflows  [142],  may  be  employed  in  mathematical  expressions  to  refer  values 

calculated on previous execution steps. As the values from previous execution steps are 

memorized, they can be used anywhere in the model without creating calculation loops 

and thus preserving the synchronous paradigm.

Transition firing evaluation follows a maximal step semantics, meaning that all 

transitions  that  are  enabled  and ready to  fire  must  fire  on  the  next  execution  step. 

Conflicts between transitions may occur when multiple enabled transitions compete for 

the same tokens from shared input  places,  but the number of existing tokens is  not 
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enough to fire all of them. In this situation, transitions are sorted using a triple criteria 

(micro-step number, priority and identifier) and are sequentially evaluated by this order. 

This way, synchronous-channel masters are evaluated before slaves, the transitions with 

lower priority numbers will be evaluated first, and finally, the transitions with the same 

micro-step and priority values will be sorted by identifier. In case a conflict occurs, the 

transitions evaluated first will grab the disputed tokens. To assist conflict resolution, the 

editor  tool  calculates  the  evaluation  sequence,  presented  as  numbers  inside  each 

transition.

3.2 Dataflow operations

Data transformation is performed by dataflow nodes, called operations, that apply 

mathematical expressions to input data and calculate output values (output expressions). 

By  default,  each  operation  has  only  one  output,  but  it  is  possible  to  add  multiple 

outputs.  In  this  case,  each  output  is  associated  to  a  data  type  and  mathematical 

expression. An operation with multiple outputs is equivalent to multiple single-output 

operations sharing the same inputs, thus reducing the number or arcs on screen.

Output  expressions  may be  composed  of  a  single  mathematical  expression  or 

multiple  conditional  expressions using WHEN/OTHERWISE constructs.  When more 

than one expression is specified, all expressions, except the last, must contain a WHEN 

condition. Evaluation is performed starting from the first expression and stops when the 

first valid WHEN condition is found. In the following two examples, o10.out uses a 

single-expression and o11.out employs multiple conditional expressions:

o10.out = (i1 + i2 + i3 ) / 3

o11.out = i1 WHEN (i1 > i2 AND i1 > i3)

i2 WHEN (i2 > i1 AND i2 > i3)

i3 OTHERWISE

Mathematical expressions are composed of operands and operators, as listed in 

table 4. Operands may consist of literal values, expressed as decimal or hexadecimal 

numbers (0x prefix), or operation input-anchor names. Mathematical expressions may 

only refer to local names of the operation input anchors. This way, all the relationships 

between  nodes  and  data  dependencies  are  explicitly  visible  through  read-arcs.  This 

restriction also brings advantages  in the reuse of  existing operations,  permitting the 

creation of libraries containing frequently used operations. As all dependencies between 

dataflow operations are expressed using arcs, it is possible to duplicate or copy&paste 

parts  of  other  models  without  the  risk  of  loosing  hidden  dependencies  to  external 

signals.
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Arithmetic operators

Addition +

Subtraction -

Multiplication *

Division / (VHDL requires a power of 2 as 2nd operand)
A 1/N data table may be employed for different denominators.

Modulus / Remainder MOD (VHDL requires a power of 2 as 2nd operand)

Unary - / Symetric -

Comparative operators

Less than <

More than >

Less or equal <=

More or equal >=

Equal =

Different <>

Logic operators

Logical and AND

Logical or OR

Logical xor XOR

Logical NOT NOT

Bitwise operators

Bitwise AND ANDB

Bitwise OR ORB

Bitwise XOR XORB

Bitwise NOT NOTB

Other operators

Sub-expression ( )

Delay operator input[-n] Fetch  the  past  value  of  an  operation  input  from  a  previous 
execution step (n steps go)

Table/Array index table[in]

Conditional operator WHEN

Default condition OTHERWISE

Table 4: Expression operators

In addition to the standard arithmetic, comparative and logic operators, DS-Pnet 

defines  a  delay  operator,  used  to  access  data  from  previous  execution  steps.  This 

operator may be used for different purposes, including the detection of events caused by 

changes in input signals and the implementation of signal filters in the time domain, but 

it also may be used to avoid cyclic dataflow dependencies. Signals associated with the 

delay operator imply the existence of memory elements to store the values of this signal 

on the previous execution steps, implemented in a shift-register fashion.
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However, a side effect of this operator may also be used to optimize hardware 

implementations: As the hardware code generator implements dataflow operations using 

combinatory logic,  models with long chains of dependent operations would produce 

long chains of combinatory logic, that would impose restrictions in the maximum clock-

frequency. The delay operator  breaks these chains,  splitting the calculations through 

several  consecutive clock cycles,  conducting to  pipelined implementations:  dataflow 

operations before a delay operator are calculated in clock cycle N, but the operations 

after this operator are calculated in the next clock cycle (N+1).

Each dataflow operation may hold a bi-dimensional array1 used do store constant 

data tables, for instance containing the values of general purpose functions of one or 

two  integer  arguments.  Individual  table  elements  are  accessed  in  mathematical 

expressions using the “[]” operator. The editor tool offers functions to  fill  the table 

contents from mathematical expressions and has the ability to import and export data in 

spreadsheet  compatible  formats  (CSV).  Tables  of  precalculated  data  simplify  the 

implementation of general purpose functions using re-configurable hardware and low-

end micro-controller devices.

Operations without any input anchors may be used to specify constant values. To 

simplify constant definition, the editor has a tool that automatically creates a dataflow 

operation from a numeric value.

All values used in mathematical expressions must have well defined data-types. 

The available signal data-types, inherited from the IOPT Petri net class, are Boolean and 

integer ranges. Fixed point data-types with 8, 16 or 24 fractional bits are planned for a 

future implementation. These data-types were selected to support code generation for 

very  low end hardware  architectures,  as  8  bit  micro-controllers  and  re-configurable 

hardware. However, in the future, the automatic code generation tools may implement 

fixed point arithmetic operations using floating-point hardware on targets that support it.

In addition to the Boolean and integer range data-types, an event data-type was 

defined, representing instantaneous happenings that typically hold true for only a single 

execution step. In this way, the DS-Pnet event node may be seen as a signal associated 

to an event data type. Operation input and output anchors may be assigned the event 

data-type, that is treated inside mathematical expressions as Boolean values. 

In the same way as the input and output signals, each dataflow operation input and 

output anchor is assigned to a data-type. This assignment may be performed explicitly 

by the designer or automatically by the system. As the manual assignment of data-types 

1 For uni-dimensional tables, the 2nd dimension may consist of a single column.
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and names to individual anchors may become a time consuming task, an algorithm to 

dynamically define these values was created. By default, all input and output anchors 

have  dynamic  names  and  data-types,  that  change  dynamically  whenever  an  arc  is 

attached to an input anchor. However, the designer may choose to define fixed names or 

data-types that remain unchanged when connecting arcs. In this case, the tools must 

verify data-type compatibility between the source and destination nodes of read-arcs. 

Users must also check for data-type mistakes, as any integer range value connected to 

Boolean signals or input anchors are automatically converted to true of false. 

The  dynamic  data-type  of  an  input  anchor  is  copied  from  the  source  node 

whenever  an  arc  is  attached.  In  the  same way, the  source  node names  are  used  to 

dynamically define input anchor names. A set of heuristic rules are employed to define 

the data-type of output anchors:

• Boolean: when the output expression contains comparative and logic operators 

(except inside WHEN conditions)

• Boolean: when all input anchors are also Boolean values

• Integer  range  otherwise.  The  range  limits  are  obtained  the  minimum  and  

maximum of all input anchor ranges 2.

Usually these heuristic rules produce the expected results in most cases, but the 

user can manually change the data-types and disable dynamic type assignment. In the 

same  way, the  anchor  names  assigned  during  arc  attachment  may  not  produce  the 

desired  naming.  For  instance,  some  operations  have  typical  names,  as  «reset»  or 

«enable» that may not match the arc’s source node names.

When the data-type of a signal or an anchor suffer changes, these changes will 

propagate though read-arcs and mathematical expressions through the dataflow nodes 

that depend on this value, as long as the respective anchors have dynamic data-types.

3.3 Components

The external interface of a  model is  composed of a set  of input events,  input 

signals,  output  events  and  output  signals  defined  in  the  model.  Signals  and  events 

defined as «internal» are provided as a convenience to give explicit names to internal 

values, and help reduce the number of long arcs crossing the models. A model may be 

used to implement an entire application, or may be used as a component to build more 

complex systems, or both things simultaneously. This way, whenever the user saves a 

2 A better heuristic would calculate the minimum and maximum values of the output expression for all 
combinations of input values, however the computation time would impose interactivity drawbacks during 
model edition.
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model,  a  component  symbol  with  the  corresponding 

interface is automatically created. 

Almost  all  programming  languages  and  modeling 

formalisms offer some form of structuring mechanisms to 

enable  the  division  of  large  models  into  smaller  parts  or 

sub-systems, or the composition of new application models 

based  on  existing  modules.  DS-Pnets  support  model 

composition  based  on  components  that  communicate  with  each  other  (and  to  the 

external  world)  using an external  interface  defined by input  and output  signals  and 

events.

A component, as presented in figure  5, may be viewed as an object in object-

oriented  languages,  containing  its  own  internal  data  and  algorithms.  It  may  be 

implemented  using  another  DS-Pnet  model  or  designed  using  any  other  modeling 

formalism, as long as the external interface may be specified as a set of input and output 

signals and events. For example, a component could be implemented using an existing 

IOPTnet model  [29], an IEC61399 function block [69][70], a digital integrated circuit 

or an IP core, even if the internal details of these components are now known.

Components may also be used to interface with existing software code, used to 

invoke algorithms and encapsulate objects defined in object-oriented languages. In this 

case,  the  component  may  contain  a  set  of  input  events,  used  to  invoke  the  object 

methods and a set of input signals used to pass parameters to these methods. Output 

signals  may  be  used  to  pass  results  and  expose  status  data  and  output  events  to 

acknowledge data reception, mark the completion of algorithms or error exceptions. The 

DS-Pnet “C” code generator tool supports external components, defining data-structures 

and function-calls to implement the glue-logic used to communicate with the external 

code. 

A DS-Pnet application may be constructed using components implemented with 

different technologies or distributed through different devices, as long as it is possible to 

establish  a  communication  layer  between  the  components  and  the  top  model.  For 

example, a co-design solution might employ a main model implemented as software and 

some components  as  hardware3.  In  this  case,  the  glue-logic  just  transfers  input  and 

output  data  though the interface from the CPU running the main application to  the 

hardware where the components were synthesized, that depends on both the operating 

system and the tool-chain offered by the hardware vendor. In the same way, a DS-Pnet 

3 To employ with the existing FPGA PCI cards for personal computers, or system-on-chips containing both CPU 
cores and re-configurable hardware, as the Xilinx Zinq platform.
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model  may  be  implemented  using  a  network  of  distributed  components,  located  at 

remote  Internet  locations.  To implement  these  solutions,  a  communication  protocol 

based on JSON/HTTP has been specified [22][129], and client/server software added to 

the automatic C code generators,  permitting the design of distributed cyber-physical 

systems in a transparent way, as described in chapter 5. 

Components are represented graphically as a dark-gray rectangle with a set  of 

input and output anchors. Contrary to dataflow operations, the names and data-types of 

the anchors  are  fixed and cannot  be changed,  unless  the underlying implementation 

model  is  changed.  Component  symbols are  generated automatically  from the list  of 

signals and events of a DS-Pnet model (or IOPTnet model). The names and data-types 

of  each  input/output  are  fetched  from  the  original  DS-Pnet  model,  and  are  sorted 

according to the Y coordinate, with events always on top, inputs on the left side and 

outputs on the right.

In  addition  to  the  list  of  input  and  output  anchors,  each  component  is  also 

characterized by an identifier, a name, a comment string, a class name and information 

about the implementation and target hardware. The component implementation refers to 

the formalism used to develop and specify the component behavior, that may be a DS-

Pnet  model,  an  IOPT-net  model  or  a  Foreign  component.  Foreign  components  are 

designed with other tools and development languages, whose code will be linked/added 

to the output of the automatic code generator tools.

The interface of a foreign component may be specified creating an empty DS-Pnet 

model,  just  adding  a  list  of  input  and  output  signals  and  events,  and  setting  the 

implementation property as “foreign”. The target property of a component refers to the 

code  generators  employed;  default,  software,  hardware  or  remote.  This  way,  it  is 

possible to support co-design solutions where some components are implemented as 

software and other as hardware and, in the future, the glue logic for specific hardware 

platforms may be added to automatic code generators.

Two  additional  string  parameters,  «resource-location»  and  «param-string»  are 

used  to  support  the  implementation  of  foreign  components  and  distributed  Cyber-

physical systems. The resource location is used to pass information to the “C” code 

generation tools about the location of remote components, including an internet address 

or a logical node address and the component identifier  on the remote model.  When 

applied to foreign/external component implementation, the resource location property 

may be used to specify the location of data-files,  including user interface icons and 

sound  wave  files,  data-base  tables,  communication  ports,  etc.  The  «param-string» 
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property may be used to pass application related parameter data, as communication port 

parameters, user interface text strings and keyboard accelerator shortcuts, etc.

Distributed  Cyber-physical  systems  usually  employ  networks  of  remote 

components. These components may be designed and developed by third parties and be 

used simultaneously by several applications. For example, a traffic sensor located on a 

road may be used by multiple traffic control applications running on in-vehicle systems 

or  mobile  computing  devices.  To  achieve  this,  the  external  interface  of  these 

components  must  be  accessible  from  the  Internet,  even  if  the  implementation 

model/code is hidden.

3.4 Example DS-Pnet model

Figure  6 presents  an  example  model  illustrating  common DS-Pnet  constructs, 

including the relationship between dataflow and Petri net nodes. This model mixes both 

types of nodes side-by-side. However, if desired, the dataflow nodes could be drawn 

apart from the Petri net nodes and symbolic-view arcs used to connect both parts, thus 

separating the data-processing part from the reactive controller part of the model.

This  model  employs  3  input  signals,  where  «Btn»  is  a  Boolean  signal  and 

«Input1» and «Input2» have an integer range data type. Another input, «Start» is an 

event that represents an instantaneous happening. In a similar way, the model has two 

output signals, a Boolean «LedOut» and an integer range «Counter» and also produces 

an output event «OutEvent».
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The execution of this model is centered on the behavior of the transitions, whose 

firing is conditioned by both the place marking and dataflow nodes, with guards and 

input events coming directly from input signals and from dataflow operations.

When model execution starts, the places «PA1» and «POff» are marked and, as a 

result, transitions «TA1A», «TA1B» and «TB1» are enabled. In addition, the transition 

«TA4» is also enabled. In fact, this transition is always considered enabled as it does not 

have any input Petri net arc. It is connected to place «PA1» using a test arc that reads the 

place marking but does not consume any tokens.

Transitions  «TA1A»  and  «TA1B»  are  both  inhibited  using  input  events,  as 

«TA1A» is  connected  directly  to  the  «Start»  external  input  event  and the  firing  of 

«TA1B» is controlled by an event generated internally by the «Up» dataflow operation. 

The event is calculated using the output expression «I[-1]=0 and I=1» that employs the 

delay operator «[-1]» to fetch the value of the input signal on the previous execution 

step,  detecting  positive-edge signal  changes  from zero  to  one,  corresponding to  the 

instant when the user presses a button.

The previous expression produces an event based to a simple edge-up detection. 

However,  using  different  expressions  it  is  possible  to  define  more  complex  event 

semantics. For example, one problem that often arises with mechanical switch buttons is 

called  «bounce»:  instead  of  producing  a  single  edge-up  transition,  a  button  might 

produce a very fast  train of pulses while the metallic contacts are approaching each 

other but are not fully connected yet. In order to overcome this problem, an expression 

like «I[-4] = 0 and I[-3] = 1 and I[-2]=1 and I[-1]=1 and I=1» will employ the past four 

input values to filter bounce pulses and ensure that the signal is stable during the past 

four execution steps4. Similar expressions may be used for other purposes, to filter high 

frequency noise from digital input signals.

As previously referred, when execution starts, both transitions TA1A and TA1B 

are  simultaneously  enabled.  However,  place  «PA1» has  only  one  token,  that  is  not 

enough to fire both transitions. As a result, if the events inhibiting the firing of these 

transitions happen during the same execution step, a conflict between the transitions 

will  arise.  Conflicts  are  commonly  solved  by  assigning  different  priorities  to  each 

transition: in this case, only the transition with lower priority number will fire. When 

both  transitions  have  the  same  priority  number,  firing  is  sorted  according  to  the 

respective unique identifiers, meaning that the oldest (firstly drawn) has priority.

4 As the execution step frequency is often much larger than the of bounce pulse frequency (MHz vs Hz), a more 
robust bounce filter solution might employ a counter component.
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After  one of these transitions  fire,  place «PA2» will  be marked and transition 

«TA2»  will  be  enabled.  However,  «TA2»  is  inhibited  by  a  guard  operation  that 

compares «Input1» and «Input2». When the value of «Input1» exceeds «Input2», TA2 

will immediately fire in the next execution step and «PA3» will be marked.

Place «PA3» is connected to a dataflow operation «Act» that calculates the value 

of an output signal «AnalogOut». The output expression uses a WHEN/OTHERWISE 

construct  to  calculate  the  output  value:  10  when  PA3 is  marked  and  5  otherwise5. 

However, place «PA3» is only marked during a single execution step, as the transition 

«TA3» is not inhibited by any guard or input event and will fire as soon as it is enabled. 

This way, the output of «AnalogOut» will consist on a steady value of 5 with sporadic 

spikes with value 10. After «TA3» fires, place «PA1» will be marked and the left part of 

the model (PA1, PA2, PA3) will return to the original state.

Transition «TA3» is connected to transition «TB1» using a read-arc, forming a 

synchronous-channel where «TA3» is the master and «TB1» is the slave. This means 

that transition «TB1» may only fire if «TA3» also fires in the same execution step. 

However, «TB1» may not be able to fire when «TA3» fires,  as «TB1» may not  be 

enabled: «Poff» unmarked or the guard signal «Enable» many not hold true.

When «TB1» fires, place «POn» will be marked during exactly one execution 

step,  as  transition  «TB2»  will  immediately  fire.  This  way,  the  output  «LedOut» 

connected  to  place  «PB2» will  blink  during  one  execution  step,  while  the  place  is 

marked and the event «OutEvt» will be triggered on the next execution step, caused by 

the firing of «TB2». As this point, the right side of the model (POff, POn) will also 

return to the original state with «POff » marked.

The complete state of this system is composed of the place marking and also by 

the «Counter» output. The value of this output must be memorized by the system as it is 

used in association with the delay operator «[-1]» in the «Cnt» operation. The respective 

value is incremented when «TA4» fires (while «PA1» is marked), is decremented when 

«TA2» fires and remains constant otherwise. The real values of the «Counter» output 

are limited by the integer range limits defined in the data type.

5 The word OTHERWISE is implicit on the last expression of a WHEN construct and is optional.
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3.5 Model files 

DS-Pnet models are stored using a XML file format. XML was chosen due to the 

wide support across almost all programming languages, the availability of many parsing 

libraries  and  processing  and  validation  tools,  including  dictionary  based  syntax 

validation  (DtD,  RelaxNG),  query  languages  (Xpath,  Xquery)  and  transformation 

engines (XSLT).

Although  a  standard  XML file  format  to  represent  Petri  net  models  (PNML) 

exists, it was not used. First, it would require non-standard extensions to represent input 

and output signals and the dataflow part of DS-Pnet models. Second, the PNML syntax 

is too verbose, where node properties are usually stored inside children nodes, requiring 

increased  parsing  effort  to  process  model  files,  with  a  negative  impact  on  tool 

development. Finally, the chosen XML data format can be easily converted to PNML 

using  simple  XSL  transformations.  In  fact,  the  IOPTflow  framework  includes  a 

transformation that extracts the Petri net part of a DS-Pnet model and converts it to an 

IOPTnet model, stored as a PNML file. This model may be subsequently processed with 

the IOPT model-checking tools.

The following XML document contains an excerpt of the model file presented in 

figure 6, truncated to include just one example of each type of DS-Pnet nodes:
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<?xml version="1.0"?>
<net name="tst3" type="iopt-flow">
  <place id="p001" x="210" y="125" init_marking="1">
    <name off_x="-10" off_y="-10" text="PA1"/>
    <comment off_x="0" off_y="20" text="-"/>
  </place>
  <transition id="t006" x="150" y="200" priority="0">
    <name off_x="-10" off_y="-10" text="TA1A"/>
    <comment off_x="0" off_y="20" text="-"/>
  </transition>
  <event id="Start" x="50" y="200" mode="input"/>
  <signal id="Input1" x="50" y="315" mode="input" type="boolean" min="0" max="1"/>
  <signal id="LedOut" x="725" y="285" mode="output" type="range" min="0" max="255" dynamic="type" 
frac="0"/>
  <arc id="a010" type="normal" source="p001" target="t006"/>
  <arc id="a021" type="read" source="Start" target="t006"/>
  <operation id="o028" x="120" y="140" rot="0" shape="arrow" size="16">
    <name off_x="-11" off_y="-16" text="Up"/>
    <input off_x="-16" off_y="0" name="i" id="o028.i" type="range" min="-32768" max="32767" 
frac="0"/>
    <output off_x="16" off_y="0" name="out" id="o028.out" type="event" min="0" max="1" 
dynamic="none" frac="0">
      <expression>
        <text>i[-1] = 0 AND i = 1</text>
        <operand type="signal" idRef="i" delay="1"/>
        <operator type="equal"/>
        <operand type="literal" value="0"/>
        <operator type="and"/>
        <operand type="signal" idRef="i"/>
        <operator type="equal"/>
        <operand type="literal" value="1"/>
      </expression>
    </output>
  </operation>
</net>

Listing 1: Part of the DSP-net XML document from the model presented on fig. 2.



Each  node  contains  the  XML representation  of  the  respective  DS-Pnet  node 

characteristics presented in tables 1 and 2. In order to simplify parsing, most of these 

characteristics are encoded as XML node properties, except for items that may have 

multiple instances in the same node, encoded as child nodes. The name and comment 

characteristics,  not  employed  by  the  execution  semantic  tools6,  are  also  stored  into 

children nodes.

Mathematical expressions are encoded as an hierarchical XML tree, containing a 

sequence of operands and operators. A list of available operators has been presented in 

table  4.  Operands  may  consist  of  literal  values,  operation  input  names  and  sub-

expressions. This format was chosen to simplify the implementation of the automatic 

code generation tools, simplifying the translation to the syntax of the target languages, 

that may have different rules. 

Component instances have a XML encoding similar to dataflow operations, with a 

list of input and output signals and events. Listing 2 presents an example instantiation of 

a foreign component implementing an interface to communicate with industrial devices 

using the ModBUS field-bus protocol. Each component instance contains a reference to 

the source model implementing the component,  that are be used by code generation 

tools to build flat models of entire systems. Two additional attributes, resource location 

and  parameter  string,  are  used  by  the  automatic  code  generation  tools  to  pass 

information to foreign components, coded using external programming languages. In 

this example, are used to select a serial port adapter and define the serial communication 

parameters.

6 Although the comment attribute may be used by foreign components.
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<component id="c1" class="protocols/modbus_if.xml" x="630" y="585" width="170" height="180" rot="0" 
implementation="iopt-flow" target="external" res_location="/dev/ttyUSB0" param_string="19200,8,N">
  <name off_x="-85" off_y="-95" text="modbus"/>
  <source_model file="files/modbus_if.xml"/>
  <input id="c1.ReadInput" name="ReadInput" type="event" off_x="-85" off_y="-/>
  <input id="c1.WriteCoil" name="WriteCoil" type="event" off_x="-85" off_y="-30" />
  <input id="c1.WriteReg" name="WriteReg" type="event" off_x="-85" off_y="-10" />
  <input id="c1.m_id" name="m_id" off_x="-85" off_y="10" type="range" min="0" max="255" />
  <input id="c1.s_id" name="s_id" off_x="-85" off_y="30" type="range" min="0" max="255" />
  <input id="c1.Addr" name="Addr" off_x="-85" off_y="50" type="range" min="0" max="65535" />
  <input id="c1.WrValue" name="WrValue" off_x="-85" off_y="70" type="range" min="0" max="65535" />
  <output id="c1.RecvAns" name="RecvAns" type="event" off_x="85" off_y="-70" />
  <output id="c1.Error" name="Error" type="event" off_x="85" off_y="-50" />
  <output id="c1.Ready" name="Ready" off_x="85" off_y="-30" type="boolean" />
  <output id="c1.RdID" name="RdID" off_x="85" off_y="-10" type="range" min="0" max="255"/>
  <output id="c1.RdValue" name="RdValue" off_x="85" off_y="10" type="range" min="0" max="65535" />
</component>

Listing 2: XML representation of a component instance.



3.6 Execution Semantics

The  DS-Pnet  modeling  formalism  combines  concepts  from  Petri  nets  and 

dataflows. Although both fields have been extensively studied in the past [30][31][32]

[33][75][139][142][144][145][146], the interaction between dataflow operations, input 

and  output  signals  and Petri  nets  must  be  studied.  In  order  to  ensure  deterministic 

execution, the semantic rules resulting from such interactions must be well specified. 

An early version of the DS-Pnet formal definition has been presented in  [26]. Later, 

during  the  implementation  of  the  automatic  code  generation  tools,  additional 

requirements  were  added,  needed  to  obtain  coherent  execution  behavior  between 

software and hardware implementations, described in [28].

3.6.1 Formal definition

A  DS-Pnet  model  is  a  directed  graph,  combining  Petri  net  nodes,  dataflow 

operations and input and output signals and events. The Petri  net nodes are used to 

model the system state and reactive behavior, dataflows nodes are used to perform data 

processing and signals and events define the external interface.

Definition 1: A DS-Pnet model is described as a tuple DS-Pnet = (P, T, S, E, O, A,  

R, m0, s0, w, pt, ex, st, ot) satisfying the following requirements:

1)  P is a finite set of places

2)  T is a finite set of transitions 

3)  S is a finite set of signals

4)  E is a finite set of events

5)  O is a finite set of dataflow nodes, called operations

6)  P  T  S  E  O = ∪ ∪ ∪ ∪ ∅
7)  A is a finite set of Petri net arcs with A  (P×T)  (T×P)⊆ ∪

8)  R is finite set of read arcs with

    R ⊆ (S×S)  (S×O)  (S×T)  (O×S)  (O×O)  (O×T) ∪ ∪ ∪ ∪ ∪ ∪
(P×T)  (O×E)  (E×O) (E×E)  (E×T)  (T×T)∪ ∪ ∪ ∪ ∪

9) s ∀  S, #{(∈ x×s)|(x×s)  R} ∈ ≤ 1 (signals have no more than one input arc)

10) e ∀  E, #{(∈ x×e)|(x×e)  R} ∈ ≤ 1 (events have no more than one input arc)

11)  m0 is the initial place-marking function with mapping m0: P→ N0

12)  s0 is the initial signal values partial function with mapping s0: S ↛ N0

13)  w is the Petri net arcs weight function with mapping w: A → N

14)  pt is the transition priority function with mapping pt: T→ N0

15)  ex is a function applying operations to mathematical expressions
   (where non-literal operands(nlop) are the source of input arcs)
ex : O → exp, where nlop  exp(O), nlop  {x|(x,O) R}∀ ∈ ∈ ∈

16) st is a signal type function with mapping st: S→ t, t ∈ {Boolean, Range}

17) ot is an operation result type function with mapping ot: O→ t, t ∈ {Boolean, Range, Event}

54



For improved readability, this definition has been simplified in two ways:

a)  Components  have  not  been  considered.  However,  a  model  containing 

components  may  be  transformed  into  a  flat  model,  without  components,  where  the 

component  anchors  are  converted  into  signals  and events,  adhering  to  the  previous 

definition.  Components implemented as DS-Pnet models are absorbed into the main 

model and the respective anchors are converted into internal signals and events. Inputs 

and outputs of foreign components, that may consist of physical devices or systems 

implemented using external tools, are respectively transformed into output and input 

signals that are appended to the external interface of the main model.

b) Operation input and output anchors have been omitted. However, anchors are 

only  used  as  an  edition  aid  to  attach  arcs,  simplify  the  writing  of  mathematical 

expressions  and  allow  the  copy&paste  of  model  sections.  Anchor  names  may  be 

replaced in mathematical expressions by the identifier of the respective driver arcs, as 

presented in figure  7. In addition, operations with more than one output may be split 

into multiple single-output operations, cloning the corresponding input arcs. This way, 

the  operation  identifier  may  be  used  to  refer  the  respective  output,  leading  to  an 

equivalent model without any anchors. Finally, the restrictions applied to signals must 

also apply the input and output anchors: input anchors may not be driven by more than 

one input arc and output anchors may not have input arcs.

The external interface of a DS-Pnet system is defined by a set of input and output 

signals and events, that are a subset of the system’s signals and events.

Definition 2: The external interface of DS-Pnet system is a tuple EIF = (IE, IS,  

OE, OS) satisfying the following requirements:

1) IE  E⊆

2) IS  S⊆

3) OE  E⊆

4) OS  S⊆

5) IE ∩ IS ∩ OE ∩ OS = ∅
6) s ∀  IS, {(∈ x×s)|(x×s)  R} ∈ =  ∅ (input signals have no input driver arcs)

7) e ∀  IE, {(∈ x×e)|(x×e)  R} ∈ = ∅ (input events have no input driver arcs)
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 Fig. 7: Anchor equivalence: the operation on the left is  
equivalent to the dataflow node on the right.
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8) s ∀  OS, #{(∈ x×s)|(x×s)  R} ∈ ≤ 1 (output signals have no more than one driver arc)

9) e ∀  OE, #{(∈ x×e)|(x×e)  R}∈  ≤ 1 (output signals have no more than one driver arc)

In addition to the external interface, a DS-Pnet system may be decomposed in two 

parts, the state control logic and the data-processing parts: 

Definition 3: The state control part of a DS-Pnet is a low level Petri net defined 

by a tuple PN = (P, T, A, m0, w, tp, R- ) where:

1) P is the DS-Pnet set of places

2) T is the DS-Pnet set of transitions

3) A is the DS-Pnet set of Petri net arcs 

4) m0 is the initial place marking mapping m0: P → N0

5) w is the DS-Pnet arc weight mapping w: A→ N

6) tp is the DS-Pnet transition priority mapping: T → N0

7) RP is  a  subset  of  the  DS-PNet  set  of  read  arcs  such  as  RP  R   R⊆ ∧ -  (P⊆ ×T) (T×T)∪
(test arcs and synchronous channels)

Definition 4: The data processing part of a  DS-Pnet model is a dataflow DF = 

(O, S, E, R+
, s0, ex, st, ot) where:

1) O is the DS-Pnet set of dataflow operation nodes

2) S is the DS-Pnet set of signals

2) E is the DS-Pnet set of events

4) RD is a subset of the DS-Pnet read arcs RD
 = R – RP

5) s0 is the initial signal values partial function s0: S  N↛ 0

6) ex is the DS-Pnet operation expressions function

7) st is the DS-Pnet signal types function

8) ot is the DS-Pnet operation results type function

The results of operation mathematical expressions (ex in definition 1) must belong 

to one of the data types: Boolean, event or integer range. A fixed point integer range 

data type is planned for the future, but has not been implemented in the current version.

Operation mathematical expressions are constructed using the following items:

- Literal operands: decimal values or hexadecimal values (prefixed with «0x»)

- Variable operands corresponding to the graph nodes directly connected through 
input arcs (graphically attached to input anchors)

- The arithmetic operators +, -, *, / and MOD, plus the unary operator -

- The comparison operators <, <=, >, >=, <> and =

- The logical operators AND, OR, XOR and the unary operator NOT

- The bitwise operators ANDB, ORB, XORB and NOTB 

- Sub-expressions inside curly parentheses
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- The delay operator ([-N]) used as suffix to variable operands, to refer past values 
from previous execution steps

- The array index operator ([+i]) used as suffix to tables of constant values stored 
in operations7

- The conditional operators WHEN and OTHERWISE to build «case» constructs

The state of a DS-Pnet system is composed of the Petri net place marking and the 

previous values of signals, events and operations, used in association with the delay 

operator, memorized as shift-registers: 

Definition 5: The state of a DS-Pnet model is tuple MS = (m,ps,pe,po) where:

1) m is the place marking, m: P → N0

2) ds  S ⊆ is the subset of signals associated with the delay operator

3) de  E ⊆ is the subset of events associated with the delay operator

4) do  O ⊆ is the subset of operations associated with the delay operator

5) ns: ds→N is a function mapping signals to the index of the oldest value accessed with the delay operator 

6) ne: de→N is a function mapping events to the index of the oldest value accessed with the delay operator 

7) no:  do→N  is  a  function  mapping  operations  to  the  index  of  the  oldest  value  accessed  with  the
delay operator 

8) ps is a function mapping signals to shift register arrays storing the previous signal values ps: ds → [SR]ns 

9) pe is a function mapping events to shift register arrays storing the previous events values pe: de → [SR]ne 

10) po  is  a  function  mapping  operations to shift  register  arrays  storing  the  previous  operation  values
po: do → [SR]no

3.6.2 Execution semantic rules

The execution semantic rules of DS-Pnet models, combining characteristics from 

low  level  Petri  nets  [30][31] and  synchronous  dataflows  [139][142],  reflect  the 

formalism heritage. In the same way as the parent formalisms, execution is performed in 

discrete steps, but the computation of each step is considered instantaneous, with no 

propagation delays between nodes. In typical implementations steps occur at a fixed 

frequency,  with  a  predefined  time  interval  between  consecutive  steps,  but  variable 

frequency implementations are not discarded.

Although  the  computation  of  each  execution  step  is  considered  instantaneous, 

observing  the  synchronous  paradigm  [142],  the  evaluation  of  net  nodes,  including 

dataflow  operations  and  Petri  net  transitions,  must  be  performed  under  an  exact 

sequence, that is defined using the concepts of micro-step and nano-step numbers. 

On reactive systems, that respond to external events and changes in input signals, 

the most important part  of the system state is the Petri  net place marking. Previous 

7 May be used for software or hardware implementation of mathematical functions of 1 or 2 integer arguments, 
based on tables of values. 
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values stored in shift  registers perform a secondary role,  to generate internal events 

associated with the crossing of certain thresholds, or to calculate values that evolve 

continuously in the time-domain, as counting, differentiation and integration. Thus, the 

controllers are designed around a Petri nets, that evolve according to transition firing. A 

transition may only fire (and must fire), when it is simultaneously enabled and ready. 

The following definitions cover the rules that govern transition firing:

Definition 6: A transition is enabled when every input place, connected through 

Petri net arcs, hold a number of tokens that is equal or larger than the respective arc 

weights. For a transition t: (p ∀  P | (p,t)  A), m(p) > w(p,t)∈ ∈

Definition  7: A transition  guard-condition  is  defined  by  an  input  read  arc, 

originating on a node containing a Boolean value. Range values are evaluated as true 

when different from zero.

Definition 8: A transition input event is defined by an input read arc, originating 

on node of type event: an event, a transition or an operation producing a result of type 

event. 

Definition 9: A transition is ready when all guard conditions and input events 

hold true.

Definition 10: Maximal step execution semantics - all transitions simultaneously 

enabled and ready are forced to fire on the next execution step.

Definition 11: Conflict – two or more transitions are in conflict when all of them 

are simultaneously enabled (and ready), but the number of tokens on the shared input 

places is not enough to fire all of them.

Definition 12: Conflict resolution – Conflicts between transitions may be solved 

assigning priorities to each transition. Firing priority criteria is defined by: 1) execution 

micro-step, 2) transition priority and 3) transition unique identifier.

A read arc starting on a place transmits the number of tokens on that place. If this 

read arc ends on a transition, forms a special type of guard function, called a test arc,  

meaning that this transition will only fire when the place is marked, but no tokens are 

removed from the place. To test if a place has multiple tokens requires a different guard 

condition, created using a dataflow operation to compare the number of tokens with the 

desired value.

In the same way, read arcs starting on transitions transmit events, called transition 

output events. These events, triggered when the transition fires, may be used as input to 

dataflow operations, to trigger actions on other components or may be connected to 
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other transitions. When an event triggered by a transition is used as input for other 

transition, a synchronous channel is formed. The master transition, emitting the event, 

will  fire  as  soon  as  it  is  ready  and  enabled,  independently  of  the  slave  transition. 

However, the slave transition can only fire when the master has triggered an event. This 

way, both transitions will fire on the same execution step8.

Synchronous  channels  are  often  used  to  synchronize  transitions  located  in 

different components. Systems designed using multiple components may contain long 

chains of master-slave transitions, but these chains may not create cyclic dependencies. 

As  all  transitions  from  these  chains  may  fire  on  the  same  execution  step,  the 

corresponding transition firing semantics rules must be evaluated on the same execution 

step.  However,  as  the  firing  of  the  slaves  depend on the  firing  of  the  masters,  the 

execution semantic rules must ensure that the masters are evaluated before the slaves. In 

the same way, any dataflow operation that receive events from a transition must also be 

evaluated after deciding if the transition is about to fire. To resolve this problem, the 

concepts of micro-steps and nano-steps were introduced, permitting the definition of a 

precise evaluation sequence to decide transition firing and compute dataflow operations.

Definition 13: Micro-step number assignment:

1) Nodes with no input read arcs are assigned to micro-step 1

2) Nodes with input read arcs are assigned a micro-step number corresponding to the maximum 
micro-step associated with these input read arcs, according to the following rules:

a) Read arcs used inside mathematical expressions in association with the delay operator «[-n]», 
are assigned to micro-step 1, as the expression uses memorized values from previous executions steps.

b) Read arcs starting on a transition, propagating transition output events, are assigned a micro-
step number equal to the transition micro-step plus 1.

c) Read arcs starting on non-transition nodes, are assigned the same micro-step number as the 
source node.

Nano-steps are used to sequence the dependencies between dataflow operations 

evaluated on the same micro-step:

Definition 14: Nano-step number assignment:

1) Nodes with no input read arcs are assigned to nano-step 1

2) Nodes with input read arcs are assigned a nano-step corresponding to the maximum nano-step  
number of the input read arcs source nodes, according to the following rules:

a) Read arcs used in inside mathematical expressions in association with the delay operator «[-n]», 
are assigned to nano-step 1

b) Read arcs starting on nodes from past  micro-steps,  including all  places and transitions,  are 
assigned nano-step 1

8 Assuming both components are running locally on the same time domain. On distributed implementations the 
slave may fire later due to communication delays and differences in execution step clocking. In that case the 
channel is no longer synchronous. 
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c) Read arcs starting on nodes from the same micro-step, are assigned 1 plus the source node nano-
step number

Lemma 1: Dataflow operations nodes with the same micro-step and nano-step 

numbers can be evaluated by any execution order or may be executed in parallel.

The first stage in the execution of DS-Pnet model consists in the assignment of 

micro-step and nano-step numbers to all transitions and dataflow nodes, according to 

definitions 13 and 14. As a result, these numbers are subsequently used by the automatic 

code  generation  tools  to  schedule  all  calculations.  However,  this  task  has  another 

important  effect:  any  cyclic  dependencies  between  dataflow  operations  and 

synchronous-channel transitions are immediately detected, even if the loops form across 

multiple components. This corresponds to a common modeling mistake that is usually 

solved using the delay operator. When a model contains components, a flat model with 

all nodes from all components must be built. The assignment of micro-step and nano-

step numbers, and the detection of cyclic dependencies is performed on the flat model.

Figure 8 displays the same example model as figure 6, with sequence numbering 

visualization enabled. Signals and dataflow operations present the respective micro-step 

and  nano-step  numbers.  Transitions  show an evaluation  sequence  number,  used  for 

conflict resolution, followed by the respective micro-step number and priority.

In addition to the micro-step and nano-step numbers, it is also necessary to filter 

which nodes are required for transition evaluation and which nodes are required for 

output signal evaluation. These filters are required by the automatic code generation 

tools  for  software  targets,  to  immediately  update  the  value  of  output  signals  after 

transition firing, before waiting for the next execution step. For instance, output values 

depending  on  place  marking  may  have  to  be  immediately  recalculated  after  place 

marking changes.
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In order to optimize the system execution, computations are split into two stages. 

On a first stage, only the nodes required for transition evaluation are calculated. Next 

transitions  are  fired  and  a  new  marking  is  calculated.  Finally,  all  other  nodes  are 

calculated,  but  the  nodes  that  are  simultaneously  used  by transition  evaluation  and 

output signal computations, may have to be calculated twice in the same execution step. 

This is required to ensure consistent behavior between software and hardware targets, 

and the last implements dataflow operations using combinatory logic.

It  is  important  to  notice  that  the  two  stage  computation  process  might  cause 

effects unexpected at first sight, where the value of an output calculated on the first 

stage triggers the firing of a transition that immediately changes the value of the same 

output  on the second stage  calculation.  As this  process  is  instantaneous,  due to  the 

synchronous paradigm, an external observer would only see a unique change from a 

value on the previous step to the final value, and may not understand why the transition 

fired.  As  a  result,  an  execution  step  of  a  system described  by  a  DS-Pnet  may  be 

implemented with the algorithm presented in listing 3.
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read input-signals, input-events
for-each place do
   avail-marking[place] = marking[place]
   add_marking[place] = 0
done
for micro-step = 1 to n-micro-steps do
   // Comment: Stage 1

 for nano-step = 1 to n-nano-steps[micro-step] do
    if required-by-transition-evaluation
       execute data-flow-operations[micro-step][nano-step]
    end if

   done
 for-each transition[micro-step] (sort by priority,identifier)
 do

if transition-is-enabled and transition-is-ready
   then

  for-each input-place[transition] do
     avail-marking[place] = marking[place] – arc-weight

       done
   for-each output-place[transition] do

     add-marking[place] = add-marking[place] + arc-weight
       done
  end if

done
for-each place do
   marking[place] = avail-marking[place] + add_marking[place]
done

for micro-step = 1 to n-micro-steps do
 // Comment: Stage 2
 for nano-step = 1 to n-nano-steps[micro-step] do
    if not(required-by-transition-evaluation) or required-by-output-evaluation
       execute data-flow-operations[micro-step][nano-step]
    end if

   done
done

for-each signal do
   if use-delay-operators(signal) then shift-registered-values(signal)
done
write output-signals, output-events

Listing 3: DS-Pnet execution step algorithm pseudo-code
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4 Automatic Code Generation

The main goal of the DS-Pnet modeling formalism is the creation of controllers 

for embedded systems and build distributed cyber-physical systems (or general purpose 

digital systems), running on physical hardware devices. In order to execute the models 

on these devices, the corresponding semantic execution rules must be either interpreted 

or translated to the native programming languages of the target devices. A compilation 

strategy was chosen, generating code that implements the model behavior on several 

programming languages. Currently only C, JavaScript and VHDL are supported,  but 

other  languages  may  be  supported  in  the  future,  as  Java,  Matlab,  or  IEC61131-3 

Structured text [168][169], to support programmable logic controllers.

The C programming language was chosen to run models on micro-controllers, 

industrial PCs, and small computing boards as the Arduino and Raspberry PI. VHDL 

was  selected  to  implement  models  on  hardware  devices  as  FPGAs  or  ASICs.  The 

JavaScript code generator is currently only used by the DS-Pnet simulator to run models 

directly on the Web browser. It generates code to efficiently run a single execution step, 

invoked by the simulator to execute models step-by-step or continuously run. In the 

future,  the  JavaScript  code  generator  may  have  additional  uses,  for  example  to 

implement remote Web user interface for embedded devices. The JavaScript code can 

perform the computations required for data visualization and user input validation in the 

browser,  releasing  the  embedded  devices  from  these  tasks,  with  communication 

bandwidth savings.

Co-design solutions for hybrid systems containing both reconfigurable hardware 

and microprocessor units may be implemented by selecting hardware or software targets 

for  each  component.  However,  at  this  point,  the  code  generator  must  be  called 
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separately  for  the  software  and  hardware  parts,  and  the  communication  between 

hardware and software components must be coded manually, as it is highly dependent 

on the hardware details of the target architectures.

In a typical co-design scenario,  a software main model runs on the processing 

system  and  hardware  accelerated  components  are  synthesized  using  VHDL.  The 

hardware component  inputs  and outputs used to  communicate  with the main model 

must be connected to the bus of the processing system and the main model will read and 

write these I/Os using memory mapped variables.

The automatic code generation tools employ the algorithm presented in listing 3 

and the definitions presented on chapter 3. Code generation is processed into six steps:

1 – Generate a flat model containing the elements of all components

2 – Define the evaluation sequence, assigning micro-step and nano-step numbers
to the flat model elements

3 – Create a language independent XML file with the model execution semantics

4 – Convert the XML file to the selected target language: C, JavaScript or VHDL

5 - Add client/server code for distributed execution and remote debug (C only) 

6 – Pack all source files and support files into a single compressed file

Figure  9 displays the flow of information from step 1 to 5, omitting step 6 that  

consists on file packaging and the addition of support files (data-files, makefile, etc.). In 

addition to the language independent semantic XML code, the code generators obtain 

auxiliary information directly from the original model: The communication layer of the 
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C code employs meta-data information extracted from the main model and the modular 

VHDL  code  generator  applies  the  code  generation  algorithm  to  each  individual 

component.

The first step recursively merges the elements of each component implementation 

model into the main model,  producing a flat  model without components, except for 

foreign/external and remote/distributed components. Element identifiers are constructed 

appending the original element identifier to the component identifier (ex: «comp1.in3»). 

The input and output signals and events of the component interface are converted to 

internal signals of the flat model, and the arcs attached to the corresponding component 

anchors are reattached to these internal signals.

Step two calculates an execution sequence to compute dataflow operation results 

and evaluate transition firing. The dependencies between dataflow nodes and transitions 

are evaluated, assigning micro-step and nano-step numbers to each node, according to 

definitions 13 and 14. Different instances of the same component element may receive 

different  micro/nano steps due to  input  dependencies.  Cyclic dependencies,  possibly 

crossing multiple components, are detected during this phase.

Next,  a  XSL  transformation  is  applied  to  the  flat  model  to  generate  an 

intermediary  XML document containing  instructions  to  execute the  model  behavior, 

according  to  the  algorithm  presented  in  listing  3.  The  intermediary  XML  format, 

independent  of  any  programming  language  syntax,  contains  a  set  of  directives, 

including  an  header  section  with  data  structure  and  variable  declarations  and  a 

procedural section with computational instructions. Mathematical expressions maintain 

the same hierarchical XML format as the original DS-Pnet models. Listing 4 presents an 

excerpt of this XML code, but complete documents may be viewed using the editor tool.

In  the  fourth  step,  other  XSL  transformations  are  used  to  translate  the 

intermediary  XML  document  to  the  syntax  of  the  target  programming  language. 

Currently there are transformations to produce C, VHDL and JavaScript.

XSL transformations [135] had previously been used on a preliminary work [6][8]

[14],  to  generate  code  from  IOPT Petri  net  models.  The  new  work  builds  on  the 

experience previously obtained that conducted to the development of the new multi-step 

code generation strategy. The introduction of the intermediary XML document permits 

the separation of the code generation in two stages, one dealing only with the semantic 

execution  rules  and  other  with  the  syntactic  details  of  each  target  language.  This 

separation contributes to ensure behavioral coherency between all code generators, as 

the first steps of the code generation are common to all languages. In addition, it also 
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greatly simplifies the creation of new code generators for different languages, as it just 

requires translating the intermediary XML files to the new syntax.
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<execution-semantics model="sample">
  <header>
    <variable name="Input1" orig-node="signal" mode="input" type="boolean"/>
    <variable name="Input3" orig-node="signal" mode="input" type="range" min="0" max="100" 
def_value="0" io_pin="0"/>
    <variable name="Input4" orig-node="signal" mode="input" type="range" min="0" max="100" 
def_value="0" io_pin="0"/>
    <variable name="Counter" orig-node="signal" mode="output" type="range" min="0" max="1023" 
shift-register-depth="1" def_value="0" io_pin="0"/>
    <variable name="InEvent" orig-node="event" mode="input" type="boolean"/>
    <variable name="OutEvent" orig-node="event" mode="output" type="boolean"/>
    <struct name="marking">
      <field name="p1" type="range" min="0" max="255" node-name="P7" def_value="0"/>
      <field name="p2" type="range" min="0" max="255" node-name="P1" def_value="1"/>
      <field name="p3" type="range" min="0" max="255" node-name="P2" def_value="0"/>
      <field name="p4" type="range" min="0" max="255" node-name="P4" def_value="0"/>
    </struct>
   </header>
   <code>
    <procedure name="executionStep">
      <!--Transition T4-->
      <if>
        <condition>
          <operand type="struct" idRef="avail_marking" field="p4"/>
          <operator type="more-or-equal"/>
          <operand type="literal" value="1"/>
        </condition>
        <then>
          <let struct="transition_fired" field="t11">
            <expression>
              <operand type="literal" value="1"/>
            </expression>
          </let>
          <let struct="avail_marking" field="p4">
            <expression>
              <operand type="struct" idRef="avail_marking" field="p4"/>
              <operator type="sub"/>
              <operand type="literal" value="1"/>
            </expression>
          </let>
          <let struct="new_marking" field="p6">
            <expression>
              <operand type="struct" idRef="new_marking" field="p6"/>
              <operator type="add"/>
              <operand type="literal" value="1"/>
            </expression>
          </let>
        </then>
      </if>
      <let variable="o9_out" microstep="1" nano-step="1">
        <expression>
          <operand type="variable" idRef="Counter" delay="1"/>
          <operator type="add"/>
          <operand type="literal" value="1"/>
          <operator type="when"/>
          <operand type="struct" idRef="transition_fired" field="t10"/>
        </expression>

<expression>
          <operand type="variable" idRef="Counter" delay="1"/>
          <operator type="sub"/>
          <operand type="literal" value="1"/>
          <operator type="when"/>
          <operand type="struct" idRef="transition_fired" field="t12"/>
        </expression>
        <expression>
          <operand type="variable" idRef="Counter" delay="1"/>
        </expression>
      </let>
      <let variable="Counter" microstep="1" nano-step="1" min="0" max="1023">
        <expression>
          <operand type="variable" idRef="o9_out"/>
        </expression>
      </let>
     </procedure>
  </code>
</execution-semantics>

Listing 4: Language independent intermediary XML code excerpt.



Cyber-physical  systems  are  frequently  designed  as  networks  mixing  physical 

devices and computational nodes that may be located on different locations. Hence, the 

code  produced  must  have  the  ability  to  communicate  with  distributed  components 

deployed on remote nodes. As components may be located far away, physically placed 

in inaccessible locations, or running on inexpensive hardware without user interface 

capabilities, remote debug and monitoring assumes paramount importance.

The automatic C code generator employs a fifth step that appends a minimalist 

HTTP server  to the code generated automatically. This  server includes  a static part, 

independent of the model, that implements a simplified version of the HTTP protocol, 

and a  dynamic “reflection” part  used to  obtain meta-information about  the DS-Pnet 

model, including the names and values of signals, events, internal nodes, system status 

and trace information. For simplified parsing and reduced network bandwidth, data is 

transmitted in JSON format, using a protocol that will be described later. The server 

code may be optionally removed from the final executable program, but is required to 

interface with the Web based remote debugger application and to support distributed 

applications that must access components running in the generated code.

In a complementary way, a model may use distributed components located on 

remote node locations.  When this  happens,  client  JSON/HTTP code is  added to the 

generated C code to open connections with the remote nodes and automatically manage 

the communications of events and signal-changes in a bi-directional way.

Finally, the sixth step prepares a compressed ZIP file containing all source code 

files and additional support files.

4.1 JavaScript generated code

The JavaScript code generator was originally created as part of the IOPT-Flow 

simulator tool, to enable the execution of DS-Pnet models on Web browsers. However, 

in the future it may be used to create components for distributed applications where 

some components may run on remote physical devices and other components on Web 

browsers, enabling the creation of Web user interfaces to remotely monitor and control 

cyber-physical  systems  or  build  SCADA (supervisory  control  and  data  acquisition) 

applications. To achieve this, the user interface component library currently supported 

by the C code generator, must be ported to JavaScript and HTML. A communication 

layer over JSON/HTTP to talk with remote components, must also be added to the code 

automatically generated. A similar communication layer written in JavaScript, is already 

part of the IOPT-Flow remote debugger application.
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The  output  of  the  code  generator  is  a  single  JavaScript  file  containing  two 

functions, responsible for data initialization and the execution of a single step. It also 

contains data structures with information about the model, including input and output 

signals and events and internal data as place marking, transitions fired and the current 

value of dataflow operations.

The simulator/debugger  application user interface displays the model  data  and 

provides a graphical interface to change the values of input signals and events. Before 

calling the execution step function, the simulator application must set the appropriate 

values on these data structures, including input values selected by the user and system 

state variables. The step function operates on these data structures, updates the state 

variables  (ex.  place  marking)  and  defines  new  output  values  that  are  subsequently 

displayed by the simulator application.

4.2 VHDL Generated code

Two variants of the VHDL code generator were created: one produces a single 

module containing a monolithic implementation of the flat model, and another produces 

modular code, generating a main module and additional modules for each class of DS-

Pnet component instantiated in the main module. In the second case, multiple VHDL 

files are generated.  The main module (and any module containing sub-components), 

includes component declarations, instantiation and the respective port mappings.

The external interface of the VHDL modules starts with three input signals: clock, 

reset and enable, followed by the list of input and output signals and events present in 

original DS-Pnet models. These VHDL modules may be synthesized into hardware and 

used  as  standalone  applications,  or  as  components  of  larger  DS-Pnet  applications. 

However, these modules can be used as any other VHDL entity and may be applied in 

other projects developed using traditional hardware description languages.

Internal signals are used to hold the values of the DS-Pnet elements, including 

place  marking,  dataflow  operation  results  and  shift-registers  (to  store  values  from 

previous execution steps). As external input signals, coming from the outside world, 

may change at any point during a clock cycle, potentially leading to random execution 

errors, the code generator creates internal copies of these signals, sampled at the begin 

of each clock cycle. To avoid the propagation of glitches produced by combinatorial 

logic,  the external outputs of the main module are also synchronized with the clock 

signal, resulting in an additional delay of one clock cycle.

Execution semantics is performed by a VHDL process whose syntax offers some 

similarities with an imperative programming language, simplifying the translation from 
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the XML intermediary code to VHDL. However, contrary to an imperative language 

that sequentially executes instructions, a VHDL process is synthesized as a series of 

hardware registers, multiplexers and combinatory logic. In the specific case of the code 

generated automatically, the dataflow operations are synthesized as combinatory logic, 

and only the system state variables are stored in registers: place marking and the shift 

registers  holding past  values,  whose attribution directives  are  synchronized with the 

clock.

Execution  is  performed at  one  step  per  clock cycle.  The maximum allowable 

clock frequency depends on the hardware employed and the length of the chains of 

consecutive  dataflow  operations  present  in  the  models,  that  may  sometimes  cross 

multiple  components.  Long  chains  of  dataflow  operations  that  reuse  values  from 

previous nodes may impose a limit to the maximum clock frequency. Fortunately, the 

HDL synthesis tool-chains supplied by reconfigurable hardware manufacturers usually 

provide analysis tools that calculate the maximum frequency.

When the desired frequency is exceeded, the delay operator may be used to break 

these chains of dependencies between dataflow operations. This way, instead of using a 

value calculated in the present clock cycle, the dataflow operations will use registered 

values  calculated  in  the  previous  execution  steps,  corresponding  to  a  pipelined 

implementation where the operations before the delay operator are calculated in parallel 

with the operations after. The final results will be delayed by one clock cycle, but the 

operating frequency may be increased.

When designing models for hardware implementation, special attention should be 

paid to integer ranges used to store the results of arithmetic operations, as the hardware 

synthesizers do not generally deal well with situations where the number of bits of the 

result differs from the «natural» number of bits produced by the arithmetic operators 

involved.  For  example,  VHDL arithmetic  additions  and subtractions  will  produce  a 

result with the same number of bits as the larger operand, and the hardware synthesizer 

may ignore additional bits on the result. This way, if the signal used to store the result is  

larger than the operands and the results are negative, the signal may not propagate to the 

most significant bit. The same problem happens with multiplications and divisions, that 

produce results whose size corresponds to the addition/subtraction of the operand sizes. 

Although the  generated  code  employs  VHDL integer  range types,  the  problem still 

happens, and future versions of the code generator may emit warnings to the user.
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Figure 10 shows UART model used to test and debug the VHDL code generator. 

The implementation of the receiver and sender components are shown at the bottom. 

The resulting VHDL code was synthesized in hardware and tested on a Xilinx Spartan-

3AN FPGA board to communicate with a personal computer. The communication baud 

rate is calculated dividing the main clock signal by the value of the «ClkDiv» input.

4.3 C Generated code

The C code generator plays a central role in the implementation of distributed 

cyber-physical systems. In addition to the model execution semantics, the output code 

also  contains  the  infrastructure  responsible  to  establish  the  communication  between 

distributed  nodes,  including a  JSON/HTTP based client/server  code.  At  present,  the 

other code generators lack this communication infrastructure, but in the near future, the 

JavaScript  code  generator  might  borrow  the  client  part  of  the  remote  debugger 

application,  to  enable  the  creation  of  applications  with  user-interface  components 

running on Web browsers.

Regarding hardware implementations, there are no plans to directly add HTTP 

communication capabilities to the VHDL generated code, as TCP/IP based protocols are 

usually implemented using a software layer running on microprocessor units. A more 

efficient  strategy  to  access  hardware  components  from  distributed  cyber-physical 

networks would employ a co-design solution, with an interface top model implemented 

in  software,  containing  the  hardware  components.  With  this  solution,  the  hardware 

components would be implemented using VHDL, but the interface model  would be 
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implemented using the C code generator, automatically providing remote access to the 

hardware components.  The software part  of the solution could be implemented as a 

“soft” processor core, embedded in an FPGA, or using hybrid processor/FPGA chips 

like the Xilinx Zynq [170].

The  output  of  the  C  code  generator  is  composed  of  three  parts:  the  model 

execution  semantics,  a  low-level  digital  input/output  interface  and  an  optional 

communication  layer.  The  execution  semantics  code  was  designed  to  run  on  small 

devices,  including 8 and 16 bit  micro-controllers with reduced memory capabilities. 

This way, all data structures are encoded as bit-fields, where the number of bits was 

optimized according to the range of the integer signals,  or maximum place bounds. 

However, the communication layer was designed to target the IoT devices available 

today, as the Intel Edison or Raspberry PI, that employ 32 bit architectures and run an 

operating  system with  a  proper  TCP/IP stack.  The client/server  code  was tested  on 

embedded Linux platforms, but the code employs only standard sockets function calls 

and porting to other embedded TCP/IP stacks or operating systems as Windows or IOS, 

should be straightforward.

Table 5 lists the generated files and the respective purpose:

Sub-system File Description

Model 
semantics 
execution

model_types.h * Constant and data structure type definitions, plus function declarations

model_exec_step.c 
*

Data initialization and execution step functions

model_main.c * Hardware setup, execution loop and main functions

model_io.c * Input and output functions to interface with physical hardware. May be edited 
by the user.

External / 
Foreign 

components

extern_comp.c * Function stubs to interface with external components. Two functions init() and 
step() are created for each class of external components, whose body must be  
manually coded

comp_lib.c Standard  library  components  implementation  (only  used  components  are 
linked)

GPIO
dummy_gpio.c Simulated GPIO using text files. Inputs are read from a file and outputs written 

to other file

linux_sys_gpio.c Digital input and output operations for embedded Linux boards, using the /sys 
file-system 

raspi_mmap_gpio.c Digital input and output for raspberry PI family of boards, using faster memory 
mapped IO

Model
meta-data

[optional
req. by

client/server]

model_info.h Data structures  and function declarations to extract  meta-model  information 
about the model

model_info.c Part  of  the  meta-model  information  subsystem  that  is  independent  of  the 
models, common for all models

model_metadata.c * Part  of  the  meta-model  information subsystem that  depends  of  each model 
(node names, etc.)

dist_comp.c * Meta-data information about remote/distributed components in use (for HTTP 
client).
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JSON/HTTP
communicati

on
(server)

[optional]

http_server.h Data-structures and function prototype definitions for the http mini-server

http_server.c HTTP server main functions 

http_req.c HTTP server remote procedure call request implementation 

conn_auth.h Connection and user authentication data structures.

conn_auth.c Connection and user authentication code

sha1.h/sha1.c Public domain SHA1 cryptography hash implementation

JSON/HTTP
communicati

on
(client)
[only if 

model uses 
remote 

components]

http_client.h HTTP client data-structures and function prototypes

http_client.c HTTP client implementation (requests/answers)

cps_net.h ComPonentS-network – connection to remote components – data structures

cps_net.c ComPonentS-network – connection to remote components – implementation 
code

Data
files

user_db.txt User data-base (IDs, user-names, passwords, privilege-levels and priorities)

node_db.txt Distributed  node  database  (map  logical  node  names  to  network-
addresse/user/port)

Utility 
programs

create_user.c Utility program to add a new user to user_db.txt with password encription

chg_pass.c Utility program to change a user_db.txt password

Project Makefile Compilation «makefile» to build executable files (on Unix/Linux systems)

Table 5: C code generator output files

NOTE:  All  files  marked  with  «*»  are  created  dynamically  using  XSL  transformations.  All  

remaining files are common to all models.

The model execution semantics code, found in file «model_exec_step.c» is the 

result of a direct translation of the language independent XML code produced in step 3 

to C. The data-structures declared in «model_types.h» include the model inputs, model 

outputs, internal signals and dataflow operation data, place marking, fired transitions 

and the array shift-registers used to store past values used with the delay operator. When 

the models employ foreign components, a new data structure is created for each class of 

foreign components, with the respective inputs, outputs and parameters.

File «model_main.c» includes three functions. A setup function used to initialize 

internal values, perform hardware setup and initialize remote communications, a loop 

function that runs a complete execution step, including reading hardware inputs, call the 

semantics execution code, write outputs and process remote JSON/HTTP requests and 

subscriptions.  The loop function may be employed directly on Arduino systems that 

have a builtin main function. For other systems, a main function is provided. The loop 

function includes a minimalist solution to pause execution or trace step by step based on 

a  single  trace_control  step  counter,  to  support  the  remote  debug  and  monitoring 

application.
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All input and output operations that depend on the target hardware were isolated 

on a single file «model_io.c», that may require manual edition. This way, when a model 

suffers changes, it is recommended to replace the other files by the new generated code, 

except the «model_io.c» file that contains manually written code. 

Two functions are used to read and write inputs and outputs from the hardware, 

called  respectively  at  the  begin  and  end  of  every  execution  step,  and  may  require 

manual  implementation.  When  the  model  input  and  output  signals  and  events  are 

assigned to specific hardware pin numbers, then the code generator automatically fills 

these functions with the corresponding read/write function calls. In the same way, pins 

are also initialized with the corresponding input/output direction. When pin assignment 

is omitted, then a default value is assigned and the user may manually write the input 

and output code.

Pin operation is performed using the digitalRead(pin), digitalWrite(pin, value) and 

pinMode(pin, mode) function calls, native from the Arduino programming library. For 

non Arduino systems, three different re-implementations of these functions are provided 

in  the  dummy_gpio.c,  linux_sys_gpio.c  and raspi_mmap_gpio.c  files.  The  first,  not 

completely dummy dummy_gpio.c, is useful to run the generated code under simulated 

environments  where  the  user  defines  input  values  by  editing  an  inputs.txt  file  and 

inspects output  results  on an outputs.txt  file.  The second uses the Linux «sys» file-

system to  perform GPIO operations  and  is  compatible  with  virtually  all  embedded 

Linux distributions. Finally, a third implementation uses memory mapped IO for the 

Raspberry PI boards, offering higher performance than the «sys» implementation. Upon 

compilation,  the  user  must  edit  the  makefile  and  un-comment  the  desired  I/O 

implementation.

At the end of input reading, a function ioptf_applyForcedSignalValues() is called. 

This function call  is  necessary for remote debugging:  it  allows the networking sub-

system to change the value of input signals and events, according to the JSON/HTTP 

requests received. The input signals and events left unconnected to hardware pins will 

be automatically assigned to default values. However, remote clients can attach to the 

local HTTP server and force different values. There are multiple applications for this 

feature: For example, the unconnected inputs may be associated to buttons, scroll-bars 

and other widgets from remote user-interface applications; or may be driven by other 

components from distributed cyber-physical system applications. Even when the inputs 

are assigned to physical hardware pins, the remote debugger application has the ability 

to force different values. Input forcing is frequently used on industrial environments 
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when a sensor is damaged and reads wrong values: carefully forcing the correct value 

avoids stopping production until a replacement sensor is installed.

Two additional functions delayPause() and finishExecution() are used to define 

the execution speed and determine when executions should stop. The first function may 

employ timing hardware, or equivalent operating system functions, to set an execution 

pace,  for example a step per millisecond. The second function may be used to stop 

execution when certain objectives were accomplished or when serious error conditions 

were detected.

The  model  meta-data  subsystem is  used  to  add  information  about  the  model 

elements to  the code produced automatically, including the external  interface of the 

model  composed  of  signals  and  events,  the  list  of  components  employed  and  the 

respective interface, and also internal signals, dataflow operations and Petri net places 

and transitions. The meta-data information is composed of lists of data-structures with 

information about each model element, including the name identifier, data-type, node 

type,  allowable  value  range,  default  value,  current  value,  etc.  Two  functions  are 

responsible to exchange information between the internal variables and the meta-data 

data-structures,  enabling  the  observation  of  the  current  status  and  forcing  different 

values.

Based on the meta-data sub-system, the client/server communication layer was 

designed in a model independent fashion, that simply invoke the information exchange 

functions and scan the resulting lists of meta-data. In turn, the HTTP server publishes 

this  information  in  JSON  format,  enabling  the  creation  of  model  independent 

applications, as the IOPTflow remote debugger. The IOPTflow editor has the ability to 

connect to remote servers running DS-Pnet models, extract meta-data information and 

automatically  import  the  components  running  on  those  servers  to  build  distributed 

cyber-physical applications.

4.4 Interface board for industrial applications

As  a  general  rule,  the  computational  boards  available  for  embedded  system 

development  and IoT applications,  as  the Arduino,  Raspberry  PI,  Intel  Edison,  Red 

Pitaya,  and even the reconfigurable hardware development boards offered by FPGA 

vendors  are  not  suitable  for  industrial  applications,  requiring  the  help  of  dedicated 

interface boards. For example, these boards offer voltage levels for digital input and 

output signals in a range of 1.8V to 5V, but industrial systems usually operate at 24V. In 

addition,  the  digital  outputs  can  typically  only  drive  loads  of  10  to  25mA,  clearly 

insufficient to drive relays and pneumatic valves. From another side, industrial safety 

regulations require the presence of a normally-open enable signal that cut off all output 
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signals when a «emergency» circuit  is  not cleared.  Finally, industrial  equipment are 

frequently subject to high voltage spikes and electromagnetic interference, that require 

galvanic isolation to prevent possible damaging the controller boards.

Although there are commercial interface cards used to drive relays, most these 

cards do not satisfy the requirements described above, and each of these cards were 

designed to interface with specific boards, as the Arduino shields and Raspberry Pi hats, 

requiring the creation of a different driver software for each type of card.

The  board  presented  in  figure  11 was  designed  to  provide  an  universal 

input/output interface, that can be connected to any development board, FPGA board, or 

even to personal computers via USB. Digital inputs and outputs are transmitted as shift-

registers, suitable for SPI communication ports, where a chip-select signal is used to 

synchronize the parallel loading of input signals and perform output updates.

The proposed interface card offers the following features:

1 - SPI communication interface requiring only 4 IO pins (SCK,SDI,SDO and  
CS/PL/WE up to 10Mb/s)

2 – Optional USB front-end for SPI interface, using the synchronous bit-bang  
mode of a FTDI FT232R chip

3 – Galvanic isolation on both USB and SPI interface ports
4 – 16 digital inputs (24V)
5 – 16 digital outputs (open collector, 200mA, 1Apeak, 50V max), ready to drive 

relays and pneumatic valves
6 – Daisy chain multiple cards connected to the same SPI/USB interface
7 – Normally-connected «enable» input to inhibit all outputs when not enabled 
8 - 24V Power supply (15V to 100V, 24V nominal)
9 – Isolated SPI interface power supply of 1.8V to 5.5V.

By serial chaining multiple boards to the same SPI bus, it is possible to read and 

write hundreds of digital input and output signals, that can be quickly updated at the 

start and end of each execution step. The isolated SPI interface occupies just four I/O 
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pins, permitting the usage of long cables and avoiding the formation of parasitic ground 

loops,  responsible  for  high  levels  of  electromagnetic  interference.  The  clocking 

sequences of the SPI protocol may be manually programmed or driven by the hardware 

SPI  master  modules  offered  by  many  micro-controller  devices.  An  optional  FTDI 

USB/serial converter chip may be installed on the board, providing an USB front-end 

for the SPI bus, that can be used from any PC or Raspberry-PI USB port. The used 

FT232R chip offers  a  bit-banging feature  that  is  frequently employed for  the  serial 

programming  of  micro-controllers,  EPROMS and  FPGA boards  (JTAG).  Regarding 

analog input/output, as most ADC and DAC commercially available chips also offer an 

SPI interface, it should be possible to create an analog I/O card that may be plugged to 

the same serial bus as the digital I/O card.

Two  surface-mount  prototype  boards  were  manufactured  and  tested.  The  SPI 

interface was tested using the processing unit of Xilinx Zedboard FPGA+ARM card, 

and the USB interface was tested using the FTDI bit-bang library. In both cases the test 

software was developed in C.

A fourth implementation of the input/output interface code supporting this board 

may be added to the C code generated automatically. This way, any DS-Pnet (or IOPT) 

model may be immediately applied on real-world industrial applications, independently 

of the chosen computational/FPGA development card, or even using a standard PC. 

4.5 External/Foreign Components

Foreign components, corresponding the existing physical devices or components 

implemented  using  other  development  languages,  must  be  integrated  with  the  code 

generated  automatically.  For  hardware  implementations,  the  more  effective  strategy 

consists in the definition of an empty component with the exact same external interface 

of the existing IP module, and just replace the instance of the empty component with the 

existing IP module before applying the synthesis tools.

On software targets, the usage of foreign components require the manual writing 

of glue code to interface with these components. For each class of foreign components, 

the C code generator automatically creates a data structure with the component interface 

data  and  two  empty  functions  to  initialize  data  and  execute  a  single  step  of  the 

component code. The data structure contains the following fields:

- A text string with the component id.

- A text string with the component class name

- The component comment string

- A resource location string parameter
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- A «param-string» parameter

- Fields for each component input event and input signal

- Fields for each component output event and output signal

- An auxiliary pointer to hold private data of each instance

The initialization function is called only once before starting the model execution, 

after the identifier and parameter fields have been defined. This function will typically 

initialize variables, allocate memory, reserve system resources or open connections to 

physical  devices.  By  default  there  is  no  termination  function  to  release  allocated 

resources, but a global execution finalization function may be used to perform these 

actions.

During execution, the step function is invoked on every step. When evaluation 

reaches  the  correct  micro-step/nano-step  numbers  (the  higher  combination  of  the 

component inputs), the fields corresponding to input signals and events are set with the 

corresponding values read from the driver arcs, and the step function is invoked. The 

step  function  parses  the  input  fields  and  acts  accordingly  (preferentially  in  a  non-

blocking way), running a single component execution step, and putting the results on 

the  output  fields.  Finally, the  automatic  generated  code  reads  the  output  fields  and 

propagates the new values through the corresponding output arcs, continuing the model 

execution.

In  some  cases  the  same  component  may  be  executed  twice  during  the  same 

execution step,  once  to  evaluate  the firing of  certain  transitions  and after  transition 

firing to calculate the value of outputs depending on place marking. In addition to a 

pointer  to  the  instance  data  structure,  the  step  function  receives  another  argument 

indicating if the execution is being repeated on the same step.

The IOPT-Flow library includes a set of foreign components, whose code is added 

to the output of the automatic C generator and may be used as an example to create new 

foreign components. It includes components to implement arrays and matrices, file IO, 

random numbers and user interface widgets, among others.
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5 Distributed DS-Pnet Models

Advances in mobile computing and networking technology have reached a point 

where  distributed  controller  implementations  can  compete  with  monolithic  solutions 

with  advantages  in  terms  of  hardware  cost  and  easy  of  deployment.  However,  the 

traditional programming languages and the respective support tools are not usually well 

suited for distributed implementations, requiring the use of low level APIs to manually 

write code to deal with communication and concurrency problems.

In  contrast,  the  DS-Pnet  modeling  formalism  was  designed  to  simplify  the 

development of distributed systems. The model editor tool offers the ability to import 

components  from  remote  embedded  devices  running  DS-Pnet  models  and  the 

communication between distributed components is specified just by drawing arcs. All 

low level communication details are dealt by the automatically generated C code. Using 

the  new  formalism,  a  distributed  application  is  constructed  by  designing  DS-Pnet 

models containing a network of components, that may run locally or on remote network 

nodes, whose input and output signals and events are interconnected though read-arcs.

A  DS-Pnet  distributed  model  is  a  GALS  (globally  asynchronous,  locally 

synchronous) system, composed of multiple nodes connected through the Internet using 

the JSON/HTTP communication protocol described in the next section. The execution 

of each node is synchronous and all internal components share the same execution step 

clock. However, the entire model, formed by multiple components is an asynchronous 

system, as the nodes employ different execution clocks that may run at different speeds.

This fact has implications in the execution semantics of distributed models. As the 

Petri net arcs are not allowed to cross component boundaries, the Petri nets contained on 

any DS-Pnet model are always restricted to a single component. A model composed of 

multiple components may have many independent Petri sub-nets, not connected by Petri 
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net arcs. This way, distributed execution does not affect the execution semantics of each 

individual Petri net.

However, different Petri nets may be connected using synchronous channels, as 

presented in figure 12. In this example, the transition M on component C1 fires an event 

«OutEvent» that is received by component C2 where it is used to inhibit the firing of 

transition S. When both components run on the same node and share the same execution 

clock, then the transitions M and S are connected using a synchronous channel and both 

fire in the same execution step, assuming that both were enabled. In contrast, when the 

components C1 and C2 are implemented on different nodes, not subject to the same 

execution clock, the channel is no longer synchronous. The execution semantics of the 

master transition M is not changed: it fires when enabled and ready, and triggers the 

«EvtOut» event. Then the communication layer transmits the event to the other node, 

but the transmission is subject to network latency delays. When the event arrives at the 

destination node it will be used on the next execution step to fire the slave transaction S, 

if enabled. 

As  a  consequence,  any  distributed  models  employing  synchronous  channels, 

relying on the fact that both transitions fire simultaneously, may not behave as expected. 

The  same  consideration  may  be  applied  to  models  that  expect  instantaneous 

transmission  of  signal  values.  To solve  these  problems,  a  client-server  use  pattern 

borrowed from the IEC61499 should be employed.

Applications may be built using bottom-up or top-down approaches, or employing 

a mixed strategy. Both local and remote components may be implemented with DS-Pnet 

models or using traditional development languages. Foreign components may be used to 

transparently  integrate  existing  legacy  code  into  distributed  component  networks, 

without the need to manually write any networking code. 
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An application constructed from bottom-up may use remote components available 

on the Internet as building blocks, designed by third parties and already running on 

existing hardware. For example, in-vehicle navigation systems could collect information 

from street semaphores in the nearby crossings, to select the best route and adapt speed 

to arrive at the next semaphore without needing to stop.

In contrast, a designer may choose to develop an entire application using a top-

down approach, starting with the design of centralized models composed of multiple 

components.  The  centralized  application  may  be  debugged  using  the  simulator  and 

model-checking  tools,  before  assigning  components  to  different  network  nodes  (by 

editing  the  resource  location  parameter).  Later,  a  node-split  tool  can  be  used  to 

automatically divide centralized models into several sub-models to run on each node. 

The final distributed solution is built by applying the automatic code generation tools to 

each sub-model, creating different executable applications for each network node.

The automatic node splitting tool applies the following rules:

- Create a list of nodes according to the different resource locations found in all 

components,  filtering  only  virtual  node  names  and  ignoring  components  previously 

assigned to real network addresses

- DS-Pnet elements and arcs that are only connected to components from a single 

node, will be implemented on that node

- DS-Pnet elements and arcs connected to components assigned to different nodes, 

are implemented on a main node, called the maestro or application node

The  automatic  node  splitting  algorithm  always  creates  a  main  sub-model 

(application sub-model),  to  manage the communication between all  the other  nodes. 

However,  this  solution  does  not  ensure  the  best  performance.  For  instance,  an  arc 

starting on a node and ending on a different node will force the transmission of two 

messages whenever the value transmitted by the arc changes, one from the first node to 

the  main  model  and  another  from the  main  model  to  the  final  node.  To optimize 

performance,  a  developer  may  choose  to  manually  design  the  node  sub-models, 

inserting  direct  arcs  between  the  nodes.  Yet,  this  solution  may  bring  additional 

problems, as different network connections may suffer from different latency delays and 

the  inter-node  connections  may  drop,  resulting  in  situations  that  would  be  easily 

managed with a single main model.

The final  validation application discussed in chapter  7 presents a small  cyber-

physical  system  that  was  developed  using  the  top-down  approach,  starting  with  a 

centralized model that was split into three node sub-models.
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When a  top-down approach  is  employed,  it  is  still  possible  to  reuse  existing 

components, included into the IOPT-flow framework library or available on the Internet. 

In  addition,  components  that  are  already  being  used  by  other  applications  may  be 

reused, leading to the formation of complex networks of cyber-physical  systems,  as 

presented in figure 19.

When a  model  is  designed using a  bottom-up strategy, assembling  distributed 

applications from existing components,  it  is necessary to assign the correct resource 

location parameter of each remote component. Components imported when the editor 

connects  directly  to  the  remote  nodes  are  automatically  configured  with  the  correct 

resource location. However, when these components are not yet running, or when using 

components from the library, the resource location must be edited manually. The format 

of a component resource location parameter has the following syntax:

user@address:port/comp-id

Where «user» is the user-name for authentication on the remote node, address is 

an Internet address or a numeric IP address,  port  is  an IP port  number that may be 

omitted (default 9000) and «comp-id» is the component identifier of the remote node. 

When the definitive address of a component is not known during the modeling phase, 

then the «user@address:port» part of the resource location can be replaced by a single 

word to  define a  virtual  node address.  A database of  virtual  nodes  is  kept  in  a  file 

«node_db.txt», that is parsed at runtime to postpone the selection of users, addresses 

and ports until the deployment phase on real hardware. When a component uses the 

same identifier on both sides, the application model and the remote node model, then 

the «comp-id» part of the resource location may be omitted. This situation happens with 

models that were automatically split.
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The communication between distributed nodes  may be signal  or event  driven. 

Signal driven communication is typically employed in publisher-subscriber patterns of 

use, where a publisher makes a set of output signals available and one or more clients 

subscribe  the  published  information  (or  just  a  subset).  Although  the  published 

information is usually composed of signals, events may also be transmitted.

Figure  13 contains  an example where multiple subscribers receive information 

from  the  same  publisher.  In  this  kind  of  situations  there  are  no  concurrency  and 

synchronization  concerns  and  the  published  information  may  be  disseminated  by 

multiple clients. As soon as a signal value suffers changes it is immediately forwarded 

to  the  subscribers,  but  there  are  no timing guaranties  and no verification  that  these 

signals arrive at destination (except for attempts to reopen broken connections by the 

networking code).

However, most distributed applications require handshaking negotiations between 

distributed components to manage synchronization and concurrency problems, ensuring 

that there is no information loss, data and requests arrive at the destination nodes in the 

correct order and results are always received.

Signal driven communication could result in data loss if a slow node is receiving 

information from a faster node. For example, if a signal value changes twice (0 to 1 and 

back to 0) during the execution of a single step of the subscriber model, the subscriber 

model will not be able to detect any signal change and possible events will be missed.

These problems are addressed with event driven communication, used to specify 

handshaking negotiations between remote components, based on principles borrowed 

from the IEC61499 standard  [69][70]. With this strategy, input and output signals are 

used to pass parameters and receive results from distributed components, sending events 

to request the invocation of specific methods on the remote side and receiving other 

events to signalize the request reception, deny requests or to receive result notifications.
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The most frequent use case employs a client/server pattern, presented in figure 14, 

where an application (client) requests the execution of specific methods on a remote 

component  (server)  and  waits  for  an  answer.  As  presented  in  the  figure,  a  server 

component  may  implement  multiple  methods  that  are  triggered  by  different  input 

events.

The diagram on figure  15 shows the interaction between client and server, that 

typical perform the following steps:

1 - The client assigns parameter values to the remote component inputs

2 - The client sends an event to request the execution of a remote method

3 – The remote component acknowledges the reception of the event

4 - The remote component executes the method and the client waits
for the results (while waiting, it may execute other tasks in parallel)

5 - The remote component places the results on the respective output signals

6 - The remote component sends an event to notify that results are ready

7 - The client parses the results and proceeds

The implementation  of  this  usage  pattern  is  not  rigid  and many variants  may 

occur:  For  example,  when  the  parameters  are  inappropriate  or  a  request  cannot  be 

executed, the server may produce denial events. When the execution of a request is fast 

or  immediate,  the third step may be skipped and the server  omits  the acknowledge 

event. 
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Frequently  the  distributed  nodes  are  continuously  executing  certain  tasks  or 

applications and are not just waiting for client requests. For example, remote nodes may 

be running real-time industrial machine controllers that cannot be interrupted. In this 

situation the relationship between the two peers is bidirectional: the application may 

send commands to the remote node, but the remote side may also spontaneously initiate 

communication  in  an  asynchronous  way.  Requests  to  the  remote  node  usually 

correspond to high level commands,  as start  and stop production,  set  new operating 

parameters or request statistics. On the opposite direction, the other side may need to 

report errors and exceptions, notify the lack of bulk materials, or request data required 

to continue operating, etc.

The proposed formalism does not enforce any type of usage patterns. The system 

designers are free to implement the appropriate communication handshakes for each 

specific application, using signal driven or event driven strategies. The communication 

layer just ensures that events are not lost and the parameters and result signals values 

arrive at destination on the same step (or before) as the corresponding event.

An important attribute of distributed component input and output signals is the 

«on-error»  parameter,  used  to  define  a  value  that  is  automatically  assigned  by  the 

networking layer when a communication error is detected. This value is used to notify 

models  about  dropped connections.  Two approaches  may be employed:  a)  Define a 

default neutral value that does not cause malfunctions; b) Define an error value to force 

an immediate model response, taking the appropriate actions.
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The example on figure 16 presents a distributed model using event driven client-

server communication to talk with a remote component.

The communication handshake is controlled by a Petri net state machine. This 

state machine starts with place «PIdle» marked, waiting for a «Start» event that fires 

transition  «TStart».  At  this  point  the  three  parameter  inputs  must  already  hold  the 

correct values. In the next execution step transition «TsendReq» is fired, triggering an 

event  that  is  forwarded  to  RemoteComp1  (c1).  After  sending  the  request,  place 

«PWaitAck»  is  marked  and  one  of  two  events  may  be  returned  «Ack»  or  «Error» 

meaning that the component has started to process the request or the request cannot be 

processed and one of the transitions «TackRecv» or «TRetry1» will fire. When no errors 

happen, the system evolves to a state where «PWaitDone» is marked and is waiting for a 

«Done» or «Error» event. The «Done» event marks the successful completion of the 

requested action, and the state machine returns to the initial state. When an error occurs, 

one of the «TRetry1» or «TRetry2» transitions will fire and the «Request» event is sent 

again.

This  example  presents  a  Petri  net  state  machine  directly  on  the  main  model. 

However, this state-machine is used frequently to implement client-server handshakes 

and  can  be  considered  a  design  pattern  [171].  This  way,  the  Petri  net  can  be 

encapsulated into a new component that can be instantiated whenever this pattern is 

necessary.  The  handshake  controller  component  requires  four  input  events:  «Start», 

«Ack», «Error» and «Done», where the first is used to initiate the communication and 

the  remaining  to  receive  answers  from  the  server  component.  Two  output  events, 

«Request»  and  «OK» are  used  to  send  requests  and  inform completion.  Figure  17 

displays an equivalent model using the handshake component.

The second version of the model hides the complexity of the underlying Petri net 

state-machine.  In  real  world  applications,  the  handshake  controller  model  would 

probably be more complex. For example, instead of a single error event, the remote 

component  could  return  multiple  type  of  error  exceptions  to  differentiate  between 

invalid request parameters, resources temporarily unavailable, authorization violations, 
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Fig. 17: Same example with the handshake controller Petri net
encapsulated in a local component (on the right)



hardware  malfunctions,  etc.,  that  should  be  treated  differently  by  the  handshake 

controller. Finally, the model presented in figure 17 could also be used as a component, 

hiding all communication details with the remote component and providing a simpler 

interface  to  access  distributed  resources.  The  resulting  component  may  be  reused 

multiple times.

5.1 Shared distributed components

Note: This section describes an extension to allow the shared use of the same components by 

multiple distributed applications. However, although all steps of the proposed methods seem feasible, 

none of the concepts presented here has been implemented or tested and are planned for a future IOPT-

Flow version.

Public services available on the Internet are generally accessed by a large number 

of users,  sometimes using different  client  software applications  that  may access the 

same service simultaneously. This happens with traditional  Internet  services  as  Web 

(HTTP),  Email  (SMTP/POP/IMAP),  file  transfer  (FTP,  NFS,  SCP)  and  database 

servers,  among  many  others.  In  the  near  future,  the  components  offered  as  public 

services to build cyber-physical systems will suffer from the same usage pattern, having 

to deal with multiple concurrent clients. As a consequence, the development formalisms 

aiming  to  provide  an  infrastructure  for  cyber-physical  systems  must  also  support 

concurrent component usage.

This  section proposes  an extension to the existing communication interface to 

support shared component access by multiple applications.  The proposed solution is 

transparent  for  the  client  applications,  that  continue  to  apply  the  same client-server 

handshaking techniques used for dedicated components, and is almost transparent for 

the  shared  component  implementation  models,  that  only  require  two  new attributes 

assigned to input and output events. All the low-level concurrency and synchronization 

details will continue to be implemented by the networking layer of the C code generated 

automatically.

In this section, the term «client» refers to an application model using a remote 

component  available  on  a  public  or  private  network.  The  term «server»  applies  to 

components that accept requests from the network, to execute specific methods/tasks. A 

«transaction» corresponds to  a  time interval  when the  server  is  processing  a  single 

request from a client. 

Using the event-driven handshaking for remote component access, presented in 

the previous section, a client application always initiates a communication transaction 

by sending an event to request a certain resource or method execution. Next, the client 

waits for an answer event to acknowledge the request reception or notify the successful 
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request  execution.  When  there  are  multiple  client  applications  accessing  the  same 

component, the component model cannot serve multiple requests simultaneously9 and 

the requests must be processed sequentially. This way, when a client application issues a 

new request and there are already other requests pending, the client will have to wait 

longer, until the preceding requests are served, but it still can continue to use the same 

handshake state-machines, as if there were no concurrent clients.

From a modeling point of view, the proposed solution implies the creation of two 

new  attributes  of  input  and  output  events,  used  in  the  implementation  of  server 

component models:

Begin–transaction: A  begin-transaction  event  requests  a  new  transaction

(applicable only to input events)

End-transaction: An end-transaction event terminates a running transaction 

or cancels a pending transaction request. It can be used by 

the  client  to  cancel  requests  or  by  the  server  to  close  

processed requests,  to deny requests,  or to  notify error  

exceptions

When designing a new component for concurrent use, the input events used to 

start requests must be assigned the «begin-transaction» property. The output events used 

to notify processing termination, or the output events events used for error notification, 

must  be  assigned  with  the  «end-transaction»  property.  Input  events  with  the  «end-

transaction» attribute may be used by clients to terminate or cancel transactions.

After a transaction starts being processed, the server component is fully dedicated 

to a single client and the communication between the server and client can flow in a 

bidirectional way, using both signals and events, until one of the sides triggers an end-

transaction event. After a transaction ends, the server can proceed to the next pending 

transaction request.

From the  implementation  point  of  view,  the  networking  layer  of  the  C  code 

generated automatically will have to support the following infrastructure, also presented 

in the figure 18 diagram: 

1 – A prioritized request queue for each shared component. Priorities are already 

part of the authentication subsystem and may be used to define application profiles, for 

instance to differentiate between real-time and non critical applications. In a multi-level 

9 A multi-thread/multi-core architecture could launch new instances of the component to 
simultaneously process multiple requests, but parallel solutions are out of the scope of this work
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queue, connections with high priority enter immediately to the higher levels that are 

served first. 

2 – Buffered component interface for each client connection: Storing a private 

copy of the input and output signals and events of the shared component interface for 

each client. This way, each client sees a different version of the component interface. 

However these copies remain unconnected to the real component until  a transaction 

starts,  and are  immediately  disconnected  after  a  request  ends,  avoiding  information 

leaks between clients. 

3 – A shared version of the «grab» HTTP request, discussed in the next chaper, 

used to initiate the component private interface buffers.

Using this solution, when a client assigns new values to the server component 

input signals, or triggers events without the start/end transaction property, these values 

are only stored in the private interface copies and are not immediately propagated to the 

real component. When the component starts serving a client request, these values are 

copied  to  the  component  interface  before  the  transaction  starts,  maintaining  bi-

directional updates while the transaction continues. When a transaction ends, the private 

copy will store the last values assigned during the transaction. 
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The  proposed  solution  is  similar  to  the  implementation  of  traditional  TCP 

services, where requests are buffered in the operating system TCP/IP socket FIFOs and 

the  server  application  sequentially  extracts  one  request  at  a  time  from  the  queue. 

However, these requests are usually atomic, consisting only of a request and an answer 

message. In contrast, the new solution comprehends a time interval where both sides 

can dialog, being able to change signal values and send events as would happen in a 

single  client  configuration,  until  a  transaction  ends.  The  request  FIFO  presents 

similarities with the mailboxes employed by actor systems [66], used to store messages 

received by an actor in a FIFO, that may employ priorities to dequeue messages from 

the  mailbox.  However,  in  this  case  the  FIFO only  contains  request  events  and  the 

messages are stored in each client component interface buffers.

As previously stated, none of these concepts has been implemented and tested. As 

a  consequence,  any  potential  technical  difficulties  found  during  the  implementation 

phase might  require  changes  in  the proposed solution.  For instance,  the addition of 

special-purpose virtual inputs and outputs, whose values are automatically defined by 

the networking layer could bring improved functionality: a client-id input, automatically 

set with the user identifier of the current transaction, would enable the implementation 

of new services that track information about each user. On the opposite direction,  a 

virtual output, automatically set with the number of pending client requests, could be 

useful to implement load balancing applications.
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5.2 JSON/HTTP Communication Protocol

The output of the C code generator contains a JSON/HTTP communication layer 

to support the interaction between distributed components over the Internet and also to 

permit the remote debug and monitoring of entire applications or individual nodes. This 

way, the underlying communication protocol must provide mechanisms to propagate 

events and changes in signal values though a network of distributed nodes containing 

DS-Pnet components. These components may interface with physical devices, perform 

logic  and computational  operations  or  provide  user  interfaces  for  remote  operation, 

forming distributed cyber-physical systems.

Figure  19 presents  an  example  of  a  possible  cyber-physical  system  network 

topology, composed of multiple nodes that execute DS-Pnet components. Some nodes 

perform computational tasks and other nodes form an interface to read sensors and drive 

actuators. For instance,  «nodeA» contains sensors and the outputs of the component 

C1A offer  a  remote  interface  to  read  sensed  values.  In  the  same way, «nodeC» is 

attached to mechanical actuators and the inputs of the component C1C provide a remote 

interface to drive these actuators. At the bottom, «nodeD» represents a typical industrial 

machine  controller,  including  inputs  to  read  machine  sensed  data,  outputs  to  drive 

machine parameters and a logic/processing component to implement real-time control. 

Usually this controller is responsible for the low level control of the machine, receiving 
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high level  directives  from the exterior, as  start/stop production,  operating parameter 

settings  and  statistics  gathering.  Other  nodes  may  perform  only  data-processing 

operations, including the execution of computational intensive algorithms, data logging 

and storage, or interface with other information system applications, as ERP commercial 

information systems, factory management software or possible communication with the 

information  systems  of  costumer  and  supplier  companies  from  a  vertical 

production/commercial collaboration network.

On the left side, two application models communicate with the nodes on the right, 

receiving notifications about subscribed sensed values,  commanding actuator values, 

accessing data and algorithms running on remote nodes and sending operation directives 

to remote machinery. A Web based graphical user interface may connect to applications 

or component nodes to provide control, monitoring and supervision user interfaces for 

the distributed systems. Finally, a remote debugger application may attach to any of the 

nodes, either applications or physical nodes, to monitor the internal state of these nodes 

in quasi real-time and help debug possible mistakes of hardware malfunctions.

As previously stated, although the communication layer has only been added to 

the C generated code, it may be employed in co-design solutions to bring connectivity 

for  VHDL  hardware  components.  From  another  side,  existing  JavaScript 

communication code from the IOPT-Flow remote debugger application may be easily 

added to the JavaScript  generated code,  to  access remote nodes from models  being 

simulated  and  permit  the  implementation  of  Web  based  remote  user  interface 

applications.

Communication between nodes is based on the HTTP protocol and information is 

encoded in JSON notation. The HTTP protocol was chosen for several reasons. First, it 

does not suffer from traffic routing restrictions as this protocol is normally open on most 

firewall configurations and routing can be assisted by proxy services, easily traversing 

intranet/Internet  barriers.  It  is  well  supported  by  libraries  available  on  most 

programming languages and is the natural protocol used by Web based applications. 

Although HTTP headers may reach hundreds of bytes, these headers do not impose a 

large overhead, as it can be minimized using server side events and connection keep-

alive settings to maintain open connections, that also contribute to increase bandwidth 

and reduce latency.

An  earlier  version  of  this  communication  protocol  [18][22],  employed  by  the 

IOPT-Tools  framework  remote  debugger,  transmitted  information  using  a  XML 

encoding, but was later converted to  JSON  [129] with large bandwidth savings and 

simplified parsing on Web based applications.
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Based on the TCP/IP protocol, every HTTP request is served using a different 

TCP connection and broadcasts/multicasts are not supported. In contrast, the internet 

connectivity offered by IEC61499 publisher/subscriber function blocks [70] is based on 

IP multicast packets. This option contributes to reduce bandwidth consumption, as only 

a single message is sent to all subscribers, but may pose user authentication problems 

and suffers  from routing difficulties,  as  multicast  packets  are  frequently blocked by 

routers and firewalls. Using the new protocol, a possible alternative solution could be 

implemented using a dedicated proxy server that connects to remote servers and share 

the subscribed data to multiple clients on local networks.

In the same way as the second version of IOPT-tools remote debug protocol [22], 

the connection between client application models and server nodes containing DS-Pnet 

components  (or  even  other  applications),  is  maintained  using  two  simultaneous 

connections,  referred  as  two channels.  One channel  is  used  to  send requests  to  the 

remote server nodes and other channel is used to receive notifications from subscribed 

events and signal changes. Event and change notifications are transmitted using HTTP 

server  side  events,  sending  a  stream of  event  JSON  objects  over  a  single  TCP/IP 

connection, avoiding HTTP header overheads. Currently the request channel opens a 

new HTTP connection for every request, but the HTTP keep-alive option might be used 

in future versions to use a single persistent connection and further contribute to optimize 

bandwidth consumption and minimize authentication related traffic.

The applicability of the new protocol to each specific application greatly depends 

on the available  communication infrastructure and the respective performance.  As a 

general rule, long distance Internet connections do not guarantee sustained performance 

levels, that may vary according to the time of day and the density of network traffic. As 

a  result,  real-time applications  may require  dedicated  intranet  local  networks,  while 

other non critical applications may be implemented across larger networks that spread 

across the Internet.

As  any  other  Internet  connectivity  application,  security  problems  must  be 

addressed. Although the main goal of this work does not focus on security issues, a 

simple  security  infrastructure  was  implemented,  including  user  privilege  and 

authentication databases, based on an encrypted challenge-response mechanism to avoid 

transmitting passwords in open text. This minimal infrastructure was considered enough 

during the proof-of-concept phase, but additional security mechanisms may be added in 

the  future,  probably  resorting  to  standard  distributed  authentication  protocols  as 

Kerberos [172], LDAP [173] or RADIUS [174].
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According to the current trends on IoT and CPS, it is forecasted for the near future 

the availability of open-access infrastructure that may be used to build distributed CPS 

applications. For example, cities may provide services to publish traffic information on 

real-time, electric grid information, temperature and wind information, river water flow, 

water  reservoir  capacity, etc.  However, this  information does not need to flow on a 

single direction. For example, traffic control systems might benefit from information 

about the routes planned for each vehicle, and public services might provide interfaces 

to schedule appointments with users, where communication flows in both directions.

The  external  interface  of  DS-Pnet  components  offer  a  simple  interface  to 

implement  those  services.  A service  consists  of  a  network node running a  DS-Pnet 

model containing a single or multiple components whose input and output signals and 

events may be accessed remotely. Applications may be built using DS-Pnet models that 

import  components  available  on  these  public  servers  and  connecting  the  different 

components using DS-Pnet read-arcs. The IOPTflow editor has the ability to connect 

directly to any server running the C generated code and import the selected components 

into new models.

All communication details are dealt by the JSON/HTTP layer of the automatically 

generated  C code.  Read-only sensor  values  may be published as  component  output 

signals and events, subscribed by each application, that receive notifications whenever 

those events are triggered or the signals value changes. Bidirectional communication is 

synchronized using events, as discussed at the begin of this chapter.

Applications  employing  existing  algorithms,  developed  using  traditional 

programming  languages,  may  resort  to  foreign  components  to  encapsulate  existing 

code,  using  input  events  to  invoke  functions  and  object  methods.  This  way,  the 

integration of legacy code into distributed systems is almost transparent: after writing 

the glue functions «init» and «step» for each class of foreign components to call the 

legacy code, the resulting components may be inserted into distributed models just by 

connecting arcs.

User applications, mostly running on mobile computing devices, may connect to 

these public services and apply the information for multiple purposes, that probably 

were not even forethought by the original service providers. Under these circumstances, 

the  service  administrators  do  not  control  the  type  of  applications  using  the  public 

services nor the number of simultaneous users concurrently accessing the service. In 

order  to  be  ready  for  public  infrastructure  applications,  the  user  authentication 

subsystem of the new communication protocol supports multiple privilege levels and 

priorities, that can be requested by different applications.
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5.2.1 User authentication and privilege levels

The user authentication database is used to verify user identities and set limits to 

the priority requests. Table 6 presents the list of existing privilege levels:

Level Name Description

0 Unauthorized Connection not currently authenticated (default state before successful authentication)

1 Observer May  only  read  or  subscribe  signals  and  events  and  read  internal  system  data  (place 
marking, etc.), typically used to subscribe sensor information from public services. 

2 Client In addition to level 1, may also concurrently emit events and define input values
Reserved for proposed protocol extension described previously. 

3 Master In addition to level 2, may exclusively grab input signals and events and perform trace and  
debug operations: pause, run single steps and force input values. Used in typical distributed 
applications that establish a static network topology where a main model obtains exclusive 
rights over remote component inputs.

4 Administrator In  addition  to  level  3,  may  reconfigure  the  network,  disconnecting  components  from 
existing network nodes and reconnecting to alternative nodes. May be used to create load 
balancing and fault tolerance solutions. (reserved for future implementations)

Table 6: Privilege levels

Multiple connections from the same user may request different privilege levels 

according to role of each application. In the same way, each connection may request 

different priority levels, and may even dynamically change privilege and priority levels 

during execution, according to the tasks currently being performed. For example, when 

the C code generated automatically is opening connection to remote nodes, it checks if 

the  application  is  driving  any  inputs  and  automatically  chooses  the  «observer»  or 

«master» privilege levels.

User authentication is stored on a text file, «user_db.txt», that is used both by the 

server code to authenticate incoming connections and also by the client code to establish 

connections to remote nodes. Each user is characterized by a username, password and 

maximum privilege and priority levels.

Passwords may be stored in clear text or using SHA1 cryptography hash strings10. 

Passwords used for public accounts, such as guest, will typically be stored as clear text, 

while private user accounts should be encrypted. As the user database is shared by both 

the client and server parts of the networking code, it is possible to associate different 

passwords to the same username on different nodes. While clear text passwords may be 

manually edited in the user_db.txt file, the same does not apply to encrypted passwords. 

This way, two utility programs are also packaged with the C generated code, to allow 

the creation of new user entries and change encrypted passwords. 

10 The SHA1 algorithm has been recently made obsolete, but may be easily replaced by newer versions, 
as SHA256. It was chosen due to the public availability of C and JavaScript implementations, that are 
used by the generated code.
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Remote  components  are  addressed  using  a  resource  location  string,

composed of a username, a node name and a component identifier, in the format:

 user@address:port/component-id

Where the port number may be omitted (default 9000) and the address may be an 

Internet  address  (ex:  gres.uninova.pt)  or  a  numeric  IP  address  (ex:192.168.0.1).  In 

alternative, the resource location may be specified using just a symbolic node name, that 

will  be  resolved  at  execution  time  from  the  information  contained  in  the  file 

«node_db.txt». This file contains a list of symbolic node names, that are associated with 

usernames, network addresses and ports. The symbolic node database file is used to 

permit  the configuration of usernames,  passwords and network addresses during the 

deployment of distributed applications, without the need to change models or recompile 

the C generated code. In contrast, the components imported by the editor from models 

that are already running on physical hardware will be immediately configured with a 

definitive resource location (that may be edited).

The fact that user authentication is stored into a text file poses an inherent security 

risk.  This  risk  is  acknowledged  and  is  regarded  as  acceptable  during  the  proof-of-

concept phase: Any person obtaining access to a node of a distributed network may read 

the authentication file and connect to all nodes sharing the same user authentication 

data.

At this  point,  the main security  concern was avoid transmitting authentication 

information over the Internet in clear text. This way, a challenge-response approach was 

employed, creating encrypted unique session identifiers for each client connection.

 

5.2.2 Request types

The new communication  protocol,  inspired  on  a  previous  work  [18][22],  was 

designed  with  three  goals:  automate  the  insertion  of  remote  components  into  new 

models  to  simplify  the  design  of  distributed  systems,  establish  the  communication 

between nodes of the resulting CPS and permit remote debug and monitoring. The list 

of procedure-call requests, presented on table  7, grouped according to the respective 

usage type, was designed to minimize network bandwidth and resource consumption on 

the embedded devices. Some requests are not yet implemented and were reserved for 

future protocol versions, to support dynamic reconfiguration and concurrent usage of 

the same components by multiple applications.
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As the protocol is based on HTTP, Web browsers might connect to embedded 

device servers and try to get a root document, like the front page of any Web site. When 

this happens, the browser is automatically redirected to the IOPT-Flow remote debugger 

application, that will subsequently open a connection to the server, creating the illusion 

that the remote debugger application is running on the embedded device.

Every communication session must start with a «login» request, to initialize the 

user authentication process. The server answers with a random challenge key, used to 

create  a  session  identifier  based  on  the  cryptography  hash  of  the  challenge  key 

concatenated with the user password. The session identifier is calculated and stored by 

both sides, and must be transmitted on all subsequent requests. Future versions of the 

network  protocol,  using  the  HTTP  keep-alive  option,  will  use  a  single  persistent 

connection.  This  way,  the  session  identifier  only  needs  to  be  transmitted  once, 

eliminating the risk of address spoofing attacks.

After  calculating  the  session  identifier,  the  client  must  request  the  desired 

privilege level, using the «requestPriv». The remote debugger application employs the 

«master» privilege level to be able to invoke the trace and debug requests. The client 

side of generated code automatically selects  the correct level for each remote node: 

when the model only reads data it  uses the «observer» level,  when it  also needs to 

trigger events or drive input signals, it selects the «master» level. Future management 

applications  might  use  the  «administrator»  level  to  perform load  balancing  or  fault 

tolerance tasks.

Most requests contain parameters that are encoded as part of the URL «get» query 

string, including the session identifier. As the size of the parameter data is usually small, 

it fits in the HTTP request strings. In contrast, the payload of the request answers may 

reach many kilobytes and is  encoded in JSON format.  Subscribed events and value 

change notifications are also transmitted as a stream of JSON server side events.

97



Group Priv. Request Description

User
Authenticatio

n

Unauth login (user) Start a new session with a user – receive a challenge key

Observ logout Terminate an existing session

Unauth requestPriv (priv, prio) Request new privilege and priority levels (restricted by user’s maximum on 
authentication database) 

Model
metadata

Observ getModelName Get original DS-Pnet model name

Observ getModelURL Get model URL, used to fetch the DS-Pnet model document (used by the 
remote debugger and editor)

Observ enumerateComponents Get  list  of  available  top-level  components  (sub-components  inside  other 
components are hidden)

Observ getComponentInterface(c) List  the  interface  input  and  output  signals  and  events  of  a  specific 
component

Observ listModelMetadata
(components/operations=1/0)

Get model meta-data, including signals and events, marking, transitions and 
dataflow  operation  results.  Metadata  about  component  interfaces  and 
dataflow operations may be optionally included in the list. 

Read
data

Observ getAttrValues(list) Read  current  attribute  values,  including  signals,  events,  marking,  fired 
transitions, etc.

Observ subscribeChanges(list) Subscribe changes of a list of attribute values. The connection will remain 
open, transmitting a stream of server-side-events (JSON objects) to notify 
changed values, events and debug/breakpoint/trace status. 

Write
data

Client setAttrValues(list,values) Change the value of a list  of model attributes or component inputs  (not 
grabbed by other connection). 

Client triggerEvents(list) Trigger a list of events (not grabbed by other connection)

Synchronizati
on

Master grabInputs(list) Grab a list  of model inputs  (or component inputs)  for exclusive use (or 
shared use in the future)

Master grabComponent(c) Grab all  input  signals  and events  of  a  component  for  exclusive  use  (or 
shared use in the future )

Master releaseInputs(list) Release list of grabbed inputs

Master releaseComponent(c) Release all grabbed component inputs

Trace
&

Debug

Master resetExecution Reset model execution, restoring status to initial values

Master startExecution Start/continue execution after a pause

Master stopExecution Pause execution

Master execStep(n) Execute 1 or multiple (n) steps

Observ getTraceMode Obtain the current trace mode: Paused, Running, StepByStep or N steps. 

Master defineBreakpoints(list) Set  breakpoints  on  a  list  of  transitions,  events,  signals  or  dataflow 
operations. Signals and operations will trigger breakpoints when the current 
value changes. An empty list clears all breakpoints.

Observ getBreakpoints Get the list of existing breakpoints

Observ getActiveBreakpoint Get the identifier that caused the last breakpoint

Write /
Debug

Master forceValues(list) Force  new  values  on  a  list  of  input  signals/events,  even  if  they  are 
associated with hardware pins.

Master thawForcedValues(list) Release forced values that start reading hardware values

 
Dynamic 
reconfig.

(Not yet 
implemented)

Admin relocateComponents Disconnect components from current server and reconnect to new server

Admin subscribeChangesFrom Force subscribe-changes from a new server node (at runtime)

Admin cancelSubscChangesFrom Cancel subscribe-changes from a server node (at runtime)

Admin pushChangesTo Force push-changes to a new server-node (at runtime)

Admin cancelPushChangesTo Cancel push-changes to a server-node (at runtime)

Observ getQueueSize(comp) Get the number of clients waiting on a specific component, used to measure 
client load (for future use)

General Unauth / Default: redirect browsers to the IOPT-Flow remote debugger application

Table 7: Communication protocol request/procedure list
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JSON was  chosen over  XML,  due  to  the  reduce  bandwidth  consumption  and 

simplified  parsing  on  Web  based  applications.  Listing  5 presents  an  example  of  a 

communication session excerpt. HTTP headers have been stripped from the example to 

improve readability11. 

The metadata presented in this example contains only input and output signals, as 

the model employed does not contain any Petri net nodes. In case Petri net nodes were 

present,  the  listing  would  also  include  «place»  and  «transition»  nodes.  The  word 

«attribute»  was  chosen  as  a  general  designation  for  the  variables  contained  in  the 

generated code, associated with nodes on the original DS-Pnet model, as place marking, 

fired transitions, event and signal values, component input and outputs and dataflow 

operation results.

11 HTTP headers are enabled by default, required to communicate with Web browsers. However, 
headers are not necessary for the communication between nodes that were built using the 
automatically generated code. To reduce the overhead, the generated client code immediately disables 
headers when a communication session starts.
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get http://host/login?user=guest HTTP/1.0
{"sess_key":"bd59c671049c7bb7fb4e109674cadfe2775b68fb"}

get http://host/requestPriv?
priv=2&priority=5&sessid=65ae1dca6b7400b992b8b454c4b8952568f1bb88 HTTP/1.0
{"priv":2}

get http://host/getModelName?sess-id=65ae1dca6b7400b992b8b454c4b8952568f1bb88 HTTP/1.0
{"model_name":"ui_test","version":"V1.0"}

get http://host/getModelURL?sess-id=65ae1dca6b7400b992b8b454c4b8952568f1bb88 HTTP/1.0
{"model_url":"http://gres.uninova.pt/iopt-flow/files/ui_test.xml"}

get http://host/listModelMetadata&sess-id=65ae1dca6b7400b992b8b454c4b8952568f1bb88
{"attributes":[
  {"name":"NV","node":"input","type":"int-range","min":0,"max":65535,"def-value":0},
  {"name":"Page","node":"input","type":"int-range","min":0,"max":15,"def-value":0},
  {"name":"Sens","node":"input","type":"boolean","def-value":0},
  {"name":"Vis","node":"input","type":"boolean",”on-error”:1,"def-value":0},
  {"name":"Checked","node":"output","type":"boolean","driven":1,"def-value":0},
  {"name":"Disp","node":"output","type":"boolean","driven":1,"def-value":0},
  {"name":"Pct","node":"output","type":"int-range","min":0,"max":65535,"driven":1,"def-
value":0},
  {"name":"Status","node":"output","type":"boolean","driven":1,"def-value":0},
  {"name":"Val","node":"output","type":"int-range","min":0,"max":65535,"driven":1,"def-
value":0},
  {"name":"R","node":"input","type":"event","on_error":0,"def-value":0},
  {"name":"S","node":"input","type":"event","on_error":0,"def-value":0},
  {"name":"ChgEvt","node":"output","type":"event","driven":1,"on_error":0,"def-
value":0},
  {"name":"DEvt","node":"output","type":"event","driven":1,"on_error":0,"def-value":0},
  {"name":"PG","node":"output","type":"event","driven":1,"on_error":0,"def-value":0}]
}

Listing 5: JSON/HTTP communication session excerpt



5.2.3 Server

Observing the network topology on figure  19 with multiple nodes, some nodes 

just provide components designed to build distributed applications, and other nodes run 

the main “maestro” models that implement the applications.  The application models 

manage information received from some nodes and send instructions to other nodes, 

respectively by reading component outputs and driving other component inputs. Under 

this topology, each node runs a copy of a minimalist HTTP server that implements the 

requests listed on the previous table. Even the application nodes run the server code, in 

order to allow remote debug and monitoring, or the creation of dedicated graphical user 

interface to operate and monitor these applications.

Although the communication server code might be disabled at compilation time 

(makefile  options),  reducing resource  consumption  on small  hardware  devices,  it  is 

usually enabled on all nodes. However, the automatic code generator only adds client 

code to the applications that employ remote components.

In order to support real-time systems, the execution semantics code must run in a 

predictable way, without interruptions. As a consequence, the communication layer may 

not  block,  even  during  network  failure  situations.  When  these  situations  occur,  the 

communication between different nodes may be temporarily interrupted, but the local 

code running on each node to perform critical functions should not be affected. An «on-

error» field, present in the previous meta-data listing, is used by the communication 

layer to notify the nodes reading these attributes, automatically assigning the «on-error» 

value.

To avoid blocking execution, the low level networking code was developed using 

non-blocking system calls (timed-out selects and socket non-blocking options), and the 

server  functions  are  invoked  in  an  interleaved  fashion.  On each  execution  step  the 

following actions are executed: 

1 - Process pending HTTP requests (up to max. requests per step)

2 - Read hardware inputs

3 - Apply forced values (previously forced by the remote debugger)

4 – When not paused, run execution semantics code (single step)

5 - Write outputs to hardware

6 – Check breakpoints and update trace step counter

7 - Process subscriptions (send events, changed values, breakpoints & trace status)
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The last step, involve sending messages to multiple clients that subscribed value 

change notifications about component inputs and outputs and internal state variables. 

However, subscription data is sent through secondary communication channels, using a 

persistent TCP connection, that do not require waiting for confirmation if data arrives to 

the subscriber clients. This way, information is immediately written to the client TCP 

sockets, without blocking the application. The operating system will subsequently send 

data packets through the corresponding network interfaces, in parallel with the model 

execution.

Each  client  connection  has  a  list  of  subscribed  attributes.  Subscription 

notifications  are  processed  using  the  model  metadata  data-structures  of  C  code 

generated  automatically.  These  data-structures,  with  information  about  each  model 

attribute, contain fields to store default values, current values, and the previous value 

(before the current execution step), used to detect values changes. 

To minimize network bandwidth,  subscribed values  are  only transmitted when 

they  suffer  changes.  Information  about  events  and  fired  transitions  is  treated  in  a 

different way: it is sent when events are triggered, and omitted otherwise. Changes are 

send as HTTP server side events, encoded as JSON object “deltas”, containing only the 

changed attributes.  Clients must  memorize past  values and update the new changed 

values,  but events are cleared at  the end of every execution step.  In addition to the 

subscribed  data,  the  secondary  channel  is  also  used  to  transmit  trace  and  debug 

information and an execution step count, since the previous update.

In  order  to  keep  connections  alive,  the  server  has  an  idle  counter  for  each 

connection, that counts the number of consecutive steps without sending notifications: 

when a predefined number is reached, the server sends a complete message containing 

all  subscribed  values.  This  avoids  reaching  operating-system  timeouts  that  would 

automatically hangup the TCP connections and also refreshes the client status, to ensure 

data consistency at both ends of the connection.

5.2.4 Client

From the opposite direction, the client part of the communication layer is only 

added to the generated C code when a model contains references to distributed remote 

components. The client side performs two main tasks: process notifications arrived from 

remote servers, and propagate events and changed signals to drive the inputs of remote 

components. These actions directly mimic the read-arcs connecting a main model to 

remote components: arcs reading information from remote component outputs will be 

dealt using subscriptions; arcs starting on the main model (or other remote components) 
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to  drive  remote  component  inputs  are  dealt  with  HTTP  write  commands  to  push 

changed values. 

In the same way as the server part, the local model execution should not block and 

is also interleaved with the step execution. At the begin of each execution step,  the 

secondary  channels  of  each  connection  are  scanned  for  new  notifications,  that  are 

immediately processed, updating the internal data structures with new values. This way, 

the  new  values  are  immediately  used  in  the  current  execution  step.  After  the  step 

execution  has  terminated,  changed  values  are  immediately  pushed  to  the  remote 

components.

Regarding  execution  delays,  the  reception  of  value  change notifications  poses 

absolutely  no  problem  as  the  network  sockets  are  inspected  using  non-blocking 

instructions. All notifications are immediately processed and discarded from the socket 

queues.  However,  pushing  changed  values  to  remote  components  employing  the 

«triggerEvents» and «setAttrValues» HTTP requests, currently wait for the respective 

answers, to be able to retransmit the commands in case an answer does not arrive under 

a minimal timeout. In order to minimize this problem, the actions of sending requests 

and  response  parsing  were  split  into  separate  functions,  sending all  requests  to  the 

remote servers before start polling for the answers. This way, the operating system may 

send the requests in parallel, and the answer reception code can use timed-out select 

instructions to wait for all answers in parallel.

Using this strategy, the maximum wait time to push changes is limited by the 

slowest  connection  to  the  remote  servers.  A next  version  of  the protocol,  using the 

HTTP keep-alive  feature  that  employs  persistent  TCP connections  to  send  multiple 

requests, might eliminate the need to wait for push-change confirmations, that could be 

postponed  to  the  next  execution  step.  However,  with  the  current  implementation, 

ignoring push-change confirmations could cause undesired consequences due to missed 

event  propagation,  that  could  not  arrive  at  destination.  In  contrast,  persistent  TCP 

connections ensure a sequential stream of data, that arrives precisely by the same order 

as it was transmitted and both sides are notified when a connection drops. 

The client side of the communication code is divided into several parts:

HTTP protocol:  Encode HTTP URL requests, headers, network 

transmission and parse JSON answers

Authentication:  Parse the node and user authentication databases and 

calculate session keys.
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Notification processing:Process notifications received from remote servers with 

subscribed events and value changes, to update internal 

execution semantics data-structures

Event/Change pushing:Propagate events and changed values to drive the inputs of 

remote components

CPSnet: Setup of a components network, creating a list of nodes 

and assembling a list of meta-data from all components 

running on each node

In turn, the CPSnet initialization is divided by the following steps:

1 – Identify a list of all remote nodes and the respective components according to 

the component resource locations

2 – For each node, assemble a list of all component outputs being read by arcs

3 – For each node, assemble a list of all component inputs driven by the main 

model using arcs

4  – Open connections  to  each node,  according to  resource  location  (user  and 

network address) using the «node-db» and authentication databases.  Wait  and try to 

reopen failed  connections  until  all  nodes  are  online.  Log errors  and fail  in  case  of 

authentication failure.

5 - For each node, subscribe the list component outputs prepared in step 2. 

6 - For each node, try to grab the list component inputs prepared in step 3. This 

operation obtains exclusive control over remote component inputs, that cannot be driven 

by other applications until  this connection is terminated. Log errors and fail  in case 

grabs are refused due to conflicts with other concurrent applications. 

7 – Try to reopen connections whenever a connection is dropped (during model 

execution).

On  connection  termination,  all  subscribed  values  and  grabbed  inputs  are 

automatically dropped by the server, and must be reconstructed by the CPSnet code. 

The information about remote components and the respective lists of input and outputs 

connected using arcs,  are obtained from the meta-data information.  The next listing 

presents  example  meta-data  form  a  distributed  application  used  to  test  this 

communication  protocol.  Components  C1  and  C2  run  on  the  same  node,  and  the 

respective input and outputs must be combined in single output-subscription and input-

push lists.
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Dynamic  network  reconfiguration  functionality,  planned  for  future 

implementations,  imply the reconstruction of CPSnet information,  including updated 

lists of nodes, new subscription and push lists, and terminating and opening different 

connections,  as a result  from the remote requests received by the server part  of the 

networking code.
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ioptf_metadata distributed_comp_c1[] = {
    { "c001.I5", nt_input_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c001.I6", nt_input_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c001.I7", nt_input_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c001.O5", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c001.O6", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c001.O7", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { NULL }
};

ioptf_metadata distributed_comp_c2[] = {
    { "c002.O1", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c002.O3", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c002.O4", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { NULL }
};

ioptf_metadata distributed_comp_c3[] = {
    { "c1.O4", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c1.O5", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c1.O6", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c1.O7", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { "c1.O8", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
    { NULL }
};

ioptf_comp_info distributed_components[] = {
    // name      resource-location   implementation   model   io-metadata   run  master-conn
    { "c1", "guest@172.16.3.101:9000/c1", "//_192_168_1_65_9000/local/IOX8.xml", 
distributed_comp_c1, TRUE, NULL },
    { "c2", "guest@172.16.3.100:9000/c2", "//_192_168_1_65_9000/local/IOX8.xml", 
distributed_comp_c2, TRUE, NULL},
    { "c3", "guest@172.16.3.100:9000/c3", "//_192_168_1_65_9000/local/IOX8.xml", 
distributed_comp_c3, TRUE, NULL },
    { NULL }
};

Listing 6: Distributed components meta-data information example



6 The IOPT-Flow Tool Framework

The DS-Pnet  modeling  formalism was designed to  enable  the development  of 

embedded  system  controllers  and  distributed  cyber-physical  systems.  To reach  this 

objective,  a  tool-chain  of  Web  based  development  tools  was  created,  providing  an 

integrated  development  environment  that  covers  all  development  stages  from model 

design,  simulation,  model-checking,  node  distribution,  code  generation  and  remote 

debug and monitoring of the deployed systems.

The IOPT-Flow framework offers the following tools:

1) Model editor: Model design and edition, with the ability to import remote 

components to create distributed applications

2) Simulator/Debugger:  Model  simulator  with  debug and trace  capabilities,  

waveform visualization and the ability  to  compare results  with previous  

simulations

3) Node-split: Split centralized models into distributed nodes

4) Automatic  code  generation:  Generate  C,  JavaScript  and  VHDL code  to  

execute the model semantics

5) Remote  Debugger:  Monitor  and  debug  models  deployed  on  remote  

embedded devices

6) IOPT Import/Export: Import IOPT models and export the Petri net part of a 

DS-Pnet model to PNML

7) IOPT Model checking: Use the IOPT model checking framework to analyze 

the Petri net part of DS-Pnet models
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This framework was inspired on previous work,  the IOPT-tools toolchain  [13]

[16], inheriting many concepts and design solutions. Although the frameworks as based 

on  different  formalisms,  DS-Pnets  and  IOPTnets,  the  interactive  tools  share  many 

algorithms and design solutions that had previously given good results  [24][20][21]. 

From the opposite direction, many usability features implemented on new tools were 

back-ported to IOPT-tools, resulting in benefits for both frameworks. 

The editor tool works as a front-end for all the other tools. It contains buttons to 

invoke all other tools, including the simulator, code generators and remote debugger. 

However, the remote debugger is more frequently used by simply directing the Web 

browser to the HTTP servers running on the embedded devices.

By default the editor stores model files on the server running the IOPT-flow tools, 

but the user may also download and upload models from the personal computer. When 

an empty «save-as» file name is entered, the model XML files are transferred to the user 

PC and the browser will ask for a local file name. Model files may be stored in a public 

server folder, shared by all users or on private folders. The login dialog contains options 

to manage personal user accounts.

The tools were implemented using a combination of Web technologies, with the 

interactive  applications  running  directly  on  the  user  Web  browser,  except  the  data 

storage  and  computational  intensive  tasks  that  are  executed  in  the  server.  As  the 

computational intensive tasks are executed on the server, the tools may be used on low-

end computational devices as smart-phones and tablet computers. This way, a technician 
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on the field may run the debugger application from a mobile device and immediately 

edit a model to correct any problems detected.

As JavaScript and HTML are the standard languages available on Web browsers, 

they  were  used  to  write  the  interactive  applications.  The  server  side  code  used  to 

interface with the interactive applications was developed using PHP and performs tasks 

as user management, file management and security checking. The code generation tools 

and  IOPT state-space  computation,  also  running  on  the  server,  are  based  on  XSL 

transformations and other XML processing tools.

The tools, available at http://gres.uninova.pt/iopt-flow, are installed on an Apache 

HTTP server running over Linux. The interactive tools have been developed using the 

Mozilla Firefox and Google Chrome Web browsers, but other W3C standards compliant 

browsers should work, including Opera and Safari. Curiously, when the development of 

the  preliminary  work  on  the  IOPT-tools  framework  started,  the  Internet  Explorer 

browser did not support most of the technologies chosen to create the tools, including 

direct support for SVG rendering and the XSLT engine did not employ the standard 

interface.  Meanwhile  these  technologies  have  been  progressively  added  to  Internet 

Explorer and some of tools have started to work, but other tools continue to malfunction 

due to divergences in the interpretation of XSL transformations. Maybe a future version 

of the Edge browser will someday be able to run the complete tool-chain... 

6.1 Editor 

Figure 20 presents the IOPT-Flow editor. The editor interface offers a toolbox on 

the left, a form with the selected object properties on the right and a drawing area at the 

center. The form entries correspond to the properties of each type of DS-Pnet node, as 

presented in chapter 3, except those that are manipulated interactively in the drawing 

area, as the XY coordinates.

As DS-Pnet models are stored in XML documents, the editor works directly on 

the XML document, operating changes to the model DOM (Document Object Model) 

tree. Visualization is performed using SVG (Scalable Vector Graphics), a XML based 

language for graphics representation supported by modern Web browsers.

Figure 21 displays the user feedback loop, including the XML document and the 

XSL transformation used to generate SVG graphics. Each time the model is changed or 

new nodes are added, the changes must be immediately reflected in the corresponding 

SVG document, using a XSL transformation (Extensible Style-sheet Transformation). In 

addition to the graphical representation of the DS-Pnet elements,  the resulting SVG 
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document also contain references to callback editor functions, invoked by the browser 

when the user interacts with the graphical elements.

As the editor employs XSL transformations to display the graphic representation 

of the XML documents in real-time, the editor performance is highly dependent on the 

efficiency of the browsers JavaScript interpreter and the respective XSLT processing 

engine. Recent versions of both Firefox and Chrome employ just-in-time compilation 

techniques to execute JavaScript code, contributing to increase performance levels. A 

comparison between both browsers has shown that Chrome offers superior interactive 

response, being able to display more than 20 frames per second while moving multiple 

nodes and performing arc rubber-banding, offering a performance level comparable to 

native applications while editing non-complex models. However, as model complexity 

increases, the feedback response starts  lagging. To solve this problem, the user may 

select a «fast» edition mode that does not perform arc rubber-banding but offers faster 

feedback.

Although the main purpose of editor is the design and edition of DS-Pnet models, 

it also performs other tasks. A very important task is the creation flat models that merge 

the internal elements of all components, subsequently used to schedule the evaluation 

sequence of dataflow operations and transition firing, assigning micro-step and nano-

step  numbers  to  each node.  This  task  was  implemented  in  the  editor  to  be able  to 

interactively warn the users about cyclic loops in the evaluation sequence. The resulting 

micro-step and nano-step numbers may also be visualized directly in the model, helping 

to manage conflicts between transitions.

Group Function Description

Selection
Select Nodes Select nodes with the pointer. Single or rectangular selection. Shift/Control add/remove selection 

elements.

Select All Select all document nodes

Invert Selection Select previously unselected nodes

Undo Undo last performed operation from undo stack 
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Undo Redo Redo previous undo operation

Copy
&

Paste

Delete Delete selection or delete the next picked node if selection is empty

Copy Copy selected nodes to clipboard

Cut Copy selected nodes to clipboard and delete from document 

Paste Paste a copy of the clipboard contents to the document

View Clipboard Open an auxiliary window to view the clipboard contents.
May be used to exchange the clipboard contents with other users, enabling collaborative use.

Duplicate Duplicate Duplicate selected nodes

View Mode Collapse Switch  the  selected  element  viewing  mode  between  graphical  or  symbolic  mode
(applicable to arcs and operations) 

Geometric
transform.

Rotate 90º CW Rotate selection 90º in the clockwise direction

Rotate 90ºCCW Rotate selection 90º in the clockwise direction

Mirror Mirror selection horizontally

«Smart»
tools

Node fusion Join multiple places or multiple transitions, automatically rearranging the connected arcs

Complem. place Create the complementary place of an existing Petri net place, adding complementary arcs

Semaphore Create a semaphore place to lock a critical section

Node
creation

Place Add new places

Transition Add new transitions

Petri net Arc Add Petri net (normal) arcs

Read Arc Add dataflow read arcs

Input Signal Add input signal

Output Signal Add output signal

Internal Signal Add internal signal

Input Event Add input event

Output Event Add output event

New component Create a new component on-the-fly (defining number of input/output signals/events)

Constant Insert a new operation with a constant value

New Operation Insert a new dataflow operation with N input anchors

Component
Reuse

Insert library 
element

Open the library dialog and insert existing components/operations

Remote 
Component

Open a connection to a remote embedded server and import components running on that server.

Open
&

Save

New Model Start a new model

Open Model Open an existing model on the server (or upload a model from a local file)

Login Authenticate with a user ID to access a private folder, or manage users/passwords

Save & Save As Save model on the server with same name or new name (or download model to local PC)

Show XML Exhibit the model as a XML document on a separate window

Verification
IOPT Model 
Checking

Extract  an  IOPT model  from the  Petri  net  part  of  the  model  and  invoke que  IOPT model-
checking subsystem 

Check Syntax Attribute micro-step & nano-step sequencing numbers to each node and detect cyclic loops

Invoke
Other Tools

Split Dist. 
Nodes

Invoke the node splitting tool, to automatically create sub-models to run on each distributed node 

Code generation Invoke the automatic code generation tools (C, JavaScript, modular VHDL, monolithic VHDL 
and XML)

Simulator Open the simulator / debugger tool

Remote 
Debugger

Open the remote debugger tool

Table 8: Editor toolbox functions
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Table 8 presents a list of the functions available on the toolbox. It contains icons 

to create and select nodes and perform multiple level undo and redo, copy and paste, 

among many other functions. In addition to the traditional functions usually offered by 

other Petri  net and dataflow editors, the editor offers «smart» functions to automate 

some error-prone tasks that would otherwise require full user attention, including Petri 

net node fusion, the creation of complementary places and the creation of semaphores 

that prevent multiple tokens from entering a critical section.

The concept of semaphore is employed when a system is composed of several 

concurrent sub-systems that share a common resource. Usually, each of the concurrent 

sub-systems is modeled by different parts of a Petri net model. However, only one of 

these sub-systems can simultaneously perform tasks involving the shared resource. A 

critical section is defined by the set of all places where this resource is being used, that 

may include places from multiple sub-system nets. After selecting the places that form a 

critical section, the automatic semaphore function creates a new place and adds input 

arcs  to  all  transitions  entering  the  critical  section  and  output  arcs  to  all  transitions 

leaving it,  preventing  more  than  one  sub-system from simultaneously  accessing  the 

constrained resource.

Figure  22 displays the expression editor dialog, used to enter the mathematical 

expressions that define the outputs of dataflow operations. Expressions may be inserted 

using a keyboard or using menus to select operators, input anchors and literal numeric 

values.  The second option  is  useful  for  users  of  tablets  or  other  mobile  computing 

devices.

An expression can consist on a single mathematical formula, or may be composed 

of multiple conditional sub-expressions, forming a case construct.
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When  an  expression  is  saved,  the  expression  editor  is  responsible  for  syntax 

checking and converting the results to the hierarchical XML format used on DS-Pnet 

model files.

Figure 23 presents the dataflow operation input and output editor used to define 

both the graphical and semantic properties of operations, including the graphical size 

and shape (arrow/trapezoid, rectangular and circular), the number of inputs and output 

anchors and the respective position. However, the main purpose of this editor is the 

attribution of names to each input/output anchor and define the respective data-types.

Both  names  and  data-types  of  input  anchors  may  be  attributed  in  a  static  or 

dynamic way. Static names and data-types remain unchanged unless edited again using 

the input/output editor. In contrast, dynamic names and data-types of input anchors are 

changed automatically whenever a driver arc is connected to it, inheriting the respective 

attributes from the arc source.

Dynamic data-types of output anchors are determined using a set of heuristics that 

take  in  account  the  data-types  of  the  inputs  and the  mathematical  expressions.  For 

example, the outputs of expressions containing comparative and logical operators are 

dynamically  assigned  the  Boolean  data  type.  These  heuristics  produce  the  desired 

results in most cases, but may be manually overridden using the input/output editor.
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Figure 24 shows the clipboard view dialog, used to store the contents of the copy 

and paste buffer, that may used to transfer information between different models. Two 

buttons, «upload» and «download» are used to save a copy of the clipboard buffer on 

the  IOPT-Flow  server  or  download  the  saved  copy  back  again.  This  feature  was 

designed to assist the collaborative work between multiple users logged in the same user 

account: A user may copy parts of a model to the clipboard buffer using the copy&paste 

functions and upload the clipboard contents to the server. Other users may open the 

clipboard view window and download the contents saved on the server, observe the 

downloaded elements and paste it to other models.
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Fig. 25: View component implementation model



Complex models are usually designed using multiple components and the inter-

dependencies between signals often cross the component  boundaries.  As a result,  in 

order  to  understand the  relationships  between these  signals,  it  is  often necessary to 

inspect  the  implementation  models  of  these  components.  The  IOPF-Flow  editor 

provides  two  ways  of  inspecting  component  implementations:  opening  a  secondary 

editor  window with  the  corresponding  model,  or  using  the  component  view dialog 

shown in figure 25.

When  a  secondary  editor  window  is  used  to  edit  component  models,  the 

component interface may suffer changes. This way, when a user saves models on the 

secondary editor window, the secondary window is automatically closed and the main 

window will scan for interface changes. When the interface suffered the removal (or 

renaming) of signals or events, any potential connected arcs are erased.

Components  may  be  added  to  new  models  in  three  ways:  creating  a  new 

component  on-the-fly,  inserting  a  component  from  the  library  or  importing  remote 

components.

On-the-fly components are typically used when a model is designed with a top-down 

approach. In this case the designer creates multiple components to implement different 

subsystems, starting with the definition of the component interfaces and developing the 

component implementation models afterwards. The editor asks for the desired number 

of component input and output signals and events and creates a new component model 

that is immediately opened in a secondary editor window.

Finally, the editor has the ability to import remote components from systems that 

are running the C code generated automatically, as presented in figure 26.
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Fig. 26: Import DS-Pnet components from remote embedded nodes



This window displays a model running on a remote node (guest@localhost:9000), 

and the list of available components on the left side. These components may be selected 

and  imported  to  the  main  editor  window,  in  the  same  way  as  a  library  element. 

However,  these  components  will  be  marked  as  remote  and  preserve  the  resource 

location  properties,  creating  distributed  systems.  Next,  the  designer  just  needs  to 

connect arcs to the imported component and the automatic code generator will deal with 

all communication details.

6.2 The Simulator tool

The IOPT-Flow simulator is used to test and debug DS-Pnet models. It plays an 

important role in rapid application development: after changing a model in the editor, 

the  changes  can  be  immediately  tested  using  a  single  mouse  click,  without  any 

compilation  delays  to  run  the  code  on  embedded  devices  and  the  risk  to  damage 

hardware  due to  modeling  mistakes.  In  contrast,  projects  running on reconfigurable 

hardware usually take many minutes to generate bit-stream files to program FPGAs, 

resulting in very slow test cycles.

Simulation runs DS-Pnet directly on the Web browser, using the JavaScript code 

produced by the automatic code generator. As the modern JavaScript engines employ 

just-in-time compilation techniques, the code generated automatically can reach very 

fast simulation speeds, only limited by the screen update of the forms and graphics.

Figure 27 displays the simulator window, presenting a toolbox on the left, a form 

with current values on the right and the model on the center. Input, output and internal 

values are displayed in real-time on both the graphical model and the form.
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Fig. 27: The IOPT-Flow simulator (Chrome Web browser)



The simulator displays two values next to each output and dataflow operation: the 

current value and the future value, after  the next execution step. In addition,  it  also 

highlights the transitions about to fire. This way, when execution is paused the user can 

change input values and check the consequences before executing the next step.

In order to accelerate debug sessions, the simulator stores information about the 

execution history, including all input, output and internal values on each step. This way, 

the user may run simulations at high speed and in case of mistaken input changes, can 

undo  the  last  execution  steps,  replay  and  navigate  through  the  history,  and  restart 

simulating from any recorded step.

The user may also define breakpoints associated with transition firing or dataflow 

operation  result  changes,  stopping  the  simulation  when  any  of  these  conditions  is 

reached. This way, simulations can run at high speed, avoiding the need to pause and 

inspect the results after each execution step.

Simulation history may be viewed as graphical waveforms, as shown in figure 28, 

or exported to CSV files for further processing using a spreadsheet application.  For 

example, a spreadsheet may be used to define conditions and search for undesired states 

on long history files, with millions of steps.
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Fig. 28: Waveform view window (simulation history)



The simulator supports the following features:

- Step-by-step execution and continuous run with predefined speed

- Undo step-by-step

- Breakpoints associated with transition firing of value changes in signals and  

dataflow operations

- Reset to initial state and force new state (force new place marking)

- Simulation history recording, navigation and replay

- Waveform view

- Export/download history to CSV spreadsheet files

- Save simulation history sessions on server

- Replay history sessions, using input values from data saved on server

- Compare history waveforms with previous simulations

- State-space exploration (for closed models)

The last features in the previous list were designed to automate model debugging 

and further contribute to reduce development cost and time. The possibility to save the 

history of simulation sessions and later reproduce these sessions with other versions of 

the same model, with the automatic detection of changes in the resulting waveforms, 

can be used to automate unit testing and regression tests. This is done by extracting the 

values of input signals and events from a previous simulation session and replaying it 

with these values. After replay, the user is informed if the resulting waveforms changed, 

the first and last step where changes were detected and the graphical waveform window 

highlights the changed values.

A state-space exploration function is useful to verify closed models, without any 

input signals or events, or models where inputs are only employed to define constant 

parameters  that  do not change during execution.  This  function was designed to test 

autonomous systems composed of two sub-models, a controller and a plant, that do not 

employ input signals except from working parameters or a start command. The state-

space exploration continuously runs the model, until if finds a repeated state. As this 

exploration  may  reach  millions  of  states,  performance  plays  a  critical  role  and  the 

graphical feedback is disabled, except for a step counter and an interrupt button.

The output of the state-space exploration is stored on the simulation history and 

may be exported  in  spreadsheet  CSV format  for  further  analyzes.  However, several 

properties may be immediately checked: deadlocks, live-locks and the reachability of 
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the initial state. If the system repeats the last two steps, a deadlock was found. A live-

lock is detected when the system jumps to and unexpected intermediary state, after the 

initialization phase.

Future work on the simulator include:

- Open parallel windows to display the contents of components

(although values appear in the form)

- Run foreign components from the «standard» component library, for example to 

run graphical user interfaces from the simulator

- Connect models running on the simulator to remote components, located on real 

hardware devices

- Add a query-system [15] to the waveform dialog to search/filter states that verify 

certain conditions without having to resort to external spreadsheet applications

6.3 Remote Debugger

Figure  29 shows the IOPT-Flow remote debugger application. With an interface 

similar to the simulator application, it is used to connect to embedded boards running 

the  “C”  code  generated  automatically, using  the  JSON/HTTP protocol  discussed  in 

chapter 5, to remotely monitor and troubleshoot systems deployed in the field.

The example on figure 29, implementing a distributed game, presents a top level 

model containing two components, the game engine and the user interface. As the top 

model does not contain any dataflow or Petri net nodes, they are not visible, but other 

models may display all types of nodes. In the same way as the simulator, the remote 

117

Fig. 29 The IOPT-Flow remote debugger application (Chrome browser)



debugger does not has the capability to enter into components and display the internal 

elements.  However,  in  the  case  of  the  remote  debugger,  this  is  a  desired  feature: 

developers wishing to hide implementation details can encapsulate the protected models 

inside components, exposing only the external interface and keeping the interior models 

private. To ensure privacy, the internal component information is not even exported by 

the server running on the generated code.

Users may invoke the remote debugger from the IOPT-Flow editor, or can simply 

point any Web browser to the URL of the embedded devices running the automatically 

generated code, that redirects the browser to the remote debugger application and sets 

all parameters. By default the server binds to TCP port 9000, but other ports may be 

selected in the source code or using environment variables.

After successful login, the remote debugger fetches the required model meta-data 

and the URL of the original DS-Pnet model, that is presented graphically, offering an 

user interface similar to the simulator. The user may simultaneously run multiple copies 

of the remote debugger on different browser window tabs, useful to monitor and debug 

distributed applications spread across many network nodes.

As the communication between the embedded systems and the remote debugger 

uses  a  stream  of  HTTP  server  side  events,  it  does  not  impose  any  noticeable 

performance  penalty  on  the  remote  devices  and  does  not  contribute  to  slow  the 

execution  speed.  The  remote  debugger  receives  a  stream  of  subscribed  values, 

optimized to transmit only changed values, that may suffer from network lag, but does 

not suffer from information loss. This way, the performance of the remote debugger 

application is usually limited by the graphical user interface refresh speed and not by 

the communication bandwidth, even for long distance connections.

The  remote  debugger  offers  the  capability  to  pause  execution  on  the  remote 

devices,  execute step by step,  define breakpoints  and restart  model  execution.  Input 

signals and events may also be forced, overriding the values read from hardware, useful 

to test the model behavior on unexpected situations or to bypass malfunctioning sensor 

devices  and maintain  operation  until  a  replacement  sensor  is  installed.  However, in 

order to use these debug commands, the user must login with a username associated 

with the «master» privilege in the remote node authentication database.
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6.4 Node-Split

The node-split operation is used to split centralized models into several distributed 

nodes. It  is  typically used when a system designer starts  with a main model that is 

divided into several local components. The initial model can be tested and debugged 

using the simulator tool, until it obeys all design requirements. After successful testing, 

the  designer  may  spread  the  original  model  across  multiple  nodes  and  create  a 

distributed system.

To perform this task, the designer starts with the creation of a list of virtual node 

names, according to the physical devices planned for the distributed implementation. 

After the node list has been decided, the designer should assign each component to the 

destination nodes, by setting the virtual node name on the respective resource-location 

attribute.

After assigning all components, the node-split tool is ready do be used. This tool 

will  create  a  set  of  new sub-models,  to  run  on  each  of  the  virtual  nodes,  plus  an 

application  top  model,  called  the  maestro,  that  runs  on  another  node.  Finally,  the 

complete distributed system may be deployed to hardware by applying the automatic 

code generation tools to each of the sub-models, producing executable applications to 

run on each node.

The  node-splitting  procedure  has  been  presented  in  the  distributed  execution 

chapter, but it obeys a basic principle: any signal, event, dataflow operation and Petri 

net nodes connected to components from a single node, will be implemented on that 

node  sub-model;  elements  connected  to  components  from  more  than  one  node, 

including arcs, are implemented in the main “maestro” model. The maestro orchestrates 

the communication between all nodes, according to the arcs that establish inter-node 

connections.  The  node-split  tool  was  employed  to  implement  the  fourth  validation 

application.

As previously stated, this solution has performance limitations, as an arc starting 

on  «NodeA»  and  ending  in  «NodeB»  implies  two  communication  messages:  the 

maestro subscribes a source value from «NodeA», that is received using server side 

events, but whenever it receives a change notification, it has to push the changed values 

to  «NodeB».  A  more  efficient  solution  could  be  achieved  if  «NodeB»  directly 

subscribed the source data from «NodeA», requiring a single message. However, this 

solution could create increased debugging difficulties, as pausing the main model would 

not prevent communication between component nodes whose state continued to evolve.
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With the current version of the tools, direct communication between component 

nodes  can  be  implemented  by  manually  creating  the  sub-models  and  defining  the 

communication interconnections. However, a future version of the node-split tool might 

offer options to select centralized of distributed communications.

6.5 Automatic code generation

The  automatic  code  generation  tools  create  code  that  executes  the  model 

semantics,  translating  the  model  behavior  to  several  programming  or  hardware 

description languages, to deploy on real hardware devices. Figure 30 presents the code 

generation options provided by the editor:

- C code for micro-controllers, embedded PCs, IoT devices and other computing 

devices

- Monolithic VHDL for reconfigurable hardware platforms (a single VHDL entity)

- Modular VHDL for reconfigurable hardware platforms (a VHDL entity for each 

component)

- JavaScript code to run on Web browsers (and on the simulator)

-  XML  language  independent  code  that  may  be  transformed  to  different  

programming languages

The  automatic  code  generation  algorithm  and  available  options  have  been 

presented on chapter 4, including information about the communication layer added to 

the generated C code.

Currently  the  editor  contains  options  to  select  hardware  or  software  code 

generation  for  each  component,  reserved  to  support  automatic  co-design  code 

generation solutions in the future. In the current version, the user must manually call the 

modular  VHDL code  generator  to  obtain  hardware  descriptions  of  all  components, 

apply the C code generator on the main model and then manually code the glue logic 

that  connects  the  hardware  and  software  components,  dependent  on  each  hardware 

platform and operating system employed.
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6.6 Import and export IOPT models

The DS-Pnet formalism inherits many concepts from the parent IOPT Petri net 

class  [29].  The external  model  interface,  composed of  input  and output  signals  and 

events, data types and the Petri net part are common to both formalisms. This way, an 

IOPT model may be used as a component of a DS-Pnet model, and may be transformed 

into an equivalent DS-Pnet model. However, as IOPTnet formalism currently does not 

support components, the opposite is not valid.

In the opposite direction, a DS-Pnet model is not usually convertible into an IOPT 

net because the mathematical expressions associated with IOPT places and transitions 

are not able to express the chains of dataflow operations that often appear in DS-Pnet 

models. In addition, any signal or variable used in IOPT expressions always refers to the 

results obtained in the previous execution step. This effect is easily translated into DS-

Pnet expressions by adding a delay operator suffix «[-1]» to each identifier. On the 

contrary, IOPTnet expressions do not offer any way to access immediate results from 

the current execution step. Finally, DS-Pnet models may be constructed without any 

Petri net element, using just dataflow operations, where the delay operator is used to 

inherently  define  state  variables,  holding  values  from  previous  executions  steps. 

Although it  would  be  possible  to  add a  dummy Petri  net  place  to  an  IOPT model 

(always marked), just to associate output expressions, it still could not express all types 

of DS-Pnet constructs.

As a result of this asymmetric relationship, the IOPT-Flow editor has the ability to 

open IOPT models. When it detects a XML document formatted using the IOPT PNML 

syntax, it automatically invokes a XSL transformation that converts the IOPT model 

into an equivalent DS-Pnet.

From the other side, as discussed above, it is not always possible to convert DS-

Pnet models into IOPT nets. However, the interface and the Petri net part of a DS-Pnet 

model is directly convertible on an IOPT net. This way, another XSL transformation  

was created that extracts all Petri net places and transitions plus input and output signals 

and events, to form a PNML document. Petri net arcs are automatically translated and 

read-arcs from places to transitions are converted into test arcs. Figure 31 displays an 

IOPT Petri net model extracted from a DS-Pnet.

At this point, any dataflow operations are ignored, but future versions might try to 

extract  a  subset  of  these operations to  create  transition guard conditions and output 

expressions, but only when these operations may be converted to IOPT mathematical 

expressions. 
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As a result, although the conversion from DS-Pnet models to IOPT nets is only 

partial, it may still be useful, as it permits the application of the state-space calculation 

and model-checking tools of the IOPT-Tools framework. These tools were developed as 

a  preliminary  work  and the  algorithms  and techniques  employed  for  the  respective 

development were described in various papers [7][9][15].

6.7 IOPT Model Checking

The IOPT models extracted from DS-Pnet models retain the Petri net part of the 

original models, responsible for the system state evolution. This way, it is important to 

study the properties of the resulting IOPTnet models,  as these properties might also 

apply to the original DS-Pnet model.

One  exception  to  this  rule  happens  when  the  dataflow operations  working  as 

transition guard conditions and as input events, prevent the firing of certain transitions 

that  prevent  the  reachability  of  undesired  states.  However,  this  problem  might  be 

mitigated in future versions with improved guard translation.  In this  case,  the state-

space  graph  of  the  original  DS-Pnet  model  is  a  sub-set  of  the  state-space  graph 

produced by the IOPT-tools model-checking sub-system.

From another side, even the state-space graphs built from native IOPT net models 

often include states that are impossible to reach due to physical constraints imposed by 

the controlled systems. For example, a model for a water dispenser will never reach a 

state where the water recipient is  full,  if  the output that opens the valve was never 

opened. As a result, this kind of problems must be studied using hybrid models of the 

controller and the controlled system (plant), that will be discussed next.
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Figure 31 presents the IOPT import window, displaying an IOPT model imported 

from the DS-Pnet editor. It contains buttons to invoke the IOPT state-space generator 

and query-system, presented in figures 32 and 33.

As state-space graphs frequently reach millions of states, the IOPT state-space 

computation algorithm uses “C” code generated automatically, running on the IOPT-

Tools server, taking advantage of multi-core processors, using the OpenMP extension of 
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Fig. 33: The query editor (IOPT model checking)



the C language for parallel processing. An example of a very small state-space graph 

can be viewed in figure 34.

When  the  state-space  graphs  exceed  hundreds  of  states,  human  inspection  to 

detect the reachability of undesired states becomes a time consuming task. To automate 

this task, it is possible to specify a list of query conditions that are checked during state-

space calculation, as presented in figure 33.
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6.8 Component Library

The ability to reuse previously designed and well debugged component models 

plays a fundamental role in the rapid design of new applications, contributing to reduce 

the development effort, with gains in terms of development cost and time to market. 

Applications involving multidisciplinary fields of expertise, as Cyber-physical systems, 

greatly  benefit  from  the  availability  of  hierarchic  libraries  containing  the  most 

frequently  used  building  blocks  of  each  discipline,  alleviating  the  need  for  large 

development teams with experts from every area. For example, if the peripheral devices 

present on hardware boards are well supported by components that hide the low level 

details, then it may not be necessary to hire hardware engineers.

A  large  component  library,  covering  many  fields  of  application,  is  often  an 

important  factor  in  the  choice  of  development  formalisms  and tools  to  start  a  new 

project. When a library already contains almost all of the required building blocks, then 

the application design is greatly simplified. In this case, the library coverage may be the 

deciding factor in the choice of development tools, above the merits of the underlying 

formalism.

In  order  to  simplify  component  reuse,  the  IOPTflow  editor  provides  an 

hierarchical library, whose interface is displayed on figure 35. The library is divided in 

folders, according to the field of applications, including arithmetic and logic operators, 
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ladder diagram blocks and user interface widgets, among others. The current version of 

the library is in very incipient state, containing almost only the components that were 

needed to develop the validation examples. However, as soon as other developers start 

using the IOPTflow tools to develop applications on other fields,  the library should 

naturally grow. In fact, for every model saved in the server, a component interface is 

automatically added to the «local» library folder, that may be immediately used in other 

models.

A library element may contain only one of he following items:

1 - A dataflow operation

2 - A DS-Pnet component

3 - A foreign component, designed with external development tools

Library  elements  containing  dataflow  operations  are  used  automate  the 

specification  of  frequently  used  mathematical  expressions,  contributing  to  avoid 

mistakes. These expressions may be as simple as constants, basic arithmetic and logic 

operators,  or  contain  long  mathematical  formulas.  The  graphical  notation  and  the 

respective title texts also contribute to increase model readability. Long mathematical 

expressions may be specified in two ways: As a dataflow branch containing multiple 

operation nodes connected through arcs, or just by creating a single operation with the 

entire expression.  Expert  users typically prefer the second, but users operating from 

tablet computers often choose the former, to avoid using a virtual keyboard. 

For example, figure 36 presents several components used to emulate ladder logic, 

as  the  normally-open contact,  normally-closed contact  and rung junctions.  Although 

these  components  were  defined  using  simple  AND  /  OR operations,  the  graphical 

notation and anchor placement was designed to allow the creation of horizontal graphs, 

connecting the contacts in series or parallel, to mimic the Ladder logic diagrams popular 

in industrial automation.

The mathematical expressions used in the dataflow operations refer to the names 

of  the  input  anchors.  These  anchors  work  as  internal  local  variables,  that  simplify 

copy&paste operations and the insertion of library elements, as the expressions remain 

unchanged after inserting an operation clone.

The left side of figure 35 presents the main library menu, that corresponds to a list 

of folders used to group components according to the respective field. For example, the 
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«arithmetic», «compare» and «logic» folders contain constants and basic mathematical 

operations. The «events» folders contain operation that detect simple threshold crossing 

events  and the «sim» folder  contains  components  that  detect  complex sequences  of 

events [175][177].  The  «ladder»  folder  contains  some  of  the  most  frequently  used 

Ladder-logic blocks as the normally open and normally closed contacts. Other folders 

contains counters, clock dividers, timers, registers and flip-flops, etc. The «IOPT-guest» 

folder contains a long list of components whose interfaces were extracted automatically 

from the IOPT-tools server (guest account). These models may be directly opened by 

the IOPT-flow editor, that automatically converts the PNML files to the DS-Pnet format.

The  local  folder  contains  a  list  of  component  interfaces  corresponding  to  all 

models stored in the IOPT-flow server. Every time a model is changed or saved, the 

respective component interface is updated.

Library components  may be implemented as native DS-Pnet  models (or IOPT 

models) or using external development tools, with implications to the automatic code 

generation tools: native components are independent of target programming language, 

and the tools apply the code generation algorithms to the component implementation 

models.  In  contrast,  foreign  components  require  external  code  that  must  be  re-

implemented in every language. This way, every component that can be specified as 

DS-Pnet  model,  should  be  designed  in  that  way.  Figure  37 presents  two  native 

components and their respective implementation models.

However, components that use external resources, as time information, disk file 

access, database access, use communication ports, interface with hardware devices and 

graphical user interfaces, must be implemented as foreign components.

An exception to this rule, the tables of variable data were not added to the core 

language  and  were  implemented  using  foreign  components,  as  the  hardware 

implementation (Block RAM) differs from the software implementation (arrays). As a 

conclusion,  native  DS-Pnet  models  are  independent  of  the  target  hardware  and 

programming languages. In contrast,  foreign components require the writing of glue 

logic code to connect the output of automatic code generators to the foreign component 

functionally, that must be re-implemented on each language.
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6.9 Standard foreign component library

Foreign components add enhanced functionally to DS-Pnet models, providing an 

interface  to  access  any  capabilities  offered  by  the  operating  system and  hardware. 

However,  the  implementation  of  these  components  is  not  usually  portable  across 

different  hardware  platforms,  operating  systems  or  programming  languages.  As  a 

consequence, in order to obtain portability, it is necessary to define a «standard» library 

containing a minimal set of foreign components that must be supported by all automatic 

code  generators.  Any  application  models  using  just  components  from  the  standard 

library (and native DS-Pnet components) will be portable across all supported languages 

and hardware platforms. In addition, the implementation of these components should 

also  aspire  portability  goals,  employing broadly  disseminated  APIs  and libraries,  to 

simplify the porting for different platforms. 

The  current  version  of  the  «standard  library»  contains  only  a  reduced  set  of 

components, and is only supported by the C code generator, but a future JavaScript 

implementation is  planned to allow the simulation of  models  containing  «standard» 

components  and  also  to  permit  the  design  of  Web  based  remote  user  interface 

applications. Those components may even be implemented as reconfigurable hardware 

in association with the VHDL code generator. For example, arrays may be implemented 

in hardware as RAM blocks and the graphical user interface widgets may inherit work 

previously developed [10][11].
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 Fig. 37: The t_ON timer and Up/Down counter native components.
Component interfaces (left) and implementation models (right).



At moment, the set of “standard” foreign components is restricted to the following 

list:

- Variable arrays (vector and matrix)

- Data file input/output and data log

- System time information

- Random number generator

- User interface widgets

- Audio sample player

- Industrial ModBUS Gateway

6.9.1 Arrays

All development formalisms aiming to solve non-trivial problems provide some 

type of data structures to handle large quantities of data, including arrays, linked lists or 

structured databases, among others. In the case of DS-Pnets, dataflow operations can 

use single dimensional vectors or bidimensional matrices of constant values, used to 

store tables of data and implement general functions of one or two integer arguments. 

However, arrays of variable data were excluded from the core formalism in order to 

uniformly cover both software and reconfigurable hardware platforms.

Arrays may be implemented in hardware using the block RAM modules included 

by most FPGA devices. However, access to the data stored in block-RAM is restricted 

to a single element at a time (or double, for dual port block RAM devices), while the 

arrays offered by software programming languages can be accessed multiple times on a 

single  mathematical  expression,  something  that  would  be  difficult  to  replicate  on 

hardware platforms that execute one step per clock cycle.

Using components, the external interface of the arrays automatically expose the 

same limitations as block RAM devices, restricting access to a single array element per 

execution step that can be supported by both software and hardware implementations. 

As a consequence, possible concurrent accesses to array data must be explicitly dealt by 

the model  designers,  that  must  create  the  appropriate  state-machines.  As concurrent 

array access is a typical use-case, other components may be developed to automate this 

design pattern.
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Figure 38 presents the two types of available array components: single dimension 

vectors  and  two-dimensional  matrices.  There  are  two  versions  of  each  component, 

storing 8 or 16 bit values. The matrix component has fixed dimensions, limited to a 

maximum of 256x256 elements, but the vector may be resized at run-time by changing 

the value of the size input.

The  external  interface  of  these  components  is  similar  to  real-world  memory 

devices, that employ address buses, data buses and control signals to perform read and 

write  operations.  In this  case,  the buses correspond to input signals and the control 

signals are the «wr» and «rd» events. The last «rd» value is copied to «out_data».

6.9.2 Data file input and output

The file input and output components bring the ability to store information in a 

permanent form and retrieve data from mass storage devices. As the core formalism 

does not presently support textual data-types, the information stored and retrieved using 

these  components  is  restricted  to  numeric  values,  that  are  stored  in  a  spreadsheet-

friendly CSV (comma separated values) format.

Figure 39 displays the interface of the «data_source» and «file_log» components, 

respectively used to read and write CSV files. The path/filename of the files is specified 

using the component resource-location property. In both cases the component interface 

has four data channels (A-D), meaning that it can read or write up to four simultaneous 

values, stored in the CSV files as different columns.

The  «data_source»  component  is  controlled  by  two  events,  «RstFile»  and 

«ReadData» that respectively rewind the reading position to the begin of the file and 

read a single line, publishing the read values to the «DataA-C» output signals. Two 

additional signals, «OpenOK» and «EOF» notify successful file opening and reaching 

the end of a file. In an equivalent way, the «file_log» component uses a «RstFile» event 

to erase the file content and a «WriteData» event to add a new line to the CSV file with 

the current «DataA-C» values.

Possible uses for the file I/O components include the data logging to store relevant 

information about execution history, run simulations from previously stored input data, 
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Fig. 39: The file input / output foreign components



harvest sensed data for future data processing and graphical presentation, but different 

applications may find different uses for data storage. By connecting the data-channels to 

other component inputs and outputs, it is possible to automate debug and simulation 

from vectors of test data previously stored in CSV files. Data files may be edited using 

spreadsheet applications, and processed to create reports and graphics.

Finally, the interface of the file I/O components may also be used to implement 

other foreign component classes,  used to access data from other back-ends that can 

provide  streams  of  simultaneous  data  channels,  such  as  database  tables,  network 

connections  or  serial  lines.  Although  the  components  were  designed  with  only  4 

channels,  multiple  files  can  be  simultaneously  opened,  and  this  number  may  be 

increased in the future.

6.9.3 System time information

The system time component is used to obtain the current time from the operating 

system clock. It has an input event and produces two output signal values: the number 

of seconds since 1970-Jan-1 in universal system time and a number of microseconds. 

When the component receives an «Upd» event it updates the output signals with the 

current time stamp, that may be used by other components in the same execution step.  

This component is important to synchronize the actions of sub-systems running on 

different  distributed  nodes.  As  the  network  latency  of  Internet  communications  is 

unpredictable,  components  may  pass  time  stamps  associated  with  request/answer 

events,  interpreted  by  the  receiving  components  to  take  the  appropriate  actions  to 

compensate  for  the  transmission  delays.  In  order  to  achieve  this,  all  clocks  in  a 

distributed system must be synchronized using an external protocol, as NTP [178].

Figure  40 presents an example model that uses time-stamps to synchronize the 

position  of  three  motors  running  on  distributed  controllers.  The  event  triggered  by 

transition «TSync» is  used by component  «SystemTime0» to generate  a  time-stamp 

(sec,usec), that is forwarded to each motor controller together with the instantaneous 

reference-position and speed. Using this information, each of the remote components 

«Mtr1»,  «Mtr2»  and  «Mtr3»,  can  calculate  the  time  elapsed  since  the  event  was 

triggered  until  it  was  received  and  use  the  speed  to  compensate  for  the  delay,  as 

presented in figure 41.
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6.9.4 Random number generator

The random generator component provides a very simple interface to generate 

sequences of random numbers. When execution starts, the «Rnd» output is assigned 

with  an  initial  random number,  that  is  refreshed with  a  new number  whenever  the 

«Gen» input event is triggered. The component implementation automatically seeds the 

random number generator sequence according to the local time and process identifier.

In  addition  to  the  traditional  applications  of  random numbers,  for  instance  in 

games, random numbers may also be used to automate the testing of other components, 

by  feeding  sequences  of  random  numbers  to  the  respective  inputs  and  storing  the 

results, or modeling additional logic to detect the reaching of undesired states.
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Fig. 41: Reference position synchronization on the remte side

Fig. 40: Using time-stamps to synchronize the position of 3 motors



6.9.5 Graphical user interface

Graphical user interfaces  are used on almost  every application,  to operate  and 

monitor  the  controlled  systems.  The  user  interface  library  folder  contains  a  list  of 

components that was selected to allow the creation of both physical interfaces running 

on  embedded  hardware  and  remote  Web  user  interfaces,  although  only  the  first  is 

currently implemented.

The “C” version of user interface sub-system was implemented using the GTK 

library, available on the Linux, Windows and MacOS operating systems, being used by 

default on many embedded Linux distributions. For example, the user interface of the 

Raspbian operating system for the Raspberry PI family of devices is based on GTK. The 

Web  version  will  be  implemented  using  HTML and  JavaScript.  Previous  work  on 

hardware based user interfaces [10][11] may also be used to create a VHDL version of 

this library.

An user interface built using this component library is divided into “pages”. A 

page is the equivalent of a computer window or screen, that contains a set of graphical 

objects, called “widgets”. An application model may have up to 16 pages. At any time 

only a single page is visible. A special component, called the page selector, is used to 

select a visible page, permitting the creation of user interfaces where the user navigates 

through the pages.

Widgets  are  objects  that  appear  inside  the  pages  to  display  information  and 

receive user input. It is possible to display text messages, icons and background images. 

User input is received using buttons, check-boxes, scroll-bar scales and numeric inputs. 

A special «scope» widget is used to present graphical waveforms of two input signals in 

real-time, like an oscilloscope. Figure  42 presents the external interface of the widget 

components.

Each widget has inputs to define a page, the XY coordinates where it appears, and 

corresponding size (width x height). An application may decide when each widget is 

visible or hidden, sensitive or disabled and dynamically move a widget by changing the 

coordinates.  For  increased  usability,  the  width  and  height  inputs  may  be  left 

unconnected and the system will automatically calculate the correct size according to 

the used text fonts and icon sizes.

A widget may also be dynamically moved between pages.  For example,  if the 

«PageNr» input of a component is driven by the selected page, then the widget will be 

present on all pages. An application can only have a single instance of the page selector 

component and the initialization code will abort if more than one copy is found.
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The «label_icon» is used to display text messages or graphical icons, that may be 

hidden  or  visible  according  to  the  application  logic.  Components  implementing 

sensitive widgets, that receive user feedback, have output signals to hold the values read 

from the  user  and output  events  to  notify button clicks  and changed values.  In  the 

opposite  direction,  components  that  hold  state,  as  check  boxes,  number  inputs  and 

scales, have input signals and events to let the application force new values. 

The output  signals  and events  of  the  widget  components  may be used by the 

applications as if they were produced by physical buttons or sensors. These values may 

be used to perform dataflow calculations, control the firing of Petri net transitions or be 

forwarded to remote components. In a cyber-physical system, a user interface node may 

read  data  from  multiple  remote  components  and  present  it  graphically,  just  by 

connecting  arcs.  In  the  same  way, the  output  of  user  interface  buttons,  scales  and 

numeric inputs may be connected to the inputs of remote components, providing remote 

control capabilities.

Figure 43 presents a screenshot of the test application, used during development 

to  test  the  user  interface  widgets.  The  scope  widget  at  the  bottom  presents  two 

waveforms. This component employs a «NewSample» input event to memorize a fresh 

sample  and  scroll  the  image  horizontally.  Application  logic  may  control  the 

«NewSample» to emulate the trigger level functionality of real oscilloscopes and start 

capturing consecutive samples. 
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This screenshot also displays icons and text messages. Again, as DS-Pnets do not 

have textual data-types, these messages were defined using the «comment» parameter of 

the  respective  widget  components  and the  path  of  icon files  was  defined using  the 

resource  location  parameter.  Button  keyboard  accelerators  may  be  defined  using  a 

«param_string» component parameters.

Using  component  properties  to  specify  text  messages  help  separate  the  user 

interface text from the application logic. User interface and application logic can be 

further separated by encapsulating both parts into different components (application and 

user-interface),  connected  through  arcs.  Next,  the  local  user  interface  can  be 

transformed  into  a  remote  user  interface  just  by  changing  the  resource  location 

parameter of the application component are generating the C code again.

The user interface toolkits of the modern operating systems offer many widgets 

and hundreds of configuration options. In contrast, the set of proposed user interface 

components is very small,  but was selected to support a wide range of applications, 

covering many industrial automation use-cases. Although this set may grow in future 

versions, it was considered appropriate for proof-of-concept applications.

6.9.6 Audio samples

An additional user interface component is used to play audio samples. It loads a 

Wave file containing a sound sample and plays it whenever a «Play» input event is 

fired. An output signal notifies if the sample is currently playing or has terminated.

Audio  samples  may  be  used  during  error  and  warning  situations  that  require 

immediate user attention, but may also be used to create rich multimedia applications 

combining animations and sound, as games and other entertainment systems.
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6.9.7 Industrial ModBUS Gateway

A final component was added to the standard library, implementing an interface to 

communicate with industrial devices using the ModBUS field-bus protocol  [67]. This 

protocol was chosen due to the implementation simplicity and level of dissemination. 

Supported by virtually every automation manufacturer, it  permits the communication 

between DS-Pnet  models  and programmable  logic  controllers,  CNC controllers  and 

servo motor controller drives, among others. This component contributes to allow the 

immediate  application  of  DS-Pnet  models  in  real-world  situations,  by  providing  a 

bridge  between  the  new  IOPT-flow  cyber-physical  systems  and  legacy  industrial 

applications.

The ModBUS protocol is usually deployed over a RS485 bus, with a single master 

controller and up to 252 slave devices, all using the same serial line. As the line length 

is  frequently  long,  using  relatively  low speeds  (ex:  9600,  19200 up to  38400),  the 

communication latency usually  reaches  many hundreds of milliseconds.  As a  result, 

many control applications cannot send commands and wait for the answers in an idle 

state. To avoid this problem, the «modbus_if» component was implemented in a non-

blocking  asynchronous  way,  to  permit  sending  ModBUS  commands  and  continue 

execution without blocking. 

A test application used to debug the ModBUS component can be viewed on figure 

44. It presents the component external interface and a set of input events and signals, 

used to force values using the IOPT-flow remote debugger tool, including commands, 

slave device identifier, addresses and values to set on the slave.

The component interface uses four input events to trigger 4 ModBUS commands: 

ReadInput, ReadRegister, WriteCoild and WriteRegister. When one of these events is 

triggered, the corresponding ModBUS request is immediately transmited through the 
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serial line. Later, when an answer or an error is received, the component assigns the 

results to the «RdValue» output and triggers an output «RecvAns» or «Error» event.

To  test  the  ModBUS  interface  component,  it  was  connected  to  a  DELTA 

programmable logic controller. The test application was able to read the PLC inputs, 

command the PLC relay outputs and read and write to the PLC internal memory. In 

another application, presented in figure 45, it was used to control an industrial variable 

speed  drive,  to  start,  stop,  set  the  velocity  and  read  electric  current  values  of  an 

induction motor.
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 Fig. 45: ModBUS + UI motor control application running on a Raspberry-PI 2 card,
with an LCD+touchscreen hat and an USB-RS485 serial converter



6.10 Debug And Model-Checking

The  debug  and  model-checking  tools  play  an  important  role  in  the  rapid 

development of embedded applications, permitting the discovery of modeling mistakes 

during the early design stages, resulting in faster development time that contributes to 

reduce  costs.  In  addition,  as  cyber-physical  systems  involve  both  computing  and 

physical devices, error detection before reaching the prototype implementation phase 

avoids  potential  catastrophic  hardware  malfunctions,  that  could  cause  permanent 

damages to physical devices.

From another side, both consumer devices and industrial systems are subject to an 

ever increasing set of regulations and certification requisites that must be verified before 

a product reaches the market. This way, in addition to the general properties that must 

be  checked,  as  the  reachability  of  potential  deadlocks  and  live-locks,  the  model-

checking tools may also be used to automate the detection of undesired states that could 

pose safety violations or break certification rules.

In  the  preliminary  work,  before  creating  the  DS-Pnet  formalism,  a  model-

checking sub-system for parent IOPT Petri net class was created, including an IOPT 

state-space generation algorithm [6][7] and a query-system [9], with the goal to satisfy 

the  problems  presented  above.  This  sub-system may  be  used  from the  IOPT-Flow 

framework, to apply these tools to the analysis of the Petri net part of a DS-Pnet system, 

responsible for the state-machines that implement the reactive part of the controllers.

Unfortunately, this solution looses information about the dataflow part of DS-Pnet 

models,  that impose restrictions to the evolution of the reactive part  of the models, 

resulting in much larger state-space graphs. For example, the guard conditions and input 

events that inhibit the firing of transitions are defined using dataflow operations, that are 

lost in the Petri net extraction.

As a result,  the state-space graphs built  without  considering the effects  of the 

dataflow part of the models contains entire branches that would never be reached on a 

real system. This way, the resulting state-space graph does not correctly represent the 

behavior of the DS-Pnet system. However, it contains the state-space of the DS-Pnet 

system and thus, if the undesired states are never reached on the resulting graph, then 

the real system will also never reach these states.

A native model-checking system for DS-Pnet systems has been planned but has 

not yet been implemented. The dataflow part of the models usually employs integer 

input  signals  with  large  ranges  (analog  signals,  etc.),  and  their  implications  on  the 
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dataflow  results  would  produce  huge  state-space  graphs  that  consume  enormous 

computational resources and calculation time, not practical for real world applications.

Several strategies to mitigate this problem were considered:

1) Hardware accelerated state-space calculation, taking advantage of the VHDL 

code generator, but performance would still limited by memory bandwidth limitations, 

to store a reached-state database and detect repeated states 

2) GPU accelerated state-space calculation, taking advantage of the massively 

parallel architectures to execute thousands of simultaneous threads

3) Apply state-space reduction techniques, using approaches presented in the  

literature [37][38][46][78]

4) Employ other model-checking techniques not based on state-space graphs, as 

symbolic model-checking [179]

However,  even  when  the  state-space  graph  of  a  DS-Pnet  controller  model  is 

accurately generated, it may still result in huge graphs containing millions of states that 

are  never  reached  in  real-life  implementations,  as  it  does  not  account  with  the 

interactions between the controller and the controlled system (plant).

Recalling  a  previous  example,  the  level  of  a  water  tank  will  not  raise  if  the 

controller output that enables a water pump that fills the tank is disabled. However, this 

information is not available when we study just the controller model, and the resulting 

state-space graph may contain ramifications containing states where the tank reaches the 

maximum level but the water was not flowing. In the same way, studying the plant 

model alone will also generally result in very large state-space graphs, including many 

states that are not reachable under normal operating conditions.

In  contradiction,  the  state-space  of  a  complete  system,  combining  both  the 

controller model and the plant, will usually result in much smaller graphs, that consume 

considerable less computing resources to calculate and are obtained faster, although the 

combined model is larger than each of the parts.

The reason behind this reduction is related to the main function of a controller: by 

definition a controller imposes a set of rules to the plant that does not let it escape from 

a  set  of  valid  desirable  states.  In  addition,  the  plant  obeys  a  set  of  physical  world 

restrictions  that  limit  the  set  of  output  values  produced  at  any  moment.  Using  the 

previous  example,  once water  starts  pumping in an empty tank,  the water  does  not 

instantly reach the maximum level, but will slowly grow with time. As plant values are 
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sensed by the controller models, these physical restrictions will contribute to reduce the 

size of the combined state-space graph.

Combining Petri nets and dataflows, DS-Pnets are well  adapted to model both 

controllers  and  the  controlled  systems  (plants).  From  one  side,  the  controllers  are 

usually reactive systems, that respond to changes in sensed values and events coming 

from the plant. From another side, plants usually employ mechanical devices and other 

dynamic  physical  systems  that  are  better  modeled  using  dataflows.  Finally,  model 

composition based on components lets the designer model both the controller and the 

plant as separate components, that may be simulated independently to perform a first 

stage  of  debugging  and  testing,  ensuring  that  both  models  behave  correctly  under 

typical use-cases.

The complete models, combining the controller and plant components, form an 

autonomous system, that may be simulated without requiring user input, except eventual 

«start» commands to initiate the system operation. The top level model exposes only the 

two components and the arcs that establish the communication between controller and 

plant.

This solution implies the creation of additional models to simulate the plant, that 

may be subject to design mistakes and simplifications to reduce modeling complexity. 

This way, the plant simulation models require individual testing to verify if the behavior 

under  typical  use-cases  corresponds to  the  expectations.  However, the  plant  models 

offer an additional advantage,  as they permit debugging the controller  models using 

only software tools, not suffering from possible hazardous situations that happen when 

physical  and  hardware  components  are  in  the  loop,  including  damaging  physical 

components and causing personal injuries due to controller design mistakes. 

After  testing  terminates,  the  component  used  to  simulate  the  plant  may  be 

replaced  with  another  component,  sharing  the  same  plant  external  interface,  that 

communicates  with  the  physical  plant  devices,  reading  sensed  values  and  driving 

actuators, maintaining the same communication arcs.

The simulator tool offers a function to explore the state-space of the autonomous 

controller-plant systems, that continuously calculates and records the system execution, 

until  it  founds  a  loop  to  a  previously  reached  state.  To improve  performance,  this 

function works in background mode and does not show any graphical feedback. The 

resulting history waveforms may be searched to detect undesired states and confirm the 

existence of desired end-states. In addition, the data may be exported to a spreadsheet 

application, where information may be processed using automatic filters.
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6.10.1 Application example

Figure 46 presents a diagram of a concrete 

mixer  plant,  extracted  from  an  example 

previously  published on  [27],  where  a  detailed 

explanation  of  the  models  can  be  found.  The 

plant  mixes  four  ingredients,  cement,  sand, 

gravel  and  water  to  produce  concrete.  A cart 

moves over the rail  in  the clockwise direction, 

stopping at four positions, to load cement, sand, 

gravel and finally to unload the bucket contents 

into  the  mixer. In  parallel  a  pipe  dumps water 

directly to the mixer.

The plant is equipped with a set of sensors to check if the cart has arrived at each 

stop position, to measure the volume of the materials loaded into the cart bucket, to read 

the water level and check if the bucket has been completely unloaded to the mixer. In 

the opposite direction, if offers actuators to enable the cart motor, control the conveyor 

belts that load materials on the cart bucket, unload the bucket and control a water valve.

The controller model, shown in figure  47, starts with place «PReady» marked, 

assuming that the cart is parked near the concrete mixer with the bucket unloaded. The 

controller is waiting for a «StartBtn» button press, that produces a «StartEvt» event 

required to fire the transition «Tstart», before start executing a concrete mixing cycle.

After  «TStart»  fires,  place  «PGotoCement»  will  be  marked,  enabling  the  cart 

motor  according  to  the  dataflow  operation  at  the  bottom  right  corner.  Next,  the 

transition «TCementArrive» will be waiting for the sensor input «CementArrive». Upon 

arriving, place «LoadCement» will be marked, enabling the «CementOpen» output that 

controls a conveyor belt used to dump cement on the cart bucket. When the cement 

reaches the desired level, transition «TCementFull» will fire and the cart starts moving 

to the next stop position. This pattern repeats for the sand and gravel loading.
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When the  concrete  mixing  cycle  starts  and transition  «Tstart»  fires,  the  place 

«PWaterRun» is also marked and opens a valve to start dumping water on the mixer. 

This operation runs in parallel with the cart travel, and stops when the water reaches the 

desired level, firing «TCloseWater».

When  the  cart  reaches  the  fourth  stop  position,  with  place  «PunloadMixer» 

marked, it enables the «BucketUnload» output and dumps the bucket contents into the 

mixer. The cycle ends when «BucketEmpty» input holds true and transition «TDone» 

fires, marking «PReady» again. Although, «TDone» does not wait until the water level 

has been reached, the cart cannot start a new cycle until «PwaterRun_cmpl» is marked. 

This  place  is  complementary  to  «PWaterRun»,  meaning  that  transition  «Tstart»  is 

inhibited while the water is still running.

Although the controller model could be immediately submitted through the code 

generation tools to run an embedded board, testing the controller behavior directly on 

the physical  plant  is  not recommended,  as any modeling mistake could damage the 

equipment. For example, running the conveyor belts when the cart bucket is not on the 

correct position, or unloading the bucket outside of the mixer area, would dump raw 

materials over the cart rails.

Running the controller model on the simulator provides a faster and cleaner way 

to test the model and find potential design mistakes. However, the controller reacts to a 
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series of signals and events coming from the plant,  that are not available when the 

controller  is  simulated alone.  As a result,  to simulate  the controller, the user  has to 

manipulate the model inputs according to the expected plant behavior. 

Manually simulating the plant behavior is an error prone task that requires full 

user attention and consumes time. To mitigate this problem, the simulator has the ability 

to display waveforms and save the simulation history to files stored on the server. The 

saved files might be used to quickly repeat previous simulations without the risk of 

entering wrong input sequences. When a model suffers changes, the simulation repeat 

function automatically detects changes in the output signal waveforms.

However, even the automatic repetition of debug sessions has limitations.  The 

debug sessions usually correspond to well defined use-cases and do not account with 

unexpected behaviors, that were not forethought by the developers.

As the controller is based on a Petri net, the Petri net part of the model may be 

converted into a IOPT model. Figure 34, from the tools chapter, contains the state-space 

graph of controller model, calculated using the IOPT-Tools model-checking subsystem. 

This graph may be used to detect the reachability of states that were not forethought.

In  the  case  of  the  current  model  version,  no  undesired  states  were  found. 

However, a previous version of the controller contained a mistake that was found with 

the help of the state-space graph, that contained thousands of states. The mistake was 

corrected with the addition of the complementary place «PwaterRun_cmpl» to prevent 

restarting a new kart cycle before the water has reached the desired level. 

 Unfortunately, the IOPT model checking tools do not automatically detect all 

mistakes:  As this  option discards the dataflow part  of the original  DS-Pnet  models, 

when undesired states are found the user must manually confirm if the conditions that 

lead to these states are affected by possible dataflow guards or transition input events.

As  discussed  earlier,  a  more  flexible  approach involves  the  design  of  a  plant 

simulation model, to study complete systems composed of the controller, plant and the 

respective signal and event interconnections.

Figure 48 presents the top model combining a controller and a plant. The arcs at 

the center transmit the control signals used to drive the plant actuators and the arcs at 

the left transmit sensor signals from the plant to the controller. These arcs are displayed 

using a symbolic mode to avoid drawing multiple curves crossing the entire model. The 

model is autonomous, except for a single start-button input that is managed by the user. 

However, after pressing this button the entire simulation runs autonomously.
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The plant model, found in figure 49, contains only dataflow elements and has an 

external interface complementary to the controller. This model is centered around three 

signals «CartPos», «WaterLevel» and «BucketLevel», that define the plant state.

The data flow on the center, «ModeCart», «Water» and «LoadBucket» are used to 

calculate the plant state signals, increasing or resetting the respective values according 

to the inputs coming from the controller. The dataflow operations on the right compare 

the value of the state signals with several threshold values: to detect if the cart position 

had reached each of the four stop locations, to check if the water level is full and verify 

if the bucket level has reached the correct thresholds for cement, sand and gravel, or is 

empty. 
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 Fig. 48: Cement mixer main model: controller + plant

Fig. 49: Cement mixer plant model



After setting the «Start» input, the simulator state-space exploration function may 

be applied to the top model, generating 147 steps until reaching a deadlock (the last two 

steps were repeated). However, replaying the saved history or inspecting the resulting 

waveforms, it is possible to verify that the simulation run an entire cement mixer cycle 

and is ready to start again, waiting for a positive edge on the start button: the user must 

release the start button and press it again. In this case, the deadlock does indicate an 

error condition and corresponds to the intended model behavior.

Finally, it is important to note that in this case, the simulation of the complete 

system produced a total of 147 different states, while the state-space of the Petri net part 

of the controller  contains only 18 states.  This difference happens because the IOPT 

state-space graph does not account with the internal plant state signals that hold integer 

range types to represent analog variables, whose value changes continuously with time, 

resulting  in  many  incremental  state  changes.  Applying  a  state-space  generation 

algorithm to the plant model without considering the controller, would produce millions 

of states, representing all possible combinations of controller inputs.
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7 Validation Applications

To validate the proposed development formalism and the respective support tools, 

a set of example applications was prepared, leading to creation of four prototypes. All 

applications  were  fully  developed  using  the  proposed  tools,  from  model  edition, 

simulation to automatic code generation, without manually writing any line of code. The 

first  of these validation applications was the subject of a publication on a scientific 

journal [28].

The validation examples consist on the following applications:

1  –  Controller  for  a  brushless  servo  motor,  implemented  on  reconfigurable  

hardware, using the modular VHDL code generator

2 - Distributed multi-user game with graphical user interface

3 -  Graphical console to control  an industrial  variable speed drive,  using the  

    ModBUS field-bus protocol

4 – Distributed cyber-physical system simple application with 3 nodes

   (1 processing node and 2 «physical» nodes)

In addition to the validation applications, another set of applications was created 

to assist the development of the new tools. These were small applications, used to test 

the editor, simulator, automatic code generation, inter-component communication and 

the  various  library  components,  that  also  resulted  in  prototypes.  From  these,  the 

following applications should be mentioned:

- UART Serial port model, used to debug the VHDL code generator, implemented 

on a Xilinx Spartan 3AN board, tested communicating to a PC serial port, presented in 

figure 10.
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- Graphical user interface test application, permitting the visualization of all types 

of Widget components. The behavior of the widget components can be configured and 

manipulated with the remote debugger tool, presented in figure 28.

- File I/O test models: used to test other components by automatically feeding 

sequences of data to the component input signals.

- ModBUS test application, in association with the remote debugger, was used to 

communicate with a ModBUS industrial programmable logic controller, being able to 

read and write the PLC memory, read PLC inputs and drive the output relays.

In addition to the listed examples, a MsC student used the IOPT-Flow tools to 

implement a library of structured events  [177], based on the work of a previous PhD 

work [175][176], producing several components that were grouped in the «sim» library 

folder. Publication of the results obtained is currently being prepared.

7.1 Bushless servo motor controller

The first validation application is a closed-loop brushless servo motor controller, 

implemented on re-configurable hardware. The application was built using a diverse set 

of  sub-system components,  some purely  data-driven  and  others  exhibiting  an  event 

driven behavior, ideal to demonstrate the DS-Pnet modeling capabilities. As most of 

these components  are  frequently used in  control  and power electronics  applications, 

they can be immediately added to the library for reuse in future models, contributing the 

abbreviate  the  development  of  future  applications.  In  fact,  these  components  are 

equivalent to the hardware modules that are currently packaged with specialized micro-

controller devices that target the areas of control and power-electronics.
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7.1.1 Model development

Figure  50 presents the application top model, composed of components, arcs to 

perform the respective signal interconnections, constants used for tuning purposes and 

the  external  interface  input  and  output  signals.  The  model  employs  eight  different 

component classes, some of them instantiated multiple times, reaching approximately 

20 components, performing the tasks listed on table 9.

QE Quadrature encoder pulse counter (decoder)

PID Digital PID controller

Commut BLDC commutation table based on commutation sensor inputs

PWM PWM Generator (half-bridge high/low outputs with dead-time insertion)

SpdPosCtrl Generate the reference motor position according to the Speed/Position mode 

NFilter Simple digital noise filter

DiffIn Digital differential receiver

DiffOut Digital differential output

Table 9: Component classes used in the application

Figure 51 presents the quadrature encoder implementation model used to track the 

motor rotor  position,  reacting to changes  in the «ChA» and «ChB» input signals to 

update the «Cntr» output.

Under normal operation, one of the four places  «PA0B0», «PA0B1», «PA1B1» 

and «PA1B0» is always marked, reflecting the status of encoder A and B input channels. 

Place «PInit» and the four transitions connected to it, are only used to determine the 

initial encoder state before start counting pulses.

Whenever one of the input channels changes state, one of the eight transitions 

near the corners of the Petri net (TAUp1/2, TADn1/2, TBUp1/2, TBDn1/2) will fire, 

updating the place marking according to the new channel configuration. Observing all 

arcs attached to the corner transitions, it is possible to notice that they form two circular 
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rings. The arcs of the outer ring have arrows pointing in the CCW direction and the arcs 

in the inner ring in the CW direction, directly reflecting the motor rotation.

The  “corner”  transitions  trigger  events  that  are  caught  by  the  «CntDn»  and 

«CntUp» dataflow operations. Depending on the mode of operation (X4=1 or X4=0), 

these operations perform the Boolean «or» of all events, or consider only the events 

coming from the transitions at the top right corner, counting every pulse, or just one 

pulse per cycle:

t8 OR t5 OR t6 OR t7 WHEN (X4) 

t8 OTHERWISE

Next,  the  «cntr_upd»  dataflow  operation  uses  the  outputs  of  the  previous 

operations to update the rotor position counter output:

0 WHEN (Rst)

(cntr_upd[-1] + 1) MOD 1024 WHEN (CntUp)

(cntr_upd[-1] - 1) MOD 1024 WHEN (CntDn)

cntr_upd[-1] OTHERWISE

Finally, the «Reg» operation applies  the  delay operator  «s[-1]» to  the  counter 

result,  creating an implicit  shift-register  that  will  output  the value calculated on the 

previous execution step. This operation was added to avoid the propagation of potential 

glitches produced by the combinatory logic used to implement the previous dataflow 

operations in VHDL. This operation inserts a negligible delay of just one execution step 

(20 ns in this prototype), but produces a clean output signal without transient glitches.

General  purpose  components,  employed  in  multiple  applications,  may  benefit 

from registered outputs (using the delay operator), as the output signals might be used 

by external dataflow operations, leading to long chains of operations implemented as 

combinatory logic that can impose restrictions on the maximum clock frequency. 

 The PID controller displayed on figure 52 is a purely data-driven model that does 

not include any Petri net elements. This prototype employs a single instance of the PID 

controller  to  directly  control  the  motor  position.  More  efficient  control  strategies 
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employing cascaded controllers to control the position, speed and motor current could 

be implemented using three instances of this component.

Observing the model,  inputs  «Kp»,  «Ki» and «Kd» correspond the  traditional 

proportional, integral and derivative gains, that are multiplied by the respective error 

signals. On the left, the «sub» operation subtracts the reference and sensed positions and 

the «pos-err» operation normalizes the result to the range 0 to 1024 (0↔360º).

The  two «Delay» operations  at  the  bottom are  used  to  sample  past  «PosErr» 

values  whenever  the  «UpdClk»  event  fires.  As  the  output  of  these  operations  is 

connected  in  sequence,  the  second  «Delay»  operation  always  stores  the  value  of 

«PosErr» sampled two «UpdClk» events ago. As the execution step clock frequency 

used to run the prototype (50Mhz) is several orders of magnitude faster that the encoder 

feedback frequency, the  «UpdClk» is  used  to  provide  a  slower  clock to  update  the 

derivative and integral errors without immediately saturating the respective variables.

The «Int» and «diff» operations respectively accumulate the integral error and 

calculate the derivative errors. Next, the error values are multiplied by the respective 

«Kp», «Ki» and «Kd» gains and the results are added. Two operations, «calc_dir» and 

«abs» extract the sign and absolute value.

As  fixed-point  arithmetic  has  not  yet  been  added  to  the  code  generators,  all 

operations  previously  described  employ  integer  numbers,  including  the  gains.  To 

improve the tuning sensitivity, the absolute value result is divided by 16, producing an 

effect equivalent to 4bit fixed-point gains.

Finally, the values of the «DC» and «Dir» outputs are used to provide a duty-cycle 

for  PWM  component  and  the  rotation/torque  direction  for  the  BLDC commutation 

model.

The component models displayed in figure 53 provide three basic functions. The 

«diff_in» model converts a differential signal into a single-ended signal. The differential 

input  signal  is  only  considered  valid  when  the  positive  and  negative  inputs  hold 

opposite logic values, maintaining the previous value otherwise.

The «diff_out» model, employs a double output dataflow operation to generate 

two signals where the OP output copies the input and ON produces a negated output. It 

is important to notice that these two components are translated to VHDL as pure logic 
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and  do  not  produce  any  differential  line  received  and  line  driver  hardware.  For 

improved noise immunity, these components should be replaced with real differential 

drivers and receiver modules provided by the FPGA manufacturers, as the IBUFDS and 

OBUFDS modules available on Xilinx hardware. However, this substitution should be 

done by manually editing the VHDL code.

The  third  model  on  figure  53 is  a  digital  noise  filter  used  to  remove  high 

frequency  transients  from digital  input  signals.  The  input  signal  is  only  considered 

stable after it maintains the same value for more than three consecutive execution steps. 

The output always contains the last stable value. 

Figure  54 displays  the  PWM  generator  model.  It  outputs  two  center  aligned 

complementary  PWM signals,  with  dead-time  insertion,  used  to  control  two  power 

semiconductors in an half-bridge configuration. The model behavior is defined by three 

input  parameters:  period,  duty-cycle  and  a  dead-time,  expressed  in  execution  steps 

(clock-cycles).

The PWM generator model employs a component, presented on the right side of 

the  figure  that  implements  an  up/down  counter.  This  counter  has  two  modes  of 

operation,  according to the «PCntUp» and «PCntDn» places,  cyclically  counting up 

from 0 to «Period-1» and returning back to 0. In addition to the «Cntr» output, it also 

produces two events to notify the instant when the minimum and maximum values of 

the counter are reached. These events mark the start and the center of each PWM cycle.

The 3 phase brushless DC servo motor used in this application is equipped with a 

encoder producing two quadrature AB signals and three commutation UVW signals. 

The commutation signals provide information about the absolute rotor position, used to 

define  the  correct  motor  phase  combination  required  to  drive  the  motor  in  each 

rotation/torque direction.  The commutation signals may be configured in  one of  six 

valid combinations, corresponding to size 60 degree sectors.

For this validation application,  a very simple trapezoidal commutation strategy 

was employed.  Although more  efficient  stategies  exist,  it  was  chosen to  reduce  the 

modeling complexity. Figure 55 contains the «bldc-commut» model that implements a 
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 Fig. 54: The PWM generator model (left) and the cntr_up_dn component model (right)



trapezoidal commutation state table. The model operation is based on the three UVW 

commutation sensors, the rotation direction «Dir» coming from the PID component and 

the  two  complementary  PWM  signals.  It  outputs  six  gate  signals  to  drive  the  six 

transistors of a three phase inverter.

Like  the  quadrature  encoder  model,  the  Petri  net  state-machine  used  to  track 

changes  in  the  commutation  signals  graphically  resembles  the  physical  motor 

commutation sectors where places «S1» to «S6» represent the six sectors. The dataflow 

operations on the right are used to route the PWM signals to one of the motor phases 

while  another  phase  is  driven  low  and  a  third  phase  is  kept  at  high  impedance, 

according the sector currently selected and the desired rotation direction. 

The gate drive output signals should not exhibit any transient glitches, that could 

damage  the  power  semiconductors.  This  way,  the  Petri  net  transitions  were 

synchronized with the «UpdClk» event, ensuring that the selected sector only changes at 

the begin of every PWM cycle. In the same way, the «SyncDir» is only sampled at the 

begin of each PWM cycle.
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 Fig. 55: The BLDC Commutation table model



Figure  56 shows  the  last  component  model.  The  «SpdPosCtrl»  component 

calculates  a  reference  position  for  the  PID  controller  model  and  according  to  the 

selected mode of operation: speed or position. In position mode, the reference position 

is calculated directly from the «RefInput» signal. In speed mode, the «RefIput» is used 

to define the rotation speed and direction. In both case, the reference input value is 

defined by a rotary button on the FPGA development board that contains other encoder.

In  speed  mode,  the  «CalcPos»  dataflow  operation  periodically  increments  or 

decrements the reference position. The update frequency is calculated according to the 

inverse of the «RefInput» value, using a variable frequency clock divider component. 

Observing the clock divider component, the «ClkIn» input is driven by a constant event 

value 1, representing an omnipresent event that happens on every execution step. The 

number  of  clock  cycles  corresponding  to  the  selected  speed  is  calculated  using  a 

division. However, the VHDL synthesis tools only perform divisions by numbers that 

are powers of 2 (bit shifting). To overcome this limitation, the «div» operation employs 

an internal table of inverse values.
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 Fig. 57: Prototype diagram on the left and photo on right: BLDC Motor, FPGA and Inverter boards



7.1.2 Prototype implementation:

The application prototype was implemented using a Xilinx Spartan 3AN FPGA 

development board, a three phase inverter card, a BLDC servo motor and a DC power 

supply. Figure 57 presents a prototype diagram and a photo of the hardware employed.

The motor encoder and the inverter board are connected to the FPGA board using 

differential signals. The inverter provides a current limit digital output used to quickly 

disable the gate drive signals and protect the electronic devices. The reset and enable 

inputs were assigned to push buttons and DIP switches on the FPGA board. LEDs were 

used to monitor the PID position error.

The automatic code generation tools were applied to the top model, generating a 

compressed ZIP archive containing VHDL files for each component class and a main 

file. These files were used to create a Xilinx ISE project, with the addition of an UCF 

file, created manually, to associate physical FPGA pins to each input and output.

This application was created to validate the new formalism and associated tools 

and demonstrate the applicability to the design of power electronics controllers. This 

way, details about motor control and linear control theory are out of the scope of this 

work.

After  correcting  the  range  of  internal  integer  signals  to  avoid  arithmetic 

overflows, the prototype was successfully tested. The project run from a 50MHz clock 

signal, producing 25KHz PWM signals. The applications consumed just a small fraction 

of the available FPGA resources: 334 flip-flops and 593 latches (7% of the available 

slice registers), 1812 LUTs (15%), 3 hardware multipliers (15%), occupying 1300 slices 

(22%), including a data table containing sampled values of the 1/x function.

7.1.3 Results

The prototype was entirely developed using the new tools, the component models 

were designed and debugged using the simulator, and later the automatically generated 

VHDL code was deployed on a FPGA board,  without the need to manually write a 

single line of VHDL code except for a pin assignment UCF file.

Graphical simulation contributed to accelerate the development time, permitting 

the early correction of design errors. Debug sessions take just a few seconds to start, 

leading to very fast development cycles. In contrast, the FPGA vendor synthesis tools 

take several minutes to optimize and create bit-stream files to run on physical hardware.

The DS-Pnet modeling formalism provides an higher level of abstraction, that lets 

the  developers  focus  on  modeling  the  desired  system behavior  and  the  underlying 
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control algorithms, and the automatic code generation tools hide the low level details, 

contributing to avoid manual coding mistakes. However, system designers must still be 

aware of hardware idiosyncrasies, including clock frequency limitations and carefully 

check the range of integer values used to store the results of mathematical operations, to 

avoid arithmetic overflows or underflows, a problem that may be automatically detected 

in future versions.

The design of power electronics controllers requires knowledge on multiple fields, 

including  control  theory,  power  converter  topologies,  software  development, 

electromagnetic interference management and printed circuit design. Combining Petri 

nets  and dataflows,  the  DS-Pnet  formalism is  well  adapted  to  the  design  of  mixed 

systems combining digital controllers that interface with sensors and analog readings. 

Comparing  to  traditional  hardware  description  languages,  the  new formalism has  a 

much shorter learning curve and users may start creating useful models in just a few 

days, releasing the designers from the time consuming software and hardware coding 

tasks.

 The graphical dataflow notation contributes to simplify the implementation of 

control algorithms, that may be translated from control block diagrams. To assist this 

task,  in the future the library may be extended with a  folder  containing component 

implementations of frequently used control blocks.

Although  the  generated  code  is  not  optimal,  the  FPGA  synthesis  tools 

optimization  algorithms  are  able  to  suppress  most  inefficiencies.  This  prototype 

consumed just a small fraction of the available FPGA resources, leaving much space to 

add extended functionality. However, there is a trade-off between faster development 

and reduced time-to-market versus a slightly increased resource consumption. Overall, 

except for mass production projects, the economical effect of faster development cycles 

and higher flexibility surpasses the cost of using larger FPGAs.

Comparing with a previous prototype, an open-loop motor controller implemented 

using  the  IOPT-tools  framework  [12],  the  new  tools  brought  two  fundamental 

advantages: dataflows and model composition. Compared to pure Petri nets, the new 

formalism offers advantages in the design of the data-driven parts of the models, more 

easily expressed using dataflows than text expressions attached to Petri net nodes. The 

relationships between signals that were previously hidden in the place expressions, are 

now graphically expressed as arcs.

Although the parent IOPT-tools did not support model composition, the previous 

prototype  was  designed  using  a  series  of  sub-system  models  that  were  separately 

processed by the IOPT VHDL code generator, producing a set of independent VHDL 
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entities. As a result, the main VHDL application had to be manually coded, instantiating 

the components and defining port maps to connect all components, without the ability to 

simulate the entire model and loosing part  of the advantages of the automatic code 

generations tools.

Comparing to micro-controller based solutions, employing devices with dedicated 

peripherals for the control of electronic power converters, as PWM generator modules, 

timers,  quadrature  encoder  interfaces  and  ADCs,  at  first  sight  the  new  application 

appears  to  be  in  disadvantage,  as  all  components  were  developed  from  scratch. 

However, this  was the first  power electronics application using DS-Pnets and future 

applications may reuse the new components, leveling the playing field.

The new formalism offers an additional advantage: the same component model 

may be  implemented as  hardware or  software,  without  requiring modeling changes. 

This  flexibility  permits  reusing  the  same  components  on  different  hardware 

architectures, and debug algorithms on the simulator and on software targets and later 

implement the same component on hardware. For exampe, the PID controller model, 

typically  implemented  in  micro-controllers  as  software,  may  be  reused,  both  in 

hardware and software implementations. In fact, if the hardware peripherals offered by 

these  micro-controllers  are  modeled  as  foreign  DS-Pnet  components,  it  would  be 

possible to design DS-Pnet models to create software solutions that run on these micro-

controllers, using the C code generator and some of the components created for this 

example.
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7.2 Distributed multi-user game with graphical interface

This validation application was chosen for several reasons. A distributed game 

could not contrast more with the previous example, targeting two completely different 

fields  of  application,  demonstrating  that  the  DS-Pnet  modeling  formalism  can  be 

applied  to  a  wide  range  of  applications.  Although  the  entertainment  sector  is  not 

frequently taken seriously by the academic community, the gaming and entertainment 

industry corresponds to a multi-billion Euro business. 

Contrary to the first application, the game was implemented as software and uses 

the automatic “C” code generator, including the networking layer and the «standard» 

library’s user interface and audio components. Due to the interactive nature of games, 

any  software  glitches  or  networking  delays  are  immediately  noticed  by  the  users, 

providing an ideal test-bed to validate the entire tool framework. However, as the main 

goal of the application was the validation of the new concepts and not the game quality, 

a very simple «pong» game was selected, presented in figure 58.

The game was designed in several steps. In the first step, a single-user centralized 

model was created, to experiment with the game dynamics and user interface. After the 

single user version was successfully tested, the centralized model was divided in two 

components: the game engine and the user interface. Next, the game engine component 

was extended to support a second player, including internal data and new input and 

output signals and events to communicate with a second user.
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The double-user game runs in two distributed nodes. The first node runs the game 

engine  and  the  user  interface  of  the  first  player.  When  the  second  player  is  not 

connected, it can be used in standalone mode with a single player. The second node runs 

the user interface of the second player and connects to the first node to communicate 

with the game engine component. The model running on the second node looks almost 

identical to the first, except the game engine component now is a remote component and 

the arcs that connect the user interface to the game engine were connected to the input 

and output anchors of the second player.

The first version of the game model, before separating the game engine and the 

user interface,  can be viewed in figure  59. Most of the model space if occupied by 

dark-gray components, corresponding to the graphical widgets that appear on the game 

window, including the ball, the “bases”, a score number, several buttons (pause, left and 

right) and two additional buttons used to display the «game-over» and «start-game» 

messages when the game is not running. On the bottom right corner, two sound-sample 

components  are  used  to  provide  audio  feedback:  a  “crash”  sample  when  the  game 

finishes and a “boing” sample when the ball bounces on the base.

Figures 60 and 61 present the two main models used to implement the dual player 

game. The second player model was designed starting with a copy of the first model and 

a few additional changes. On target property of game engine component was defined as 

159

Fig. 59: The entire single-user game model fits in a single editor page



«remote» and the resource location defined with the «player1» virtual node address. 

Both models use exactly the same types of components and the game engine is shared 

by both  models.  This  component  is  implemented  in  the  first  model  and the  second 

model uses it remotely.

It is important to observe the differences between both models. Each of the inputs 

of the shared game engine component is only driven in one of the models and never in 

both. This happens because the game engine component has specific input anchors for 

the second player and only the first player is allowed to pause and start a new game.

A special input «Player2On» is used to inform the game engine when the second 

player is connected. This Boolean input has both the default value and the «on-error» 

values defined as zero. As a consequence, «Player2On» only holds true when the second 

player application is connected and falls back to false when the connection drops. When 

the second player  is  disconnected,  the game engine automatically  copies the ball  X 

position to the second player base position,  behaving as a single-user game playing 

against a computer that never looses...

Finally, the second player model uses a «MirrorY» dataflow operation to mirror 

the ball Y position (680-Y). This is required in order to reflect the game window viewed 

by the second player in the Y direction. This way, each player sees the corresponding 
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Fig. 60: The main game model: game engine + player1 interface



base at the bottom of the window and the adversary at the top. To achieve this effect, the 

arcs connecting the «BaseX» and «P2BaseX» signals to the user interface components 

where also switched in each player model. 

Figure  62 displays the game engine model. This model receives input from the 

user interface of each player and outputs information about the ball coordinates and 

each player base X position in real-time. It also keeps record about the game score, 

corresponding to the number of consecutive bounced balls.

A simple Petri net state machine is used to manage the game state: waiting to start, 

playing the game or displaying the game over message. The rest of the model is purely 

data-driven and is controlled by dataflow operations. The main variables are the ball 

«X» and «Y» positions and the respective «XS» and «YS» speeds, plus the «BaseX» 

and «P2BaseX» base positions. The ball speed variables change signal whenever the 

ball bounces on a player base or on a lateral wall, and the ball coordinates continuously 

accumulate the respective speed variable.

The score is incremented when the ball bounces on a base and the game ends as 

soon as the ball escapes the vertical interval between the two bases.
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Figure 63 shows the interface model containing the widgets present in the game 

window, with the respective screen coordinates set using constants. Input signals are 

used to hide or show the widgets, to define the ball XY coordinates and the horizontal 

position of each base. The buttons produce signals used to command the base positions 

and pause or restart the game.

7.2.1 Results

The two game application models, for the first and second players, were submitted 

through the automatic “C” code generation tools, producing two executable applications 

to run the distributed game. The entire build process did not involve manually writing 

any line of “C” code, except uncommenting a line in the project Makefile to enable 

linking with the GTK user interface libraries. However, the game speed is defined in the 

delayPause() function from file «model_io.c». This function uses the usleep() function 

to  insert  a  delay between execution steps.  As this  delay is  disabled by default,  a  2 

millisecond delay was inserted by uncommenting the usleep() function call.

The game was tested using the Linux operating system, but as the Gtk libraries are 

available on Windows and MacOS, it should be possible to compile the code on these 

operating systems without requiring major porting changes. However, the sound effects 

are based on the «pulse-audio» library that may not be available outside Linux, but the 

game may still run without audio. The code runs directly on embedded linux boards as 

the  RaspberryPi  V2  andV3  boards,  without  any  changes  except  for  processor 
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architecture parameters in the project Makefile, as the Raspbian operating system user 

interface is based on GTK. 

The distributed games runs in two nodes where the first node executes the game 

engine and the fisrt player user interface and the other node executes the second player 

user  interface.  This  way, the  first  player  executable  should  be  launched  before  the 

second.

In order to establish the communication between the two nodes, the «user_db.txt» 

file should contain the same username/password pair on both nodes. In addition, the 

«node_db.txt» file of the second node should contain a line with the «player1» virtual 

node pointing to the first node network address. It may be also necessary to define new 

firewall rules on the first node to open the TCP port 9000 to the second node.

The distributed game was tested both on local networks and over a long distance 

connection, with the first player located at the south-west Alentejo coast and the second 

player  in Oporto,  using a proxy in Lisbon to bypass the firewall  of the first  player 

router. Even with  both players  located more than  500Km away, the  game was still  

perfectly playable. The second player observed just some sporadic discontinuities in the 

ball movement, without game consequences.

The first single user model fits in a unique editor page, and was developed in less 

than four hours, where half of that time was consumed searching for appropriate icons 

on «iconfinder.com» and experimenting the  game with different  sets  of  images  and 

sound samples. Next, the distributed version of the game was developed in just one 

hour, as the model had already been divided into the user-interface and game-engine 

components.

An  implementation  of  this  game  using  traditional  development  tools  would 

require much more than a single page of code. For example, an implementation using 

the C programming language would require multiple pages of code just to initialize all  

libraries  employed,  create  the  user  interface  and  setup  the  TCP/IP  communication. 

Except  if  a  dedicated  commercial  game  engine  were  employed,  the  game 

implementation would require many hours of work and some proficiency in the usage of 

many  programming  libraries  to  implement  the  networking,  audio  and  graphic  user 

interface parts of the game. In contrast,  the distributed games could be implemented 

using the new tools by a novice user with just a few days of training.

Finally, game design  is  a  multi-disciplinary  area,  involving graphic  designers, 

sound  engineers,  mathematicians  and  computer  programmers.  The  availability  of 

graphical formalisms may contribute to reduce the range of expertise requirements, as 
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the graphical nature of Petri net and dataflow languages may appeal to mathematicians 

and designers without deep computer science knowledge.

Quantitative data about communication performance over local networks and long 

distance  connections  using  different  embedded  computational  devices  has  been 

presented  in  [22].  This  publication  covered  an  early  version  of  the  JSON/HTTP 

communication  protocol,  used  by  the  IOPT-Tools  remote  debugger  application. 

However,  the  new  protocol  version  offers  enhanced  performance  as  it  employs 

subscriptions to filter the subset of remote model meta-data that should be transmitted, 

while  the  previous  protocol  version  always  transmits  information  about  the  entire 

model.
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7.3 Graphical console for an industrial variable speed drive

The third validation application implements a graphical user interface to control 

and  monitor  an  industrial  variable  speed  drive  that  controls  an  induction  motor, 

communicating using the ModBUS field-bus protocol. This example was selected to 

demonstrate  the  ability  to  integrate  DS-Pnet  models  in  industrial  environments  and 

cooperate  with  existing  automation  systems  created  using  legacy  languages  and 

development  frameworks.  As  today  there  are  millions  of  automation  applications 

running on the industry, the adoption of the next generation automation systems, based 

on IoT and CPS paradigms, depends on the capability to communicate and cooperate 

with the legacy systems.

Contrary to the previous application, the core of this model is a Petri net. This 

application continuously monitors a variable speed drive, reading instantaneous motor 

speed and current values, to display the respective waveforms in a scope widget. In 

addition, the user has the ability to start, stop, reverse and define the motor velocity. All  

of these variables are  accessible through the ModBUS interface,  to read or set  new 

values. However, as these values are not placed into consecutive ModBUS registers, 

only  one  value  may  be  read  at  a  time,  requiring  a  Petri  net  state-machine  to 

continuously scan the monitored values and transmit user commands.

Figure 64 presents the console user interface, running on a laptop PC connected to 

a «Delta» (www.deltaww.com) variable speed drive using an USB/RS485 serial adapter. 
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Figure  45 presents a  modified version12 of  this  model  running on a  Raspberry PI 2 

device, with an LCD and touch screen “hat”.

Figure  65 displays  the application main model.  In  the same way as the game 

application,  the  application  was  divided  in  two components:  the  user  interface  and 

ModBUS scanner. A third component, «tOff», is used to maintain error indications on 

the console window for one second after the errors are cleared, enough to be noticed by 

the user.

Although the application was executed on a single node, it would be possible to 

transform it in a distributed application and execute the components on different nodes, 

just  changing the properties  of  the scan  component,  defining  a  remote “target”  and 

assigning a remote location. After this, the split-node tools creates two sub-models, one 

running the ModBUS scanner and the other running the console interface, creating a 

console application with remote capabilities. This option was not chosen, as a TCP/IP 

version of ModBUS protocol can communicate over the internet, providing equivalent 

results. However, the distributed solution, running the ModBUS scanner on the remote 

host would still  benefit  from reduced communication latency and remote debug and 

monitoring.

Multiple  ModBUS  devices  may  be  connected  to  the  same  RS485  bus  with 

different identifier numbers, supporting a master and up to 252 slave devices. As the 

device  ID is  selected  from the  user  interface,  this  console  application  may used to 

control multiple drives connected to the same bus, as long as they use the same register 

addresses (same manufacturer/model).

Figure 66 displays the scan cycle model that continuously reads the instantaneous 

motor  current  and  speed  to  show the  graphical  waveforms  in  real-time  in  a  scope 

widget. However, this model must also send commands to the variable speed drive, to 

start, stop the motor and change the rotation speed, that must be interleaved with the 

waveform data.

12 The model was modified to fit the 480x320 LCD resolution of the “hat” adapter.
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Unfortunately, ModBUS communication can be relatively slow as older devices 

employ low baud rates (9600, 19200 baud) and response times may reach more than 0.1 

sec. To handle this, the ModBUS interface component works in an asynchronous non-

blocking way,  sending ModBUS commands when it  receives  input  events  and later 

producing output events when answers arrive from the bus.

Communication with the selected ModBUS slave device is orchestrated by the 

Petri net part of the model presented on figure 66. Under normal operation, the loop on 

the  left  side  (PReady,  TStartRead,  PReadCurrent,  TCurrReadDone,  PTeadInstSpeed, 

TDone) is continuously «running». However, when any of the «MotorOn», «Speed» or 

«RotDir» inputs  change value,  this  loop is  interrupted to  transmit  the new changed 

value to the respective ModBUS register on the slave device. When this happens, one of 

the transitions «TSetDir», <TSetSpd» or «TSetOnOff» enters in conflict with transition 

«TStartRead», that is solved using priorities: the former transitions have priority over 
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«TstartRead», meaning that one of them will immediately fire as soon as «PReady» is 

marked. 

The three guard operations above these transitions (top left) compare the current 

input values with saved copies. The three operations on the top right corner update the 

saved copies as soon as a changed value has been successfully transmitted. The two 

additional operations on the right side save the last motor current and speed values read 

from the drive, applying a scale transformation to the desired units (speed from 0.01HZ 

to RPM and current using a 0.1 Amp scale).

Each ModBUS command if performed in two steps, starting with the emission of 

a request event and waiting for an answer event, corresponding to sequences of two 

transitions.  All  transitions  whose  name ends  with  «Done»  mark  the  reception  of  a 

command  answer.  The  application  uses  the  «ReadReg»  and  «WriteReg»  ModBUS 

commands to read and modify memory registers on the slave device. The remaining 

commands «ReadInput» and «WriteCoil», to access possible physical inputs and outputs 

of the device, were not used in this application. The read register commands are used to 

read current and speed values and the write register to set the speed, direction and start 

or stop motion. The operations «ReadCurrOrSpeed» and «SetSpeedDirOnOff» trigger 

events immediately after places whose name start with «PRead» or «PSet» are marked.

The operation «o116» selects a ModBUS register address according to the place 

marked, corresponding to the type of value being read or written. These addresses are 

dependent on the manufacturer and often change on different model types. In the same 

way, the operation «o109» defines the value to be written, applying the correct scale 

transformation. For example, speed is converted from RPM to 0.01HZ.

The ModBUS scanner  produces  two output  events,  «Error»  to  notify  possible 

communication errors and the «NewSample» to shift a new sample into the scope data 

and  update  the  waveforms  with  the  values  of  the  «MotorCurent»  and  «InstSpeed» 

output signals. 

Figure  67 displays  the  user  interface  component.  It  contains  all  widgets  that 

appear  in  the  application  window,  plus  a  set  of  constants  to  define  the  screen 

coordinates and size. Two operations transform the scope data sampled inputs to fit the 

entire  scope  range.  A simple  Petri  net  is  used  to  manage  the  motor  status:  idle  or 

running. This information is used to hide or display an icon according to the motor 

status and also to inhibit the sensitivity of the rotation direction check-box, preventing 

the user from switching directions while the motor is running: changing the rotation 

direction while the motor is moving at high speed may cause mechanical hazards. 
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7.3.1 Results

In the same way as the previous validation applications, all code was generated 

automatically without any human intervention. The application was developed in just a 

few hours, including the debug of the scan cycle component and fine tuning the position 

of each user interface widget on the screen.

The prototype application was executed on two devices: a Linux laptop PC and a 

raspberry PI 2 card equipped with a «hat» board containing a 480x320 LCD and a touch 

screen.  The  prototype  employed  an  USB/RS485  adapter  to  communicate  with  a 

DELTA-Automation  variable-speed  drive  controlling  the  spindle  motor  of  a  CNC 

machine.

Contrary to the initial expectations, most of the development time was occupied 

with  the  graphical  layout  of  the  user  interface:  As  currently  there  is  no  way  of 

previewing the application window in the simulator, it required multiple iterations of 

model-edition,  code  generation  and  the  respective  compilation  to  view  the  change 

effects.

As the IOPT-Flow framework aims the rapid development of applications, this 

raises the need for a new user interface builder application. Such an application would 

start with an empty window and let the user place new widgets from a palette menu, 

interactively positioning and sizing each widget. As a result, the interface builder would 

automatically create a user interface component model containing all widget instances 

and the respective positioning constants. Widget outputs and unconnected widget inputs 

would be automatically mapped to the component external interface.
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The main goal of this validation example is to demonstrate the creation of mixed 

applications, merging DS-Pnet models and legacy devices, cooperating with each other. 

Although this example focus on user interface issues, more sophisticated applications 

could have been designed, for example to create machine controllers involving motor 

controllers and programmable logic controllers with ModBUS connectivity.

Comparing with other existing technologies, a similar console could have been 

constructed  with  other  tools,  as  Matlab/Simulink,  Labview  and  the  user  interface 

toolkits offered by many automation vendors to design user interfaces for embedded 

LCD screens. In relation to Simulink and Labview, the user interfaces created using 

those tools usually run on personal computers, and the new application runs directly on 

the embedded devices, without requiring any type of licenses. Comparing with the user 

interface toolkits for industrial automation, the new solution offers similar functionality, 

although not all of these toolkits are able to display dynamic waveforms.

Regarding user interfaces, the main advantage of the new solution is the capability 

to transparently interact with distributed nodes from cyber-physical systems, gathering 

information from multiple remote nodes and controlling multiple distributed devices, 

just by importing remote components and connecting arcs. 

A future  HTML/Javascript  implementation  of  the  user  interface  widgets  will 

further  contribute  to  enhance  functionality, reduce  development  time  and  lower  the 

application hardware cost. With this solution, the same user interface models could be 

deployed on hardware as the LCD «hat» used in the example, or used to create remote 

Web user interface to run on PCs and mobile computing devices. Development time 

could be reduced by launching the user interface window directly from the simulator 

tool, without requiring compiling the “C” code. Finally, remote Web interface eliminate 

the  need  for  user  interface  hardware  on  each  embedded  device,  thus  reducing 

manufacturing costs.
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7.4 Distributed cyber-physical system simple application

A fourth validation application implements a simple distributed system. Contrary 

to the previous examples, this application has absolutely no practical usage and serves 

just to demonstrate a possible design work-flow to create distributed systems starting 

with a centralized model that is later split in several nodes. In addition, this example 

employs several distributed nodes, with two nodes containing physical components and 

a third computational node, forming a distributed cyber-physical system.

This  is  a  purely  academic  example,  focusing  in  the  interconnection  between 

computational and physical nodes.  As a  result,  the nature of the computational  task 

performed internally by the nodes is irrelevant. In this example, a computational node 

simply  manages  a  lighting  sequence  on  a  row of  LEDs,  simulating  variable  speed 

motion.

Figure 68 presents the application model, whose development was initiated with a 

centralized model that was later split into three node sub-models: NodeA, NodeB and a 

main model. Nodes A and B were deployed on two Xilinx Zedboard cards and the main 

model run on a personal computer. The Zedboards were chosen due to the availability of 

DIP  switches,  LEDs  and  IO  connectors,  associated  to  an  ARM  processor  running 

embedded Linux (Xillybus). The application uses four DIP switch inputs, to reset the 

application, enable or pause, increase or decrease the LED simulated motion speed.

Both nodes A and B use different instances of the same «IOX8» component, and 

the main node employs a controller component. The interface of IOX8 consists of 8 

inputs, 8 outputs and an «enable» input. When enabled, this component just copies input 

values  to  the  respective  output,  resetting  all  outputs  when  disabled.  The  controller 

component, running on the main node, executes a small Petri net state machine that 

continuously flashes a single LED, simulating a motion from left to right and back to 

left. Figure 69 presents the implementation models of both components.

The IOX8 component is used to provide a remote interface for input and output 

signals  on  physical  devices.  In  NodeA  there  are  8  input  signals,  associated  with 

hardware DIP switches, connected to the 8 inputs of the component IOX8_DIPSW. In 
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contrast, the outputs of the component IOX8_LEDS on NodeB are connected to 8 Leds 

(wired to an IO connector). A constant true (1) value is used to permanently enable both 

IOX8 components.

The communication between the three components, running on different nodes, is 

defined using read-arcs. In the example, four arcs are used to transmit the values of the 

DIP switches from NodeA to the main node and another eight arcs transmit LED status 

information from the main node to NodeB. As the IOX8 outputs have a Boolean type 

and the «Reset»,  «IncSpeed» and «DecSpeed» inputs of the «Kit_0» component are 

events, three dataflow operations were inserted to detect positive edge events triggered 

when the DIP switch signal changes from 0 to 1.

In  order  to  deploy  the  distributed  system to  the  three  computing  devices,  the 

model  was  divided  with  the  automatic  node-split  tool  into  the  three  sub-models, 

displayed in figure 70. The main sub-model, presented at the top of the image, contains 

two  instances  of  the  IOX8 component,  but  these  are  just  references  to  the  remote 

components implemented in the other nodes, presented at the bottom. 

The  NodeA sub-model  includes  only  the  8  dip-switch  inputs  and  component 

IOX8_DWPSW, leaving the outputs of this component unconnected. The NodeB sub-

model contains only a IOX8_LEDs component and the respective LED outputs, leaving 

the inputs of the component unconnected. Finally, the main sub-model, working as a 

maestro, includes the central component Kit_0, the three dataflow operations and two 

references to the remote IOX8 components implemented in the other nodes. The arcs 

interconnecting remote components are only present in the main sub-model.
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7.4.1 Results

The three sub-models were submitted to the C code generator and compiled to 

build the executable programs to run on each node. The GNU GCC compiler was used 

in all  cases,  but nodes A and B were compiled with options to  the ARM processor 

architecture and the main node for Intel X86-64. 

All nodes, running versions of the Linux operating system. were connected using 

a local network. As the main application model connects to the JSON/HTTP servers 

running on the other nodes, the firewall rules of nodes A and B must be setup to open 

access to port 9000. In addition, a common user authentication file was installed on all 

nodes, defining the privileges for a «guest» user. As the main application only reads 

subscribed  signals  from  nodeA,  the  user  guest  only  needs  to  request  «observer» 

privileges  on  this  node.  However,  the  main  application  will  drive  input  signals  on 

NodeB,  requiring  «master»  privileges  on  this  node.  Finally,  the  resource  location 

parameter of the two IOX8 components on the main model refer virtual node addresses 

«NodeA» and «NodeB». As a consequence, the main application node will require a 

«node_db.txt» file  containing information about  the real  Internet  addresses and port 

numbers of the other nodes plus the usernames used for authentication.

The distributed system was successfully tested with the two boards controlled by a 

personal  computer,  with  multiple  instances  of  the  remote  debugger  application 

connected to each node, to monitor the evolution of each model in real-time.

In the same way as the two previous validation examples, the entire system was 

developed in just one afternoon, with 80% of the development time occupied in the 
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 Fig. 70: Sub-models after node-split: Main maestro model(top), NodeA (bot. Left) and NodeB (bot. right)



design of the controller main model. The tasks related to node division, communication 

to remote nodes and code generation were fully realized by automatic tools.

Comparing  with  the  traditional  programming  languages  and  tools  that  are 

presently taught in Electrical engineering courses for embedded systems design (C, C+

+,  Java,  Python,  VHDL etc.),  the  new  formalism  and  tools  allow  the  creation  of 

distributed cyber-physical systems in a fraction of the development time and requiring 

much  shorter  learning  paths,  as  previously  discussed  for  the  distributed  game 

application.

In contrast, the IEC61499 standard for system distribution offers the concept of 

function  blocks  that  communicate  using  input  and  output  signals  and  events,  from 

where  the  proposed  formalist  borrowed  these  concepts,  would  permit  defining  an 

equivalent  system  with  comparable  effort  and  development  time.  However,  the 

proposed solution communicates directly over TCP/IP and the distributed components 

can be located at any place in the world with the Internet connectivity. To achieve the 

same results using IEC61499 would require the addition of special function blocks that 

implement  publisher/subscriber  and  client/server  communication  on  each  node, 

resulting in more complex models.
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8 Conclusions and future work

The  contributions  presented  in  this  document  were  elaborated  to  provide  an 

answer to the three research questions described in chapter 1 and validate the associated 

hypothesis.  From these  hypothesis,  only  the  last  hypothesis  from the  third  research 

question  was  not  validated,  as  an  alternative  and  more  advantageous  solution  was 

chosen.

8.1 Research question 1

Regarding the first research question, the DS-Pnet formalism, presented in chapter 

3, offers a feature set that was selected to allow the rapid development of distributed 

cyber-physical systems and embedded system controllers, combining the characteristics 

of IOPT Petri nets, dataflows and model composition based on components. Petri nets 

are used to model the controller state machines that evolve according to external events. 

Dataflows are employed to specify data processing operations, including mathematical 

transformations and digital signal processing, that may be applied to calculate output 

signals,  condition  analog  sensor  inputs  and  implement  linear  control  algorithms. 

Components are used as a structuring mechanism, permitting the rapid design of new 

applications from libraries of previously designed and debugged building-blocks. With 

an external  interface consisting  of  input  and output  signals  and events,  components 

provide  an  abstraction  to  the  design  of  distributed  systems  composed  of  local  and 

remote components, running on different nodes containing both processing and physical 

devices.  The interconnection between local and remote components is specified in a 

transparent way using arcs.

Petri  nets have been extensively studied by the academic community for more 

than 50 years, with the annual production of thousands of papers. Resulting from this 

175

8



research work, a well known set of properties have been studied, with applications to 

the analysis and model-checking of controller models. As a result, the reactive parts of a 

DS-Pnet models,  based on Petri  nets, may be analyzed by the automatic state-space 

calculation and model-checking tools developed in the preliminary work, for the parent 

IOPTnet class.

The association of dataflows to Petri nets contributes to solve one of the most 

frequent criticisms about pure Petri net languages, considered ill adapted to specify the 

interface  between analog and digital  parts  of  mixed signal  systems.  Using the  new 

formalism, dataflows are used to connect input and output signals and events to the Petri 

net  nodes,  offering  an  explicit  graphical  way  to  specify  the  dependencies  between 

signals and control decisions, including transition input events and guard conditions. In 

the same way, dataflows are used to calculate output values, graphically exposing the 

dependencies  between  these  signals  and  place  marking  and  transition  firing  by  the 

means of  arcs.  The same consideration  may be  applied  to  the  relationship  between 

internal  signals  calculated  using  mathematical  operations,  whose  dependencies  are 

graphically displayed using arcs.

Data-centric models may be designed just with signals and dataflow operations, 

without any Petri net nodes, as happened with several component models employed in 

the validation applications.  This is specially true for signal filters  and linear control 

algorithms whose state typically evolves around integration, differentiation and other 

mathematical  operations.  In  contrast,  pure  Petri  net  languages  encode  these 

mathematical operations using output expressions associated with idle Petri net places, 

hiding the dependencies between internal signals. Using these languages, a user would 

typically  start  with  a  dataflow  model  on  paper,  that  was  later  translated  to  output 

expressions.  With  the  proposed  formalism,  the  initial  dataflow  can  be  immediately 

designed in the tools.

The synchronous paradigm, means that all dataflow calculations are considered 

instantaneous, means that any change in input signals is immediately propagated to all 

dependent dataflow nodes in a single execution step, affecting both output signals and 

system state evolution by means of transition firing. This way, designer may break large 

mathematical expressions in several dataflow operations connected in series, permitting 

the  reuse  of  intermediary  values,  increasing  the  model  readability  without 

compromising performance. 

Controllers usually exhibit a reactive behavior. In contrast, plant models typically 

include mechanical and other dynamic systems that are better modeled using dataflows. 

With the ability to model mixed signal systems, DS-Pnets are suitable to the design of 
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both controllers and plant systems, enabling the construction of complete autonomous 

systems  composed  of  controller  and  plant  components  and  the  respective 

interconnection arcs, used for fast model-checking. 

With an external interface composed of signals and events, components provide 

another advantage: they can be used to encapsulate foreign systems whose interface can 

also be specified using signals and events, bringing extended functionality to DS-Pnet 

models. For example, existing integrated circuits, HDL IP cores, programmable logic 

controllers and other automation devices, IEC61499 function blocks, may be used as 

foreign  components  to  build  DS-Pnet  models.  In  the  same  way,  existing  software 

written with most programming languages may also be accessed using the concept of 

foreign  components.  In  this  case,  events  are  employed  to  invoke  algorithms  and 

methods running on the foreign code and signals are used to pass parameter data.

A library of foreign components is offered to implement frequently used tasks, 

including user interfaces, array and file I/O and audio. In principle, foreign components 

should only be used to provide extended functionality that cannot be implemented using 

the language core. For example, to access external resources, perform operating system 

calls and to use hardware peripherals. 

However, foreign components may be employed on other occasions, for example, 

in applications requiring extreme efficiency and performance levels.  It is a common 

expression to say that a computationally intensive application spends 99% of the time 

executing just 1% of the code. In this case, the critical 1% part of the code may be 

implemented using foreign components and the remaining application using native DS-

Pnet models, benefiting from the rapid development advantages of model-based design 

without loosing significant performance.

In addition, some algorithms are better implemented using imperative (or other) 

languages by software engineers, for example to manipulate large quantities of data, 

complex data-structures, or software packages that have already been coded and well 

debugged. In this case, there are still advantages in encapsulating this code in foreign 

components: These components may be immediately inserted in new DS-Pnet models to 

build  centralized  or  distributed  applications,  without  requiring  any  concerns  about 

communications  details.  A  foreign  component  may  be  inserted  in  a  distributed 

application  and transparently  receive  requests  and data  from remote  clients  or  send 

request events to other remote components. 

177



8.2 Research question 2

In order to ensure deterministic execution, the bidirectional relationship between 

Petri  net and dataflow nodes has been studied,  as presented in chapter 3, leading to 

creation of an algorithm to execute DS-Pnet models used as a basis to the development 

of the automatic code generation tools presented in chapter 4.

The dependencies between signals, events, dataflow nodes and Petri net nodes are 

analyzed in order to determine a precise evaluation sequence used to calculate an entire 

execution step, employing the concepts of micro-step and nano-step numbers that are 

associated  to  all  dataflow  operations  and  Petri  net  transitions,  according  to  the 

definitions 13 and 14.

Models containing components are previously fused into flat models containing 

the nodes of all components. This way, the nodes belonging to different instances of the 

same component class are processed independently and assigned with different micro-

step and nano-step numbers, according to the dependencies of each original component 

instance inputs. 

The micro-step  and nano-step  numbers  are  only  used  to  specify  a  calculation 

sequence, and do not impose any clocking sub-divisions, as the execution of an entire 

step  adheres  to  the  synchronous  paradigm from synchronous  dataflows.  Under  this 

paradigm, all calculations are instantaneous and the system state remains constant for an 

entire step, evolving in quantum instantaneous steps.

Potential  calculation  loops,  where  the  results  of  an  operation  are  directly  or 

indirectly feed back to the respective inputs, violate the synchronous paradigm and are 

considered syntax errors. However, the circular dependencies are immediately detected 

during  micro-step and nano-step  assignment,  preventing  the  application  of  the  code 

generation algorithms. A delay operator used in dataflow output expressions may be 

used to break the circular calculation dependencies, using values calculated in previous 

execution steps instead of the values about to be calculated.

An  automatic  code  generation  tool  was  developed,  producing  software  and 

hardware descriptions that execute the models behavior. Currently, the tools produce 

code for the JavaScript, C and VHDL target languages. The code generation algorithm 

employs  a  multi-stage  strategy  that  produces  intermediary  files  containing  a  XML 

representation of the model semantics independent of the final language, that are later 

transformed to the desired language syntax.

The output of the C code generator includes a client/server communication layer 

that  permits  graphical  remote  debug  and  monitoring  of  the  systems  deployed  in 
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embedded devices  and automate  the communication  between distributed  nodes.  The 

VHDL code generator may output modular or monolithic versions of the code.  The 

modular versions contains separate entity files for each component calls, that may be 

individually reused on other VHDL projects.

Distributed models, employing components running on remote nodes form GALS 

[61][62][107] systems  where  each  node  employs  a  different  execution  clock. 

Components communicate with each other using input and output signals and events, 

whose  propagation  between  different  nodes  is  subject  to  variable  network  latency 

delays. 

The Petri net part of any DS-Pnet models is divided into multiple independent 

sub-nets,  that  never  span  across  different  components.  This  way,  the  execution 

semantics  of  the  Petri  net  part  of  a  DS-Pnet  system is  not  affected  by  component 

locations,  except  when  transitions  from  different  components  are  connected  using 

events. When both components run on the same local node, then the event connection 

forms  a  synchronous  channel  and  when  enabled,  both  transitions  fire  on  the  same 

execution step. When the transitions are located on different nodes, then the master-

slave relationship remains valid but there is a time delay between both firings.

A communication protocol based on JSON/HTTP [129], optimized to support the 

communication between distributed nodes to establish interconnections between remote 

components was designed. The output of C code generated automatically contains a 

client/server  communication  layer  that  automates  the  connection  between  multiple 

nodes forming a components network.

As the propagation of signals and events between different nodes is subject to 

external  factors  that  cannot  be  controlled,  including variable  delays  and  connection 

drops, information interchange between distributed components is synchronized using 

events. When a component transmits a message to a remote peer, typically the message 

payload is placed on output signals before sending an event to notify the other side. 

Later to other side may respond using the same strategy.

To obtain deterministic behavior, the networking layer ensures that the receptor 

does not loose events and the payload signals arrive before, or on the same execution 

step, as the notification events. The message propagation time may vary, but messages 

arrive at destination unless a connection is dropped. Connection failures are dealt with 

«on-error» parameter values associated with input signals: when a connection drops the 

communication layer sets the on-error values and the components may act accordingly.
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The input and output signals and events of the DS-Pnet component interfaces does 

not force any type of event handshaking between distributed components. However, a 

client/server use pattern borrowed from IEC61499[69][70] is presented, including state-

machines models to implement the respective handshaking.

With the advent of the IoT [49] and CPS [47][48], distributed applications may be 

constructed using publicly available components, designed and offered by third party 

entities. This way, the public components may be simultaneously requested by multiple 

applications.  To enable  the  concurrent  sharing  of  the  same  component  by  multiple 

applications,  an  extension  to  the  current  DS-Pnet  communication  infrastructure  is 

proposed.

8.3 Research question 3

The model checking sub-system developed for the parent IOPT Petri  net class 

[29][6][9] is  based  on state-space  graphs  and a  query  system to  automate  property 

checking, as deadlocks and live-locks, and the detection of desired and undesired states 

in  very  large  state-space  graphs.  Although  IOPT nets  do  not  employ  dataflows,  it 

supports input and output signals that influence transition firing, and the resulting state-

space  graphs  frequently  reach  many  millions  of  states.  The  IOPT-Tools  state-space 

calculation employs a compilation strategy based on the C code generated automatically 

to execute the model semantics.

With the creation of a conversion tool that extracts the Petri net part of DS-Pnet 

models to build IOPT PNML documents, the former model-checking sub-system may 

be directly invoked from the IOPT-Flow editor to analyze the properties of the Petri net 

part of DS-Pnet models. As the core of many models and components is built around 

Petri nets, this tool has been successfully used to detect modeling mistakes.

However, the state-space graphs calculated based just on the Petri net part of DS-

Pnet  models  do  not  account  with  the  system evolution  restrictions  imposed  by  the 

dataflow part of the models, including guard conditions and input events used to inhibit 

transition  firing.  This  way, the  resulting  graphs  include  many  states  that  are  never 

reached in the complete model, but the state-space graph of the entire system is a sub-

set of the graph produced. This way, if any undesired states are not reached in the entire 

graph, then these states are also not reached in the subset corresponding to the real 

system.

Unfortunately, building state-space graphs of the full DS-Pnet models has been 

proven a very difficult task in terms of computational resources, requiring huge amounts 

of processing time and memory. For example, a DS-Pnet model containing just 3 analog 
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inputs, represented as 10 bit integer signals, would account for 1030  combinations on 

each execution step.  In  addition,  these signals  are  often used  by dataflow nodes  to 

calculate  other  internal  signals,  for  example  to  apply  integration  and differentiation 

operations whose results must be stored in other system state variables, leading to a 

further explosion in the size of state-space graphs.

As a result, an alternative approach has been used. Instead of studying just the 

controller models, the DS-Pnet formalism may use used to model both the controller 

and  the  controlled  systems,  called  the  plants,  and  the  complete  systems  may  be 

assembled using two components, for the controller and the plant, connected using arcs. 

As all the controller inputs are now driven by values calculated by the plant, and plant 

inputs are driven by the controller, then the resulting system is autonomous and the 

resulting  state-space  graph  is  usually  reduced  by  many  orders  of  magnitude.  This 

approach has been previously employed using the NCES Petri net class.

The  resulting  controller+plant  autonomous  systems  may  be  interactively 

simulated  using  the  simulator  tool,  that  saves  the  simulation  history  waveforms for 

posterior inspection. However, this task may be assisted using a state-space exploration 

function that has been added to the simulator, that computes all states until a repeated 

state is found. According to the repeated state found, the system may have reached a 

dead-lock or live-lock situation, and potential undesirable states may be found in the 

simulation history waveforms.

Although this strategy is dependent of the accuracy of the plant model, it can be 

applied to the rapid testing of real world models whose state-space graph calculation 

would  consume enormous  resources.  When a  system is  composed of  multiple  sub-

systems,  the  simulator  and  model-checking  tools  may  be  employed  to  debug  and 

validate each sub-system, that are simulated using typical use-case scenarios, but the 

computation of the state-space graph of entire  systems starting in  the graphs of the 

components, as described in an hypothesis, has not been prosecuted, as the resulting 

graphs would still require huge amounts of storage.

Finally, the new simulator tool has the capability to store copies of the simulation 

history waveforms that may be used later to repeat simulation sessions, using revised 

versions of the same models, and automatically detect changes in the output waveforms. 

This functionality may be used to automate regression tests.

8.4 Results and comparison with other technologies

The  proposed modeling  formalism has  been tested  in  the  development  of  the 

validation applications and several small examples used to assist the debug of the IOPT-
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Flow tools. The tools have been used by several co-workers (InoCAM), former PhD 

students  and  were  used  during  the  thesis  work  of  a  master  degree  student,  that 

contributed to detect flaws and suggest future enhancements. Both the author and the 

beta-testers  have  previous  experience  in  software  development  and  computer 

programming  teaching,  that  helped  evaluate  the  new  tools  and  compare  the  new 

formalism with other development languages.

As  the  proposed  tools  aim  the  rapid  development  of  embedded  systems  and 

distributed cyber-physical systems, they should be evaluated against other languages 

and tools commonly employed for the same type of applications. Evaluation criteria 

include development speed, learning curve, output code efficiency and suitability for 

different types of applications,  used to qualitatively compare the new tools with the 

following technologies:

8.4.1 Traditional programming languages
(C/C++, Java, Python, VHDL, etc.):

These formalisms are  currently  taught  in  virtually  every electrical  engineering 

class on embedded system development and consequently should be the most effective 

tools to the job. Comparing with these languages, the new formalism provides faster 

development time and require a much shorter learning curve, with just a small reduction 

in efficiency, contributing to reduce development cost.

By providing a higher level modeling formalism, assisted by graphical simulation 

and model-checking tools, and automatic code generation tools that hide the low level 

coding  details,  including  the  communication  between  distributed  nodes,  the  new 

formalism  offers  much  faster  debug  cycles,  avoids  low-level  coding  mistakes  and 

contributes  to  prevent  hardware  damage  resulting  from  design  mistakes.  As  most 

mistakes are detected using simulations in early design stages, when the development 

reaches the prototype implementation phase most errors have already been resolved, 

minimizing the risk of destroying mechanical parts and electronic devices employed in 

the physical parts of cyber-physical systems. The availability of a debugger application 

that  enables  the  remote  trace  and  monitoring  of  applications  already  deployed  in 

physical devices also contributes to reduce development time, showing the evolution of 

the original models almost in real-time.

These  results  have  been  verified  during  the  development  of  the  validation 

applications. In the first example, the component implementation models used to build 

the motor controller application were tested with the simulator. In this application, the 

FPGA synthesis tools took more than 5 minutes to build a new bit-stream file to upload 
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in the development board. In contrast, the simulator tool can be started in a few seconds 

after  correcting  a  model,  providing  a  debug  cycle  more  than  100 times  faster. For 

software targets, this difference is shorter, but still requires software compilation and 

upload to the target devices. 

In relation to the second application example,  the entire game model  fits  in  a 

single editor page, including the game engine, a graphical user interface and audio, and 

was  created  in  just  a  few hours.  An  equivalent  software  application  would  require 

multiple pages of code just to initialize all libraries employed and would require longer 

development time and knowledge about the API of the different libraries. The same 

considerations  can  be  applied  to  the  other  applications,  with  the  addition  of  also 

requiring knowledge about TCP/IP communications.

Regarding  the  learning  curve,  the  proposed  formalism  hides  most  low  level 

implementation  details  and  consequently  a  novice  user  may  start  producing  useful 

models with just a few days of training, including distributed applications. In contrast, 

building  equivalent  applications  using  traditional  programming  languages  would 

typically  require  several  semester  classes,  including  an  introduction  to  computer 

programming, an optional second class on algorithms and data-structures, another class 

on operating systems, inter-process communication and computer networks and other 

class in embedded system design. As a consequence, the new tools may be taught to 

persons without a computer science background and may appeal to developers coming 

from other fields as mechanical engineering and industrial automation technicians.

The new formalism is not as flexible as traditional programming languages and 

many algorithms and applications may be more easily expressed using the sequential 

paradigm  offered  by  imperative  languages.  This  limitations  are  related  to  several 

choices made during the design of the new formalism, that aimed to offer the same 

execution semantics on both software and hardware targets. For example, arrays and 

matrices  were  excluded  from  the  core  language  and  later  implemented  as  foreign 

components,  due  to  the  fact  that  the  hardware  implementation  of  DS-Pnet  models 

execute one step per clock cycle and only permit to access a single array position per 

step. In addition, an expert developer will usually create more efficient code than the 

one produced by the automatic generation tools, that may require the usage of more 

expensive hardware. However, except for mass production applications, in cases when 

the number of produced copies is not very large, the gains obtained in development time 

and flexibility surpass the increments on hardware cost.

One advantage of the new formalism over traditional programming languages is 

the possibility of producing code for different targets. The same model may be tested 
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once and executed in software or used to synthesize hardware, maintaining the same 

execution semantics. 

Fortunately, the  previous  described  limitations  can  be  mitigated  using  foreign 

components to implement  the performance critical  parts  of the systems, and also to 

specify  the  algorithms  and  sub-systems  that  are  better  expressed  using  traditional 

languages.  This  way, new applications  can  benefit  from the  advantages  of  the  new 

formalism without major performance penalties. The modeling capabilities of the new 

formalism  may  be  extended  with  the  addition  of  new  library  folders,  suitable  for 

different  application  fields.  For  example,  a  folder  containing  optimized  matrix 

operations as addition, subtraction and multiplication may be necessary to implement 

computer vision systems and advanced signal processing operations.

8.4.2 IOPT-Tools

The design of the new formalism and tool framework ware inspired in the parent 

IOPT net class and the associated IOPT-Tools framework whose development started in 

the  GRES research  group many  years  ago  [29][54][55][56][57][58][59][60][61][62]. 

The parent framework also aims the rapid development of embedded controllers, and 

offers most of the same benefits as the new one, including simulation, model-checking, 

automatic code generation and remote debug capabilities  [22]. However, the current 

version of the tools do not offer any form of model composition and data-manipulation 

operations  are  performed  by  mathematical  expressions  associated  with  places  and 

transitions.

As the new formalism builds on top of the former, it offers the same benefits and 

adds  extended  functionality.  The  addition  of  dataflows  brings  enhanced  modeling 

capabilities  to  specify  mathematical  transformations  and  graphically  express  the 

dependencies between internal signals, becoming better suited to implement data-centric 

models and signal processing.

The  addition  of  components  permits  the  creation  of  libraries  of  previously 

designed  and  well  debugged  components  that  contribute  to  accelerate  development 

time.  Models  may be sub-divided into  multiple  sub-systems,  contributing  to  reduce 

screen  clutter  and  let  the  developer  focus  on  individual  components.  Finally, 

components  provide  an  abstraction  to  implement  distributed  systems,  where  the 

communication between components located on different network nodes is specified by 

drawing arcs between the input and output signals and events of different components. 

As the new C code-generation tools include an client/server communication layer, the 

creation of distributed cyber-physical systems is fully automated. 
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8.4.3 Industrial automation development languages

The  development  languages  used  to  create  industrial  automation  applications 

based  on  programmable  logic  controllers,  include  several  graphical  formalisms  as 

Ladder  diagrams,  Grafcet,  sequential  function  charts  and  function  block  diagrams 

(IEC61131-3). Later the IEC61499 standard introduced a new generic model for the 

design of distributed control systems, but continues to employ the former IEC6113-3 

languages.

These  graphical  formalisms  enabled  the  rapid  application  development  of 

applications  and  some  of  them  offer  a  short  learning  curve.  For  example,  Ladder 

diagram is  very  popular  among  automation  technicians  as  it  permits  the  design  of 

simple  automation  applications  without  much training.  PLC vendors  provide  design 

tools that work from personal computers to enable the edition, simulation and graphical 

debug and monitoring of systems running in the PLC devices, connected to the PC via 

field-bus protocols. Most PLC vendors also supply user interface devices and support 

applications.

The  proposed  tool-chain  offers  a  single  formalism  based  on  Petri  nets  and 

dataflows, supporting model structuring based and components. However, the elements 

of the new formalism may be combined in different ways, providing a flexible solution 

that can emulate the constructs of the former languages. For example, a library folder 

containing  normally  On/Off  contacts  and  timers,  may  be  used  to  draw  horizontal 

dataflow graphs, similar to Ladder diagrams. In the same way, persons familiar with 

Grafcet  and  SFC  diagrams  may  employ  Petri  nets  to  build  state-machines,  taking 

advantage of automated editor functions to define complementary places (limit marking 

to a single token) and insert semaphores around critical sections.

Even  the  function  blocks  offered  by  IEC61499  may  be  replaced  by  DS-Pnet 

components. With a similar external interface composed of signals and events, a DS-

Pnet  component  might  theoretically  be  inserted  into  an  IEC61499  system  and  an 

IEC61499  function  block  might  be  used  in  a  DS-Pnet  distributed  application,  just 

requiring the creation the communication protocol compatibility code.

IEC61499  composite  function  blocks  containing  multiple  interconnected  basic 

function blocks may be replicated using components and dataflow arcs connecting the 

component interface signal and events, and even the IEC61499 execution control charts 

(ECC) could be replaced by Petri nets used to control the execution of components, in 

the  same  way  as  ECC  trigger  the  execution  of  the  execution  of  events,  with  the 

advantage of graphically displaying the dependencies between the algorithms and the 
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control chart. Finally the service interface function blocks (SIFB) may be implemented 

using  DS-Pnet  foreign  components,  to  bring  enhanced  functionality  and  permit  the 

insertion of legacy code.

As a conclusion, the DS-Pnet formalism provides equivalent functionality to the 

IEC61499 standard, but does not require learning the syntax rules of multiple languages 

(ECC, SFC, FBD, Ladder, etc.), as it employs just a single language, flexible enough to 

mimic all of the former. In addition, any DS-Pnet component may be directly connected 

to  other  components  placed  on  remote  nodes,  communicating  through  the  Internet, 

without requiring any interface components, and an automatic split tool may be used to 

break centralized models into multiple distributed nodes. In contrast, IEC61499 requires 

the manual insertion of special-purpose publisher/subscriber and client/server function 

blocks at the boundaries of each node. As a result, the new formalism may appeal to 

designers with previous experience on industrial automation formalisms.

Finally, the new tool-chain may be used to design both software and hardware 

solutions and can be used to create general purpose digital systems. In addition, the new 

software  code  generators  may  be  used  to  create  applications  to  run  on  embedded 

devices, but may also be employed to create software applications to run on personal 

computers,  as  the  game validation example.  In  contrast,  the languages  used for  the 

development of automation solutions are not usually employed for other purposes.

8.4.4 Labview and Matlab/Simulink

The Labview and Matlab/Simulink software packages have been heavily used by 

the  academic  community  to  build  prototypes  and  have  made  some  incursions  in 

industrial environments. These are huge frameworks, supporting multiple development 

formalisms,  mathematical  solvers,  and  very  large  libraries  of  existing  modules  that 

provide a very fast  path to create new applications.  For example,  Simulink supports 

graphical  simulation and automatic  code generation for both software and hardware 

target and third party add-ons offer support for external hardware.

However, these are commercial products, requiring expensive license costs both in 

terms of development tools and also in run-time licenses for the resulting solutions. In 

addition, the resulting applications must be attached to personal computers running the 

development environment to allow debug and monitoring, as compared to the proposed 

solution that used Web technology for the same purposes and may be monitored from 

mobile computing devices.

Although Simulink supports Petri nets and dataflows, the new formalism has been 

designed specifically to support the design of embedded and distributed cyber-physical 
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systems, with a precise execution semantics and a feature set designed to permit high 

performance  implementations.  For  example,  the  VHDL  code  generator  directly 

translates all dataflow operations to combinatorial circuits.

The task of reading and writing input and output signals and events connected to 

physical devices is automatically dealt by the automatic code generation tools, without 

requiring the insertion of additional blocks supplied by the hardware vendors. In the 

same  way,  Matlab  and  Simulink  offer  blocks  to  implement  TCP/IP  client/server 

communication that permits the creation of distributed solutions, but the proposed tool-

chain offers dedicated tools to split applications after centralized simulation and allows 

the design of distributed applications almost in a transparent way.

Finally, the new tool framework has a very low footprint, and the current version 

of the tools occupies less  than 5MBytes.  As a result,  the entire  framework may be 

installed directly on the embedded device, with most computing intensive tasks running 

on the users Web browser, except the IOPT State-space generation that may be off-

loaded to servers on the cloud. This way, a technician may use a simple smart-phone or 

tablet computer and connect to the embedded devices using wireless communications or 

a  local  network,  and  immediately  troubleshoot  systems  deployed  in  places  without 

Internet access.

8.5 Future work

During the beta-test and evaluation phase many flaws in the tools, automatic code 

generators and communication layer have been found and solved, and opportunities for 

future enhancements have been identified. As a result, the current version of the tools 

has  been  used  as  a  proof-of-concept  and  has  not  yet  reached  the  quality  level  of 

commercial  software  packages.  New bugs  certainly  will  appear  and  many  usability 

features  should  be  added.  The  following  items  for  future  improvement  have  been 

identified:

- Add support for fixed point arithmetics to all code generators

- Add support for foreign components to the JavaScript code generator

- Support form remote components to the JavaScript code using JSON/AJAX

- Implement the «standard» library components in JavaScript (as foreign 

components) to enable the creation of Web user interfaces

- Design a bridge between Software and Hardware components to automate co-

design solutions

- New version of the communication protocol using HTTP keep-alive sessions

for improved performance and authentication security 
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- Create a query window to inspect large simulator history waveforms

- Open secondary windows to display the evolution of component contents in the 

simulator and remote debugger tools

- User interface builder to interactively create user-interface DS-Pnet models

- Web-based task manager to compile and launch models with capability to

start, stop, pause and set start-on-boot (automatic C code compilation from the 

tools, avoiding OS command line and compiler IDEs)

- Usability improvements: create operations from expressions, buses with multiple 

signals, etc.

The dissemination of the proposed formalism and associated tools depends on the 

availability  of  hardware  platforms  ready  to  be  immediately  used  by  potential 

developers.  The ModBUS gateway foreign  component  and the  isolated  input/output 

board  presented  in  figure  11 represent  two  steps  in  that  direction,  as  both  can  be 

employed to build industrial applications.

A package composed of a very low cost processing board, as the Raspberry PI 

Zero-W, offering digital I/O, USB, Ethernet and wireless communications, able to run 

an embedded Linux operating system, attached to an IO board as the proposed, can 

provide a very competitive solution to implement distributed automation solutions. As 

the entire tool-chain requires less than 5MBytes of disk-space, the entire tool-chain may 

be installed directly on the device.

Finally,  a  new  task-manager  application  must  be  added  to  the  tool-chain,  to 

compile  and run the code generated automatically  without  requiring any third party 

compiler tools and command line usage.  A similar task has already been performed 

using the former IOPT-Tools framework, that employs the GCC compiler to run the 

state-space generator code. In the same way, the tools have already been installed in 

embedded platforms,  running the Apache web server  on embedded Linux operating 

systems.

The combination of a ready-to-use hardware platform with a complete tool-chain 

that can execute models on the hardware device without any manual intervention, may 

appeal to users that have no previous experience in electrical engineering and software 

development, opening the field of distributed cyber-physical design to a broad audience.

Possible future research in related fields, include:

a)  Experiments  with  high-level  Petri  nets  and  dataflows.  Under  certain 

restrictions, high level Petri nets where tokens hold information may be translated into 

DS-Pnet  systems,  where  low-level  nets  are  responsible  for  the  token evolution,  but 
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token data is processed by associated dataflow nodes. After applying a pre-processor 

transformation, to translate the high-level nodes into a DS-Pnet model, the entire tool-

chain could be processed using the remaining IOPT-Flow tools. High level nets offer 

enhanced  capabilities  to  model  factory  production  systems,  where  tokens  hold  the 

identification of real parts moving on the production plants.

b) As future trends evolve in the direction of publicly available CPS components, 

the same component may need to be simultaneously used by many client applications. 

This  way,  component  sharing  architectures  for  concurrent  applications,  should  be 

researched,  as  proposed  at  chapter  5.  For  example,  new  multi-processor/multi-core 

platforms may run multiple copies of the same component. Under such an architecture, 

each copy would take a single request from the queue and process it in parallel with the 

other copies. However, client applications would see only a single shared compoent.

c)  Dynamic  node  reconfiguration.  The  capability  to  dynamically  disconnect 

remote components and connect to different nodes may be used for different purposes. 

For instance, for fault tolerance and load balancing, but also to let users interactively 

choose different nodes.

d) Library enhancement. The suitability of the new tools for each specific field of 

application depends on the existence of library folders with frequently used components 

and  algorithms.  This  is  an  opportunity  for  experts  in  other  fields  to  build  new 

components, probably resorting to «foreign» coding.

e)  Social  experiments  with  novice  users  to  evaluate  the  training  difficulties, 

potential enhancements and future areas of research. These experiments should have 

been done during this work, but were not performed due to lack of resources:  time and 

a pool of students with no previous experience in software development. Instead the 

beta-testers were chosen among people with extensive knowledge about these fields.  
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