
Júri:

Presidente: Doutor Luís Manuel Camarinha de Matos

Arguentes: Doutor Ricardo Jorge Silvério de Magalhães Machado
Doutor Arnaldo Silva Rodrigues Oliveira

Vogais: Doutor Luís Filipe dos Santos Gomes
Doutor Carlos Baptista Cardeira
Doutora Anikó Katalin Horváth da Costa

Fernando Joaquim Ganhão Pereira

Dissertação para obtenção do Grau de Doutor em
Engenharia Eletrotécnica e de Computadores

Licenciado em Engenharia Eletrotécnica e de Computadores

The DS-Pnet modeling formalism
for cyber-physical system development

Outubro, 2017

Orientador: Doutor Luís Filipe dos Santos Gomes
Prof. Associado com Agregação

Faculdade de Ciências e Tecnologia / Universidade Nova de Lisboa

The DS-Pnet modeling formalism for cyber-physical system development
Copyright © Fernando Joaquim Ganhão Pereira, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa.
A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de
exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de
investigação, não comerciais, desde que seja dado crédito ao autor e editor.

i

ii

 ACKNOWLEDGEMENTS

I want to express my gratitude to Prof. Luís Gomes, my supervisor, for his support,
guidance, knowledge, and friendship.

I would like to thank the Thesis Accompanying Committee (CAT), composed of Prof.
Ricardo Machado, Prof. Anikó Costa, and my supervisor, for their recommendations.

I would also like to thank "Universidade Nova de Lisboa" (UNL) and "UNINOVA –
Institute for the Development of New Technologies", Portugal, in particular to Prof.
Adolfo Steiger Garção, Prof. Luis Camarinha-Matos, and Prof. João Goes.

I want to thank my team members, colleagues, and friends, for their contribution and
friendship from the GRES research group:Filipe Moutinho, Rogério Campos Rebelo,
Anikó Costa, João Paulo Barros, José Ribeiro, José Rocha, José Pedro Lucas, Rui Pais.

I would like to thank my work colleagues, and friends, from INOCAM, CEI/ZIPOR and
ISEL for their support, releasing me from many work tasks in order to provide time to
proceed with the PhD work. I would like to thank Rui Guerreiro that contributed with
sugestions and helped proof read the text.

I would like to thank all my friends for their encouragement and friendship during
this time.

Finally, I thank my family for their love!

This work was partially supported by project:
 Petri-Rig - A Petri net based framework for embedded systems engineeRInG (Petri-Rig
- Ambiente de desenvolvimento de sistemas embutidos baseado em redes de Petri);
Maio 2013 – Outubro 2015; Consórcio: UNINOVA, Inst. Politécnico de Beja; FCT
sponsored; Funding: 109.663€; Ref.: PTDC/EEI-AUT/2641/2012
(http://gres.uninova.pt/petri-rig/);

iii

http://gres.uninova.pt/petri-rig/

iv

Resumo

Este trabalho apresenta o formalismo de modelação DS-Pnet (Dataflow, Sinais e redes
de Petri), criado para o desenvolvimento de sistemas ciber-físicos, combinando as
características das redes de Petri e dataflows para possibilitar a modelação de sistemas
mistos, contendo partes reativas e operações de processamento de dados. Herdando as
potencialidades da classe de redes de Petri progenitora IOPT, incluindo a interface
externa composta por sinais e eventos de entrada e saída, a adição de operações de fluxo
de dados (dataflow) contribuiu para melhorar a capacidade de modelação para
especificar a transformação matemática de dados e expressar graficamente as
dependências entre sinais. Sistemas centrados em dados, que não requerem
controladores reativos podem ser modelados usando apenas dataflows.

A composição de modelos baseada em componentes permite reutilizar componentes
previamente desenvolvidos, criar bibliotecas de componentes e decompor
hierarquicamente modelos em diversos sub-sistemas.
Foi definida uma semântica de execução precisa, tendo em conta a relação entre nós de
dataflow e rede de Petri, que oferece uma abstração para definir a interface entre
controladores reativos e sinais de entrada e saída, incluindo sensores e atuadores
analógicos.

O novo formalismo é suportado por um conjunto de ferramentas com interface Web,
IOPT-Flow, que oferece ferramentas para criar e editar modelos, simular a execução de
modelos diretamente no navegador Web, para além de ferramentas de validação de
modelos e geração automática de código (C, VHDL e JavaScript) que produzem
hardware e software para correr em dispositivos computacionais embutidos.
Foi criado um novo protocolo de comunicação para automatizar a implementação de
sistemas ciber-físicos distribuídos compostos por redes de componentes remotos que
comunicam usando a Internet. A ferramenta de edição pode ser ligada diretamente a
dispositivos embutidos remotos que executam modelos DS-Pnet, permitindo importar
componentes remotos para novos modelos, contribuindo para simplificar a criação de
aplicações distribuídas onde a comunicação entre componentes localizados em nós
diferentes é especificada pelo desenho de arcos.

São apresentadas várias aplicações que foram elaboradas para validar o formalismo
proposto e as ferramentas associadas, incluindo soluções implementadas em hardware,
aplicações industriais e aplicações de software distribuídas.

Palavras-chave: Redes de Petri, fluxo de dados, sistemas ciber-físicos, sistemas
embutidos, automação de design

v

vi

Abstract

This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets),
designed for the development of cyber-physical systems, combining the characteristics
of Petri nets and dataflows to support the modeling of mixed systems containing both
reactive parts and data processing operations. Inheriting the features of the parent IOPT
Petri net class, including an external interface composed of input and output signals and
events, the addition of dataflow operations brings enhanced modeling capabilities to
specify mathematical data transformations and graphically express the dependencies
between signals. Data-centric systems, that do not require reactive controllers, are
designed using pure dataflow models.

Component based model composition enables reusing existing components, create
libraries of previously tested components and hierarchically decompose complex
systems into smaller sub-systems.
A precise execution semantics was defined, considering the relationship between
dataflow and Petri net nodes, providing an abstraction to define the interface between
reactive controllers and input and output signals, including analog sensors and actuators.

The new formalism is supported by the IOPT-Flow Web based tool framework, offering
tools to design and edit models, simulate model execution on the Web browser, plus
model-checking and software/hardware automatic code generation tools to implement
controllers running on embedded devices (C,VHDL and JavaScript).
A new communication protocol was created to permit the automatic implementation of
distributed cyber-physical systems composed of networks of remote components
communicating over the Internet. The editor tool connects directly to remote embedded
devices running DS-Pnet models and may import remote components into new models,
contributing to simplify the creation of distributed cyber-physical applications, where
the communication between distributed components is specified just by drawing arcs.

Several application examples were designed to validate the proposed formalism and the
associated framework, ranging from hardware solutions, industrial applications to
distributed software applications.

Keywords: Petri nets, dataflows, cyber-physical systems, embedded systems, design
automation

vii

viii

Table of Contents
1 Introduction..1

1.1 Background and motivation..1
1.2 Preliminary contributions..5
1.3 Research questions..7
1.4 Research method...9
1.5 Overview of the IOPT-Flow framework...9
1.6 Contributions and publications...18
1.7 Document structure...20

2 Literature Review...21
2.1 Petri nets..21
2.2 Model checking...22
2.3 Execution semantics and non-autonomous properties..23
2.4 Low level and high level net classes...25
2.5 High level net execution strategies...26
2.6 Model composition and hierarchical structuring..27
2.7 Model composition based in signal and event communication............................28
2.8 The IEC61499 standard..30
2.9 Automatic code generation...31
2.10 UML statecharts and activity diagrams..32
2.11 Model file formats...33
2.12 Reactive systems and synchronous dataflows..34
2.13 Matlab/Simulink...35
2.14 Cyber-physical systems..36

3 The DS-PNET Modeling Formalism..39
3.1 Language core...39
3.2 Dataflow operations..43
3.3 Components..46
3.4 Example DS-Pnet model...49
3.5 Model files..52
3.6 Execution Semantics...54

3.6.1 Formal definition...54
3.6.2 Execution semantic rules...57

4 Automatic Code Generation...63
4.1 JavaScript generated code...67
4.2 VHDL Generated code..68
4.3 C Generated code..70
4.4 Interface board for industrial applications..74
4.5 External/Foreign Components..76

5 Distributed DS-Pnet Models...79
5.1 Shared distributed components...87
5.2 JSON/HTTP Communication Protocol...91

5.2.1 User authentication and privilege levels...95
5.2.2 Request types..96
5.2.3 Server..100
5.2.4 Client...101

6 The IOPT-Flow Tool Framework...105
6.1 Editor...107
6.2 The Simulator tool...114

ix

6.3 Remote Debugger...117
6.4 Node-Split...119
6.5 Automatic code generation...120
6.6 Import and export IOPT models...121
6.7 IOPT Model Checking..122
6.8 Component Library...125
6.9 Standard foreign component library...128

6.9.1 Arrays..129
6.9.2 Data file input and output..130
6.9.3 System time information...131
6.9.4 Random number generator..132
6.9.5 Graphical user interface..133
6.9.6 Audio samples...135
6.9.7 Industrial ModBUS Gateway..136

6.10 Debug And Model-Checking..138
6.10.1 Application example..141

7 Validation Applications...147
7.1 Bushless servo motor controller..148

7.1.1 Model development...149
7.1.2 Prototype implementation:..155
7.1.3 Results...155

7.2 Distributed multi-user game with graphical interface..158
7.2.1 Results...162

7.3 Graphical console for an industrial variable speed drive....................................165
7.3.1 Results...169

7.4 Distributed cyber-physical system simple application..171
7.4.1 Results...173

8 Conclusions and future work..175
8.1 Research question 1..175
8.2 Research question 2..178
8.3 Research question 3..180
8.4 Results and comparison with other technologies..181

8.4.1 Traditional programming languages (C/C++, Java, Python, VHDL, etc.):.182
8.4.2 IOPT-Tools..184
8.4.3 Industrial automation development languages..185
8.4.4 Labview and Matlab/Simulink..186

8.5 Future work...187
9 References..191

x

Index of figures
 Fig. 1: Ladder diagram "emulation" model..10
 Fig. 2: Petri net example. Places drawn as yellow circles, transitions as blue bars and
arcs as arrows...22
 Fig. 3: Incidence matrix..23
 Fig. 4: High level Petri net example...25
 Fig. 5: Component..47
 Fig. 6: Example DS-Pnet model...49
 Fig. 7: Anchor equivalence: the operation on the left is equivalent to the dataflow node
on the right...55
 Fig. 8: Micro-step and nano-step sequence numbers...60
 Fig. 9: Automatic code generation information flow (steps 1-5)...................................64
 Fig. 10: A UART model (top) with the receiver(left) and sender (right) component
implementation models..70
 Fig. 11: Isolated digital I/O board w/ SPI interface (2 boards).......................................75
 Fig. 12: (Not)Synchronous Channel on a distribted model..80
 Fig. 13: One publisher and multiple subscribers..82
 Fig. 14: Client/server event driven comunication..83
 Fig. 15: Client-server communication..84
 Fig. 16: Example: Event based communication with remote component......................85
 Fig. 17: Same example with the handshake controller Petri net encapsulated in a local
component (on the right)...86
 Fig. 18: Proposed infrastructure for concurrent client access..89
 Fig. 19: Possible CPS network topology example...91
 Fig. 20: The IOPT-Flow Editor...106
 Fig. 21: Editor interaction/feedback loop...108
 Fig. 22: The Expression Editor...110
 Fig. 23: The operation input/output editor..111
 Fig. 24: Clipboard View..112
 Fig. 25: View component implementation model...112
 Fig. 26: Import DS-Pnet components from remote embedded nodes...........................113
 Fig. 27: The IOPT-Flow simulator (Chrome Web browser)...114
 Fig. 28: Waveform view window (simulation history)...115
 Fig. 29 The IOPT-Flow remote debugger application (Chrome browser)....................117
 Fig. 30: Code generation options..120
 Fig. 31: IOPT Petri net view...122
 Fig. 32: State space generation progress window...123
 Fig. 33: The query editor (IOPT model checking)...123
 Fig. 34: A state-space graph of an IOPT model extracted from a DS-Pnet..................124
 Fig. 35: IOPT-Flow Editor tool - Library dialog (user interface widgets folder).........125
 Fig. 36: Ladder-logic library components specified as dataflow operations................126
 Fig. 37: The t_ON timer and Up/Down counter native components. Component
interfaces (left) and implementation models (right)..128
 Fig. 38: Foreign array components: vector and matrix..129
 Fig. 39: The file input / output foreign components...130
 Fig. 40: Using time-stamps to synchronize the position of 3 motors...........................132
 Fig. 41: Reference position synchronization on the remte side....................................132

xi

 Fig. 42: Graphical user interface components..134
 Fig. 43: User interface test application...135
 Fig. 44: ModBUS component test model...136
 Fig. 45: ModBUS + UI motor control application running on a Raspberry-PI 2 card,
with an LCD+touchscreen hat and an USB-RS485 serial converter.............................137
 Fig. 46: Concrete mixer plant...141
 Fig. 47: Cement mixer controller model..142
 Fig. 48: Cement mixer main model: controller + plant..144
 Fig. 49: Cement mixer plant model..144
 Fig. 50: Closed-loop servo motor controller top-model...148
 Fig. 51: Quadrature encoder model..149
 Fig. 52: Digital PID Controller model..150
 Fig. 53: The diff_in(left), diff_out(center) and nfilter(right) models...........................151
 Fig. 54: The PWM generator model (left) and the cntr_up_dn component model (right)
...152
 Fig. 55: The BLDC Commutation table model..153
 Fig. 56: The Speed/Position selector model...154
 Fig. 57: Prototype diagram on the left and photo on right: BLDC Motor, FPGA and
Inverter boards...154
 Fig. 58: Distributed dual-user «pong» game (graphical user interface).......................158
 Fig. 59: The entire single-user game model fits in a single editor page.......................159
 Fig. 60: The main game model: game engine + player1 interface...............................160
 Fig. 61: The player2 model...160
 Fig. 62: The game engine component model..161
 Fig. 63: Game user interface...162
 Fig. 64: Variable speed drive console application (running on a laptop PC)...............165
 Fig. 65: Console main model..166
 Fig. 66: ModBUS Scan-cycle model..167
 Fig. 67: The console user interface component..169
 Fig. 68: Example of a distributed DS-Pnet application model.....................................171
 Fig. 69: Implementation models of the IOX8 (left) and Kit (right) components.........172
 Fig. 70: Sub-models after node-split: Main maestro model(top), NodeA (bot. Left) and
NodeB (bot. right)..173

xii

Index of Tables
Table 1: Petri net elements...40
Table 2: Dataflow nodes..41
Table 3: Transition firing inhibition constructs...42
Table 4: Expression operators..44
Table 5: C code generator output files...72
Table 6: Privilege levels...95
Table 7: Communication protocol request/procedure list..98
Table 8: Editor toolbox functions..109
Table 9: Component classes used in the application...149

xiii

xiv

1 Introduction

1.1 Background and motivation

The emergence of low cost computing platforms lead to the vast proliferation of

embedded systems with increasing levels of sophistication, automating many tasks that

were previously performed by human operators, with applications in the domains of

industrial systems, home appliances, medical devices, automatic vending machines,

security and surveillance applications, in-vehicle systems and entertainment

applications, among others. The fast dissemination of the Internet and the wide

availability of inexpensive networking technology brought Internet connectivity to the

recent generations of embedded devices, contributing to the birth of the Internet of

Things.

Applications running on mobile computing devices may be employed for the

remote monitoring and operation of solutions employing distributed networks of remote

devices, often taking advantage of public data provided by existing infrastructure, as

smart grids and city traffic control systems. These capabilities enable the development

of even more sophisticated systems, including access to automatic payment systems and

connection to social media platforms.

Over the past decades, model based formalisms have been successfully used to the

development of embedded system controllers, helping to cope with the increasing levels

of complexity involved. With this approach, instead of directly writing software code or

hardware descriptions, developers start with the design of high level models that specify

the desired system behavior and data structures employed, frequently based on

graphical formalisms as Petri nets [29][30][31][32][33], UML activity diagrams and

statecharts [34][35][36].

1

1

With thousands of academic publications, Petri nets have been the focus of many

research groups leading to the advent of a growing number of Petri net classes adapted

to different fields. However, most of these classes only support autonomous systems

and are only used for simulation and model-checking purposes [37][38]. In contrast,

non-autonomous classes, as IOPT nets [29] and NCES [39], use inputs and outputs to

communicate with the external world, going beyond the realm of simulation to allow

the implementation of real controllers running on physical hardware [8][14].

Non autonomous Petri nets offer a feature set very well adapted to the design of

embedded system controllers. System state can be mapped to places and the behavioral

rules that define system evolution are specified using transitions. Petri nets inherently

handle the concepts of parallelism, concurrency and synchronization, frequently used in

embedded system controller design. The design of systems containing multiple sub-

systems that compete for shared resources usually starts with the definition of

independent state machines for each sub-system, without concurrency concerns. Next,

the critical sections that require exclusive access to the shared resources are

synchronized with additional places that work as semaphores. This method avoids

possible state explosion problems that would occur trying to design entire systems using

a single state machine.

To perform their job, controllers must communicate with the controlled systems

and the external world, involving the transmission of different types of information,

including sensor gauged data, drive mechanical actuators and communicate with users.

As a result, the external interface of the non autonomous models must cover a wide

range of data types to support both digital and analog signals and events. The controller

models react to these events and changes in input signals, producing the consequent

output responses. However, the values read from the input sensors usually require some

sort of signal processing and conditioning before being ready for decision making. For

example, input signals may require units conversion, noise filtering and threshold cross

checking. In the same way, output values are generally calculated with basis on the

system state and input values.

Although Petri nets excel in the specification of reactive systems, most Petri net

classes have struggled to provide a good solution for signal processing and data

manipulation. The most frequent solution relies on text inscriptions associated with

places and transitions where the user may insert mathematical expressions [29] or code

snippets written using the syntax of traditional programming languages [40][41][42].

Unfortunately, this solution cripples the core advantages of a graphical formalism: the

relationships and dependencies between different signals are hidden inside textual code

2

expressions, frequently hidden from the main view to avoid screen clutter, contributing

to reduce model readability.

High level Petri nets offer an interesting data processing solution, storing data

inside tokens, that may be manipulated upon transition firing. Unfortunately this

solution has several drawbacks. First, when a model employs interdependent

calculations it imposes propagation delays, as new calculated values will only be

available on the next execution step. Second, as a single place may store multiple

tokens, it conducts to iterative execution semantic algorithms that increase the

complexity of hardware implementation and do not guarantee a fixed step-execution

time.

From another side, the functionality of the embedded systems has been constantly

improving, leading to more complex controller models, raising the need for structuring

mechanisms that enable the sub-division of complex controllers into several

components. Using this strategy, a controller can be composed from an hierarchy of

sub-systems and the behavior of each sub-system can be specified using simpler

models. Component models may be individually tested and model-checked, with

benefits in terms of development time. Finally, the components can be instantiated

multiple times in the same project, or reused on future projects, taking advantage of the

design and model-checking effort previously carried, allowing the creation of libraries

containing frequently used components.

Almost all modeling formalisms, programming languages and hardware

description languages include structuring mechanisms to enable the top-down

decomposition of complex systems into simpler components [36][43][44], or the

bottom-up composition of new applications from existing components. In all cases, the

mechanisms used to pass information between components and encapsulate local data

inside each component play a crucial role.

Most of the traditional Petri net classes and associated tool frameworks [40][41]

[45] offer structuring mechanisms, employing concepts as node fusion and macro

nodes. However these mechanisms present several drawbacks relatively to the input and

output signals used in electronic devices, where information flows in a unidirectional

way. In these circumstances, the behavior of a system depends only on the inputs and

internal state, and is not affected by external systems connected to the outputs. In

contrast, the traditional Petri net structuring mechanisms permit adding external input

arcs to the output nodes of module, inducing effects in the internal module behavior that

conduct to results not foreseen by the original model designer. For example, an external

arc may prevent a transition from firing, completely blocking a module execution. This

3

problem has already been presented by other authors [39][46] discussing the NCES

Petri net class.

Modern embedded systems, built on top of networks combining computational

sub-systems and physical devices, enter in the field of Cyber-Physical Systems (CPS)

[47][48], dealing not only with classic control problems and the idiosyncrasies of

communication networks and computational systems, but specifically with the problems

that arise at the intersection between physical and computational sub-systems.

Applications of CPS frequently listed in the literature, include distributed industrial

systems, smart electrical grids, in-vehicle systems and traffic control systems, bio-

medical and health-care systems, smart sensor networks and industrial robot systems,

using the same network infrastructure that is usually employed in the Internet of Things

(IoT) [49].

Involving both mechanical sub-systems and computational devices, Cyber-

Physical Systems are viewed as an interdisciplinary field, requiring the collaborative

work from different engineering disciplines, including mechanics, computer science,

computer engineering, systems engineering and electronics. These disciplines approach

problems from different perspectives, use different terminologies and employ different

tools, raising the need for new development formalisms that may appeal to designers

coming from different backgrounds. Again, model based development formalisms may

be used as a common ground: high level graphical models may be used to create

information systems and specify system behavior in a way that is easily understood by

all people involved, hiding the low level details required by the traditional programming

languages used in embedded-system design.

Around the time this work was started, the IEEE Control systems society had

recently identified a list of areas in need for CPS research [50], including the need for

new abstractions and architectures [51][52][53], distributed computation models and

verification and validation tools, to support the rapid development of CPS applications.

The work presented in this document is a contribution in that direction.

4

1.2 Preliminary contributions

The problems addressed in this work were identified along several years of

research and development in related fields. This work resulted in several contributions

to the IOPT tools framework, available on-line at «http://gres.uninova.pt/IOPT-Tools/»,

whose results were disseminated over 24 publications, including conference and journal

papers, two book chapters and a user manual.

Contributions to a first-generation of IOPT support tools, include an automatic

generator of debug screens for the Animator tool [3] and a DDR memory interface to

support Animator graphical user interfaces on FPGA platforms [2][4].

Contributions to the IOPT Petri net class have been added to the current IOPT

meta-model [5][17] descriptions, include new syntax rules for mathematical

expressions, the addition of output actions associated with transition firing and

definition of arrays:

a) Changes in mathematical expressions include the support for new operators and

the definition of a new hierarchical syntax, to support multiple automatic code

generators in a language independent way.

b) Transition actions allow the definition of output signal values using arithmetic

expressions. transition output signals memorize the last affected value and are a part of

the system state vector, along with place marking and signals associated with output

events. In order to simplify state-space computation, the expressions used to calculate

transition output signals can only contain literal values and other system-state variables.

c) Arrays are used for two purposes: First, constant arrays enable the definition of

general purpose functions with one or two integer arguments, storing a table of pre-

calculated function values, that can be used by both the software code generators and

the hardware description code generators. Second, variable arrays, whose contents can

change during model execution, enable the application of the IOPT formalism to

problems that deal with large amounts of data. In order to support hardware

implementations, arrays indexes are always performed using a single range variable. As

a consequence, simultaneous concurrent access to different array positions must be

explicitly dealt by the model designer.

Contribution to several prototypes of the cloud based IOPT tools framework [13]

[16][20][21][23], including contributions to the IOPT Tools editor [24], the C code

generator [8], the VHDL code generator [14], the state-space [6][7] and model-checking

5

http://gres.uninova.pt/IOPT-Tools/

subsystem [9][15], a simulator [19] and a debugger based on a remote debug and

monitoring communication protocol [18][22].

Four application papers, describing FPGA based prototypes in the field of

industrial electronics, consisting of a controller for a high-voltage Marx pulse generator

[1][10][11] and a brush-less DC motor controller [12], played an important role in the

identification of the research questions and underlying problems described in this text:

a) The controllers implemented in both prototypes presented a relatively high

level of complexity and a modular approach was employed in each case. The final

systems were built using the composition of smaller components, communicating with

each other and the external world using input and output signals. In both cases, the

component instantiation and signal connections was performed by manually writing

VHDL code.

b) In both prototypes, several modules were first designed in paper using a

dataflow approach and were manually translated to the chosen development language:

direct VHDL in the first case and IOPT models in the second. These dataflows were

even employed in the resulting papers as a simplified graphical description of some of

the components (PWM generator, etc.) and as a diagram to depict the entire systems.

The work presented in this document is focused around the DS-Pnet (Dataflows,

Signals and Petri nets) modeling formalism and the associated IOPT-Flow tool

framework [26][27]. DS-Pnets combine the characteristics of the IOPT Petri net class

with dataflows and model composition based on components. Dataflow nodes are used

to specify mathematical operations and the dependencies between signals in a graphical

way, replacing the expressions that were previously inserted into place and transition

annotations.

As both the DS-Pnet modeling formalism and the IOPT-Flow tool chain inherit

the results of the preliminary contributions, these contributions cannot be dissociated

from the final results presented in this document. Using a simplistic approach, the DS-

Pnet formalism can be viewed as the union of IOPTnets, Dataflows and model

composition based on components. This way, DS-Pnets incorporate all preliminary

contributions to the IOPTnet class and the design of the new tool-chain benefited from

the previous experience and knowledge acquired during the development of the parent

IOPT-Tools framework. Although most code was rewritten, the new tools were designed

using similar algorithms and design patterns, including the editor, simulator and remote

debugger.

6

Finally, it is important to recall that the contributions described in this section

were based on previous work that started on the Uninova/CTS GRES research group,

with the definition of the IOPT class [29][54] and the creation of the first-generation

support tools, including a version of the Snoopy Petri net editor [55] with support for

the IOPT class, an automatic C code generation tool [56][57], a VHDL code generation

tool [58], an Animator tool [59] for interactive user interface design, with support for

VHDL hardware implementations [60] and a Split tool [61] to support distributed

execution [62].

1.3 Research questions

Based on the problems identified during the preliminary work phase, the

following research questions were formulated:

Research question 1

Which modeling formalisms can be used in association with Petri nets to support

the design of cyber-physical systems, including both the control logic and data

operations ?

Hypothesis

a) Cyber-physical systems and embedded systems can be designed through the

composition of multiple components, or function blocks, connected through input and

output signals and events. The individual function blocks can be designed using IOPT

nets, a low-level Petri net class designed for embedded system controller development.

b) The addition of a complementary modeling formalism to define data structures

and mathematical operations, used in synergy with the Petri nets, enables the definition

of complete embedded systems, including the control logic (Petri nets) and data. An

higher level synchronous dataflow, describing a network of mathematical operations

applied to input signals, output signals, internal signals and system state variables, can

be used to define the data part of the embedded systems.

Research question 2

Which syntax rules and execution semantics must obey the complete systems,

composed of multiple function blocks containing control logic (Petri nets) and data

parts (dataflow) to ensure deterministic execution on a) monolithic implementations and

b) distributed environments ?

7

Hypothesis

a) By composing the entire systems into a flat model containing all function

blocks, it is possible to identify global loops inside the synchronous dataflow Petri net

nodes, that would prevent deterministic execution.

b) A set of syntactic and semantic rules to regulate the bidirectional interaction

between the Petri net nodes and dataflow components must be defined.

c) The loops identified in a) can be broken by inserting registered internal signals.

These registered internal signals may be used to define part of the dataflow system state

vector.

d) Syntactic and Semantic rules must be applied to the external interface of

function blocks to enable execution correctness in distributed environments.

e) Analyze the advantages of possible automatic code generation strategies based

on individual components or on flat models of the entire system, according to the target

architecture (software or hardware).

Research question 3

How to model check the systems described in R.Q. 2 ?

Hypothesis

a) The construction of the state-space graph of the individual function blocks and

the complete systems, enables model checking and property verification. The definition

of the execution semantics and the identification of all system state variables is enough

to allow state-space computation.

b) The relationships between the state-space of the entire system and state-space

of individual function blocks must be studied, in order to find expedite ways to perform

model checking and verify certain system properties.

8

1.4 Research method

In order to answer the previous research questions and verify the hypothesis, the
following steps were executed:

1 – During a preliminary phase, contributing to the IOPT tools framework,
knowledge about the state of the art was acquired, permitting the identification of gaps
and unsolved problems

2 – Formulate research questions based on the identified problems

3 – Elaborate a set of hypothesis to answer the research questions

4 – According to the formulated hypothesis, create a new development formalism
and study the respective execution semantic rules

5 – Create a set of support tools to enable the application the new formalism to the
design of cyber-physical systems

6 - Define criteria to compare validation application results with other
development technologies

6 – Using the tools created in 5, design a set of validation applications

8 – Analyze results and validate the hypothesis

1.5 Overview of the IOPT-Flow framework

This section presents an overview of the DS-Pnet modeling formalism and the

associated IOPT-Flow tool framework, addressesing the goals that lead to the creation

of the new tools and potential areas of application.

The DS-Pnet (Dataflow, Signals and Petri nets) modeling formalism [26] was

designed to support the creation of distributed Cyber-Physical systems. Based on a

combination of Petri nets and dataflows, it supports the design of mixed systems

containing both data-processing and reactive parts. Derived from the parent IOPT net

class [29], it enables the use of low level Petri nets to design the state machines

employed by CPS and embedded controllers, taking advantage of the well known

properties of Petri nets, with good support for concurrency and synchronization and

availability of diverse model-checking tools. DS-Pnets inherit the concept of input and

output signals and events from IOPT nets and the respective data types, required to

create non-autonomous models that communicate with the physical world. All concepts

9

of the parent IOPT Petri net class may be mapped into DS-Pnets and an automatic

translation tool has been created.

Composed of signals and events, the external interface of a DS-Pnet model may

be used to read sensors, manipulate actuators or communicate with other DS-Pnet

models, under the form of components, that may be placed locally or distributed on

remote locations, enabling the creation of CPS applications over networks of distributed

components.

In order to appeal to a wider base of users coming from different engineering

backgrounds, the text inscriptions that traditionally have been used by other Petri net

dialects to specify processing instructions, were replaced by graphical dataflows.

Dataflow languages have been used in varied areas of engineering, and popular

prototyping software packages as Matlab and Simulink [63] offer dataflow

functionality. Regarding industrial automation, the most popular graphical languages

used on programmable logic controllers, Ladder diagram [64] and Grafcet [65], can be

emulated respectively using dataflows and Petri nets. Developers coming from an

industrial automation background may use a library «Ladder» folder containing

dataflow operations implementing traditional Ladder constructs. Figure 1 presents a DS-

Pnet model using dataflow operations to emulate Ladder contacts and a «T-On» timer

component frequently used in Ladder diagrams.

Dataflow graphs offer several advantages, presenting a graphical representation of

the dependencies between input, output and intermediate signals that contribute to

improve model readability. Like functional programming languages, it restricts the

number of signal value assignments to a single expression, contributing to reduce

modeling mistakes. By employing a synchronous execution paradigm, assuming that all

10

 Fig. 1: Ladder diagram "emulation" model

mathematical operations are executed instantaneously, it allows signal propagation

though multiple internal computational nodes in a single execution step.

The dataflow part of DS-Pnet model is composed of arcs and operations. Data

flow nodes, called operations, are used to perform data processing by applying

mathematical transformations to input data and producing one or more results. Arcs are

used to connect signals between different nodes, including input and output signals and

events, Petri net place and transition nodes, dataflow operations and components.

In order to simplify the creation of complex models, DS-Pnets support model

composition based on components. Any DS-Pnet model may be used as a component to

create higher level applications. In the same way as DS-Pnet models, the external

interface of components is composed of input and output signals and events.

Components may be used as building blocks to compose high level applications, chosen

from libraries of existing components, or used for the top-down decomposition of

complex systems into simpler sub-systems. As each component may contain internal

data, under the form of internal signals and Petri net state variables, and processing

instructions implemented using transitions and dataflow operations, components can be

viewed as objects where method execution is triggered by input events, or as actors

communicating with each other using input and output signals [66].

A DS-Pnet component may be native or foreign. Native components are designed

using DS-Pnet models. Foreign components are used to encapsulate external sub-

systems designed using other modeling formalisms and development languages.

Foreign components are created using empty DS-P models, containing just the input and

output signals and events that define the component interface, and selecting the

«foreing» target implementation property. When the automatic code generation tools

find this property, they will create a set of data structures and stub functions where the

developer may insert code to initialize and execute the components.

On hardware projects, foreign components permit using existing integrated

circuits and IP modules defined using hardware description languages into DS-Pnet

applications. On software projects, foreign components permit using external code

software inside DS-Pnet applications, including existing algorithms developed using

standard programming languages, access any resources provided by computer operating

systems, and communicate with legacy embedded platforms.

Components may run locally or remotely. Remote components provide an

abstraction to permit the rapid development of distributed Cyber-physical systems. The

controllers built using the C code generated automatically contain a minimalist HTTP

server implementing a JSON/HTTP protocol for remote debug, monitoring and

11

operation. This way, the model edition tools can connect directly to the controllers

running on the embedded computing devices to request the list of available components

and download the respective DS-Pnet models. Remote components may be inserted into

the new application models and used in the same way as local components. The

connection between local and remote components is performed using dataflow arcs.

This way, the operation of reading remote sensors or driving remote actuators is as

simple as drawing arcs (after importing components from remote servers to the new

application model), and all communication details are dealt by the automatic C code

generation tool.

Remote components can be used to create an abstraction for physical devices,

including sensors, actuators, motors and entire mechanical systems, greatly simplifying

the creation of CPS applications. Remote foreign components may be also used to

interface with legacy industrial devices, including programmable logic controllers,

variable speed drives and numeric controlled machinery. To assist the integration of DS-

Pnet applications in industrial environments, a foreign component implementing a

gateway for the ModBUS [67] industrial field-bus was developed, enabling the

communication and control of almost all industrial automation devices present on the

market.

In order to ensure deterministic operation, the execution semantics of DS-Pnet

models was analyzed, studying the bi-directional relationship between dataflow Petri

net nodes. Dataflow operations may read the system state under the form of place

marking and events triggered by transition firing. The evolution of the Petri net part of

the models is conditioned by transition guards, transition input events and synchronous

channels between transitions, defined using dataflow arcs that end at the respective

transitions. A set of executions rules was defined, used as a basis for the automatic code

generation tools.

The execution semantics of distributed execution of Cyber-Physical Systems

composed be networks of remote components presents a different level of problems. In

addition to the usual concurrency problems presented by parallel execution architectures

and differences in performance between nodes running on heterogeneous hardware

platforms, the choice of the Internet as a communication medium brings new concerns,

including variable network latency delays, unpredictable network bandwidth and

possible data loss.

These problems were solved using an approach borrowed from the IEC61499

international standard for distributed control systems [68][69]. In both cases, DS-Pnet

components and IEC61499 function-blocks, the communication between distributed

12

modules is performed using signals and events. However, the IEC61499 function blocks

usually communicate over local networks using industry standard field-buses and offer

two types of function blocks for Internet communication: publishers/subscribers and

master/slave [70]. In contrast, the proposed DS-Pnet communication protocol is based

on HTTP and does not enforce any usage patterns, employing the same approach for

both local nets and long distance Internet connections.

Four forms of remote component users were typified, the observer, the client, the

master and the administrator, with details presented in the corresponding chapter.

Observers just subscribe changes from remote component output signals, for example to

monitor sensors or the internal state of remote sub-systems. Multiple observers may

subscribe the same values without conflicts. In contrast, all other usage types may suffer

from conflicts and synchronization problems.

Events play a critical role to manage synchronization and concurrency problems.

In a typical use case, when an application wants to invoke a certain methods on a

remote component, it first passes parameter data through input signals and then sends an

event that will trigger an action on the remote side. The remote component might

answer immediately with another event to acknowledge the request reception, or might

just place an answer on output signals and trigger a completion event.

The responsibility to avoid synchronization errors and ensure the correct behavior

lies on both developers, the component designer and application designer. As long as the

parameter signals hold the correct values when the events are triggered, the

communication middle-ware ensures that these values do not arrive out of order. In case

of network problems and communication fails, both the component and applications are

informed by setting predefined values on the signals received from the network.

The suitability of the proposed solution depends on each specific application and

the type of network employed: global broadband Internet or local intranets with

guaranteed network bandwidth. Real-time applications must be executed on local

dedicated networks but non time-critical applications may run over the Internet.

In the near future, with the proliferation of the Internet of Things and Cyber-

Physical Systems, a wide range of publicly accessible information services will become

available. For example, municipalities might publish in quasi-real-time weather

information, traffic control information, including data about road semaphores, airports

arrival times, civil protection and emergency service information, etc. From another

side, trends in industrial information systems, with projects in Industry 4.0 initiative

[71], involve the interconnection between manufacturing automation sub-systems to

13

accounting/management systems, and even the vertical interconnection between the

information systems of different partners in the same supply chain.

In all these cases, the entities publishing the data have lost control about the client

applications that are using the information for different purposes. As a consequence, the

same CPS component may receive simultaneous requests from multiple applications,

often with conflicting consequences. In fact, the same component will be shared by

multiple CPS applications, that may not be aware of each other. For example, the timing

schedule information about a single semaphore might be monitored by multiple CPS

applications running on in-vehicle systems or smart-phones from nearby car drivers. In

the same way, each driver’s CPS application might want to register the local position

and desired travel destination on a central traffic control system in order to obtain the

best routes and help optimize traffic management. In another example, an hospital might

offer a public service to schedule doctor appointments and applications running on the

patients smart-phones might try to negotiate available slots according to the patient

personal schedule restrictions.

To solve this problem, an extension to the current communication protocol is

proposed, allowing multiple CPS applications to share the same remote component in a

transparent way. With this solution, each application views the same component as if it

was being used exclusively, but the remote server assigns the component to a single

application at a time. This is achieved by assigning special properties to the events of

the component interface used to initiate and terminate requests. The server will put

requests on a queue and store parameter input data from each application. Client users

might be assigned different priorities, in order to provide different levels of quality of

service.

After the definition of the DS-Pnet formalism and the corresponding execution

semantics, a tool framework was created to assist the development of distributed Cyber-

physical systems, called IOPT-Flow [27]. The scope of the new tools and formalisms is

not restricted to CPS systems and can be employed to develop traditional embedded

controllers, general purpose digital circuits, and even to software applications. The

IOPT-Flow Web based tool-chain supports all development phases, including model

design and edition, simulation, automatic code generation (C, Javascipt and VHDL),

and remote debug and monitoring.

The front end of tool framework, available at http://gres.uninova.pt/iopt-flow, is

the model editor, with menu options to invoke all the other tools. In addition to the usual

graphical edition functions, creation of Petri net and dataflow nodes, arc drawing,

property edition, copy&paste, undo&redo, it offers functions to automate several tasks

14

that otherwise would require user attention and effort, as the creation of semaphores to

lock critical zones and complementary places. For the rapid development of new

applications, an hierarchical library of pre-designed components and frequently used

dataflow operations is offered.

Users may store models in a public directory, download the model files to the

personal computer, or create personal user accounts to store data on private folders.

Multiple users working cooperatively can copy selected parts of models to a public

clipboard that is shared among users. Other users may import the contents of shared

clipboard and paste it into other models.

The simulator tool executes the model being edited directly on the Web browser. It

greatly contributes to reduce development time, as a simulation session can start in just

a few seconds after a model has been changed. In contrast, testing models on prototype

hardware often requires long delays recompiling software and hardware synthesis tools

typically take many minutes to generate bit-stream files. In addition, the physical

devices employed in Cyber-Physical systems are prone to suffer damages due to

controller mistakes, risking to cripple expensive hardware. Thus, the controller models

must be extensively tested and well debugged before being executed on the real devices.

The core of the simulator employs the output of the Javascript automatic code

generator, that produces new Javascript code for each model, according to the execution

semantic rules. Models may be run step-by-step, or continuously, and the user may

associate breakpoints to transitions or dataflow operations.

Simulation history is continuously stored and presented as graphical waveforms.

For faster debug sessions, users may navigate through the saved history and replay it, or

export waveform data in a spreadsheet format. To automate regression tests, users may

store waveform data on the server and replay simulations after changing models, with

automatic detection of changes in the resulting waveforms.

The automatic code generation sub-system employs a multiple step process. The

first step, implemented in the editor, creates a flat model containing the nodes of all

component sub-models, analyzes the dependencies between internal signals and define a

precise execution sequence by assigning scheduling information to each dataflow node

and Petri net transition. The second step produces a programming-language independent

XML file containing information about the data-structures and processing instructions

required to implement the model semantics. A third step employs XSL transformation to

convert the XML document to the syntax of the target programming languages: C,

Javascript or VHDL.

15

In addition to the code responsible for model execution, the output of the C

software code generator also includes an optional HTTP server, to support remote

debug, monitoring, integration on CPS networks, and the creation of remote user

interfaces. When a model employs distributed components, located on remote servers,

client code is also added to the project, automatically subscribing and transmitting

events and signal changes to the remote components, according to application model

topology and the arcs connected to these components, fully automating the design of

CPS networks.

The underlying communication protocol, based on JSON over HTTP, was

optimized to support CPS applications, using HTTP server side events to minimize

latency (and connection keep-alive connections in the future). The HTTP protocol was

selected due to the availability of client code for Web based applications (AJAX), the

existence of libraries on many programming languages. It also benefits from easy

gateway traversing, as most router policies have HTTP ports open by default and proxy

services may be employed otherwise. JSON was chosen over XML due to compactness

and easy integration on JavaScript applications, to produce Web based front-end user

interfaces.

The ability to remotely monitor and debug distributed CPS applications has

paramount importance, as components are often located at far-away locations and the

computing devices often lack hardware resources to create user interfaces. The IOPT-

Flow tool-chain provides a remote debugger/monitor application, with a user interface

similar to the simulator, enabling the visualization of the system state in quasi-real-time,

pause execution run step-by-step, reset the model state and force input values. When

monitoring distributed CPS, implemented as a network of multiple nodes, the user may

open several windows, attached to each node, just by directing the Web browser

location to the respective node URL.

As previously mentioned, the adoption success of a development language

depends as much on the set of associated libraries as on the language intrinsic qualities.

The availability of well debugged components suitable for specific tasks can greatly

reduce application development time. The IOPT-Flow framework currently offers a

small but growing library of components, that were required to implement the sample

applications presented in this text. There are folders dedicated to ladder diagram, timers,

counters, PWM generators, Boolean logic, arithmetic functions, UARTs, arrays and

tables, a ModBUS gateway, graphical user interface widgets, sound playback, random

number generators, data file logging and access, etc.

16

When possible, components should be implemented as DS-Pnet models, using the

internal language capabilities. However, certain features require access to external

resources and must be coded using foreign/external components. This problem is

common to many programming languages that resort to “native” code to implement

certain functions. For example, to access operating system resources, including the

system date and time information, file-system and database access, communication

ports, use the graphical and sound sub-systems and generally to access hardware device-

drivers. The implementation of foreign components depends on the target hardware

architectures and operating systems employed, posing compatibility issues when porting

applications to different hardware. The same problem arises during the creation of new

automatic code generators for different programming languages. Hence, the resort to

foreign components must be avoided, by identifying a minimal set that supports

specific fields of application. This minimal set could then become a «standard» library

that must be supported by all code generators and target architectures.

Several example applications were developed using DS-Pnets and the IOPT-Flow

toolchain, used to demonstrate, test and validate the proposed concepts: a closed-loop

driver for a Brushless DC servo motor, implemented on a FPGA using the VHDL code

generated automatically; a simplified «pong» game implemented using C software and

the graphical user interface widget components, an industrial application using the

modbus protocol to access a legacy programmable logic controller and a distributed

CPS industrial application. A master thesis student used the tools to implement a

component library with different types of events, including atomic and compound

events, defined by sequences of atomic events.

Comparing with traditional development languages, the example applications

were created in a much shorter time period, due to the automatic code generation and

the ability to hide distribution implementation details. For instance, the game example

was completely developed in just a few hours. Communication between distributed

nodes is handled transparently, just by connecting arcs to remote components, a task

that would require a greater coding effort with traditional programming languages and

development tools. As the low level details are hidden, it opens the field of distributed

industrial automation and cyper-physical system development to a wider audience,

without deep knowledge about computer programming and communication protocols.

Some of the early results have already been published, including a conference

paper presenting the DS-Pnet formalism and the respective execution semantic rules, a

conference paper presenting the tool framework and a controller-plant example, and

journal paper presenting the tools and the servo motor driver application. Additional

17

publications about the new communication protocol and application to CPS

development are planned for the near future. This work inherits many concepts and

ideas from a preliminary work on the parent class IOPTnets and the IOPT tools

framework. Several publications about the preliminary PhD work have been published

during the first years and are listed in a corresponding section.

1.6 Contributions and publications

The following list presents the main contributions resulting from this work:

1 – The DS-Pnet modeling formalism, combining low level Petri net and

dataflows to support the design of mixed systems containing reactive parts that evolve

according to external events and a data processing part to perform signal processing,

data manipulation and deal with analog sensors.

2 – The specification of the DS-Pnet execution semantic rules, used to define a

precise evaluation sequence to calculate dataflow operations and transition firing,

leading to the elaboration of a deterministic execution algorithm.

3 – Automatic code generation tools based on the results from 2, generating C,

JavaScript and VHDL. The code generated automatically may be used to simulate the

model execution, employed in the core of state-space calculation tools [7], but mainly to

implement real controllers to deploy on embedded hardware and distributed CPS nodes.

A multi-step code generation architecture separates semantics from the target language

syntax, simplifying the future creation of code generators for different languages.

4 – The IOPT-Flow Web based integrated development environment, supporting

the DS-Pnet formalism, including a graphical editor, a simulator with waveform

visualization capability and test automation based on previous stored waveforms, a Petri

net model checking sub-system, a remote debugger and automatic distributed code

generation tools, among others.

5 – A JSON/HTTP communication protocol optimized for distributed cyber-

physical system implementation and remote debug and monitoring of DS-Pnet systems.

The C code produced by the automatic code generation tool includes a minimalist HTTP

server to support the remote debug and monitoring and communication with other CPS

nodes. In the same way, the code produced for models that employ remote components

contains client networking software to communicate with the remote nodes. As a result,

distributed cyber-physical systems may be created just by importing remote components

into new models and connecting arcs – the communication code is generated

automatically.

18

6 – A node-split tool to divide models into sub-models that will run on different

distributed nodes, supporting workflows that start with the design of a centralized

models, that are simulated and debugged before being split into distributed nodes.

7 – Propose a new mechanism to share the same component among multiple

distributed applications, with the definition of two new event properties. Component

sharing is transparent for the application models, as if they were being exclusively used.

8 – A growing component library containing both native components

(implemented as DS-Pnet models) and foreign components created outside of the IOPT-

Flow environment. The foreign library components extend the core functionality of DS-

Pnets, with the addition of arrays and matrices, file input and output, random numbers,

graphical user interface widgets, audio samples and a communication interface with

industrial devices based on the ModBUS communication protocol.

9 – Support for foreign components (in both the C and VHDL code generators),

permitting the use of virtually any existing software package or hardware device from

DS-Pnet models, building an interface composed of signals and events to invoke code

written using other formalisms. This way, existing algorithms, object-oriented classes

and hardware subsystems may be integrated in distributed cyber-physical systems in a

transparent way.

In addition to the publications listed in the preliminary contributions section,

covering the IOPT-Tools framework whose results were applied in this work, new

results about the DS-Pnets and the IOPT-Flow tool chain have been published:

1 - Pereira, F.; Gomes, L.; “Combining data-flows and petri nets for cyber-

physical systems specification”, Technological Innovation for Cyber-Physical Systems -

7th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical

and Industrial Systems, DoCEIS 2016, Proceedings. Vol. 470 2016. p. 65-76

(IFIP Advances in Information and Communication Technology; Vol. 470) [26]

2 – Pereira, F.; Gomes, L.; "The IOPT-Flow framework pairing Petri nets and

data-flows for embedded controller development", IECON 2016 - 42nd Annual

Conference of the IEEE Industrial Electronics Society, Florence, 2016, pp. 4832-4837.

doi: 10.1109/IECON.2016.7794152 [27]

3 - Pereira F.; Gomes, L.; "The IOPT-Flow Modeling Framework Applied to

Power Electronics Controllers," in IEEE Transactions on Industrial Electronics, vol. 64,

no. 3, pp. 2363-2372, March 2017; doi: 10.1109/TIE.2016.2620101 [28]

19

Publication 1 presents the DS-Pnets and the respective execution semantic rules,

publication 2 covers model-checking DS-Pnet models using a controller-plant strategy

and the third covers the first validation application presented on chapter 7.

1.7 Document structure

Chapter 2 contains literature review about related topics.

Chapter 3 presents the DS-Pnet modeling formalism, presenting all types of

available nodes, arcs and the respective attributes. Focusing on the graphical aspect of

the formalism, it presents typical constructions formed by the combination of dataflow

operations and Petri net nodes. This chapter also presents a formal definition of the DS-

Pnet formalism and the execution semantic rules, leading to the elaboration of a pseudo-

code algorithm to execute DS-Pnet models.

Chapter 4 presents details about the automatic code generation tools and

algorithms, used to produce code that execute the model semantics for simulation and

deployment on embedded hardware.

Chapter 5 discusses the execution of distributed DS-Pnet models containing

remote components, communicating over the internet and presents the underlying

JSON/HTTP protocol.

Chapter 6 presents the IOPT-Flow tool framework, containing information about

the capabilities of each tool and relevant implementation details. A component library

and an incipient “standard” library containing foreign components that bring enhanced

functionality to DS-Pnet models. This chapter also discusses the available model-

checking options and the usage of controller-plant systems to permit the verification of

pertinent system properties, without incurring in state explosion problems.

Chapter 7 presents a set of validation applications and discusses the results

obtained, comparing with other development languages and tools.

Finally, chapter 8 presents the conclusions and future work.

20

2 Literature Review

This chapter presents a literature survey about related topics. This list is

complemented by related work sections on all papers published during the preliminary

work and the publications focusing on the DS-Pnet class, that contain references

relevant to each specific topic and application examples.

2.1 Petri nets

The Petri net [30][31][72] modeling language, proposed by Carl Adam Petri,

frequently used to represent distributed systems, has been widely accepted by the

scientific community, referenced by many thousands of research papers from many

research areas, including biology, physics, mathematics, business processes, computer

science, hardware design and industrial automation. Over the years, many Petri net

classes have been created, with extensions for various applications [29][39][40][41][45]

[46][73].

The original Petri nets consisted of graphs containing places and transitions

connected through Arcs, from which figure 2 presents an example. Arcs starting in a

place and ending in a transition are called input arcs and output arcs have origin in a

transition and terminate in a place. Places may hold marks, often called tokens, and the

state of the system, often called the net marking, consists in the current configuration of

tokens hold in all places. State changes occur when a transition fires, consuming tokens

from the input places and producing new tokens, added to the output places. A transition

may only fire when all places connected through input arcs hold tokens. When this

condition holds true, the transition is said to be enabled. Conflicts between several

enabled transitions may occur if they share the same input places: if one of the

transitions fires, it will consume tokens necessary to fire the others.

21

2

However, although a transition may be enabled, nothing forces this transition to

fire and when multiple transitions are enabled, any of them may (or not) fire. This way,

the execution semantics of the original Petri net class is non deterministic. The majority

of the net classes derived from the original Petri net class, inherit this execution

semantics and are usually used only for simulation. For each Petri net class typically

there is a software simulator application, that may be used to perform the so called

token-game: enabled transitions are highlighted using a different color and the user may

pick the next transition to fire. In alternative, the simulator may choose to fire random

enabled transitions and after some time, a graph with the history of recorded markings

may be obtained.

2.2 Model checking

Over the years, an entire branch of mathematics has evolved around Petri nets, a

sub-set of the general graph theory, and many properties, lemmas and theorems have

been studied [31][32][33][46][72][74]. For this purpose, instead of the graphical

representation, vector and matrix representations of the Petri net and respective

markings are often employed. Figure 3 presents an incidence matrix corresponding to

the net on figure 2. Each column correspond to a place and each line to a transition.

Negative numbers correspond to tokens removed from inputs places and positive

numbers to tokens added to output places.

22

 Fig. 2: Petri net example.
Places drawn as yellow circles, transitions as blue bars and arcs as arrows.

P1 P2 P3 P4 P5 P6 P7 P8 P8N P9

Start -1 1 0 1 0 0 0 0 0 0

Task1 0 -1 1 0 0 0 0 0 0 0

Task2 0 0 0 -1 1 0 0 0 0 0

Wait 0 0 -1 0 -1 1 0 0 0 0

Task3 0 0 0 0 0 -1 2 0 0 0

Lock 0 0 0 0 0 0 -1 1 -1 0

Task4 0 0 0 0 0 0 0 -1 1 1

End 1 0 0 0 0 0 0 0 0 -2

 Fig. 3: Incidence matrix

Using the matrix representation, many properties can be verified, including

liveness, boundedness, invariants, reversibility, traps and siphons, among many others.

Petri net theory textbooks [30][72][75] cover this subject with extensive detail. Using

the matrix representation it is also possible to synthesize controllers to impose

restrictions that prevent the reachability of undesirable states [76].

Many properties are better analysed using state-space graphs, also called

reachability trees. For example, deadlocks and livelocks are easily found on the state-

space graph and many reachability problems are usually checked on the state-space

graphs, with the help from languages like linear temporal logic (LTL) or computational

tree logic (CTL) [37][46][77]. Unfortunately, real world applications frequently produce

very large state-space graphs, with many milling states. This way, many state-space

reduction techniques have been developed and concepts like strongly connected

components [38], stubborn sets [78] and other partial order reduction techniques [37]

[46], among others.

Most Petri net classes have an associated state-space computation and model-

checking tool. Popular model checking applications, include the SESA[46][79],

Ina/Tina [37], PEP [80], Maria [81], Lola [82], Romeo [83] and PROD [84] tools. The

Petri net tool database web page can be consulted for a detailed list [85].

2.3 Execution semantics and non-autonomous properties

As previously stated, the traditional Petri net classes exhibit a non deterministic

execution semantics and are used predominantly for simulation and property analysis.

However, the goals of the work proposed in this document go beyond simulation and

aim the implementation of the real controllers for embedded systems running on the

physical hardware platforms and demand determinism. In addition, the typical Petri net

classes are autonomous closed systems that do not interact with the external world, but

23

embedded system controllers do communicate with the controlled systems (the plant),

with the users and the surrounding environment.

To solve these issues, several Petri net classes have been proposed. Among those,

the signal/nets systems (SNS) [46][86], the net condition/event systems (NCES) [39],

signal interpreted Petri nets (SIPN) [87][88], and Input/Output Place/Transition (IOPT)

nets [29] are more referenced in the academic literature. Other formalisms that inherit

concepts from the Petri nets, as the Grafcet PLC programming language [65][89] and

the signal transition graphs (STG) [90][91] used for digital hardware design, also try to

solve these issues.

The signal/event nets and NCES classes employ mixed execution semantics. In

these classes, direct connections between transitions may be established using events,

forming synchronous channels, where a master transition generates an event received by

slave transitions. Master transitions exhibit a spontaneous behavior, similar to the

standard Petri net transition semantics, but the slave transitions have a forced semantics,

meaning that an enabled slave transition must fire immediately upon receiving an event.

This way, the master transitions display an undeterministic spontaneous behavior but the

slave transitions obey a maximal step semantics. Some simulation tools may offer a

choice of multiple execution semantics to apply to the spontaneous transitions,

including random and interleaving transition firing.

To overcome the autonomous nature of Petri nets, some tools and the underlying

Petri net classes rely on code segments that may be added to places and transitions.

These code segments correspond to procedures written in foreign high level

programming languages, as Java [41] and StandardML [40][42], to support

mathematical computations, manipulate operating-system resources and perform

communication with the external world, including the creation of graphical user

interfaces and network communication. Code segments may be executed whenever a

transition is fired, when a place receives a new token, or continuously when a place is

marked. Theoretically these code segments can read and write interface signals,

enabling the creation of embedded system controllers. Unfortunately, the code segments

implementing external communication fall outside the scope of the associated model

checking tools, that proceed ignoring the effects of such communication operations or

simply cannot be applied at all.

Extensions to the original Petri net class tend to keep the graphical syntax and

employ inscriptions on places, transitions and arcs to implement the extended

functionality. For instance, timing information [73], transition guard condition and input

and output operations [29][39][40][41][45]. This way, the existing tools can ignore the

24

inscriptions and process only the standard Petri net components. Many properties can be

verified just by inspecting the net topology and the respective matrices or state-space

graphs, without considering the inscriptions.

2.4 Low level and high level net classes

Petri nets are usually classified as low level or high level nets [40][41][42], from

which the Coloured Petri net class should distinguished as the most well known high

level class. The main difference between both types resides on the tokens. Low level

tokens carry no data, and places only need to record the number of tokens present. On

the opposite, high level tokens can hold variables or even complex data structures: a

token can be seen as an object with an associated data type. A low level net can be seen

as a particular case of a high level net where all tokens are assigned a void data type.

In the same way as tokens, high level places also have associated data types,

corresponding to the types of tokens stored inside. Arcs may be assigned names and

mathematical expressions to establish relations between token values. In the same way,

transition guards may be used to express restrictions on the token values. Figure 4

displays a simple Coloured Petri net.

Observing figure 4, transition T1 picks two tokens from places P1 and P2 and

produces a new token for place P3 with the sum of the two values. The input arcs have

inscribed names «a» and «b», used to reference tokens inside places P1 and P2 and the

output arc has an expression «a+b» representing the sum of two tokens. In order to fire

T1, places P1 and P3 must hold tokens satisfying the guard condition «a <> b», that are

removed from the input places and a new token with the respective sum is added to P3.

For example, a token with value 21 and another with value 55 may be removed from

places P1 and P3, producing a new token with value 76 on P3.

Although the execution semantics of high level Petri nets continues to respect all

rules of low level nets, it can be seen as a dataflow, where arcs transport data stored in

25

 Fig. 4: High level Petri net example.

places and the transitions perform transformations to the data. This characteristic

represents an enormous value for embedded system controller design, and some authors

have employed high level nets for this purpose [42][56][92].

As an example, an industrial production line can be modeled using high level nets.

Individual parts travel on a conveyor belt and multiple machines may apply operations

on those parts. The parts can be modeled using tokens, containing information about

each part, as the serial number and the types of operations that must be performed. Each

machine may be modeled using a transition, that applies transformations to the tokens

according to the operations performed on the physical parts. Buffer zones that store

parts waiting to be processed may be modeled by places that store tokens.

2.5 High level net execution strategies

When the token data types are restricted to very small sets of colors, it is possible

to unfold an high level net into an equivalent low level net [93][94], that although

larger, can be processed with the standard low-level Petri net tools, including automatic

code generators. However, when the cardinality of the data types employed is larger,

this technique results in an explosion on the size of the resulting low level nets that

would be impractical. For instance, if the integer numbers used in the figure 4 example,

were limited to a simple 8bit (byte) data type, the resulting low level net would contain

65280 transitions. If 16 bit integers were used, then 232–216 transitions would be

required.

The traditional high level Petri net execution strategies employed by simulators

[95], typically rely on software loops to cyclically evaluate all tokens contained in all

input places of a transition, in order to evaluate guard conditions and arc expression

relations. If the maximal bound of all places are restricted to a single token, or a limited

number of tokens, then the maximum execution time required to evaluate any transition

can be predicted. However, for transitions with multiple input places and large bounds,

then the combinatorial nature of the required processing would impose large execution

times, unsuitable for real-time controller implementations, or very complex hardware

implementations consuming large silicon areas. Imposing restrictions on the high level

nets might help solve this problem: for instance, defining place capacities to limit the

maximum number of tokens (just 1), or defining FIFO or prioritized place semantics

where only a single token is ready for use on any single execution step. However, with

these restrictions, most of the advantages of high level nets would be lost, continuing to

demand more resources. In this sense, dataflow formalisms offer a more intuitive

graphical syntax to express mathematical transformations.

26

2.6 Model composition and hierarchical structuring

As other graphical modeling languages, complex Petri net models tend to loose

readability due to the large number of nodes, long arcs with potential crossings and

multiple overlapping inscriptions. In this respect, models designed using high level nets

tend to become more compact and, consequently, easier to read.

Almost all Petri net dialects and the respective tools support several techniques to

increase readability and simplify the design of complex models. The most simple

solution consists in the subdivision of models into several pages [55], containing groups

of nodes responsible for the behaviour of different sub-systems. Connection between

pages is obtained through the insertion of multiples copies of the same nodes on

different pages, using the concept of node-references. For example, a place on one page

may be re-used on another page using a place-reference with the same identifier. Arcs

connected to the node-references are interpreted as arcs connected to the original node.

Any tool processing the complete net can start by joining all pages into a flat model and

fusing all node-references to the original nodes.

Model composition based on hierarchical structuring techniques not only helps to

enhance readability, but also contributes to simplify the design of complex systems,

enabling the usage of top-down, bottom-up or even object oriented development

strategies. The potential to re-use existing components, previously tested, greatly

contributes to reduce development time and cost. Extensible module libraries of

“prefabricated” components may be created, grouped into families for many specific

scientific fields. Observing the history of computing over the past decades, it is possible

to detect a pattern associated with the most successful development languages and

formalisms: the availability of good libraries to support the target development fields.

Notorious examples are Fortran, Java and C#, PHP, Pyton, Perl, VisualBasic,

Matlab/Simulink [63] and LabView [96].

The node-fusion concept is also on the basis of the hierarchical structuring

techniques offered by many Petri net classes [30][40][97][98]. Components are just

simpler Petri net models, and the communication interface between different

components is established by node-fusion: a place from the component model is fused

with other place from the top container model, and the same can be applied to

transitions. When multiple components are used, the same node can be shared between

more than one component. Some Petri net classes use the concept of macro nodes,

where a single node representing an entire sub-model [55][88][98] also rely on node-

fusion, but in this particular case the communication interface consists only in a single

node.

27

The nodes used to define the interface are conceptually viewed as input or output

nodes. For instance, a component might expect the sudden appearance of new tokens on

input places and produce tokens to add to output places. A similar process is used when

transitions are used to establish the communication interface: arcs connected to input

transitions expect receiving new tokens produced by these transitions, while output

transitions remove tokens from internal places. When multiple components are

connected, the same node is viewed as output by one module and must be seen as input

by the other modules. However, most tools do not strictly enforce this policy, meaning

that it may be possible to add external input arcs to the output transitions of a

component, and there is no warranty that all tokens placed into output places will be

consumed by external transitions. As a consequence, it may not be possible to properly

model-check the individual component models, as output places may exhibit infinite

bounds and the component execution may be blocked by external arcs added to output

transitions. The model-checking tools associated with these Petri net classes will

typically start by merging all components into a single flat model and property

verification is only applied on the final model.

Some Petri net dialects employ the concept of reference nets [41], a form of

model composition, supporting inscriptions to instantiate new nets, that stay associated

with tokens in a main model. This way, when a transition containing a form of «new

net:name()» inscription is fired, the execution of new model is dynamically started on a

parallel thread, and a reference to this net may be associated to a new token. The

opposite action may occur when a token referencing a net is consumed by other

transition.

2.7 Model composition based in signal and event communication

The problems related by node-fusion based model structuring have been

previously discussed by other authors [39], leading the emergence of model

composition strategies based on input and output signals and events [39][46][86][87]

[88][99]. From these, the NCES Petri net class has been the most disseminated.

Compounded NCES models are no longer a Petri net, but are equivalent to set of

parallel Petri net models. In addition to the standard Petri net arcs, NCES add the

concepts condition arcs and event arcs, used to establish the communication between

components.

Condition arcs, equivalent to the test/read arcs defined in other Petri net classes

[29], read the number of tokens from an input place but do not remove any tokens. As a

consequence, condition arcs do not cause conflicts between competing transitions and

28

when used to inter-component communication, do not suffer from the same problems as

node-fusion. Condition arcs start in a place inside one component and will typically be

connected to a transition on a different component. As the target transition does not

remove tokens from the source place, the execution of the first component is not

affected by the second.

The value of condition arcs is interpreted by transitions as simple Boolean

condition and the formalist does not offer any syntax constructs to model the logic

operators «not», «and», «or» and «xor». This way, designers have to resort on solutions

based on the net topology, drawing multiple transitions to form parallel or series

configurations, that greatly reduce readability and increase model size.

The other communication method offered by NCES and SNS are event arcs, used

to form synchronous channels between transitions from different components. Event

arcs have two fundamental differences from condition arcs. First, condition arcs start in

places and finish on transitions, but event arcs connect two transitions, a master to a

slave. Second, the behavior of event arcs force the firing of enabled slave transitions,

while condition arcs only prevent firing. This effect has deep consequences on the

execution semantics of NCES/SNS, as the master transitions - transitions that only have

normal and condition input arcs - exhibit a spontaneous behavior, but slave transitions

are executed in maximal steps. Transitions connected though event arcs are considered

synchronous, meaning that if the master transition fires, all enabled slave transitions

will fire in the same execution step.

In addition to the inter-module communication, condition arcs can also be viewed

as external input signals, preventing the firing of transitions, with a semantics

equivalent to a guard expression. This way, it would be possible to implement automatic

code generator tools for embedded system controllers, using condition arcs to model

input sensor reading. Unfortunately, the formalism also does not offer syntax constructs

to perform mathematical operations, and would require an auxiliary formalism. These

problems have been addressed in the signal interpreted Petri net class [87][88].

Model checking and simulation tools are available for the NCES, SNS and SIPN

classes [79][100], and the applications to embedded systems and industrial automation,

using automatic code generation have been presented [87][101][102].

The use of signal and event communication for inter-component communication

provides additional advantages, as it permits the definition of proxy component models

to encapsulate external systems designed with other development formalisms. This way,

it is theoretically possible to employ virtually any existing system as a component, as

long as the external interface can be specified using input and output signals and events,

29

ranging from existing integrated circuits, IP cores designed using traditional hardware

description languages (HDL) [103], systems implemented using programmable logic

controllers and almost any system designed/modelled using other languages. In the

same way, component models defined using this strategy can also potentially be used by

other projects. For example, the code produced by the automatic code generators can be

directly inserted into other projects using the same target language [12].

2.8 The IEC61499 standard

In recent years the IEC61499 standard for distributed control and automation [68]

[69][70] has been assuming growing importance, as it defines the concept of function

blocks with an external interface composed of signals and events, but does not impose

rigid formalisms for the internal block implementations. This standard has been adopted

by several automation controller manufacturers and compatible products are available

on the market [104][105].

The standard defines several types of function blocks [70]. Composite function

blocks used to implement the entire systems containing multiple function blocks, basic

function blocks implementing the component modules, and service interface function

blocks (SIFB) to encapsulate systems designed using other development languages or

low level sub-systems to access operating systems resources and networking devices.

Basic function blocks are divided into two parts: an execution control chart (ECC)

and an algorithmic part. The ECCs are state machines reacting to external input events

that trigger the execution of algorithms to process input data. The algorithms may be

implemented using many programming languages, as Java, traditional PLC graphic

languages as ladder, grafcet or text based PLC languages as instruction list and

structured text [64].

Each function block may be implemented on separate execution units, forming

distributed topologies, or GALS systems [106][107][108]. A request to a function block

typically uses a variant of the following communication pattern: a) input data is made

available at the input signals of the function block, b) an input event is generated to

trigger the request execution, c) the function block ECC checks pre-conditions and

reads input data, d) the necessary algorithms are executed by the function block, e)

result data is made available at the output signals, f) an output event is generated to

inform that the results are ready. Slow requests requiring many data processing

operations or long delays due to communication latencies, or even complex processes

involving non trivial state machines, might require more complicated communication

protocols. For example, intermediary events to acknowledge request reception and

30

inform the client that processing has started, might be generated before the results are

ready.

As the standard offers some degree of flexibility in the formalisms used internally

to specify the function blocks logic and algorithms, several authors have proposed the

use of Petri nets, as NCES [109][110][111] and other formalisms [112][113][114] to

implement the function blocks state machines. These solutions bring the advantages of

formal verification and model-checking to the IEC61499 world.

To take advantage of the growing IEC61499 ecosystem, compatibility with this

standard should be a desired goal of any new model composition proposed formalism.

Compatibility can be obtained using automatic code generation techniques to translate

models to the standard-sanctioned languages, creating real basic function blocks, or

creating SIFBs proxy function blocks to encapsulate code produced by the normal code

generators.

2.9 Automatic code generation

Traditionally, model based development formalisms have been used for simulation

and formal property verification, in order to identify and correct design mistakes before

reaching the low-level prototype implementation phase. After the simulation and

verification phase have successfully completed, the prototype software code or

hardware descriptions were typically written manually, translating model semantics to

low level code for the selected architectures. As the final coding was a human task,

these formalisms could omit many implementation details, and many system

requirements could be specified using an informal syntax based on simple text

comments. This approach is frequently found in the literature and the execution

semantics of many modeling formalisms does not even ensure determinism.

From another side, the concepts presented in this work, and preliminary

development, aim to support all steps of embedded systems controller development,

from the early model design and edition to the final controllers deployment on

hardware. As a consequence, the syntax and semantic rules of the proposed formalisms

must enable the precise specification of all requirements and implementation details, in

order to fully support automatic code generation tools.

Ideally, the proposed formalisms should support an incremental refinement of the

implementation details, in order to enable the rapid specification of higher-level initial

models that later can be improved with the addition of lower-level details. For example,

a controller can be fully simulated and model checked without assigning any physical

pins to the model inputs and outputs, but these assignments must be set before

31

generating the final code for the prototype implementation. Complex models, composed

of many components can also benefit from a similar approach, by employing a top-

down strategy and starting with simplified versions of each component, that late could

be replaced by refined versions. Automated model-checking tools [15] can be used to

perform regression tests and detect behavioral changes between versions.

However, support for deployment on physical embedded devices, either by using

interpretation or automatic code generation strategies, has been offered for a long time:

the languages and formalisms used by the industrial programmable logic controllers

would be almost useless without it [65]. In the world of digital hardware design, the

usage of high level formalisms with graphical syntax has long been used [35][91][115].

In the software world, model based development frameworks have been gaining

traction, with many tools supporting UML based languages [34][35][36], as the Ecore

Modeling Framework (EMF) from the Eclipse foundation [116][117]. The EMF tool-kit

include a family of meta-models and transformation technologies that support automatic

code generation in arbitrary languages [118][119].

Commercial modeling applications, as the Matlab and Simulink tools [63], also

support automatic code generation for both software and hardware targets, including

personal computers, many digital signal processors and micro-controllers and even for

FPGAs [120]. However, the licenses for the automatic code generation tools are

expensive, some implementations are not standalone, requiring the presence of a

companion computer running parts of the application and graphical user interfaces, and

the resulting code may not be easily tailored to fit the requirements. From another side,

the modeling languages implemented by these tools cover a very broad range of

applications and offer a complex mixture of multiple formalisms, that is not supported

by formal model-checking tools.

Several tool frameworks originated from the academic community also support

interpretation and automatic code generation. From one side, the simulation tools for

formalisms that support code segments, can be used for rapid prototype

implementations, employing an interpreted strategy [40][41]. From another side, several

automatic code generation tools have been presented in the literature, supporting Petri

net based formalisms [8][14][56][87][101][102] and UML statecharts [34][35][36].

2.10 UML statecharts and activity diagrams

In addition to Petri nets, statecharts [121] are the other family of modeling

formalisms that have been frequently proposed for embedded system development

[115], with several tools based on the UML standards [122]. The tool-chains include

32

model-checking tools, simulators and automatic code generators [34][35][36]. The

UML standard also defines an activity diagram formalism, that in version 1 was based

on flowcharts, but version 2 adopted a Petri net semantics [123] and all the

considerations about Petri nets can by applied to version 2. The conversion of statechart

models to the equivalent Petri nets and the reverse, have been studied by [123][124]

[125][126][127].

2.11 Model file formats

The importance of the data formats used to store model files should not be

neglected, as the availability of libraries and tool frameworks to process those files

largely depends on the chosen formats.

XML [128] and JSON [129] based formats are supported by nearly every modern

programming language and tool-chains. In the case of XML based formats, there exist

libraries to store/parse files from/to DOM trees, syntax checking tools based in XML

schemas [130] and RelaxNG grammars [131], query languages based on Xquery [132]

and Xpath [133] to quickly find data inside complex documents and XSL

transformations [134][135], useful to convert files between different grammars and even

to implement automatic code generators [14].

The Petri net Mark-up Language (PNML) file format [136][137] defines a base

syntax to represent Petri nets, with two grammar variants for low level (P/T) nets and

high level nets. It defines the simple grammar for the basic nodes and arcs, that can be

extended through annotations to support the particular features of each Petri net class.

The annotations have a common structure, including graphical attributes and a text

string, that may be visualized on any Petri net editor, independently of the respective

semantic that may be completely ignored by some tools. This way, PNML models

designed using any tool could, in principle, be read and visualized by other tools, and be

processed by analysis tools that work only on the topological node relations.

Unfortunately, many Petri net tools do not adhere to the PNML standard and even

the original members of PNML committee seem to have been moving away from it,

preferring the native XSI/XMI [138] XML based formats used internally by the Eclipse

Modeling framework [116][117]. However, most tools allow import and export PNML

models, and, as both the PNML and XSI/XML formats are based on XML, it is possible

to create XSL or MOFscript [118] transformations to perform the conversion.

33

2.12 Reactive systems and synchronous dataflows

The modeling languages that have been discussed in this section, mostly Petri nets

and statecharts, offer very good capabilities to specify the control logic of embedded

system controllers, or general discrete event system controllers, that are usually

implemented using digital systems. However, real embedded systems almost always

employ mixed architectures combining digital and analog subsystems, dealing with

analog sensors, analog actuators, motion devices, timing and other variables that are

better represented as analog values than using purely Boolean logic. Although previous

work on the IOPT class [29] and preliminary contributions already provide some degree

of support analog subsystems through the use of integer range signals and arithmetic

expressions [5][24], the text based formalisms employed lack the intuitiveness of other

graphical alternatives.

From another side, dataflow languages [139], that primarily focus on the

movement of data between execution/operation blocks, provide a very intuitive way to

express the dependencies between signals and enable the implementation of concurrent

computation architectures that take advantage of the parallel capabilities offered by

reconfigurable hardware platforms. Instead of specifying imperative sequences of

calculations, dataflow languages identity a set of mathematical operations and define the

relations between intermediary computed values: every time an input signal changes, all

dependent signals must be immediately recalculated.

For example, the spreadsheet applications employ a dataflow semantics: when the

contents of a cell are changed, any other cells that reference this cell must be recursively

recalculated. Graphical dataflows are directed graphs that use nodes to express

mathematical operations and data-processing modules, connected using arcs that define

the signal relationships and dependencies to form data paths.

Although dataflow languages have long been abandoned for general purpose

computation, the underlying concepts have been recognized as an effective solution for

digital signal processing, linear systems control and digital circuit design [140][141].

The recent availability of multi-core personal computers, may one day bring these

concepts back from the shadows, due to the ability to deal with concurrency and

parallelism.

Synchronous dataflows (SDF), a particular type of dataflows designed for digital

signal processing applications, where each node always produces and consumes a fixed

number of tokens, were presented in [142], covering many aspects ranging from

computation scheduling, parallel implementations, automatic code generation and

34

correctness verification [143]. The synchronous data flow concepts have been

implemented in the languages LUSTRE [144], Signal [145] and Esterel [146].

Applications for embedded system development have been presented in [147], and the

association to state machines in [148].

Reactive systems were defined as systems that react to external events, as opposed

to transformational systems that continuously apply computations over input signals to

produce outputs [149][150]. A synchronous approach has been proposed for both kinds

of systems, using two syntax styles: statecharts and dataflow [151], employing an

instantaneous execution paradigm where computation times are considered negligible.

Applications of the synchronous paradigm to model real-time reactive systems have

been presented, including problems related to model composition and detection of

signal loops, calculation scheduling in composite models, correctness verification, code

generation [152][153][154][155][156], and implementation of IEC61499 function

blocks [157].

2.13 Matlab/Simulink

As previously mentioned, the Matlab and Simulink commercial tools [63][120],

have been used to model embedded system controllers [158]. These tools support a vast

mix of different modeling formalisms, including block diagrams, flowcharts, Petri nets,

multiple solver algorithms to support different execution semantics, and even support

automatic code generation for software and hardware targets. Requirements based

verification tools are available at [159]. Simulink offers blocks for TCP/IP

communication that may be used to implement distributed applications that have been

used to model cyber-physical systems.

Although Matlab/Simulink can be viewed as a technology that competes with the

proposed framework, used to build the same type of solutions, including automatic code

generation tools, both solutions can also be used in a complementary way. During the

preliminary work a new code generator to produce Matlab code from IOPT models was

created, that builds Matlab-system objects (http://gres.uninova.pt/IOPT-Tools/) to be

used in Simulink. The resulting Simulink blocks offer an external interface composed of

the same input and output signals and events as the original IOPT model, applies the

same execution semantics and lets the used define the initial marking of each instance.

The system objects may be connected to other Simulink blocks and used for simulation

and submitted to the Matlab code generation tools.

A similar code generator for the new formalism might created for the new

formalism. This way, DS-Pnet models might be used in Simulink projects and Simulink

35

might also be used to simulate and validate DS-Pnet systems. This is specially important

when a controller-plant strategy is used to model the interactions between the

controllers and controlled systems, as the controlled system models may involve

dynamic systems that require the employ of the mathematical solvers offered by Matlab.

In the same way, there are thousands of available Matlab/Simulink well-debugged

models that may be immediately used to model the system plants, without the need to

design new models. The code generated automatically may be combined with the

existing plan models for simulation and detect design flaws.

2.14 Cyber-physical systems

Cyber-physical systems (CPS) is a multi-disciplinary field that studies systems

composed of networks of physical and computational sub-systems, often exhibiting

closed feedback loops between both types of sub-systems, covering the areas of

software and hardware development, mechatronics, communications, and automation,

among others. Although there is no standard definition of CPS, the most common

definition found in the literature is «CPSs are defined as the systems that offer

integrations of computation, networking, and physical processes» [48][51].

CPS are often considered an evolution of embedded systems. However, the

previous generation of embedded systems were envisioned as part of a single equipment

or machine and were often contained inside a physical system. In contradiction, CPS are

often implemented as distributed heterogeneous systems containing multiple sub-

systems that may extend through the Internet, mixing physical systems as sensors,

motors and actuators, computing nodes located on the cloud and user interfaces running

on mobile computing devices.

Over the last 10 years CPS have been identified as a target for future research,

indicating challenges and future roadmaps [50][51][52][53]. A frequent concern is the

need for new modeling formalisms capable to offer a new abstraction able to express

timing and spacial restrictions and deal with the networking communications and

interconnections between physical and computational devices in a transparent way. This

work is a step in that direction.

As a result, CPS have been the subject of extensive research work from the

academic community, that resulted in numerous publications, covering the areas of

modeling, simulation, verification, tool frameworks, hardware platforms, security,

reliability, real-time requirements, privacy and multiple fields of application. The

development formalisms proposed to implement CPS systems range from the traditional

programming languages to modeling using differential equations, synchronous

36

dataflows, actors and aspects, Ptolomy II [160], Matlab and Simulink, among others.

Good surveys about these publications can be found in [47],[48] and [161].

A 5 level guideline for the implementation of CPS solutions has been proposed

[71] with the following levels: 1) Smart connection level; 2) Data-to-information level;

3) Cyber-level; 4) Cognition level; and 5) Configuration Level. Although the solutions

proposed in this work do not enforce any type of guidelines or specific workflow, the

developers are free to employ the mechanisms offered by the new formalism and

associated tools to follow any desired guidelines.

In the particular case of the 5C architecture proposed by [71], the new

communication protocol and the networking layer included by the automatically

generated code provide a good solution to implement the first level, as communication

between distributed physical devices and computational nodes is modeled in a

transparent way. Level 2 can be implemented using dataflow transformations, used to

condition, filter and pre-proccess data read from local sensors in order to extract

relevant information that is forwarded to higher-level computing nodes. In the same

way, the cyber level can be implemented using higher-level DS-Pnet models and

algorithms implemented using foreign components. The user-interface component

library used to implement remote used interfaces and data visualization, in association

with the remote debug and monitoring tools help the creation of decisions support

systems in level 4. Finally, the same tools can be used to implement supervisory control

systems, that will be further augmented in the future with the addition of dynamic

reconfiguration capabilities.

The concept of CPS has been identified by the American National Science

Foundation as an infrastructure to build the smart systems on the 21th century and

dedicated numerous initiatives to the subject [162]. However, the concept has since

been adopted by other entities and lead to several research projects [163][164][165]

[166] and major initiatives as the European Industry 4.0 [167].

37

38

3 The DS-PNET Modeling Formalism

3.1 Language core

The DS-Pnet (Dataflows, Signals and Petri nets) modeling language [26] was

designed to support the development of cyber-physical systems, employing a mixed

approach combining Petri nets [30][31] and dataflows [139][142]. Petri nets are used to

model the reactive part of the controllers whose state evolves according to external

events, and dataflows are used to specify data processing operations, used to perform

mathematical transformations on input signals, and calculate output values. Model

composition based on components, communicating with each other using input and

output signals and events, enable the creation of reusable component libraries and the

implementation of distributed cyber-physical systems containing networks of remote

components communicating through the Internet.

A DS-Pnet model can be divided in two parts. The Petri net part of a DS-Pnet

model is a non-autonomous low level Petri net, inheriting the main characteristics of the

parent IOPT Petri net class [29], including a maximal step execution semantics,

transition priorities, transition guards and transition input events. The dataflow part

inherits principles from synchronous dataflows, where the execution time of dataflow

operations is considered instantaneous, with no propagation delays. The external

interface of DS-Pnet models (and components) also inherits the characteristics of IOPT-

nets, including the input and output signals and events and the Boolean and integer

range data-types.

Dataflow and Petri net nodes interact with each other in a bidirectional way. From

one side, dataflow operations may be used as guard expressions or as transition input

events to prevent transition firing. From another side, dataflow operations may use

39

3

place marking and events triggered by transition firing to calculate output values. To

ensure deterministic execution, a set of semantic rules has been defined, specifying the

relationships between the Petri net nodes and dataflow nodes, presented at the end of

this chapter.

Tables 1 and 2 present the Petri net and dataflow elements available in DS-Pnets.

Place Low-level Petri net place that may hold a positive integer number of tokens

Characteristics:
- Unique identifier
- Initial Marking: Zero or positive integer number
- Name: Text String
- Comment: Text String
- Graphical position {X,Y}

Transition Low level Petri net Transition

Characteristics:
- Unique Identifier
- Priority: Integer number
- Name: Text String
- Comment: Text String
- Graphical position {X,Y}

Petri net
Arc

Traditional Petri net arc used exclusively to connect places and transitions

Characteristics:
- Unique Identifier
- Inscription/weight: natural number
- Source and target node identifiers
- Visualization mode: Graphic / Symbolic

Table 1: Petri net elements

Signal Signal – Variable used to convey information whose value varies with time

Characteristics:
- Signal name: valid unique identifier
- Data-type: Boolean or Integer range (min, max)
- I/O Mode: Input (green), output (red) or internal (gray)
- Comment: Text String
- Graphical position {X,Y}

Event Event – Represents an instantaneous happening that occurs during a single
execution step

Characteristics:
- Event name: valid unique identifier
- I/O Mode: Input (green), output (red) or internal (gray)
- Comment: Text String
- Graphical position {X,Y}

Operation Dataflow node, called operation, calculates one or more output values
using mathematical expressions combining inputs and literal values.
Contains a set of anchors to connect read arcs.
Input anchors are drawn as green and outputs as red.
Model designers may choose trapezoid/arrow, circle or rectangle shapes.
A collapsed visualization mode, where only the math-expressions are
visible, helps reduce clutter.

Characteristics:
- Unique identifier

40

- Name: text string
- Comment: text string
- Shape: Trapezoid, Rectangle or Circle
- Size: Natural number
- Inputs: Name, data-type, dynamic-type, dynamic-name
- Outputs: Name, math-expression, data-type, dynamic-type, dynamic-mode
- Visibility: Graphical / collapsed
- Lock: Locked / Editable
- Graphical position {X,Y}

Read Arc Read arc - used to transmit data between nodes:
Transmit data when connecting dataflow nodes, input and output signals
Transmit events when connecting events and transitions
Also used to read place marking without removing tokens from the input
place (test-arc)

Characteristics:
- Unique Identifier
- Visualization mode: Graphic / Symbolic
- Source and target nodes

Table 2: Dataflow nodes

The Petri net elements of a DS-Pnet model behave as traditional low level P/T net

nodes [30]. The state of the Petri net part of a model is defined by the number of tokens

in each place, called the net marking, whose evolution depends on the transiton firing

sequence.

Transition firing is controlled by the set of arcs ending at the respective transition,

that may be Petri net arcs or read arcs. A transition is enabled when all input places hold

enough tokens to satisfy the weights inscribed in the respective arcs. However,

transition firing may be subsequently inhibited by read arcs, in form of guards, input

events, test arcs and synchronous channels. Table 3 presents a list of possible constructs

built using read arcs and Petri net arcs. It is important to notice that Petri net arcs are

drawn with an arrow near the target node, read arcs transmitting events finish with a

diamond and read arcs transmitting Boolean guard-condition values finish with a circle.

This graphical format was chosen for compatibility with the existing NCES Petri net

class that used a similar graphical notation [39].

Execution of a DS-Pnet model is performed in discrete steps, called execution-

steps. In each step all dataflow nodes and transitions are evaluated. Due to the bi-

directional interactions between transitions and dataflow operations and master-slave

dependencies imposed by synchronous channels, a deterministic evaluation sequence

was defined, attributing a set of micro-step and nano-step numbers to each transition

and dataflow node. The simulation and automatic code generation tools employ these

numbers to schedule the calculations of dataflow nodes and to evaluate the transition

firing, ensuring that all values required to calculate a certain result were previously

obtained.

41

Petri net arc Traditional Petri net arc – firing is only possible when the
number of tokens on the input place is equal or exceeds the
arc weight inscription.
Input tokens are removed from the input place upon firing.
When all input places hold enough tokens, the transition is
said to be “enabled”.

Test Arc A read arc tests if a place is marked and holds at least one
token.
Firing is inhibited when the place has no tokens. Upon firing
no tokens are removed from the input place. The read arc
transmits the value of the place marking on the previous
execution step. As read arcs have no weight inscription,
multiple-token marking conditions may be specified using
dataflow comparative operations.

Guard
condition

Read arcs starting on dataflow operations or starting directly
on signals define transition guards. A transition may only fire
when all guard conditions hold true.

Input Event Read arcs starting on a event or a dataflow operation that
produces an event result, define transition input events. A
transition may only fire when the event was triggered during
the present execution step.

Synchronous
channel

A read arc connecting two transitions defines a synchronous
channel. When the master transition fires, it emits an event
received by the slave. The slave transition can only fire if the
master has fired on the same execution step. However, the
master transition may fire independently of the slave.

Table 3: Transition firing inhibition constructs

Cyclic dependencies between dataflow nodes or transitions, considered modeling

errors, are detected during micro-step/nano-step assignment, discussed at the end of this

chapter. For example, the inputs of a dataflow operation may not depend on other values

that were calculated based on it's own results. In the same way, the master-slave

relationships between transitions connected though synchronous-channels cannot form

loops. To avoid cyclic dependencies, a delay operator, inherited from synchronous

dataflows [142], may be employed in mathematical expressions to refer values

calculated on previous execution steps. As the values from previous execution steps are

memorized, they can be used anywhere in the model without creating calculation loops

and thus preserving the synchronous paradigm.

Transition firing evaluation follows a maximal step semantics, meaning that all

transitions that are enabled and ready to fire must fire on the next execution step.

Conflicts between transitions may occur when multiple enabled transitions compete for

the same tokens from shared input places, but the number of existing tokens is not

42

enough to fire all of them. In this situation, transitions are sorted using a triple criteria

(micro-step number, priority and identifier) and are sequentially evaluated by this order.

This way, synchronous-channel masters are evaluated before slaves, the transitions with

lower priority numbers will be evaluated first, and finally, the transitions with the same

micro-step and priority values will be sorted by identifier. In case a conflict occurs, the

transitions evaluated first will grab the disputed tokens. To assist conflict resolution, the

editor tool calculates the evaluation sequence, presented as numbers inside each

transition.

3.2 Dataflow operations

Data transformation is performed by dataflow nodes, called operations, that apply

mathematical expressions to input data and calculate output values (output expressions).

By default, each operation has only one output, but it is possible to add multiple

outputs. In this case, each output is associated to a data type and mathematical

expression. An operation with multiple outputs is equivalent to multiple single-output

operations sharing the same inputs, thus reducing the number or arcs on screen.

Output expressions may be composed of a single mathematical expression or

multiple conditional expressions using WHEN/OTHERWISE constructs. When more

than one expression is specified, all expressions, except the last, must contain a WHEN

condition. Evaluation is performed starting from the first expression and stops when the

first valid WHEN condition is found. In the following two examples, o10.out uses a

single-expression and o11.out employs multiple conditional expressions:

o10.out = (i1 + i2 + i3) / 3

o11.out = i1 WHEN (i1 > i2 AND i1 > i3)

i2 WHEN (i2 > i1 AND i2 > i3)

i3 OTHERWISE

Mathematical expressions are composed of operands and operators, as listed in

table 4. Operands may consist of literal values, expressed as decimal or hexadecimal

numbers (0x prefix), or operation input-anchor names. Mathematical expressions may

only refer to local names of the operation input anchors. This way, all the relationships

between nodes and data dependencies are explicitly visible through read-arcs. This

restriction also brings advantages in the reuse of existing operations, permitting the

creation of libraries containing frequently used operations. As all dependencies between

dataflow operations are expressed using arcs, it is possible to duplicate or copy&paste

parts of other models without the risk of loosing hidden dependencies to external

signals.

43

Arithmetic operators

Addition +

Subtraction -

Multiplication *

Division / (VHDL requires a power of 2 as 2nd operand)
A 1/N data table may be employed for different denominators.

Modulus / Remainder MOD (VHDL requires a power of 2 as 2nd operand)

Unary - / Symetric -

Comparative operators

Less than <

More than >

Less or equal <=

More or equal >=

Equal =

Different <>

Logic operators

Logical and AND

Logical or OR

Logical xor XOR

Logical NOT NOT

Bitwise operators

Bitwise AND ANDB

Bitwise OR ORB

Bitwise XOR XORB

Bitwise NOT NOTB

Other operators

Sub-expression ()

Delay operator input[-n] Fetch the past value of an operation input from a previous
execution step (n steps go)

Table/Array index table[in]

Conditional operator WHEN

Default condition OTHERWISE

Table 4: Expression operators

In addition to the standard arithmetic, comparative and logic operators, DS-Pnet

defines a delay operator, used to access data from previous execution steps. This

operator may be used for different purposes, including the detection of events caused by

changes in input signals and the implementation of signal filters in the time domain, but

it also may be used to avoid cyclic dataflow dependencies. Signals associated with the

delay operator imply the existence of memory elements to store the values of this signal

on the previous execution steps, implemented in a shift-register fashion.

44

However, a side effect of this operator may also be used to optimize hardware

implementations: As the hardware code generator implements dataflow operations using

combinatory logic, models with long chains of dependent operations would produce

long chains of combinatory logic, that would impose restrictions in the maximum clock-

frequency. The delay operator breaks these chains, splitting the calculations through

several consecutive clock cycles, conducting to pipelined implementations: dataflow

operations before a delay operator are calculated in clock cycle N, but the operations

after this operator are calculated in the next clock cycle (N+1).

Each dataflow operation may hold a bi-dimensional array1 used do store constant

data tables, for instance containing the values of general purpose functions of one or

two integer arguments. Individual table elements are accessed in mathematical

expressions using the “[]” operator. The editor tool offers functions to fill the table

contents from mathematical expressions and has the ability to import and export data in

spreadsheet compatible formats (CSV). Tables of precalculated data simplify the

implementation of general purpose functions using re-configurable hardware and low-

end micro-controller devices.

Operations without any input anchors may be used to specify constant values. To

simplify constant definition, the editor has a tool that automatically creates a dataflow

operation from a numeric value.

All values used in mathematical expressions must have well defined data-types.

The available signal data-types, inherited from the IOPT Petri net class, are Boolean and

integer ranges. Fixed point data-types with 8, 16 or 24 fractional bits are planned for a

future implementation. These data-types were selected to support code generation for

very low end hardware architectures, as 8 bit micro-controllers and re-configurable

hardware. However, in the future, the automatic code generation tools may implement

fixed point arithmetic operations using floating-point hardware on targets that support it.

In addition to the Boolean and integer range data-types, an event data-type was

defined, representing instantaneous happenings that typically hold true for only a single

execution step. In this way, the DS-Pnet event node may be seen as a signal associated

to an event data type. Operation input and output anchors may be assigned the event

data-type, that is treated inside mathematical expressions as Boolean values.

In the same way as the input and output signals, each dataflow operation input and

output anchor is assigned to a data-type. This assignment may be performed explicitly

by the designer or automatically by the system. As the manual assignment of data-types

1 For uni-dimensional tables, the 2nd dimension may consist of a single column.

45

and names to individual anchors may become a time consuming task, an algorithm to

dynamically define these values was created. By default, all input and output anchors

have dynamic names and data-types, that change dynamically whenever an arc is

attached to an input anchor. However, the designer may choose to define fixed names or

data-types that remain unchanged when connecting arcs. In this case, the tools must

verify data-type compatibility between the source and destination nodes of read-arcs.

Users must also check for data-type mistakes, as any integer range value connected to

Boolean signals or input anchors are automatically converted to true of false.

The dynamic data-type of an input anchor is copied from the source node

whenever an arc is attached. In the same way, the source node names are used to

dynamically define input anchor names. A set of heuristic rules are employed to define

the data-type of output anchors:

• Boolean: when the output expression contains comparative and logic operators

(except inside WHEN conditions)

• Boolean: when all input anchors are also Boolean values

• Integer range otherwise. The range limits are obtained the minimum and

maximum of all input anchor ranges 2.

Usually these heuristic rules produce the expected results in most cases, but the

user can manually change the data-types and disable dynamic type assignment. In the

same way, the anchor names assigned during arc attachment may not produce the

desired naming. For instance, some operations have typical names, as «reset» or

«enable» that may not match the arc’s source node names.

When the data-type of a signal or an anchor suffer changes, these changes will

propagate though read-arcs and mathematical expressions through the dataflow nodes

that depend on this value, as long as the respective anchors have dynamic data-types.

3.3 Components

The external interface of a model is composed of a set of input events, input

signals, output events and output signals defined in the model. Signals and events

defined as «internal» are provided as a convenience to give explicit names to internal

values, and help reduce the number of long arcs crossing the models. A model may be

used to implement an entire application, or may be used as a component to build more

complex systems, or both things simultaneously. This way, whenever the user saves a

2 A better heuristic would calculate the minimum and maximum values of the output expression for all
combinations of input values, however the computation time would impose interactivity drawbacks during
model edition.

46

model, a component symbol with the corresponding

interface is automatically created.

Almost all programming languages and modeling

formalisms offer some form of structuring mechanisms to

enable the division of large models into smaller parts or

sub-systems, or the composition of new application models

based on existing modules. DS-Pnets support model

composition based on components that communicate with each other (and to the

external world) using an external interface defined by input and output signals and

events.

A component, as presented in figure 5, may be viewed as an object in object-

oriented languages, containing its own internal data and algorithms. It may be

implemented using another DS-Pnet model or designed using any other modeling

formalism, as long as the external interface may be specified as a set of input and output

signals and events. For example, a component could be implemented using an existing

IOPTnet model [29], an IEC61399 function block [69][70], a digital integrated circuit

or an IP core, even if the internal details of these components are now known.

Components may also be used to interface with existing software code, used to

invoke algorithms and encapsulate objects defined in object-oriented languages. In this

case, the component may contain a set of input events, used to invoke the object

methods and a set of input signals used to pass parameters to these methods. Output

signals may be used to pass results and expose status data and output events to

acknowledge data reception, mark the completion of algorithms or error exceptions. The

DS-Pnet “C” code generator tool supports external components, defining data-structures

and function-calls to implement the glue-logic used to communicate with the external

code.

A DS-Pnet application may be constructed using components implemented with

different technologies or distributed through different devices, as long as it is possible to

establish a communication layer between the components and the top model. For

example, a co-design solution might employ a main model implemented as software and

some components as hardware3. In this case, the glue-logic just transfers input and

output data though the interface from the CPU running the main application to the

hardware where the components were synthesized, that depends on both the operating

system and the tool-chain offered by the hardware vendor. In the same way, a DS-Pnet

3 To employ with the existing FPGA PCI cards for personal computers, or system-on-chips containing both CPU
cores and re-configurable hardware, as the Xilinx Zinq platform.

47

 Fig. 5: Component

model may be implemented using a network of distributed components, located at

remote Internet locations. To implement these solutions, a communication protocol

based on JSON/HTTP has been specified [22][129], and client/server software added to

the automatic C code generators, permitting the design of distributed cyber-physical

systems in a transparent way, as described in chapter 5.

Components are represented graphically as a dark-gray rectangle with a set of

input and output anchors. Contrary to dataflow operations, the names and data-types of

the anchors are fixed and cannot be changed, unless the underlying implementation

model is changed. Component symbols are generated automatically from the list of

signals and events of a DS-Pnet model (or IOPTnet model). The names and data-types

of each input/output are fetched from the original DS-Pnet model, and are sorted

according to the Y coordinate, with events always on top, inputs on the left side and

outputs on the right.

In addition to the list of input and output anchors, each component is also

characterized by an identifier, a name, a comment string, a class name and information

about the implementation and target hardware. The component implementation refers to

the formalism used to develop and specify the component behavior, that may be a DS-

Pnet model, an IOPT-net model or a Foreign component. Foreign components are

designed with other tools and development languages, whose code will be linked/added

to the output of the automatic code generator tools.

The interface of a foreign component may be specified creating an empty DS-Pnet

model, just adding a list of input and output signals and events, and setting the

implementation property as “foreign”. The target property of a component refers to the

code generators employed; default, software, hardware or remote. This way, it is

possible to support co-design solutions where some components are implemented as

software and other as hardware and, in the future, the glue logic for specific hardware

platforms may be added to automatic code generators.

Two additional string parameters, «resource-location» and «param-string» are

used to support the implementation of foreign components and distributed Cyber-

physical systems. The resource location is used to pass information to the “C” code

generation tools about the location of remote components, including an internet address

or a logical node address and the component identifier on the remote model. When

applied to foreign/external component implementation, the resource location property

may be used to specify the location of data-files, including user interface icons and

sound wave files, data-base tables, communication ports, etc. The «param-string»

48

property may be used to pass application related parameter data, as communication port

parameters, user interface text strings and keyboard accelerator shortcuts, etc.

Distributed Cyber-physical systems usually employ networks of remote

components. These components may be designed and developed by third parties and be

used simultaneously by several applications. For example, a traffic sensor located on a

road may be used by multiple traffic control applications running on in-vehicle systems

or mobile computing devices. To achieve this, the external interface of these

components must be accessible from the Internet, even if the implementation

model/code is hidden.

3.4 Example DS-Pnet model

Figure 6 presents an example model illustrating common DS-Pnet constructs,

including the relationship between dataflow and Petri net nodes. This model mixes both

types of nodes side-by-side. However, if desired, the dataflow nodes could be drawn

apart from the Petri net nodes and symbolic-view arcs used to connect both parts, thus

separating the data-processing part from the reactive controller part of the model.

This model employs 3 input signals, where «Btn» is a Boolean signal and

«Input1» and «Input2» have an integer range data type. Another input, «Start» is an

event that represents an instantaneous happening. In a similar way, the model has two

output signals, a Boolean «LedOut» and an integer range «Counter» and also produces

an output event «OutEvent».

49

 Fig. 6: Example DS-Pnet model

The execution of this model is centered on the behavior of the transitions, whose

firing is conditioned by both the place marking and dataflow nodes, with guards and

input events coming directly from input signals and from dataflow operations.

When model execution starts, the places «PA1» and «POff» are marked and, as a

result, transitions «TA1A», «TA1B» and «TB1» are enabled. In addition, the transition

«TA4» is also enabled. In fact, this transition is always considered enabled as it does not

have any input Petri net arc. It is connected to place «PA1» using a test arc that reads the

place marking but does not consume any tokens.

Transitions «TA1A» and «TA1B» are both inhibited using input events, as

«TA1A» is connected directly to the «Start» external input event and the firing of

«TA1B» is controlled by an event generated internally by the «Up» dataflow operation.

The event is calculated using the output expression «I[-1]=0 and I=1» that employs the

delay operator «[-1]» to fetch the value of the input signal on the previous execution

step, detecting positive-edge signal changes from zero to one, corresponding to the

instant when the user presses a button.

The previous expression produces an event based to a simple edge-up detection.

However, using different expressions it is possible to define more complex event

semantics. For example, one problem that often arises with mechanical switch buttons is

called «bounce»: instead of producing a single edge-up transition, a button might

produce a very fast train of pulses while the metallic contacts are approaching each

other but are not fully connected yet. In order to overcome this problem, an expression

like «I[-4] = 0 and I[-3] = 1 and I[-2]=1 and I[-1]=1 and I=1» will employ the past four

input values to filter bounce pulses and ensure that the signal is stable during the past

four execution steps4. Similar expressions may be used for other purposes, to filter high

frequency noise from digital input signals.

As previously referred, when execution starts, both transitions TA1A and TA1B

are simultaneously enabled. However, place «PA1» has only one token, that is not

enough to fire both transitions. As a result, if the events inhibiting the firing of these

transitions happen during the same execution step, a conflict between the transitions

will arise. Conflicts are commonly solved by assigning different priorities to each

transition: in this case, only the transition with lower priority number will fire. When

both transitions have the same priority number, firing is sorted according to the

respective unique identifiers, meaning that the oldest (firstly drawn) has priority.

4 As the execution step frequency is often much larger than the of bounce pulse frequency (MHz vs Hz), a more
robust bounce filter solution might employ a counter component.

50

After one of these transitions fire, place «PA2» will be marked and transition

«TA2» will be enabled. However, «TA2» is inhibited by a guard operation that

compares «Input1» and «Input2». When the value of «Input1» exceeds «Input2», TA2

will immediately fire in the next execution step and «PA3» will be marked.

Place «PA3» is connected to a dataflow operation «Act» that calculates the value

of an output signal «AnalogOut». The output expression uses a WHEN/OTHERWISE

construct to calculate the output value: 10 when PA3 is marked and 5 otherwise5.

However, place «PA3» is only marked during a single execution step, as the transition

«TA3» is not inhibited by any guard or input event and will fire as soon as it is enabled.

This way, the output of «AnalogOut» will consist on a steady value of 5 with sporadic

spikes with value 10. After «TA3» fires, place «PA1» will be marked and the left part of

the model (PA1, PA2, PA3) will return to the original state.

Transition «TA3» is connected to transition «TB1» using a read-arc, forming a

synchronous-channel where «TA3» is the master and «TB1» is the slave. This means

that transition «TB1» may only fire if «TA3» also fires in the same execution step.

However, «TB1» may not be able to fire when «TA3» fires, as «TB1» may not be

enabled: «Poff» unmarked or the guard signal «Enable» many not hold true.

When «TB1» fires, place «POn» will be marked during exactly one execution

step, as transition «TB2» will immediately fire. This way, the output «LedOut»

connected to place «PB2» will blink during one execution step, while the place is

marked and the event «OutEvt» will be triggered on the next execution step, caused by

the firing of «TB2». As this point, the right side of the model (POff, POn) will also

return to the original state with «POff » marked.

The complete state of this system is composed of the place marking and also by

the «Counter» output. The value of this output must be memorized by the system as it is

used in association with the delay operator «[-1]» in the «Cnt» operation. The respective

value is incremented when «TA4» fires (while «PA1» is marked), is decremented when

«TA2» fires and remains constant otherwise. The real values of the «Counter» output

are limited by the integer range limits defined in the data type.

5 The word OTHERWISE is implicit on the last expression of a WHEN construct and is optional.

51

3.5 Model files

DS-Pnet models are stored using a XML file format. XML was chosen due to the

wide support across almost all programming languages, the availability of many parsing

libraries and processing and validation tools, including dictionary based syntax

validation (DtD, RelaxNG), query languages (Xpath, Xquery) and transformation

engines (XSLT).

Although a standard XML file format to represent Petri net models (PNML)

exists, it was not used. First, it would require non-standard extensions to represent input

and output signals and the dataflow part of DS-Pnet models. Second, the PNML syntax

is too verbose, where node properties are usually stored inside children nodes, requiring

increased parsing effort to process model files, with a negative impact on tool

development. Finally, the chosen XML data format can be easily converted to PNML

using simple XSL transformations. In fact, the IOPTflow framework includes a

transformation that extracts the Petri net part of a DS-Pnet model and converts it to an

IOPTnet model, stored as a PNML file. This model may be subsequently processed with

the IOPT model-checking tools.

The following XML document contains an excerpt of the model file presented in

figure 6, truncated to include just one example of each type of DS-Pnet nodes:

52

<?xml version="1.0"?>
<net name="tst3" type="iopt-flow">
 <place id="p001" x="210" y="125" init_marking="1">
 <name off_x="-10" off_y="-10" text="PA1"/>
 <comment off_x="0" off_y="20" text="-"/>
 </place>
 <transition id="t006" x="150" y="200" priority="0">
 <name off_x="-10" off_y="-10" text="TA1A"/>
 <comment off_x="0" off_y="20" text="-"/>
 </transition>
 <event id="Start" x="50" y="200" mode="input"/>
 <signal id="Input1" x="50" y="315" mode="input" type="boolean" min="0" max="1"/>
 <signal id="LedOut" x="725" y="285" mode="output" type="range" min="0" max="255" dynamic="type"
frac="0"/>
 <arc id="a010" type="normal" source="p001" target="t006"/>
 <arc id="a021" type="read" source="Start" target="t006"/>
 <operation id="o028" x="120" y="140" rot="0" shape="arrow" size="16">
 <name off_x="-11" off_y="-16" text="Up"/>
 <input off_x="-16" off_y="0" name="i" id="o028.i" type="range" min="-32768" max="32767"
frac="0"/>
 <output off_x="16" off_y="0" name="out" id="o028.out" type="event" min="0" max="1"
dynamic="none" frac="0">
 <expression>
 <text>i[-1] = 0 AND i = 1</text>
 <operand type="signal" idRef="i" delay="1"/>
 <operator type="equal"/>
 <operand type="literal" value="0"/>
 <operator type="and"/>
 <operand type="signal" idRef="i"/>
 <operator type="equal"/>
 <operand type="literal" value="1"/>
 </expression>
 </output>
 </operation>
</net>

Listing 1: Part of the DSP-net XML document from the model presented on fig. 2.

Each node contains the XML representation of the respective DS-Pnet node

characteristics presented in tables 1 and 2. In order to simplify parsing, most of these

characteristics are encoded as XML node properties, except for items that may have

multiple instances in the same node, encoded as child nodes. The name and comment

characteristics, not employed by the execution semantic tools6, are also stored into

children nodes.

Mathematical expressions are encoded as an hierarchical XML tree, containing a

sequence of operands and operators. A list of available operators has been presented in

table 4. Operands may consist of literal values, operation input names and sub-

expressions. This format was chosen to simplify the implementation of the automatic

code generation tools, simplifying the translation to the syntax of the target languages,

that may have different rules.

Component instances have a XML encoding similar to dataflow operations, with a

list of input and output signals and events. Listing 2 presents an example instantiation of

a foreign component implementing an interface to communicate with industrial devices

using the ModBUS field-bus protocol. Each component instance contains a reference to

the source model implementing the component, that are be used by code generation

tools to build flat models of entire systems. Two additional attributes, resource location

and parameter string, are used by the automatic code generation tools to pass

information to foreign components, coded using external programming languages. In

this example, are used to select a serial port adapter and define the serial communication

parameters.

6 Although the comment attribute may be used by foreign components.

53

<component id="c1" class="protocols/modbus_if.xml" x="630" y="585" width="170" height="180" rot="0"
implementation="iopt-flow" target="external" res_location="/dev/ttyUSB0" param_string="19200,8,N">
 <name off_x="-85" off_y="-95" text="modbus"/>
 <source_model file="files/modbus_if.xml"/>
 <input id="c1.ReadInput" name="ReadInput" type="event" off_x="-85" off_y="-/>
 <input id="c1.WriteCoil" name="WriteCoil" type="event" off_x="-85" off_y="-30" />
 <input id="c1.WriteReg" name="WriteReg" type="event" off_x="-85" off_y="-10" />
 <input id="c1.m_id" name="m_id" off_x="-85" off_y="10" type="range" min="0" max="255" />
 <input id="c1.s_id" name="s_id" off_x="-85" off_y="30" type="range" min="0" max="255" />
 <input id="c1.Addr" name="Addr" off_x="-85" off_y="50" type="range" min="0" max="65535" />
 <input id="c1.WrValue" name="WrValue" off_x="-85" off_y="70" type="range" min="0" max="65535" />
 <output id="c1.RecvAns" name="RecvAns" type="event" off_x="85" off_y="-70" />
 <output id="c1.Error" name="Error" type="event" off_x="85" off_y="-50" />
 <output id="c1.Ready" name="Ready" off_x="85" off_y="-30" type="boolean" />
 <output id="c1.RdID" name="RdID" off_x="85" off_y="-10" type="range" min="0" max="255"/>
 <output id="c1.RdValue" name="RdValue" off_x="85" off_y="10" type="range" min="0" max="65535" />
</component>

Listing 2: XML representation of a component instance.

3.6 Execution Semantics

The DS-Pnet modeling formalism combines concepts from Petri nets and

dataflows. Although both fields have been extensively studied in the past [30][31][32]

[33][75][139][142][144][145][146], the interaction between dataflow operations, input

and output signals and Petri nets must be studied. In order to ensure deterministic

execution, the semantic rules resulting from such interactions must be well specified.

An early version of the DS-Pnet formal definition has been presented in [26]. Later,

during the implementation of the automatic code generation tools, additional

requirements were added, needed to obtain coherent execution behavior between

software and hardware implementations, described in [28].

3.6.1 Formal definition

A DS-Pnet model is a directed graph, combining Petri net nodes, dataflow

operations and input and output signals and events. The Petri net nodes are used to

model the system state and reactive behavior, dataflows nodes are used to perform data

processing and signals and events define the external interface.

Definition 1: A DS-Pnet model is described as a tuple DS-Pnet = (P, T, S, E, O, A,

R, m0, s0, w, pt, ex, st, ot) satisfying the following requirements:

1) P is a finite set of places

2) T is a finite set of transitions

3) S is a finite set of signals

4) E is a finite set of events

5) O is a finite set of dataflow nodes, called operations

6) P T S E O = ∪ ∪ ∪ ∪ ∅
7) A is a finite set of Petri net arcs with A (P×T) (T×P)⊆ ∪

8) R is finite set of read arcs with

 R ⊆ (S×S) (S×O) (S×T) (O×S) (O×O) (O×T) ∪ ∪ ∪ ∪ ∪ ∪
(P×T) (O×E) (E×O) (E×E) (E×T) (T×T)∪ ∪ ∪ ∪ ∪

9) s ∀ S, #{(∈ x×s)|(x×s) R} ∈ ≤ 1 (signals have no more than one input arc)

10) e ∀ E, #{(∈ x×e)|(x×e) R} ∈ ≤ 1 (events have no more than one input arc)

11) m0 is the initial place-marking function with mapping m0: P→ N0

12) s0 is the initial signal values partial function with mapping s0: S ↛ N0

13) w is the Petri net arcs weight function with mapping w: A → N

14) pt is the transition priority function with mapping pt: T→ N0

15) ex is a function applying operations to mathematical expressions
 (where non-literal operands(nlop) are the source of input arcs)
ex : O → exp, where nlop exp(O), nlop {x|(x,O) R}∀ ∈ ∈ ∈

16) st is a signal type function with mapping st: S→ t, t ∈ {Boolean, Range}

17) ot is an operation result type function with mapping ot: O→ t, t ∈ {Boolean, Range, Event}

54

For improved readability, this definition has been simplified in two ways:

a) Components have not been considered. However, a model containing

components may be transformed into a flat model, without components, where the

component anchors are converted into signals and events, adhering to the previous

definition. Components implemented as DS-Pnet models are absorbed into the main

model and the respective anchors are converted into internal signals and events. Inputs

and outputs of foreign components, that may consist of physical devices or systems

implemented using external tools, are respectively transformed into output and input

signals that are appended to the external interface of the main model.

b) Operation input and output anchors have been omitted. However, anchors are

only used as an edition aid to attach arcs, simplify the writing of mathematical

expressions and allow the copy&paste of model sections. Anchor names may be

replaced in mathematical expressions by the identifier of the respective driver arcs, as

presented in figure 7. In addition, operations with more than one output may be split

into multiple single-output operations, cloning the corresponding input arcs. This way,

the operation identifier may be used to refer the respective output, leading to an

equivalent model without any anchors. Finally, the restrictions applied to signals must

also apply the input and output anchors: input anchors may not be driven by more than

one input arc and output anchors may not have input arcs.

The external interface of a DS-Pnet system is defined by a set of input and output

signals and events, that are a subset of the system’s signals and events.

Definition 2: The external interface of DS-Pnet system is a tuple EIF = (IE, IS,

OE, OS) satisfying the following requirements:

1) IE E⊆

2) IS S⊆

3) OE E⊆

4) OS S⊆

5) IE ∩ IS ∩ OE ∩ OS = ∅
6) s ∀ IS, {(∈ x×s)|(x×s) R} ∈ = ∅ (input signals have no input driver arcs)

7) e ∀ IE, {(∈ x×e)|(x×e) R} ∈ = ∅ (input events have no input driver arcs)

55

 Fig. 7: Anchor equivalence: the operation on the left is
equivalent to the dataflow node on the right.

SUMi2

i3

i1

i1+i2+i3

8) s ∀ OS, #{(∈ x×s)|(x×s) R} ∈ ≤ 1 (output signals have no more than one driver arc)

9) e ∀ OE, #{(∈ x×e)|(x×e) R}∈ ≤ 1 (output signals have no more than one driver arc)

In addition to the external interface, a DS-Pnet system may be decomposed in two

parts, the state control logic and the data-processing parts:

Definition 3: The state control part of a DS-Pnet is a low level Petri net defined

by a tuple PN = (P, T, A, m0, w, tp, R-) where:

1) P is the DS-Pnet set of places

2) T is the DS-Pnet set of transitions

3) A is the DS-Pnet set of Petri net arcs

4) m0 is the initial place marking mapping m0: P → N0

5) w is the DS-Pnet arc weight mapping w: A→ N

6) tp is the DS-Pnet transition priority mapping: T → N0

7) RP is a subset of the DS-PNet set of read arcs such as RP R R⊆ ∧ - (P⊆ ×T) (T×T)∪
(test arcs and synchronous channels)

Definition 4: The data processing part of a DS-Pnet model is a dataflow DF =

(O, S, E, R+
, s0, ex, st, ot) where:

1) O is the DS-Pnet set of dataflow operation nodes

2) S is the DS-Pnet set of signals

2) E is the DS-Pnet set of events

4) RD is a subset of the DS-Pnet read arcs RD
 = R – RP

5) s0 is the initial signal values partial function s0: S N↛ 0

6) ex is the DS-Pnet operation expressions function

7) st is the DS-Pnet signal types function

8) ot is the DS-Pnet operation results type function

The results of operation mathematical expressions (ex in definition 1) must belong

to one of the data types: Boolean, event or integer range. A fixed point integer range

data type is planned for the future, but has not been implemented in the current version.

Operation mathematical expressions are constructed using the following items:

- Literal operands: decimal values or hexadecimal values (prefixed with «0x»)

- Variable operands corresponding to the graph nodes directly connected through
input arcs (graphically attached to input anchors)

- The arithmetic operators +, -, *, / and MOD, plus the unary operator -

- The comparison operators <, <=, >, >=, <> and =

- The logical operators AND, OR, XOR and the unary operator NOT

- The bitwise operators ANDB, ORB, XORB and NOTB

- Sub-expressions inside curly parentheses

56

- The delay operator ([-N]) used as suffix to variable operands, to refer past values
from previous execution steps

- The array index operator ([+i]) used as suffix to tables of constant values stored
in operations7

- The conditional operators WHEN and OTHERWISE to build «case» constructs

The state of a DS-Pnet system is composed of the Petri net place marking and the

previous values of signals, events and operations, used in association with the delay

operator, memorized as shift-registers:

Definition 5: The state of a DS-Pnet model is tuple MS = (m,ps,pe,po) where:

1) m is the place marking, m: P → N0

2) ds S ⊆ is the subset of signals associated with the delay operator

3) de E ⊆ is the subset of events associated with the delay operator

4) do O ⊆ is the subset of operations associated with the delay operator

5) ns: ds→N is a function mapping signals to the index of the oldest value accessed with the delay operator

6) ne: de→N is a function mapping events to the index of the oldest value accessed with the delay operator

7) no: do→N is a function mapping operations to the index of the oldest value accessed with the
delay operator

8) ps is a function mapping signals to shift register arrays storing the previous signal values ps: ds → [SR]ns

9) pe is a function mapping events to shift register arrays storing the previous events values pe: de → [SR]ne

10) po is a function mapping operations to shift register arrays storing the previous operation values
po: do → [SR]no

3.6.2 Execution semantic rules

The execution semantic rules of DS-Pnet models, combining characteristics from

low level Petri nets [30][31] and synchronous dataflows [139][142], reflect the

formalism heritage. In the same way as the parent formalisms, execution is performed in

discrete steps, but the computation of each step is considered instantaneous, with no

propagation delays between nodes. In typical implementations steps occur at a fixed

frequency, with a predefined time interval between consecutive steps, but variable

frequency implementations are not discarded.

Although the computation of each execution step is considered instantaneous,

observing the synchronous paradigm [142], the evaluation of net nodes, including

dataflow operations and Petri net transitions, must be performed under an exact

sequence, that is defined using the concepts of micro-step and nano-step numbers.

On reactive systems, that respond to external events and changes in input signals,

the most important part of the system state is the Petri net place marking. Previous

7 May be used for software or hardware implementation of mathematical functions of 1 or 2 integer arguments,
based on tables of values.

57

values stored in shift registers perform a secondary role, to generate internal events

associated with the crossing of certain thresholds, or to calculate values that evolve

continuously in the time-domain, as counting, differentiation and integration. Thus, the

controllers are designed around a Petri nets, that evolve according to transition firing. A

transition may only fire (and must fire), when it is simultaneously enabled and ready.

The following definitions cover the rules that govern transition firing:

Definition 6: A transition is enabled when every input place, connected through

Petri net arcs, hold a number of tokens that is equal or larger than the respective arc

weights. For a transition t: (p ∀ P | (p,t) A), m(p) > w(p,t)∈ ∈

Definition 7: A transition guard-condition is defined by an input read arc,

originating on a node containing a Boolean value. Range values are evaluated as true

when different from zero.

Definition 8: A transition input event is defined by an input read arc, originating

on node of type event: an event, a transition or an operation producing a result of type

event.

Definition 9: A transition is ready when all guard conditions and input events

hold true.

Definition 10: Maximal step execution semantics - all transitions simultaneously

enabled and ready are forced to fire on the next execution step.

Definition 11: Conflict – two or more transitions are in conflict when all of them

are simultaneously enabled (and ready), but the number of tokens on the shared input

places is not enough to fire all of them.

Definition 12: Conflict resolution – Conflicts between transitions may be solved

assigning priorities to each transition. Firing priority criteria is defined by: 1) execution

micro-step, 2) transition priority and 3) transition unique identifier.

A read arc starting on a place transmits the number of tokens on that place. If this

read arc ends on a transition, forms a special type of guard function, called a test arc,

meaning that this transition will only fire when the place is marked, but no tokens are

removed from the place. To test if a place has multiple tokens requires a different guard

condition, created using a dataflow operation to compare the number of tokens with the

desired value.

In the same way, read arcs starting on transitions transmit events, called transition

output events. These events, triggered when the transition fires, may be used as input to

dataflow operations, to trigger actions on other components or may be connected to

58

other transitions. When an event triggered by a transition is used as input for other

transition, a synchronous channel is formed. The master transition, emitting the event,

will fire as soon as it is ready and enabled, independently of the slave transition.

However, the slave transition can only fire when the master has triggered an event. This

way, both transitions will fire on the same execution step8.

Synchronous channels are often used to synchronize transitions located in

different components. Systems designed using multiple components may contain long

chains of master-slave transitions, but these chains may not create cyclic dependencies.

As all transitions from these chains may fire on the same execution step, the

corresponding transition firing semantics rules must be evaluated on the same execution

step. However, as the firing of the slaves depend on the firing of the masters, the

execution semantic rules must ensure that the masters are evaluated before the slaves. In

the same way, any dataflow operation that receive events from a transition must also be

evaluated after deciding if the transition is about to fire. To resolve this problem, the

concepts of micro-steps and nano-steps were introduced, permitting the definition of a

precise evaluation sequence to decide transition firing and compute dataflow operations.

Definition 13: Micro-step number assignment:

1) Nodes with no input read arcs are assigned to micro-step 1

2) Nodes with input read arcs are assigned a micro-step number corresponding to the maximum
micro-step associated with these input read arcs, according to the following rules:

a) Read arcs used inside mathematical expressions in association with the delay operator «[-n]»,
are assigned to micro-step 1, as the expression uses memorized values from previous executions steps.

b) Read arcs starting on a transition, propagating transition output events, are assigned a micro-
step number equal to the transition micro-step plus 1.

c) Read arcs starting on non-transition nodes, are assigned the same micro-step number as the
source node.

Nano-steps are used to sequence the dependencies between dataflow operations

evaluated on the same micro-step:

Definition 14: Nano-step number assignment:

1) Nodes with no input read arcs are assigned to nano-step 1

2) Nodes with input read arcs are assigned a nano-step corresponding to the maximum nano-step
number of the input read arcs source nodes, according to the following rules:

a) Read arcs used in inside mathematical expressions in association with the delay operator «[-n]»,
are assigned to nano-step 1

b) Read arcs starting on nodes from past micro-steps, including all places and transitions, are
assigned nano-step 1

8 Assuming both components are running locally on the same time domain. On distributed implementations the
slave may fire later due to communication delays and differences in execution step clocking. In that case the
channel is no longer synchronous.

59

c) Read arcs starting on nodes from the same micro-step, are assigned 1 plus the source node nano-
step number

Lemma 1: Dataflow operations nodes with the same micro-step and nano-step

numbers can be evaluated by any execution order or may be executed in parallel.

The first stage in the execution of DS-Pnet model consists in the assignment of

micro-step and nano-step numbers to all transitions and dataflow nodes, according to

definitions 13 and 14. As a result, these numbers are subsequently used by the automatic

code generation tools to schedule all calculations. However, this task has another

important effect: any cyclic dependencies between dataflow operations and

synchronous-channel transitions are immediately detected, even if the loops form across

multiple components. This corresponds to a common modeling mistake that is usually

solved using the delay operator. When a model contains components, a flat model with

all nodes from all components must be built. The assignment of micro-step and nano-

step numbers, and the detection of cyclic dependencies is performed on the flat model.

Figure 8 displays the same example model as figure 6, with sequence numbering

visualization enabled. Signals and dataflow operations present the respective micro-step

and nano-step numbers. Transitions show an evaluation sequence number, used for

conflict resolution, followed by the respective micro-step number and priority.

In addition to the micro-step and nano-step numbers, it is also necessary to filter

which nodes are required for transition evaluation and which nodes are required for

output signal evaluation. These filters are required by the automatic code generation

tools for software targets, to immediately update the value of output signals after

transition firing, before waiting for the next execution step. For instance, output values

depending on place marking may have to be immediately recalculated after place

marking changes.

60

 Fig. 8: Micro-step and nano-step sequence numbers

In order to optimize the system execution, computations are split into two stages.

On a first stage, only the nodes required for transition evaluation are calculated. Next

transitions are fired and a new marking is calculated. Finally, all other nodes are

calculated, but the nodes that are simultaneously used by transition evaluation and

output signal computations, may have to be calculated twice in the same execution step.

This is required to ensure consistent behavior between software and hardware targets,

and the last implements dataflow operations using combinatory logic.

It is important to notice that the two stage computation process might cause

effects unexpected at first sight, where the value of an output calculated on the first

stage triggers the firing of a transition that immediately changes the value of the same

output on the second stage calculation. As this process is instantaneous, due to the

synchronous paradigm, an external observer would only see a unique change from a

value on the previous step to the final value, and may not understand why the transition

fired. As a result, an execution step of a system described by a DS-Pnet may be

implemented with the algorithm presented in listing 3.

61

read input-signals, input-events
for-each place do
 avail-marking[place] = marking[place]
 add_marking[place] = 0
done
for micro-step = 1 to n-micro-steps do
 // Comment: Stage 1

 for nano-step = 1 to n-nano-steps[micro-step] do
 if required-by-transition-evaluation
 execute data-flow-operations[micro-step][nano-step]
 end if

 done
 for-each transition[micro-step] (sort by priority,identifier)
 do

if transition-is-enabled and transition-is-ready
 then

 for-each input-place[transition] do
 avail-marking[place] = marking[place] – arc-weight

 done
 for-each output-place[transition] do

 add-marking[place] = add-marking[place] + arc-weight
 done
 end if

done
for-each place do
 marking[place] = avail-marking[place] + add_marking[place]
done

for micro-step = 1 to n-micro-steps do
 // Comment: Stage 2
 for nano-step = 1 to n-nano-steps[micro-step] do
 if not(required-by-transition-evaluation) or required-by-output-evaluation
 execute data-flow-operations[micro-step][nano-step]
 end if

 done
done

for-each signal do
 if use-delay-operators(signal) then shift-registered-values(signal)
done
write output-signals, output-events

Listing 3: DS-Pnet execution step algorithm pseudo-code

62

4 Automatic Code Generation

The main goal of the DS-Pnet modeling formalism is the creation of controllers

for embedded systems and build distributed cyber-physical systems (or general purpose

digital systems), running on physical hardware devices. In order to execute the models

on these devices, the corresponding semantic execution rules must be either interpreted

or translated to the native programming languages of the target devices. A compilation

strategy was chosen, generating code that implements the model behavior on several

programming languages. Currently only C, JavaScript and VHDL are supported, but

other languages may be supported in the future, as Java, Matlab, or IEC61131-3

Structured text [168][169], to support programmable logic controllers.

The C programming language was chosen to run models on micro-controllers,

industrial PCs, and small computing boards as the Arduino and Raspberry PI. VHDL

was selected to implement models on hardware devices as FPGAs or ASICs. The

JavaScript code generator is currently only used by the DS-Pnet simulator to run models

directly on the Web browser. It generates code to efficiently run a single execution step,

invoked by the simulator to execute models step-by-step or continuously run. In the

future, the JavaScript code generator may have additional uses, for example to

implement remote Web user interface for embedded devices. The JavaScript code can

perform the computations required for data visualization and user input validation in the

browser, releasing the embedded devices from these tasks, with communication

bandwidth savings.

Co-design solutions for hybrid systems containing both reconfigurable hardware

and microprocessor units may be implemented by selecting hardware or software targets

for each component. However, at this point, the code generator must be called

63

4

separately for the software and hardware parts, and the communication between

hardware and software components must be coded manually, as it is highly dependent

on the hardware details of the target architectures.

In a typical co-design scenario, a software main model runs on the processing

system and hardware accelerated components are synthesized using VHDL. The

hardware component inputs and outputs used to communicate with the main model

must be connected to the bus of the processing system and the main model will read and

write these I/Os using memory mapped variables.

The automatic code generation tools employ the algorithm presented in listing 3

and the definitions presented on chapter 3. Code generation is processed into six steps:

1 – Generate a flat model containing the elements of all components

2 – Define the evaluation sequence, assigning micro-step and nano-step numbers
to the flat model elements

3 – Create a language independent XML file with the model execution semantics

4 – Convert the XML file to the selected target language: C, JavaScript or VHDL

5 - Add client/server code for distributed execution and remote debug (C only)

6 – Pack all source files and support files into a single compressed file

Figure 9 displays the flow of information from step 1 to 5, omitting step 6 that

consists on file packaging and the addition of support files (data-files, makefile, etc.). In

addition to the language independent semantic XML code, the code generators obtain

auxiliary information directly from the original model: The communication layer of the

64

 Fig. 9: Automatic code generation information flow (steps 1-5)

C code employs meta-data information extracted from the main model and the modular

VHDL code generator applies the code generation algorithm to each individual

component.

The first step recursively merges the elements of each component implementation

model into the main model, producing a flat model without components, except for

foreign/external and remote/distributed components. Element identifiers are constructed

appending the original element identifier to the component identifier (ex: «comp1.in3»).

The input and output signals and events of the component interface are converted to

internal signals of the flat model, and the arcs attached to the corresponding component

anchors are reattached to these internal signals.

Step two calculates an execution sequence to compute dataflow operation results

and evaluate transition firing. The dependencies between dataflow nodes and transitions

are evaluated, assigning micro-step and nano-step numbers to each node, according to

definitions 13 and 14. Different instances of the same component element may receive

different micro/nano steps due to input dependencies. Cyclic dependencies, possibly

crossing multiple components, are detected during this phase.

Next, a XSL transformation is applied to the flat model to generate an

intermediary XML document containing instructions to execute the model behavior,

according to the algorithm presented in listing 3. The intermediary XML format,

independent of any programming language syntax, contains a set of directives,

including an header section with data structure and variable declarations and a

procedural section with computational instructions. Mathematical expressions maintain

the same hierarchical XML format as the original DS-Pnet models. Listing 4 presents an

excerpt of this XML code, but complete documents may be viewed using the editor tool.

In the fourth step, other XSL transformations are used to translate the

intermediary XML document to the syntax of the target programming language.

Currently there are transformations to produce C, VHDL and JavaScript.

XSL transformations [135] had previously been used on a preliminary work [6][8]

[14], to generate code from IOPT Petri net models. The new work builds on the

experience previously obtained that conducted to the development of the new multi-step

code generation strategy. The introduction of the intermediary XML document permits

the separation of the code generation in two stages, one dealing only with the semantic

execution rules and other with the syntactic details of each target language. This

separation contributes to ensure behavioral coherency between all code generators, as

the first steps of the code generation are common to all languages. In addition, it also

65

greatly simplifies the creation of new code generators for different languages, as it just

requires translating the intermediary XML files to the new syntax.

66

<execution-semantics model="sample">
 <header>
 <variable name="Input1" orig-node="signal" mode="input" type="boolean"/>
 <variable name="Input3" orig-node="signal" mode="input" type="range" min="0" max="100"
def_value="0" io_pin="0"/>
 <variable name="Input4" orig-node="signal" mode="input" type="range" min="0" max="100"
def_value="0" io_pin="0"/>
 <variable name="Counter" orig-node="signal" mode="output" type="range" min="0" max="1023"
shift-register-depth="1" def_value="0" io_pin="0"/>
 <variable name="InEvent" orig-node="event" mode="input" type="boolean"/>
 <variable name="OutEvent" orig-node="event" mode="output" type="boolean"/>
 <struct name="marking">
 <field name="p1" type="range" min="0" max="255" node-name="P7" def_value="0"/>
 <field name="p2" type="range" min="0" max="255" node-name="P1" def_value="1"/>
 <field name="p3" type="range" min="0" max="255" node-name="P2" def_value="0"/>
 <field name="p4" type="range" min="0" max="255" node-name="P4" def_value="0"/>
 </struct>
 </header>
 <code>
 <procedure name="executionStep">
 <!--Transition T4-->
 <if>
 <condition>
 <operand type="struct" idRef="avail_marking" field="p4"/>
 <operator type="more-or-equal"/>
 <operand type="literal" value="1"/>
 </condition>
 <then>
 <let struct="transition_fired" field="t11">
 <expression>
 <operand type="literal" value="1"/>
 </expression>
 </let>
 <let struct="avail_marking" field="p4">
 <expression>
 <operand type="struct" idRef="avail_marking" field="p4"/>
 <operator type="sub"/>
 <operand type="literal" value="1"/>
 </expression>
 </let>
 <let struct="new_marking" field="p6">
 <expression>
 <operand type="struct" idRef="new_marking" field="p6"/>
 <operator type="add"/>
 <operand type="literal" value="1"/>
 </expression>
 </let>
 </then>
 </if>
 <let variable="o9_out" microstep="1" nano-step="1">
 <expression>
 <operand type="variable" idRef="Counter" delay="1"/>
 <operator type="add"/>
 <operand type="literal" value="1"/>
 <operator type="when"/>
 <operand type="struct" idRef="transition_fired" field="t10"/>
 </expression>

<expression>
 <operand type="variable" idRef="Counter" delay="1"/>
 <operator type="sub"/>
 <operand type="literal" value="1"/>
 <operator type="when"/>
 <operand type="struct" idRef="transition_fired" field="t12"/>
 </expression>
 <expression>
 <operand type="variable" idRef="Counter" delay="1"/>
 </expression>
 </let>
 <let variable="Counter" microstep="1" nano-step="1" min="0" max="1023">
 <expression>
 <operand type="variable" idRef="o9_out"/>
 </expression>
 </let>
 </procedure>
 </code>
</execution-semantics>

Listing 4: Language independent intermediary XML code excerpt.

Cyber-physical systems are frequently designed as networks mixing physical

devices and computational nodes that may be located on different locations. Hence, the

code produced must have the ability to communicate with distributed components

deployed on remote nodes. As components may be located far away, physically placed

in inaccessible locations, or running on inexpensive hardware without user interface

capabilities, remote debug and monitoring assumes paramount importance.

The automatic C code generator employs a fifth step that appends a minimalist

HTTP server to the code generated automatically. This server includes a static part,

independent of the model, that implements a simplified version of the HTTP protocol,

and a dynamic “reflection” part used to obtain meta-information about the DS-Pnet

model, including the names and values of signals, events, internal nodes, system status

and trace information. For simplified parsing and reduced network bandwidth, data is

transmitted in JSON format, using a protocol that will be described later. The server

code may be optionally removed from the final executable program, but is required to

interface with the Web based remote debugger application and to support distributed

applications that must access components running in the generated code.

In a complementary way, a model may use distributed components located on

remote node locations. When this happens, client JSON/HTTP code is added to the

generated C code to open connections with the remote nodes and automatically manage

the communications of events and signal-changes in a bi-directional way.

Finally, the sixth step prepares a compressed ZIP file containing all source code

files and additional support files.

4.1 JavaScript generated code

The JavaScript code generator was originally created as part of the IOPT-Flow

simulator tool, to enable the execution of DS-Pnet models on Web browsers. However,

in the future it may be used to create components for distributed applications where

some components may run on remote physical devices and other components on Web

browsers, enabling the creation of Web user interfaces to remotely monitor and control

cyber-physical systems or build SCADA (supervisory control and data acquisition)

applications. To achieve this, the user interface component library currently supported

by the C code generator, must be ported to JavaScript and HTML. A communication

layer over JSON/HTTP to talk with remote components, must also be added to the code

automatically generated. A similar communication layer written in JavaScript, is already

part of the IOPT-Flow remote debugger application.

67

The output of the code generator is a single JavaScript file containing two

functions, responsible for data initialization and the execution of a single step. It also

contains data structures with information about the model, including input and output

signals and events and internal data as place marking, transitions fired and the current

value of dataflow operations.

The simulator/debugger application user interface displays the model data and

provides a graphical interface to change the values of input signals and events. Before

calling the execution step function, the simulator application must set the appropriate

values on these data structures, including input values selected by the user and system

state variables. The step function operates on these data structures, updates the state

variables (ex. place marking) and defines new output values that are subsequently

displayed by the simulator application.

4.2 VHDL Generated code

Two variants of the VHDL code generator were created: one produces a single

module containing a monolithic implementation of the flat model, and another produces

modular code, generating a main module and additional modules for each class of DS-

Pnet component instantiated in the main module. In the second case, multiple VHDL

files are generated. The main module (and any module containing sub-components),

includes component declarations, instantiation and the respective port mappings.

The external interface of the VHDL modules starts with three input signals: clock,

reset and enable, followed by the list of input and output signals and events present in

original DS-Pnet models. These VHDL modules may be synthesized into hardware and

used as standalone applications, or as components of larger DS-Pnet applications.

However, these modules can be used as any other VHDL entity and may be applied in

other projects developed using traditional hardware description languages.

Internal signals are used to hold the values of the DS-Pnet elements, including

place marking, dataflow operation results and shift-registers (to store values from

previous execution steps). As external input signals, coming from the outside world,

may change at any point during a clock cycle, potentially leading to random execution

errors, the code generator creates internal copies of these signals, sampled at the begin

of each clock cycle. To avoid the propagation of glitches produced by combinatorial

logic, the external outputs of the main module are also synchronized with the clock

signal, resulting in an additional delay of one clock cycle.

Execution semantics is performed by a VHDL process whose syntax offers some

similarities with an imperative programming language, simplifying the translation from

68

the XML intermediary code to VHDL. However, contrary to an imperative language

that sequentially executes instructions, a VHDL process is synthesized as a series of

hardware registers, multiplexers and combinatory logic. In the specific case of the code

generated automatically, the dataflow operations are synthesized as combinatory logic,

and only the system state variables are stored in registers: place marking and the shift

registers holding past values, whose attribution directives are synchronized with the

clock.

Execution is performed at one step per clock cycle. The maximum allowable

clock frequency depends on the hardware employed and the length of the chains of

consecutive dataflow operations present in the models, that may sometimes cross

multiple components. Long chains of dataflow operations that reuse values from

previous nodes may impose a limit to the maximum clock frequency. Fortunately, the

HDL synthesis tool-chains supplied by reconfigurable hardware manufacturers usually

provide analysis tools that calculate the maximum frequency.

When the desired frequency is exceeded, the delay operator may be used to break

these chains of dependencies between dataflow operations. This way, instead of using a

value calculated in the present clock cycle, the dataflow operations will use registered

values calculated in the previous execution steps, corresponding to a pipelined

implementation where the operations before the delay operator are calculated in parallel

with the operations after. The final results will be delayed by one clock cycle, but the

operating frequency may be increased.

When designing models for hardware implementation, special attention should be

paid to integer ranges used to store the results of arithmetic operations, as the hardware

synthesizers do not generally deal well with situations where the number of bits of the

result differs from the «natural» number of bits produced by the arithmetic operators

involved. For example, VHDL arithmetic additions and subtractions will produce a

result with the same number of bits as the larger operand, and the hardware synthesizer

may ignore additional bits on the result. This way, if the signal used to store the result is

larger than the operands and the results are negative, the signal may not propagate to the

most significant bit. The same problem happens with multiplications and divisions, that

produce results whose size corresponds to the addition/subtraction of the operand sizes.

Although the generated code employs VHDL integer range types, the problem still

happens, and future versions of the code generator may emit warnings to the user.

69

Figure 10 shows UART model used to test and debug the VHDL code generator.

The implementation of the receiver and sender components are shown at the bottom.

The resulting VHDL code was synthesized in hardware and tested on a Xilinx Spartan-

3AN FPGA board to communicate with a personal computer. The communication baud

rate is calculated dividing the main clock signal by the value of the «ClkDiv» input.

4.3 C Generated code

The C code generator plays a central role in the implementation of distributed

cyber-physical systems. In addition to the model execution semantics, the output code

also contains the infrastructure responsible to establish the communication between

distributed nodes, including a JSON/HTTP based client/server code. At present, the

other code generators lack this communication infrastructure, but in the near future, the

JavaScript code generator might borrow the client part of the remote debugger

application, to enable the creation of applications with user-interface components

running on Web browsers.

Regarding hardware implementations, there are no plans to directly add HTTP

communication capabilities to the VHDL generated code, as TCP/IP based protocols are

usually implemented using a software layer running on microprocessor units. A more

efficient strategy to access hardware components from distributed cyber-physical

networks would employ a co-design solution, with an interface top model implemented

in software, containing the hardware components. With this solution, the hardware

components would be implemented using VHDL, but the interface model would be

70

 Fig. 10: A UART model (top) with the receiver(left) and sender (right) component implementation
models

implemented using the C code generator, automatically providing remote access to the

hardware components. The software part of the solution could be implemented as a

“soft” processor core, embedded in an FPGA, or using hybrid processor/FPGA chips

like the Xilinx Zynq [170].

The output of the C code generator is composed of three parts: the model

execution semantics, a low-level digital input/output interface and an optional

communication layer. The execution semantics code was designed to run on small

devices, including 8 and 16 bit micro-controllers with reduced memory capabilities.

This way, all data structures are encoded as bit-fields, where the number of bits was

optimized according to the range of the integer signals, or maximum place bounds.

However, the communication layer was designed to target the IoT devices available

today, as the Intel Edison or Raspberry PI, that employ 32 bit architectures and run an

operating system with a proper TCP/IP stack. The client/server code was tested on

embedded Linux platforms, but the code employs only standard sockets function calls

and porting to other embedded TCP/IP stacks or operating systems as Windows or IOS,

should be straightforward.

Table 5 lists the generated files and the respective purpose:

Sub-system File Description

Model
semantics
execution

model_types.h * Constant and data structure type definitions, plus function declarations

model_exec_step.c
*

Data initialization and execution step functions

model_main.c * Hardware setup, execution loop and main functions

model_io.c * Input and output functions to interface with physical hardware. May be edited
by the user.

External /
Foreign

components

extern_comp.c * Function stubs to interface with external components. Two functions init() and
step() are created for each class of external components, whose body must be
manually coded

comp_lib.c Standard library components implementation (only used components are
linked)

GPIO
dummy_gpio.c Simulated GPIO using text files. Inputs are read from a file and outputs written

to other file

linux_sys_gpio.c Digital input and output operations for embedded Linux boards, using the /sys
file-system

raspi_mmap_gpio.c Digital input and output for raspberry PI family of boards, using faster memory
mapped IO

Model
meta-data

[optional
req. by

client/server]

model_info.h Data structures and function declarations to extract meta-model information
about the model

model_info.c Part of the meta-model information subsystem that is independent of the
models, common for all models

model_metadata.c * Part of the meta-model information subsystem that depends of each model
(node names, etc.)

dist_comp.c * Meta-data information about remote/distributed components in use (for HTTP
client).

71

JSON/HTTP
communicati

on
(server)

[optional]

http_server.h Data-structures and function prototype definitions for the http mini-server

http_server.c HTTP server main functions

http_req.c HTTP server remote procedure call request implementation

conn_auth.h Connection and user authentication data structures.

conn_auth.c Connection and user authentication code

sha1.h/sha1.c Public domain SHA1 cryptography hash implementation

JSON/HTTP
communicati

on
(client)
[only if

model uses
remote

components]

http_client.h HTTP client data-structures and function prototypes

http_client.c HTTP client implementation (requests/answers)

cps_net.h ComPonentS-network – connection to remote components – data structures

cps_net.c ComPonentS-network – connection to remote components – implementation
code

Data
files

user_db.txt User data-base (IDs, user-names, passwords, privilege-levels and priorities)

node_db.txt Distributed node database (map logical node names to network-
addresse/user/port)

Utility
programs

create_user.c Utility program to add a new user to user_db.txt with password encription

chg_pass.c Utility program to change a user_db.txt password

Project Makefile Compilation «makefile» to build executable files (on Unix/Linux systems)

Table 5: C code generator output files

NOTE: All files marked with «*» are created dynamically using XSL transformations. All

remaining files are common to all models.

The model execution semantics code, found in file «model_exec_step.c» is the

result of a direct translation of the language independent XML code produced in step 3

to C. The data-structures declared in «model_types.h» include the model inputs, model

outputs, internal signals and dataflow operation data, place marking, fired transitions

and the array shift-registers used to store past values used with the delay operator. When

the models employ foreign components, a new data structure is created for each class of

foreign components, with the respective inputs, outputs and parameters.

File «model_main.c» includes three functions. A setup function used to initialize

internal values, perform hardware setup and initialize remote communications, a loop

function that runs a complete execution step, including reading hardware inputs, call the

semantics execution code, write outputs and process remote JSON/HTTP requests and

subscriptions. The loop function may be employed directly on Arduino systems that

have a builtin main function. For other systems, a main function is provided. The loop

function includes a minimalist solution to pause execution or trace step by step based on

a single trace_control step counter, to support the remote debug and monitoring

application.

72

All input and output operations that depend on the target hardware were isolated

on a single file «model_io.c», that may require manual edition. This way, when a model

suffers changes, it is recommended to replace the other files by the new generated code,

except the «model_io.c» file that contains manually written code.

Two functions are used to read and write inputs and outputs from the hardware,

called respectively at the begin and end of every execution step, and may require

manual implementation. When the model input and output signals and events are

assigned to specific hardware pin numbers, then the code generator automatically fills

these functions with the corresponding read/write function calls. In the same way, pins

are also initialized with the corresponding input/output direction. When pin assignment

is omitted, then a default value is assigned and the user may manually write the input

and output code.

Pin operation is performed using the digitalRead(pin), digitalWrite(pin, value) and

pinMode(pin, mode) function calls, native from the Arduino programming library. For

non Arduino systems, three different re-implementations of these functions are provided

in the dummy_gpio.c, linux_sys_gpio.c and raspi_mmap_gpio.c files. The first, not

completely dummy dummy_gpio.c, is useful to run the generated code under simulated

environments where the user defines input values by editing an inputs.txt file and

inspects output results on an outputs.txt file. The second uses the Linux «sys» file-

system to perform GPIO operations and is compatible with virtually all embedded

Linux distributions. Finally, a third implementation uses memory mapped IO for the

Raspberry PI boards, offering higher performance than the «sys» implementation. Upon

compilation, the user must edit the makefile and un-comment the desired I/O

implementation.

At the end of input reading, a function ioptf_applyForcedSignalValues() is called.

This function call is necessary for remote debugging: it allows the networking sub-

system to change the value of input signals and events, according to the JSON/HTTP

requests received. The input signals and events left unconnected to hardware pins will

be automatically assigned to default values. However, remote clients can attach to the

local HTTP server and force different values. There are multiple applications for this

feature: For example, the unconnected inputs may be associated to buttons, scroll-bars

and other widgets from remote user-interface applications; or may be driven by other

components from distributed cyber-physical system applications. Even when the inputs

are assigned to physical hardware pins, the remote debugger application has the ability

to force different values. Input forcing is frequently used on industrial environments

73

when a sensor is damaged and reads wrong values: carefully forcing the correct value

avoids stopping production until a replacement sensor is installed.

Two additional functions delayPause() and finishExecution() are used to define

the execution speed and determine when executions should stop. The first function may

employ timing hardware, or equivalent operating system functions, to set an execution

pace, for example a step per millisecond. The second function may be used to stop

execution when certain objectives were accomplished or when serious error conditions

were detected.

The model meta-data subsystem is used to add information about the model

elements to the code produced automatically, including the external interface of the

model composed of signals and events, the list of components employed and the

respective interface, and also internal signals, dataflow operations and Petri net places

and transitions. The meta-data information is composed of lists of data-structures with

information about each model element, including the name identifier, data-type, node

type, allowable value range, default value, current value, etc. Two functions are

responsible to exchange information between the internal variables and the meta-data

data-structures, enabling the observation of the current status and forcing different

values.

Based on the meta-data sub-system, the client/server communication layer was

designed in a model independent fashion, that simply invoke the information exchange

functions and scan the resulting lists of meta-data. In turn, the HTTP server publishes

this information in JSON format, enabling the creation of model independent

applications, as the IOPTflow remote debugger. The IOPTflow editor has the ability to

connect to remote servers running DS-Pnet models, extract meta-data information and

automatically import the components running on those servers to build distributed

cyber-physical applications.

4.4 Interface board for industrial applications

As a general rule, the computational boards available for embedded system

development and IoT applications, as the Arduino, Raspberry PI, Intel Edison, Red

Pitaya, and even the reconfigurable hardware development boards offered by FPGA

vendors are not suitable for industrial applications, requiring the help of dedicated

interface boards. For example, these boards offer voltage levels for digital input and

output signals in a range of 1.8V to 5V, but industrial systems usually operate at 24V. In

addition, the digital outputs can typically only drive loads of 10 to 25mA, clearly

insufficient to drive relays and pneumatic valves. From another side, industrial safety

regulations require the presence of a normally-open enable signal that cut off all output

74

signals when a «emergency» circuit is not cleared. Finally, industrial equipment are

frequently subject to high voltage spikes and electromagnetic interference, that require

galvanic isolation to prevent possible damaging the controller boards.

Although there are commercial interface cards used to drive relays, most these

cards do not satisfy the requirements described above, and each of these cards were

designed to interface with specific boards, as the Arduino shields and Raspberry Pi hats,

requiring the creation of a different driver software for each type of card.

The board presented in figure 11 was designed to provide an universal

input/output interface, that can be connected to any development board, FPGA board, or

even to personal computers via USB. Digital inputs and outputs are transmitted as shift-

registers, suitable for SPI communication ports, where a chip-select signal is used to

synchronize the parallel loading of input signals and perform output updates.

The proposed interface card offers the following features:

1 - SPI communication interface requiring only 4 IO pins (SCK,SDI,SDO and
CS/PL/WE up to 10Mb/s)

2 – Optional USB front-end for SPI interface, using the synchronous bit-bang
mode of a FTDI FT232R chip

3 – Galvanic isolation on both USB and SPI interface ports
4 – 16 digital inputs (24V)
5 – 16 digital outputs (open collector, 200mA, 1Apeak, 50V max), ready to drive

relays and pneumatic valves
6 – Daisy chain multiple cards connected to the same SPI/USB interface
7 – Normally-connected «enable» input to inhibit all outputs when not enabled
8 - 24V Power supply (15V to 100V, 24V nominal)
9 – Isolated SPI interface power supply of 1.8V to 5.5V.

By serial chaining multiple boards to the same SPI bus, it is possible to read and

write hundreds of digital input and output signals, that can be quickly updated at the

start and end of each execution step. The isolated SPI interface occupies just four I/O

75

 Fig. 11: Isolated digital I/O board w/ SPI interface (2 boards)

pins, permitting the usage of long cables and avoiding the formation of parasitic ground

loops, responsible for high levels of electromagnetic interference. The clocking

sequences of the SPI protocol may be manually programmed or driven by the hardware

SPI master modules offered by many micro-controller devices. An optional FTDI

USB/serial converter chip may be installed on the board, providing an USB front-end

for the SPI bus, that can be used from any PC or Raspberry-PI USB port. The used

FT232R chip offers a bit-banging feature that is frequently employed for the serial

programming of micro-controllers, EPROMS and FPGA boards (JTAG). Regarding

analog input/output, as most ADC and DAC commercially available chips also offer an

SPI interface, it should be possible to create an analog I/O card that may be plugged to

the same serial bus as the digital I/O card.

Two surface-mount prototype boards were manufactured and tested. The SPI

interface was tested using the processing unit of Xilinx Zedboard FPGA+ARM card,

and the USB interface was tested using the FTDI bit-bang library. In both cases the test

software was developed in C.

A fourth implementation of the input/output interface code supporting this board

may be added to the C code generated automatically. This way, any DS-Pnet (or IOPT)

model may be immediately applied on real-world industrial applications, independently

of the chosen computational/FPGA development card, or even using a standard PC.

4.5 External/Foreign Components

Foreign components, corresponding the existing physical devices or components

implemented using other development languages, must be integrated with the code

generated automatically. For hardware implementations, the more effective strategy

consists in the definition of an empty component with the exact same external interface

of the existing IP module, and just replace the instance of the empty component with the

existing IP module before applying the synthesis tools.

On software targets, the usage of foreign components require the manual writing

of glue code to interface with these components. For each class of foreign components,

the C code generator automatically creates a data structure with the component interface

data and two empty functions to initialize data and execute a single step of the

component code. The data structure contains the following fields:

- A text string with the component id.

- A text string with the component class name

- The component comment string

- A resource location string parameter

76

- A «param-string» parameter

- Fields for each component input event and input signal

- Fields for each component output event and output signal

- An auxiliary pointer to hold private data of each instance

The initialization function is called only once before starting the model execution,

after the identifier and parameter fields have been defined. This function will typically

initialize variables, allocate memory, reserve system resources or open connections to

physical devices. By default there is no termination function to release allocated

resources, but a global execution finalization function may be used to perform these

actions.

During execution, the step function is invoked on every step. When evaluation

reaches the correct micro-step/nano-step numbers (the higher combination of the

component inputs), the fields corresponding to input signals and events are set with the

corresponding values read from the driver arcs, and the step function is invoked. The

step function parses the input fields and acts accordingly (preferentially in a non-

blocking way), running a single component execution step, and putting the results on

the output fields. Finally, the automatic generated code reads the output fields and

propagates the new values through the corresponding output arcs, continuing the model

execution.

In some cases the same component may be executed twice during the same

execution step, once to evaluate the firing of certain transitions and after transition

firing to calculate the value of outputs depending on place marking. In addition to a

pointer to the instance data structure, the step function receives another argument

indicating if the execution is being repeated on the same step.

The IOPT-Flow library includes a set of foreign components, whose code is added

to the output of the automatic C generator and may be used as an example to create new

foreign components. It includes components to implement arrays and matrices, file IO,

random numbers and user interface widgets, among others.

77

78

5 Distributed DS-Pnet Models

Advances in mobile computing and networking technology have reached a point

where distributed controller implementations can compete with monolithic solutions

with advantages in terms of hardware cost and easy of deployment. However, the

traditional programming languages and the respective support tools are not usually well

suited for distributed implementations, requiring the use of low level APIs to manually

write code to deal with communication and concurrency problems.

In contrast, the DS-Pnet modeling formalism was designed to simplify the

development of distributed systems. The model editor tool offers the ability to import

components from remote embedded devices running DS-Pnet models and the

communication between distributed components is specified just by drawing arcs. All

low level communication details are dealt by the automatically generated C code. Using

the new formalism, a distributed application is constructed by designing DS-Pnet

models containing a network of components, that may run locally or on remote network

nodes, whose input and output signals and events are interconnected though read-arcs.

A DS-Pnet distributed model is a GALS (globally asynchronous, locally

synchronous) system, composed of multiple nodes connected through the Internet using

the JSON/HTTP communication protocol described in the next section. The execution

of each node is synchronous and all internal components share the same execution step

clock. However, the entire model, formed by multiple components is an asynchronous

system, as the nodes employ different execution clocks that may run at different speeds.

This fact has implications in the execution semantics of distributed models. As the

Petri net arcs are not allowed to cross component boundaries, the Petri nets contained on

any DS-Pnet model are always restricted to a single component. A model composed of

multiple components may have many independent Petri sub-nets, not connected by Petri

79

5

net arcs. This way, distributed execution does not affect the execution semantics of each

individual Petri net.

However, different Petri nets may be connected using synchronous channels, as

presented in figure 12. In this example, the transition M on component C1 fires an event

«OutEvent» that is received by component C2 where it is used to inhibit the firing of

transition S. When both components run on the same node and share the same execution

clock, then the transitions M and S are connected using a synchronous channel and both

fire in the same execution step, assuming that both were enabled. In contrast, when the

components C1 and C2 are implemented on different nodes, not subject to the same

execution clock, the channel is no longer synchronous. The execution semantics of the

master transition M is not changed: it fires when enabled and ready, and triggers the

«EvtOut» event. Then the communication layer transmits the event to the other node,

but the transmission is subject to network latency delays. When the event arrives at the

destination node it will be used on the next execution step to fire the slave transaction S,

if enabled.

As a consequence, any distributed models employing synchronous channels,

relying on the fact that both transitions fire simultaneously, may not behave as expected.

The same consideration may be applied to models that expect instantaneous

transmission of signal values. To solve these problems, a client-server use pattern

borrowed from the IEC61499 should be employed.

Applications may be built using bottom-up or top-down approaches, or employing

a mixed strategy. Both local and remote components may be implemented with DS-Pnet

models or using traditional development languages. Foreign components may be used to

transparently integrate existing legacy code into distributed component networks,

without the need to manually write any networking code.

80

 Fig. 12: (Not)Synchronous Channel on a distribted model

1 1

//nodeA/C1 //nodeB/C2

C1 C2

M S

JSON/HTTP

Def=0
OnError=1

Def=0
OnError=1

OutEvt InEvt

CommErr CommErr

An application constructed from bottom-up may use remote components available

on the Internet as building blocks, designed by third parties and already running on

existing hardware. For example, in-vehicle navigation systems could collect information

from street semaphores in the nearby crossings, to select the best route and adapt speed

to arrive at the next semaphore without needing to stop.

In contrast, a designer may choose to develop an entire application using a top-

down approach, starting with the design of centralized models composed of multiple

components. The centralized application may be debugged using the simulator and

model-checking tools, before assigning components to different network nodes (by

editing the resource location parameter). Later, a node-split tool can be used to

automatically divide centralized models into several sub-models to run on each node.

The final distributed solution is built by applying the automatic code generation tools to

each sub-model, creating different executable applications for each network node.

The automatic node splitting tool applies the following rules:

- Create a list of nodes according to the different resource locations found in all

components, filtering only virtual node names and ignoring components previously

assigned to real network addresses

- DS-Pnet elements and arcs that are only connected to components from a single

node, will be implemented on that node

- DS-Pnet elements and arcs connected to components assigned to different nodes,

are implemented on a main node, called the maestro or application node

The automatic node splitting algorithm always creates a main sub-model

(application sub-model), to manage the communication between all the other nodes.

However, this solution does not ensure the best performance. For instance, an arc

starting on a node and ending on a different node will force the transmission of two

messages whenever the value transmitted by the arc changes, one from the first node to

the main model and another from the main model to the final node. To optimize

performance, a developer may choose to manually design the node sub-models,

inserting direct arcs between the nodes. Yet, this solution may bring additional

problems, as different network connections may suffer from different latency delays and

the inter-node connections may drop, resulting in situations that would be easily

managed with a single main model.

The final validation application discussed in chapter 7 presents a small cyber-

physical system that was developed using the top-down approach, starting with a

centralized model that was split into three node sub-models.

81

When a top-down approach is employed, it is still possible to reuse existing

components, included into the IOPT-flow framework library or available on the Internet.

In addition, components that are already being used by other applications may be

reused, leading to the formation of complex networks of cyber-physical systems, as

presented in figure 19.

When a model is designed using a bottom-up strategy, assembling distributed

applications from existing components, it is necessary to assign the correct resource

location parameter of each remote component. Components imported when the editor

connects directly to the remote nodes are automatically configured with the correct

resource location. However, when these components are not yet running, or when using

components from the library, the resource location must be edited manually. The format

of a component resource location parameter has the following syntax:

user@address:port/comp-id

Where «user» is the user-name for authentication on the remote node, address is

an Internet address or a numeric IP address, port is an IP port number that may be

omitted (default 9000) and «comp-id» is the component identifier of the remote node.

When the definitive address of a component is not known during the modeling phase,

then the «user@address:port» part of the resource location can be replaced by a single

word to define a virtual node address. A database of virtual nodes is kept in a file

«node_db.txt», that is parsed at runtime to postpone the selection of users, addresses

and ports until the deployment phase on real hardware. When a component uses the

same identifier on both sides, the application model and the remote node model, then

the «comp-id» part of the resource location may be omitted. This situation happens with

models that were automatically split.

82

Fig. 13: One publisher and multiple subscribers

The communication between distributed nodes may be signal or event driven.

Signal driven communication is typically employed in publisher-subscriber patterns of

use, where a publisher makes a set of output signals available and one or more clients

subscribe the published information (or just a subset). Although the published

information is usually composed of signals, events may also be transmitted.

Figure 13 contains an example where multiple subscribers receive information

from the same publisher. In this kind of situations there are no concurrency and

synchronization concerns and the published information may be disseminated by

multiple clients. As soon as a signal value suffers changes it is immediately forwarded

to the subscribers, but there are no timing guaranties and no verification that these

signals arrive at destination (except for attempts to reopen broken connections by the

networking code).

However, most distributed applications require handshaking negotiations between

distributed components to manage synchronization and concurrency problems, ensuring

that there is no information loss, data and requests arrive at the destination nodes in the

correct order and results are always received.

Signal driven communication could result in data loss if a slow node is receiving

information from a faster node. For example, if a signal value changes twice (0 to 1 and

back to 0) during the execution of a single step of the subscriber model, the subscriber

model will not be able to detect any signal change and possible events will be missed.

These problems are addressed with event driven communication, used to specify

handshaking negotiations between remote components, based on principles borrowed

from the IEC61499 standard [69][70]. With this strategy, input and output signals are

used to pass parameters and receive results from distributed components, sending events

to request the invocation of specific methods on the remote side and receiving other

events to signalize the request reception, deny requests or to receive result notifications.

83

Fig. 14: Client/server event driven comunication

The most frequent use case employs a client/server pattern, presented in figure 14,

where an application (client) requests the execution of specific methods on a remote

component (server) and waits for an answer. As presented in the figure, a server

component may implement multiple methods that are triggered by different input

events.

The diagram on figure 15 shows the interaction between client and server, that

typical perform the following steps:

1 - The client assigns parameter values to the remote component inputs

2 - The client sends an event to request the execution of a remote method

3 – The remote component acknowledges the reception of the event

4 - The remote component executes the method and the client waits
for the results (while waiting, it may execute other tasks in parallel)

5 - The remote component places the results on the respective output signals

6 - The remote component sends an event to notify that results are ready

7 - The client parses the results and proceeds

The implementation of this usage pattern is not rigid and many variants may

occur: For example, when the parameters are inappropriate or a request cannot be

executed, the server may produce denial events. When the execution of a request is fast

or immediate, the third step may be skipped and the server omits the acknowledge

event.

84

Fig. 15: Client-server communication

Frequently the distributed nodes are continuously executing certain tasks or

applications and are not just waiting for client requests. For example, remote nodes may

be running real-time industrial machine controllers that cannot be interrupted. In this

situation the relationship between the two peers is bidirectional: the application may

send commands to the remote node, but the remote side may also spontaneously initiate

communication in an asynchronous way. Requests to the remote node usually

correspond to high level commands, as start and stop production, set new operating

parameters or request statistics. On the opposite direction, the other side may need to

report errors and exceptions, notify the lack of bulk materials, or request data required

to continue operating, etc.

The proposed formalism does not enforce any type of usage patterns. The system

designers are free to implement the appropriate communication handshakes for each

specific application, using signal driven or event driven strategies. The communication

layer just ensures that events are not lost and the parameters and result signals values

arrive at destination on the same step (or before) as the corresponding event.

An important attribute of distributed component input and output signals is the

«on-error» parameter, used to define a value that is automatically assigned by the

networking layer when a communication error is detected. This value is used to notify

models about dropped connections. Two approaches may be employed: a) Define a

default neutral value that does not cause malfunctions; b) Define an error value to force

an immediate model response, taking the appropriate actions.

85

Fig. 16: Example: Event based communication with remote component

The example on figure 16 presents a distributed model using event driven client-

server communication to talk with a remote component.

The communication handshake is controlled by a Petri net state machine. This

state machine starts with place «PIdle» marked, waiting for a «Start» event that fires

transition «TStart». At this point the three parameter inputs must already hold the

correct values. In the next execution step transition «TsendReq» is fired, triggering an

event that is forwarded to RemoteComp1 (c1). After sending the request, place

«PWaitAck» is marked and one of two events may be returned «Ack» or «Error»

meaning that the component has started to process the request or the request cannot be

processed and one of the transitions «TackRecv» or «TRetry1» will fire. When no errors

happen, the system evolves to a state where «PWaitDone» is marked and is waiting for a

«Done» or «Error» event. The «Done» event marks the successful completion of the

requested action, and the state machine returns to the initial state. When an error occurs,

one of the «TRetry1» or «TRetry2» transitions will fire and the «Request» event is sent

again.

This example presents a Petri net state machine directly on the main model.

However, this state-machine is used frequently to implement client-server handshakes

and can be considered a design pattern [171]. This way, the Petri net can be

encapsulated into a new component that can be instantiated whenever this pattern is

necessary. The handshake controller component requires four input events: «Start»,

«Ack», «Error» and «Done», where the first is used to initiate the communication and

the remaining to receive answers from the server component. Two output events,

«Request» and «OK» are used to send requests and inform completion. Figure 17

displays an equivalent model using the handshake component.

The second version of the model hides the complexity of the underlying Petri net

state-machine. In real world applications, the handshake controller model would

probably be more complex. For example, instead of a single error event, the remote

component could return multiple type of error exceptions to differentiate between

invalid request parameters, resources temporarily unavailable, authorization violations,

86

Fig. 17: Same example with the handshake controller Petri net
encapsulated in a local component (on the right)

hardware malfunctions, etc., that should be treated differently by the handshake

controller. Finally, the model presented in figure 17 could also be used as a component,

hiding all communication details with the remote component and providing a simpler

interface to access distributed resources. The resulting component may be reused

multiple times.

5.1 Shared distributed components

Note: This section describes an extension to allow the shared use of the same components by

multiple distributed applications. However, although all steps of the proposed methods seem feasible,

none of the concepts presented here has been implemented or tested and are planned for a future IOPT-

Flow version.

Public services available on the Internet are generally accessed by a large number

of users, sometimes using different client software applications that may access the

same service simultaneously. This happens with traditional Internet services as Web

(HTTP), Email (SMTP/POP/IMAP), file transfer (FTP, NFS, SCP) and database

servers, among many others. In the near future, the components offered as public

services to build cyber-physical systems will suffer from the same usage pattern, having

to deal with multiple concurrent clients. As a consequence, the development formalisms

aiming to provide an infrastructure for cyber-physical systems must also support

concurrent component usage.

This section proposes an extension to the existing communication interface to

support shared component access by multiple applications. The proposed solution is

transparent for the client applications, that continue to apply the same client-server

handshaking techniques used for dedicated components, and is almost transparent for

the shared component implementation models, that only require two new attributes

assigned to input and output events. All the low-level concurrency and synchronization

details will continue to be implemented by the networking layer of the C code generated

automatically.

In this section, the term «client» refers to an application model using a remote

component available on a public or private network. The term «server» applies to

components that accept requests from the network, to execute specific methods/tasks. A

«transaction» corresponds to a time interval when the server is processing a single

request from a client.

Using the event-driven handshaking for remote component access, presented in

the previous section, a client application always initiates a communication transaction

by sending an event to request a certain resource or method execution. Next, the client

waits for an answer event to acknowledge the request reception or notify the successful

87

request execution. When there are multiple client applications accessing the same

component, the component model cannot serve multiple requests simultaneously9 and

the requests must be processed sequentially. This way, when a client application issues a

new request and there are already other requests pending, the client will have to wait

longer, until the preceding requests are served, but it still can continue to use the same

handshake state-machines, as if there were no concurrent clients.

From a modeling point of view, the proposed solution implies the creation of two

new attributes of input and output events, used in the implementation of server

component models:

Begin–transaction: A begin-transaction event requests a new transaction

(applicable only to input events)

End-transaction: An end-transaction event terminates a running transaction

or cancels a pending transaction request. It can be used by

the client to cancel requests or by the server to close

processed requests, to deny requests, or to notify error

exceptions

When designing a new component for concurrent use, the input events used to

start requests must be assigned the «begin-transaction» property. The output events used

to notify processing termination, or the output events events used for error notification,

must be assigned with the «end-transaction» property. Input events with the «end-

transaction» attribute may be used by clients to terminate or cancel transactions.

After a transaction starts being processed, the server component is fully dedicated

to a single client and the communication between the server and client can flow in a

bidirectional way, using both signals and events, until one of the sides triggers an end-

transaction event. After a transaction ends, the server can proceed to the next pending

transaction request.

From the implementation point of view, the networking layer of the C code

generated automatically will have to support the following infrastructure, also presented

in the figure 18 diagram:

1 – A prioritized request queue for each shared component. Priorities are already

part of the authentication subsystem and may be used to define application profiles, for

instance to differentiate between real-time and non critical applications. In a multi-level

9 A multi-thread/multi-core architecture could launch new instances of the component to
simultaneously process multiple requests, but parallel solutions are out of the scope of this work

88

queue, connections with high priority enter immediately to the higher levels that are

served first.

2 – Buffered component interface for each client connection: Storing a private

copy of the input and output signals and events of the shared component interface for

each client. This way, each client sees a different version of the component interface.

However these copies remain unconnected to the real component until a transaction

starts, and are immediately disconnected after a request ends, avoiding information

leaks between clients.

3 – A shared version of the «grab» HTTP request, discussed in the next chaper,

used to initiate the component private interface buffers.

Using this solution, when a client assigns new values to the server component

input signals, or triggers events without the start/end transaction property, these values

are only stored in the private interface copies and are not immediately propagated to the

real component. When the component starts serving a client request, these values are

copied to the component interface before the transaction starts, maintaining bi-

directional updates while the transaction continues. When a transaction ends, the private

copy will store the last values assigned during the transaction.

89

Fig. 18: Proposed infrastructure for concurrent client access

The proposed solution is similar to the implementation of traditional TCP

services, where requests are buffered in the operating system TCP/IP socket FIFOs and

the server application sequentially extracts one request at a time from the queue.

However, these requests are usually atomic, consisting only of a request and an answer

message. In contrast, the new solution comprehends a time interval where both sides

can dialog, being able to change signal values and send events as would happen in a

single client configuration, until a transaction ends. The request FIFO presents

similarities with the mailboxes employed by actor systems [66], used to store messages

received by an actor in a FIFO, that may employ priorities to dequeue messages from

the mailbox. However, in this case the FIFO only contains request events and the

messages are stored in each client component interface buffers.

As previously stated, none of these concepts has been implemented and tested. As

a consequence, any potential technical difficulties found during the implementation

phase might require changes in the proposed solution. For instance, the addition of

special-purpose virtual inputs and outputs, whose values are automatically defined by

the networking layer could bring improved functionality: a client-id input, automatically

set with the user identifier of the current transaction, would enable the implementation

of new services that track information about each user. On the opposite direction, a

virtual output, automatically set with the number of pending client requests, could be

useful to implement load balancing applications.

90

5.2 JSON/HTTP Communication Protocol

The output of the C code generator contains a JSON/HTTP communication layer

to support the interaction between distributed components over the Internet and also to

permit the remote debug and monitoring of entire applications or individual nodes. This

way, the underlying communication protocol must provide mechanisms to propagate

events and changes in signal values though a network of distributed nodes containing

DS-Pnet components. These components may interface with physical devices, perform

logic and computational operations or provide user interfaces for remote operation,

forming distributed cyber-physical systems.

Figure 19 presents an example of a possible cyber-physical system network

topology, composed of multiple nodes that execute DS-Pnet components. Some nodes

perform computational tasks and other nodes form an interface to read sensors and drive

actuators. For instance, «nodeA» contains sensors and the outputs of the component

C1A offer a remote interface to read sensed values. In the same way, «nodeC» is

attached to mechanical actuators and the inputs of the component C1C provide a remote

interface to drive these actuators. At the bottom, «nodeD» represents a typical industrial

machine controller, including inputs to read machine sensed data, outputs to drive

machine parameters and a logic/processing component to implement real-time control.

Usually this controller is responsible for the low level control of the machine, receiving

91

Fig. 19: Possible CPS network topology example

high level directives from the exterior, as start/stop production, operating parameter

settings and statistics gathering. Other nodes may perform only data-processing

operations, including the execution of computational intensive algorithms, data logging

and storage, or interface with other information system applications, as ERP commercial

information systems, factory management software or possible communication with the

information systems of costumer and supplier companies from a vertical

production/commercial collaboration network.

On the left side, two application models communicate with the nodes on the right,

receiving notifications about subscribed sensed values, commanding actuator values,

accessing data and algorithms running on remote nodes and sending operation directives

to remote machinery. A Web based graphical user interface may connect to applications

or component nodes to provide control, monitoring and supervision user interfaces for

the distributed systems. Finally, a remote debugger application may attach to any of the

nodes, either applications or physical nodes, to monitor the internal state of these nodes

in quasi real-time and help debug possible mistakes of hardware malfunctions.

As previously stated, although the communication layer has only been added to

the C generated code, it may be employed in co-design solutions to bring connectivity

for VHDL hardware components. From another side, existing JavaScript

communication code from the IOPT-Flow remote debugger application may be easily

added to the JavaScript generated code, to access remote nodes from models being

simulated and permit the implementation of Web based remote user interface

applications.

Communication between nodes is based on the HTTP protocol and information is

encoded in JSON notation. The HTTP protocol was chosen for several reasons. First, it

does not suffer from traffic routing restrictions as this protocol is normally open on most

firewall configurations and routing can be assisted by proxy services, easily traversing

intranet/Internet barriers. It is well supported by libraries available on most

programming languages and is the natural protocol used by Web based applications.

Although HTTP headers may reach hundreds of bytes, these headers do not impose a

large overhead, as it can be minimized using server side events and connection keep-

alive settings to maintain open connections, that also contribute to increase bandwidth

and reduce latency.

An earlier version of this communication protocol [18][22], employed by the

IOPT-Tools framework remote debugger, transmitted information using a XML

encoding, but was later converted to JSON [129] with large bandwidth savings and

simplified parsing on Web based applications.

92

Based on the TCP/IP protocol, every HTTP request is served using a different

TCP connection and broadcasts/multicasts are not supported. In contrast, the internet

connectivity offered by IEC61499 publisher/subscriber function blocks [70] is based on

IP multicast packets. This option contributes to reduce bandwidth consumption, as only

a single message is sent to all subscribers, but may pose user authentication problems

and suffers from routing difficulties, as multicast packets are frequently blocked by

routers and firewalls. Using the new protocol, a possible alternative solution could be

implemented using a dedicated proxy server that connects to remote servers and share

the subscribed data to multiple clients on local networks.

In the same way as the second version of IOPT-tools remote debug protocol [22],

the connection between client application models and server nodes containing DS-Pnet

components (or even other applications), is maintained using two simultaneous

connections, referred as two channels. One channel is used to send requests to the

remote server nodes and other channel is used to receive notifications from subscribed

events and signal changes. Event and change notifications are transmitted using HTTP

server side events, sending a stream of event JSON objects over a single TCP/IP

connection, avoiding HTTP header overheads. Currently the request channel opens a

new HTTP connection for every request, but the HTTP keep-alive option might be used

in future versions to use a single persistent connection and further contribute to optimize

bandwidth consumption and minimize authentication related traffic.

The applicability of the new protocol to each specific application greatly depends

on the available communication infrastructure and the respective performance. As a

general rule, long distance Internet connections do not guarantee sustained performance

levels, that may vary according to the time of day and the density of network traffic. As

a result, real-time applications may require dedicated intranet local networks, while

other non critical applications may be implemented across larger networks that spread

across the Internet.

As any other Internet connectivity application, security problems must be

addressed. Although the main goal of this work does not focus on security issues, a

simple security infrastructure was implemented, including user privilege and

authentication databases, based on an encrypted challenge-response mechanism to avoid

transmitting passwords in open text. This minimal infrastructure was considered enough

during the proof-of-concept phase, but additional security mechanisms may be added in

the future, probably resorting to standard distributed authentication protocols as

Kerberos [172], LDAP [173] or RADIUS [174].

93

According to the current trends on IoT and CPS, it is forecasted for the near future

the availability of open-access infrastructure that may be used to build distributed CPS

applications. For example, cities may provide services to publish traffic information on

real-time, electric grid information, temperature and wind information, river water flow,

water reservoir capacity, etc. However, this information does not need to flow on a

single direction. For example, traffic control systems might benefit from information

about the routes planned for each vehicle, and public services might provide interfaces

to schedule appointments with users, where communication flows in both directions.

The external interface of DS-Pnet components offer a simple interface to

implement those services. A service consists of a network node running a DS-Pnet

model containing a single or multiple components whose input and output signals and

events may be accessed remotely. Applications may be built using DS-Pnet models that

import components available on these public servers and connecting the different

components using DS-Pnet read-arcs. The IOPTflow editor has the ability to connect

directly to any server running the C generated code and import the selected components

into new models.

All communication details are dealt by the JSON/HTTP layer of the automatically

generated C code. Read-only sensor values may be published as component output

signals and events, subscribed by each application, that receive notifications whenever

those events are triggered or the signals value changes. Bidirectional communication is

synchronized using events, as discussed at the begin of this chapter.

Applications employing existing algorithms, developed using traditional

programming languages, may resort to foreign components to encapsulate existing

code, using input events to invoke functions and object methods. This way, the

integration of legacy code into distributed systems is almost transparent: after writing

the glue functions «init» and «step» for each class of foreign components to call the

legacy code, the resulting components may be inserted into distributed models just by

connecting arcs.

User applications, mostly running on mobile computing devices, may connect to

these public services and apply the information for multiple purposes, that probably

were not even forethought by the original service providers. Under these circumstances,

the service administrators do not control the type of applications using the public

services nor the number of simultaneous users concurrently accessing the service. In

order to be ready for public infrastructure applications, the user authentication

subsystem of the new communication protocol supports multiple privilege levels and

priorities, that can be requested by different applications.

94

5.2.1 User authentication and privilege levels

The user authentication database is used to verify user identities and set limits to

the priority requests. Table 6 presents the list of existing privilege levels:

Level Name Description

0 Unauthorized Connection not currently authenticated (default state before successful authentication)

1 Observer May only read or subscribe signals and events and read internal system data (place
marking, etc.), typically used to subscribe sensor information from public services.

2 Client In addition to level 1, may also concurrently emit events and define input values
Reserved for proposed protocol extension described previously.

3 Master In addition to level 2, may exclusively grab input signals and events and perform trace and
debug operations: pause, run single steps and force input values. Used in typical distributed
applications that establish a static network topology where a main model obtains exclusive
rights over remote component inputs.

4 Administrator In addition to level 3, may reconfigure the network, disconnecting components from
existing network nodes and reconnecting to alternative nodes. May be used to create load
balancing and fault tolerance solutions. (reserved for future implementations)

Table 6: Privilege levels

Multiple connections from the same user may request different privilege levels

according to role of each application. In the same way, each connection may request

different priority levels, and may even dynamically change privilege and priority levels

during execution, according to the tasks currently being performed. For example, when

the C code generated automatically is opening connection to remote nodes, it checks if

the application is driving any inputs and automatically chooses the «observer» or

«master» privilege levels.

User authentication is stored on a text file, «user_db.txt», that is used both by the

server code to authenticate incoming connections and also by the client code to establish

connections to remote nodes. Each user is characterized by a username, password and

maximum privilege and priority levels.

Passwords may be stored in clear text or using SHA1 cryptography hash strings10.

Passwords used for public accounts, such as guest, will typically be stored as clear text,

while private user accounts should be encrypted. As the user database is shared by both

the client and server parts of the networking code, it is possible to associate different

passwords to the same username on different nodes. While clear text passwords may be

manually edited in the user_db.txt file, the same does not apply to encrypted passwords.

This way, two utility programs are also packaged with the C generated code, to allow

the creation of new user entries and change encrypted passwords.

10 The SHA1 algorithm has been recently made obsolete, but may be easily replaced by newer versions,
as SHA256. It was chosen due to the public availability of C and JavaScript implementations, that are
used by the generated code.

95

Remote components are addressed using a resource location string,

composed of a username, a node name and a component identifier, in the format:

 user@address:port/component-id

Where the port number may be omitted (default 9000) and the address may be an

Internet address (ex: gres.uninova.pt) or a numeric IP address (ex:192.168.0.1). In

alternative, the resource location may be specified using just a symbolic node name, that

will be resolved at execution time from the information contained in the file

«node_db.txt». This file contains a list of symbolic node names, that are associated with

usernames, network addresses and ports. The symbolic node database file is used to

permit the configuration of usernames, passwords and network addresses during the

deployment of distributed applications, without the need to change models or recompile

the C generated code. In contrast, the components imported by the editor from models

that are already running on physical hardware will be immediately configured with a

definitive resource location (that may be edited).

The fact that user authentication is stored into a text file poses an inherent security

risk. This risk is acknowledged and is regarded as acceptable during the proof-of-

concept phase: Any person obtaining access to a node of a distributed network may read

the authentication file and connect to all nodes sharing the same user authentication

data.

At this point, the main security concern was avoid transmitting authentication

information over the Internet in clear text. This way, a challenge-response approach was

employed, creating encrypted unique session identifiers for each client connection.

5.2.2 Request types

The new communication protocol, inspired on a previous work [18][22], was

designed with three goals: automate the insertion of remote components into new

models to simplify the design of distributed systems, establish the communication

between nodes of the resulting CPS and permit remote debug and monitoring. The list

of procedure-call requests, presented on table 7, grouped according to the respective

usage type, was designed to minimize network bandwidth and resource consumption on

the embedded devices. Some requests are not yet implemented and were reserved for

future protocol versions, to support dynamic reconfiguration and concurrent usage of

the same components by multiple applications.

96

As the protocol is based on HTTP, Web browsers might connect to embedded

device servers and try to get a root document, like the front page of any Web site. When

this happens, the browser is automatically redirected to the IOPT-Flow remote debugger

application, that will subsequently open a connection to the server, creating the illusion

that the remote debugger application is running on the embedded device.

Every communication session must start with a «login» request, to initialize the

user authentication process. The server answers with a random challenge key, used to

create a session identifier based on the cryptography hash of the challenge key

concatenated with the user password. The session identifier is calculated and stored by

both sides, and must be transmitted on all subsequent requests. Future versions of the

network protocol, using the HTTP keep-alive option, will use a single persistent

connection. This way, the session identifier only needs to be transmitted once,

eliminating the risk of address spoofing attacks.

After calculating the session identifier, the client must request the desired

privilege level, using the «requestPriv». The remote debugger application employs the

«master» privilege level to be able to invoke the trace and debug requests. The client

side of generated code automatically selects the correct level for each remote node:

when the model only reads data it uses the «observer» level, when it also needs to

trigger events or drive input signals, it selects the «master» level. Future management

applications might use the «administrator» level to perform load balancing or fault

tolerance tasks.

Most requests contain parameters that are encoded as part of the URL «get» query

string, including the session identifier. As the size of the parameter data is usually small,

it fits in the HTTP request strings. In contrast, the payload of the request answers may

reach many kilobytes and is encoded in JSON format. Subscribed events and value

change notifications are also transmitted as a stream of JSON server side events.

97

Group Priv. Request Description

User
Authenticatio

n

Unauth login (user) Start a new session with a user – receive a challenge key

Observ logout Terminate an existing session

Unauth requestPriv (priv, prio) Request new privilege and priority levels (restricted by user’s maximum on
authentication database)

Model
metadata

Observ getModelName Get original DS-Pnet model name

Observ getModelURL Get model URL, used to fetch the DS-Pnet model document (used by the
remote debugger and editor)

Observ enumerateComponents Get list of available top-level components (sub-components inside other
components are hidden)

Observ getComponentInterface(c) List the interface input and output signals and events of a specific
component

Observ listModelMetadata
(components/operations=1/0)

Get model meta-data, including signals and events, marking, transitions and
dataflow operation results. Metadata about component interfaces and
dataflow operations may be optionally included in the list.

Read
data

Observ getAttrValues(list) Read current attribute values, including signals, events, marking, fired
transitions, etc.

Observ subscribeChanges(list) Subscribe changes of a list of attribute values. The connection will remain
open, transmitting a stream of server-side-events (JSON objects) to notify
changed values, events and debug/breakpoint/trace status.

Write
data

Client setAttrValues(list,values) Change the value of a list of model attributes or component inputs (not
grabbed by other connection).

Client triggerEvents(list) Trigger a list of events (not grabbed by other connection)

Synchronizati
on

Master grabInputs(list) Grab a list of model inputs (or component inputs) for exclusive use (or
shared use in the future)

Master grabComponent(c) Grab all input signals and events of a component for exclusive use (or
shared use in the future)

Master releaseInputs(list) Release list of grabbed inputs

Master releaseComponent(c) Release all grabbed component inputs

Trace
&

Debug

Master resetExecution Reset model execution, restoring status to initial values

Master startExecution Start/continue execution after a pause

Master stopExecution Pause execution

Master execStep(n) Execute 1 or multiple (n) steps

Observ getTraceMode Obtain the current trace mode: Paused, Running, StepByStep or N steps.

Master defineBreakpoints(list) Set breakpoints on a list of transitions, events, signals or dataflow
operations. Signals and operations will trigger breakpoints when the current
value changes. An empty list clears all breakpoints.

Observ getBreakpoints Get the list of existing breakpoints

Observ getActiveBreakpoint Get the identifier that caused the last breakpoint

Write /
Debug

Master forceValues(list) Force new values on a list of input signals/events, even if they are
associated with hardware pins.

Master thawForcedValues(list) Release forced values that start reading hardware values

Dynamic
reconfig.

(Not yet
implemented)

Admin relocateComponents Disconnect components from current server and reconnect to new server

Admin subscribeChangesFrom Force subscribe-changes from a new server node (at runtime)

Admin cancelSubscChangesFrom Cancel subscribe-changes from a server node (at runtime)

Admin pushChangesTo Force push-changes to a new server-node (at runtime)

Admin cancelPushChangesTo Cancel push-changes to a server-node (at runtime)

Observ getQueueSize(comp) Get the number of clients waiting on a specific component, used to measure
client load (for future use)

General Unauth / Default: redirect browsers to the IOPT-Flow remote debugger application

Table 7: Communication protocol request/procedure list

98

JSON was chosen over XML, due to the reduce bandwidth consumption and

simplified parsing on Web based applications. Listing 5 presents an example of a

communication session excerpt. HTTP headers have been stripped from the example to

improve readability11.

The metadata presented in this example contains only input and output signals, as

the model employed does not contain any Petri net nodes. In case Petri net nodes were

present, the listing would also include «place» and «transition» nodes. The word

«attribute» was chosen as a general designation for the variables contained in the

generated code, associated with nodes on the original DS-Pnet model, as place marking,

fired transitions, event and signal values, component input and outputs and dataflow

operation results.

11 HTTP headers are enabled by default, required to communicate with Web browsers. However,
headers are not necessary for the communication between nodes that were built using the
automatically generated code. To reduce the overhead, the generated client code immediately disables
headers when a communication session starts.

99

get http://host/login?user=guest HTTP/1.0
{"sess_key":"bd59c671049c7bb7fb4e109674cadfe2775b68fb"}

get http://host/requestPriv?
priv=2&priority=5&sessid=65ae1dca6b7400b992b8b454c4b8952568f1bb88 HTTP/1.0
{"priv":2}

get http://host/getModelName?sess-id=65ae1dca6b7400b992b8b454c4b8952568f1bb88 HTTP/1.0
{"model_name":"ui_test","version":"V1.0"}

get http://host/getModelURL?sess-id=65ae1dca6b7400b992b8b454c4b8952568f1bb88 HTTP/1.0
{"model_url":"http://gres.uninova.pt/iopt-flow/files/ui_test.xml"}

get http://host/listModelMetadata&sess-id=65ae1dca6b7400b992b8b454c4b8952568f1bb88
{"attributes":[
 {"name":"NV","node":"input","type":"int-range","min":0,"max":65535,"def-value":0},
 {"name":"Page","node":"input","type":"int-range","min":0,"max":15,"def-value":0},
 {"name":"Sens","node":"input","type":"boolean","def-value":0},
 {"name":"Vis","node":"input","type":"boolean",”on-error”:1,"def-value":0},
 {"name":"Checked","node":"output","type":"boolean","driven":1,"def-value":0},
 {"name":"Disp","node":"output","type":"boolean","driven":1,"def-value":0},
 {"name":"Pct","node":"output","type":"int-range","min":0,"max":65535,"driven":1,"def-
value":0},
 {"name":"Status","node":"output","type":"boolean","driven":1,"def-value":0},
 {"name":"Val","node":"output","type":"int-range","min":0,"max":65535,"driven":1,"def-
value":0},
 {"name":"R","node":"input","type":"event","on_error":0,"def-value":0},
 {"name":"S","node":"input","type":"event","on_error":0,"def-value":0},
 {"name":"ChgEvt","node":"output","type":"event","driven":1,"on_error":0,"def-
value":0},
 {"name":"DEvt","node":"output","type":"event","driven":1,"on_error":0,"def-value":0},
 {"name":"PG","node":"output","type":"event","driven":1,"on_error":0,"def-value":0}]
}

Listing 5: JSON/HTTP communication session excerpt

5.2.3 Server

Observing the network topology on figure 19 with multiple nodes, some nodes

just provide components designed to build distributed applications, and other nodes run

the main “maestro” models that implement the applications. The application models

manage information received from some nodes and send instructions to other nodes,

respectively by reading component outputs and driving other component inputs. Under

this topology, each node runs a copy of a minimalist HTTP server that implements the

requests listed on the previous table. Even the application nodes run the server code, in

order to allow remote debug and monitoring, or the creation of dedicated graphical user

interface to operate and monitor these applications.

Although the communication server code might be disabled at compilation time

(makefile options), reducing resource consumption on small hardware devices, it is

usually enabled on all nodes. However, the automatic code generator only adds client

code to the applications that employ remote components.

In order to support real-time systems, the execution semantics code must run in a

predictable way, without interruptions. As a consequence, the communication layer may

not block, even during network failure situations. When these situations occur, the

communication between different nodes may be temporarily interrupted, but the local

code running on each node to perform critical functions should not be affected. An «on-

error» field, present in the previous meta-data listing, is used by the communication

layer to notify the nodes reading these attributes, automatically assigning the «on-error»

value.

To avoid blocking execution, the low level networking code was developed using

non-blocking system calls (timed-out selects and socket non-blocking options), and the

server functions are invoked in an interleaved fashion. On each execution step the

following actions are executed:

1 - Process pending HTTP requests (up to max. requests per step)

2 - Read hardware inputs

3 - Apply forced values (previously forced by the remote debugger)

4 – When not paused, run execution semantics code (single step)

5 - Write outputs to hardware

6 – Check breakpoints and update trace step counter

7 - Process subscriptions (send events, changed values, breakpoints & trace status)

100

The last step, involve sending messages to multiple clients that subscribed value

change notifications about component inputs and outputs and internal state variables.

However, subscription data is sent through secondary communication channels, using a

persistent TCP connection, that do not require waiting for confirmation if data arrives to

the subscriber clients. This way, information is immediately written to the client TCP

sockets, without blocking the application. The operating system will subsequently send

data packets through the corresponding network interfaces, in parallel with the model

execution.

Each client connection has a list of subscribed attributes. Subscription

notifications are processed using the model metadata data-structures of C code

generated automatically. These data-structures, with information about each model

attribute, contain fields to store default values, current values, and the previous value

(before the current execution step), used to detect values changes.

To minimize network bandwidth, subscribed values are only transmitted when

they suffer changes. Information about events and fired transitions is treated in a

different way: it is sent when events are triggered, and omitted otherwise. Changes are

send as HTTP server side events, encoded as JSON object “deltas”, containing only the

changed attributes. Clients must memorize past values and update the new changed

values, but events are cleared at the end of every execution step. In addition to the

subscribed data, the secondary channel is also used to transmit trace and debug

information and an execution step count, since the previous update.

In order to keep connections alive, the server has an idle counter for each

connection, that counts the number of consecutive steps without sending notifications:

when a predefined number is reached, the server sends a complete message containing

all subscribed values. This avoids reaching operating-system timeouts that would

automatically hangup the TCP connections and also refreshes the client status, to ensure

data consistency at both ends of the connection.

5.2.4 Client

From the opposite direction, the client part of the communication layer is only

added to the generated C code when a model contains references to distributed remote

components. The client side performs two main tasks: process notifications arrived from

remote servers, and propagate events and changed signals to drive the inputs of remote

components. These actions directly mimic the read-arcs connecting a main model to

remote components: arcs reading information from remote component outputs will be

dealt using subscriptions; arcs starting on the main model (or other remote components)

101

to drive remote component inputs are dealt with HTTP write commands to push

changed values.

In the same way as the server part, the local model execution should not block and

is also interleaved with the step execution. At the begin of each execution step, the

secondary channels of each connection are scanned for new notifications, that are

immediately processed, updating the internal data structures with new values. This way,

the new values are immediately used in the current execution step. After the step

execution has terminated, changed values are immediately pushed to the remote

components.

Regarding execution delays, the reception of value change notifications poses

absolutely no problem as the network sockets are inspected using non-blocking

instructions. All notifications are immediately processed and discarded from the socket

queues. However, pushing changed values to remote components employing the

«triggerEvents» and «setAttrValues» HTTP requests, currently wait for the respective

answers, to be able to retransmit the commands in case an answer does not arrive under

a minimal timeout. In order to minimize this problem, the actions of sending requests

and response parsing were split into separate functions, sending all requests to the

remote servers before start polling for the answers. This way, the operating system may

send the requests in parallel, and the answer reception code can use timed-out select

instructions to wait for all answers in parallel.

Using this strategy, the maximum wait time to push changes is limited by the

slowest connection to the remote servers. A next version of the protocol, using the

HTTP keep-alive feature that employs persistent TCP connections to send multiple

requests, might eliminate the need to wait for push-change confirmations, that could be

postponed to the next execution step. However, with the current implementation,

ignoring push-change confirmations could cause undesired consequences due to missed

event propagation, that could not arrive at destination. In contrast, persistent TCP

connections ensure a sequential stream of data, that arrives precisely by the same order

as it was transmitted and both sides are notified when a connection drops.

The client side of the communication code is divided into several parts:

HTTP protocol: Encode HTTP URL requests, headers, network

transmission and parse JSON answers

Authentication: Parse the node and user authentication databases and

calculate session keys.

102

Notification processing:Process notifications received from remote servers with

subscribed events and value changes, to update internal

execution semantics data-structures

Event/Change pushing:Propagate events and changed values to drive the inputs of

remote components

CPSnet: Setup of a components network, creating a list of nodes

and assembling a list of meta-data from all components

running on each node

In turn, the CPSnet initialization is divided by the following steps:

1 – Identify a list of all remote nodes and the respective components according to

the component resource locations

2 – For each node, assemble a list of all component outputs being read by arcs

3 – For each node, assemble a list of all component inputs driven by the main

model using arcs

4 – Open connections to each node, according to resource location (user and

network address) using the «node-db» and authentication databases. Wait and try to

reopen failed connections until all nodes are online. Log errors and fail in case of

authentication failure.

5 - For each node, subscribe the list component outputs prepared in step 2.

6 - For each node, try to grab the list component inputs prepared in step 3. This

operation obtains exclusive control over remote component inputs, that cannot be driven

by other applications until this connection is terminated. Log errors and fail in case

grabs are refused due to conflicts with other concurrent applications.

7 – Try to reopen connections whenever a connection is dropped (during model

execution).

On connection termination, all subscribed values and grabbed inputs are

automatically dropped by the server, and must be reconstructed by the CPSnet code.

The information about remote components and the respective lists of input and outputs

connected using arcs, are obtained from the meta-data information. The next listing

presents example meta-data form a distributed application used to test this

communication protocol. Components C1 and C2 run on the same node, and the

respective input and outputs must be combined in single output-subscription and input-

push lists.

103

Dynamic network reconfiguration functionality, planned for future

implementations, imply the reconstruction of CPSnet information, including updated

lists of nodes, new subscription and push lists, and terminating and opening different

connections, as a result from the remote requests received by the server part of the

networking code.

104

ioptf_metadata distributed_comp_c1[] = {
 { "c001.I5", nt_input_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c001.I6", nt_input_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c001.I7", nt_input_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c001.O5", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c001.O6", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c001.O7", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { NULL }
};

ioptf_metadata distributed_comp_c2[] = {
 { "c002.O1", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c002.O3", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c002.O4", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { NULL }
};

ioptf_metadata distributed_comp_c3[] = {
 { "c1.O4", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c1.O5", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c1.O6", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c1.O7", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { "c1.O8", nt_output_sig, dt_boolean, 0, 1, 0, TRUE, 0, 0, -INT_MAX, -INT_MAX, NULL },
 { NULL }
};

ioptf_comp_info distributed_components[] = {
 // name resource-location implementation model io-metadata run master-conn
 { "c1", "guest@172.16.3.101:9000/c1", "//_192_168_1_65_9000/local/IOX8.xml",
distributed_comp_c1, TRUE, NULL },
 { "c2", "guest@172.16.3.100:9000/c2", "//_192_168_1_65_9000/local/IOX8.xml",
distributed_comp_c2, TRUE, NULL},
 { "c3", "guest@172.16.3.100:9000/c3", "//_192_168_1_65_9000/local/IOX8.xml",
distributed_comp_c3, TRUE, NULL },
 { NULL }
};

Listing 6: Distributed components meta-data information example

6 The IOPT-Flow Tool Framework

The DS-Pnet modeling formalism was designed to enable the development of

embedded system controllers and distributed cyber-physical systems. To reach this

objective, a tool-chain of Web based development tools was created, providing an

integrated development environment that covers all development stages from model

design, simulation, model-checking, node distribution, code generation and remote

debug and monitoring of the deployed systems.

The IOPT-Flow framework offers the following tools:

1) Model editor: Model design and edition, with the ability to import remote

components to create distributed applications

2) Simulator/Debugger: Model simulator with debug and trace capabilities,

waveform visualization and the ability to compare results with previous

simulations

3) Node-split: Split centralized models into distributed nodes

4) Automatic code generation: Generate C, JavaScript and VHDL code to

execute the model semantics

5) Remote Debugger: Monitor and debug models deployed on remote

embedded devices

6) IOPT Import/Export: Import IOPT models and export the Petri net part of a

DS-Pnet model to PNML

7) IOPT Model checking: Use the IOPT model checking framework to analyze

the Petri net part of DS-Pnet models

105

6

This framework was inspired on previous work, the IOPT-tools toolchain [13]

[16], inheriting many concepts and design solutions. Although the frameworks as based

on different formalisms, DS-Pnets and IOPTnets, the interactive tools share many

algorithms and design solutions that had previously given good results [24][20][21].

From the opposite direction, many usability features implemented on new tools were

back-ported to IOPT-tools, resulting in benefits for both frameworks.

The editor tool works as a front-end for all the other tools. It contains buttons to

invoke all other tools, including the simulator, code generators and remote debugger.

However, the remote debugger is more frequently used by simply directing the Web

browser to the HTTP servers running on the embedded devices.

By default the editor stores model files on the server running the IOPT-flow tools,

but the user may also download and upload models from the personal computer. When

an empty «save-as» file name is entered, the model XML files are transferred to the user

PC and the browser will ask for a local file name. Model files may be stored in a public

server folder, shared by all users or on private folders. The login dialog contains options

to manage personal user accounts.

The tools were implemented using a combination of Web technologies, with the

interactive applications running directly on the user Web browser, except the data

storage and computational intensive tasks that are executed in the server. As the

computational intensive tasks are executed on the server, the tools may be used on low-

end computational devices as smart-phones and tablet computers. This way, a technician

106

Fig. 20: The IOPT-Flow Editor

on the field may run the debugger application from a mobile device and immediately

edit a model to correct any problems detected.

As JavaScript and HTML are the standard languages available on Web browsers,

they were used to write the interactive applications. The server side code used to

interface with the interactive applications was developed using PHP and performs tasks

as user management, file management and security checking. The code generation tools

and IOPT state-space computation, also running on the server, are based on XSL

transformations and other XML processing tools.

The tools, available at http://gres.uninova.pt/iopt-flow, are installed on an Apache

HTTP server running over Linux. The interactive tools have been developed using the

Mozilla Firefox and Google Chrome Web browsers, but other W3C standards compliant

browsers should work, including Opera and Safari. Curiously, when the development of

the preliminary work on the IOPT-tools framework started, the Internet Explorer

browser did not support most of the technologies chosen to create the tools, including

direct support for SVG rendering and the XSLT engine did not employ the standard

interface. Meanwhile these technologies have been progressively added to Internet

Explorer and some of tools have started to work, but other tools continue to malfunction

due to divergences in the interpretation of XSL transformations. Maybe a future version

of the Edge browser will someday be able to run the complete tool-chain...

6.1 Editor

Figure 20 presents the IOPT-Flow editor. The editor interface offers a toolbox on

the left, a form with the selected object properties on the right and a drawing area at the

center. The form entries correspond to the properties of each type of DS-Pnet node, as

presented in chapter 3, except those that are manipulated interactively in the drawing

area, as the XY coordinates.

As DS-Pnet models are stored in XML documents, the editor works directly on

the XML document, operating changes to the model DOM (Document Object Model)

tree. Visualization is performed using SVG (Scalable Vector Graphics), a XML based

language for graphics representation supported by modern Web browsers.

Figure 21 displays the user feedback loop, including the XML document and the

XSL transformation used to generate SVG graphics. Each time the model is changed or

new nodes are added, the changes must be immediately reflected in the corresponding

SVG document, using a XSL transformation (Extensible Style-sheet Transformation). In

addition to the graphical representation of the DS-Pnet elements, the resulting SVG

107

http://gres.uninova.pt/iopt-flow

document also contain references to callback editor functions, invoked by the browser

when the user interacts with the graphical elements.

As the editor employs XSL transformations to display the graphic representation

of the XML documents in real-time, the editor performance is highly dependent on the

efficiency of the browsers JavaScript interpreter and the respective XSLT processing

engine. Recent versions of both Firefox and Chrome employ just-in-time compilation

techniques to execute JavaScript code, contributing to increase performance levels. A

comparison between both browsers has shown that Chrome offers superior interactive

response, being able to display more than 20 frames per second while moving multiple

nodes and performing arc rubber-banding, offering a performance level comparable to

native applications while editing non-complex models. However, as model complexity

increases, the feedback response starts lagging. To solve this problem, the user may

select a «fast» edition mode that does not perform arc rubber-banding but offers faster

feedback.

Although the main purpose of editor is the design and edition of DS-Pnet models,

it also performs other tasks. A very important task is the creation flat models that merge

the internal elements of all components, subsequently used to schedule the evaluation

sequence of dataflow operations and transition firing, assigning micro-step and nano-

step numbers to each node. This task was implemented in the editor to be able to

interactively warn the users about cyclic loops in the evaluation sequence. The resulting

micro-step and nano-step numbers may also be visualized directly in the model, helping

to manage conflicts between transitions.

Group Function Description

Selection
Select Nodes Select nodes with the pointer. Single or rectangular selection. Shift/Control add/remove selection

elements.

Select All Select all document nodes

Invert Selection Select previously unselected nodes

Undo Undo last performed operation from undo stack

108

Fig. 21: Editor interaction/feedback loop

Undo Redo Redo previous undo operation

Copy
&

Paste

Delete Delete selection or delete the next picked node if selection is empty

Copy Copy selected nodes to clipboard

Cut Copy selected nodes to clipboard and delete from document

Paste Paste a copy of the clipboard contents to the document

View Clipboard Open an auxiliary window to view the clipboard contents.
May be used to exchange the clipboard contents with other users, enabling collaborative use.

Duplicate Duplicate Duplicate selected nodes

View Mode Collapse Switch the selected element viewing mode between graphical or symbolic mode
(applicable to arcs and operations)

Geometric
transform.

Rotate 90º CW Rotate selection 90º in the clockwise direction

Rotate 90ºCCW Rotate selection 90º in the clockwise direction

Mirror Mirror selection horizontally

«Smart»
tools

Node fusion Join multiple places or multiple transitions, automatically rearranging the connected arcs

Complem. place Create the complementary place of an existing Petri net place, adding complementary arcs

Semaphore Create a semaphore place to lock a critical section

Node
creation

Place Add new places

Transition Add new transitions

Petri net Arc Add Petri net (normal) arcs

Read Arc Add dataflow read arcs

Input Signal Add input signal

Output Signal Add output signal

Internal Signal Add internal signal

Input Event Add input event

Output Event Add output event

New component Create a new component on-the-fly (defining number of input/output signals/events)

Constant Insert a new operation with a constant value

New Operation Insert a new dataflow operation with N input anchors

Component
Reuse

Insert library
element

Open the library dialog and insert existing components/operations

Remote
Component

Open a connection to a remote embedded server and import components running on that server.

Open
&

Save

New Model Start a new model

Open Model Open an existing model on the server (or upload a model from a local file)

Login Authenticate with a user ID to access a private folder, or manage users/passwords

Save & Save As Save model on the server with same name or new name (or download model to local PC)

Show XML Exhibit the model as a XML document on a separate window

Verification
IOPT Model
Checking

Extract an IOPT model from the Petri net part of the model and invoke que IOPT model-
checking subsystem

Check Syntax Attribute micro-step & nano-step sequencing numbers to each node and detect cyclic loops

Invoke
Other Tools

Split Dist.
Nodes

Invoke the node splitting tool, to automatically create sub-models to run on each distributed node

Code generation Invoke the automatic code generation tools (C, JavaScript, modular VHDL, monolithic VHDL
and XML)

Simulator Open the simulator / debugger tool

Remote
Debugger

Open the remote debugger tool

Table 8: Editor toolbox functions

109

Table 8 presents a list of the functions available on the toolbox. It contains icons

to create and select nodes and perform multiple level undo and redo, copy and paste,

among many other functions. In addition to the traditional functions usually offered by

other Petri net and dataflow editors, the editor offers «smart» functions to automate

some error-prone tasks that would otherwise require full user attention, including Petri

net node fusion, the creation of complementary places and the creation of semaphores

that prevent multiple tokens from entering a critical section.

The concept of semaphore is employed when a system is composed of several

concurrent sub-systems that share a common resource. Usually, each of the concurrent

sub-systems is modeled by different parts of a Petri net model. However, only one of

these sub-systems can simultaneously perform tasks involving the shared resource. A

critical section is defined by the set of all places where this resource is being used, that

may include places from multiple sub-system nets. After selecting the places that form a

critical section, the automatic semaphore function creates a new place and adds input

arcs to all transitions entering the critical section and output arcs to all transitions

leaving it, preventing more than one sub-system from simultaneously accessing the

constrained resource.

Figure 22 displays the expression editor dialog, used to enter the mathematical

expressions that define the outputs of dataflow operations. Expressions may be inserted

using a keyboard or using menus to select operators, input anchors and literal numeric

values. The second option is useful for users of tablets or other mobile computing

devices.

An expression can consist on a single mathematical formula, or may be composed

of multiple conditional sub-expressions, forming a case construct.

110

Fig. 22: The Expression Editor

When an expression is saved, the expression editor is responsible for syntax

checking and converting the results to the hierarchical XML format used on DS-Pnet

model files.

Figure 23 presents the dataflow operation input and output editor used to define

both the graphical and semantic properties of operations, including the graphical size

and shape (arrow/trapezoid, rectangular and circular), the number of inputs and output

anchors and the respective position. However, the main purpose of this editor is the

attribution of names to each input/output anchor and define the respective data-types.

Both names and data-types of input anchors may be attributed in a static or

dynamic way. Static names and data-types remain unchanged unless edited again using

the input/output editor. In contrast, dynamic names and data-types of input anchors are

changed automatically whenever a driver arc is connected to it, inheriting the respective

attributes from the arc source.

Dynamic data-types of output anchors are determined using a set of heuristics that

take in account the data-types of the inputs and the mathematical expressions. For

example, the outputs of expressions containing comparative and logical operators are

dynamically assigned the Boolean data type. These heuristics produce the desired

results in most cases, but may be manually overridden using the input/output editor.

111

Fig. 23: The operation input/output editor

Figure 24 shows the clipboard view dialog, used to store the contents of the copy

and paste buffer, that may used to transfer information between different models. Two

buttons, «upload» and «download» are used to save a copy of the clipboard buffer on

the IOPT-Flow server or download the saved copy back again. This feature was

designed to assist the collaborative work between multiple users logged in the same user

account: A user may copy parts of a model to the clipboard buffer using the copy&paste

functions and upload the clipboard contents to the server. Other users may open the

clipboard view window and download the contents saved on the server, observe the

downloaded elements and paste it to other models.

112

Fig. 24: Clipboard View

Fig. 25: View component implementation model

Complex models are usually designed using multiple components and the inter-

dependencies between signals often cross the component boundaries. As a result, in

order to understand the relationships between these signals, it is often necessary to

inspect the implementation models of these components. The IOPF-Flow editor

provides two ways of inspecting component implementations: opening a secondary

editor window with the corresponding model, or using the component view dialog

shown in figure 25.

When a secondary editor window is used to edit component models, the

component interface may suffer changes. This way, when a user saves models on the

secondary editor window, the secondary window is automatically closed and the main

window will scan for interface changes. When the interface suffered the removal (or

renaming) of signals or events, any potential connected arcs are erased.

Components may be added to new models in three ways: creating a new

component on-the-fly, inserting a component from the library or importing remote

components.

On-the-fly components are typically used when a model is designed with a top-down

approach. In this case the designer creates multiple components to implement different

subsystems, starting with the definition of the component interfaces and developing the

component implementation models afterwards. The editor asks for the desired number

of component input and output signals and events and creates a new component model

that is immediately opened in a secondary editor window.

Finally, the editor has the ability to import remote components from systems that

are running the C code generated automatically, as presented in figure 26.

113

Fig. 26: Import DS-Pnet components from remote embedded nodes

This window displays a model running on a remote node (guest@localhost:9000),

and the list of available components on the left side. These components may be selected

and imported to the main editor window, in the same way as a library element.

However, these components will be marked as remote and preserve the resource

location properties, creating distributed systems. Next, the designer just needs to

connect arcs to the imported component and the automatic code generator will deal with

all communication details.

6.2 The Simulator tool

The IOPT-Flow simulator is used to test and debug DS-Pnet models. It plays an

important role in rapid application development: after changing a model in the editor,

the changes can be immediately tested using a single mouse click, without any

compilation delays to run the code on embedded devices and the risk to damage

hardware due to modeling mistakes. In contrast, projects running on reconfigurable

hardware usually take many minutes to generate bit-stream files to program FPGAs,

resulting in very slow test cycles.

Simulation runs DS-Pnet directly on the Web browser, using the JavaScript code

produced by the automatic code generator. As the modern JavaScript engines employ

just-in-time compilation techniques, the code generated automatically can reach very

fast simulation speeds, only limited by the screen update of the forms and graphics.

Figure 27 displays the simulator window, presenting a toolbox on the left, a form

with current values on the right and the model on the center. Input, output and internal

values are displayed in real-time on both the graphical model and the form.

114

Fig. 27: The IOPT-Flow simulator (Chrome Web browser)

The simulator displays two values next to each output and dataflow operation: the

current value and the future value, after the next execution step. In addition, it also

highlights the transitions about to fire. This way, when execution is paused the user can

change input values and check the consequences before executing the next step.

In order to accelerate debug sessions, the simulator stores information about the

execution history, including all input, output and internal values on each step. This way,

the user may run simulations at high speed and in case of mistaken input changes, can

undo the last execution steps, replay and navigate through the history, and restart

simulating from any recorded step.

The user may also define breakpoints associated with transition firing or dataflow

operation result changes, stopping the simulation when any of these conditions is

reached. This way, simulations can run at high speed, avoiding the need to pause and

inspect the results after each execution step.

Simulation history may be viewed as graphical waveforms, as shown in figure 28,

or exported to CSV files for further processing using a spreadsheet application. For

example, a spreadsheet may be used to define conditions and search for undesired states

on long history files, with millions of steps.

115

Fig. 28: Waveform view window (simulation history)

The simulator supports the following features:

- Step-by-step execution and continuous run with predefined speed

- Undo step-by-step

- Breakpoints associated with transition firing of value changes in signals and

dataflow operations

- Reset to initial state and force new state (force new place marking)

- Simulation history recording, navigation and replay

- Waveform view

- Export/download history to CSV spreadsheet files

- Save simulation history sessions on server

- Replay history sessions, using input values from data saved on server

- Compare history waveforms with previous simulations

- State-space exploration (for closed models)

The last features in the previous list were designed to automate model debugging

and further contribute to reduce development cost and time. The possibility to save the

history of simulation sessions and later reproduce these sessions with other versions of

the same model, with the automatic detection of changes in the resulting waveforms,

can be used to automate unit testing and regression tests. This is done by extracting the

values of input signals and events from a previous simulation session and replaying it

with these values. After replay, the user is informed if the resulting waveforms changed,

the first and last step where changes were detected and the graphical waveform window

highlights the changed values.

A state-space exploration function is useful to verify closed models, without any

input signals or events, or models where inputs are only employed to define constant

parameters that do not change during execution. This function was designed to test

autonomous systems composed of two sub-models, a controller and a plant, that do not

employ input signals except from working parameters or a start command. The state-

space exploration continuously runs the model, until if finds a repeated state. As this

exploration may reach millions of states, performance plays a critical role and the

graphical feedback is disabled, except for a step counter and an interrupt button.

The output of the state-space exploration is stored on the simulation history and

may be exported in spreadsheet CSV format for further analyzes. However, several

properties may be immediately checked: deadlocks, live-locks and the reachability of

116

the initial state. If the system repeats the last two steps, a deadlock was found. A live-

lock is detected when the system jumps to and unexpected intermediary state, after the

initialization phase.

Future work on the simulator include:

- Open parallel windows to display the contents of components

(although values appear in the form)

- Run foreign components from the «standard» component library, for example to

run graphical user interfaces from the simulator

- Connect models running on the simulator to remote components, located on real

hardware devices

- Add a query-system [15] to the waveform dialog to search/filter states that verify

certain conditions without having to resort to external spreadsheet applications

6.3 Remote Debugger

Figure 29 shows the IOPT-Flow remote debugger application. With an interface

similar to the simulator application, it is used to connect to embedded boards running

the “C” code generated automatically, using the JSON/HTTP protocol discussed in

chapter 5, to remotely monitor and troubleshoot systems deployed in the field.

The example on figure 29, implementing a distributed game, presents a top level

model containing two components, the game engine and the user interface. As the top

model does not contain any dataflow or Petri net nodes, they are not visible, but other

models may display all types of nodes. In the same way as the simulator, the remote

117

Fig. 29 The IOPT-Flow remote debugger application (Chrome browser)

debugger does not has the capability to enter into components and display the internal

elements. However, in the case of the remote debugger, this is a desired feature:

developers wishing to hide implementation details can encapsulate the protected models

inside components, exposing only the external interface and keeping the interior models

private. To ensure privacy, the internal component information is not even exported by

the server running on the generated code.

Users may invoke the remote debugger from the IOPT-Flow editor, or can simply

point any Web browser to the URL of the embedded devices running the automatically

generated code, that redirects the browser to the remote debugger application and sets

all parameters. By default the server binds to TCP port 9000, but other ports may be

selected in the source code or using environment variables.

After successful login, the remote debugger fetches the required model meta-data

and the URL of the original DS-Pnet model, that is presented graphically, offering an

user interface similar to the simulator. The user may simultaneously run multiple copies

of the remote debugger on different browser window tabs, useful to monitor and debug

distributed applications spread across many network nodes.

As the communication between the embedded systems and the remote debugger

uses a stream of HTTP server side events, it does not impose any noticeable

performance penalty on the remote devices and does not contribute to slow the

execution speed. The remote debugger receives a stream of subscribed values,

optimized to transmit only changed values, that may suffer from network lag, but does

not suffer from information loss. This way, the performance of the remote debugger

application is usually limited by the graphical user interface refresh speed and not by

the communication bandwidth, even for long distance connections.

The remote debugger offers the capability to pause execution on the remote

devices, execute step by step, define breakpoints and restart model execution. Input

signals and events may also be forced, overriding the values read from hardware, useful

to test the model behavior on unexpected situations or to bypass malfunctioning sensor

devices and maintain operation until a replacement sensor is installed. However, in

order to use these debug commands, the user must login with a username associated

with the «master» privilege in the remote node authentication database.

118

6.4 Node-Split

The node-split operation is used to split centralized models into several distributed

nodes. It is typically used when a system designer starts with a main model that is

divided into several local components. The initial model can be tested and debugged

using the simulator tool, until it obeys all design requirements. After successful testing,

the designer may spread the original model across multiple nodes and create a

distributed system.

To perform this task, the designer starts with the creation of a list of virtual node

names, according to the physical devices planned for the distributed implementation.

After the node list has been decided, the designer should assign each component to the

destination nodes, by setting the virtual node name on the respective resource-location

attribute.

After assigning all components, the node-split tool is ready do be used. This tool

will create a set of new sub-models, to run on each of the virtual nodes, plus an

application top model, called the maestro, that runs on another node. Finally, the

complete distributed system may be deployed to hardware by applying the automatic

code generation tools to each of the sub-models, producing executable applications to

run on each node.

The node-splitting procedure has been presented in the distributed execution

chapter, but it obeys a basic principle: any signal, event, dataflow operation and Petri

net nodes connected to components from a single node, will be implemented on that

node sub-model; elements connected to components from more than one node,

including arcs, are implemented in the main “maestro” model. The maestro orchestrates

the communication between all nodes, according to the arcs that establish inter-node

connections. The node-split tool was employed to implement the fourth validation

application.

As previously stated, this solution has performance limitations, as an arc starting

on «NodeA» and ending in «NodeB» implies two communication messages: the

maestro subscribes a source value from «NodeA», that is received using server side

events, but whenever it receives a change notification, it has to push the changed values

to «NodeB». A more efficient solution could be achieved if «NodeB» directly

subscribed the source data from «NodeA», requiring a single message. However, this

solution could create increased debugging difficulties, as pausing the main model would

not prevent communication between component nodes whose state continued to evolve.

119

With the current version of the tools, direct communication between component

nodes can be implemented by manually creating the sub-models and defining the

communication interconnections. However, a future version of the node-split tool might

offer options to select centralized of distributed communications.

6.5 Automatic code generation

The automatic code generation tools create code that executes the model

semantics, translating the model behavior to several programming or hardware

description languages, to deploy on real hardware devices. Figure 30 presents the code

generation options provided by the editor:

- C code for micro-controllers, embedded PCs, IoT devices and other computing

devices

- Monolithic VHDL for reconfigurable hardware platforms (a single VHDL entity)

- Modular VHDL for reconfigurable hardware platforms (a VHDL entity for each

component)

- JavaScript code to run on Web browsers (and on the simulator)

- XML language independent code that may be transformed to different

programming languages

The automatic code generation algorithm and available options have been

presented on chapter 4, including information about the communication layer added to

the generated C code.

Currently the editor contains options to select hardware or software code

generation for each component, reserved to support automatic co-design code

generation solutions in the future. In the current version, the user must manually call the

modular VHDL code generator to obtain hardware descriptions of all components,

apply the C code generator on the main model and then manually code the glue logic

that connects the hardware and software components, dependent on each hardware

platform and operating system employed.

120

Fig. 30: Code generation options

6.6 Import and export IOPT models

The DS-Pnet formalism inherits many concepts from the parent IOPT Petri net

class [29]. The external model interface, composed of input and output signals and

events, data types and the Petri net part are common to both formalisms. This way, an

IOPT model may be used as a component of a DS-Pnet model, and may be transformed

into an equivalent DS-Pnet model. However, as IOPTnet formalism currently does not

support components, the opposite is not valid.

In the opposite direction, a DS-Pnet model is not usually convertible into an IOPT

net because the mathematical expressions associated with IOPT places and transitions

are not able to express the chains of dataflow operations that often appear in DS-Pnet

models. In addition, any signal or variable used in IOPT expressions always refers to the

results obtained in the previous execution step. This effect is easily translated into DS-

Pnet expressions by adding a delay operator suffix «[-1]» to each identifier. On the

contrary, IOPTnet expressions do not offer any way to access immediate results from

the current execution step. Finally, DS-Pnet models may be constructed without any

Petri net element, using just dataflow operations, where the delay operator is used to

inherently define state variables, holding values from previous executions steps.

Although it would be possible to add a dummy Petri net place to an IOPT model

(always marked), just to associate output expressions, it still could not express all types

of DS-Pnet constructs.

As a result of this asymmetric relationship, the IOPT-Flow editor has the ability to

open IOPT models. When it detects a XML document formatted using the IOPT PNML

syntax, it automatically invokes a XSL transformation that converts the IOPT model

into an equivalent DS-Pnet.

From the other side, as discussed above, it is not always possible to convert DS-

Pnet models into IOPT nets. However, the interface and the Petri net part of a DS-Pnet

model is directly convertible on an IOPT net. This way, another XSL transformation

was created that extracts all Petri net places and transitions plus input and output signals

and events, to form a PNML document. Petri net arcs are automatically translated and

read-arcs from places to transitions are converted into test arcs. Figure 31 displays an

IOPT Petri net model extracted from a DS-Pnet.

At this point, any dataflow operations are ignored, but future versions might try to

extract a subset of these operations to create transition guard conditions and output

expressions, but only when these operations may be converted to IOPT mathematical

expressions.

121

As a result, although the conversion from DS-Pnet models to IOPT nets is only

partial, it may still be useful, as it permits the application of the state-space calculation

and model-checking tools of the IOPT-Tools framework. These tools were developed as

a preliminary work and the algorithms and techniques employed for the respective

development were described in various papers [7][9][15].

6.7 IOPT Model Checking

The IOPT models extracted from DS-Pnet models retain the Petri net part of the

original models, responsible for the system state evolution. This way, it is important to

study the properties of the resulting IOPTnet models, as these properties might also

apply to the original DS-Pnet model.

One exception to this rule happens when the dataflow operations working as

transition guard conditions and as input events, prevent the firing of certain transitions

that prevent the reachability of undesired states. However, this problem might be

mitigated in future versions with improved guard translation. In this case, the state-

space graph of the original DS-Pnet model is a sub-set of the state-space graph

produced by the IOPT-tools model-checking sub-system.

From another side, even the state-space graphs built from native IOPT net models

often include states that are impossible to reach due to physical constraints imposed by

the controlled systems. For example, a model for a water dispenser will never reach a

state where the water recipient is full, if the output that opens the valve was never

opened. As a result, this kind of problems must be studied using hybrid models of the

controller and the controlled system (plant), that will be discussed next.

122

 Fig. 31: IOPT Petri net view

Figure 31 presents the IOPT import window, displaying an IOPT model imported

from the DS-Pnet editor. It contains buttons to invoke the IOPT state-space generator

and query-system, presented in figures 32 and 33.

As state-space graphs frequently reach millions of states, the IOPT state-space

computation algorithm uses “C” code generated automatically, running on the IOPT-

Tools server, taking advantage of multi-core processors, using the OpenMP extension of

123

Fig. 32: State space generation progress window

Fig. 33: The query editor (IOPT model checking)

the C language for parallel processing. An example of a very small state-space graph

can be viewed in figure 34.

When the state-space graphs exceed hundreds of states, human inspection to

detect the reachability of undesired states becomes a time consuming task. To automate

this task, it is possible to specify a list of query conditions that are checked during state-

space calculation, as presented in figure 33.

124

Fig. 34: A state-space graph of an IOPT model extracted from a DS-Pnet

6.8 Component Library

The ability to reuse previously designed and well debugged component models

plays a fundamental role in the rapid design of new applications, contributing to reduce

the development effort, with gains in terms of development cost and time to market.

Applications involving multidisciplinary fields of expertise, as Cyber-physical systems,

greatly benefit from the availability of hierarchic libraries containing the most

frequently used building blocks of each discipline, alleviating the need for large

development teams with experts from every area. For example, if the peripheral devices

present on hardware boards are well supported by components that hide the low level

details, then it may not be necessary to hire hardware engineers.

A large component library, covering many fields of application, is often an

important factor in the choice of development formalisms and tools to start a new

project. When a library already contains almost all of the required building blocks, then

the application design is greatly simplified. In this case, the library coverage may be the

deciding factor in the choice of development tools, above the merits of the underlying

formalism.

In order to simplify component reuse, the IOPTflow editor provides an

hierarchical library, whose interface is displayed on figure 35. The library is divided in

folders, according to the field of applications, including arithmetic and logic operators,

125

 Fig. 35: IOPT-Flow Editor tool - Library dialog (user interface widgets folder)

ladder diagram blocks and user interface widgets, among others. The current version of

the library is in very incipient state, containing almost only the components that were

needed to develop the validation examples. However, as soon as other developers start

using the IOPTflow tools to develop applications on other fields, the library should

naturally grow. In fact, for every model saved in the server, a component interface is

automatically added to the «local» library folder, that may be immediately used in other

models.

A library element may contain only one of he following items:

1 - A dataflow operation

2 - A DS-Pnet component

3 - A foreign component, designed with external development tools

Library elements containing dataflow operations are used automate the

specification of frequently used mathematical expressions, contributing to avoid

mistakes. These expressions may be as simple as constants, basic arithmetic and logic

operators, or contain long mathematical formulas. The graphical notation and the

respective title texts also contribute to increase model readability. Long mathematical

expressions may be specified in two ways: As a dataflow branch containing multiple

operation nodes connected through arcs, or just by creating a single operation with the

entire expression. Expert users typically prefer the second, but users operating from

tablet computers often choose the former, to avoid using a virtual keyboard.

For example, figure 36 presents several components used to emulate ladder logic,

as the normally-open contact, normally-closed contact and rung junctions. Although

these components were defined using simple AND / OR operations, the graphical

notation and anchor placement was designed to allow the creation of horizontal graphs,

connecting the contacts in series or parallel, to mimic the Ladder logic diagrams popular

in industrial automation.

The mathematical expressions used in the dataflow operations refer to the names

of the input anchors. These anchors work as internal local variables, that simplify

copy&paste operations and the insertion of library elements, as the expressions remain

unchanged after inserting an operation clone.

The left side of figure 35 presents the main library menu, that corresponds to a list

of folders used to group components according to the respective field. For example, the

126

Fig. 36: Ladder-logic library components specified as dataflow operations.

«arithmetic», «compare» and «logic» folders contain constants and basic mathematical

operations. The «events» folders contain operation that detect simple threshold crossing

events and the «sim» folder contains components that detect complex sequences of

events [175][177]. The «ladder» folder contains some of the most frequently used

Ladder-logic blocks as the normally open and normally closed contacts. Other folders

contains counters, clock dividers, timers, registers and flip-flops, etc. The «IOPT-guest»

folder contains a long list of components whose interfaces were extracted automatically

from the IOPT-tools server (guest account). These models may be directly opened by

the IOPT-flow editor, that automatically converts the PNML files to the DS-Pnet format.

The local folder contains a list of component interfaces corresponding to all

models stored in the IOPT-flow server. Every time a model is changed or saved, the

respective component interface is updated.

Library components may be implemented as native DS-Pnet models (or IOPT

models) or using external development tools, with implications to the automatic code

generation tools: native components are independent of target programming language,

and the tools apply the code generation algorithms to the component implementation

models. In contrast, foreign components require external code that must be re-

implemented in every language. This way, every component that can be specified as

DS-Pnet model, should be designed in that way. Figure 37 presents two native

components and their respective implementation models.

However, components that use external resources, as time information, disk file

access, database access, use communication ports, interface with hardware devices and

graphical user interfaces, must be implemented as foreign components.

An exception to this rule, the tables of variable data were not added to the core

language and were implemented using foreign components, as the hardware

implementation (Block RAM) differs from the software implementation (arrays). As a

conclusion, native DS-Pnet models are independent of the target hardware and

programming languages. In contrast, foreign components require the writing of glue

logic code to connect the output of automatic code generators to the foreign component

functionally, that must be re-implemented on each language.

127

6.9 Standard foreign component library

Foreign components add enhanced functionally to DS-Pnet models, providing an

interface to access any capabilities offered by the operating system and hardware.

However, the implementation of these components is not usually portable across

different hardware platforms, operating systems or programming languages. As a

consequence, in order to obtain portability, it is necessary to define a «standard» library

containing a minimal set of foreign components that must be supported by all automatic

code generators. Any application models using just components from the standard

library (and native DS-Pnet components) will be portable across all supported languages

and hardware platforms. In addition, the implementation of these components should

also aspire portability goals, employing broadly disseminated APIs and libraries, to

simplify the porting for different platforms.

The current version of the «standard library» contains only a reduced set of

components, and is only supported by the C code generator, but a future JavaScript

implementation is planned to allow the simulation of models containing «standard»

components and also to permit the design of Web based remote user interface

applications. Those components may even be implemented as reconfigurable hardware

in association with the VHDL code generator. For example, arrays may be implemented

in hardware as RAM blocks and the graphical user interface widgets may inherit work

previously developed [10][11].

128

 Fig. 37: The t_ON timer and Up/Down counter native components.
Component interfaces (left) and implementation models (right).

At moment, the set of “standard” foreign components is restricted to the following

list:

- Variable arrays (vector and matrix)

- Data file input/output and data log

- System time information

- Random number generator

- User interface widgets

- Audio sample player

- Industrial ModBUS Gateway

6.9.1 Arrays

All development formalisms aiming to solve non-trivial problems provide some

type of data structures to handle large quantities of data, including arrays, linked lists or

structured databases, among others. In the case of DS-Pnets, dataflow operations can

use single dimensional vectors or bidimensional matrices of constant values, used to

store tables of data and implement general functions of one or two integer arguments.

However, arrays of variable data were excluded from the core formalism in order to

uniformly cover both software and reconfigurable hardware platforms.

Arrays may be implemented in hardware using the block RAM modules included

by most FPGA devices. However, access to the data stored in block-RAM is restricted

to a single element at a time (or double, for dual port block RAM devices), while the

arrays offered by software programming languages can be accessed multiple times on a

single mathematical expression, something that would be difficult to replicate on

hardware platforms that execute one step per clock cycle.

Using components, the external interface of the arrays automatically expose the

same limitations as block RAM devices, restricting access to a single array element per

execution step that can be supported by both software and hardware implementations.

As a consequence, possible concurrent accesses to array data must be explicitly dealt by

the model designers, that must create the appropriate state-machines. As concurrent

array access is a typical use-case, other components may be developed to automate this

design pattern.

129

Fig. 38: Foreign array components: vector and matrix

Figure 38 presents the two types of available array components: single dimension

vectors and two-dimensional matrices. There are two versions of each component,

storing 8 or 16 bit values. The matrix component has fixed dimensions, limited to a

maximum of 256x256 elements, but the vector may be resized at run-time by changing

the value of the size input.

The external interface of these components is similar to real-world memory

devices, that employ address buses, data buses and control signals to perform read and

write operations. In this case, the buses correspond to input signals and the control

signals are the «wr» and «rd» events. The last «rd» value is copied to «out_data».

6.9.2 Data file input and output

The file input and output components bring the ability to store information in a

permanent form and retrieve data from mass storage devices. As the core formalism

does not presently support textual data-types, the information stored and retrieved using

these components is restricted to numeric values, that are stored in a spreadsheet-

friendly CSV (comma separated values) format.

Figure 39 displays the interface of the «data_source» and «file_log» components,

respectively used to read and write CSV files. The path/filename of the files is specified

using the component resource-location property. In both cases the component interface

has four data channels (A-D), meaning that it can read or write up to four simultaneous

values, stored in the CSV files as different columns.

The «data_source» component is controlled by two events, «RstFile» and

«ReadData» that respectively rewind the reading position to the begin of the file and

read a single line, publishing the read values to the «DataA-C» output signals. Two

additional signals, «OpenOK» and «EOF» notify successful file opening and reaching

the end of a file. In an equivalent way, the «file_log» component uses a «RstFile» event

to erase the file content and a «WriteData» event to add a new line to the CSV file with

the current «DataA-C» values.

Possible uses for the file I/O components include the data logging to store relevant

information about execution history, run simulations from previously stored input data,

130

Fig. 39: The file input / output foreign components

harvest sensed data for future data processing and graphical presentation, but different

applications may find different uses for data storage. By connecting the data-channels to

other component inputs and outputs, it is possible to automate debug and simulation

from vectors of test data previously stored in CSV files. Data files may be edited using

spreadsheet applications, and processed to create reports and graphics.

Finally, the interface of the file I/O components may also be used to implement

other foreign component classes, used to access data from other back-ends that can

provide streams of simultaneous data channels, such as database tables, network

connections or serial lines. Although the components were designed with only 4

channels, multiple files can be simultaneously opened, and this number may be

increased in the future.

6.9.3 System time information

The system time component is used to obtain the current time from the operating

system clock. It has an input event and produces two output signal values: the number

of seconds since 1970-Jan-1 in universal system time and a number of microseconds.

When the component receives an «Upd» event it updates the output signals with the

current time stamp, that may be used by other components in the same execution step.

This component is important to synchronize the actions of sub-systems running on

different distributed nodes. As the network latency of Internet communications is

unpredictable, components may pass time stamps associated with request/answer

events, interpreted by the receiving components to take the appropriate actions to

compensate for the transmission delays. In order to achieve this, all clocks in a

distributed system must be synchronized using an external protocol, as NTP [178].

Figure 40 presents an example model that uses time-stamps to synchronize the

position of three motors running on distributed controllers. The event triggered by

transition «TSync» is used by component «SystemTime0» to generate a time-stamp

(sec,usec), that is forwarded to each motor controller together with the instantaneous

reference-position and speed. Using this information, each of the remote components

«Mtr1», «Mtr2» and «Mtr3», can calculate the time elapsed since the event was

triggered until it was received and use the speed to compensate for the delay, as

presented in figure 41.

131

6.9.4 Random number generator

The random generator component provides a very simple interface to generate

sequences of random numbers. When execution starts, the «Rnd» output is assigned

with an initial random number, that is refreshed with a new number whenever the

«Gen» input event is triggered. The component implementation automatically seeds the

random number generator sequence according to the local time and process identifier.

In addition to the traditional applications of random numbers, for instance in

games, random numbers may also be used to automate the testing of other components,

by feeding sequences of random numbers to the respective inputs and storing the

results, or modeling additional logic to detect the reaching of undesired states.

132

Fig. 41: Reference position synchronization on the remte side

Fig. 40: Using time-stamps to synchronize the position of 3 motors

6.9.5 Graphical user interface

Graphical user interfaces are used on almost every application, to operate and

monitor the controlled systems. The user interface library folder contains a list of

components that was selected to allow the creation of both physical interfaces running

on embedded hardware and remote Web user interfaces, although only the first is

currently implemented.

The “C” version of user interface sub-system was implemented using the GTK

library, available on the Linux, Windows and MacOS operating systems, being used by

default on many embedded Linux distributions. For example, the user interface of the

Raspbian operating system for the Raspberry PI family of devices is based on GTK. The

Web version will be implemented using HTML and JavaScript. Previous work on

hardware based user interfaces [10][11] may also be used to create a VHDL version of

this library.

An user interface built using this component library is divided into “pages”. A

page is the equivalent of a computer window or screen, that contains a set of graphical

objects, called “widgets”. An application model may have up to 16 pages. At any time

only a single page is visible. A special component, called the page selector, is used to

select a visible page, permitting the creation of user interfaces where the user navigates

through the pages.

Widgets are objects that appear inside the pages to display information and

receive user input. It is possible to display text messages, icons and background images.

User input is received using buttons, check-boxes, scroll-bar scales and numeric inputs.

A special «scope» widget is used to present graphical waveforms of two input signals in

real-time, like an oscilloscope. Figure 42 presents the external interface of the widget

components.

Each widget has inputs to define a page, the XY coordinates where it appears, and

corresponding size (width x height). An application may decide when each widget is

visible or hidden, sensitive or disabled and dynamically move a widget by changing the

coordinates. For increased usability, the width and height inputs may be left

unconnected and the system will automatically calculate the correct size according to

the used text fonts and icon sizes.

A widget may also be dynamically moved between pages. For example, if the

«PageNr» input of a component is driven by the selected page, then the widget will be

present on all pages. An application can only have a single instance of the page selector

component and the initialization code will abort if more than one copy is found.

133

The «label_icon» is used to display text messages or graphical icons, that may be

hidden or visible according to the application logic. Components implementing

sensitive widgets, that receive user feedback, have output signals to hold the values read

from the user and output events to notify button clicks and changed values. In the

opposite direction, components that hold state, as check boxes, number inputs and

scales, have input signals and events to let the application force new values.

The output signals and events of the widget components may be used by the

applications as if they were produced by physical buttons or sensors. These values may

be used to perform dataflow calculations, control the firing of Petri net transitions or be

forwarded to remote components. In a cyber-physical system, a user interface node may

read data from multiple remote components and present it graphically, just by

connecting arcs. In the same way, the output of user interface buttons, scales and

numeric inputs may be connected to the inputs of remote components, providing remote

control capabilities.

Figure 43 presents a screenshot of the test application, used during development

to test the user interface widgets. The scope widget at the bottom presents two

waveforms. This component employs a «NewSample» input event to memorize a fresh

sample and scroll the image horizontally. Application logic may control the

«NewSample» to emulate the trigger level functionality of real oscilloscopes and start

capturing consecutive samples.

134

Fig. 42: Graphical user interface components

This screenshot also displays icons and text messages. Again, as DS-Pnets do not

have textual data-types, these messages were defined using the «comment» parameter of

the respective widget components and the path of icon files was defined using the

resource location parameter. Button keyboard accelerators may be defined using a

«param_string» component parameters.

Using component properties to specify text messages help separate the user

interface text from the application logic. User interface and application logic can be

further separated by encapsulating both parts into different components (application and

user-interface), connected through arcs. Next, the local user interface can be

transformed into a remote user interface just by changing the resource location

parameter of the application component are generating the C code again.

The user interface toolkits of the modern operating systems offer many widgets

and hundreds of configuration options. In contrast, the set of proposed user interface

components is very small, but was selected to support a wide range of applications,

covering many industrial automation use-cases. Although this set may grow in future

versions, it was considered appropriate for proof-of-concept applications.

6.9.6 Audio samples

An additional user interface component is used to play audio samples. It loads a

Wave file containing a sound sample and plays it whenever a «Play» input event is

fired. An output signal notifies if the sample is currently playing or has terminated.

Audio samples may be used during error and warning situations that require

immediate user attention, but may also be used to create rich multimedia applications

combining animations and sound, as games and other entertainment systems.

135

Fig. 43: User interface test application

6.9.7 Industrial ModBUS Gateway

A final component was added to the standard library, implementing an interface to

communicate with industrial devices using the ModBUS field-bus protocol [67]. This

protocol was chosen due to the implementation simplicity and level of dissemination.

Supported by virtually every automation manufacturer, it permits the communication

between DS-Pnet models and programmable logic controllers, CNC controllers and

servo motor controller drives, among others. This component contributes to allow the

immediate application of DS-Pnet models in real-world situations, by providing a

bridge between the new IOPT-flow cyber-physical systems and legacy industrial

applications.

The ModBUS protocol is usually deployed over a RS485 bus, with a single master

controller and up to 252 slave devices, all using the same serial line. As the line length

is frequently long, using relatively low speeds (ex: 9600, 19200 up to 38400), the

communication latency usually reaches many hundreds of milliseconds. As a result,

many control applications cannot send commands and wait for the answers in an idle

state. To avoid this problem, the «modbus_if» component was implemented in a non-

blocking asynchronous way, to permit sending ModBUS commands and continue

execution without blocking.

A test application used to debug the ModBUS component can be viewed on figure

44. It presents the component external interface and a set of input events and signals,

used to force values using the IOPT-flow remote debugger tool, including commands,

slave device identifier, addresses and values to set on the slave.

The component interface uses four input events to trigger 4 ModBUS commands:

ReadInput, ReadRegister, WriteCoild and WriteRegister. When one of these events is

triggered, the corresponding ModBUS request is immediately transmited through the

136

Fig. 44: ModBUS component test model

serial line. Later, when an answer or an error is received, the component assigns the

results to the «RdValue» output and triggers an output «RecvAns» or «Error» event.

To test the ModBUS interface component, it was connected to a DELTA

programmable logic controller. The test application was able to read the PLC inputs,

command the PLC relay outputs and read and write to the PLC internal memory. In

another application, presented in figure 45, it was used to control an industrial variable

speed drive, to start, stop, set the velocity and read electric current values of an

induction motor.

137

 Fig. 45: ModBUS + UI motor control application running on a Raspberry-PI 2 card,
with an LCD+touchscreen hat and an USB-RS485 serial converter

6.10 Debug And Model-Checking

The debug and model-checking tools play an important role in the rapid

development of embedded applications, permitting the discovery of modeling mistakes

during the early design stages, resulting in faster development time that contributes to

reduce costs. In addition, as cyber-physical systems involve both computing and

physical devices, error detection before reaching the prototype implementation phase

avoids potential catastrophic hardware malfunctions, that could cause permanent

damages to physical devices.

From another side, both consumer devices and industrial systems are subject to an

ever increasing set of regulations and certification requisites that must be verified before

a product reaches the market. This way, in addition to the general properties that must

be checked, as the reachability of potential deadlocks and live-locks, the model-

checking tools may also be used to automate the detection of undesired states that could

pose safety violations or break certification rules.

In the preliminary work, before creating the DS-Pnet formalism, a model-

checking sub-system for parent IOPT Petri net class was created, including an IOPT

state-space generation algorithm [6][7] and a query-system [9], with the goal to satisfy

the problems presented above. This sub-system may be used from the IOPT-Flow

framework, to apply these tools to the analysis of the Petri net part of a DS-Pnet system,

responsible for the state-machines that implement the reactive part of the controllers.

Unfortunately, this solution looses information about the dataflow part of DS-Pnet

models, that impose restrictions to the evolution of the reactive part of the models,

resulting in much larger state-space graphs. For example, the guard conditions and input

events that inhibit the firing of transitions are defined using dataflow operations, that are

lost in the Petri net extraction.

As a result, the state-space graphs built without considering the effects of the

dataflow part of the models contains entire branches that would never be reached on a

real system. This way, the resulting state-space graph does not correctly represent the

behavior of the DS-Pnet system. However, it contains the state-space of the DS-Pnet

system and thus, if the undesired states are never reached on the resulting graph, then

the real system will also never reach these states.

A native model-checking system for DS-Pnet systems has been planned but has

not yet been implemented. The dataflow part of the models usually employs integer

input signals with large ranges (analog signals, etc.), and their implications on the

138

dataflow results would produce huge state-space graphs that consume enormous

computational resources and calculation time, not practical for real world applications.

Several strategies to mitigate this problem were considered:

1) Hardware accelerated state-space calculation, taking advantage of the VHDL

code generator, but performance would still limited by memory bandwidth limitations,

to store a reached-state database and detect repeated states

2) GPU accelerated state-space calculation, taking advantage of the massively

parallel architectures to execute thousands of simultaneous threads

3) Apply state-space reduction techniques, using approaches presented in the

literature [37][38][46][78]

4) Employ other model-checking techniques not based on state-space graphs, as

symbolic model-checking [179]

However, even when the state-space graph of a DS-Pnet controller model is

accurately generated, it may still result in huge graphs containing millions of states that

are never reached in real-life implementations, as it does not account with the

interactions between the controller and the controlled system (plant).

Recalling a previous example, the level of a water tank will not raise if the

controller output that enables a water pump that fills the tank is disabled. However, this

information is not available when we study just the controller model, and the resulting

state-space graph may contain ramifications containing states where the tank reaches the

maximum level but the water was not flowing. In the same way, studying the plant

model alone will also generally result in very large state-space graphs, including many

states that are not reachable under normal operating conditions.

In contradiction, the state-space of a complete system, combining both the

controller model and the plant, will usually result in much smaller graphs, that consume

considerable less computing resources to calculate and are obtained faster, although the

combined model is larger than each of the parts.

The reason behind this reduction is related to the main function of a controller: by

definition a controller imposes a set of rules to the plant that does not let it escape from

a set of valid desirable states. In addition, the plant obeys a set of physical world

restrictions that limit the set of output values produced at any moment. Using the

previous example, once water starts pumping in an empty tank, the water does not

instantly reach the maximum level, but will slowly grow with time. As plant values are

139

sensed by the controller models, these physical restrictions will contribute to reduce the

size of the combined state-space graph.

Combining Petri nets and dataflows, DS-Pnets are well adapted to model both

controllers and the controlled systems (plants). From one side, the controllers are

usually reactive systems, that respond to changes in sensed values and events coming

from the plant. From another side, plants usually employ mechanical devices and other

dynamic physical systems that are better modeled using dataflows. Finally, model

composition based on components lets the designer model both the controller and the

plant as separate components, that may be simulated independently to perform a first

stage of debugging and testing, ensuring that both models behave correctly under

typical use-cases.

The complete models, combining the controller and plant components, form an

autonomous system, that may be simulated without requiring user input, except eventual

«start» commands to initiate the system operation. The top level model exposes only the

two components and the arcs that establish the communication between controller and

plant.

This solution implies the creation of additional models to simulate the plant, that

may be subject to design mistakes and simplifications to reduce modeling complexity.

This way, the plant simulation models require individual testing to verify if the behavior

under typical use-cases corresponds to the expectations. However, the plant models

offer an additional advantage, as they permit debugging the controller models using

only software tools, not suffering from possible hazardous situations that happen when

physical and hardware components are in the loop, including damaging physical

components and causing personal injuries due to controller design mistakes.

After testing terminates, the component used to simulate the plant may be

replaced with another component, sharing the same plant external interface, that

communicates with the physical plant devices, reading sensed values and driving

actuators, maintaining the same communication arcs.

The simulator tool offers a function to explore the state-space of the autonomous

controller-plant systems, that continuously calculates and records the system execution,

until it founds a loop to a previously reached state. To improve performance, this

function works in background mode and does not show any graphical feedback. The

resulting history waveforms may be searched to detect undesired states and confirm the

existence of desired end-states. In addition, the data may be exported to a spreadsheet

application, where information may be processed using automatic filters.

140

6.10.1 Application example

Figure 46 presents a diagram of a concrete

mixer plant, extracted from an example

previously published on [27], where a detailed

explanation of the models can be found. The

plant mixes four ingredients, cement, sand,

gravel and water to produce concrete. A cart

moves over the rail in the clockwise direction,

stopping at four positions, to load cement, sand,

gravel and finally to unload the bucket contents

into the mixer. In parallel a pipe dumps water

directly to the mixer.

The plant is equipped with a set of sensors to check if the cart has arrived at each

stop position, to measure the volume of the materials loaded into the cart bucket, to read

the water level and check if the bucket has been completely unloaded to the mixer. In

the opposite direction, if offers actuators to enable the cart motor, control the conveyor

belts that load materials on the cart bucket, unload the bucket and control a water valve.

The controller model, shown in figure 47, starts with place «PReady» marked,

assuming that the cart is parked near the concrete mixer with the bucket unloaded. The

controller is waiting for a «StartBtn» button press, that produces a «StartEvt» event

required to fire the transition «Tstart», before start executing a concrete mixing cycle.

After «TStart» fires, place «PGotoCement» will be marked, enabling the cart

motor according to the dataflow operation at the bottom right corner. Next, the

transition «TCementArrive» will be waiting for the sensor input «CementArrive». Upon

arriving, place «LoadCement» will be marked, enabling the «CementOpen» output that

controls a conveyor belt used to dump cement on the cart bucket. When the cement

reaches the desired level, transition «TCementFull» will fire and the cart starts moving

to the next stop position. This pattern repeats for the sand and gravel loading.

141

Fig. 46: Concrete mixer plant

When the concrete mixing cycle starts and transition «Tstart» fires, the place

«PWaterRun» is also marked and opens a valve to start dumping water on the mixer.

This operation runs in parallel with the cart travel, and stops when the water reaches the

desired level, firing «TCloseWater».

When the cart reaches the fourth stop position, with place «PunloadMixer»

marked, it enables the «BucketUnload» output and dumps the bucket contents into the

mixer. The cycle ends when «BucketEmpty» input holds true and transition «TDone»

fires, marking «PReady» again. Although, «TDone» does not wait until the water level

has been reached, the cart cannot start a new cycle until «PwaterRun_cmpl» is marked.

This place is complementary to «PWaterRun», meaning that transition «Tstart» is

inhibited while the water is still running.

Although the controller model could be immediately submitted through the code

generation tools to run an embedded board, testing the controller behavior directly on

the physical plant is not recommended, as any modeling mistake could damage the

equipment. For example, running the conveyor belts when the cart bucket is not on the

correct position, or unloading the bucket outside of the mixer area, would dump raw

materials over the cart rails.

Running the controller model on the simulator provides a faster and cleaner way

to test the model and find potential design mistakes. However, the controller reacts to a

142

Fig. 47: Cement mixer controller model

series of signals and events coming from the plant, that are not available when the

controller is simulated alone. As a result, to simulate the controller, the user has to

manipulate the model inputs according to the expected plant behavior.

Manually simulating the plant behavior is an error prone task that requires full

user attention and consumes time. To mitigate this problem, the simulator has the ability

to display waveforms and save the simulation history to files stored on the server. The

saved files might be used to quickly repeat previous simulations without the risk of

entering wrong input sequences. When a model suffers changes, the simulation repeat

function automatically detects changes in the output signal waveforms.

However, even the automatic repetition of debug sessions has limitations. The

debug sessions usually correspond to well defined use-cases and do not account with

unexpected behaviors, that were not forethought by the developers.

As the controller is based on a Petri net, the Petri net part of the model may be

converted into a IOPT model. Figure 34, from the tools chapter, contains the state-space

graph of controller model, calculated using the IOPT-Tools model-checking subsystem.

This graph may be used to detect the reachability of states that were not forethought.

In the case of the current model version, no undesired states were found.

However, a previous version of the controller contained a mistake that was found with

the help of the state-space graph, that contained thousands of states. The mistake was

corrected with the addition of the complementary place «PwaterRun_cmpl» to prevent

restarting a new kart cycle before the water has reached the desired level.

 Unfortunately, the IOPT model checking tools do not automatically detect all

mistakes: As this option discards the dataflow part of the original DS-Pnet models,

when undesired states are found the user must manually confirm if the conditions that

lead to these states are affected by possible dataflow guards or transition input events.

As discussed earlier, a more flexible approach involves the design of a plant

simulation model, to study complete systems composed of the controller, plant and the

respective signal and event interconnections.

Figure 48 presents the top model combining a controller and a plant. The arcs at

the center transmit the control signals used to drive the plant actuators and the arcs at

the left transmit sensor signals from the plant to the controller. These arcs are displayed

using a symbolic mode to avoid drawing multiple curves crossing the entire model. The

model is autonomous, except for a single start-button input that is managed by the user.

However, after pressing this button the entire simulation runs autonomously.

143

The plant model, found in figure 49, contains only dataflow elements and has an

external interface complementary to the controller. This model is centered around three

signals «CartPos», «WaterLevel» and «BucketLevel», that define the plant state.

The data flow on the center, «ModeCart», «Water» and «LoadBucket» are used to

calculate the plant state signals, increasing or resetting the respective values according

to the inputs coming from the controller. The dataflow operations on the right compare

the value of the state signals with several threshold values: to detect if the cart position

had reached each of the four stop locations, to check if the water level is full and verify

if the bucket level has reached the correct thresholds for cement, sand and gravel, or is

empty.

144

 Fig. 48: Cement mixer main model: controller + plant

Fig. 49: Cement mixer plant model

After setting the «Start» input, the simulator state-space exploration function may

be applied to the top model, generating 147 steps until reaching a deadlock (the last two

steps were repeated). However, replaying the saved history or inspecting the resulting

waveforms, it is possible to verify that the simulation run an entire cement mixer cycle

and is ready to start again, waiting for a positive edge on the start button: the user must

release the start button and press it again. In this case, the deadlock does indicate an

error condition and corresponds to the intended model behavior.

Finally, it is important to note that in this case, the simulation of the complete

system produced a total of 147 different states, while the state-space of the Petri net part

of the controller contains only 18 states. This difference happens because the IOPT

state-space graph does not account with the internal plant state signals that hold integer

range types to represent analog variables, whose value changes continuously with time,

resulting in many incremental state changes. Applying a state-space generation

algorithm to the plant model without considering the controller, would produce millions

of states, representing all possible combinations of controller inputs.

145

146

7 Validation Applications

To validate the proposed development formalism and the respective support tools,

a set of example applications was prepared, leading to creation of four prototypes. All

applications were fully developed using the proposed tools, from model edition,

simulation to automatic code generation, without manually writing any line of code. The

first of these validation applications was the subject of a publication on a scientific

journal [28].

The validation examples consist on the following applications:

1 – Controller for a brushless servo motor, implemented on reconfigurable

hardware, using the modular VHDL code generator

2 - Distributed multi-user game with graphical user interface

3 - Graphical console to control an industrial variable speed drive, using the

 ModBUS field-bus protocol

4 – Distributed cyber-physical system simple application with 3 nodes

 (1 processing node and 2 «physical» nodes)

In addition to the validation applications, another set of applications was created

to assist the development of the new tools. These were small applications, used to test

the editor, simulator, automatic code generation, inter-component communication and

the various library components, that also resulted in prototypes. From these, the

following applications should be mentioned:

- UART Serial port model, used to debug the VHDL code generator, implemented

on a Xilinx Spartan 3AN board, tested communicating to a PC serial port, presented in

figure 10.

147

7

- Graphical user interface test application, permitting the visualization of all types

of Widget components. The behavior of the widget components can be configured and

manipulated with the remote debugger tool, presented in figure 28.

- File I/O test models: used to test other components by automatically feeding

sequences of data to the component input signals.

- ModBUS test application, in association with the remote debugger, was used to

communicate with a ModBUS industrial programmable logic controller, being able to

read and write the PLC memory, read PLC inputs and drive the output relays.

In addition to the listed examples, a MsC student used the IOPT-Flow tools to

implement a library of structured events [177], based on the work of a previous PhD

work [175][176], producing several components that were grouped in the «sim» library

folder. Publication of the results obtained is currently being prepared.

7.1 Bushless servo motor controller

The first validation application is a closed-loop brushless servo motor controller,

implemented on re-configurable hardware. The application was built using a diverse set

of sub-system components, some purely data-driven and others exhibiting an event

driven behavior, ideal to demonstrate the DS-Pnet modeling capabilities. As most of

these components are frequently used in control and power electronics applications,

they can be immediately added to the library for reuse in future models, contributing the

abbreviate the development of future applications. In fact, these components are

equivalent to the hardware modules that are currently packaged with specialized micro-

controller devices that target the areas of control and power-electronics.

148

Fig. 50: Closed-loop servo motor controller top-model

7.1.1 Model development

Figure 50 presents the application top model, composed of components, arcs to

perform the respective signal interconnections, constants used for tuning purposes and

the external interface input and output signals. The model employs eight different

component classes, some of them instantiated multiple times, reaching approximately

20 components, performing the tasks listed on table 9.

QE Quadrature encoder pulse counter (decoder)

PID Digital PID controller

Commut BLDC commutation table based on commutation sensor inputs

PWM PWM Generator (half-bridge high/low outputs with dead-time insertion)

SpdPosCtrl Generate the reference motor position according to the Speed/Position mode

NFilter Simple digital noise filter

DiffIn Digital differential receiver

DiffOut Digital differential output

Table 9: Component classes used in the application

Figure 51 presents the quadrature encoder implementation model used to track the

motor rotor position, reacting to changes in the «ChA» and «ChB» input signals to

update the «Cntr» output.

Under normal operation, one of the four places «PA0B0», «PA0B1», «PA1B1»

and «PA1B0» is always marked, reflecting the status of encoder A and B input channels.

Place «PInit» and the four transitions connected to it, are only used to determine the

initial encoder state before start counting pulses.

Whenever one of the input channels changes state, one of the eight transitions

near the corners of the Petri net (TAUp1/2, TADn1/2, TBUp1/2, TBDn1/2) will fire,

updating the place marking according to the new channel configuration. Observing all

arcs attached to the corner transitions, it is possible to notice that they form two circular

149

Fig. 51: Quadrature encoder model

rings. The arcs of the outer ring have arrows pointing in the CCW direction and the arcs

in the inner ring in the CW direction, directly reflecting the motor rotation.

The “corner” transitions trigger events that are caught by the «CntDn» and

«CntUp» dataflow operations. Depending on the mode of operation (X4=1 or X4=0),

these operations perform the Boolean «or» of all events, or consider only the events

coming from the transitions at the top right corner, counting every pulse, or just one

pulse per cycle:

t8 OR t5 OR t6 OR t7 WHEN (X4)

t8 OTHERWISE

Next, the «cntr_upd» dataflow operation uses the outputs of the previous

operations to update the rotor position counter output:

0 WHEN (Rst)

(cntr_upd[-1] + 1) MOD 1024 WHEN (CntUp)

(cntr_upd[-1] - 1) MOD 1024 WHEN (CntDn)

cntr_upd[-1] OTHERWISE

Finally, the «Reg» operation applies the delay operator «s[-1]» to the counter

result, creating an implicit shift-register that will output the value calculated on the

previous execution step. This operation was added to avoid the propagation of potential

glitches produced by the combinatory logic used to implement the previous dataflow

operations in VHDL. This operation inserts a negligible delay of just one execution step

(20 ns in this prototype), but produces a clean output signal without transient glitches.

General purpose components, employed in multiple applications, may benefit

from registered outputs (using the delay operator), as the output signals might be used

by external dataflow operations, leading to long chains of operations implemented as

combinatory logic that can impose restrictions on the maximum clock frequency.

 The PID controller displayed on figure 52 is a purely data-driven model that does

not include any Petri net elements. This prototype employs a single instance of the PID

controller to directly control the motor position. More efficient control strategies

150

Fig. 52: Digital PID Controller model

employing cascaded controllers to control the position, speed and motor current could

be implemented using three instances of this component.

Observing the model, inputs «Kp», «Ki» and «Kd» correspond the traditional

proportional, integral and derivative gains, that are multiplied by the respective error

signals. On the left, the «sub» operation subtracts the reference and sensed positions and

the «pos-err» operation normalizes the result to the range 0 to 1024 (0↔360º).

The two «Delay» operations at the bottom are used to sample past «PosErr»

values whenever the «UpdClk» event fires. As the output of these operations is

connected in sequence, the second «Delay» operation always stores the value of

«PosErr» sampled two «UpdClk» events ago. As the execution step clock frequency

used to run the prototype (50Mhz) is several orders of magnitude faster that the encoder

feedback frequency, the «UpdClk» is used to provide a slower clock to update the

derivative and integral errors without immediately saturating the respective variables.

The «Int» and «diff» operations respectively accumulate the integral error and

calculate the derivative errors. Next, the error values are multiplied by the respective

«Kp», «Ki» and «Kd» gains and the results are added. Two operations, «calc_dir» and

«abs» extract the sign and absolute value.

As fixed-point arithmetic has not yet been added to the code generators, all

operations previously described employ integer numbers, including the gains. To

improve the tuning sensitivity, the absolute value result is divided by 16, producing an

effect equivalent to 4bit fixed-point gains.

Finally, the values of the «DC» and «Dir» outputs are used to provide a duty-cycle

for PWM component and the rotation/torque direction for the BLDC commutation

model.

The component models displayed in figure 53 provide three basic functions. The

«diff_in» model converts a differential signal into a single-ended signal. The differential

input signal is only considered valid when the positive and negative inputs hold

opposite logic values, maintaining the previous value otherwise.

The «diff_out» model, employs a double output dataflow operation to generate

two signals where the OP output copies the input and ON produces a negated output. It

is important to notice that these two components are translated to VHDL as pure logic

151

 Fig. 53: The diff_in(left), diff_out(center) and nfilter(right) models

and do not produce any differential line received and line driver hardware. For

improved noise immunity, these components should be replaced with real differential

drivers and receiver modules provided by the FPGA manufacturers, as the IBUFDS and

OBUFDS modules available on Xilinx hardware. However, this substitution should be

done by manually editing the VHDL code.

The third model on figure 53 is a digital noise filter used to remove high

frequency transients from digital input signals. The input signal is only considered

stable after it maintains the same value for more than three consecutive execution steps.

The output always contains the last stable value.

Figure 54 displays the PWM generator model. It outputs two center aligned

complementary PWM signals, with dead-time insertion, used to control two power

semiconductors in an half-bridge configuration. The model behavior is defined by three

input parameters: period, duty-cycle and a dead-time, expressed in execution steps

(clock-cycles).

The PWM generator model employs a component, presented on the right side of

the figure that implements an up/down counter. This counter has two modes of

operation, according to the «PCntUp» and «PCntDn» places, cyclically counting up

from 0 to «Period-1» and returning back to 0. In addition to the «Cntr» output, it also

produces two events to notify the instant when the minimum and maximum values of

the counter are reached. These events mark the start and the center of each PWM cycle.

The 3 phase brushless DC servo motor used in this application is equipped with a

encoder producing two quadrature AB signals and three commutation UVW signals.

The commutation signals provide information about the absolute rotor position, used to

define the correct motor phase combination required to drive the motor in each

rotation/torque direction. The commutation signals may be configured in one of six

valid combinations, corresponding to size 60 degree sectors.

For this validation application, a very simple trapezoidal commutation strategy

was employed. Although more efficient stategies exist, it was chosen to reduce the

modeling complexity. Figure 55 contains the «bldc-commut» model that implements a

152

 Fig. 54: The PWM generator model (left) and the cntr_up_dn component model (right)

trapezoidal commutation state table. The model operation is based on the three UVW

commutation sensors, the rotation direction «Dir» coming from the PID component and

the two complementary PWM signals. It outputs six gate signals to drive the six

transistors of a three phase inverter.

Like the quadrature encoder model, the Petri net state-machine used to track

changes in the commutation signals graphically resembles the physical motor

commutation sectors where places «S1» to «S6» represent the six sectors. The dataflow

operations on the right are used to route the PWM signals to one of the motor phases

while another phase is driven low and a third phase is kept at high impedance,

according the sector currently selected and the desired rotation direction.

The gate drive output signals should not exhibit any transient glitches, that could

damage the power semiconductors. This way, the Petri net transitions were

synchronized with the «UpdClk» event, ensuring that the selected sector only changes at

the begin of every PWM cycle. In the same way, the «SyncDir» is only sampled at the

begin of each PWM cycle.

153

 Fig. 55: The BLDC Commutation table model

Figure 56 shows the last component model. The «SpdPosCtrl» component

calculates a reference position for the PID controller model and according to the

selected mode of operation: speed or position. In position mode, the reference position

is calculated directly from the «RefInput» signal. In speed mode, the «RefIput» is used

to define the rotation speed and direction. In both case, the reference input value is

defined by a rotary button on the FPGA development board that contains other encoder.

In speed mode, the «CalcPos» dataflow operation periodically increments or

decrements the reference position. The update frequency is calculated according to the

inverse of the «RefInput» value, using a variable frequency clock divider component.

Observing the clock divider component, the «ClkIn» input is driven by a constant event

value 1, representing an omnipresent event that happens on every execution step. The

number of clock cycles corresponding to the selected speed is calculated using a

division. However, the VHDL synthesis tools only perform divisions by numbers that

are powers of 2 (bit shifting). To overcome this limitation, the «div» operation employs

an internal table of inverse values.

154

Fig. 56: The Speed/Position selector model

 Fig. 57: Prototype diagram on the left and photo on right: BLDC Motor, FPGA and Inverter boards

7.1.2 Prototype implementation:

The application prototype was implemented using a Xilinx Spartan 3AN FPGA

development board, a three phase inverter card, a BLDC servo motor and a DC power

supply. Figure 57 presents a prototype diagram and a photo of the hardware employed.

The motor encoder and the inverter board are connected to the FPGA board using

differential signals. The inverter provides a current limit digital output used to quickly

disable the gate drive signals and protect the electronic devices. The reset and enable

inputs were assigned to push buttons and DIP switches on the FPGA board. LEDs were

used to monitor the PID position error.

The automatic code generation tools were applied to the top model, generating a

compressed ZIP archive containing VHDL files for each component class and a main

file. These files were used to create a Xilinx ISE project, with the addition of an UCF

file, created manually, to associate physical FPGA pins to each input and output.

This application was created to validate the new formalism and associated tools

and demonstrate the applicability to the design of power electronics controllers. This

way, details about motor control and linear control theory are out of the scope of this

work.

After correcting the range of internal integer signals to avoid arithmetic

overflows, the prototype was successfully tested. The project run from a 50MHz clock

signal, producing 25KHz PWM signals. The applications consumed just a small fraction

of the available FPGA resources: 334 flip-flops and 593 latches (7% of the available

slice registers), 1812 LUTs (15%), 3 hardware multipliers (15%), occupying 1300 slices

(22%), including a data table containing sampled values of the 1/x function.

7.1.3 Results

The prototype was entirely developed using the new tools, the component models

were designed and debugged using the simulator, and later the automatically generated

VHDL code was deployed on a FPGA board, without the need to manually write a

single line of VHDL code except for a pin assignment UCF file.

Graphical simulation contributed to accelerate the development time, permitting

the early correction of design errors. Debug sessions take just a few seconds to start,

leading to very fast development cycles. In contrast, the FPGA vendor synthesis tools

take several minutes to optimize and create bit-stream files to run on physical hardware.

The DS-Pnet modeling formalism provides an higher level of abstraction, that lets

the developers focus on modeling the desired system behavior and the underlying

155

control algorithms, and the automatic code generation tools hide the low level details,

contributing to avoid manual coding mistakes. However, system designers must still be

aware of hardware idiosyncrasies, including clock frequency limitations and carefully

check the range of integer values used to store the results of mathematical operations, to

avoid arithmetic overflows or underflows, a problem that may be automatically detected

in future versions.

The design of power electronics controllers requires knowledge on multiple fields,

including control theory, power converter topologies, software development,

electromagnetic interference management and printed circuit design. Combining Petri

nets and dataflows, the DS-Pnet formalism is well adapted to the design of mixed

systems combining digital controllers that interface with sensors and analog readings.

Comparing to traditional hardware description languages, the new formalism has a

much shorter learning curve and users may start creating useful models in just a few

days, releasing the designers from the time consuming software and hardware coding

tasks.

 The graphical dataflow notation contributes to simplify the implementation of

control algorithms, that may be translated from control block diagrams. To assist this

task, in the future the library may be extended with a folder containing component

implementations of frequently used control blocks.

Although the generated code is not optimal, the FPGA synthesis tools

optimization algorithms are able to suppress most inefficiencies. This prototype

consumed just a small fraction of the available FPGA resources, leaving much space to

add extended functionality. However, there is a trade-off between faster development

and reduced time-to-market versus a slightly increased resource consumption. Overall,

except for mass production projects, the economical effect of faster development cycles

and higher flexibility surpasses the cost of using larger FPGAs.

Comparing with a previous prototype, an open-loop motor controller implemented

using the IOPT-tools framework [12], the new tools brought two fundamental

advantages: dataflows and model composition. Compared to pure Petri nets, the new

formalism offers advantages in the design of the data-driven parts of the models, more

easily expressed using dataflows than text expressions attached to Petri net nodes. The

relationships between signals that were previously hidden in the place expressions, are

now graphically expressed as arcs.

Although the parent IOPT-tools did not support model composition, the previous

prototype was designed using a series of sub-system models that were separately

processed by the IOPT VHDL code generator, producing a set of independent VHDL

156

entities. As a result, the main VHDL application had to be manually coded, instantiating

the components and defining port maps to connect all components, without the ability to

simulate the entire model and loosing part of the advantages of the automatic code

generations tools.

Comparing to micro-controller based solutions, employing devices with dedicated

peripherals for the control of electronic power converters, as PWM generator modules,

timers, quadrature encoder interfaces and ADCs, at first sight the new application

appears to be in disadvantage, as all components were developed from scratch.

However, this was the first power electronics application using DS-Pnets and future

applications may reuse the new components, leveling the playing field.

The new formalism offers an additional advantage: the same component model

may be implemented as hardware or software, without requiring modeling changes.

This flexibility permits reusing the same components on different hardware

architectures, and debug algorithms on the simulator and on software targets and later

implement the same component on hardware. For exampe, the PID controller model,

typically implemented in micro-controllers as software, may be reused, both in

hardware and software implementations. In fact, if the hardware peripherals offered by

these micro-controllers are modeled as foreign DS-Pnet components, it would be

possible to design DS-Pnet models to create software solutions that run on these micro-

controllers, using the C code generator and some of the components created for this

example.

157

7.2 Distributed multi-user game with graphical interface

This validation application was chosen for several reasons. A distributed game

could not contrast more with the previous example, targeting two completely different

fields of application, demonstrating that the DS-Pnet modeling formalism can be

applied to a wide range of applications. Although the entertainment sector is not

frequently taken seriously by the academic community, the gaming and entertainment

industry corresponds to a multi-billion Euro business.

Contrary to the first application, the game was implemented as software and uses

the automatic “C” code generator, including the networking layer and the «standard»

library’s user interface and audio components. Due to the interactive nature of games,

any software glitches or networking delays are immediately noticed by the users,

providing an ideal test-bed to validate the entire tool framework. However, as the main

goal of the application was the validation of the new concepts and not the game quality,

a very simple «pong» game was selected, presented in figure 58.

The game was designed in several steps. In the first step, a single-user centralized

model was created, to experiment with the game dynamics and user interface. After the

single user version was successfully tested, the centralized model was divided in two

components: the game engine and the user interface. Next, the game engine component

was extended to support a second player, including internal data and new input and

output signals and events to communicate with a second user.

158

Fig. 58: Distributed dual-user «pong» game (graphical user interface)

The double-user game runs in two distributed nodes. The first node runs the game

engine and the user interface of the first player. When the second player is not

connected, it can be used in standalone mode with a single player. The second node runs

the user interface of the second player and connects to the first node to communicate

with the game engine component. The model running on the second node looks almost

identical to the first, except the game engine component now is a remote component and

the arcs that connect the user interface to the game engine were connected to the input

and output anchors of the second player.

The first version of the game model, before separating the game engine and the

user interface, can be viewed in figure 59. Most of the model space if occupied by

dark-gray components, corresponding to the graphical widgets that appear on the game

window, including the ball, the “bases”, a score number, several buttons (pause, left and

right) and two additional buttons used to display the «game-over» and «start-game»

messages when the game is not running. On the bottom right corner, two sound-sample

components are used to provide audio feedback: a “crash” sample when the game

finishes and a “boing” sample when the ball bounces on the base.

Figures 60 and 61 present the two main models used to implement the dual player

game. The second player model was designed starting with a copy of the first model and

a few additional changes. On target property of game engine component was defined as

159

Fig. 59: The entire single-user game model fits in a single editor page

«remote» and the resource location defined with the «player1» virtual node address.

Both models use exactly the same types of components and the game engine is shared

by both models. This component is implemented in the first model and the second

model uses it remotely.

It is important to observe the differences between both models. Each of the inputs

of the shared game engine component is only driven in one of the models and never in

both. This happens because the game engine component has specific input anchors for

the second player and only the first player is allowed to pause and start a new game.

A special input «Player2On» is used to inform the game engine when the second

player is connected. This Boolean input has both the default value and the «on-error»

values defined as zero. As a consequence, «Player2On» only holds true when the second

player application is connected and falls back to false when the connection drops. When

the second player is disconnected, the game engine automatically copies the ball X

position to the second player base position, behaving as a single-user game playing

against a computer that never looses...

Finally, the second player model uses a «MirrorY» dataflow operation to mirror

the ball Y position (680-Y). This is required in order to reflect the game window viewed

by the second player in the Y direction. This way, each player sees the corresponding

160

Fig. 61: The player2 model

Fig. 60: The main game model: game engine + player1 interface

base at the bottom of the window and the adversary at the top. To achieve this effect, the

arcs connecting the «BaseX» and «P2BaseX» signals to the user interface components

where also switched in each player model.

Figure 62 displays the game engine model. This model receives input from the

user interface of each player and outputs information about the ball coordinates and

each player base X position in real-time. It also keeps record about the game score,

corresponding to the number of consecutive bounced balls.

A simple Petri net state machine is used to manage the game state: waiting to start,

playing the game or displaying the game over message. The rest of the model is purely

data-driven and is controlled by dataflow operations. The main variables are the ball

«X» and «Y» positions and the respective «XS» and «YS» speeds, plus the «BaseX»

and «P2BaseX» base positions. The ball speed variables change signal whenever the

ball bounces on a player base or on a lateral wall, and the ball coordinates continuously

accumulate the respective speed variable.

The score is incremented when the ball bounces on a base and the game ends as

soon as the ball escapes the vertical interval between the two bases.

161

Fig. 62: The game engine component model

Figure 63 shows the interface model containing the widgets present in the game

window, with the respective screen coordinates set using constants. Input signals are

used to hide or show the widgets, to define the ball XY coordinates and the horizontal

position of each base. The buttons produce signals used to command the base positions

and pause or restart the game.

7.2.1 Results

The two game application models, for the first and second players, were submitted

through the automatic “C” code generation tools, producing two executable applications

to run the distributed game. The entire build process did not involve manually writing

any line of “C” code, except uncommenting a line in the project Makefile to enable

linking with the GTK user interface libraries. However, the game speed is defined in the

delayPause() function from file «model_io.c». This function uses the usleep() function

to insert a delay between execution steps. As this delay is disabled by default, a 2

millisecond delay was inserted by uncommenting the usleep() function call.

The game was tested using the Linux operating system, but as the Gtk libraries are

available on Windows and MacOS, it should be possible to compile the code on these

operating systems without requiring major porting changes. However, the sound effects

are based on the «pulse-audio» library that may not be available outside Linux, but the

game may still run without audio. The code runs directly on embedded linux boards as

the RaspberryPi V2 andV3 boards, without any changes except for processor

162

Fig. 63: Game user interface

architecture parameters in the project Makefile, as the Raspbian operating system user

interface is based on GTK.

The distributed games runs in two nodes where the first node executes the game

engine and the fisrt player user interface and the other node executes the second player

user interface. This way, the first player executable should be launched before the

second.

In order to establish the communication between the two nodes, the «user_db.txt»

file should contain the same username/password pair on both nodes. In addition, the

«node_db.txt» file of the second node should contain a line with the «player1» virtual

node pointing to the first node network address. It may be also necessary to define new

firewall rules on the first node to open the TCP port 9000 to the second node.

The distributed game was tested both on local networks and over a long distance

connection, with the first player located at the south-west Alentejo coast and the second

player in Oporto, using a proxy in Lisbon to bypass the firewall of the first player

router. Even with both players located more than 500Km away, the game was still

perfectly playable. The second player observed just some sporadic discontinuities in the

ball movement, without game consequences.

The first single user model fits in a unique editor page, and was developed in less

than four hours, where half of that time was consumed searching for appropriate icons

on «iconfinder.com» and experimenting the game with different sets of images and

sound samples. Next, the distributed version of the game was developed in just one

hour, as the model had already been divided into the user-interface and game-engine

components.

An implementation of this game using traditional development tools would

require much more than a single page of code. For example, an implementation using

the C programming language would require multiple pages of code just to initialize all

libraries employed, create the user interface and setup the TCP/IP communication.

Except if a dedicated commercial game engine were employed, the game

implementation would require many hours of work and some proficiency in the usage of

many programming libraries to implement the networking, audio and graphic user

interface parts of the game. In contrast, the distributed games could be implemented

using the new tools by a novice user with just a few days of training.

Finally, game design is a multi-disciplinary area, involving graphic designers,

sound engineers, mathematicians and computer programmers. The availability of

graphical formalisms may contribute to reduce the range of expertise requirements, as

163

the graphical nature of Petri net and dataflow languages may appeal to mathematicians

and designers without deep computer science knowledge.

Quantitative data about communication performance over local networks and long

distance connections using different embedded computational devices has been

presented in [22]. This publication covered an early version of the JSON/HTTP

communication protocol, used by the IOPT-Tools remote debugger application.

However, the new protocol version offers enhanced performance as it employs

subscriptions to filter the subset of remote model meta-data that should be transmitted,

while the previous protocol version always transmits information about the entire

model.

164

7.3 Graphical console for an industrial variable speed drive

The third validation application implements a graphical user interface to control

and monitor an industrial variable speed drive that controls an induction motor,

communicating using the ModBUS field-bus protocol. This example was selected to

demonstrate the ability to integrate DS-Pnet models in industrial environments and

cooperate with existing automation systems created using legacy languages and

development frameworks. As today there are millions of automation applications

running on the industry, the adoption of the next generation automation systems, based

on IoT and CPS paradigms, depends on the capability to communicate and cooperate

with the legacy systems.

Contrary to the previous application, the core of this model is a Petri net. This

application continuously monitors a variable speed drive, reading instantaneous motor

speed and current values, to display the respective waveforms in a scope widget. In

addition, the user has the ability to start, stop, reverse and define the motor velocity. All

of these variables are accessible through the ModBUS interface, to read or set new

values. However, as these values are not placed into consecutive ModBUS registers,

only one value may be read at a time, requiring a Petri net state-machine to

continuously scan the monitored values and transmit user commands.

Figure 64 presents the console user interface, running on a laptop PC connected to

a «Delta» (www.deltaww.com) variable speed drive using an USB/RS485 serial adapter.

165
Fig. 64: Variable speed drive console application (running on a laptop PC)

http://www.deltaww.com/

Figure 45 presents a modified version12 of this model running on a Raspberry PI 2

device, with an LCD and touch screen “hat”.

Figure 65 displays the application main model. In the same way as the game

application, the application was divided in two components: the user interface and

ModBUS scanner. A third component, «tOff», is used to maintain error indications on

the console window for one second after the errors are cleared, enough to be noticed by

the user.

Although the application was executed on a single node, it would be possible to

transform it in a distributed application and execute the components on different nodes,

just changing the properties of the scan component, defining a remote “target” and

assigning a remote location. After this, the split-node tools creates two sub-models, one

running the ModBUS scanner and the other running the console interface, creating a

console application with remote capabilities. This option was not chosen, as a TCP/IP

version of ModBUS protocol can communicate over the internet, providing equivalent

results. However, the distributed solution, running the ModBUS scanner on the remote

host would still benefit from reduced communication latency and remote debug and

monitoring.

Multiple ModBUS devices may be connected to the same RS485 bus with

different identifier numbers, supporting a master and up to 252 slave devices. As the

device ID is selected from the user interface, this console application may used to

control multiple drives connected to the same bus, as long as they use the same register

addresses (same manufacturer/model).

Figure 66 displays the scan cycle model that continuously reads the instantaneous

motor current and speed to show the graphical waveforms in real-time in a scope

widget. However, this model must also send commands to the variable speed drive, to

start, stop the motor and change the rotation speed, that must be interleaved with the

waveform data.

12 The model was modified to fit the 480x320 LCD resolution of the “hat” adapter.

166

Fig. 65: Console main model

Unfortunately, ModBUS communication can be relatively slow as older devices

employ low baud rates (9600, 19200 baud) and response times may reach more than 0.1

sec. To handle this, the ModBUS interface component works in an asynchronous non-

blocking way, sending ModBUS commands when it receives input events and later

producing output events when answers arrive from the bus.

Communication with the selected ModBUS slave device is orchestrated by the

Petri net part of the model presented on figure 66. Under normal operation, the loop on

the left side (PReady, TStartRead, PReadCurrent, TCurrReadDone, PTeadInstSpeed,

TDone) is continuously «running». However, when any of the «MotorOn», «Speed» or

«RotDir» inputs change value, this loop is interrupted to transmit the new changed

value to the respective ModBUS register on the slave device. When this happens, one of

the transitions «TSetDir», <TSetSpd» or «TSetOnOff» enters in conflict with transition

«TStartRead», that is solved using priorities: the former transitions have priority over

167

Fig. 66: ModBUS Scan-cycle model

«TstartRead», meaning that one of them will immediately fire as soon as «PReady» is

marked.

The three guard operations above these transitions (top left) compare the current

input values with saved copies. The three operations on the top right corner update the

saved copies as soon as a changed value has been successfully transmitted. The two

additional operations on the right side save the last motor current and speed values read

from the drive, applying a scale transformation to the desired units (speed from 0.01HZ

to RPM and current using a 0.1 Amp scale).

Each ModBUS command if performed in two steps, starting with the emission of

a request event and waiting for an answer event, corresponding to sequences of two

transitions. All transitions whose name ends with «Done» mark the reception of a

command answer. The application uses the «ReadReg» and «WriteReg» ModBUS

commands to read and modify memory registers on the slave device. The remaining

commands «ReadInput» and «WriteCoil», to access possible physical inputs and outputs

of the device, were not used in this application. The read register commands are used to

read current and speed values and the write register to set the speed, direction and start

or stop motion. The operations «ReadCurrOrSpeed» and «SetSpeedDirOnOff» trigger

events immediately after places whose name start with «PRead» or «PSet» are marked.

The operation «o116» selects a ModBUS register address according to the place

marked, corresponding to the type of value being read or written. These addresses are

dependent on the manufacturer and often change on different model types. In the same

way, the operation «o109» defines the value to be written, applying the correct scale

transformation. For example, speed is converted from RPM to 0.01HZ.

The ModBUS scanner produces two output events, «Error» to notify possible

communication errors and the «NewSample» to shift a new sample into the scope data

and update the waveforms with the values of the «MotorCurent» and «InstSpeed»

output signals.

Figure 67 displays the user interface component. It contains all widgets that

appear in the application window, plus a set of constants to define the screen

coordinates and size. Two operations transform the scope data sampled inputs to fit the

entire scope range. A simple Petri net is used to manage the motor status: idle or

running. This information is used to hide or display an icon according to the motor

status and also to inhibit the sensitivity of the rotation direction check-box, preventing

the user from switching directions while the motor is running: changing the rotation

direction while the motor is moving at high speed may cause mechanical hazards.

168

7.3.1 Results

In the same way as the previous validation applications, all code was generated

automatically without any human intervention. The application was developed in just a

few hours, including the debug of the scan cycle component and fine tuning the position

of each user interface widget on the screen.

The prototype application was executed on two devices: a Linux laptop PC and a

raspberry PI 2 card equipped with a «hat» board containing a 480x320 LCD and a touch

screen. The prototype employed an USB/RS485 adapter to communicate with a

DELTA-Automation variable-speed drive controlling the spindle motor of a CNC

machine.

Contrary to the initial expectations, most of the development time was occupied

with the graphical layout of the user interface: As currently there is no way of

previewing the application window in the simulator, it required multiple iterations of

model-edition, code generation and the respective compilation to view the change

effects.

As the IOPT-Flow framework aims the rapid development of applications, this

raises the need for a new user interface builder application. Such an application would

start with an empty window and let the user place new widgets from a palette menu,

interactively positioning and sizing each widget. As a result, the interface builder would

automatically create a user interface component model containing all widget instances

and the respective positioning constants. Widget outputs and unconnected widget inputs

would be automatically mapped to the component external interface.

169

Fig. 67: The console user interface component

The main goal of this validation example is to demonstrate the creation of mixed

applications, merging DS-Pnet models and legacy devices, cooperating with each other.

Although this example focus on user interface issues, more sophisticated applications

could have been designed, for example to create machine controllers involving motor

controllers and programmable logic controllers with ModBUS connectivity.

Comparing with other existing technologies, a similar console could have been

constructed with other tools, as Matlab/Simulink, Labview and the user interface

toolkits offered by many automation vendors to design user interfaces for embedded

LCD screens. In relation to Simulink and Labview, the user interfaces created using

those tools usually run on personal computers, and the new application runs directly on

the embedded devices, without requiring any type of licenses. Comparing with the user

interface toolkits for industrial automation, the new solution offers similar functionality,

although not all of these toolkits are able to display dynamic waveforms.

Regarding user interfaces, the main advantage of the new solution is the capability

to transparently interact with distributed nodes from cyber-physical systems, gathering

information from multiple remote nodes and controlling multiple distributed devices,

just by importing remote components and connecting arcs.

A future HTML/Javascript implementation of the user interface widgets will

further contribute to enhance functionality, reduce development time and lower the

application hardware cost. With this solution, the same user interface models could be

deployed on hardware as the LCD «hat» used in the example, or used to create remote

Web user interface to run on PCs and mobile computing devices. Development time

could be reduced by launching the user interface window directly from the simulator

tool, without requiring compiling the “C” code. Finally, remote Web interface eliminate

the need for user interface hardware on each embedded device, thus reducing

manufacturing costs.

170

7.4 Distributed cyber-physical system simple application

A fourth validation application implements a simple distributed system. Contrary

to the previous examples, this application has absolutely no practical usage and serves

just to demonstrate a possible design work-flow to create distributed systems starting

with a centralized model that is later split in several nodes. In addition, this example

employs several distributed nodes, with two nodes containing physical components and

a third computational node, forming a distributed cyber-physical system.

This is a purely academic example, focusing in the interconnection between

computational and physical nodes. As a result, the nature of the computational task

performed internally by the nodes is irrelevant. In this example, a computational node

simply manages a lighting sequence on a row of LEDs, simulating variable speed

motion.

Figure 68 presents the application model, whose development was initiated with a

centralized model that was later split into three node sub-models: NodeA, NodeB and a

main model. Nodes A and B were deployed on two Xilinx Zedboard cards and the main

model run on a personal computer. The Zedboards were chosen due to the availability of

DIP switches, LEDs and IO connectors, associated to an ARM processor running

embedded Linux (Xillybus). The application uses four DIP switch inputs, to reset the

application, enable or pause, increase or decrease the LED simulated motion speed.

Both nodes A and B use different instances of the same «IOX8» component, and

the main node employs a controller component. The interface of IOX8 consists of 8

inputs, 8 outputs and an «enable» input. When enabled, this component just copies input

values to the respective output, resetting all outputs when disabled. The controller

component, running on the main node, executes a small Petri net state machine that

continuously flashes a single LED, simulating a motion from left to right and back to

left. Figure 69 presents the implementation models of both components.

The IOX8 component is used to provide a remote interface for input and output

signals on physical devices. In NodeA there are 8 input signals, associated with

hardware DIP switches, connected to the 8 inputs of the component IOX8_DIPSW. In

171

 Fig. 68: Example of a distributed DS-Pnet application model

contrast, the outputs of the component IOX8_LEDS on NodeB are connected to 8 Leds

(wired to an IO connector). A constant true (1) value is used to permanently enable both

IOX8 components.

The communication between the three components, running on different nodes, is

defined using read-arcs. In the example, four arcs are used to transmit the values of the

DIP switches from NodeA to the main node and another eight arcs transmit LED status

information from the main node to NodeB. As the IOX8 outputs have a Boolean type

and the «Reset», «IncSpeed» and «DecSpeed» inputs of the «Kit_0» component are

events, three dataflow operations were inserted to detect positive edge events triggered

when the DIP switch signal changes from 0 to 1.

In order to deploy the distributed system to the three computing devices, the

model was divided with the automatic node-split tool into the three sub-models,

displayed in figure 70. The main sub-model, presented at the top of the image, contains

two instances of the IOX8 component, but these are just references to the remote

components implemented in the other nodes, presented at the bottom.

The NodeA sub-model includes only the 8 dip-switch inputs and component

IOX8_DWPSW, leaving the outputs of this component unconnected. The NodeB sub-

model contains only a IOX8_LEDs component and the respective LED outputs, leaving

the inputs of the component unconnected. Finally, the main sub-model, working as a

maestro, includes the central component Kit_0, the three dataflow operations and two

references to the remote IOX8 components implemented in the other nodes. The arcs

interconnecting remote components are only present in the main sub-model.

172

 Fig. 69: Implementation models of the IOX8 (left) and Kit (right) components

7.4.1 Results

The three sub-models were submitted to the C code generator and compiled to

build the executable programs to run on each node. The GNU GCC compiler was used

in all cases, but nodes A and B were compiled with options to the ARM processor

architecture and the main node for Intel X86-64.

All nodes, running versions of the Linux operating system. were connected using

a local network. As the main application model connects to the JSON/HTTP servers

running on the other nodes, the firewall rules of nodes A and B must be setup to open

access to port 9000. In addition, a common user authentication file was installed on all

nodes, defining the privileges for a «guest» user. As the main application only reads

subscribed signals from nodeA, the user guest only needs to request «observer»

privileges on this node. However, the main application will drive input signals on

NodeB, requiring «master» privileges on this node. Finally, the resource location

parameter of the two IOX8 components on the main model refer virtual node addresses

«NodeA» and «NodeB». As a consequence, the main application node will require a

«node_db.txt» file containing information about the real Internet addresses and port

numbers of the other nodes plus the usernames used for authentication.

The distributed system was successfully tested with the two boards controlled by a

personal computer, with multiple instances of the remote debugger application

connected to each node, to monitor the evolution of each model in real-time.

In the same way as the two previous validation examples, the entire system was

developed in just one afternoon, with 80% of the development time occupied in the

173

 Fig. 70: Sub-models after node-split: Main maestro model(top), NodeA (bot. Left) and NodeB (bot. right)

design of the controller main model. The tasks related to node division, communication

to remote nodes and code generation were fully realized by automatic tools.

Comparing with the traditional programming languages and tools that are

presently taught in Electrical engineering courses for embedded systems design (C, C+

+, Java, Python, VHDL etc.), the new formalism and tools allow the creation of

distributed cyber-physical systems in a fraction of the development time and requiring

much shorter learning paths, as previously discussed for the distributed game

application.

In contrast, the IEC61499 standard for system distribution offers the concept of

function blocks that communicate using input and output signals and events, from

where the proposed formalist borrowed these concepts, would permit defining an

equivalent system with comparable effort and development time. However, the

proposed solution communicates directly over TCP/IP and the distributed components

can be located at any place in the world with the Internet connectivity. To achieve the

same results using IEC61499 would require the addition of special function blocks that

implement publisher/subscriber and client/server communication on each node,

resulting in more complex models.

174

8 Conclusions and future work

The contributions presented in this document were elaborated to provide an

answer to the three research questions described in chapter 1 and validate the associated

hypothesis. From these hypothesis, only the last hypothesis from the third research

question was not validated, as an alternative and more advantageous solution was

chosen.

8.1 Research question 1

Regarding the first research question, the DS-Pnet formalism, presented in chapter

3, offers a feature set that was selected to allow the rapid development of distributed

cyber-physical systems and embedded system controllers, combining the characteristics

of IOPT Petri nets, dataflows and model composition based on components. Petri nets

are used to model the controller state machines that evolve according to external events.

Dataflows are employed to specify data processing operations, including mathematical

transformations and digital signal processing, that may be applied to calculate output

signals, condition analog sensor inputs and implement linear control algorithms.

Components are used as a structuring mechanism, permitting the rapid design of new

applications from libraries of previously designed and debugged building-blocks. With

an external interface consisting of input and output signals and events, components

provide an abstraction to the design of distributed systems composed of local and

remote components, running on different nodes containing both processing and physical

devices. The interconnection between local and remote components is specified in a

transparent way using arcs.

Petri nets have been extensively studied by the academic community for more

than 50 years, with the annual production of thousands of papers. Resulting from this

175

8

research work, a well known set of properties have been studied, with applications to

the analysis and model-checking of controller models. As a result, the reactive parts of a

DS-Pnet models, based on Petri nets, may be analyzed by the automatic state-space

calculation and model-checking tools developed in the preliminary work, for the parent

IOPTnet class.

The association of dataflows to Petri nets contributes to solve one of the most

frequent criticisms about pure Petri net languages, considered ill adapted to specify the

interface between analog and digital parts of mixed signal systems. Using the new

formalism, dataflows are used to connect input and output signals and events to the Petri

net nodes, offering an explicit graphical way to specify the dependencies between

signals and control decisions, including transition input events and guard conditions. In

the same way, dataflows are used to calculate output values, graphically exposing the

dependencies between these signals and place marking and transition firing by the

means of arcs. The same consideration may be applied to the relationship between

internal signals calculated using mathematical operations, whose dependencies are

graphically displayed using arcs.

Data-centric models may be designed just with signals and dataflow operations,

without any Petri net nodes, as happened with several component models employed in

the validation applications. This is specially true for signal filters and linear control

algorithms whose state typically evolves around integration, differentiation and other

mathematical operations. In contrast, pure Petri net languages encode these

mathematical operations using output expressions associated with idle Petri net places,

hiding the dependencies between internal signals. Using these languages, a user would

typically start with a dataflow model on paper, that was later translated to output

expressions. With the proposed formalism, the initial dataflow can be immediately

designed in the tools.

The synchronous paradigm, means that all dataflow calculations are considered

instantaneous, means that any change in input signals is immediately propagated to all

dependent dataflow nodes in a single execution step, affecting both output signals and

system state evolution by means of transition firing. This way, designer may break large

mathematical expressions in several dataflow operations connected in series, permitting

the reuse of intermediary values, increasing the model readability without

compromising performance.

Controllers usually exhibit a reactive behavior. In contrast, plant models typically

include mechanical and other dynamic systems that are better modeled using dataflows.

With the ability to model mixed signal systems, DS-Pnets are suitable to the design of

176

both controllers and plant systems, enabling the construction of complete autonomous

systems composed of controller and plant components and the respective

interconnection arcs, used for fast model-checking.

With an external interface composed of signals and events, components provide

another advantage: they can be used to encapsulate foreign systems whose interface can

also be specified using signals and events, bringing extended functionality to DS-Pnet

models. For example, existing integrated circuits, HDL IP cores, programmable logic

controllers and other automation devices, IEC61499 function blocks, may be used as

foreign components to build DS-Pnet models. In the same way, existing software

written with most programming languages may also be accessed using the concept of

foreign components. In this case, events are employed to invoke algorithms and

methods running on the foreign code and signals are used to pass parameter data.

A library of foreign components is offered to implement frequently used tasks,

including user interfaces, array and file I/O and audio. In principle, foreign components

should only be used to provide extended functionality that cannot be implemented using

the language core. For example, to access external resources, perform operating system

calls and to use hardware peripherals.

However, foreign components may be employed on other occasions, for example,

in applications requiring extreme efficiency and performance levels. It is a common

expression to say that a computationally intensive application spends 99% of the time

executing just 1% of the code. In this case, the critical 1% part of the code may be

implemented using foreign components and the remaining application using native DS-

Pnet models, benefiting from the rapid development advantages of model-based design

without loosing significant performance.

In addition, some algorithms are better implemented using imperative (or other)

languages by software engineers, for example to manipulate large quantities of data,

complex data-structures, or software packages that have already been coded and well

debugged. In this case, there are still advantages in encapsulating this code in foreign

components: These components may be immediately inserted in new DS-Pnet models to

build centralized or distributed applications, without requiring any concerns about

communications details. A foreign component may be inserted in a distributed

application and transparently receive requests and data from remote clients or send

request events to other remote components.

177

8.2 Research question 2

In order to ensure deterministic execution, the bidirectional relationship between

Petri net and dataflow nodes has been studied, as presented in chapter 3, leading to

creation of an algorithm to execute DS-Pnet models used as a basis to the development

of the automatic code generation tools presented in chapter 4.

The dependencies between signals, events, dataflow nodes and Petri net nodes are

analyzed in order to determine a precise evaluation sequence used to calculate an entire

execution step, employing the concepts of micro-step and nano-step numbers that are

associated to all dataflow operations and Petri net transitions, according to the

definitions 13 and 14.

Models containing components are previously fused into flat models containing

the nodes of all components. This way, the nodes belonging to different instances of the

same component class are processed independently and assigned with different micro-

step and nano-step numbers, according to the dependencies of each original component

instance inputs.

The micro-step and nano-step numbers are only used to specify a calculation

sequence, and do not impose any clocking sub-divisions, as the execution of an entire

step adheres to the synchronous paradigm from synchronous dataflows. Under this

paradigm, all calculations are instantaneous and the system state remains constant for an

entire step, evolving in quantum instantaneous steps.

Potential calculation loops, where the results of an operation are directly or

indirectly feed back to the respective inputs, violate the synchronous paradigm and are

considered syntax errors. However, the circular dependencies are immediately detected

during micro-step and nano-step assignment, preventing the application of the code

generation algorithms. A delay operator used in dataflow output expressions may be

used to break the circular calculation dependencies, using values calculated in previous

execution steps instead of the values about to be calculated.

An automatic code generation tool was developed, producing software and

hardware descriptions that execute the models behavior. Currently, the tools produce

code for the JavaScript, C and VHDL target languages. The code generation algorithm

employs a multi-stage strategy that produces intermediary files containing a XML

representation of the model semantics independent of the final language, that are later

transformed to the desired language syntax.

The output of the C code generator includes a client/server communication layer

that permits graphical remote debug and monitoring of the systems deployed in

178

embedded devices and automate the communication between distributed nodes. The

VHDL code generator may output modular or monolithic versions of the code. The

modular versions contains separate entity files for each component calls, that may be

individually reused on other VHDL projects.

Distributed models, employing components running on remote nodes form GALS

[61][62][107] systems where each node employs a different execution clock.

Components communicate with each other using input and output signals and events,

whose propagation between different nodes is subject to variable network latency

delays.

The Petri net part of any DS-Pnet models is divided into multiple independent

sub-nets, that never span across different components. This way, the execution

semantics of the Petri net part of a DS-Pnet system is not affected by component

locations, except when transitions from different components are connected using

events. When both components run on the same local node, then the event connection

forms a synchronous channel and when enabled, both transitions fire on the same

execution step. When the transitions are located on different nodes, then the master-

slave relationship remains valid but there is a time delay between both firings.

A communication protocol based on JSON/HTTP [129], optimized to support the

communication between distributed nodes to establish interconnections between remote

components was designed. The output of C code generated automatically contains a

client/server communication layer that automates the connection between multiple

nodes forming a components network.

As the propagation of signals and events between different nodes is subject to

external factors that cannot be controlled, including variable delays and connection

drops, information interchange between distributed components is synchronized using

events. When a component transmits a message to a remote peer, typically the message

payload is placed on output signals before sending an event to notify the other side.

Later to other side may respond using the same strategy.

To obtain deterministic behavior, the networking layer ensures that the receptor

does not loose events and the payload signals arrive before, or on the same execution

step, as the notification events. The message propagation time may vary, but messages

arrive at destination unless a connection is dropped. Connection failures are dealt with

«on-error» parameter values associated with input signals: when a connection drops the

communication layer sets the on-error values and the components may act accordingly.

179

The input and output signals and events of the DS-Pnet component interfaces does

not force any type of event handshaking between distributed components. However, a

client/server use pattern borrowed from IEC61499[69][70] is presented, including state-

machines models to implement the respective handshaking.

With the advent of the IoT [49] and CPS [47][48], distributed applications may be

constructed using publicly available components, designed and offered by third party

entities. This way, the public components may be simultaneously requested by multiple

applications. To enable the concurrent sharing of the same component by multiple

applications, an extension to the current DS-Pnet communication infrastructure is

proposed.

8.3 Research question 3

The model checking sub-system developed for the parent IOPT Petri net class

[29][6][9] is based on state-space graphs and a query system to automate property

checking, as deadlocks and live-locks, and the detection of desired and undesired states

in very large state-space graphs. Although IOPT nets do not employ dataflows, it

supports input and output signals that influence transition firing, and the resulting state-

space graphs frequently reach many millions of states. The IOPT-Tools state-space

calculation employs a compilation strategy based on the C code generated automatically

to execute the model semantics.

With the creation of a conversion tool that extracts the Petri net part of DS-Pnet

models to build IOPT PNML documents, the former model-checking sub-system may

be directly invoked from the IOPT-Flow editor to analyze the properties of the Petri net

part of DS-Pnet models. As the core of many models and components is built around

Petri nets, this tool has been successfully used to detect modeling mistakes.

However, the state-space graphs calculated based just on the Petri net part of DS-

Pnet models do not account with the system evolution restrictions imposed by the

dataflow part of the models, including guard conditions and input events used to inhibit

transition firing. This way, the resulting graphs include many states that are never

reached in the complete model, but the state-space graph of the entire system is a sub-

set of the graph produced. This way, if any undesired states are not reached in the entire

graph, then these states are also not reached in the subset corresponding to the real

system.

Unfortunately, building state-space graphs of the full DS-Pnet models has been

proven a very difficult task in terms of computational resources, requiring huge amounts

of processing time and memory. For example, a DS-Pnet model containing just 3 analog

180

inputs, represented as 10 bit integer signals, would account for 1030 combinations on

each execution step. In addition, these signals are often used by dataflow nodes to

calculate other internal signals, for example to apply integration and differentiation

operations whose results must be stored in other system state variables, leading to a

further explosion in the size of state-space graphs.

As a result, an alternative approach has been used. Instead of studying just the

controller models, the DS-Pnet formalism may use used to model both the controller

and the controlled systems, called the plants, and the complete systems may be

assembled using two components, for the controller and the plant, connected using arcs.

As all the controller inputs are now driven by values calculated by the plant, and plant

inputs are driven by the controller, then the resulting system is autonomous and the

resulting state-space graph is usually reduced by many orders of magnitude. This

approach has been previously employed using the NCES Petri net class.

The resulting controller+plant autonomous systems may be interactively

simulated using the simulator tool, that saves the simulation history waveforms for

posterior inspection. However, this task may be assisted using a state-space exploration

function that has been added to the simulator, that computes all states until a repeated

state is found. According to the repeated state found, the system may have reached a

dead-lock or live-lock situation, and potential undesirable states may be found in the

simulation history waveforms.

Although this strategy is dependent of the accuracy of the plant model, it can be

applied to the rapid testing of real world models whose state-space graph calculation

would consume enormous resources. When a system is composed of multiple sub-

systems, the simulator and model-checking tools may be employed to debug and

validate each sub-system, that are simulated using typical use-case scenarios, but the

computation of the state-space graph of entire systems starting in the graphs of the

components, as described in an hypothesis, has not been prosecuted, as the resulting

graphs would still require huge amounts of storage.

Finally, the new simulator tool has the capability to store copies of the simulation

history waveforms that may be used later to repeat simulation sessions, using revised

versions of the same models, and automatically detect changes in the output waveforms.

This functionality may be used to automate regression tests.

8.4 Results and comparison with other technologies

The proposed modeling formalism has been tested in the development of the

validation applications and several small examples used to assist the debug of the IOPT-

181

Flow tools. The tools have been used by several co-workers (InoCAM), former PhD

students and were used during the thesis work of a master degree student, that

contributed to detect flaws and suggest future enhancements. Both the author and the

beta-testers have previous experience in software development and computer

programming teaching, that helped evaluate the new tools and compare the new

formalism with other development languages.

As the proposed tools aim the rapid development of embedded systems and

distributed cyber-physical systems, they should be evaluated against other languages

and tools commonly employed for the same type of applications. Evaluation criteria

include development speed, learning curve, output code efficiency and suitability for

different types of applications, used to qualitatively compare the new tools with the

following technologies:

8.4.1 Traditional programming languages
(C/C++, Java, Python, VHDL, etc.):

These formalisms are currently taught in virtually every electrical engineering

class on embedded system development and consequently should be the most effective

tools to the job. Comparing with these languages, the new formalism provides faster

development time and require a much shorter learning curve, with just a small reduction

in efficiency, contributing to reduce development cost.

By providing a higher level modeling formalism, assisted by graphical simulation

and model-checking tools, and automatic code generation tools that hide the low level

coding details, including the communication between distributed nodes, the new

formalism offers much faster debug cycles, avoids low-level coding mistakes and

contributes to prevent hardware damage resulting from design mistakes. As most

mistakes are detected using simulations in early design stages, when the development

reaches the prototype implementation phase most errors have already been resolved,

minimizing the risk of destroying mechanical parts and electronic devices employed in

the physical parts of cyber-physical systems. The availability of a debugger application

that enables the remote trace and monitoring of applications already deployed in

physical devices also contributes to reduce development time, showing the evolution of

the original models almost in real-time.

These results have been verified during the development of the validation

applications. In the first example, the component implementation models used to build

the motor controller application were tested with the simulator. In this application, the

FPGA synthesis tools took more than 5 minutes to build a new bit-stream file to upload

182

in the development board. In contrast, the simulator tool can be started in a few seconds

after correcting a model, providing a debug cycle more than 100 times faster. For

software targets, this difference is shorter, but still requires software compilation and

upload to the target devices.

In relation to the second application example, the entire game model fits in a

single editor page, including the game engine, a graphical user interface and audio, and

was created in just a few hours. An equivalent software application would require

multiple pages of code just to initialize all libraries employed and would require longer

development time and knowledge about the API of the different libraries. The same

considerations can be applied to the other applications, with the addition of also

requiring knowledge about TCP/IP communications.

Regarding the learning curve, the proposed formalism hides most low level

implementation details and consequently a novice user may start producing useful

models with just a few days of training, including distributed applications. In contrast,

building equivalent applications using traditional programming languages would

typically require several semester classes, including an introduction to computer

programming, an optional second class on algorithms and data-structures, another class

on operating systems, inter-process communication and computer networks and other

class in embedded system design. As a consequence, the new tools may be taught to

persons without a computer science background and may appeal to developers coming

from other fields as mechanical engineering and industrial automation technicians.

The new formalism is not as flexible as traditional programming languages and

many algorithms and applications may be more easily expressed using the sequential

paradigm offered by imperative languages. This limitations are related to several

choices made during the design of the new formalism, that aimed to offer the same

execution semantics on both software and hardware targets. For example, arrays and

matrices were excluded from the core language and later implemented as foreign

components, due to the fact that the hardware implementation of DS-Pnet models

execute one step per clock cycle and only permit to access a single array position per

step. In addition, an expert developer will usually create more efficient code than the

one produced by the automatic generation tools, that may require the usage of more

expensive hardware. However, except for mass production applications, in cases when

the number of produced copies is not very large, the gains obtained in development time

and flexibility surpass the increments on hardware cost.

One advantage of the new formalism over traditional programming languages is

the possibility of producing code for different targets. The same model may be tested

183

once and executed in software or used to synthesize hardware, maintaining the same

execution semantics.

Fortunately, the previous described limitations can be mitigated using foreign

components to implement the performance critical parts of the systems, and also to

specify the algorithms and sub-systems that are better expressed using traditional

languages. This way, new applications can benefit from the advantages of the new

formalism without major performance penalties. The modeling capabilities of the new

formalism may be extended with the addition of new library folders, suitable for

different application fields. For example, a folder containing optimized matrix

operations as addition, subtraction and multiplication may be necessary to implement

computer vision systems and advanced signal processing operations.

8.4.2 IOPT-Tools

The design of the new formalism and tool framework ware inspired in the parent

IOPT net class and the associated IOPT-Tools framework whose development started in

the GRES research group many years ago [29][54][55][56][57][58][59][60][61][62].

The parent framework also aims the rapid development of embedded controllers, and

offers most of the same benefits as the new one, including simulation, model-checking,

automatic code generation and remote debug capabilities [22]. However, the current

version of the tools do not offer any form of model composition and data-manipulation

operations are performed by mathematical expressions associated with places and

transitions.

As the new formalism builds on top of the former, it offers the same benefits and

adds extended functionality. The addition of dataflows brings enhanced modeling

capabilities to specify mathematical transformations and graphically express the

dependencies between internal signals, becoming better suited to implement data-centric

models and signal processing.

The addition of components permits the creation of libraries of previously

designed and well debugged components that contribute to accelerate development

time. Models may be sub-divided into multiple sub-systems, contributing to reduce

screen clutter and let the developer focus on individual components. Finally,

components provide an abstraction to implement distributed systems, where the

communication between components located on different network nodes is specified by

drawing arcs between the input and output signals and events of different components.

As the new C code-generation tools include an client/server communication layer, the

creation of distributed cyber-physical systems is fully automated.

184

8.4.3 Industrial automation development languages

The development languages used to create industrial automation applications

based on programmable logic controllers, include several graphical formalisms as

Ladder diagrams, Grafcet, sequential function charts and function block diagrams

(IEC61131-3). Later the IEC61499 standard introduced a new generic model for the

design of distributed control systems, but continues to employ the former IEC6113-3

languages.

These graphical formalisms enabled the rapid application development of

applications and some of them offer a short learning curve. For example, Ladder

diagram is very popular among automation technicians as it permits the design of

simple automation applications without much training. PLC vendors provide design

tools that work from personal computers to enable the edition, simulation and graphical

debug and monitoring of systems running in the PLC devices, connected to the PC via

field-bus protocols. Most PLC vendors also supply user interface devices and support

applications.

The proposed tool-chain offers a single formalism based on Petri nets and

dataflows, supporting model structuring based and components. However, the elements

of the new formalism may be combined in different ways, providing a flexible solution

that can emulate the constructs of the former languages. For example, a library folder

containing normally On/Off contacts and timers, may be used to draw horizontal

dataflow graphs, similar to Ladder diagrams. In the same way, persons familiar with

Grafcet and SFC diagrams may employ Petri nets to build state-machines, taking

advantage of automated editor functions to define complementary places (limit marking

to a single token) and insert semaphores around critical sections.

Even the function blocks offered by IEC61499 may be replaced by DS-Pnet

components. With a similar external interface composed of signals and events, a DS-

Pnet component might theoretically be inserted into an IEC61499 system and an

IEC61499 function block might be used in a DS-Pnet distributed application, just

requiring the creation the communication protocol compatibility code.

IEC61499 composite function blocks containing multiple interconnected basic

function blocks may be replicated using components and dataflow arcs connecting the

component interface signal and events, and even the IEC61499 execution control charts

(ECC) could be replaced by Petri nets used to control the execution of components, in

the same way as ECC trigger the execution of the execution of events, with the

advantage of graphically displaying the dependencies between the algorithms and the

185

control chart. Finally the service interface function blocks (SIFB) may be implemented

using DS-Pnet foreign components, to bring enhanced functionality and permit the

insertion of legacy code.

As a conclusion, the DS-Pnet formalism provides equivalent functionality to the

IEC61499 standard, but does not require learning the syntax rules of multiple languages

(ECC, SFC, FBD, Ladder, etc.), as it employs just a single language, flexible enough to

mimic all of the former. In addition, any DS-Pnet component may be directly connected

to other components placed on remote nodes, communicating through the Internet,

without requiring any interface components, and an automatic split tool may be used to

break centralized models into multiple distributed nodes. In contrast, IEC61499 requires

the manual insertion of special-purpose publisher/subscriber and client/server function

blocks at the boundaries of each node. As a result, the new formalism may appeal to

designers with previous experience on industrial automation formalisms.

Finally, the new tool-chain may be used to design both software and hardware

solutions and can be used to create general purpose digital systems. In addition, the new

software code generators may be used to create applications to run on embedded

devices, but may also be employed to create software applications to run on personal

computers, as the game validation example. In contrast, the languages used for the

development of automation solutions are not usually employed for other purposes.

8.4.4 Labview and Matlab/Simulink

The Labview and Matlab/Simulink software packages have been heavily used by

the academic community to build prototypes and have made some incursions in

industrial environments. These are huge frameworks, supporting multiple development

formalisms, mathematical solvers, and very large libraries of existing modules that

provide a very fast path to create new applications. For example, Simulink supports

graphical simulation and automatic code generation for both software and hardware

target and third party add-ons offer support for external hardware.

However, these are commercial products, requiring expensive license costs both in

terms of development tools and also in run-time licenses for the resulting solutions. In

addition, the resulting applications must be attached to personal computers running the

development environment to allow debug and monitoring, as compared to the proposed

solution that used Web technology for the same purposes and may be monitored from

mobile computing devices.

Although Simulink supports Petri nets and dataflows, the new formalism has been

designed specifically to support the design of embedded and distributed cyber-physical

186

systems, with a precise execution semantics and a feature set designed to permit high

performance implementations. For example, the VHDL code generator directly

translates all dataflow operations to combinatorial circuits.

The task of reading and writing input and output signals and events connected to

physical devices is automatically dealt by the automatic code generation tools, without

requiring the insertion of additional blocks supplied by the hardware vendors. In the

same way, Matlab and Simulink offer blocks to implement TCP/IP client/server

communication that permits the creation of distributed solutions, but the proposed tool-

chain offers dedicated tools to split applications after centralized simulation and allows

the design of distributed applications almost in a transparent way.

Finally, the new tool framework has a very low footprint, and the current version

of the tools occupies less than 5MBytes. As a result, the entire framework may be

installed directly on the embedded device, with most computing intensive tasks running

on the users Web browser, except the IOPT State-space generation that may be off-

loaded to servers on the cloud. This way, a technician may use a simple smart-phone or

tablet computer and connect to the embedded devices using wireless communications or

a local network, and immediately troubleshoot systems deployed in places without

Internet access.

8.5 Future work

During the beta-test and evaluation phase many flaws in the tools, automatic code

generators and communication layer have been found and solved, and opportunities for

future enhancements have been identified. As a result, the current version of the tools

has been used as a proof-of-concept and has not yet reached the quality level of

commercial software packages. New bugs certainly will appear and many usability

features should be added. The following items for future improvement have been

identified:

- Add support for fixed point arithmetics to all code generators

- Add support for foreign components to the JavaScript code generator

- Support form remote components to the JavaScript code using JSON/AJAX

- Implement the «standard» library components in JavaScript (as foreign

components) to enable the creation of Web user interfaces

- Design a bridge between Software and Hardware components to automate co-

design solutions

- New version of the communication protocol using HTTP keep-alive sessions

for improved performance and authentication security

187

- Create a query window to inspect large simulator history waveforms

- Open secondary windows to display the evolution of component contents in the

simulator and remote debugger tools

- User interface builder to interactively create user-interface DS-Pnet models

- Web-based task manager to compile and launch models with capability to

start, stop, pause and set start-on-boot (automatic C code compilation from the

tools, avoiding OS command line and compiler IDEs)

- Usability improvements: create operations from expressions, buses with multiple

signals, etc.

The dissemination of the proposed formalism and associated tools depends on the

availability of hardware platforms ready to be immediately used by potential

developers. The ModBUS gateway foreign component and the isolated input/output

board presented in figure 11 represent two steps in that direction, as both can be

employed to build industrial applications.

A package composed of a very low cost processing board, as the Raspberry PI

Zero-W, offering digital I/O, USB, Ethernet and wireless communications, able to run

an embedded Linux operating system, attached to an IO board as the proposed, can

provide a very competitive solution to implement distributed automation solutions. As

the entire tool-chain requires less than 5MBytes of disk-space, the entire tool-chain may

be installed directly on the device.

Finally, a new task-manager application must be added to the tool-chain, to

compile and run the code generated automatically without requiring any third party

compiler tools and command line usage. A similar task has already been performed

using the former IOPT-Tools framework, that employs the GCC compiler to run the

state-space generator code. In the same way, the tools have already been installed in

embedded platforms, running the Apache web server on embedded Linux operating

systems.

The combination of a ready-to-use hardware platform with a complete tool-chain

that can execute models on the hardware device without any manual intervention, may

appeal to users that have no previous experience in electrical engineering and software

development, opening the field of distributed cyber-physical design to a broad audience.

Possible future research in related fields, include:

a) Experiments with high-level Petri nets and dataflows. Under certain

restrictions, high level Petri nets where tokens hold information may be translated into

DS-Pnet systems, where low-level nets are responsible for the token evolution, but

188

token data is processed by associated dataflow nodes. After applying a pre-processor

transformation, to translate the high-level nodes into a DS-Pnet model, the entire tool-

chain could be processed using the remaining IOPT-Flow tools. High level nets offer

enhanced capabilities to model factory production systems, where tokens hold the

identification of real parts moving on the production plants.

b) As future trends evolve in the direction of publicly available CPS components,

the same component may need to be simultaneously used by many client applications.

This way, component sharing architectures for concurrent applications, should be

researched, as proposed at chapter 5. For example, new multi-processor/multi-core

platforms may run multiple copies of the same component. Under such an architecture,

each copy would take a single request from the queue and process it in parallel with the

other copies. However, client applications would see only a single shared compoent.

c) Dynamic node reconfiguration. The capability to dynamically disconnect

remote components and connect to different nodes may be used for different purposes.

For instance, for fault tolerance and load balancing, but also to let users interactively

choose different nodes.

d) Library enhancement. The suitability of the new tools for each specific field of

application depends on the existence of library folders with frequently used components

and algorithms. This is an opportunity for experts in other fields to build new

components, probably resorting to «foreign» coding.

e) Social experiments with novice users to evaluate the training difficulties,

potential enhancements and future areas of research. These experiments should have

been done during this work, but were not performed due to lack of resources: time and

a pool of students with no previous experience in software development. Instead the

beta-testers were chosen among people with extensive knowledge about these fields.

189

190

9 References

[1] Pereira, F.; Gomes, L.; Redondo, L.; "Gerador de impulsos de alta tensão

controlado por FPGA com interface gráfica e sistema de monitorização integrado",

REC2011, VII Jornadas sobre Sistemas Reconfiguráveis, Faculdade de Engenharia de

Universidade do Porto, 3-4 de Fevereiro de 2011

[2] Moutinho, F.; Pereira, F.; Gomes, L.; "Interface para Leitura e Escrita

Concorrente de Memória RAM DDR2 em o Plataforma baseada em FPGA", REC2011,

VII Jornadas sobre Sistemas Reconfiguráveis, Faculdade de Engenharia de

Universidade do Porto, 3-4 de Fevereiro de 2011

[3] Pereira, F.; Gomes, L.; Moutinho, F.; "Automatic generation of run-time

monitoring capabilities to Petri nets based Controllers with Graphical User Interfaces",

Second IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and

Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal, February 22-24, 2011,

Proceedings, Series: IFIP Advances in Information and Communication Technology,

Vol. 349, Camarinha-Matos, Luis M. (Ed.), ISBN: 978-3-642-19169-5

[4] Moutinho, F.; Pereira, F.; Gomes, L.; "Automatic generation of graphical user

interfaces for VHDL based controllers", 2011 IEEE International Symposium on

Industrial Electronics (ISIE), 1491-1496

[5] Ribeiro, J.; Moutinho, F.; Pereira, F.; Barros, J.P.; Gomes, L.; "An Ecore based

Petri net type definition for PNML IOPT models" 9th IEEE International Conference on

Industrial Informatics, INDIN 2011, Caparica, Lisbon

[6] Pereira, F.; Moutinho, F.; Gomes, L.; Ribeiro, j.; Campos-Rebelo, R.; "An

IOPT-net state-space generator tool", 9th IEEE International Conference on Industrial

Informatics, INDIN 2011, Caparica, Lisbon

191

[7] Pereira, F.; Moutinho, F.; Gomes, L.; Campos-Rebelo, R.; "IOPT Petri net

state space generation algorithm with maximal-step execution semantics", 9th IEEE

International Conference on Industrial Informatics, INDIN 2011, Caparica, Lisbon

[8] Campos-Rebelo, R.; Pereira, F.; Moutinho, F.; Gomes, L.; "From IOPT Petri

nets to C: An automatic code generator tool", 9th IEEE International Conference on

Industrial Informatics, INDIN 2011, Caparica, Lisbon

[9] Pereira, F.; Moutinho, F.; Gomes, L.; "A State-Space Based Model-Checking

Framework for Embedded System Controllers Specified Using IOPT Petri Nets", Third

IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial

Systems, DoCEIS 2012, Caparica, Postugal, Feb. 2012, Technological Innovation for

Value Creation, 123-132, Springer Boston, ISBN 978-3-642-28254-6

[10] Pereira, F.; Gomes, L.; Redondo, L.M.; "FPGA controller for power

converters with integrated oscilloscope and graphical user interface", IEEE International

conference on Power Engineering, Energy and Electrical Drives (POWERENG), 2011,

Malaga, Spain

[11] Pereira, F.; Gomes, L.; Redondo, L.M., "Multifunctional Controller

Architecture for Solid-State Marx Modulator Based on FPGA," Plasma Science, IEEE

Transactions on, vol.42, no.10, pp.2991,2997, Oct. 2014

[12] Pereira, F.; Gomes, L.; "FPGA based speed control of Brushless DC Motors

using IOPT Petri Net models." Industrial Technology (ICIT), 2013 IEEE International

Conference on. IEEE, 2013

[13] Gomes, L.; Moutinho, L.; Pereira. F.; "IOPT-tools - A Web based tool

framework for embedded systems controller development using Petri nets." Field

Programmable Logic and Applications (FPL), 2013 23rd International Conference on.

IEEE, 2013

[14] Pereira, F.; Gomes, L.; "Automatic synthesis of VHDL hardware components

from IOPT Petri net models." Industrial Electronics Society, IECON 2013-39th Annual

Conference of the IEEE. IEEE, 2013.

[15] Pereira, F.; Moutinho, F.; Gomes, L.; "Model-checking framework for

embedded systems controllers development using IOPT Petri nets." Industrial

Electronics (ISIE), 2012 IEEE International Symposium on. IEEE, 2012.

[16] Pereira, F.; Moutinho, F.; Gomes, L.; "IOPT-Tools - Towards cloud design

automation of digital controllers with Petri nets". ICMC'2014 International Conference

on Mechatronics and Control. July 03-05 2014, Jinzhou, China

192

[17] Gomes, L.; Moutinho, F.; Pereira, F.; Ribeiro, J.; Costa, A.; Barros, J.P.;

"Extending Input-Output Place-Transition Petri nets for Distributed Controller Systems

development", ICMC'2014 International Conference on Mechatronics and Control, July

03-05 2014, Jinzhou, China

[18] Pereira, F.; Gomes, L.; "Minimalist Architecture to Generate Embedded

System Web User Interfaces." Technological Innovation for the Internet of Things.

Springer Berlin Heidelberg, 2013. 239-249.

[19] Pereira, F.; Gomes, L.; "Cloud Based IOPT Petri Net Simulator to Test and

Debug Embedded System Controllers." Technological Innovation for Cloud-Based

Engineering Systems. Springer International Publishing, 2015. 165-175.

[20] Costa, A.; Barbosa, P.; Moutinho, F.; Pereira, F.; Ramalho, F.; Figueiredo, J.;

Gomes, L.; "MDA-Based Methodology for Verifying Distributed Execution of

Embedded Systems Models." Formal Methods in Manufacturing Systems: Recent

Advances. IGI Global, 2013. 112-135. Web. 9 Jan. 2015. doi:10.4018/978-1-4666-4034-

4.ch006

[21] Gomes, L.; Costa, A.; Barros, J.G.; Moutinho, F.; Pereira, F.; "Merging and

Splitting Petri Net Models within Distributed Embedded Controller Design." Embedded

Computing Systems: Applications, Optimization, and Advanced Design. IGI Global,

2013. 160-183. Web. 9 Jan. 2015. doi:10.4018/978-1-4666-3922-5.ch009

[22] Pereira, F.; Melo, A.; Gomes, L.; “Remote operation of embedded controllers

designed using IOPT Petri-nets”, 13th IEEE International Conference on Industrial

Informatics, INDIN 2011, Cambridge, 22-24 July 2015, Cambridge, UK

[23] Pereira, F., Moutinho, F., Barros, J. P., Costa, A., & Gomes, L. (2015).

Executable models for Embedded Controllers Development-A Cloud Based

Development Framework. In P&D@ MoDELS (pp. 40-43)

[24] Pereira, F.; Moutinho, F.; Ribeiro, J.; Gomes, L.; "Web based IOPT Petri net

Editor with an extensible plugin architecture to support generic net operations." IECON

2012-38th Annual Conference on IEEE Industrial Electronics Society. IEEE, 2012

[25] Pereira, F.; Moutinho, F.; Gomes. L.; “IOPT Tools User Manual - Version

1.1”, 2014, available at http://gres.uninova.pt/iopt_usermanual.pdf

[26] Pereira, F.; Gomes, L.; “Combining data-flows and petri nets for cyber-

physical systems specification”, Technological Innovation for Cyber-Physical Systems -

7th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical

193

and Industrial Systems, DoCEIS 2016, Proceedings. Vol. 470 2016. p. 65-76

(IFIP Advances in Information and Communication Technology; Vol. 470).

[27] Pereira, F.; Gomes, L.; "The IOPT-Flow framework pairing Petri nets and

data-flows for embedded controller development", IECON 2016 - 42nd Annual

Conference of the IEEE Industrial Electronics Society, Florence, 2016, pp. 4832-4837.

doi: 10.1109/IECON.2016.7794152

[28] Pereira F.; Gomes, L.; "The IOPT-Flow Modeling Framework Applied to

Power Electronics Controllers," in IEEE Transactions on Industrial Electronics, vol. 64,

no. 3, pp. 2363-2372, March 2017. doi: 10.1109/TIE.2016.2620101

[29] Gomes, L.; Barros, J.; Costa, A.; Nunes R., "The Input-Output Place-

Transition Petri Net Class and Associated Tools", INDIN'2007 - 5th IEEE International

Conference on Industrial Informatics, 23-26 July 2007, Vienna, Austria

[30] Reisig, W., “Petri nets: an introduction”; New York, USA: SpringerVerlag

New York, 1985

[31] Petri, C. A. (1980). Introduction to general net theory. In Net theory and

applications (pp. 1-19). Springer Berlin Heidelberg.

[32] Peterson, J. L. (1977). Petri nets. ACM Computing Surveys (CSUR), 9(3),

223-252.

[33] Murata, T. (1989). Petri nets: Properties, analysis and applications.

Proceedings of the IEEE, 77(4), 541-580.

[34] Kukkala, P.; Riihimaki, J.; Hannikainen, M.; Hamalainen, T.D.; Kronlof, K.,

"UML 2.0 profile for embedded system design," in Design, Automation and Test in

Europe, 2005. Proceedings, vol., no., pp.710-715 Vol. 2, 7-11 March 2005

doi: 10.1109/DATE.2005.321

[35] Gomes, L.; Costa, A., "From use cases to system implementation: statechart

based co-design," in Formal Methods and Models for Co-Design, 2003. MEMOCODE

'03. Proceedings. First ACM and IEEE International Conference on, vol., no., pp.24-33,

24-26 June 2003 doi: 10.1109/MEMCOD.2003.1210083

[36] Shourong, L.;Halang, W.; Zhang, L.; "A component-based UML profile to

model embedded real-time systems designed by the MDA approach," in Embedded and

Real-Time Computing Systems and Applications, 2005. Proceedings. 11th IEEE

International Conference on, vol., no., pp.563-566, 17-19 Aug. 2005

doi: 10.1109/RTCSA.2005.6

194

[37] Berthomieu, B., Ribet, P. O., & Vernadat, F. (2004). The tool TINA–

construction of abstract state spaces for Petri nets and time Petri nets. International

Journal of Production Research, 42(14), 2741-2756.

[38] Cheng, A., Christensen, S., & Mortensen, K. H. (1997). Model checking

Coloured Petri Nets-exploiting strongly connected components. DAIMI Report Series,

26(519).

[39] Hanisch, H. M., & Lüder, A. (2000). A signal extension for Petri nets and its

use in controller design. Fundamenta informaticae, 41(4), 415-431.

[40] Jensen, K.;“Coloured Petri Nets. Basic Concepts, Analysis Methods and

Practical Use” - Volume 1 Basic Concepts. Berlin. Germany.: SpringerVerlag., 1997.

[41] Kummer, O.; Wienberg, F.; Duvigneau, M.; Cabac, L.; “Renew – User Guide

”, University of Hamburg, Department for Informatics, Theoretical Foundations Group,

Release 2.2, August 28, 2009

[42] Jensen, K., & Kristensen, L. M. (2015). Colored Petri nets: a graphical

language for formal modeling and validation of concurrent systems. Communications of

the ACM, 58(6), 61-70.

[43] Barros, J.; Gomes, L., “Teaching Concurrency Through Petri Nets and Model

Composition”; TeaConc'2006 - Workshop on Teaching Concurrency; Turku; Filand; 27

June 2006; http://www.uninova.pt/teaconc2006, ISBN 1-4244-0681-1

[44] Costa, A.; Gomes, L., “Module Composition within Petri Nets Model-based

Development”; SIES'2007 – 2nd IEEE International Symposium on Industrial

Embedded Systems; 4-6 July 2007; Hotel Costa da Caparica, Lisbon, Portugal

[45] Hamez, A.; Hillah, L.; Kordon, F.; Linard, A.; Paviot-Adet, E.;Renault, X.;

Thierry-Mieg, X.; "New features in CPN-AMI 3: focusing on the analysis of complex

distributed systems," Application of Concurrency to System Design, 2006. ACSD 2006.

Sixth International Conference on, pp.273-275, 28-30 June 2006

doi: 10.1109/ACSD.2006.15

[46] Starke, P.H.; Hanisch, H.-M., "Analysis of signal/event nets," in Emerging

Technologies and Factory Automation Proceedings, 1997. ETFA '97., 1997 6th

International Conference on, vol., no., pp.253-257, 9-12 Sep 1997

doi: 10.1109/ETFA.1997.616278

[47] Gunes, V.; Peter, S.; Givargis, T.; Vahid, F.; A Survey on Concepts,

Applications, and Challenges in Cyber-Physical Systems. KSII Transactions on Internet

and Information Systems (TIIS), 8.

195

[48] Khaitan, S. K.; McCalley,J. D.; "Design Techniques and Applications of

Cyberphysical Systems: A Survey," in IEEE Systems Journal, vol. 9, no. 2, pp. 350-365,

June 2015, doi: 10.1109/JSYST.2014.2322503

[49] Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of

cloud computing and internet of things: a survey. Future Generation Computer Systems,

56, 684-700.

[50] Baheti, R., & Gill, H. (2011). Cyber-physical systems. The impact of control

technology, 12, 161-166.

[51] Lee, E. A. (2008, May). Cyber physical systems: Design challenges. In

Object oriented real-time distributed computing (isorc), 2008 11th IEEE international

symposium on (pp. 363-369). IEEE.

[52] Monostori, L. (2014). Cyber-physical production systems: Roots,

expectations and R&D challenges. Procedia CIRP, 17, 9-13.

[53] Lee, E. A. (2007). Computing foundations and practice for cyber-physical

systems: A preliminary report. University of California, Berkeley, Tech. Rep.

UCB/EECS-2007-72.

[54] Moutinho, F.; Gomes, L.; Ramalho, F.; Figueiredo, J.; Barros, J.; Barbosa, P.;

Pais, R.; Costa, A., "Ecore Representation for Extending PNML for Input-Output Place-

Transition Nets", IECON'2010 - 36th Annual Conference of the IEEE Industrial

Electronics Society, 2010, Phoeniz, AZ, USA

[55] Nunes, R.; Gomes, L.; Barros, J., “A Graphical Editor for the Input-Output

Place-Transition Petri Net Class”; ETFA'2007 - 12th IEEE Conference on Emerging

Technologies and Factory Automation, September 25-28, 2007; Patras, Greece

[56] Gomes, L.; Barros, J., "Automated Code Generation from Petri Nets Based

System Specification", 5th WSES/IEEE World Multiconference on Circuits, Systems,

Communications & Computers, CSCC’2001; 8-15 Julho 2001; Creta, Grécia

[57] Gomes, L.; Rebelo, R.; Barros, J.; Costa, A.; Pais, R., "From Petri net models

to C implementation of digital controllers"; ISIE'2010-IEEE International Symposium

on Industrial Electronics, 4-7 July 2010, Bari, Italy;

[58] Gomes, L.; Costa, A.; Barros, J.; Lima, P., "From Petri net models to VHDL

implementation of digital controllers", IECON’2007 - 33rd Annual Conference of the

IEEE Industrial Electronics Society, November 5-8, 2007, The Grand Hotel, Taipei -

Taiwan

196

[59] Gomes, L.; Lourenço, J., "Rapid Prototyping of Graphical User Interfaces for

Petri-Net-Based Controllers", IEEE Transactions on Industrial Electronics, pp. 1806-

1813. ISSN 0278-0046; URL: http://dx.doi.org/10.1109/TIE.2009.2031188

[60] Moutinho, F.; Gomes, L., "From models to controllers integrating graphical

animation in FPGA through automatic code generation," in Industrial Electronics, 2009.

ISIE 2009. IEEE International Symposium on, vol., no., pp.712-717, 5-8 July 2009

doi: 10.1109/ISIE.2009.5218315

[61] Costa, A.; Gomes, L., “Petri net Splitting Operation within Embedded

Systems Co-design”; INDIN'2007 - 5th IEEE International Conference on Industrial

Informatics, 23-26 July 2007, Vienna, Austria

[62] Costa, A.; Gomes, L., “Partitioning of Petri net models amenable for

Distributed Execution”; ETFA'2006 - 2006 IEEE International Conference on Emerging

Technologies and Factory Automation; 20-22 September 2006, Prague, Czech Republic;

IEEE Catalog Number: 06TH8897C;

[63] Dabney, J. B., & Harman, T. L. (2004). Mastering simulink. Pearson.

[64] Bolton, W. (2015). Programmable logic controllers. Newnes.

[65] David, R. (1995). Grafcet: A powerful tool for specification of logic

controllers. Control Systems Technology, IEEE Transactions on, 3(3), 253-268.

[66] Charousset, D.; Hiesgen, R.; Schmidt, T.C; Revisiting actor programming in

C++, In Computer Languages, Systems & Structures, Volume 45, 2016, Pages 105-131,

ISSN 1477-8424, https://doi.org/10.1016/j.cl.2016.01.002.

[67] MODBUS over serial line specification and implementation guide V1.0,

2002, http://www.modbus.org/docs/Modbus_over_serial_line_V1.pdf (accessed Sep.

2017)

[68] Feng Xia; Zhi Wang; Youxian Sun, "Towards component-based control

system engineering with IEC61499," in Intelligent Control and Automation, 2004.

WCICA 2004. Fifth World Congress on, vol.3, no., pp.2711-2715 Vol.3, 15-19 June

2004, doi: 10.1109/WCICA.2004.1342091

[69] http://www.iec61499.com (accessed Sep. 2017)

[70] Vyatkin, V., & Instrument Society of America. (2007). IEC 61499 function

blocks for embedded and distributed control systems design (p. o3neida). ISA-

Instrumentation, Systems, and Automation Society.

197

[71] Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems

architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3,

18-23.

[72] Cassandras, C; Lafortune, S, “Introduction to Discrete Event Systems”,

second edition, 2008, Springer US, ISBN 978-0-387-33332-8

doi: 10.1007/978-0-387-68612-7

[73] Popova-Zeugmann, L. (2013). Time Petri Nets (pp. 31-137). Springer Berlin

Heidelberg.

[74] Li, Z., & Zhou, M. (2009). Deadlock resolution in automated manufacturing

systems: a novel Petri net approach (Vol. 1430, No. 9491). Springer Science & Business

Media.

[75] Peterson, J.L (1981) Petri Net Theory and the Modeling of Systems, Prentice

Hall PTR Upper Saddle River, NJ, USA ©1981 ISBN:0136619835

[76] Yamalidou, K., Moody, J., Lemmon, M., & Antsaklis, P. (1996). Feedback

control of Petri nets based on place invariants. Automatica, 32(1), 15-28.

[77] Boucheneb, H., & Hadjidj, R. (2006). CTL* model checking for time Petri

nets. Theoretical Computer Science, 353(1), 208-227.

[78] Valmari, A. (1991). Stubborn sets for reduced state space generation. In

Advances in Petri Nets 1990 (pp. 491-515). Springer Berlin Heidelberg.

[79] Patil, S., Vyatkin, V., & Sorouri, M. (2012, September). Formal verification

of intelligent mechatronic systems with decentralized control logic. In Emerging

Technologies & Factory Automation (ETFA), 2012 IEEE 17th Conference on (pp. 1-7).

IEEE

[80] Grahlmann, B. (1997, January). The PEP tool. In Computer Aided

Verification (pp. 440-443). Springer Berlin Heidelberg.

[81] Mäkelä, M. (2002). Maria: Modular reachability analyser for algebraic

system nets. In Application and Theory of Petri Nets 2002 (pp. 434-444). Springer

Berlin Heidelberg.

[82] Schmidt, K. (2000). Lola a low level analyser. In Application and Theory of

Petri Nets 2000 (pp. 465-474). Springer Berlin Heidelberg.

[83] Gardey, G., Lime, D., & Magnin, M. (2005, January). Romeo: A tool for

analyzing time Petri nets. In Computer Aided Verification (pp. 418-423). Springer

Berlin Heidelberg.

198

[84] Halme, J., Hiekkanen, K., & Pyssysalo, T. (1995). PROD reference manual

(p. 56). Espoo, Finland: Helsinki University of Technology, Digital Systems Laboratory.

[85] Heitmann, F; Moldt, D; “Petri Nets Tools Database”, accessible on-line at

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html (accessed Sep.

2017)

[86] Starke, P.; Roch, S., “Analysing Signal-Net Systems”, Humboldt-Universiät

at zu Berlin, Institut fur Informatik, September 2002

[87] Minas, M.; Frey, G., "Visual PLC-programming using signal interpreted Petri

nets," in American Control Conference, 2002. Proceedings of the 2002, vol.6, no.,

pp.5019-5024 vol.6, 2002, doi: 10.1109/ACC.2002.1025461

[88] Frey, G. (2003). Hierarchical design of logic controllers using signal

interpreted Petri nets. Proceedings of the IFAC AHDS 2003, Saint-Malo (France), 12,

401-406.

[89] Schumacher, F., Schröck, S., & Fay, A. (2013, June). Transforming

hierarchical concepts of GRAFCET into a suitable Petri net formalism. In

Manufacturing Modelling, Management, and Control (Vol. 7, No. 1, pp. 295-300).

[90] Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., & Yakovlev, A.

(1997). Petrify: a tool for manipulating concurrent specifications and synthesis of

asynchronous controllers. IEICE Transactions on information and Systems, 80(3), 315-

325.

[91] Yakovlev, A., Lavagno, L., & Sangiovanni-Vincentelli, A. (1992, November).

A unified signal transition graph model for asynchronous control circuit synthesis. In

Proceedings of the 1992 IEEE/ACM international conference on Computer-aided

design (pp. 104-111). IEEE Computer Society Press.

[92] L. Gomes, A. Steiger-Garção; 1995; "Programmable controller design based

on a synchronized colored Petri net model and integrating fuzzy reasoning"; in

Application and Theory of Petri Nets’95; Lecture Notes in Computer Science; vol. 935;

Giorgio De Michelis, Michel Diaz(eds.); Springer, Berlin; pp 218-237

[93] Liu, F., Heiner, M., & Yang, M. (2012, December). An efficient method for

unfolding colored Petri nets. In Proceedings of the Winter Simulation Conference (p.

295). Winter Simulation Conference.

[94] Gomes, L., & Barros, J. P. (2003, September). On structuring mechanisms for

Petri nets based system design. In Emerging Technologies and Factory Automation,

2003. Proceedings. ETFA'03. IEEE Conference (Vol. 2, pp. 431-438). IEEE.

199

[95] Mortensen, K. H. (2001, August). Efficient data-structures and algorithms for

a coloured Petri nets simulator. In Third Workshop and Tutorial on Practical Use of

Coloured Petri Nets and the CPN Tools, DAIMI PB–544 (pp. 57-74).

[96] Travis, J., & Kring, J. (2007). LabVIEW for everyone. Prentice-Hall.

[97] Gomes, L., & Barros, J. P. (2005). Structuring and composability issues in

Petri nets modeling. Industrial Informatics, IEEE Transactions on, 1(2), 112-123.

[98] Rohr, C., Marwan, W., & Heiner, M. (2010). Snoopy—a unifying Petri net

framework to investigate biomolecular networks. Bioinformatics, 26(7), 974-975.

[99] Rausch, M., & Hanisch, H. M. (1995, October). Net condition/event systems

with multiple condition outputs. In Emerging Technologies and Factory Automation,

1995. ETFA'95, Proceedings., 1995 INRIA/IEEE Symposium on (Vol. 1, pp. 592-600).

IEEE.

[100] Mertke, T.; Frey, G., "Formal verification of PLC programs generated from

signal interpreted Petri nets," in Systems, Man, and Cybernetics, 2001 IEEE

International Conference on, vol.4, no., pp.2700-2705 vol.4, 2001

doi: 10.1109/ICSMC.2001.972974

[101] Bollue, K., Abel, D., & Thomas, W. (2009, August). Synthesis of behavioral

controllers for discrete event systems with nces-like petri net models. In Control

Conference (ECC), 2009 European (pp. 4786-4791). IEEE.

[102] Bollue, K., Slaats, M., Abrahám, E., Thomas, W., & Abel, D. (2010).

Synthesis of behavioral controllers for des: Increasing efficiency. 11th Int'l WODES,

27-34.

[103] IEEE Standard VHDL Language Reference Manual," in IEEE Std 1076-

2008 (Revision of IEEE Std 1076-2002), vol., no., pp.c1-626, Jan. 26 2009

doi: 10.1109/IEEESTD.2009.4772740

[104] http://www.isagraf.com/index.htm (accessed Sep. 2017)

[105] http://www.eclipse.org/4diac/ (accessed Sep. 2017)

[106] Yoong, L. H., Shaw, G. D., Roop, P. S., & Salcic, Z. (2012). Synthesizing

globally asynchronous locally synchronous systems with IEC 61499. Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 42(6), 1465-

1477.

[107] Moutinho, F.; Gomes, L., "Asynchronous-Channels Within Petri Net-Based

GALS Distributed Embedded Systems Modeling," in Industrial Informatics, IEEE

200

Transactions on, vol.10, no.4, pp.2024-2033, Nov. 2014

doi: 10.1109/TII.2014.2341933

[108] Moutinho, F.; Ribeiro, J.; Gomes, L., "Distributed controllers modeling

through Petri nets with multi-asynchronous-channels," in Industrial Technology (ICIT),

2015 IEEE International Conference on, vol., no., pp.1564-1569, 17-19 March 2015

doi: 10.1109/ICIT.2015.7125319

[109] Vyatkin, V., & Hanisch, H. M. (2001, October). Formal modeling and

verification in the software engineering framework of IEC 61499: a way to self-

verifying systems. In Emerging Technologies and Factory Automation, 2001.

Proceedings. 2001 8th IEEE International Conference on (Vol. 2, pp. 113-118). IEEE.

[110] Hanisch, H. M., & Vyatkin, V. (2005, April). Modeling and verification of

distributed control systems. In International conference “Design, Analysis, and

Simulation of Distributed Systems (DADS’2005)”, Proceedings, San Diego.

[111] Vyatkin, V., "Execution Semantic of Function Blocks based on the Model of

Net Condition/Event Systems," in Industrial Informatics, 2006 IEEE International

Conference on, vol., no., pp.874-879, 16-18 Aug. 2006

doi: 10.1109/INDIN.2006.275692

[112] Li Hsien Yoong; Roop, P.S.; Vyatkin, V.; Salcic, Z., "A Synchronous

Approach for IEC 61499 Function Block Implementation," in Computers, IEEE

Transactions on, vol.58, no.12, pp.1599-1614, Dec. 2009

doi: 10.1109/TC.2009.128

[113] Li Hsien Yoong; Roop, P.; Vyatkin, V.; Salcic, Z., "Synchronous Execution

of IEC 61499 Function Blocks Using Esterel," in Industrial Informatics, 2007 5th IEEE

International Conference on, vol.2, no., pp.1189-1194, 23-27 June 2007

doi: 10.1109/INDIN.2007.43849

[114] Dubinin, V.N.; Vyatkin, V., "Semantics-Robust Design Patterns for IEC

61499," in Industrial Informatics, IEEE Transactions on, vol.8, no.2, pp.279-290, May

2012, doi: 10.1109/TII.2012.2186820

[115] Ramesh, S., "Efficient translation of statecharts to hardware circuits," in

VLSI Design, 1999. Proceedings. Twelfth International Conference On, vol., no.,

pp.384-389, 7-10 Jan 1999, doi: 10.1109/ICVD.1999.745186

[116] Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008). EMF:

eclipse modeling framework. Pearson Education.

201

[117] Bambagini, M.; Di Natale, M., "A code generation framework for

distributed real-time embedded systems," in Emerging Technologies & Factory

Automation (ETFA), 2012 IEEE 17th Conference on, vol., no., pp.1-10, 17-21 Sept.

2012

doi: 10.1109/ETFA.2012.6489586

[118] Oldevik, J. (2006). MOFScript user guide. Version 0.6 (MOFScript v 1.1.

11).

[119] Jouault, F., & Kurtev, I. (2006, January). Transforming models with ATL. In

satellite events at the MoDELS 2005 Conference (pp. 128-138). Springer Berlin

Heidelberg.

[120] Líčko, M., Schier, J., Tichý, M., & Kühl, M. (2003). Matlab/simulink based

methodology for rapid-fpga-prototyping. In Field Programmable Logic and Application

(pp. 984-987). Springer Berlin Heidelberg.

[121] Harel, D. (1987). Statecharts: A visual formalism for complex systems.

Science of computer programming, 8(3), 231-274.

[122] Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified Modeling

Language Reference Manual, The. Pearson Higher Education.

[123] Staines, T. S. (2008, March). Intuitive mapping of UML 2 activity diagrams

into fundamental modeling concept Petri net diagrams and colored Petri nets. In

Engineering of Computer Based Systems, 2008. ECBS 2008. 15th Annual IEEE

International Conference and Workshop on the (pp. 191-200). IEEE.

[124] Pais, R., Gomes, L., & Barros, J. P. (2011). Towards Statecharts to Input-

Output Place Transition Nets Transformations. In Technological Innovation for

Sustainability (pp. 227-236). Springer Berlin Heidelberg.

[125] Pais, R., Gomes, L., & Barros, J. P. (2011, November). From UML state

machines to Petri nets: History attribute translation strategies. In IECON 2011-37th

Annual Conference on IEEE Industrial Electronics Society (pp. 3776-3781). IEEE.

[126] Barros, J. P., & Gomes, L. (2000). From activity diagrams to class diagrams.

In Workshop Dynamic Behaviour in UML Models: Semantic Questions In conjunction

with Third International Conference on UML, York, UK.

[127] Bernardi, S., Donatelli, S., & Merseguer, J. (2002, July). From UML

sequence diagrams and statecharts to analysable petri net models. In Proceedings of the

3rd international workshop on Software and performance (pp. 35-45). ACM.

202

[128] White, C., Quin, L., & Burman, L. (2001). Mastering XML Premium

Edition. Sybex.

[129] Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange

Format.

[130] Biron, P., Malhotra, A., & World Wide Web Consortium. (2004). XML

schema part 2: Datatypes. World Wide Web Consortium Recommendation REC-

xmlschema-2-20041028.

[131] Clark, J., & Murata, M. (2001). {Relax NG} Specification.

[132] Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J., Siméon,

J., & Stefanescu, M. (2002). XQuery 1.0: An XML query language.

[133] Clark, J., & DeRose, S. (1999). XML path language (XPath) version 1.0.

[134] Clark, J. (1999). Xsl transformations (xslt). World Wide Web Consortium

(W3C). URL http://www. w3. org/TR/xslt (accessed Sep. 2017)

[135] Tidwell, D. (2008). Xslt. " O'Reilly Media, Inc.".

[136] Weber, M., & Kindler, E. (2003). The petri net markup language. In Petri

Net Technology for Communication-Based Systems (pp. 124-144). Springer Berlin

Heidelberg.

[137] Hillah, L. M., Kindler, E., Kordon, F., Petrucci, L., & Treves, N. (2009). A

primer on the Petri Net Markup Language and ISO/IEC 15909-2. Petri Net Newsletter,

76, 9-28.

[138] Alanen, M., & Porres, I. (2005, September). Model interchange using OMG

standards. In Software Engineering and Advanced Applications, 2005. 31st

EUROMICRO Conference on (pp. 450-458). IEEE.

[139] Ackerman, W. B. (1982). Data flow languages. Computer, 2(15), 15-25.

[140] Micheli, G. D. (1994). Synthesis and optimization of digital circuits.

McGraw-Hill Higher Education.

[141] Williamson, M. C., & Lee, E. (1996, November). Synthesis of parallel

hardware implementations from synchronous dataflow graph specifications. In Signals,

Systems and Computers, 1996. Conference Record of the Thirtieth Asilomar

Conference on (pp. 1340-1343). IEEE.

[142] Lee, E.A.; Messerschmitt, D.G., "Synchronous data flow," in Proceedings of

the IEEE, vol.75, no.9, pp.1235-1245, Sept. 1987

doi: 10.1109/PROC.1987.13876

203

[143] Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., & De

Simone, R. (2003). The synchronous languages 12 years later. Proceedings of the IEEE,

91(1), 64-83.

[144] Halbwachs, N., Caspi, P., Raymond, P., & Pilaud, D. (1991). The

synchronous data flow programming language LUSTRE. Proceedings of the IEEE,

79(9), 1305-1320.

[145] Benveniste, A., Le Guernic, P., & Jacquemot, C. (1991). Synchronous

programming with events and relations: the SIGNAL language and its semantics.

Science of computer programming, 16(2), 103-149.

[146] Berry, G., & Gonthier, G. (1992). The Esterel synchronous programming

language: Design, semantics, implementation. Science of computer programming,

19(2), 87-152.

[147] Bhattacharyya, S. S., Murthy, P. K., & Lee, E. A. (1999). Synthesis of

embedded software from synchronous dataflow specifications. Journal of VLSI signal

processing systems for signal, image and video technology, 21(2), 151-166.

[148] Colaço, J. L., Pagano, B., & Pouzet, M. (2005, September). A conservative

extension of synchronous data-flow with state machines. In Proceedings of the 5th

ACM international conference on Embedded software (pp. 173-182). ACM.

[149] Harel D.; Pnueli A., 1989, On the development of reactive systems. In

Logics and models of concurrent systems, Krzysztof R. Apt (Ed.). Nato Asi Series F:

Computer And Systems Sciences, Vol. 13. Springer-Verlag New York, Inc., New York,

NY, USA 477-498.

[150] Halbwachs, N. (2013). Synchronous programming of reactive systems (Vol.

215). Springer Science & Business Media.

[151] Benveniste, A., & Berry, G. (1991). The synchronous approach to reactive

and real-time systems. Proceedings of the IEEE, 79(9), 1270-1282.

[152] Benveniste, A; Caillaud, B; Guernic, P, “Compositionality in Dataflow

Synchronous Languages”. Inf. Comput. 163, 1 (November 2000), pp 125-171.

doi=10.1006/inco.2000.9999, http://dx.doi.org/10.1006/inco.2000.9999

[153] Tripakis, S., Bui, D., Geilen, M., Rodiers, B., & Lee, E. A. (2013).

Compositionality in synchronous data flow: Modular code generation from hierarchical

sdf graphs. ACM Transactions on Embedded Computing Systems (TECS), 12(3), 83.

204

[154] Halbwachs, N., Lagnier, F., & Ratel, C. (1992). Programming and verifying

real-time systems by means of the synchronous data-flow language LUSTRE. Software

Engineering, IEEE Transactions on, 18(9), 785-793.

[155] Geilen, M., Basten, T., & Stuijk, S. (2005, June). Minimising buffer

requirements of synchronous dataflow graphs with model checking. In Proceedings of

the 42nd annual Design Automation Conference (pp. 819-824). ACM.

[156] Biernacki, D., Colaço, J. L., Hamon, G., & Pouzet, M. (2008, June). Clock-

directed modular code generation for synchronous data-flow languages. In ACM

Sigplan Notices (Vol. 43, No. 7, pp. 121-130). ACM.

[157] Yoong, L. H., Roop, P. S., Vyatkin, V., & Salcic, Z. (2009). A synchronous

approach for IEC 61499 function block implementation. Computers, IEEE Transactions

on, 58(12), 1599-1614.

[158] Duma, R., Dobra, P., Abrudean, M., & Dobra, M. (2007, June). Rapid

prototyping of control systems using embedded target for TI C2000 DSP. In Control &

Automation, 2007. MED'07. Mediterranean Conference on (pp. 1-5). IEEE.

[159] Simulink Verification and Validation Products

http://www.mathworks.com/products/simverification/ (accessed Sep. 2017)

[160] Davis II, J., Goel, M., Hylands, C., Kienhuis, B., Lee, E. A., Liu, J., ... &

Smyth, N. (1999). Overview of the Ptolemy project (Vol. 99). ERL Technical Report

UCB/ERL.

[161] Kim, K. D., & Kumar, P. R. (2012). Cyber–physical systems: A perspective

at the centennial. Proceedings of the IEEE, 100(Special Centennial Issue), 1287-1308.

[162] https://www.nsf.gov/news/special_reports/cyber-physical/ (accessed Sep.

2017)

[163]https://www.nsf.gov/funding/pgm_summ.jsp?

pims_id=503286&org=CISE&from=home (accessed Sep. 2017)

[164] CyPhERS - Cyber-Physical European Roadmap and Strategy

http://www.cyphers.eu/ (accessed Sep. 2017)

[165] https://www.eurocps.org/ (accessed Sep. 2017)

[166]https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smart-

cyber-physical-systems (accessed Sep. 2017)

[167] Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How

virtualization, decentralization and network building change the manufacturing

205

landscape: An industry 4.0 perspective. International Journal of Mechanical, Industrial

Science and Engineering, 8(1), 37-44.

[168] John, K. H., & Tiegelkamp, M. (2010). IEC 61131-3: programming

industrial automation systems: concepts and programming languages, requirements for

programming systems, decision-making aids. Springer Science & Business Media.

[169] IEC 61131-3:2013 Programmable controllers, Part 3: Programming

languages, https://webstore.iec.ch/publication/4552 (accessed Sep. 2017)

[170] https://www.xilinx.com/products/silicon-devices/soc.html (accessed Sep.

2017)

[171] Gamma, R.; Helm, R.; Johnson, R.; Vlissides, J.; Design Patterns: Elements

of Reusable Object-Oriented Software

http://www.awprofessional.com/bookstore/product.asp?isbn=0201633612&rl=1

(accessed Sep. 2017)

[172] Kerberos: The Network Authentication Protocol,

https://web.mit.edu/kerberos/ (accessed Sep. 2017)

[173] Harrison, R.; Lightweight directory access protocol (LDAP): Authentication

methods and security mechanisms, 2006

[174] Hill, J.; An analysis of the RADIUS authentication protocol. InfoGard

Laboratories, 2001

[175] Campos-Rebelo, R.; Costa, A.; Gomes, L.; "Event life time in detection of

sequences of events," 2015 IEEE International Conference on Industrial Technology

(ICIT), Seville, 2015, pp. 3144-3149; doi: 10.1109/ICIT.2015.7125562

[176] https://run.unl.pt/handle/10362/19193 (accessed Sep. 2017)

[177] Carrola Rocha, S.A.; “Utilização de Sinais bioelétricos em controladores

modelados com redes de Petri IOPT”; MiEEC, FCT/UNL, MSc dissertation on

Electrical and Computer Engineering, 2016

[178] Mills, D. L.; Internet time synchronization: the network time protocol. IEEE

Transactions on communications, 39(10), 1482-1493, 1991.

[179] Deininger, D., Dimitrova, R., Majumdar, R. Symbolic Model Checking for

Factored Probabilistic Models. In International Symposium on Automated Technology

for Verification and Analysis (pp. 444-460). Springer International Publishing, 2016,

October.

206

	1 Introduction
	1.1 Background and motivation
	1.2 Preliminary contributions
	1.3 Research questions
	1.4 Research method
	1.5 Overview of the IOPT-Flow framework
	1.6 Contributions and publications
	1.7 Document structure

	2 Literature Review
	2.1 Petri nets
	2.2 Model checking
	2.3 Execution semantics and non-autonomous properties
	2.4 Low level and high level net classes
	2.5 High level net execution strategies
	2.6 Model composition and hierarchical structuring
	2.7 Model composition based in signal and event communication
	2.8 The IEC61499 standard
	2.9 Automatic code generation
	2.10 UML statecharts and activity diagrams
	2.11 Model file formats
	2.12 Reactive systems and synchronous dataflows
	2.13 Matlab/Simulink
	2.14 Cyber-physical systems

	3 The DS-PNET Modeling Formalism
	3.1 Language core
	3.2 Dataflow operations
	3.3 Components
	3.4 Example DS-Pnet model
	3.5 Model files
	3.6 Execution Semantics
	3.6.1 Formal definition
	3.6.2 Execution semantic rules

	4 Automatic Code Generation
	4.1 JavaScript generated code
	4.2 VHDL Generated code
	4.3 C Generated code
	4.4 Interface board for industrial applications
	4.5 External/Foreign Components

	5 Distributed DS-Pnet Models
	5.1 Shared distributed components
	5.2 JSON/HTTP Communication Protocol
	5.2.1 User authentication and privilege levels
	5.2.2 Request types
	5.2.3 Server
	5.2.4 Client

	6 The IOPT-Flow Tool Framework
	6.1 Editor
	6.2 The Simulator tool
	6.3 Remote Debugger
	6.4 Node-Split
	6.5 Automatic code generation
	6.6 Import and export IOPT models
	6.7 IOPT Model Checking
	6.8 Component Library
	6.9 Standard foreign component library
	6.9.1 Arrays
	6.9.2 Data file input and output
	6.9.3 System time information
	6.9.4 Random number generator
	6.9.5 Graphical user interface
	6.9.6 Audio samples
	6.9.7 Industrial ModBUS Gateway

	6.10 Debug And Model-Checking
	6.10.1 Application example

	7 Validation Applications
	7.1 Bushless servo motor controller
	7.1.1 Model development
	7.1.2 Prototype implementation:
	7.1.3 Results

	7.2 Distributed multi-user game with graphical interface
	7.2.1 Results

	7.3 Graphical console for an industrial variable speed drive
	7.3.1 Results

	7.4 Distributed cyber-physical system simple application
	7.4.1 Results

	8 Conclusions and future work
	8.1 Research question 1
	8.2 Research question 2
	8.3 Research question 3
	8.4 Results and comparison with other technologies
	8.4.1 Traditional programming languages (C/C++, Java, Python, VHDL, etc.):
	8.4.2 IOPT-Tools
	8.4.3 Industrial automation development languages
	8.4.4 Labview and Matlab/Simulink

	8.5 Future work

	9 References

