4,769 research outputs found

    An electronic neuromorphic system for real-time detection of High Frequency Oscillations (HFOs) in intracranial EEG

    Full text link
    In this work, we present a neuromorphic system that combines for the first time a neural recording headstage with a signal-to-spike conversion circuit and a multi-core spiking neural network (SNN) architecture on the same die for recording, processing, and detecting High Frequency Oscillations (HFO), which are biomarkers for the epileptogenic zone. The device was fabricated using a standard 0.18Ό\mum CMOS technology node and has a total area of 99mm2^{2}. We demonstrate its application to HFO detection in the iEEG recorded from 9 patients with temporal lobe epilepsy who subsequently underwent epilepsy surgery. The total average power consumption of the chip during the detection task was 614.3Ό\muW. We show how the neuromorphic system can reliably detect HFOs: the system predicts postsurgical seizure outcome with state-of-the-art accuracy, specificity and sensitivity (78%, 100%, and 33% respectively). This is the first feasibility study towards identifying relevant features in intracranial human data in real-time, on-chip, using event-based processors and spiking neural networks. By providing "neuromorphic intelligence" to neural recording circuits the approach proposed will pave the way for the development of systems that can detect HFO areas directly in the operation room and improve the seizure outcome of epilepsy surgery.Comment: 16 pages. A short video describing the rationale underlying the study can be viewed on https://youtu.be/NuAA91fdma

    Adaptive tracking of people and vehicles using mobile platforms

    Get PDF
    Tracking algorithms have important applications in detection of humans and vehicles for border security and other areas. For large-scale deployment of such algorithms, it is critical to provide methods for their cost- and energy-efficient realization. To this end, commodity mobile devices have significant potential for use as prototyping and testing platforms due to their low cost, widespread availability, and integration of advanced communications, sensing, and processing features. Prototypes developed on mobile platforms can be tested, fine-tuned, and demonstrated in the field and then provide reference implementations for application-specific disposable sensor node implementations that are targeted for deployment. In this paper, we develop a novel, adaptive tracking system that is optimized for energy-efficient, real-time operation on off-the-shelf mobile platforms. Our tracking system applies principles of dynamic data-driven application systems (DDDAS) to periodically monitor system operating characteristics and apply these measurements to dynamically adapt the specific classifier configurations that the system employs. Our resulting adaptive approach enables powerful optimization of trade-offs among energy consumption, real-time performance, and tracking accuracy based on time-varying changes in operational characteristics. Through experiments employing an Android-based tablet platform, we demonstrate the efficiency of our proposed tracking system design for multimode detection of human and vehicle targets.publishedVersionPeer reviewe

    Modeling and Mapping of Optimized Schedules for Embedded Signal Processing Systems

    Get PDF
    The demand for Digital Signal Processing (DSP) in embedded systems has been increasing rapidly due to the proliferation of multimedia- and communication-intensive devices such as pervasive tablets and smart phones. Efficient implementation of embedded DSP systems requires integration of diverse hardware and software components, as well as dynamic workload distribution across heterogeneous computational resources. The former implies increased complexity of application modeling and analysis, but also brings enhanced potential for achieving improved energy consumption, cost or performance. The latter results from the increased use of dynamic behavior in embedded DSP applications. Furthermore, parallel programming is highly relevant in many embedded DSP areas due to the development and use of Multiprocessor System-On-Chip (MPSoC) technology. The need for efficient cooperation among different devices supporting diverse parallel embedded computations motivates high-level modeling that expresses dynamic signal processing behaviors and supports efficient task scheduling and hardware mapping. Starting with dynamic modeling, this thesis develops a systematic design methodology that supports functional simulation and hardware mapping of dynamic reconfiguration based on Parameterized Synchronous Dataflow (PSDF) graphs. By building on the DIF (Dataflow Interchange Format), which is a design language and associated software package for developing and experimenting with dataflow-based design techniques for signal processing systems, we have developed a novel tool for functional simulation of PSDF specifications. This simulation tool allows designers to model applications in PSDF and simulate their functionality, including use of the dynamic parameter reconfiguration capabilities offered by PSDF. With the help of this simulation tool, our design methodology helps to map PSDF specifications into efficient implementations on field programmable gate arrays (FPGAs). Furthermore, valid schedules can be derived from the PSDF models at runtime to adapt hardware configurations based on changing data characteristics or operational requirements. Under certain conditions, efficient quasi-static schedules can be applied to reduce overhead and enhance predictability in the scheduling process. Motivated by the fact that scheduling is critical to performance and to efficient use of dynamic reconfiguration, we have focused on a methodology for schedule design, which complements the emphasis on automated schedule construction in the existing literature on dataflow-based design and implementation. In particular, we have proposed a dataflow-based schedule design framework called the dataflow schedule graph (DSG), which provides a graphical framework for schedule construction based on dataflow semantics, and can also be used as an intermediate representation target for automated schedule generation. Our approach to applying the DSG in this thesis emphasizes schedule construction as a design process rather than an outcome of the synthesis process. Our approach employs dataflow graphs for representing both application models and schedules that are derived from them. By providing a dataflow-integrated framework for unambiguously representing, analyzing, manipulating, and interchanging schedules, the DSG facilitates effective codesign of dataflow-based application models and schedules for execution of these models. As multicore processors are deployed in an increasing variety of embedded image processing systems, effective utilization of resources such as multiprocessor systemon-chip (MPSoC) devices, and effective handling of implementation concerns such as memory management and I/O become critical to developing efficient embedded implementations. However, the diversity and complexity of applications and architectures in embedded image processing systems make the mapping of applications onto MPSoCs difficult. We help to address this challenge through a structured design methodology that is built upon the DSG modeling framework. We refer to this methodology as the DEIPS methodology (DSG-based design and implementation of Embedded Image Processing Systems). The DEIPS methodology provides a unified framework for joint consideration of DSG structures and the application graphs from which they are derived, which allows designers to integrate considerations of parallelization and resource constraints together with the application modeling process. We demonstrate the DEIPS methodology through cases studies on practical embedded image processing systems

    Overview of the MPEG Reconfigurable Video Coding Framework

    No full text
    International audienceVideo coding technology in the last 20 years has evolved producing a variety of different and complex algorithms and coding standards. So far the specification of such standards, and of the algorithms that build them, has been done case by case providing monolithic textual and reference software specifications in different forms and programming languages. However, very little attention has been given to provide a specification formalism that explicitly presents common components between standards, and the incremental modifications of such monolithic standards. The MPEG Reconfigurable Video Coding (RVC) framework is a new ISO standard currently under its final stage of standardization, aiming at providing video codec specifications at the level of library components instead of monolithic algorithms. The new concept is to be able to specify a decoder of an existing standard or a completely new configuration that may better satisfy application-specific constraints by selecting standard components from a library of standard coding algorithms. The possibility of dynamic configuration and reconfiguration of codecs also requires new methodologies and new tools for describing the new bitstream syntaxes and the parsers of such new codecs. The RVC framework is based on the usage of a new actor/ dataflow oriented language called CAL for the specification of the standard library and instantiation of the RVC decoder model. This language has been specifically designed for modeling complex signal processing systems. CAL dataflow models expose the intrinsic concurrency of the algorithms by employing the notions of actor programming and dataflow. The paper gives an overview of the concepts and technologies building the standard RVC framework and the non standard tools supporting the RVC model from the instantiation and simulation of the CAL model to software and/or hardware code synthesis

    Energy Efficiency and Performance Management of Parallel Dataflow Applications

    Get PDF
    International audienceParallelizing software is a popular way of achieving high energy efficiency since parallel applications can be mapped on many cores and the clock frequency can be lowered. Perfect parallelism is, however, not often reached and different program phases usually contain different levels of parallelism due to data dependencies. Applications have currently no means of expressing the level of parallelism, and the power management is mostly done based on only the workload. In this work, we provide means of expressing QoS and levels of parallelism in applications for more tight integration with the power management to obtain optimal energy efficiency in multi-core systems. We utilize the dataflow framework PREESM to create and analyze program structures and expose the parallelism in the program phases to the power management. We use the derived parameters in a NLP (NonLinear Programming) solver to determine the minimum power for allocating resources to the applications

    CGAMES'2009

    Get PDF

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    A Smart IoT-Aware System For Crisis Scenario Management

    Get PDF
    In most dangerous events, involving many people in large buildings, rescue workers need to intervene in a timely and targeted manner in order to help most number of people and secure the environments without wasting resources. This work presents an Internet of Things(IoT)-based framework, aiming at monitoring environmental parameters in order to alert rescuers when they exceed some alarm thresholds. A hardware infrastructure driven by a software layer adds flexibility and adaptability to the Complex Event Processing engine and to a rule engine-based reflective middleware that manages and analyzes raw data in conjunction with a knowledge base modeling the application domain

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    • 

    corecore