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Abstract—In most dangerous events, involving many people
in large buildings, rescue workers need to intervene in a timely
and targeted manner in order to help most number of people
and secure the environments without wasting resources. This
work presents an Internet of Things(IoT)-based framework,
aiming at monitoring environmental parameters in order to alert
rescuers when they exceed some alarm thresholds. A hardware
infrastructure driven by a software layer adds flexibility and
adaptability to the Complex Event Processing engine and to a rule
engine-based reflective middleware that manages and analyzes
raw data in conjunction with a knowledge base modeling the
application domain.

Index Terms—Internet of Things, IoT, Sensors, Fire Alert,
Safety, Complex Event Processing, Reflective Middleware.

I. INTRODUCTION

The aim of this work is to provide a framework to support
rescue workers (firefighters, first aid workers, civil protection
teams, etc.) in case of hazardous events. Particularly, we
consider events in which they need to intervene in large
environments with different access points and with a large
number of people: meaningful examples are schools, hospitals,
offices, senior citizens homes, cultural or entertainment places
as museums or art galleries. In these cases, indeed, it is
necessary to guide the rescuers at the points of the building in a
timely manner, where there is a certainty that there are users to
help, avoiding waste of resources in environments where there
is nobody at the time of the disaster or where the damages are
of low magnitude. The achievement of this goal will be pos-
sible through the creation of innovative services based on the
use of emerging technologies enabling the Internet of Things
(IoT) including sensors, mobile devices, apps, Bluetooth Low
Energy, Cloud technologies, and the use of embedded devices,
as initially investigated in [1]. Within the buildings to be
monitored, the installation of low cost devices that can detect
the environmental parameters of interest will be planned in
each place (room, classroom, etc.) and, if certain thresholds
are exceeded, alert the rescuers through a telephone call to one
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or more emergency numbers. Once alerted, rescuers will be
able to readily read all the information about the building and
have the specific environment in which they need to intervene.
More in detail, the system that will be implemented is made
up of the following conceptual components:

• Ambient monitoring smart box: A prototype box based
on board or microcomputer (e.g. Arduino, Raspberry Pi,
etc.) connected to a set of sensors useful for detecting spe-
cific environmental parameters (e.g. temperature, smoke,
movement, etc.). This device will also have one or more
communication interfaces (Wi-Fi, 3G/4G, Bluetooth) for
communicating the externally detected data.

• Back end Server: It deals with the processing and storage
of data detected by each device in order to obtain the
magnitudes of interest. The business logic at the basis of
this component can determine whether and which data
collected should generate an alert to the rescuers. If so,
it makes a call to fixed network numbers.

• Adaptive Middleware and Business Intelligence Platform:
It takes care of storing and processing the data detected
by each prototype device. The business logic that can
determine whether and which data should generate an
alert to the rescuers lies on the platform, it enables a
call to fixed or mobile network numbers. In addition, the
platform must be able to provide data for other purposes
to other services (e.g. energy waste monitoring, etc.) The
platform will have to store the floor plans of the buildings
through a back end application administrator side of the
service.

• Front end Application: A reactive Web Application that
displays real-time situations inside the building, high-
lighting the employment status of the different environ-
ments involved. This application can be consulted by
the rescuers once they receive the alarm so that they
can quickly decide in which building environments to
intervene.

• Mobile applications: The alert triggered by the rule
engine inside the back-end server activates mobile ap-
plications to rescuers. It is the mobile interface of the
front-end application.

Main goals of the framework aim to ensure the safety of
public environments and rescuers, hence to protect goods and
ensure continuity of service. Middleware behavior depends
on a Complex Event Processing (CEP) engine [2] core
component of the proposed framework to extract relevant
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knowledge from the domain model. In recent years, CEP
over event streams has become an increasingly important
tool to extract relevant situational knowledge from real-time
or “near real-time”distributed systems. The concept of CEP
was introduced by David Luckham in his seminal work [2]
as a “defined set of tools and techniques for analyzing and
controlling the complex series of interrelated events that drive
modern distributed Information Systems (IS)”. Several CEP
systems have been developed in the last few years, each
one proposing a different processing model. Currently, the
most popular are: StreamBase CEP1, Esper2, Apache Flink3.
The framework validation has been mainly focused on an
experimental proof-of-concept which allowed to verify all
components (hardware/software) involved; in particular let us
consider a Smart City environment and requirements of safety
of people. The validation has been performed to promote
safe communities and aimed at providing a good support
for rescue operations in case of danger. Suppose to consider
environmental parameters such as air quality, temperature and
humidity, smoke as variables to be monitored. We have worked
to build scenarios in a domestic controlled environment. The
test phase, lasting 10 days, has allowed to analyze data from
sensors in veritable installations in a way to offer ideas for
the next evolutionary steps. On the other side the raw data
product from all sensors are exposed with the Open Data
paradigm. This big data is a transformation in the knowledge
and governance of cities through the creation of a data deluge
that seeks to provide much more sophisticated, wider-scale,
finer-grained, real-time understanding and control of urbanity
[3]. Big data are:

• high volume of raw data (e.g. terabyte of data);
• diverse in variety (structured or unstructured);
• temporally and spatially referenced;
• fine-grained in resolution, aiming to be as detailed as

possible, and uniquely indexical in identification.
Many Smart City governments use real-time analytics to
manage aspects of how a city functions and is regulated. The
variety of data is large: from the flow of traffic to adjust
traffic light sequences and speed limits and to automatically
administer penalties for traffic violations [3] to environmental
conditions might be collated from a sensor network distributed
throughout the city, for measuring air pollution, water levels
or seismic activity. Many local governments use management
systems to log public engagement with their services and to
monitor whether staff have dealt with any issues. Big data
comes from sensors, devices, video/audio, networks, log files,
transactional applications, web, and social media - much of it
generated in real time and in a very large scale. In order to
get more interaction with the maintenance staff working in a
building, the system was able to process the raw data coming
from the sensors spread in all rooms and getting on how to
reduce the electricity consumption through a decision support
algorithm that can help and advise on the right consumption
curve. The remainder of the paper is structured as follows: in

1https://www.tibco.com/streaming-analytics [last access February 2018]
2http://www.espertech.com/esper/ [last access February 2018]
3http://flink.apache.org [last access February 2018]

the next section we introduce background issues concerning
monitoring system in IoT scenario and CEP architectures.
Then we formalize a prototyping framework and software
architecture. Experiments and results are discussed at the end.
After a validation of the framework, conclusion and future
work close the paper.

II. RELATED WORK

A. Hardware solutions for Fire Monitoring Systems

In this section, a state of art of fire monitoring systems,
including both commercial solutions and research works, is
reported. Several commercial solutions provide fire monitoring
systems or combined fire alarm and emergency communication
systems4. However, the main weak point of such systems is
their obtrusiveness due to wired connections among compo-
nents; this aspect must be considered at the design time of
the building, and it implies a quite high cost of setup and
management for the system. Moreover, it hinders the adoption
of the system in already existing buildings. Fire monitoring
systems have been one of the application fields of Wireless
Sensor Networks (WSN) in recent years, helping to overcome
wiring-related issues by exploiting their wireless peculiarities
[4]. In [5], a smart fire monitoring system is reported, it is com-
posed of (i) a fire detection trigger module, which transmits
the smoke and temperature parameters to (ii) a control module,
which analyzes the information coming from the detector
and transmits the fire information to (iii) a monitoring center
module. Finally, it is responsible for monitoring the whole
system and making decision about alarms and interventions.
In [6], a centralized wireless fire control system Bosch Fire
Monitoring System5 , using WSN technology is developed for
the scenario of a university campus. The system connects the
five buildings in the campus with a central control room by
using ZigBee technology6 . In case of fire in any monitored
building, the event is promptly notified to the control room and
proper countermeasures can be taken. In [7], a novel solution
for building fire monitoring system is proposed. It includes
a ZigBee-WiFi gateway which transforms ZigBee network
into WiFi network. In addition, the system identifies the place
where the fire occurred, and it notifies this information to the
handheld terminal of the building security personnel. In this
way, they can intervene quickly and more precisely. In recent
years, many research works have addressed the topic of fire
monitoring systems by using an IoT-aware approach based
on embedded and Cloud systems. The SCUBA project [8],
among a wide range of functionalities, provides also a cloud-
based service for buildings evacuation during a fire emergency
and a proof of concept of the Rescue Worker Interface
(RWI). It is a cloud-based service and mobile application
that provides real-time monitoring and control capabilities in
a unified view of the emergency. Many research studies are

4In-Building Mass Notification Systems,
http://www.cooperindustries.com/content/dam/public/safety/notification/
Resources/Brochures/Inbuilding%20MNS%20Brochure.pdf [last access
February 2018]

5http://resource.boschsecurity.com/documents/FSM Commercial Brochure
enUS 1218466443.pdf [last access February 2018]

6ZigBee Alliance, http://www.zigbee.org/ [last access February 2018]
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based on fast-prototyping boards like the Arduino Platform,
to further lower system setup and deployment costs. In [9],
a monitoring system for fire detection using Arduino micro-
controller is presented. All the data taken from smoke sensor
and camera connected to the Arduino are sent wirelessly
to data monitoring system for alert visualization. In [10],
a Home Based Fire Monitoring and Warning System using
Arduino Uno R3 is presented, which can also quickly alert
the building owner via GSM communication. The previous
analysis highlights that only few projects provide a visual map
of the building with a clear indication of the real-time status
of each room. Furthermore, even less projects contemplate a
direct connection with rescue workers and a support for the
definition of the intervention strategy in case of emergency.

B. Middleware for IoT

In this paragraph we present the state of the art of existing
approaches for Middleware for IoT and reflective middleware.
Middleware for IoT is a very active research area. A huge
amount of work is available in the literature about IoT
middleware and the multiple challenges they face [11], [12],
[13]. Interesting and structured surveys are in [14], [15], [16],
[17]. In order to build distributed systems, software engineers
have to know which middleware is available, which one is
best suited to the problems at hand, and how middleware
can be used in the architecture, design and implementa-
tion of distributed systems. In [16] the authors categorize
existing middleware according to design approaches: event-
based, service-oriented, agent-based, tuple-space, VM-based,
database-oriented, and application-specific. The paper ana-
lyzes several existing middleware which are reviewed and
summarized w.r.t. their supported functional, nonfunctional,
and architectural requirements. According to the taxonomy
described in this paper, in our work we consider some func-
tional requirements - scalability, reliability, availability and
adaptability - and architectural requirements - adaptiveness,
context awareness and programming abstractions - for IoT
middleware. A survey of reflective middleware for IoT is
in [18]. The survey addresses a broad range of techniques,
methods, models, functionalities, systems, applications, and
middleware solutions related to context awareness and IoT.
The paper analyzes, compares and consolidates past research
work. One of the first approaches is in [19] that presents
an architecture for reflective middleware based on a multi-
model approach. Through a number of working examples,
they demonstrate that the approach can support introspection,
and fine- and coarse- grained adaptation of the resource
management framework. More recent relevant approaches of
reflective middleware are proposed in [13], [20], where an
ontology-based IoT middleware is implemented, and in [21]
that proposes SOAR (SOA with Reflection). The paper [22]
presents a chemical reaction-inspired computational model
using the concepts of graphs and reflection, which attempts
to address the complexities associated with the visualization,
modelling, interaction, analysis and abstraction of information
in the IoT. The work [22] presents Internetware which consists
of a set of autonomous software entities distributed over

the Internet, together with a set of connectors to enable
collaborations among these entities in various ways. To support
on-demand collaboration, Internetware middleware employs
an RSA and reflection mechanisms on its own application
server. Qin et al. in the paper [23] extend the Multinetwork
INformation Architecture (MINA), a reflective (self-observing
and adapting via an embodied Observe-Analyze-Adapt loop)
middleware with a layered IoT SDN controller.

III. PROTOTYPE FRAMEWORK

The role of the environmental monitoring device is to
collect raw data related to ambient parameters inside the
building. As its main functionality, it periodically measures
the value of some environmental parameters by using the on-
board sensors. Then, the collected data are transmitted to the
Back-end Server with the aim to evaluate if some alarms or
interventions need to be notified and managed. The design
of the proposed device has considered several aspects of the
addressed scenario. In this context, in fact, the proper set of
sensors to be used depends on the physical properties that
must be sampled, such as the air temperature and humidity,
the presence of flames, the presence of smoke and toxic
gases, the presence of people. Similarly, the choice of the
communication interfaces depends upon several characteristics
of the building where the system is installed, in terms of
typology (museum, school, hospital, etc.), topology (number
of floors), surface, structural materials, etc. Even the ability
to operate with batteries and in low-power mode must be
considered, and both are desirable features, along with the
scalability and the low cost. This last requirement is important
in this context in order to foster the adoption of the proposed
solution even in case of existing buildings, when only little
investments are possible. For this reason, it is worth noting that
the design of the environmental monitoring device is based on
a “best-effort” approach. Considering the cost constraints, in
fact, and the critical working conditions during the fire, it is not
possible to guarantee that the monitoring device keeps working
also during the fire event. The important thing is that it can
track the ambient status (and communicate it to the Back-
end Server) at least until a moment before it stops working
due to fire. In this way, operators can have a snapshot of the
situation at least when the event occurred and, if the node
survived, also in real-time. The hardware has the structure
described in Figure 1 and detailed in the following paragraphs.
All previous considerations led to the definition of a modular
hardware equipment for the environmental monitoring device,
which can be adequately based on fast-prototyping boards, like
Arduino7. If more computing and/or communication capacities
were needed, microcomputers represent a valid alternative.
Going into details, the Arduino Platform provides a wide set
of prototyping boards, each one having well-defined character-
istics and application fields. The Arduino MKR10008 directly
includes a Wi-Fi module, a 32 bit low power 48 MHz ARM

7The Arduino Platform, https://www.arduino.cc/ [last access February
2018]

8Arduino MKR1000, https://www.arduino.cc/en/Main/ArduinoMKR1000[last
access February 2018]
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Fig. 1. Block diagram of the Smart box.

MCU, 32 KB SRAM, 8 Digital I/O pins, 7 analog inputs, 1 I2C
port and it can also work with a Li-Po battery. In cases where
more computing power and a greater number of analog/digital
inputs are needed, the Arduino DUE9 is more suitable, since
it provides a 32bit low power ARM Cortex-M3 CPU running
at 84 MHz, 54 digital I/O pins (12 of which can be used as
PWM outputs), 12 analog inputs, 4 UARTs (hardware serial
ports), one USB OTG capable connection, and 2 DACs.

In simpler applications, instead, the Arduino UNO10 is a
valid alternative, in that it offers a lower number of ana-
log/digital inputs and a lower CPU speed. This represents one
of the most used Arduino boards. Unfortunately, unlike the
Arduino MKR1000, on the Arduino UNO and DUE the Wi-
Fi module is not included, so the external WiFi Shield11 must
be used. The 3G/4G/GPRS connectivity, instead, can be pro-
vided by several solutions, like the Arduino GSM Shield 212,
3G/GPRS shield13, or 4G + GPS Shield for Arduino LE91014,
but with very different costs and functionalities. Finally, if the
application’s business logic requires a light-weight operating
system running directly on the sensor node, the Arduino
YUN15 can be used for this purpose, joining the benefits of
an Arduino and a Raspberry PI. Real microcomputers, such
as the Raspberry PI 3, can also be used in this context, but
they generally offer a limited connectivity, in terms of number
of I/O analog/digital pins to connect with sensors and low
performances when running with batteries. Finally, according
to the requirements of the application scenario considered from
time to time, the set of sensors used to sense environmental
parameters may include:

• LM35AH or LM35DZ sensors, with the associated signal
conditioning circuit, for measuring the air temperature in

9Arduino DUE, https://store.arduino.cc/arduino-due [last access February
2018]

10Arduino UNO, https://store.arduino.cc/arduino-uno-rev3 [last access Feb.
2018]

11ArduinoWiFi Shield, https://www.arduino.cc/en/Main/ArduinoWiFiShield
[last access Feb. 2018]

12Arduino GSM Shield 2, https://www.arduino.cc/en/Main/ArduinoGSMShield
[last access Feb. 2018]

13Arduino 3G/GPRS shield, https://www.cookinghacks.com/documentation/
tutorials/3g-gps-shield-arduino-raspberrypi-tutorial/ [last access Feb. 2018]

144G + GPS Shield for Arduino LE910, https://www.cookinghacks.com/4g-
gps-3g-gprs-gsm-gps-lte-wcdma-hspa-shield-for-arduino [last access Feb.
2018]

15Arduino YUN, https://www.arduino.cc/en/Main/ArduinoBoardYun [last
access Feb. 2018]

the range -55◦C to 150◦C,
• MQ216 sensor, directly interfaceable with Arduino

boards, for smoke detection,
• MQ7 sensor, to detect other type of toxic gasses, like

Carbon Monoxide,
• IR-based low-cost flame sensory17,
• PIR sensor18 or a more accurate MEMS Thermal sensor19

to detect the presence of people in a room.
Figure 2 shows the schema of a possible implementation of
the environmental monitoring device, based on the Arduino
MKR1000, whose analog and digital input pins are used
according to the typology of the attached sensors. The MQ2
smoke sensor and the MQ7 Carbon Monoxide sensor are
equipped with a driving circuits with analog outputs, so they
have been connected to the A1 and A2 analog inputs of
the Arduino. The DHT11 temperature and humidity sensor
has been connected to the D1 digital input pin, as well as
the PIR sensor (D2 pin). Finally, the flame sensor has been
connected to the A3 analog input, in order to adjust its
sensitivity to infrared radiation. A signaling system has been
also implemented to provide further information to the end
user: three LEDs (green, yellow and red) are used to visualize
the smoke level in the air and a buzzer is used to communicate
a detected alarm in a conventional way. From a programming
point of view, an Arduino program (called sketch) is composed
of two main parts: the setup, executed at the boot of the
program, and the loop, a set of instructions executed in an
endless loop. During the setup phase, the following operations
are performed:

1) Configuration of the I/O pins;
2) Connection to the Internet through the embedded WiFi

module;
3) Check of the reachability of the server;
4) Configuration of the Real Time Clock (RTC);

During the loop phase, instead, all sensors are read in a
periodic way (except for the PIR sensor that triggers its state
when a presence is detected) and the corresponding data object
containing these information is sent to the server. It basically
contains:

1) ID of the device;
2) Value of the sensors;
3) Timestamp of the reading.
Figure 3 shows a prototypal implementation of the envi-

ronmental monitoring device, with a plastic test chamber, to
simulate a room in case of fire.

IV. SOFTWARE ARCHITECTURE

The software architecture, defined to capture and manage
raw data from hardware components (i.e. smart box), is
composed of two main layers: the back-end server and the

16MQ Gas sensors, http://playground.arduino.cc/Main/MQGasSensors
17Low cost flame sensor, http://www.instructables.com/id/Arduino-

Modules-Flame-Sensor/ [last access February 2018]
18PIR sensor, http://randomnerdtutorials.com/arduino-with-pir-

motionsensor/ [last access Feb. 2018]
19MEMS Thermal sensor, https://www.omron.com/ecb/products/sensor/11/d6t.htm

[last access Feb. 2018]

94 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 1, MARCH 2018 

 



Fig. 2. Implementation schema of an environmental monitoring device based
on Arduino MKR1000 board. It includes PIR sensor (a), DHT11 temperature
and humidity sensor (b), IR flame sensor (c), MQ2 smoke sensor (d) and
MQ7 gas sensor (e).

Fig. 3. Prototypal implementation of the environmental monitoring device,
with annexed test chamber.

mobile device as shown in Figure 4. The two-layer software
is modeled on a rule-based metamodel [13] leaning on an
adaptive and reflective middleware interacting with a CEP
engine [2]. The resulting software architecture is a flexible,
adaptive, and scalable system. The first layer contains a rule-
based system that matches the set of formal rules encoding
the behavior of the system based on data observed from
the devices. It implements the transformation of data and
relationships accessed in an ontology that models the domain.
We adopt a reflective paradigm [24] for modeling the IoT
middleware, by implementing the Reflection design pattern.
The main concept in Reflection pattern is the distinction
between base level, meta level and the Meta Object Protocol
(MOP) [25]. The base level contains the application logic
while the meta level manages all the aspects that change
independently from the base level. The meta level models
runtime changing parts of the application, and creates new
applications starting from the base level classes. The Meta
Object Protocol enables adaptive changes in the metalevel
and in the connections between the base level and the meta
objects. A meta object is defined as an object that manipulates,
creates, describes, or implements other objects (including
itself) [25]. In this way, by using a programming language that
supports reflection, we can design a completely configurable

and extensible system able to adapt to different operating
environments. This enables flexibility of the system since it
is possible to run-time change the structure of the objects.
A Message Broker component models the Publish/Subscribe
mechanism for defining the relationships between messages
containing physical sensors information, and actions. A Rule
Based system implements the transformation of data and
relationships accessed in the ontology that models the domain
using a reasoning algorithm. The Adaptor component works
as a driver and translates the received command in a real
action. Different Adaptors can be placed for each action.
The mobile device (components enclosed in the green box in
Figure 4) includes five components. The core component is the
Complex Event Processing (CEP) engine [25]. In recent years,
CEP over event streams has become an increasingly important
model to extract relevant situational knowledge from real-
time or near real-time distributed systems. Sensor Adapters
connect to sensors and translate information obtained from
sensors into events format. All formatted events are sent to
the Event Stream Management component, which dispatches
event streams to other components such as the CEP engine
or action handlers or sends the events to the server through
publish methods. Pattern Deployment deploys/un-deploys the
patterns, which are dispatched by the server to the CEP
engine on the mobile device. In order to interact with a user,
Action Handler executes actions like playing alarm audio,
displaying alerts and/or recommendations on smartphone in
case the pre-defined trigger events are detected. The two
parts communicate through a publish/subscribe middleware
composed by a Distributed Service Bus (DSB), a Google
Cloud Messaging service and a Subscription Web Service.

V. VALIDATION OF THE FRAMEWORK

The proposed framework has been validated in a controlled
environment by using a specific use case: we have used a real
domestic scenario. In this simulation, we wanted to experience
the passage of information between the various hardware and
software components involved. With this, we can come to be
able to simulate a real scenario, such as that of a public office
as shown in the Figure 5. The main objective of the experi-
mentation is a verification of the entire infrastructure supports
the workload generated by monitoring units equipped with
sensors capable of detecting environmental parameters such
as, temperature, humidity and smoke. With this experiment we
choice an Arduino boards with a Wi-Fi controller: temperature
and humidity sensors were connected at Arduino boards and
programmed to send data on server architecture compatible
with Internet communication protocols. The choice of sensors
has fallen on sensors with standards that guarantee a high de-
gree of reliability and accuracy of the environmental measure.
We use a DHT22 capable of measuring the temperature in a
range from -40 to 80◦C with ±0.5◦ C accuracy. A validation
was carried out in a distributed environment by entering the
entire core of the middleware, including the layer of data
persistence. For testing purposes, a Linux-based infrastructure
was created within a server environment with the following
features: 2,5 GHz Intel Core i5 with 16 GB of RAMs. In
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Fig. 4. Overall software architecture.

addition, a virtual machine hosted in the Microsoft Azure
Cloud (Ubuntu 16.04, one core, 2 GB of RAMs, 25 GB of HD
space), has been devoted to monitoring and checking of the
raw data received for a 10 days period. All communications
between the entities occur in JSON format, like the following
example:
{ ”device”:” Arduino F1 R1”,
”sensor”:”t sensor”,
”value”:23,”timestamp”:”1475353576”}
As shown in the example, the data flow is generating by an
Arduino board placed in the room 1 at first floor. The flow
of data goes to the Reflective Middleware which is ready
to analyze them. In Table 1 we show some data from three
boards scattered in three different homes. The system will
automatically perform actions according to the values received
by the sensors of devices by matching the set of formal rules,
considering the values of the monitored variables. For the
mobile device, considering the limited computing resources
on mobile devices we use the light weight Esper engine as
CEP engine. Esper enables rapid development of applications
that process large volumes of incoming messages or events,

Fig. 5. Validation scenario.

TABLE I
THREE SENSORS MONITORING.

Date Hour Device Temperature (◦C) Humidity(%)
2017-09-28 14:23 UDOO-DUAL-T H L-1 23 51
2017-09-28 14:28 UDOO-DUAL-T H L-1 23 51
2017-09-28 14:33 UDOO-DUAL-T H L-1 23 51
2017-09-28 14:38 UDOO-DUAL-T H L-1 23 51
2017-09-28 14:43 UDOO-DUAL-T H L-1 23 50
2017-09-28 14:48 UDOO-DUAL-T H L-1 23 50
2017-09-28 14:53 UDOO-DUAL-T H L-1 23 50
2017-09-28 14:58 UDOO-DUAL-T H L-1 23 51
2017-09-28 15:03 UDOO-DUAL-T H L-1 24 50

regardless of whether messages are historical or real-time in
nature. Esper filters and analyzes events in various ways,
and responds to conditions of interest. The CEP engine by
matching the set of rules, activates a series of procedures,
alerting the intervention of the rescue workers in the exact
place on the map where the accident occurred.

For the back end server we choose the following tech-
nologies: (i) DeviceHive as IoT middleware; (ii) Redis as
a Message Broker, Redis is a NoSQL DBMS and allows a
system to translate a message from the messaging protocol of
the sender to the recipients messaging protocol; through a de-
coupling between publishers and subscribers, Redis guarantees
a greater scalability and (iii) an Observer, a component that
observes rules extracted from the Rule based-systems. In our
implementation, the rule based system is a configuration file in
JSON format. The system will automatically perform actions
according to the values received by the sensors of devices
by matching the set of formal rules, considering the values
of the monitored variables. The alert triggered by the rule
engine inside the back end server activates mobile applications
to rescuers. Through a web server the data is displayed in a
table through an easily graphic interface (Figure 6). This user
interface adopts a responsive paradigm allowing it to adapt
to the multiplicity of devices currently on the market. This
approach makes web pages render well on a variety of devices
and window or screen sizes. A page designed with responsive
design adapts the layout to the viewing environment by using
fluid, proportion-based grids, flexible images and CSS3 media
queries. In this application area this approach promotes the
access to the control panel in every situation. Below this,
the exposition of date following the Representational stateless
transfer (REST) paradigm. A RESTful web services are a way
of providing interoperability between systems on the web.
REST-compliant Web services allow requesting systems to
access and manipulate data representations of IoT resources
using a uniform and predefined set of stateless operations. This
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Fig. 6. Web dashboard of the proposed system.

requests use HTTP methods: GET, POST, PUT, DELETE.
By using a stateless protocol and standard operations, REST
systems aim for fast performance, reliability, and the ability
to grow, by re-using components that can be managed and
updated without affecting the system as a whole, even while
it is running. In fact, this paradigm allows us to expose data in
a variety of situation as in the case of Open Data. As proposed
in [16] there are several non-functional requirements of IoT
middleware. In this work, we will describe and analyze the
requirements that middleware implements.
Scalability: An IoT middleware needs to be scalable to ac-
commodate growth in the IoTs network and application or
services. Scalability is the capability of a system to increase
or decrease the available resources. For example, a system is
considered scalable if it is capable of increasing its total output
under an increased load when resources are added, typically
hardware resource. In this work, the scalability is achieved
via load balancing that divide the data flow through multiple
equals node. The node is a Virtual Machine(VM) configured
by one or more CPU having a defined amount of RAM. This
VM that contains all middleware component. In this case the
scalability it is ensured by a load balancer that knows at all
times the workload of each node and starting from this data
decide to route the packet to a unloaded node. All nodes are
equal and contain the same components.
Reliability: The measure of reliability is a probability that a
system will produce correct outputs up to some given time
t. This measure is enhanced by the system features that help
to avoid, detect and repair hardware faults. In this situation
the system not deliver the results but detects and, if possible,
corrects the corruption. Applying this measure to an IoT
middleware this should remain operational for the duration
of a process, even in the presence of failures. For our cases
the measure of reliability is 100 % without error for the 10
days of trial.
Availability: The measure of availability is connected by the
times that the middleware must be available or appear avail-
able. If there is a system failure, the recovery must be small
enough to achieve the desired availability. The availability and
the reliability requirements is connected to ensure the highest
fault tolerance require from this application. In our case, the
availability measure is 100 % for the 10 days of trial. Next to
this requisite there are few architectural requirements that are

designed to support application developers. We exposed those
that the middleware observes.
Interoperable: This middleware should work with heteroge-
neous devices, technologies or applications. This important
feature allows middleware to work with heterogeneous de-
vices, technologies or application without additional effort
from the application or service developer. This term has
many definitions we define this property how the ability of a
collection of communicating entities to share specified infor-
mation and operate on that information according to a shared
operational semantics in order to achieve a specified purpose
in a given context [26]. The main feature of interoperation
is a relationship between systems or networks, syntactic, and
semantic perspectives each of which must be catered for in an
IoT context. This component must be able to exchange data
and services. For example, our middleware is interoperable
with any IoT board such as Arduino, Raspberry, UDOO, etc.

VI. CONCLUSION

There are currently available several middlewares, but al-
most always without documentation and poorly integrable.
In this work, we propose a reflective extension of an IoT
middleware, designed to be fully configurable and adaptable
in different operating environments. The proposed framework
allows us to perform automatically actions based on raw data
received from the sensor network. In addition, the associated
knowledge base allows you to define even rules inside the
operating environment. Our implementation captures data from
a network of sensors based on the Arduino platform (prototype
development platform) by exploiting an embedded system as
Raspberry sends all data into the Cloud. We are working to
conduct extensive experiments considering also the presence
of people, such as schools, hospitals, offices, senior citizens’
homes, museums, etc. Additionally, we are committed to ex-
tend the set of actions to enable integration and interoperability
with multiple and heterogeneous middleware.
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