14,865 research outputs found

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf

    AI Dining Suggestion App

    Get PDF
    Trying to decide what to eat can sometimes be challenging and time-consuming for people. Google and Yelp have large scale data sets of restaurant information as well as Application Program Interfaces (APIs) for using them. This restaurant data includes time, price range, traffic, temperature, etc. The goal of this project is to build an app that eases the process of finding a restaurant to eat. This app has a Tinder-like user friendly User Interface (UI) design to change the common way that lists of restaurants are presented to users on mobile apps. It also uses the help of Artificial Intelligence (AI) with neural networks to train both supervised and unsupervised learning models that can learn from one\u27s dining pattern over time to make better suggestions at any time

    Mobile games with intelligence: a killer application?

    Get PDF
    Mobile gaming is an arena full of innovation, with developers exploring new kinds of games, with new kinds of interaction between the mobile device, players, and the connected world that they live in and move through. The mobile gaming world is a perfect playground for AI and CI, generating a maelstrom of data for games that use adaptation, learning and smart content creation. In this paper, we explore this potential killer application for mobile intelligence. We propose combining small, light-weight AI/CI libraries with AI/CI services in the cloud for the heavy lifting. To make our ideas more concrete, we describe a new mobile game that we built that shows how this can work

    On content-based recommendation and user privacy in social-tagging systems

    Get PDF
    Recommendation systems and content filtering approaches based on annotations and ratings, essentially rely on users expressing their preferences and interests through their actions, in order to provide personalised content. This activity, in which users engage collectively has been named social tagging, and it is one of the most popular in which users engage online, and although it has opened new possibilities for application interoperability on the semantic web, it is also posing new privacy threats. It, in fact, consists of describing online or offline resources by using free-text labels (i.e. tags), therefore exposing the user profile and activity to privacy attacks. Users, as a result, may wish to adopt a privacy-enhancing strategy in order not to reveal their interests completely. Tag forgery is a privacy enhancing technology consisting of generating tags for categories or resources that do not reflect the user's actual preferences. By modifying their profile, tag forgery may have a negative impact on the quality of the recommendation system, thus protecting user privacy to a certain extent but at the expenses of utility loss. The impact of tag forgery on content-based recommendation is, therefore, investigated in a real-world application scenario where different forgery strategies are evaluated, and the consequent loss in utility is measured and compared.Peer ReviewedPostprint (author’s final draft

    Facilitating Mobile Music Sharing and Social Interaction with Push!Music

    Get PDF
    Push!Music is a novel mobile music listening and sharing system, where users automatically receive songs that have autonomously recommended themselves from nearby players depending on similar listening behaviour and music history. Push!Music also enables users to wirelessly send songs between each other as personal recommendations. We conducted a two-week preliminary user study of Push!Music, where a group of five friends used the application in their everyday life. We learned for example that the shared music in Push!Music became a start for social interaction and that received songs in general were highly appreciated and could be looked upon as ‘treats’

    A Fashion Recommendation System Based on The Wisdom of Crowds

    Get PDF

    CGAMES'2009

    Get PDF
    • …
    corecore