715 research outputs found

    AC voltage regulation of a bidirectional high-frequency link converter using a deadbeat controller

    Get PDF
    This paper presents a digital controller for AC voltage regulation of a bidirectional high-frequency link (BHFL) inverter using Deadbeat control. The proposed controller consists of inner current loop, outer voltage loop and a feed-forward controller, which imposes a gain scheduling effect according to the reference signal to compensate the steady-state error of the system. The main property of the proposed controller is that the current- and the voltage-loop controllers have the same structure, and use the same sampling period. This simplifies the design and implementation processes. To improve the overall performance of the system, additional disturbance decoupling networks are employed. This takes into account the model discretization effect. Therefore, accurate disturbance decoupling can be achieved, and the system robustness towards load variations is increased. To avoid transformer saturation due to low frequency voltage envelopes, an equalized pulse width modulation (PWM) technique has been introduced. The proposed controller has been realized using the DS1104 digital signal processor (DSP) from dSPACE. Its performances have been tested on a one kVA prototype inverter. Experimental results showed that the proposed controller has very fast dynamic and good steady-state responses even under highly nonlinear loads

    A Review on Direct Power Control of Pulsewidth Modulation Converters

    Get PDF

    Control and monitoring of solar photovoltaic panel using PLC

    Get PDF
    A renewable energy source plays an important role in electricity generation. Various renewable energy sources like wind, solar, geothermal, ocean thermal, and biomass can be used for generation of electricity and for meeting our daily energy needs. Energy from the sun is the best option for electricity generation as it is available everywhere and is free to harness. On an average the sunshine hour in Malaysia is about eight hours annually also the sun shine shines in Malaysia for about nine months in a year. Electricity from the sun can be generated through the solar photovoltaic modules (SPV). The SPV comes in various power output to meet the load requirement. Maximization of power from a solar photo voltaic module (SPV) is of special interest as the efficiency of the SPV module is very low. A peak power tracker is used for extracting the maximum power from the SPV module. The present work describes the potential system benefits of simple tracking solar system using stepper motor and light sensor. This method increases power collection efficiency by developing a device that tracks the sun to keep the panel at the right angle to its rays. A solar tracking system is designed, implemented and experimentally tested. The design details and the experimental results are shown

    Continuous Nonlinear Model Predictive Current Control of PWM AC/DC Rectifier

    Get PDF
    The present work applies a nonlinear model predictive current control (NLMPCC) approach to ac/dc pulse width modulation (PWM) rectifier. A cascade structure is used to regulate Dc-link voltage and grid currents. The outer loop objective is to regulate the Dc-link voltage to the desired value, providing the level of the required active power to be used with the reactive power to calculate the referencing current for the inner loop. In the inner loop, the proposed approach is considered. After that, the nonlinear model of the converter is developed, based on continuous minimization of predicted tracking errors, the voltage at the terminal of the converter is deduced. After that, a PWM block is used to generate gate signals. Simulation results are performed to illustrate the efficiency of the proposed control la

    AC Voltage Regulation of a Bidirectional High-Frequency Link Converter Using a Deadbeat Controller

    Get PDF
    This paper presents a digital controller for ac voltage regulation of a bidirectional high-frequency link (BHFL) inverter using deadbeat control. The proposed controller consists of inner current loop, outer voltage loop and a feed-forward controller, which imposes a gain scheduling effect according to the reference signal to compensate the steady-state error of the system. The main property of the proposed controller is that the current- and the voltage-loop controllers have the same structure, and use the same sampling period. This simplifies the design and implementation processes. To improve the overall performance of the system, additional disturbance decoupling networks are employed. This takes into account the model discretization effect. Therefore, accurate disturbance decoupling can be achieved, and the system robustness towards load variations is increased. To avoid transformer saturation due to low frequency voltage envelopes, an equalized pulse width modulation (PWM) technique has been introduced. The proposed controller has been realized using the DS1104 digital signal processor (DSP) from dSPACE. Its performances have been tested on a one kVA prototype inverter. Experimental results showed that the proposed controller has very fast dynamic and good steady-state responses even under highly nonlinear load

    A variable duty cycle maximum power point tracking algorithm for wind energy conversion systems.

    Get PDF
    This thesis proposes a new Maximum Power Point Tracking (MPPT) algorithm employed in Wind Energy Conversion Systems (WECS). One of the major issues discussed in the literature concerning HCS is its inefficiency in detecting the peak power when there is a change in wind •speed. In addition, the HCS produces oscillations in delivered power once this peak is detected. A modified HCS algorithm is proposed in this thesis to overcome these limitations. This algorithm employs a variable duty cycle to reduce the oscillations in delivered power once the peak power is detected. The performance of the proposed algorithm was evaluated using MA TLAB-SIMULINK. Efficiencies of 95.48%, 98.8%, and 92.2% were observed under constant wind speed, abrupt wind speed change from 10m/s to 5m/s, and a continuously varying wind speed between 5m/s and 12m/s respectively. The traditional HCS algorithm was also simulated for comparison with efficiencies reduced to 76.27%, 81.35, and 67.86% under the same conditions. These efficiency improvements and the reduction of oscillations during varying wind speeds demonstrate the major achievements of the proposed algorithm

    High-performance control of a three-phase voltage-source converter including feedforward compensation of the estimated load current

    Get PDF
    In this paper a new control strategy for voltage-source converters (VSC) is introduced. The proposed strategy consists of a nonlinear feedback controller based on feedback linearization plus a feedforward compensation of the estimated load current. In our proposal an energy function and the direct-axis current are considered as outputs, in order to avoid the internal dynamics. In this way, a full linearization is obtained via nonlinear transformation and feedback. An estimate of the load current is feedforwarded to improve the performance of the whole system and to diminish the capacitor size. This estimation allows to obtain a more rugged and cheaper implementation. The estimate is calculated by using a nonlinear reduced-order observer. The proposal is validated through different tests. These tests include performance in presence of switching frequency, measurement filters delays, parameters uncertainties and disturbances in the input voltage.Fil: Leon, Enrique Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Solsona, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Busada, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Chiacchiarini, Hector Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Valla, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentin
    corecore