649 research outputs found

    EChO Payload electronics architecture and SW design

    Full text link
    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 μ\mum, to 11.0 μ\mum. The baseline design includes the goal wavelength extension to 0.4 μ\mum while an optional LWIR module extends the range to the goal wavelength of 16.0 μ\mum. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.Comment: Experimental Astronomy - EChO Special Issue 201

    A 96-Channel FPGA-based Time-to-Digital Converter

    Full text link
    We describe an FPGA-based, 96-channel, time-to-digital converter (TDC) intended for use with the Central Outer Tracker (COT) in the CDF Experiment at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Stratix FPGA's. The special capabilities of this device are the availability of 840 MHz LVDS inputs, multiple phase-locked clock modules, and abundant memory. The TDC system operates with an input resolution of 1.2 ns. Each input can accept up to 7 hits per collision. The time-to-digital conversion is done by first sampling each of the 96 inputs in 1.2-ns bins and filling a circular memory; the memory addresses of logical transitions (edges) in the input data are then translated into the time of arrival and width of the COT pulses. Memory pipelines with a depth of 5.5 μ\mus allow deadtime-less operation in the first-level trigger. The TDC VME interface allows a 64-bit Chain Block Transfer of multiple boards in a crate with transfer-rates up to 47 Mbytes/sec. The TDC also contains a separately-programmed data path that produces prompt trigger data every Tevatron crossing. The full TDC design and multi-card test results are described. The physical simplicity ensures low-maintenance; the functionality being in firmware allows reprogramming for other applications.Comment: 32 pages, 13 figure

    Asymmetric data acquisition system for an endoscopic PET-US detector

    Get PDF
    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data

    LHCb Preshower Front-End Electronics Board

    Get PDF
    This note describes the digital part of the fully synchronous solution developped for the lhcb preshower detector Front-End electronics. The general design and the main features of this board are given including trigger part

    VLSI Implementation of a 2.8 Gevent/s Packet-Based AER Interface with Routing and Event Sorting Functionality

    Get PDF
    State-of-the-art large-scale neuromorphic systems require sophisticated spike event communication between units of the neural network. We present a high-speed communication infrastructure for a waferscale neuromorphic system, based on application-specific neuromorphic communication ICs in an field programmable gate arrays (FPGA)-maintained environment. The ICs implement configurable axonal delays, as required for certain types of dynamic processing or for emulating spike-based learning among distant cortical areas. Measurements are presented which show the efficacy of these delays in influencing behavior of neuromorphic benchmarks. The specialized, dedicated address-event-representation communication in most current systems requires separate, low-bandwidth configuration channels. In contrast, the configuration of the waferscale neuromorphic system is also handled by the digital packet-based pulse channel, which transmits configuration data at the full bandwidth otherwise used for pulse transmission. The overall so-called pulse communication subgroup (ICs and FPGA) delivers a factor 25–50 more event transmission rate than other current neuromorphic communication infrastructures

    The ATLAS Level-1 Calorimeter Trigger

    Get PDF
    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, tau leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 microsecond, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern

    Scintillator Pad Detector: Very Front End Electronics

    Get PDF
    El Laboratori d'Altes Energies de La Salle és un membre d'un grup acreditat per la Generalitat. Aquest grup està format per part del Departament d'Estructura i Constituents de la Matèria de la Facultat de Física de la Universitat de Barcelona, part del departament d'Electrònica de la mateixa Facultat i pel grup de La Salle. Tots ells estan involucrats en el disseny d'un subdetector en l'experiment de LHCb del CERN: el SPD (Scintillator Pad Detector). El SPD és part del Calorímetre de LHCb. Aquest sistema proporciona possibles hadrons d'alta energia, electrons i fotons pel primer nivell de trigger. El SPD està format per una làmina centellejeadora de plàstic, dividida en 600 cel.les de diferent tamany per obtenir una millor granularitat aprop del feix. Les partícules carregades que travessin el centellejador generaran una ionització del mateix, a diferència dels fotons que no la ionitzaran. Aquesta ionització, generarà un pols de llum que serà recollit per una WLS que està enrotllada dins de les cel.les centellejadores. La llum serà transmesa al sistema de lectura mitjançant fibres clares. Per reducció de costos, aquestes 6000 cel.les estan dividides en grups, usant MAPMT (fotomultiplicadors multiànode) de 64 canals per rebre la informació en el sistema de lectura. El senyal de sortida dels fotomultilplicadors és irregular degut al baix nivell de fotoestadística, uns 20-30 fotoelectrons per MIP, i degut també a la resposta de la fibra WLS, que té un temps de baixada lent. Degut a tot això, el processat del senyal, es realitza primer durant la integració de la càrrega total i finalment per la correcció de la cua que conté el senyal provinent del PMT. Aquesta Tesi està enfocada en el sistema de lectura de l'electrònica del VFE del SPD. Aquest, està format per un ASIC (dissenyat pel grup de la UB) encarregat d'integrar el senyal, compensar el senyal restant i comparar el nivell d'energia obtingut amb un llindar programable (fa la distinció entre electrons i fotons), una FPGA que programa aquests llindars i compensacions de cada ASIC i fa el mapeig de cada canal rebut en el detector i finalment usa serialitzadors LVDS per enviar la informació de sortida al trigger de primer nivell. En el disseny d'aquest tipus d'electrònica s'haurà de tenir en compte, per un costat, restriccions de tipus mecànic: l'espai disponible per l'electrònica és limitat i escàs, i per un altre costat, el nivell de radiació que deurà suportar és considerable i s'haurà de comprobar que tots els components superin un cert test de radiació, i finalment, també s'haurà de tenir en compte la distància que separa els VFE dels racks on la informació és enviada i el tipus de senyal amb el que es treballa en aquest tipus d'experiments: mixta i de poc rang.El Laboratorio de Altas Energías de la Salle es un miembro de un grupo acreditado por La Generalitat. Este grupo está formado por parte del departamento de Estructura i Constituents de la Matèria de la Facultad de Física de la Universidad de Barcelona, parte del departamento de Electrónica de la misma Facultad y el grupo de La Salle. Todos ellos están involucrados en el diseño de un subdetector en el experimento de LHCb del CERN: El SPD (Scintillator Pad Detector). El SPD es parte del Calorímetro de LHCb. Este sistema proporciona posibles hadrones de alta energía, electrones y fotones para el primer nivel de trigger.El SPD está diseñado para distinguir entre electrones y fotones para el trigger de primer nivel. Este detector está formado por una lámina centelleadora de plástico, dividida en 6000 celdas de diferente tamaño para obtener una mejor granularidad cerca del haz. Las partículas cargadas que atraviesen el centelleador generarán una ionización del mismo, a diferencia de los fotones que no la generarán. Esta ionización generará, a su vez, un pulso de luz que será recogido por una WLS que está enrollada dentro de las celdas centelleadoras. La luz será transmitida al sistema de lectura mediante fibras claras. Para reducción de costes, estas 6000 celdas están divididas en grupos, utilizando un MAPMT (fotomultiplicadores multiánodo) de 64 canales para recibir la información en el sistema de lectura. La señal de salida de los fotomultiplicadores es irregular debido al bajo nivel de fotoestadística, unos 20-30 fotoelectrones por MIP, y debido también a la respuesta de la fibra WLS, que tiene un tiempo de bajada lento. Debido a todo esto, el procesado de la señal, se realiza primero mediante la integración de la carga total y finalmente por la substracción de la señal restante fuera del período de integración. Esta Tesis está enfocada en el sistema de lectura de la electrónica del VFE del SPD. Éste, está formado por un ASIC (diseñado por el grupo de la UB) encargado de integrar la señal, compensar la señal restante y comparar el nivel de energía obtenido con un umbral programable (que distingue entre electrones y fotones), y una FPGA que programa estos umbrales y compensaciones de cada ASIC, y mapea cada uno de los canales recibidos en el detector y finalmente usa serializadores LVDS para enviar la información de salida al trigger de primer nivel. En el diseño de este tipo de electrónica se deberá tener en cuenta, por un lado, restricciones del tipo mecánico: el espacio disponible para la electrónica en sí, es limitado y escaso, por otro lado, el nivel de radiación que deberá soportar es considerable y se tendrá que comprobar que todos los componentes usado superen un cierto test de radiación, y finalmente, también se deberá tener en cuenta la distancia que separa los VFE de los racks dónde la información es enviada y el tipo de señal con el que se trabaja en este tipo de experimentos: mixta y de poco rango.Laboratory in La Salle is a member of a Credited Research Group by La Generatitat. This group is formed by a part of the ECM department, a part of the Electronics department at UB (University of Barcelona) and La Salle's group. Together, they are involved in the design of a subdetector at LHCb Experiment at CERN: the SPD (Scintillator Pad Detector). The SPD is a part of LHCb Calorimeter. That system provides high energy hadrons, electron and photons candidates for the first level trigger. The SPD is designed to distinguish electrons and photons for this first level trigger. This detector is a plastic scintillator layer, divided in about 6000 cells of different size to obtain better granularity near the beam. Charged particles will produce, and photons will not, ionisation on the scintillator. This ionisation generates a light pulse that is collected by a Wavelength Shifting (WLS) fibre that is twisted inside the scintillator cell. The light is transmitted through a clear fibre to the readout system. For cost reduction, these 6000 cells are divided in groups using a MAPMT of 64 channels for receiving information in the readout system. The signal outing the SPD PMTs is rather unpredictable as a result of the low number of photostatistics, 20-30 photoelectrons per MIP, and the due to the response of the WLS fibre, which has low decay time. Then, the signal processing must be performed by first integrating the total charge and later subtracting to avoid pile-up. This PhD is focused on the VFE (Very Front End) of SPD Readout system. It is performed by a specific ASIC (designed by the UB group) which integrates the signal, makes the pile-up compensation, and compares the level obtained to a programmable threshold (distinguishing electrons and photons), an FPGA which programs the ASIC thresholds, pile-up subtraction and mapping the channels in the detector and finally LVDS serializers, in order to send information to the first level trigger system. Not only mechanical constraints had to be taken into account in the design of the card as a result of the little space for the readout electronics but also, on one hand, the radiation quote expected in the environment and on the other hand, the distance between the VFE electronics and the racks were information is sent and the signal range that this kind of experiments usually have

    Extension of the L1Calo PreProcessor System for the ATLAS Phase-I Calorimeter Trigger Upgrade

    Get PDF
    For the Run-3 data-taking period at the Large Hadron Collider (LHC), the hardware- based Level-1 Calorimeter Trigger (L1Calo) of the ATLAS experiment was upgraded. Through new and sophisticated algorithms, the upgrade will increase the trigger performance in a challenging, high-pileup environment while maintaining low selection thresholds. The Tile Rear Extension (TREX) modules are the latest addition to the L1Calo PreProcessor system. Hosting state-of-the-art FPGAs and high-speed optical transceivers, the TREX modules provide digitised hadronic transverse energies from the ATLAS Tile Calorimeter to the new feature extractor (FEX) processors every 25 ns. In addition, the modules are designed to maintain compatibility with the original trigger processors. The system of 32 TREX modules has been developed, produced and successfully installed in ATLAS. The thesis describes the functional implementation of the modules and the detailed integration and commissioning into the ATLAS detector

    The design, construction and performance of the MICE scintillating fibre trackers

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierCharged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.This work was supported by the Science and Technology Facilities Council under grant numbers PP/E003214/1, PP/E000479/1, PP/E000509/1, PP/E000444/1, and through SLAs with STFC-supported laboratories. This work was also supportedby the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy, and by the U.S. National Science Foundation under grants PHY-0301737,PHY-0521313, PHY-0758173 and PHY-0630052. The authors also acknowledge the support of the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan

    The development of a node for a hardware reconfigurable parallel processor

    Get PDF
    This dissertation concerns the design and implementation of a node for a hardware reconfigurable parallel processor. The hardware that was developed allows for the further development of a parallel processor with configurable hardware acceleration. Each node in the system has a standard microprocessor and reconfigurable logic device and has high speed communications channels for inter-node communication. The design of the node provided high-speed serial communications channels allowing the implementation of various network topographies. The node also provided a PCI master interface to provide an external interface and communicate with local nodes on the bus. A high speed RlSC processor provided communication and system control functions and the reconfigurable logic device provided communication interfaces and data processing functions. The node was designed and implemented as a PCI card that interfaced a standard PCI bus. VHDL designs for logic devices that provided system support were developed, VHDL designs for the reconfigurable logic FPGA and software including drivers and system software were written for the node. The 64-bit version Linux operating system was then ported to the processor providing a UNIX environment for the system. The node functioned as specified and parallel and hardware accelerated processing was demonstrated. The hardware acceleration was shown to provide substantial performance benefits for the system
    corecore