54 research outputs found

    Impedanssipneumografian validointi sydän- ja keuhkoleikkauspotilaiden hengitysfunktion arviointia varten

    Get PDF
    Impedance pneumography (IP) is an indirect method of assessing respiration by measuring bioimpedance of the thorax. Conventionally respiration is evaluated by measuring the volume of air inhaled and exhaled during forced spirometry manoeuvres: these patterns require skills and cooperation from the patient, and strong guidance from the physician. IP provides a comfortable alternative for the patient, since the results do not depend on the performance of the patient. Purpose of the work was to assess the agreement of IP measurement and pneumotachography (PNT), which was used as a reference method. Open-chest surgery intrudes chest anatomy and physiology and decreases the functions for several days after the surgery. Pain and medication also complicate respiration, and postoperative complications, such as air leak or pneumothorax are common. Thus, an effective method for measuring respiration with minimal effort from the patient is needed to evaluate the physiotherapy needs and recovery. IP is a promising method for this purpose. The study population was 136 patients with elective cardiac operations, pulmonary resections and minor pleuropulmonary surgeries. The study was conducted during the normal episode of care in the hospital one day before the operation and for 1–3 days after the operation. Simultaneous IP and PNT measurements were conducted for one minute. The linearity of IP and PNT was evaluated by calculating the sample-by-sample difference and average deviation from the linearity in different phases of the respiratory cycle. The results showed that there was no difference in linearity in the three surgery groups before and immediately after the operation. Also, difference between the groups in the same measurement day was not detected. The study indicates that thoracic surgery does not change the linearity properties of IP, thus it can be used to evaluate the recovery of the surgery patients by assessing the lung functions. It should be considered in further studies, whether some changes in the linearity were due to fluid accumulation in cardiac patients, or for some other reasons

    Continuous monitoring of vital parameters for clinically valid assessment of human health status

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas) Universidade de Lisboa, Faculdade de Ciências, 2019The lack of devices suitable for acquiring accurate and reliable measures of patients' physiolog-ical signals in a remote and continuous manner together with the advances in data acquisition technol-ogies during the last decades, have led to the emergence of wearable devices for healthcare. Wearable devices enable remote, continuous and long-term health monitoring in unattended setting. In this con-text, the Swiss Federal Laboratories for Material Science and Technology (Empa) developed a wearable system for long-term electrocardiogram measurements, referred to as textile belt. It consists of a chest strap with two embroidered textile electrodes. The validity of Empa’s system for electrocardiogram monitoring has been proven in a clinical setting. This work aimed to assess the validity of the textile belt for electrocardiogram monitoring in a home setting and to supplement the existing system with sensors for respiratory monitoring. Another objective was to evaluate the suitability of the same weara-ble, as a multi-sensor system, for activity monitoring. A study involving 12 patients (10 males and 2 females, interquartile range for age of 48–59 years and for body mass indexes of 28.0–35.5 kg.m-2) with suspected sleep apnoea was carried out. Overnight electrocardiogram was measured in a total of 28 nights. The quality of recorded signals was assessed using signal-to-noise ratio, artefacts detection and Poincaré plots. Study data were compared to data from the same subjects, acquired in the clinical setting. For respiratory monitoring, optical fibre-based sensors of different geometries were integrated into the textile belt. Signal processing algorithms for breathing rate and tidal volume estimation based on respiratory signals acquired by the sensors were developed. Pilot studies were conducted to compare the different approaches for respiratory monitoring. The quality of respiratory signals was determined based on signal segments “sinusoidality”, evaluated through the calculation of the cross-correlation between signal segments and segment-specific reference waves. A method for accelerometry-based lying position recognition was proposed, and the proof of concept of activity intensity classification through the combination of subjects’ inertial acceleration, heart rate and breathing rate data, was presented. Finally, a study with three participants (1 male and 2 females, aged 21 ± 2 years, body mass index of 20.3 ± 1.5 kg.m-2) was conducted to assess the validity of the textile belt for respiratory and activity monitoring. Electrocardiogram signals acquired by the textile belt in the home setting were found to have better quality than the data acquired by the same device in the clinical setting. Although a higher artefact percentage was found for the textile belt, signal-to-noise ratio of electrocardiogram signals recorded by the textile belt in the home setting was similar to that of signals acquired by the gel electrodes in the clinical setting. A good agreement was found between the RR-intervals derived from signals recorded in home and clinical settings. Besides, for artefact percentages greater than 3%, visual assessment of Poincaré plots proved to be effective for the determination of the primary source of artefacts (noise or ectopic beats). Acceleration data allowed posture recognition (i.e. lying or standing/sitting, lying position) with an accuracy of 91% and positive predictive value of 80%. Lastly, preliminary results of physical activity intensity classification yielded high accuracy, showing the potential of the proposed method. The textile belt proved to be appropriate for long-term, remote and continuous monitoring of subjects’ physical and physiological parameters. It can monitor not only electrocardiogram, but also breathing rate, body posture and physical activity intensity, having the potential to be used as tool for disease prediction and diagnose support.Contexto: A falta de dispositivos adequados para a monitorização de sinais fisiológicos de um modo remoto e contínuo, juntamente com avanços tecnológicos na área de aquisição de dados nas últimas décadas, levaram ao surgimento de wearable devices, i.e. dispositivos vestíveis, no sector da saúde. Wearable devices possibilitam a monitorização do estado de saúde, de uma forma remota, contínua e de longa duração. Quando feito em ambiente domiciliar, este tipo de monitorização (i.e. contínua, remota e de longa duração) tem várias vantagens: diminui a pressão posta sobre o sistema de saúde, reduz despesas associadas ao internamento e acelera a resposta a emergências, permitindo deteção precoce e prevenção de condições crónicas. Neste contexto, a Empa, Laboratórios Federais Suíços de Ciência e Tecnologia de Materiais, desenvolveu um sistema vestível para a monitorização de eletrocardiograma de longa duração. Este sistema consiste num cinto peitoral com dois elétrodos têxteis integrados. Os elétrodos têxteis são feitos de fio de polietileno tereftalato revestido com prata e uma ultrafina camada de titânio no topo. De modo a garantir a aquisição de sinais de alta qualidade, o cinto tem nele integrado um reservatório de água que liberta vapor de água para humidificar os elétrodos. Este reservatório per-mite a monitorização contínua de eletrocardiograma por 5 a 10 dias, sem necessitar de recarga. A vali-dade do cinto para a monitorização de eletrocardiograma em ambiente clínico já foi provada. Objetivo: Este trabalho teve por objetivo avaliar a validade do cinto para a monitorização de eletrocar-diograma em ambiente domiciliar e complementar o sistema existente com sensores para monitorização respiratória. Um outro objetivo foi analisar a adequação do cinto, como um sistema multisensor, para monitorização da atividade física. Métodos: Um estudo com 12 pacientes com suspeita de apneia do sono (10 homens e 2 mulheres, am-plitude interquartil de 48–59 anos para a idade e de 28.0–35.5 kg.m-2 para o índice de massa corporal) foi conduzido para avaliar a qualidade do sinal de eletrocardiograma medido em ambiente domiciliar. O sinal de eletrocardiograma dos pacientes foi monitorizado continuamente, num total de 28 noites. A qualidade dos sinais adquiridos foi analisada através do cálculo da razão sinal-ruído; da deteção de ar-tefactos, i.e., intervalos RR com um valor inviável de um ponto de vista fisiológico; e de gráficos de Poincaré, um método de análise não linear da distribuição dos intervalos RR registados. Os dados ad-quiridos neste estudo foram comparados com dados dos mesmos pacientes, adquiridos em ambiente hospitalar. Para a monitorização respiratória, sensores feitos de fibra óptica foram integrados no cinto. Al-gorítmicos para a estimar a frequência respiratória e o volume corrente dos sujeitos tendo por base o sinal medido pelas fibras ópticas foram desenvolvidos neste trabalho. As diferentes abordagens foram comparadas através de estudos piloto. Diferentes métodos para avaliação da qualidade do sinal adquirido foram sugeridos. Um método de reconhecimento da postura corporal através do cálculo de ângulos de orientação com base na aceleração medida foi proposto. A prova de conceito da determinação da intensidade da atividade física pela combinação de informações relativas á aceleração inercial e frequências cardíaca e respiratória dos sujeitos, é também apresentada neste trabalho. Um estudo foi conduzido para avaliar a validade do cinto para monitorização da respiração e da atividade física. O estudo contou com 10 parti-cipantes, dos quais 3 vestiram o cinto para monitorização da respiração (1 homem e 2 mulheres, idade 21 ± 2 anos, índice de massa corporal 20.3 ± 1.5 kg.m-2). Resultados: O estudo feito com pacientes com suspeita de apneia do sono revelou que os sinais eletro-cardiográficos adquiridos pelo cinto em ambiente domiciliar foram de melhor qualidade que os sinais adquiridos pelo mesmo dispositivo em ambiente hospitalar. Uma percentagem de artefacto de 2.87% ±4.14% foi observada para os dados adquiridos pelos elétrodos comummente usados em ambiente hospi-talar, 7.49% ± 10.76% para os dados adquiridos pelo cinto em ambiente domiciliar e 9.66% ± 14.65% para os dados adquiridos pelo cinto em ambiente hospitalar. Embora tenham tido uma maior percenta-gem de artefacto, a razão sinal-ruído dos sinais eletrocardiográficos adquiridos pelo cinto em ambiente domiciliar foi semelhante á dos sinais adquiridos pelos elétrodos de gel em ambiente hospitalar. Resul-tados sugerem uma boa concordância entre os intervalos RR calculados com base nos eletrocardiogra-mas registados em ambientes hospitalar e domiciliar. Além disso, para sinais com percentagem de arte-facto superior a 3%, a avaliação visual dos gráficos de Poincaré provou ser um bom método para a determinação da fonte primária de artefactos (batimentos irregulares ou ruído). A monitorização da aceleração dos sujeitos permitiu o reconhecimento da postura corporal (isto é, deitado ou sentado/em pé) com uma exatidão de 91% e valor preditivo positivo de 80%. Por fim, a classificação da intensidade da atividade física baseado na aceleração inercial e frequências cardíaca e respiratória revelou elevada exatidão, mostrando o potencial desta técnica. Conclusão: O cinto desenvolvido pela Empa provou ser apropriado para monitorização de longa-dura-ção de variáveis físicas e fisiológicos, de uma forma remota e contínua. O cinto permite não só monito-rizar eletrocardiograma, mas também frequência respiratória, postura corporal e intensidade da atividade física. Outros estudos devem ser conduzidos para corroborar os resultados e conclusões deste trabalho. Outros sensores poderão ser integrados no cinto de modo a possibilitar a monitorização de outras vari-áveis fisiológicas de relevância clínica. Este sistema tem o potencial de ser usado como uma ferramenta para predição de doenças e apoio ao diagnóstico

    Development and clinical application of impedance pneumography technique

    Get PDF
    Assessment of the lung function is essential in the diagnosis and management of respiratory disease such as asthma. However, conventional spirometry requires difficult manoeuvres from the subject and is thus unsuitable for young children and infants. This renders the diagnosis of childhood asthma often qualitative, time-consuming and clinically challenging. However, information relating to the lung function can be derived from restful tidal breathing (TB) as well. Traditionally TB has been recorded in short intervals in laboratory conditions with obtrusive instrumentation using a face mask or a mouth piece. The principal aim of this thesis was to develop a noninvasive and convenient, yet highly accurate method for recording TB over extended time periods for clinical purposes, especially in young children. The measurement methodology developed within this thesis is based on impedance pneumography (IP), where breathing is recorded through the respiratory variations of the electrical impedance of the thorax. This is established by placing four skin electrodes on the upper body and connecting them to a recording device. The main focus was in ensuring the accuracy of the IP-derived tidal flow recording as compared to direct measurement from the mouth. This was established by attenuating the distortive cardiac oscillations (CGO) of the impedance signal and by optimising the locations of the skin electrodes. The complete method was then validated in healthy adults during respiratory loading (n=17) and in preschool children with wheezing disorder (n=20). The CGO attenuation was realised through an ensemble averaging based signal processing algorithm. The algorithm takes into account the respiratory modulation of the CGO waveform thus enabling efficient CGO attenuation while preserving the respiratory component of the signal unchanged. The newly proposed electrode configuration provides consistently more linear impedance to lung volume ratio than those previously established in the literature. The complete method integrating these developments provided highly accurate TB flow signal during normal and altered respiratory mechanics (loading) in adults and during induced bronchoconstriction in young children. It may be concluded that in this thesis significant improvements were realised with the IP technique. These improvements were experimentally validated in two studies and the integrated system was found to consistently provide an accurate respiratory flow signal. The method may have clinical implications for the diagnosis of respiratory diseases especially in non-cooperative subjects, such as young children

    Wearable bioimpedance measurement for respiratory monitoring during inspiratory loading

    Get PDF
    Bioimpedance is an unobtrusive noninvasive technique to measure respiration and has a linear relation with volume during normal breathing. The objective of this paper was to assess this linear relation during inspiratory loading protocol and determine the best electrode configuration for bioimpedance measurement. The inspiratory load is a way to estimate inspiratory muscle function and has been widely used in studies of respiratory mechanics. Therefore, this protocol permitted us to evaluate bioimpedance performance under breathing pattern changes. We measured four electrode configurations of bioimpedance and airflow simultaneously in ten healthy subjects using a wearable device and a standard wired laboratory acquisition system, respectively. The subjects were asked to perform an incremental inspiratory threshold loading protocol during the measurements. The load values were selected to increase progressively until the 60% of the subject's maximal inspiratory pressure. The linear relation of the signals was assessed by Pearson correlation (r) and the waveform agreement by the mean absolute percentage error (MAPE), both computed cycle by cycle. The results showed a median greater than 0.965 in r coefficients and lower than 11 % in the MAPE values for the entire population in all loads and configurations. Thus, a strong linear relation was found during all loaded breathing and configurations. However, one out of the four electrode configurations showed robust results in terms of agreement with volume during the highest load. In conclusion, bioimpedance measurement using a wearable device is a noninvasive and a comfortable alternative to classical methods for monitoring respiratory diseases in normal and restrictive breathing.Postprint (published version

    Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review.

    Get PDF
    Breathing rate (BR) is a key physiological parameter used in a range of clinical settings. Despite its diagnostic and prognostic value, it is still widely measured by counting breaths manually. A plethora of algorithms have been proposed to estimate BR from the electrocardiogram (ECG) and pulse oximetry (photoplethysmogram, PPG) signals. These BR algorithms provide opportunity for automated, electronic, and unobtrusive measurement of BR in both healthcare and fitness monitoring. This paper presents a review of the literature on BR estimation from the ECG and PPG. First, the structure of BR algorithms and the mathematical techniques used at each stage are described. Second, the experimental methodologies that have been used to assess the performance of BR algorithms are reviewed, and a methodological framework for the assessment of BR algorithms is presented. Third, we outline the most pressing directions for future research, including the steps required to use BR algorithms in wearable sensors, remote video monitoring, and clinical practice

    Liikkuva potilas: moniparametrisen hengitystaajuusmittauksen käyttökelpoisuus

    Get PDF
    Respiratory rate is one of the vital signs used to measure the body’s general physical health. Abnormal respiratory rate or a change in breathing frequency may indicate deterioration in the condition of a patient. Thus, respiratory rate measurement would benefit the mobile patients on general hospital wards where no continuous monitoring exists. This environment requests wireless and reliable respiratory monitoring that would be robust against motion artefacts that impede the reliability of common respiratory rate measurements currently available. Electrocardiography (ECG) and photoplethysmography (PPG) are common measurements in intensive care but also in sub-acute care setting. Respiration modulates the ECG and PPG waveforms in several ways that can be exploited to derive respiratory rate from these physiological signals. In ECG, the effect of breathing is seen as both amplitude and frequency modulation, whereas in PPG also baseline modulation is present. This thesis investigated the feasibility of ECG and pulse oximetry derived respiratory rate measurements during different activities and motion states. The performances of these derived methods were evaluated together with impedance pneumography and respiratory inductive plethysmography against capnography reference using statistical analysis. A major part of this thesis consisted of the data collection, signal processing and algorithm development required to create these derived methods. According to the results acquired, the use of ECG-derived respiration (EDR) methods based on QRS-amplitude as part of a multi-parameter respiratory rate algorithm would be feasible. However, all evaluated pulse oximetry derived respiration (PDR) methods were found to be unfit for use due to high susceptibility to motion artefacts. The development of a multi-parameter respiratory rate algorithm continues.Hengitystaajuus luetaan yhdeksi kehon yleisestä terveydestä kertovaksi vitaaliparametriksi. Epänormaali hengitystaajuus tai hengitystaajuuden muutos voi olla merkki potilaan kunnon huononemisesta ja siksi hengitystaajuuden seurannasta olisi hyötyä myös sairaaloiden vuodeosastoilla, missä potilaat liikkuvat ilman jatkuvaa valvontaa. Tällaisessa ympäristössä hengityksen seurannan tulisi toimia langattomasti ja luotettavasti. Monet yleisesti käytetyt hengitystaajuusmittaukset kärsivät kuitenkin liikkeen aiheuttamista häiriöistä, jotka heikentävät menetelmien luotettavuutta. Elektrokardiografia (EKG) ja fotopletysmografia (PPG) ovat yleisiä mittauksia myös tehohoidon ulkopuolella. Hengitys vaikuttaa näiden fysiologisten signaalien muotoon usealla tavalla, joita voidaan hyödyntää hengitystiedon johtamiseen näistä parametreistä. Sydänsähkökäyrän QRS-kompeksien amplitudi ja sykevälivaihtelu ovat yhteydessä hengitykseen samoin kuin fotopletysmografisen pulssiaallon perusviiva, amplitudi sekä pulssivälivaihtelu. Tässä diplomityössä tutkittiin EKG:stä ja PPG:stä johdettujen hengitystaajuusmittausten käyttökelpoisuutta erilaisissa liiketilanteissa. Näiden johdettujen menetelmien suorituskykyä verrattiin tilastollisen analyysin keinoin impedanssipneumografian ja hengitysinduktiivisen pletysmografian kanssa kapnografialla mitattuja vertailuarvoja vastaan. Työ koostui suurelta osin myös näiden menetelmien luomiseen vaaditusta aineiston keräämisestä, signaalinkäsittelystä sekä algoritmikehityksestä. Saatujen tulosten perusteella EKG:stä johdetut amplitudipohjaiset menetelmät olisivat hyödyllisiä moniparametrisessa hengitystaajuusmittauksessa käytettynä. Sen sijaan kaikki kehitetyt PPG:stä johdetut hengitystaajuusmenetelmät todettiin käyttökelvottomiksi liikkeen aiheuttamien häiriöiden vuoksi. Moniparametrisen hengitystaajuusmittauksen kehitystyö jatkuu

    Impedance Pneumography for the Nocturnal Assessment of Lower Airway Obstruction

    Get PDF
    Tidal breathing analysis is a lung function technique suggested for infants and children who are unable to cooperate with forced spirometry. This technique aims to quantify lower airway obstruction from average changes in the shape or the breath-to-breath variations of the tidal breathing flow-volume loop (TBFV) profiles. If tidal airflow is recorded with a mouth pneumotachograph (PNT), tidal breathing analysis finds the same limitations as other alternatives to spirometry. These are typically the need for sedation and the assessment of lung function only for sort times at the hospital. Recent improvements in impedance pneumography (IP) enable for the first time the continuous non-invasive monitoring of respiratory airflow overnight. This can improve the analysis of tidal breathing by capturing circadian and nocturnal worsening in lower airway obstruction. However, due to the lack of previous methods recording nocturnal airflow, little is known about how the interaction of sleep physiology and lower airway obstruction is reflected in the shape and variability of tidal breathing. This thesis reviews the literature regarding shape and variability analysis of tidal breathing during lower airway obstruction, sleep, or maturation. The thesis also extends this knowledge by presenting four original publications. The first publication describes a technical improvement in the IP method. The other three study the nocturnal TBFV’s shape in wheezing infants and children, and the nocturnal TBFV’s variability in healthy children. Both the literature and the results agree that for the TBFVs’ shape, increasing lower air- way obstruction advances the peak of expired flow and turns the middle part from convex to concave. However, these changes occur at a different degree of obstruction for differ- ent subjects depending on the compensation strategy that they have chosen. In infants, changes putatively occur at a higher degree of obstruction because most of the expiration is controlled by the respiratory musculature. During rapid eye movement (REM) sleep, changes putatively occur at a lower degree of obstruction because muscle atony limits the compensation strategies. For the variability of TBFVs, increasing lower airway obstruction decreases the variability in the early part of expiration in the long term (the whole night). However, the short-term variability is dominated by the stage-dependent variations in the respiratory drive. The thesis concludes that, at the present, tidal breathing analysis can estimate lower airway obstruction but cannot quantify its degree with accuracy. However, nocturnal IP recordings are easy to conduct and can serve as a first-line diagnosis or for the monitoring of disease progression. Nonetheless, future improvements in signal processing and the understanding of the tidal airflow signal can easily increase the accuracy and find new applications

    Wearable contactless respiration sensor based on multi-material fibers integrated into textile

    Get PDF
    In this paper, we report on a novel sensor for the contactless monitoring of the respiration rate, made from multi-material fibers arranged in the form of spiral antenna (2.45 GHz central frequency). High flexibility of the used composite metal-glass-polymer fibers permits their integration into a cotton t-shirt without compromising comfort or restricting movement of the user. At the same time, change of the antenna geometry, due to the chest expansion and the displacement of the air volume in the lungs, is found to cause a significant shift of the antenna operational frequency, thus allowing respiration detection. In contrast with many current solutions, respiration is detected without attachment of the electrodes of any kind to the user’s body, neither direct contact of the fiber with the skin is required. Respiration patterns for two male volunteers were recorded with the help of a sensor prototype integrated into standard cotton t-shirt in sitting, standing, and lying scenarios. The typical measured frequency shift for the deep and shallow breathing was found to be in the range 120–200 MHz and 10–15 MHz, respectively. The same spiral fiber antenna is also shown to be suitable for short-range wireless communication, thus allowing respiration data transmission, for example, via the Bluetooth protocol, to mobile handheld devices

    Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals

    Get PDF
    A method for deriving respiratory rate from smartphone-camera-acquired pulse photoplethysmographic (SCPPG) signal is presented. Our method exploits respiratory information by examining the pulse wave velocity and dispersion from the SCPPG waveform and we term these indices as the pulse width variability (PWV). A method to combine information from several derived respiration signals is also presented and it is used to combine PWV information with other methods such as pulse amplitude variability (PAV), pulse rate variability (PRV), and respiration-induced amplitude and frequency modulations (AM and FM) in SCPPG signals Evaluation is performed on a database containing SCPPG signals recorded from 30 subjects during controlled respiration experiments at rates from 0.2 to 0.6 Hz with an increment of 0.1 Hz, using three different devices: iPhone 4S, iPod 5, and HTC One M8. Results suggest that spontaneous respiratory rates (0.2–0.4 Hz) can be estimated from SCPPG signals by the PWV- and PRVbased methods with low relative error (median of order 0.5% and interquartile range of order 2.5%). The accuracy can be improved by combining PWV and PRV with other methods such as PAV, AM and/or FM methods. Combination of these methods yielded low relative error for normal respiratory rates, and Institute of Physics and Engineering in Medicine maintained good performance at higher rates (0.5–0.6 Hz) when using the iPhone 4S or iPod 5 devices
    corecore