Development and clinical application of impedance pneumography technique

Abstract

Assessment of the lung function is essential in the diagnosis and management of respiratory disease such as asthma. However, conventional spirometry requires difficult manoeuvres from the subject and is thus unsuitable for young children and infants. This renders the diagnosis of childhood asthma often qualitative, time-consuming and clinically challenging. However, information relating to the lung function can be derived from restful tidal breathing (TB) as well. Traditionally TB has been recorded in short intervals in laboratory conditions with obtrusive instrumentation using a face mask or a mouth piece. The principal aim of this thesis was to develop a noninvasive and convenient, yet highly accurate method for recording TB over extended time periods for clinical purposes, especially in young children. The measurement methodology developed within this thesis is based on impedance pneumography (IP), where breathing is recorded through the respiratory variations of the electrical impedance of the thorax. This is established by placing four skin electrodes on the upper body and connecting them to a recording device. The main focus was in ensuring the accuracy of the IP-derived tidal flow recording as compared to direct measurement from the mouth. This was established by attenuating the distortive cardiac oscillations (CGO) of the impedance signal and by optimising the locations of the skin electrodes. The complete method was then validated in healthy adults during respiratory loading (n=17) and in preschool children with wheezing disorder (n=20). The CGO attenuation was realised through an ensemble averaging based signal processing algorithm. The algorithm takes into account the respiratory modulation of the CGO waveform thus enabling efficient CGO attenuation while preserving the respiratory component of the signal unchanged. The newly proposed electrode configuration provides consistently more linear impedance to lung volume ratio than those previously established in the literature. The complete method integrating these developments provided highly accurate TB flow signal during normal and altered respiratory mechanics (loading) in adults and during induced bronchoconstriction in young children. It may be concluded that in this thesis significant improvements were realised with the IP technique. These improvements were experimentally validated in two studies and the integrated system was found to consistently provide an accurate respiratory flow signal. The method may have clinical implications for the diagnosis of respiratory diseases especially in non-cooperative subjects, such as young children

    Similar works