238 research outputs found

    Assessment of trends in the cardiovascular system from time interval measurements using physiological signals obtained at the limbs

    Get PDF
    Cardiovascular diseases are an increasing source of concern in modern societies due to their increasing prevalence and high impact on the lives of many people. Monitoring cardiovascular parameters in ambulatory scenarios is an emerging approach that can provide better medical access to patients while decreasing the costs associated to the treatment of these diseases. This work analyzes systems and methods to measure time intervals between the electrocardiogram (ECG), impedance plethysmogram (IPG), and the ballistocardiogram (BCG), which can be obtained at the limbs in ambulatory scenarios using simple and cost-effective systems, to assess cardiovascular intervals of interest, such as the pulse arrival time (PAT), pulse transit time (PTT), or the pre-ejection period (PEP). The first section of this thesis analyzes the impact of the signal acquisition system on the uncertainty in timing measurements in order to establish the design specifications for systems intended for that purpose. The minimal requirements found are not very demanding yet some common signal acquisition systems do not fulfill all of them while other capabilities typically found in signal acquisition systems could be downgraded without worsening the timing uncertainty. This section is also devoted to the design of systems intended for timing measurements in ambulatory scenarios according to the specifications previously established. The systems presented have evolved from the current state-of-the-art and are designed for adequate performance in timing measurements with a minimal number of active components. The second section is focused on the measurement of time intervals from the IPG measured from limb to limb, which is a signal that until now has only been used to monitor heart rate. A model to estimate the contributions to the time events in the measured waveform of the different body segments along the current path from geometrical properties of the large arteries is proposed, and the simulation under blood pressure changes suggests that the signal is sensitive to changes in proximal sites of the current path rather than in distal sites. Experimental results show that the PAT to the hand-to-hand IPG, which is obtained from a novel four-electrode handheld system, is correlated to changes in the PEP whereas the PAT to the foot-to-foot IPG shows good performance in assessing changes in the femoral PAT. Therefore, limb-to-limb IPG measurements significantly increase the number of time intervals of interest that can be measured at the limbs since the signals deliver information from proximal sites complementary to that of other measurements typically performed at distal sites. The next section is devoted to the measurement of time intervals that involve different waves of the BCG obtained in a standing platform and whose origin is still under discussion. From the relative timing of other physiological signals, it is hypothesized that the IJ interval of the BCG is sensitive to variations in the PTT. Experimental results show that the BCG I wave is a better surrogate of the cardiac ejection time than the widely-used J wave, which is also supported by the good correlation found between the IJ interval and the aortic PTT. Finally, the novel time interval from the BCG I wave to the foot of the IPG measured between feet, which can be obtained from the same bathroom scale than the BCG, shows good performance in assessing the aortic PAT. The results presented reinforce the role of the BCG as a tool for ambulatory monitoring since the main time intervals targeted in this thesis can be obtained from the timing of its waves. Even though the methods described were tested in a small group of subjects, the results presented in this work show the feasibility and potential of several time interval measurements between the proposed signals that can be performed in ambulatory scenarios, provided the systems intended for that purpose fulfill some minimal design requirements.Les malalties cardiovasculars són una tema de preocupació creixent en societats modernes, degut a l’augment de la seva prevalença i l'elevat impacte en les vides dels pacients que les sofreixen. La mesura i monitoratge de paràmetres cardiovasculars en entorns ambulatoris és una pràctica emergent que facilita l’accés als serveis mèdics i permet reduir dràsticament els costos associats al tractament d'aquestes malalties. En aquest treball s’analitzen sistemes i mètodes per la mesura d’intervals temporals entre l’electrocardiograma (ECG), el pletismograma d’impedància (IPG) i el balistocardiograma (BCG), que es poden obtenir de les extremitats i en entorns ambulatoris a partir de sistemes de baix cost, per tal d’avaluar intervals cardiovasculars d’interès com el pulse arrival time (PAT), pulse transit time (PTT) o el pre-ejection period (PEP). En la primera secció d'aquesta tesi s’analitza l’impacte del sistema d’adquisició del senyal en la incertesa de mesures temporals, per tal d’establir els requeriments mínims que s’han de complir en entorns ambulatoris. Tot i que els valors obtinguts de l’anàlisi no són especialment exigents, alguns no són assolits en diversos sistemes habitualment utilitzats mentre que altres solen estar sobredimensionats i es podrien degradar sense augmentar la incertesa en mesures temporals. Aquesta secció també inclou el disseny i proposta de sistemes per la mesura d’intervals en entorns ambulatoris d’acord amb les especificacions anteriorment establertes, a partir de l’estat de l’art i amb l’objectiu de garantir un correcte funcionament en entorns ambulatoris amb un nombre mínim d’elements actius per reduir el cost i el consum. La segona secció es centra en la mesura d’intervals temporals a partir de l’IPG mesurat entre extremitats, que fins al moment només s’ha fet servir per mesurar el ritme cardíac. Es proposa un model per estimar la contribució de cada segment arterial per on circula el corrent a la forma d’ona obtinguda a partir de la geometria i propietats físiques de les artèries, i les simulacions suggereixen que la senyal entre extremitats és més sensible a canvis en arteries proximals que en distals. Els resultats experimentals mostren que el PAT al hand-to-hand IPG, obtingut a partir d’un innovador sistema handheld de quatre elèctrodes, està fortament correlacionat amb els canvis de PEP, mentre que el PAT al foot-to-foot IPG està correlat amb els canvis en PAT femoral. Conseqüentment, l’ILG entre extremitats augmenta de manera significativa els intervals d’interès que es poden obtenir en extremitats degut a que proporciona informació complementària a les mesures que habitualment s’hi realitzen. La tercera secció està dedicada a la mesura d’intervals que inclouen les ones del BCG vertical obtingut en plataformes, de les que encara se’n discuteix l’origen. A partir de la posició temporal relativa respecte altres ones fisiològiques, s’hipostatitza que l’interval IJ del BCG es sensible a variacions del PTT. Els resultats experimentals mostren que la ona I del BCG és un millor indicador de l’ejecció cardíaca que el pic J, tot i que aquest és el més utilitzat habitualment, degut a la bona correlació entre l’interval IJ i el PTT aòrtic. Finalment, es presenta un mètode alternatiu per la mesura del PTT aòrtic a partir de l’interval entre el pic I del BCG i el peu del foot-to-foot IPG, que es pot obtenir de la mateixa plataforma que el BCG i incrementa la robustesa de la mesura. Els resultats presentats reforcen el paper del BCG com a en mesures en entorns ambulatoris, ja que els principals intervals objectiu d’aquesta tesi es poden obtenir a partir de les seves ones. Tot i que els mètodes descrits han estat provats en grups petits de subjectes saludables, els resultats mostren la viabilitat i el potencial de diversos intervals temporals entre les senyals proposades que poden ésser realitzats en entorns ambulatoris, sempre que els sistemes emprats compleixin els requisits mínims de disseny.Postprint (published version

    Implementación y caracterización de un sistema inalámbrico para la medida de parámetros fisiológicos de manera no invasiva

    Get PDF
    We want to design a wireless system for measuring physiological parameters non-invasively. The system parameters will be obtained from the measurement of electrical (electrocardiogram (ECG)), and mechanical signals (ballistocardiogram (BCG)) of the body, acquired using a domestic scale and also through a node with an accelerometer sensor. The data acquired with a low-power microcontroller will be sent to a radiofrequency (RF) receiver connected to a PC, in which the measured signals will be observed. The project will study the effect of different mechanical interfaces in the measured signals and the feasibility of the integration of the different sensors in a wireless sensor network

    Development of a Portable Seat Cushion for the Estimation of Heart Rate Using Ballistocardiography

    Get PDF
    Cardiovascular diseases are a leading contributor of health problems all over the world and are the second leading cause of death. They are also the cause of significant economic burden, costing billions of dollars in healthcare every year. With an aging population, the strain on the healthcare system, both in terms of costs and care provision, is expected to worsen. Frequent cardiac assessment can provide essential information towards diagnosis, monitoring, and treatment, which can mitigate symptoms and improve health outcomes for people with conditions such as heart failure. This has led to increasing interest in cardiac assessment at home. Additionally, for some populations like people with limited mobility and older adults, long term vitals monitoring at a clinical setting is not feasible, making at-home monitoring more viable and economical. Most devices available for cardiac monitoring at home are wearables. While wearable technology can be accurate, it requires compliance and maintenance, which is not an ideal solution for all populations. For example, people who are not comfortable using wearables or people with a cognitive impairment may not want or be able to use wearables, which could exclude these user types from at home monitoring. Keeping these factors under consideration, the past decade has seen an increased interest in the development of technologies for Ambient Assisted Living (i.e., smart technologies integrated into a user's environment). These technologies have the potential for ongoing health monitoring in an unobtrusive manner. This thesis presents research into the development of a smart seat cushion for heart rate monitoring. The cushion is able to calculate the heart rate of a person seated on it by acquiring their Ballistocardiogram (BCG). BCG is a cardiovascular signal corresponding to the displacement of the body in response to the heart pumping blood at every heartbeat. The prototype seat cushion has load cells embedded inside it that sense the micromovements of the body and translate it to an electrical signal. An analog signal conditioning circuit amplifies and filters this signal to enhance the components corresponding to BCG before it is converted to digital form. A pilot study was conducted with twenty participants to acquire BCG in real-world scenarios: 1) sitting still, 2) reading, 3) using a computer, 4) watching TV, and 5) having a conversation. Heart rate was calculated using a novel algorithm based on Continuous Wavelet Transform by detecting the largest peaks (referred to as the J-peaks) in the BCG. Excluding three outliers, the algorithm is able to achieve an overall accuracy of 94.6% compared to gold standard Electrocardiography (ECG). This accuracy is observed to be as good as or better than those of existing wearable heart rate monitors. The seat cushion developed in this thesis research can serve as a portable solution for cardiac monitoring and can integrate into an ambient health monitoring system, offering continued monitoring of heart rate while requiring no perceived effort to operate it. Future work includes exploring different sensor configurations, machine learning based approaches for improving J-peaks detection, and real-time monitoring of heart rate

    Toward Continuous, Noninvasive Assessment of Ventricular Function and Hemodynamics: Wearable Ballistocardiography

    Full text link

    Robust Algorithms for Unattended Monitoring of Cardiovascular Health

    Get PDF
    Cardiovascular disease is the leading cause of death in the United States. Tracking daily changes in one’s cardiovascular health can be critical in diagnosing and managing cardiovascular disease, such as heart failure and hypertension. A toilet seat is the ideal device for monitoring parameters relating to a subject’s cardiac health in his or her home, because it is used consistently and requires no change in daily habit. The present work demonstrates the ability to accurately capture clinically relevant ECG metrics, pulse transit time based blood pressures, and other parameters across subjects and physiological states using a toilet seat-based cardiovascular monitoring system, enabled through advanced signal processing algorithms and techniques. The algorithms described herein have been designed for use with noisy physiologic signals measured at non-standard locations. A key component of these algorithms is the classification of signal quality, which allows automatic rejection of noisy segments before feature delineation and interval extractions. The present delineation algorithms have been designed to work on poor quality signals while maintaining the highest possible temporal resolution. When validated on standard databases, the custom QRS delineation algorithm has best-in-class sensitivity and precision, while the photoplethysmogram delineation algorithm has best-in-class temporal resolution. Human subject testing on normative and heart failure subjects is used to evaluate the efficacy of the proposed monitoring system and algorithms. Results show that the accuracy of the measured heart rate and blood pressure are well within the limits of AAMI standards. For the first time, a single device is capable of monitoring long-term trends in these parameters while facilitating daily measurements that are taken at rest, prior to the consumption of food and stimulants, and at consistent times each day. This system has the potential to revolutionize in-home cardiovascular monitoring

    Applications of aerospace technology in biology and medicine

    Get PDF
    Results of the medically related activities of the NASA Application Team Program at the Research Triangle Institute are reported. A survey of more than 300 major medical device manufacturers has been initiated for the purpose of determining their interest and opinions in regard to participating in the NASA Technology Utilization Program. Design and construction has been commissioned of a permanent exhibit of NASA Biomedical Application Team accomplishments for the aerospace building of the North Carolina Museum of Life and Science at Durham, North Carolina. The team has also initiated an expansion of its activities into the Northeastern United States

    Wearable estimation of central aortic blood pressure.

    Get PDF
    Arterial hypertension affects a third of the world's population and is a significant risk factor for cardiovascular disease. Blood pressure (BP) is one of the most relevant parameters used for monitoring of possible hypertension states in patients at risk of cardiovascular disease. Hence, there exists a need for new monitoring solutions, which allow to increase the frequency between BP assessments, but also allow to reduce the level of occlusion in the attempts. Moens-Korteweg equation is among the main principles to estimate BP by dispensing of any inflatable cuff. This principle might lead to an indirect estimation of BP by measuring the time it takes the pressure pulse to propagate between two pre-established vascular points, accordingly the pulse transit time (PTT) method. This thesis proposes a wearable PTT-based method to estimate central aortic BP (CABP) and, the main milestones of this work included: proof of concept of the proposed method (pilot work), the development of a wearable device (including two stages of validation), the proposition of a miniaturized version (integrated circuit) of the analog front-end of the wearable hardware, and, the development of a novel PTT-based model (PTTBM, i.e., the mathematical relationship between measured variables and estimated BP) suitable for the proposed wearable methodology to estimate BP. The main contributions found at each milestone are presented. One of the contributions of this thesis is the use of the PTT-principle for estimating CABP instead of the peripheral BP (PBP) (as typically used in the literature). The pilot work showed the feasibility of CABP estimation from the PTT principle by using electrocardiogram (ECG) and ballistocardiogram (BCG) recordings from off-the-shelf equipment. Results showed that CABP was more correlated with the proposed methodology in comparison to all PBP variables assessed; confirming our hypothesis that the CABP is the most suitable parameter to collate through the time elapsed from ECG R-wave to the BCG J-wave. That is, considered featured time (RJ-interval) includes the time of a pulse pressure propagating at an aortic district. Bland-Altman plots showed an almost zero mean error (\u\ < 0.02mmHg) and bounded standard deviation o < 5mmHg for all systolic and mean central BP readings. Pilot work provided a landmark in order to develop a compact device that allows the integration of wireless blood pressure monitoring into a wearable system. Another contribution of this thesis is the proposition of a wearable device for PTT-computing by also including design considerations for the signal conditioning chains for ECG and BCG signals. The proposed design procedure takes care of minimizing the impact of spurious delays between physiological signals, which eventually degrade the PTT computation. Further, such a procedure could be suitable for any PTT-acquisition. Filtering with low and controlled delay is required for this biomedical application, and proposed conditioning chains provide less than 2ms group-delay, showing the effectiveness of the proposed approach. In order to provide the methodology with higher autonomy and integration, a highly miniaturized implementation of the filtering approach was also proposed. It includes the design of proposed architectures in CMOS technology to implement the particular low-delay filtering at reduced bandwidth featuring ultra-low-power characteristics. Results show that less than 2ms delay for the ECG QRS-complex can be achieved with a total current consumption of IDD = 2:1nA at VDD = 1:2V of power supply. Such development meant another significant contribution of this work in the conception of highly autonomous wearable devices for PTT acquisition. The first stage of validations on the wearable CABP estimation showed that, when considering data from one volunteer, results achieved with off-the-shelf equipment could be replicated by using a proposed wearable device, and the method could be further validated by using the wearable version. Additionally, CABP estimation from the proposed wearable device could be feasible by using three feature times (FTs) as CABP surrogates; that is, RI, RJ, and IJ intervals (from ECG and BCG wearable recordings). The first validation of the method also showed that CABP could be accurately predicted by the proposed methodology when in the order of daily calibrations are performed. The second stage of validations involved a study with a group of volunteers, and new alternatives were explored (twentyseven: nine PTTBMs along the three FTs) for the CABP estimation. We found that CABP could be accurately estimated (inside AAMI requirements) through the presented methodology by using four of the explored alternatives, whereas the RI interval, an FT lacking any PTT assessment, emerged as the best surrogate for the CABP estimation. Hence, a principle different from the traditional PTT-based method arises as a more advantageous method for the CABP estimation in the light of evidence reported in this validation, and, to our knowledge, this is the first time that CABP has been successfully estimated from a wearable device. The final significant contribution of this thesis meant the last chain-link in the process to achieve an utterly original method to estimate CABP. A novel PTTBM to estimate CABP is proposed, which uses a ow-driven two-element Windkesel network constructed from FTs extracted from the wearable recordings. When classic PTTBMs are applied, the fitting of parameters often leads to values without a physiological basis. Opposite to that in the proposed PTTBM, the parameters have a clear physiological meaning, and the parameter fitting led to values that are consistent with this meaning and more stable throughout calibrations. In conclusion, this thesis introduces a novel device that exploits an alternative and indirect method for CABP estimation. Variants of the principle used, accordingly, PTT method, have been previously explored to estimate PBP but not for central aortic BP. Additionally, the device was designed to be wearable; that is, it is attached to the clothes, causing low discomfort for the user during the measurement, thus, allowing continuous and ambulatory monitoring of aortic pressure. The developed wearable system, validated in a series of volunteers, showed promising results towards the continuous CABP monitoring.Se estima que casi un tercio de la población adulta mundial sufre de algún grado de hipertensión, siendo esto un factor de riesgo significativo para la enfermedad cardiovascular. La presión arterial (PA) es el parámetro utilizado para evaluar estos posibles estados de hipertensión; actualmente existe una necesidad de generación de nuevas tecnologías que permitan aumentar la frecuencia entre medidas de PA, pero al mismo tiempo de reducir el nivel de oclusión de éstas (técnicas aceptadas están mayoritariamente basadas en la oclusión y son de acceso limitado). El modelo Moens-Korteweg podría proveer los argumentos para la creación de nuevas técnicas para estimar la PA prescindiendo de cualquier brazalete inflable. Más específicamente, podría obtenerse una estimación indirecta de la PA a través de la medición del tiempo que tarda el pulso de presión en propagarse entre dos puntos vasculares predefinidos, método conocido como tiempo de tránsito del pulso (PTT). En la presente tesis se desarrolló un dispositivo vestible que explota este método alternativo e indirecto para la estimación de la PA pero a nivel central, es decir, busca estimar la PA en la aorta (CABP), la principal arteria de la red vascular. Para ello, los principales desarrollos de este trabajo incluyeron : prueba de concepto del método propuesto basado en PTT para estimar CABP, el desarrollo de un dispositivo vestible (incluyendo dos etapas de validaciones para la estimación de la PA), la propuesta de un circuito integrado para el hardware vestible y el desarrollo de un nuevo modelo para la estimación de la PA (PTTBM, es decir, la relación matemática que vincula las variables medidas con el hardware diseñado y la estimación de la PA). A continuación se presentan las principales contribuciones resultantes de cada frente de trabajo. Una de las contribuciones de esta tesis es el uso del principio PTT para estimar CABP en lugar de la BP periférica (PBP) (como se usa típicamente en la literatura). La prueba de concepto mostró la viabilidad de la estimación de CABP a partir del principio PTT mediante la adquisición de señales electrocardiograma (ECG) y balistocardiograma (BCG) utilizando equipos comerciales. Los resultados mostraron que CABP estaba más correlacionado con la metodología propuesta en comparación con todas las variables de PBP evaluadas; confirmando nuestra hipótesis de que la CABP sería la variable más adecuada para estimar a partir del tiempo transcurrido desde la onda R del ECG hasta la onda J del BCG. Es decir, el tiempo considerado (intervalo RJ) incluye un tiempo de propagación del pulso de presión a través de un segmento aórtico. Las gráficas de Bland-Altman mostraron un error medio casi nulo (\u\ < 0.02mmHg) y una precisión o < 5mmHg para las variables de presión sistólica y media centrales. La prueba de concepto proporcionó un hito para desarrollar un dispositivo vestible apuntando a la monitorización inalámbrica de la presión arterial en un sistema imperceptible para el usuario. Otra contribución de esta tesis es la propuesta de este dispositivo vestible para la adquisición de la PTT. El desarrollo incluye consideraciones de instrumentación necesarias para el correcto acondicionamiento de las señales ECG y BCG, de las cuales se obtiene la PTT. En particular, el procedimiento de diseño propuesto busca minimizar el impacto de los retrasos espurios entre las señales fisiológicas, que eventualmente degradan la computación de la PTT. Además, dicho procedimiento podría ser aprovechado por otros desarrolladores del método sin importar las definiciones de PTT que éstos usen. La limitación de banda con bajo retardo es necesario para esta aplicación biomédica, y el hardware de acondicionamiento propuesto proporciona menos de 2 ms de retraso en las se~nales (ECG y BCG) mientras consigue limitar sus bandas a decenas de Hz, lo que muestra la efectividad de la metodología propuesta. Adicionalmente, con el fin de proporcionar a la metodología de una mayor autonomía e integración, se propone una implementación altamente miniaturizada de la sección de filtrado con bajo retraso. Se incluye el diseño de nuevas topologías propuestas en tecnología CMOS para implementar el particular filtro de bajo retraso con reducido ancho de banda, y con características de ultra bajo consumo de potencia. El diseño integrado consigue obtener resultados similares al obtenido anteriormente (con componentes discretos) alcanzando un retraso de menos de 2 ms para el complejo QRS del ECG, pero con un consumo de IDD = 2:1 nA a un VDD = 1:2 V . Tal desarrollo significó otra contribución de este trabajo en el área de circuitos altamente autónomos para instrumentación biomédica. La primera etapa de validaciones en la estimación vestible de la CABP se basó en experimentaciones con un voluntario, mostrando que, la estimación vestible podría alcanzar los mismos resultados que los alcanzados utilizando equipos de investigación, permitiendo así avanzar en la validación del método propuesto utilizando el equipamiento vestible diseñado. Además de esto, se encontró que la estimación de CABP a partir del dispositivo vestible podría ser factible utilizando varios tiempos característicos (FT) extraídos de las señales vestibles ECG y BCG (intervalos RI, RJ e IJ) junto con un popular PTTBM. La primera validación del método también arrojó que la metodología propuesta podría estimar con precisión la CABP cuando el tiempo entre calibraciones es del orden de un día. La segunda etapa de validación implicó un estudio con un grupo de voluntarios, nuevas alternativas se exploraron esta vez (veintisiete: nueve PTTBM con tres FT) para la estimación de CABP. Descubrimos que CABP podría estimarse con precisión (dentro de los requisitos de AAMI) a través de la metodología presentada mediante el uso de cuatro de las alternativas exploradas, mientras que el intervalo RI, siendo un FT que a priori no tiene ninguna vinculación con un PTT, surge como el mejor estimador de la CABP. Se concluye entonces, que un principio diferente del método tradicional basado en PTT podría ser más ventajoso para la estimación de CABP a la luz de la evidencia encontrada en esta validación y, adicionalmente, a nuestro entender, esta es la primera vez que CABP se estima con éxito a partir de un dispositivo vestible. La contribución final de esta tesis significó el último eslabón de la cadena en el proceso de lograr un método completamente original para estimar CABP de punta a punta. Se propone un nuevo PTTBM para estimar CABP, éste es basado en una red Windkesel de dos elementos bajo una excitación de flujo. Estos elementos del PTTBM son construidos a partir de cantidades extraídas a través de procesamiento de las señales vestibles ECG y BCG. Cuando se aplican los PTTBM clásicos, el ajuste de sus parámetros (en calibración) a menudo conducen a valores sin base fisiológica, mostrando a su vez, una dispersión en sus valores a lo largo de distintas calibraciones que podrían ser inaceptables en la práctica. En contraposición, los parámetros del PTTBM propuesto convergen a cantidades con significado fisiologico claro y estable a lo largo de las calibraciones. En conclusión, esta tesis presenta un dispositivo novedoso que explota un método alternativo e indirecto para la estimación de CABP. El método propuesto es basado en la metodología de PTT, que si bien ha sido previamente explotado para estimar PBP, no se ha dirigido éste hacia el monitoreo vestible de la PA aórtica central. En este marco se desarrolla un dispositivo vestible, causando baja molestia en el usuario durante las mediciones, lo que permitiría un monitoreo continuo y ambulatorio real de la presión aórtica central. El sistema vestible desarrollado, validado en una serie de voluntarios, ha mostrado resultados prometedores hacia el monitoreo continuo de CABP

    Acoustic sensing as a novel approach for cardiovascular monitoring at the wrist

    Get PDF
    Cardiovascular diseases are the number one cause of deaths globally. An increased cardiovascular risk can be detected by a regular monitoring of the vital signs including the heart rate, the heart rate variability (HRV) and the blood pressure. For a user to undergo continuous vital sign monitoring, wearable systems prove to be very useful as the device can be integrated into the user's lifestyle without affecting the daily activities. However, the main challenge associated with the monitoring of these cardiovascular parameters is the requirement of different sensing mechanisms at different measurement sites. There is not a single wearable device that can provide sufficient physiological information to track the vital signs from a single site on the body. This thesis proposes a novel concept of using acoustic sensing over the radial artery to extract cardiac parameters for vital sign monitoring. A wearable system consisting of a microphone is designed to allow the detection of the heart sounds together with the pulse wave, an attribute not possible with existing wrist-based sensing methods. Methods: The acoustic signals recorded from the radial artery are a continuous reflection of the instantaneous cardiac activity. These signals are studied and characterised using different algorithms to extract cardiovascular parameters. The validity of the proposed principle is firstly demonstrated using a novel algorithm to extract the heart rate from these signals. The algorithm utilises the power spectral analysis of the acoustic pulse signal to detect the S1 sounds and additionally, the K-means method to remove motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic recordings is found by extracting the S1 events using the relative information between the short- and long-term energies of the signal. The S1 events are localised using three different characteristic points and the best representation is found by comparing the instantaneous heart rate profiles. The possibility of measuring the blood pressure using the wearable device is shown by recording the acoustic signal under the influence of external pressure applied on the arterial branch. The temporal and spectral characteristics of the acoustic signal are utilised to extract the feature signals and obtain a relationship with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively. Results: This thesis proposes three different algorithms to find the heart rate, the HRV and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results obtained by each algorithm are as follows: 1. The heart rate algorithm is validated on a dataset consisting of 12 subjects with a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based commercial device. A high statistical agreement between the heart rate obtained from the acoustic signal and the photoplethysmography (PPG) signal is observed. 2. The HRV algorithm is validated on the short-term acoustic signals of 5-minutes duration recorded from each of the 12 subjects. A comparison is established with the simultaneously recorded electrocardiography (ECG) and PPG signals respectively. The instantaneous heart rate for all the subjects combined together achieves an accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respectively. The results for the time-domain and frequency-domain HRV parameters also demonstrate high statistical agreement with the ECG and PPG signals respectively. 3. The algorithm proposed for the SBP/ DBP determination is validated on 104 acoustic signals recorded from 40 adult subjects. The experimental outputs when compared with the reference arm- and wrist-based monitors produce a mean error of less than 2 mmHg and a standard deviation of error around 6 mmHg. Based on these results, this thesis shows the potential of this new sensing modality to be used as an alternative, or to complement existing methods, for the continuous monitoring of heart rate and HRV, and spot measurement of the blood pressure at the wrist.Open Acces

    Improved testing strategies from standards for new growing battery applications in the industrial and e-mobility sectors

    Get PDF
    In the current energy challenges, related to both climate change and the sudden rise in energy prices, batteries plays a key role in providing and storing energy. Before batteries are sent to market, the batteries are repeatedly subjected to different types of tests since it is crucial to verify that the performance and safety of these technologies are ensured in the different applications. This master’s thesis is dedicated to improving battery testing methodologies to address the growing industrial and e-mobility sectors. By identifying and tackling gaps in existing international standards, this research aims to enhance the link between battery testing and real-life operation of batteries, with the final objective of developing an adaptable testing framework for AVL, a leading powertrain systems company. The study investigates the factors driving battery testing, the impact of diverse applications on battery characteristics, and the need for refined testing strategies. The methodology includes a comprehensive background study of battery behavior, a review of battery performance parameters, and an analysis of prevailing testing procedures. The research results in the development of an algorithm for adaptable synthetic duty cycles, along with new testing procedures for capacity and cycle lifetime tests. The optimization of testing procedures enables AVL to take a prominent role in electrification and battery testing, offering more accurate and effective testing solutions. Ultimately, this contributes to a more sustainable industry by facilitating the secure and efficient use of battery technologies in emerging applications, particularly within the transport secto

    2007 IMSAloquium, Student Investigation Showcase

    Get PDF
    In conjunction with IMSA\u27s 20th Anniversary and to better represent and capture the sophistication and quality of the students\u27 exemplary investigations, IMSAIoquium: Student Investigation Showcase was developed as the new name for what has previously been termed Presentation Day.https://digitalcommons.imsa.edu/archives_sir/1015/thumbnail.jp
    corecore