797 research outputs found

    Impact of radial and angular sampling on multiple shells acquisition in diffusion MRI

    Get PDF
    International audienceWe evaluate the impact of radial and angular sampling on multiple shells (MS) acquisition in diffusion MRI. The validation of our results is based on a new and efficient method to accurately reconstruct the Ensemble Average Propagator (EAP) in term of the Spherical Polar Fourier (SPF) basis from very few diffusion weighted magnetic resonance images (DW-MRI). This approach nicely exploits the duality between SPF and a closely related basis in which one can respectively represent the EAP and the diffusion signal using the same coefficients. We efficiently combine this relation to the recent acquisition and reconstruction technique called Compressed Sensing (CS). Based on results of multi-tensors models reconstruction, we show how to construct a robust acquisition scheme for both neural fibre orientation detection and attenuation signal/EAP reconstruction

    Micro-structure diffusion scalar measures from reduced MRI acquisitions

    Get PDF
    In diffusion MRI, the Ensemble Average diffusion Propagator (EAP) provides relevant microstructural information and meaningful descriptive maps of the white matter previously obscured by traditional techniques like the Diffusion Tensor. The direct estimation of the EAP, however, requires a dense sampling of the Cartesian q-space. Due to the huge amount of samples needed for an accurate reconstruction, more efficient alternative techniques have been proposed in the last decade. Even so, all of them imply acquiring a large number of diffusion gradients with different b-values. In order to use the EAP in practical studies, scalar measures must be directly derived, being the most common the return-to-origin probability (RTOP) and the return-to-plane and return-to-axis probabilities (RTPP, RTAP). In this work, we propose the so-called “Apparent Measures Using Reduced Acquisitions” (AMURA) to drastically reduce the number of samples needed for the estimation of diffusion properties. AMURA avoids the calculation of the whole EAP by assuming the diffusion anisotropy is roughly independent from the radial direction. With such an assumption, and as opposed to common multi-shell procedures based on iterative optimization, we achieve closed-form expressions for the measures using information from one single shell. This way, the new methodology remains compatible with standard acquisition protocols commonly used for HARDI (based on just one b-value). We report extensive results showing the potential of AMURA to reveal microstructural properties of the tissues compared to state of the art EAP estimators, and is well above that of Diffusion Tensor techniques. At the same time, the closed forms provided for RTOP, RTPP, and RTAP-like magnitudes make AMURA both computationally efficient and robust

    Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats

    Get PDF
    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm^2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals

    A Unified Single-stage Learning Model for Estimating Fiber Orientation Distribution Functions on Heterogeneous Multi-shell Diffusion-weighted MRI

    Full text link
    Diffusion-weighted (DW) MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in micro-structure imaging and multi-tissue decomposition have sparked renewed attention to the radial b-value dependence of the signal. Applications in tissue classification and micro-architecture estimation, therefore, require a signal representation that extends over the radial as well as angular domain. Multiple approaches have been proposed that can model the non-linear relationship between the DW-MRI signal and biological microstructure. In the past few years, many deep learning-based methods have been developed towards faster inference speed and higher inter-scan consistency compared with traditional model-based methods (e.g., multi-shell multi-tissue constrained spherical deconvolution). However, a multi-stage learning strategy is typically required since the learning process relied on various middle representations, such as simple harmonic oscillator reconstruction (SHORE) representation. In this work, we present a unified dynamic network with a single-stage spherical convolutional neural network, which allows efficient fiber orientation distribution function (fODF) estimation through heterogeneous multi-shell diffusion MRI sequences. We study the Human Connectome Project (HCP) young adults with test-retest scans. From the experimental results, the proposed single-stage method outperforms prior multi-stage approaches in repeated fODF estimation with shell dropoff and single-shell DW-MRI sequences

    Fast diffusion MRI based on sparse acquisition and reconstruction for long-term population imaging

    Get PDF
    Diffusion weighted magnetic resonance imaging (dMRI) is a unique MRI modality to probe the diffusive molecular transport in biological tissue. Due to its noninvasiveness and its ability to investigate the living human brain at submillimeter scale, dMRI is frequently performed in clinical and biomedical research to study the brain’s complex microstructural architecture. Over the last decades large prospective cohort studies have been set up with the aim to gain new insights into the development and progression of brain diseases across the life span and to discover biomarkers for disease prediction and potentially prevention. To allow for diverse brain imaging using different MRI modalities, stringent scan time limits are typically imposed in population imaging. Nevertheless, population studies aim to apply advanced and thereby time consuming dMRI protocols that deliver high quality data with great potential for future analysis. To allow for time-efficient but also versatile diffusion imaging, this thesis contributes to the investigation of accelerating diffusion spectrum imaging (DSI), an advanced dMRI technique that acquires imaging data with high intra-voxel resolution of tissue microstructure. Combining state-of-the-art parallel imaging and the theory of compressed sensing (CS) enables the acceleration of spatial encoding and diffusion encoding in dMRI. In this way, the otherwise long acquisition times in DSI can be reduced significantly. In this thesis, first, suitable q-space sampling strategies and basis functions are explored that fulfill the requirements of CS theory for accurate sparse DSI reconstruction. Novel 3D q-space sample distributions are investigated for CS-DSI. Moreover, conventional CS-DSI based on the discrete Fourier transform is compared for the first time to CS-DSI based on the continuous SHORE (simple harmonic oscillator based reconstruction and estimation) basis functions. Based on these findings, a CS-DSI protocol is proposed for application in a prospective cohort study, the Rhineland Study. A pilot study was designed and conducted to evaluate the CS-DSI protocol in comparison with state-of-the-art 3-shell dMRI and dedicated protocols for diffusion tensor imaging (DTI) and for the combined hindered and restricted model of diffusion (CHARMED). Population imaging requires processing techniques preferably with low computational cost to process and analyze the acquired big data within a reasonable time frame. Therefore, a pipeline for automated processing of CS-DSI acquisitions was implemented including both in-house developed and existing state-of-the-art processing tools. The last contribution of this thesis is a novel method for automatic detection and imputation of signal dropout due to fast bulk motion during the diffusion encoding in dMRI. Subject motion is a common source of artifacts, especially when conducting clinical or population studies with children, the elderly or patients. Related artifacts degrade image quality and adversely affect data analysis. It is, thus, highly desired to detect and then exclude or potentially impute defective measurements prior to dMRI analysis. Our proposed method applies dMRI signal modeling in the SHORE basis and determines outliers based on the weighted model residuals. Signal imputation reconstructs corrupted and therefore discarded measurements from the sparse set of inliers. This approach allows for fast and robust correction of imaging artifacts in dMRI which is essential to estimate accurate and precise model parameters that reflect the diffusive transport of water molecules and the underlying microstructural environment in brain tissue.Die diffusionsgewichtete Magnetresonanztomographie (dMRT) ist ein einzigartiges MRTBildgebungsverfahren, um die Diffusionsbewegung von WassermolekĂŒlen in biologischem Gewebe zu messen. Aufgrund der Möglichkeit Schichtbilder nicht invasiv aufzunehmen und das lebende menschliche Gehirn im Submillimeter-Bereich zu untersuchen, ist die dMRT ein hĂ€ufig verwendetes Bildgebungsverfahren in klinischen und biomedizinischen Studien zur Erforschung der komplexen mikrostrukturellen Architektur des Gehirns. In den letzten Jahrzehnten wurden große prospektive Kohortenstudien angelegt, um neue Einblicke in die Entwicklung und den Verlauf von Gehirnkrankheiten ĂŒber die Lebenspanne zu erhalten und um Biomarker zur Krankheitserkennung und -vorbeugung zu bestimmen. Um durch die Verwendung unterschiedlicher MRT-Verfahren verschiedenartige Schichtbildaufnahmen des Gehirns zu ermöglich, mĂŒssen Scanzeiten typischerweise stark begrenzt werden. Dennoch streben Populationsstudien die Anwendung von fortschrittlichen und daher zeitintensiven dMRT-Protokollen an, um Bilddaten in hoher QualitĂ€t und mit großem Potential fĂŒr zukĂŒnftige Analysen zu akquirieren. Um eine zeiteffizente und gleichzeitig vielseitige Diffusionsbildgebung zu ermöglichen, leistet diese Dissertation BeitrĂ€ge zur Untersuchung von Beschleunigungsverfahren fĂŒr die Bildgebung mittels diffusion spectrum imaging (DSI). DSI ist ein fortschrittliches dMRT-Verfahren, das Bilddaten mit hoher intra-voxel Auflösung der Gewebestruktur erhebt. Werden modernste Verfahren zur parallelen MRT-Bildgebung mit der compressed sensing (CS) Theorie kombiniert, ermöglicht dies eine Beschleunigung der rĂ€umliche Kodierung und der Diffusionskodierung in der dMRT. Dadurch können die ansonsten langen Aufnahmezeiten fĂŒr DSI erheblich reduziert werden. In dieser Arbeit werden zuerst geeigenete Strategien zur Abtastung des q-space sowie Basisfunktionen untersucht, welche die Anforderungen der CS-Theorie fĂŒr eine korrekte Signalrekonstruktion der dĂŒnnbesetzten DSI-Daten erfĂŒllen. Neue 3D-Verteilungen von Messpunkten im q-space werden fĂŒr die Verwendung in CS-DSI untersucht. Außerdem wird konventionell auf der diskreten Fourier-Transformation basierendes CS-DSI zum ersten Mal mit einem CS-DSI Verfahren verglichen, welches kontinuierliche SHORE (simple harmonic oscillator based reconstruction and estimation) Basisfunktionen verwendet. Aufbauend auf diesen Ergebnissen wird ein CS-DSI-Protokoll zur Anwendung in einer prospektiven Kohortenstudie, der Rheinland Studie, vorgestellt. Eine Pilotstudie wurde entworfen und durchgefĂŒhrt, um das CS-DSI-Protokoll im Vergleich mit modernster 3-shell-dMRT und mit dedizierten Protokollen fĂŒr diffusion tensor imaging (DTI) und fĂŒr das combined hindered and restricted model of diffusion (CHARMED) zu evaluieren. Populationsbildgebung erfordert Prozessierungsverfahren mit möglichst geringem Rechenaufwand, um große akquirierte Datenmengen in einem angemessenen Zeitrahmen zu verarbeiten und zu analysieren. DafĂŒr wurde eine Pipeline zur automatisierten Verarbeitung von CS-DSI-Daten implementiert, welche sowohl eigenentwickelte als auch bereits existierende moderene Verarbeitungsprogramme enthĂ€lt. Der letzte Beitrag dieser Arbeit ist eine neue Methode zur automatischen Detektion und Imputation von Signalabfall, welcher durch schnelle Bewegungen wĂ€hrend der Diffusionskodierung in der dMRT entsteht. Bewegungen der Probanden wĂ€hrend der dMRT-Aufnahme sind eine hĂ€ufige Ursache fĂŒr Bildfehler, vor allem in klinischen oder Populationsstudien mit Kindern, alten Menschen oder Patienten. Diese Artefakte vermindern die DatenqualitĂ€t und haben einen negativen Einfluss auf die Datenanalyse. Daher ist es das Ziel, fehlerhafte Messungen vor der dMRI-Analyse zu erkennen und dann auszuschließen oder wenn möglich zu ersetzen. Die vorgestellte Methode verwendet die SHORE-Basis zur dMRT-Signalmodellierung und bestimmt Ausreißer mit Hilfe von gewichteten Modellresidualen. Die Datenimputation rekonstruiert die unbrauchbaren und daher verworfenen Messungen mit Hilfe der verbleibenden, dĂŒnnbesetzten Menge an Messungen. Dieser Ansatz ermöglicht eine schnelle und robuste Korrektur von Bildartefakten in der dMRT, welche erforderlich ist, um korrekte und prĂ€zise Modellparameter zu schĂ€tzen, die die Diffusionsbewegung von WassermolekĂŒlen und die zugrundeliegende Mikrostruktur des Gehirngewebes reflektieren

    The analysis and application of dynamic MRI contrasts to grape berry biology

    Get PDF
    Magnetic resonance imaging (MRI) is a powerful, non-invasive imaging tool. When MRI is employed in the study biological systems, the acquired images reflect different aspects of system morphology and/or physiology. This thesis explores the application of relaxation and diffusion MRI to the study of different biological aspects of the fruit of the common grape vine, Vitis vinifera L., a highly valued botanical species. The results of this investigation have put forth a number of contributions to this area of research. The studies within this thesis began with a necessary validation for the application of diffusion MRI techniques to the grape berry using simulated cellular geometries to determine how broad plant cells could potentially influence the accurate reconstruction of the grape berry morphology. The result of this validation will also prove useful for other wide geometry applications wider than 10 ÎŒm. Relaxation and diffusion MRI was also used to study changes to berry morphology resulting from berry development and ripening. This study provided a novel perspective on grape berry development and demonstrated that diffusion anisotropy patterns correlated with the microstructure of the major pericarp tissues of grape berries, including the exocarp, outer and inner mesocarp, seed interior, as well as microstructural variations across grape berry development. This study also provided further evidence that the inner mesocarp striation patterns observed in the spin-spin relaxation weighted images of previous studies arise due to variations in cell width across the striation bands. Diffusion MRI was employed to investigate the morphological and physiological changes to occur within grape berries during fruit split, a costly source of fruit loss in vineyards. This study revealed water uptake through splits in the berry epidermis will result in the loss of parenchyma cell vitality about these wounds. The amount of water left standing on the surface of split grape berries may hence be an important determinant of the cellular response of the fruit to this trauma, and the subsequent establishment of adventitious fruit pathogens. Additionally, paramagnetically enhanced spin-lattice relaxation MRI was used to undertake a novel examination of the diffusive transport of manganese across the berry pericarp. The results of this study shows that the transport of manganese is within the berry xylem influences manganese exiting of ‘downstream’ of the pedicel, and that cellular membranes affect the spatial distribution of manganese across the berry pericarp. Manganese proved to be an excellent tracer for these experiments, and future investigations making use of paramagnetically enhanced relaxation MRI, perhaps employing other paramagnetic materials such as iron or copper, could prove to be valuable in determining how botanical species transport and store these materials within sink organs

    Design of multishell sampling schemes with uniform coverage in diffusion MRI

    Get PDF
    International audiencePURPOSE: In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. METHODS: The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. RESULTS: We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. DISCUSSION: We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI
    • 

    corecore