Impact of radial and angular sampling on multiple shells acquisition in diffusion MRI

Abstract

International audienceWe evaluate the impact of radial and angular sampling on multiple shells (MS) acquisition in diffusion MRI. The validation of our results is based on a new and efficient method to accurately reconstruct the Ensemble Average Propagator (EAP) in term of the Spherical Polar Fourier (SPF) basis from very few diffusion weighted magnetic resonance images (DW-MRI). This approach nicely exploits the duality between SPF and a closely related basis in which one can respectively represent the EAP and the diffusion signal using the same coefficients. We efficiently combine this relation to the recent acquisition and reconstruction technique called Compressed Sensing (CS). Based on results of multi-tensors models reconstruction, we show how to construct a robust acquisition scheme for both neural fibre orientation detection and attenuation signal/EAP reconstruction

    Similar works