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Abstract 

Magnetic resonance imaging (MRI) is a powerful, non-invasive imaging tool. When 

MRI is employed in the study biological systems, the acquired images reflect 

different aspects of system morphology and/or physiology. This thesis explores the 

application of relaxation and diffusion MRI to the study of different biological 

aspects of the fruit of the common grape vine, Vitis vinifera L., a highly valued 

botanical species. The results of this investigation have put forth a number of 

contributions to this area of research. 

The studies within this thesis began with a necessary validation for the application of 

diffusion MRI techniques to the grape berry using simulated cellular geometries to 

determine how broad plant cells could potentially influence the accurate 

reconstruction of the grape berry morphology.  The result of this validation will also 

prove useful for other wide geometry applications wider than 10 µm. 

Relaxation and diffusion MRI was also used to study changes to berry morphology 

resulting from berry development and ripening. This study provided a novel 

perspective on grape berry development and demonstrated that diffusion anisotropy 

patterns correlated with the microstructure of the major pericarp tissues of grape 

berries, including the exocarp, outer and inner mesocarp, seed interior, as well as 

microstructural variations across grape berry development. This study also provided 

further evidence that the inner mesocarp striation patterns observed in the spin-spin 

relaxation weighted images of previous studies arise due to variations in cell width 

across the striation bands. 

Diffusion MRI was employed to investigate the morphological and physiological 

changes to occur within grape berries during fruit split, a costly source of fruit loss in 

vineyards. This study revealed water uptake through splits in the berry epidermis will 

result in the loss of parenchyma cell vitality about these wounds. The amount of 

water left standing on the surface of split grape berries may hence be an important 

determinant of the cellular response of the fruit to this trauma, and the subsequent 

establishment of adventitious fruit pathogens. 
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Additionally, paramagnetically enhanced spin-lattice relaxation MRI was used to 

undertake a novel examination of the diffusive transport of manganese across the 

berry pericarp. The results of this study shows that the transport of manganese is 

within the berry xylem influences manganese exiting of ‘downstream’ of the pedicel, 

and that cellular membranes affect the spatial distribution of manganese across the 

berry pericarp. Manganese proved to be an excellent tracer for these experiments, 

and future investigations making use of paramagnetically enhanced relaxation MRI, 

perhaps employing other paramagnetic materials such as iron or copper, could prove 

to be valuable in determining how botanical species transport and store these 

materials within sink organs. 
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0BPreface 

 

10BResearch background and context 

Viticulture is a highly valuable horticultural industry for Australia. In 2012-2013 

Australia produced 1.23 billion litres of wine [1, 2]. Of this, 459 million litres of 

Australian wine were sold domestically while 698 million litres were exported to 123 

countries, including the United Kingdom, the United States, Canada, China and New 

Zealand [1]. Consequently, Australia ranks as the fourth largest exporter of wine in 

the world. Table grapes also make a significant contribution to Australian 

horticulture. In 2012-2013 Australia exported 68 thousand tonnes of table grapes 

grown in Victoria, the state which accounts for the majority of Australia’s table 

grape production [3]. Key export destinations of table grapes include Hong-Kong, 

Indonesia, Vietnam, Thailand and China. To ensure that Australia remains 

competitive relative to other high volume viticultural product exporters (e.g. New 

Zealand, France and Chile), continued investment and research is required to further 

improve grape production methods and fruit quality. This requires a continued 

improvement of our understanding of grape berry morphology and physiology. 

Knowledge of grape berry morphology largely stems from previous investigations of 

grape berry tissues using optical or electron based microscopy [4, 5]. Many different 

aspects of grape berry physiology have also been studied, some of which include the 

vasculature transport of water mobile solutes [6-8], cell turgor pressure [9, 10], cell 

hydraulic connectivity [11, 12] and sugar uptake/distribution [13, 14]. These studies 

have provided a wealth of information regarding the structure and biochemistry of 

the grape berry at many different stages of development.  

Many previous studies of grape berry morphology/physiology were highly invasive, 

requiring the dissection of the grape, the excision of tissues, the puncturing of cells 

or the introduction of non-physiological compounds to the berry (such as fluorescent 

dyes). However, the conduction of morphological/physiological investigations using 

intact grape berries is preferred. There are a number of non-invasive biomedical 
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imaging technologies available that could potentially be used for viticulture studies, 

including ultrasonography, x-ray computed tomography (CT), position emission 

tomography (PET) and magnetic resonance imaging (MRI). Of these choices, MRI is 

the stand out candidate. MRI offers superior soft-tissue characterisation to x-ray 

based imaging techniques, and is capable of resolving image objects on a near 

cellular scale. Additionally, rather than producing images where contrast is based on 

electron-density or gamma radiation intensity (i.e., x-ray CT and PET images, 

respectively), magnetic resonance (MR) images are weighted by the properties of the 

atomic nuclei within the sample under study [15-17]. These properties can include 

the density of atomic nuclei (spin-density MRI), the rate at which nuclei excited by 

radio-frequency magnetic fields relax (relaxation MRI) and the displacements of 

diffusing nuclei (diffusion MRI). MRI can hence provide extensive information 

regarding the physical and chemical composition of biological systems, as well as 

physiological functions such as solute transport. 

Since the inception of MRI, the technology has been largely reserved for biomedical 

purposes. While some previous studies have involved the use of MRI to investigate 

different aspect of plant morphology/physiology [18-21], in many cases botanical 

specimens serve only as biological phantoms for zoological MRI studies [20, 22-25]. 

Consequently, the number of MRI studies that have been conducted to examine the 

morphology/physiology grape berries is limited [26, 27]. MRI provides an unrivalled 

opportunity to further explore and improve our understanding of grape berry biology. 

To this end, this thesis will examine how relaxation and diffusion MRI can be 

employed to provide novel information regarding the morphology/physiology of 

grape berries, and explore the practical implications of the findings. 

 

11BThe objectives of this research 

This thesis has four primary objectives. The first objective is to determine the 

applicability of different diffusion MRI for the study and analysis of grape berry 

morphology. This validation was required to ensure the diffusion MRI techniques 

employed in this thesis would be able to accurately reconstruct the morphology of 

the grape berries. The second objective is to use relaxation and diffusion MRI to 
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study changes to berry morphology resulting from berry development and ripening. 

This study was included to provide a novel prospective on grape berry development 

while simultaneously establishing a library of relaxation and diffusion images/values 

for normal grape berries for comparisons with treated grape berries in subsequent 

studies. The third objective of the thesis is to use diffusion MRI to study the changes 

to berry morphology that arise from physical injury. This investigation was 

performed in order to study morphological and physiological changes to the grape 

berry due to the formation of splits in the berry epidermis, as well as to determine the 

practical implications this research could have on viticulture. The fourth and final 

objective is to investigate the transport and spatial diffusion of micronutrients across 

the berry pericarp using relaxation and diffusion MRI. This study was undertaken in 

order to explore the use of manganese as a tracer for vascular/extra-vascular ionic 

transport within the grape berry, potentially providing an alternative to studying 

solute transport without involving the use of much larger, non-physiological 

compounds. 

 

12BThesis organisation 

This thesis has been divided into nine chapters, each with a distinct focus.  

Chapter 1 provides an overview of grape berry morphology, focusing on the tissues 

that comprise the grape berry pericarp. A description of grape berry growth and 

development is also included. 

In Chapter 2, an introduction to the fundamentals of magnetic resonance imaging is 

presented. The principles of nuclear magnetism and spin are discussed, as well as 

how the magnetic moments of atomic nuclei can be manipulated using magnetic 

fields. This chapter also includes an explanation of magnetic resonance image data 

processing, the different forms of relaxation, and relaxation MRI.  

Chapter 3 provides a comprehensive review of the fundamentals of diffusion, 

including both mutual and translation self-diffusion, and how diffusion can be 

measured with MRI. Additionally, the characterisation of diffusing particle 
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distributions is discussed as well as the effect of motional restriction by 

microstructures. 

Chapter 4 presents and discusses the principles underpinning two important diffusion 

MRI techniques; diffusion tensor imaging, a commonly employed method for the 

analysis of three-dimensional diffusion MRI data, and Bessel Fourier reconstruction 

imaging, a recently developed diffusion MRI technique. 

In Chapter 5 the materials and methods for the investigations used in this thesis are 

presented. This chapter includes descriptions of the hardware and software 

employed, and descriptions of the growing conditions for specimens that were used.  

Chapter 6 tested the suitability of Bessel Fourier orientation reconstruction imaging 

for morphological studies of botanical tissue structure. The results from this analysis 

indicated that diffusion tensor imaging is better suited to the analysis of the grape 

berry pericarp than this diffusion MRI. 

Chapter 7 details an exploration of the application of diffusion MRI to viticulture 

and, by extension, other agricultural industries. Here the correlation between 

macroscopic diffusion patterns and well-defined stages of grape berry 

growth/development was investigated. This research also resolved several questions 

raised by the results of previous studies.  

In Chapter 8 changes to grape berry morphology prior and post the formation of fruit 

splits in vivo are examined using diffusion MRI. This investigation revealed that 

external water can enter the grape pericarp through splits in the berry epidermis and 

trigger tissue ischemic cell death. It also highlights the potential importance of 

rainfall events post the incidence of fruit split. 

In Chapter 9 the passive transport of metal ions into the grape were studied using 

paramagnetically enhanced spin-lattice relaxation MRI. This MRI technique was 

used to directly observe the unloading of manganese from the berry vasculature and 

its subsequent transport throughout the berry pericarp via diffusion mediated 

processes.  

Chapter 10 is the concluding chapter of the thesis, in which the findings of this thesis 

are reviewed.   
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Chapter 1 - Grape berry morphology 

 

To provide context for later discussions of the grape berry morphology in this thesis, 

this chapter provides an overview of the morphology of the tissues that constitute the 

grape berry as well as a description of grape berry growth and development. 

 

1.1 13BThe tissues of the grape berry pericarp 

The grape berry is a relatively simple fruit (Figure 1). It consists of one to four viable 

seeds (or no viable seeds for seedless varieties) surrounded by the fleshy pericarp [4]. 

The berry pericarp is the part of the grape that is consumed and used in wine making. 

For the purposes of this thesis, the grape berry pericarp will be considered in terms of 

four constituent tissues; the exocarp, outer mesocarp, inner mesocarp and septum. 

The grape exocarp is the component of the pericarp that separates and protects the 

berry from the environment. It comprises of the cuticle and the outer epidermal and 

hypodermal layers of the grape berry [4, 5]. The cuticle is a waxy layer several 

micrometres in thickness which assists in reducing the amount of water lost from the 

surface of the fruit via transpiration [28]. The outer epidermal and hypodermal 

tissues consist of 2 and 7 – 8 layers of cells, respectively. These cells are thick-

walled relative to other cells of the pericarp [5], and are tangentially elongated. The 

grape mesocarp contains the bulk of the grape pericarp. It consists of 25 – 30 layers 

of radially elongated parenchyma cells [5]. Parenchyma cells are used for the storage 

of soluble solids, primarily glucose and fructose (the total soluble solids present in 

the juice of a grape is measured in terms of °Brix, i.e. 1 g of soluble solids per 100 g 

of solution). The mesocarp also contains vascular bundles, which comprise a network 

of xylem and phloem vessels, that supply water and nutrients to the berry [4]. The 

peripheral vasculature marks the boundary between the outer mesocarp and the inner 

mesocarp. The outer mesocarp is the tissue between the outer hypodermis and the 

tissue exterior to the peripheral vascular bundles, while the inner mesocarp is the 

tissue inwards from the peripheral vascular bundles. The septum is the region of 
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regular tissue found at the centre of the grape berry adjacent to the berry seed(s) and 

locule(s). The septum fills the void where one or more grape seeds have been aborted 

and consists of irregularly shaped and sized cells [4].  

 

 

Figure 1: Schematic diagram of the grape berry and its constituent tissues. 

 

One tissue of the pericarp that has not been included in this discussion is the 

endocarp, the component of the pericarp that directly encases the seeds. This is 

because the grape berry endocarp only consists of 2 – 3 layers of cells, which are 

highly compacted and difficult to discern [5]. Consequently, for the remainder of this 

thesis the endocarp will be considered as part of the inner mesocarp rather than a 

separate tissue. 

The grape berry also possesses three noticeable external features. These are the 

pedicel, receptacle and the stylar remnant. The pedicel is the stem that connects the 

berry to the vine while the receptacle is the bulbous tissue that directly contacts the 

berry [4]. The stylar remnant, found on the end of the berry opposite the pedicel, is 
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the remains of the entrance to the ovary of the flower before the ovary developed to 

form the grape berry. 

 

1.1.1 53BCell sizes of the grape berry pericarp tissues  

Pericarp cells are smaller towards the exterior of the berry and larger towards the 

interior. For example, a mature grape berry (126 days after flowering (DAF)), cv. 

Traminer, has a mean outer epidermis radial cell width of 6.5  1.5 m, a mean outer 

hypodermis radial cell width of 5.4  0.6 m and a mean mesocarp cell width of 

68.0  4.5 m [5]. However, the size of pericarp cells will noticeably vary between 

grape berries of different cultivars [29], ages [4, 5] and those grown under different 

conditions (e.g., applications of plant growth hormones, such as gibberellic acid 

[30]).  

 

1.2 14BGrape berry growth and development 

As grape berries develop, they pass through two distinct phases of growth 

interspaced by a lag phase where little to no growth occurs (Figure 2) [4, 31, 32]. The 

initial growth phase of the grape berry is dedicated to cell and seed production. The 

grape berry produces all of the cells it will possess at maturity during this growth 

phase [4]. To discourage wildlife from eating the fruit before the seeds have had time 

to mature, the berry also accumulates sizable quantities of tartaric and malic acid 

during this period [33]. At the end of the lag phase, the grape berry begins to soften 

and change colouration. This period is termed véraison, and it marks the beginning of 

fruit ripening [4, 31, 32]. During the latter growth period the grape berry will 

approximately double in weight. It also accumulates large quantities of sugar during 

this time (Figure 2). Once the second growth phase is complete, the grapes are ready 

to be harvested. Harvest may be forced to occur earlier than this in order to avoid 

poor weather conditions. Heavy rain or hail can lead to the onset of fungal infections 

or cause physical damage to the crop [34]. If the weather remains fine, harvest may 

occur later than is necessary if desired. Leaving grapes on the vine longer than is 
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necessary helps concentrate the amount of sugar in the berries for the production of 

sweeter wines [35]. 

 

 

Figure 2: A representation of an approximation of the fresh weight of the berries (left axis, unbroken 

line) and the concentration of soluble solids (right axis, broken line) in relation to the three stages of 

grape growth (the initial growth phase, the lag phase and the latter growth phase, respectively). The 

bottom axis is an approximate timescale of berry development for grapes grown in Australia. The 

duration of each of these stages is dependent on the grape cultivar and climatic conditions in which 

they grow. Image adapted from previous studies [32, 36].  
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Chapter 2 - Magnetic resonance imaging 

 

To provide a foundation for later discussions of MRI in this thesis, this chapter 

provides an overview of the fundamental principles of MRI and how MR images are 

acquired. 

 

2.1 15BAtomic nuclei magnetism and spin 

All atomic nuclei possess two intrinsic and closely linked properties; nuclear 

magnetism and nuclear spin [15, 16, 37]. Nuclear magnetism provides a nucleus with 

a magnetic dipole, allowing it to interact with other magnetic fields. Nuclear spin, on 

the other hand, provides the nucleus with angular momentum. The magnetic and spin 

angular moments which characterise these two properties can be represented using a 

pair of parallel, or anti-parallel, vectors (Figure 3). The magnitude of the spin angular 

moment, which can have either an integer or half-integer value, is termed the spin 

quantum number and characterises quantum mechanical interactions between 

subatomic particles [15, 16, 37]. Nuclei with an odd number of protons and/or 

neutrons have a non-zero spin quantum number (e.g., 
1
H, 

2
H, 

13
C, 

14
N, 

15
N, 

19
F and

 

23
Na) while nuclei with an even number of protons and neutrons have a spin quantum 

number of zero (e.g., 
12

C and 
16

O). Only nuclei with a non-zero spin quantum 

number are MR sensitive and can be detected with an NMR spectrometer. 

 

 

Figure 3: Two nuclei (), the left with parallel magnetic (white arrow) and spin angular moments 

(black arrow) and the right with anti-parallel magnetic and spin angular moments. 
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When an MR sensitive atomic nucleus is placed in an external magnetic field, B0, the 

magnetic moment of the nucleus generates torque. This force is generated in order to 

align the magnetic moment of the nucleus with the orientation of the external 

magnetic field [15, 16]. For the purposes of this thesis, B0 will be considered to be 

aligned with the z-axis of the laboratory reference frame. However, the spin angular 

moment of the nucleus also generates torque, opposing any changes to its initial 

orientation. As a consequence, rather than aligning to the magnetic field, the 

magnetic and spin angular moments of the nucleus  will rotate about the axis of the 

magnetic field (the nucleus itself does not physically spin or rotate); this motion is 

termed precession (Figure 4) [15, 16]. In an NMR (nuclear magnetic resonance) 

spectrometer, B0 is generated by liquid helium cooled superconducting magnetic 

coils. The magnitude of the external magnetic field, B0, of the superconducting 

magnetic coils for current generation NMR spectrometers is typically upwards of 1.5 

T. To provide a comparison, the magnetic field of the Earth is 25  65 T [38], while 

the magnetic field strength of a magnetic crane used in car junk yards is ~1 T. 

 

Figure 4: Precession of the magnetic (white arrow) and spin angular (black arrow) moments of a 

nucleus () about the axis of an external magnetic field (B0, yellow arrow). The torque generated by 

these moments result in their precession (red arrow) about the external magnetic field.  

 

The frequency at which a spin angular moment, or ‘spin’, precesses about an external 

magnetic field is termed the Larmor (or resonance) frequency, ω [15, 16]. The 

Larmor frequency is calculated from the gyromagnetic ratio, , of the nucleus and the 

strength of the external magnetic field; i.e., 

B
0
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 0B   . (1) 

The gyromagnetic ratio is the ratio of the magnetic and the spin angular moments of 

the nucleus [15, 16]. For example, the gyromagnetic ratio of 
1
H is 

267.52 × 10
6
 rad s

-1
 T

-1
 while the gyromagnetic ratio of 

15
N is -27.12 × 10

6
 rad s

-1
 T

-1
 

[39]. The gyromagnetic ratio of 
15

N is negative because the magnetic and the spin 

angular moments of this isotope are anti-parallel; a positive gyromagnetic ratio will 

result in clockwise spin precession about the external magnetic field, while a 

negative gyromagnetic ratio will result in anti-clockwise spin precession [15]. Within 

a 1.5 T external magnetic field, 
1
H and 

15
N will precess at 63.86 MHz and 6.47 MHz, 

respectively. The precession frequencies of other MR sensitive nuclei isotopes will 

likewise precess within the radio-frequency (rf) range. 

The magnetic moment associated with a precessing spin is capable of inducing a 

small, oscillating electric current in an appropriate nearby conductor [15, 16]. In an 

NMR spectrometer, this signal is induced in the receiver coil. The coherent (i.e., in-

phase) precession of many spins can produce a current strong enough for a sensitive 

detector to register. It is the electronic signal from this detector that is used to 

characterise and create images of a sample. The receiver coil is tuned to optimise the 

detection of the range of MR signals that can be generated by a particular isotope. 

Isotopes with a high gyromagnetic ratio will precess relatively quickly (see Eq. (1)) 

and hence induce a strong current in the receiver coil. 
1
H has the highest 

gyromagnetic ratio and is also naturally abundant in biological systems (mostly as 

water, but also in the form of organic molecules); for these reasons, 
1
H MRI is highly 

popular. In order to prevent small fluctuations in B0 inducing a current in the receiver 

coil, which would otherwise obscure the weaker currents induced by precessing 

spins, the receiver coil is typically situated so that it is perpendicular to B0 [15, 16]. 

In other words, only the x-y (i.e., transverse) component of precessing spins 

contributes to the current induced in the receiver coil (Figure 5). The induced current 

is thus maximised when spin precession occurs solely in the transverse plane; a 

system containing precessing spins can be moved towards this state by combining 

(the static) B0 with another, weaker, generally time-dependent external magnetic 

field, B1.  
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Figure 5: The magnetic moments (white arrows) associated with two nuclei () are precessing about 

the axis of an external magnetic field, B0 (yellow arrow), which is perpendicular to the receiver coil 

(grey cylinder). The transverse component of spin A is smaller than that of spin B. Hence the current 

induced by spin A is likewise smaller than that of spin B. 

 

Ordinarily, a second external magnetic field several orders of magnitude weaker than 

B0 would have little to no effect on spin precession. However, if B1 oscillates at the 

Larmor frequency of a precessing spin, the effect of the smaller torque generated by 

B1 will accumulate with time; this effect is termed magnetic resonance [15, 16]. For 

example, consider a number of small pushes given over time to a child’s swing; by 

matching the frequency of these pushes to the oscillation of the swing, the amplitude 

of the swing will increase. The effect of magnetic resonance can overcome the torque 

generated by B0, and cause spins to slowly rotate (relative to ω) about this weaker 

magnetic field [15, 16]. As discussed above, the Larmor frequency of precessing 

spins (and hence B1) is generally within the rf range; thus B1 is commonly referred to 

as an rf pulse [15]. In an NMR spectrometer, rf pulses are generated by a small 

electromagnetic transmitter coil (depending on the design of the NMR spectrometer 

the transmitter and receiver coils may in fact be the same coil). By carefully timing 

the strength and duration of the rf pulse, the magnetic moment of precessing spins 

can be rotated by a particular angle about an axis [15, 16]. For example, a ∕2x rf 

pulse will rotate precessing spins 90 about the x-axis (as denoted by the x subscript) 

of the laboratory reference frame and into the transverse plane (Figure 6). The 

precessing nuclei frequency range that an rf pulse will excite, termed the effective 

spectral width, is inversely proportional to its duration [15, 16]. Hence short rf pulses 

will excite a wide range of spin precession frequencies, and vice versa.  

 

B
0
 

 
A B 



21 

 

Figure 6: (A) Schematic diagram of a one-pulse MR pulse sequence. A magnetically resonant ∕2x rf 

rotates the magnetic moments of precessing spins 90 into the transverse before the MR signal is 

acquired. (B) A potential pathway for the rotated magnetic moment (white arrow) of a precessing spin 

is outlined in red. Here the rotation of the magnetic moment is observed in the rotating reference 

frame, x’, y’, z’ (i.e., the reference frame is rotating about the external magnetic field at the Larmor 

frequency of the precessing spin) in order to simplify the visualisation of the pathway (cf. Levitt 2001, 

Fig. 10.21).  

 

Depending on the surrounding chemical environment, the precession frequency of a 

nucleus can vary tens of kilohertz from the natural precession frequency calculated 

via Eq. [15, 40]. Hence the effective spectral width excited by an MRI rf pulse is 

generally large enough to encompass the possible frequencies at which nuclei of a 

particular isotope (e.g., 
1
H) may precess (i.e., a non-selective rf pulse). However, as 

nuclei in particular chemical environments will precess at specific frequencies, this 

property is can be useful for selecting particular molecules of interest [15, 40]. For 

example, the effective spectral range can be tailored to excite only hydrogen nuclei 

in water molecules and not hydrogen nuclei in fat (i.e., a selective rf pulse). As will 

be discussed later, the effective spectral width of an rf pulse is also important in 

determining the volume of the specimen that will be imaged (see Section 2.4.1 Image 

slice selection).  
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2.2 16BMagnetic resonance images 

Before explaining how a two-dimensional MR image is produced, it would be 

helpful to discuss imaging terminology. The physical area of the MR image, termed 

the field of view (FOV), is divided into a matrix (MTX) of constituent elements. As 

will be discussed later (see Section 2.4.1 Image slice selection), MR data is acquired 

from a volume of the sample [15, 41, 42]. Consequently, the elements that constitute 

the MR image are three-dimensional, and are termed voxels (volumetric picture 

elements).  

The physical dimensions of voxels are determined by the size of MTX in relation to 

the FOV, as well as the thickness, THK, of the image slice. For example, an MR 

image with a 20 mm  30 mm FOV, a 1 mm THK and a 128  128 MTX will consist 

of voxels with dimensions 156 m   234 m  1000 m. The resolution of an MR 

image can be improved by decreasing voxel sizes. However, smaller individual 

voxels will have a lower spin density (i.e., they contain fewer precessing spins). As a 

consequence, the MR signals generated by these voxels will be weaker and are more 

likely to be obscured by MR signal noise. Fortunately the MR signal-to-noise ratio 

(SNR) can be improved by averaging the MR signal over multiple acquisitions. The 

SNR will improve by a factor equal to the square root of the number of times the MR 

signal is averaged (NA) [43]. For example, if the MR signal is averaged over sixteen 

acquisitions, the SNR will improve by a factor of four.  

The magnetic moments of the spins contained with the bounds of a voxel contribute 

to its net magnetisation and in turn the acquired MR signal. Hence the acquired MR 

signal is in fact the superimposed MR signals generated by each voxel [15, 16]. If the 

components of the acquired MR signal have some form of spatial label, it becomes 

possible to determine from which voxel each component of the MR signal originated, 

allowing the reconstruction of an MR image [15, 17]. In current generation MRI, the 

spatial labelling of the superimposed MR signals is achieved through magnetic field 

gradients. 
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2.3 17BMagnetic field gradients 

A magnetic field gradient, G, is a magnetic field that varies in strength along its axis 

[15, 44, 45]. When G combines with B0, the effective external magnetic field 

experienced by MR sensitive nuclei linearly varies with respect to position [15], i.e., 

    0
ˆ

eff B  B r G r k   (2) 

where r is the position of the MR sensitive nuclei within the eternal magnetic field 

and k̂  is the z-axis unit vector of the laboratory reference frame. Consequently, 

nuclei will precess at different frequencies depending upon their position with 

respect to the orientation of the magnetic field gradient [15], i.e., 

    0B   r = G r .  (3) 

This is known as frequency spatial encoding. If the magnetic field gradient is turned 

off, all MR sensitive nuclei experience the same external magnetic field and hence 

will precess with the same frequency. However, the difference in spin precession 

frequency along G prior to its deactivation results in the spins precessing at different 

phase angles along this axis. This is known as phase spatial encoding. Both 

frequency and phase spatial encoding are used to label the positions of precessing 

spins in MRI [15, 17]. Magnetic field gradient can also be used to measure the 

displacement of mobile spins, as will be discussed later (see Section 3.3 Measuring 

diffusion using magnetic field gradients). Henceforth, G will be used to describe 

magnetic field gradients employed to spatially label spins imaging while g will be 

used to describe magnetic field gradients employed to measure spin displacement. 

 

2.4 18BMagnetic resonance image pulse sequences 

An MRI pulse sequence is a specific series of rf pulses and magnetic field gradients 

which can induce a detectable MR signal. MRI pulse sequences are designed to 

measure specific characteristics of MR sensitive nuclei [39], such as spin density 

(Figure 7).  
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Figure 7: A simplified pulse sequence for two-dimensional spin-density-weighted MR imaging. The 

pulse sequence can be divided into three components: image selection, phase spatial encoding, 

frequency spatial encoding/MR signal acquisition. The strength and duration of the rf pulses and 

magnetic field gradients in this figure are not to scale; image magnetic field gradients are typically 

microseconds in length while  is usually measured in milliseconds. All three magnetic field gradients 

are orthogonal to one another.  
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An MRI pulse sequence which measures spin density primarily consists of three 

components; image slice selection, phase spatial encoding and frequency spatial 

encoding/MR signal acquisition. All three steps are required to spatially label the 

voxels of the MR image. Each of these three steps is described in detail below. 

 

2.4.1 54BImage slice selection 

The objective of image slice selection is to excite only spins in the volume of interest 

(i.e., the image slice) with an rf pulse and to rotate these spins towards the transverse 

plane [15, 41]. To accomplish this, a magnetic field gradient, Gslice, is used to vary 

the frequency of spin precession along an axis of the volume (e.g., the z-axis). By 

employing an rf pulse with an effective spectral range that encompasses the 

precession frequencies of spins within the volume of interest, only these spins will 

rotate towards the transverse plane (Figure 8 and Figure 9A). 

 

 

Figure 8: Image slice selection. By applying a magnetic field gradient along the z-axis (Gslice), spins 

within the sample will precess at different frequencies. An rf pulse with a particular effective spectral 

width can then be used to excite only precessing spins within this range (e.g., yellow rectangle).  

 

 

 

x 
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2.4.2 55BPhase spatial encoding  

Once the image slice has been selected, image spatial encoding can begin. The first 

stage of image spatial encoding involves the application of phase encoding magnetic 

field gradients, Gphase, along one of the axes of the image (i.e., the read axis) before 

MR signal acquisition commences for a period of phase. The net magnetisations of 

voxels along Gphase will be therefore encoded with a particular phase (Figure 9B and 

C) when the MR signal is acquired [15, 17]. The MR pulse sequence is then repeated 

after MR signal acquisition with a different phase encoding magnetic field gradient 

strength. This process continues until a separate MR signal has been acquired for 

each row of voxels along the phase encoding axis. This does not include multiple 

MR signal acquisitions for MR signal averaging. As the MR pulse sequence must be 

repeated for each phase encoding step, the number of voxels along the phase axis 

will affect the length of the total MR image acquisition time. 

 

2.4.3 56BFrequency spatial encoding/MR signal processing 

During MR signal acquisition, a frequency encoding magnetic field gradient, Gread, is 

applied along an axis perpendicular to the phase axis of the image slice (i.e., the read 

axis) [15, 17] for a period of read. Consequently, each row of voxels along Gread will 

be associated with a unique net magnetisation precession frequency during MR 

signal acquisition (Figure 9D). 

A πy rf pulse is included before MR signal acquisition in order to refocus precessing 

spins [15, 46]. This is necessary because over time the system of excited spins slowly 

returns to thermal equilibrium and the amplitude of the acquired MR signal 

exponentially decays towards zero [15, 16]. The processes involved in this return to 

thermal equilibrium will be later discussed in detail (see Section 2.6 Nuclear spin 

relaxation). 
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Figure 9: A schematic representation of the effect of phase and frequency spatial encoding on the 

precession of the net magnetisation vectors associated with each voxel of a 3  3 MR image. (A) After 

image slice selection the net magnetisation vectors (the black arrows) are in-phase and precess at the 

same frequency. (B) While the phase encoding gradient is active (white arrow), the net magnetisation 

vectors precess faster where the field is stronger (as indicated by darker spin shading). (C) When the 

phase encoding gradient is turned off, the net magnetisation vectors again precess at the same 

frequency. However, the phase of the net magnetisations vectors differs with respect to column 

position. (D) The frequency encoding gradient (white arrow) is applied while MR signal acquisition 

simultaneously occurs; each voxel is hence both frequency and phase spatially encoded. 
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2.5 19Bk-space imaging 

During the acquisition of the MR signal, the raw MR signal data is temporarily 

stored in a mathematical space known as k-space [47]. Once the MR signal 

acquisition is complete, the spatially encrypted MR data can be processed to yield an 

image. This data processing makes use of a mathematical operation known as the 

Fourier transform [48-50].  

Fourier transforms convert signal data between mathematical domains/spaces, such 

as between the time domain and its inverse, the frequency domain (Figure 10). In 

MRI, Fourier transforms are used to transform the spatially encoded MR signals, S, 

into a map of position dependent spin density, ρ [15, 17]. Here it will be assumed 

that the read axis coincides with the y-axis of the MR image and that the MR signal 

was sampled with an even number of time points during the MR signal acquisition 

period, T. It will also be assumed the phase axis coincides with the x-axis of the MR 

image and that the MR signal was sampled with an even number of the phase 

encoding gradients. Each phase gradient used is assumed to have the same duration, 

but a different magnitude.  

 

 

Figure 10: An illustration of an acquired MR signal consisting of two component MR signals, one 

oscillating at 150 MHz and the other at 200 MHz. Using a Fourier transform (FT), the MR signal is 

converted from the time domain to the frequency domain. The resultant MR spectrum features two 

peaks, one at 150 MHz and the other at 200 MHz. The difference in peak heights is related to the 

relative difference in the amplitude of the components of the acquired MR signal.  
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Hence the relationship between the raw MR data in k -space and the MR image is 

given by the two-dimensional Fourier transform [17, 48] 

   
22

2 2

( , ) ( , )exp 2

yx

x y

kk

x y x y

k k

S k k x y i k x k y dy dx 
 

    , (4) 

where kx = (1/2)Gphasephase), ky = (1/2)Greadread) and i is the square root of 

negative one. Eq. (4) can therefore be solved for ρ(x, y) using the inverse Fourier 

transformation, i.e., [17, 48] 

   
22

2 2

( , ) ( , )exp 2

yx

x y

kk

x y x y

k k

x y S k k i k x k y dy dx 
 

   . (5) 

By performing the inverse Fourier transform for each pair of voxel coordinates, the 

two-dimensional MR image can be reconstructed. While ρ(x, y) is not a quantitative 

measure of the number of precessing spins in each voxel, it does indicate the relative 

concentration of precessing spins [15, 17]. As will be discussed later, by suitably 

modifying the two-dimensional MRI pulse sequence presented earlier (Figure 7), 

ρ(x, y) can be weighted by different nuclear properties of spins to create other 

sources of MR contrast (see Section 2.6 Nuclear spin relaxation and Section 3.3 

Measuring diffusion using magnetic field gradients). 

 

2.6 20BNuclear spin relaxation 

This chapter concludes with a discussion of nuclear spin relaxation. When rf pulses 

disturb a system of precessing spins, the system moves away from thermal 

equilibrium. Over time the system will move back towards equilibrium, destroying 

the order imposed on the system by the rf pulses [16]. This return to thermal 

equilibrium is termed nuclear spin relaxation (henceforth referred to as relaxation). 

As the relaxation rate of a spin depends on its local magnetic environment, 

differences in relaxation rates can be used to create contrast between tissue types 

which differ in structure or chemical composition (see Chapter 7 - Diffusion MRI of 

grapes at different stages of development) [15, 51, 52]. Relaxation can also be used 

to study vascular/extra-vascular metal ion transport (see Chapter 9 - The diffusive 
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transport of manganese in the grape berry). Hence relaxation MRI will be an 

important tool for studying and characterising the morphology and physiology of 

grape berries. 

There are two pathways by which nuclear spins can relax; spin-spin (i.e., transverse) 

and spin-lattice (i.e., longitudinal) relaxation. The effect of relaxation on the net spin 

magnetic moment, M, is described by the Bloch equation [16], 

 
 0

2 1

ˆ ˆ ˆ
x y z

M M M M

t T T


 
   



i j kM
M B  (6) 

where M0 is the net spin magnetisation at thermal equilibrium, Mx, My  and Mz  are 

the orthogonal components of M, B is the total magnetic field, and î  and ĵ  are the 

unit vectors of the x, y axes, respectively. T1 and T2 are the spin-spin and spin-lattice 

relaxation values of the spins, respectively. 

Spin-spin relaxation relates to the rate at which the transverse component of M 

vanishes after the system has been excited by the application of rf pulses [15, 46, 53]. 

This is caused by a loss of phase coherence between the magnetic moments of 

precessing spins over time due to minor variations in the external magnetic field 

causing localised differences in spin precession rates (Figure 11). The spin-spin 

relaxation rate, 1/T2, is principally related to the reorientational motions of the spins. 

Slowly tumbling spins (i.e., spins which are part of a solid, or are in a viscous 

environment) relax at a faster rate than spins which are quickly tumbling [53]. By 

rewriting Eq. (6) in terms of transverse magnetisation (i.e., mxy = Mx + iMy), it can be 

shown that the relationship between the acquired MR signal intensity and T2 is given 

by [46]  

 

2

( ) (0)exp
t

S t S
T

 
  

 
. (7) 

where S(t) is the measured, time dependent MR signal intensity and S(0) is the MR 

signal intensity at time zero. 
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Figure 11: Schematic diagram of spin-spin relaxation. (A) A system of spins (white arrow) coherently 

precessing in the clockwise direction; the net (i.e., vector sum) magnetisation of the system is 

maximised (yellow arrow). (B) Minor differences in spin precession rates (the darkest arrows precess 

fastest) result in the magnetic moments of the spins dephasing, reducing the magnitude of the net 

magnetisation. (C) Phase coherence is completely lost and the magnitude of the net magnetisation is 

zero – even though the spins are not returned to thermal equilibrium. 

 

Spin-spin relaxation weighted images are commonly acquired using a Carr-Purcell-

Meiboom-Gill (CPMG) MRI pulse sequence (Figure 12) [52, 54, 55]. The CPMG 

MRI pulse sequence is an example of a spin-echo pulse sequence. Spin-echo pulse 

sequences features one or more y rf pulses to refocus the transverse component of 

the magnetic moments of precessing spins (Figure 13) [15, 46]. This refocusing 

results in the amplitude of the acquired MR signal increasing to a local maximum 

before decaying once more, creating an ‘echo’ of the MR signal. Increasing the 

length of the echo train will strengthen the spin-spin weighting of MR images 

reconstructed from the acquire MRI data [52, 54, 55]. The MR signal echo is 

maximised at intervals of 2 (i.e., twice the period between the /2x and y rf pulses) 

[15, 46]; consequently, the 2 period is referred to as the echo time (TE). As the 

transverse component of the MR signal intensity is dependent on TE, t in Eq. (7) is 

replaced with TE. In order to determine the T2 associated with spins, several spin-

spin weighted MR images are acquired which are weighted by different TE values. 

Eq. (7) can then be fitted to the acquired MR signal intensity data (Figure 14) to 

calculate the T2 of each voxel and thus create a map of spatially varying T2 (i.e., a T2 

image). 

 

  

A. B. C. 
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Figure 12: A simplified pulse sequence for two-dimensional CPMG MRI. This pulse sequence is 

similar to the spin-density MRI pulse sequence presented earlier (Figure 7) except that it includes a 

train of y pulses that continually refocus the transverse component of MR signal (i.e., the region of 

the MRI pulse sequence in brackets is repeated n times, where n is the number of echoes desired). The 

2 period is referred to as the echo time (TE), and its length influences spin-spin relaxation weighting 

of the MR image. The period between the first rf pulse of the MR pulse sequence and the first rf pulse 

of a following MR pulse sequence, on the other hand, is termed the repetition time (TR). The length of 

the TR influences the spin-lattice relaxation weighting of the MR image. 

 

Gf 

Gs 

G 

rf 

τ 

 

δf’ 

δ 

δs 

δf 

  

τ 

/2
x
 

y
 

  


y
 

    

τ τ 

 

δf 

    



33 

 

Figure 13: Schematic diagram of spin refocusing. (A) A system of spins (greyscale arrows; darker 

arrows precess faster than lighter arrows) incoherently precessing in the clockwise direction. (B) After 

applying a y rf pulse, the orientations of the magnetic moments are inverted. (C) The coherency of the 

magnetic moments increase with time, increasing the magnitude of the net magnetisation. (D) The 

magnetic moments of the spins are once again in-phase and system net magnetisation is maximised. 

After this the magnetic moments of the spins in the system will begin to lose precession coherency. 

 

 

Figure 14: The attenuation of the MRI signal intensity values (■) of a single voxel with increasing TE 

due to spin-spin relaxation during the MRI pulse sequence. Upon fitting Eq. (7) to the data points (red 

curve), the T2 associated with this voxel was determined to be 40 ms. 

 

Spin-lattice relaxation, on the other hand, relates to the rate at which the longitudinal 

component of M returns to thermal equilibrium after the system has been excited by 

the application of rf pulses [15, 53]. In the absence of rf pulses, the rf energy used to 

disturb nuclear spin magnetisation from equilibrium slowly returns to the 

surrounding system (i.e., the lattice) and the precessing spins re-establish their initial 

orientation distribution about B0 [15, 16]. Assuming that spins were rotated in the 
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transverse plane using a ∕2 rf pulse, Eq. (6) can be rewritten in terms of longitudinal 

magnetisation to show that the relationship between the MR signal intensity and T1 is 

given by [56] 

 

1

( ) (0) 1 exp
t

S t S
T

  
     

  
.  (8) 

As spin-lattice relaxation is linked to the recovery of the longitudinal component of 

M, T1 is related to the repetition time (TR) of the MR pulse sequence, where the TR 

is the period between the first rf pulse of a MRI pulse sequence and the first rf pulse 

of a following MRI pulse sequence. S(t) will hence be only maximised if TR is 

sufficiently long to ensure the MR signal fully relaxes before the following MRI 

pulse sequence begins; consequently, Eq. (8) is often rewritten in terms of TR, 

instead of t. Spin-lattice relaxation weighted images can be acquired using a CPMG 

MRI pulse sequence (Figure 12) if the TR is varied between acquired images instead 

of TE [56]. By acquiring several spin-lattice weighted MR images at different TR, 

the MR signal intensity data can be fit to Eq. (8) to calculate the T1 per voxel (Figure 

15) and in turn create a map of spatially varying T1 (i.e., a T1 image). 

 

Figure 15: The increase of the MRI signal intensity values (■) of a single voxel with increasing TR 

due to spin-lattice relaxation during the MRI pulse sequence. Upon fitting Eq. (8) to the data points 

(red curve), the T1 associated with this voxel was determined to be 1675 ms. 
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2.6.1 57BParamagnetic relaxation contrast agents 

Introducing a paramagnetic relaxation contrasts agent to a system is a common 

method for increasing relaxation contrast between different regions of an MR image 

[16, 57, 58]. Paramagnetic relaxation contrasts agents are ions or compounds which 

possess one or more unpaired electrons. As unpaired electrons possess a strong 

magnetic moment, the presence of paramagnetic relaxation contrasts agents result in 

greater variations in the local magnetic field, causing nearby spins to relaxing more 

rapidly [15, 59]; even when these contrast agents are present in micromolar 

quantities, they can noticeably increase the relaxation rates of a sizeable quantity of 

mobile spins. 

Paramagnetic relaxation contrast agents affect both spin-spin and spin-lattice 

relaxation, although the extent each relaxation pathways is affected depends upon the 

magnetic and motional properties of the constant agent in question. This often 

dictates the use of the contrast agent. For example, iron oxide crystals are commonly 

used to increase the spin-spin relaxation rates of surrounding spins, while manganese 

and gadolinium are used to increase spin-lattice relaxation rates [16, 57, 58]. 

Paramagnetic relaxation contrast agents have employed in previous biomedical 

studies in order to examine traumatic brain injury [60, 61], perform auditory brain 

mapping [62, 63] and to enhance the contrast between healthy and cancerous tissues 

[64, 65]. The use of relaxation contrast agents in grape berries will be explored later 

(see Chapter 9 - The diffusive transport of manganese in the grape berry). In addition 

to spin-density and relaxation, MR images can also be weighted by the displacement 

of spins via translational self-diffusion. As will be discussed in the following, 

diffusion-weighted MR images are an excellent source of information regarding the 

morphology and physiology of biological systems. 
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Chapter 3 - 1BThe fundamentals of  

diffusion MRI  

 

A number of the studies within this thesis involve the analysis of diffusion-weighted 

MR images in order to characterise the morphology of botanical specimens. To aid in 

later discussion and the interpretation the diffusion-weighted MR data, this chapter 

contains a review of diffusion and its relationship to MRI. 

 

3.1 21BDiffusion processes 

Diffusion is one of several transport processes found in nature. It leads to the 

incoherent transport of mass and molecular mixing without bulk motion  of liquids 

and gases, where examples of bulk motion include convection and flow [45, 66, 67]. 

There are two distinct types of diffusion that will be discussed in this work; mutual 

diffusion and translational self-diffusion. While the particular MRI techniques 

discussed in this thesis only measure translational self-diffusion, the mathematical 

formalism used to describe mutual diffusion forms the basis of the formalism used to 

characterise translational self-diffusion. It is therefore important to explore mutual 

diffusion further. 

Mutual diffusion is the net transport of particles through a system due to the presence 

of a macroscopic chemical concentration gradient (i.e., a difference in chemical 

concentration with respect to position in the system. Figure 16A) [45, 66, 67]. 

Osmosis is a special case of mutual diffusion, which occurs due to a difference in 

chemical concentration across a semi-permeable membrane [68-70]. While MRI is 

primarily employed to study translational self-diffusion, mutual diffusion can be 

measured using MRI in certain cases [71, 72]. 
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Figure 16: The mutual diffusion of a drop of ink particles (●) and water molecules (○). (A) The ink 

particles are initially concentrated at a single point. (B) The concentration gradient will drive the 

mutual diffusion of the ink. Over time, a homogenous solution of ink and water will form, reducing 

the chemical concentration gradient to zero and terminating the mutual diffusion process. Self-

diffusion of both particles is however still operative. 

 

The process of mutual diffusion can be described using the laws proposed by Adolph 

Fick. Fick’s first law is expressed as [45, 66, 67]  

    , ,Mt D C t  J r r  (9) 

where J is the net flux of freely diffusing particles (a function of particle position, r, 

and time, t),  is the del operator (defined in Cartesian coordinates by  = /x, 

/y, /z), C is the particle concentration or density, and DM is a constant of 

proportionality termed the mutual diffusion coefficient. DM is a useful measure for 

making comparisons between different systems of two (or more) mutually diffusing 

chemical species. Systems with higher diffusion coefficients are more likely to have 

a greater degree of mixing than those with lower diffusion coefficients during the 

same period of diffusion. For example, at 30 C the DM of a trace amount of 

hydrogen gas carried by nitrogen gas is 0.82  10
-4

 m
2
 s

-1
 [73] while the DM of a 

0.1 M aqueous solution of glucose is 0.74  10
-9

 m
2
 s

-1
 [74]. As the particles within 

the system diffuse the concentration of particles at a given point inside the system 

will change with time. Since mass must be conserved, the continuity equation applies 

[45, 66, 67]. Thus  

A B 
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Substituting Eq. (9) into Eq. (10) results in Fick’s second law [66, 67, 75], 

 
 

 2
,

,M

C t
D C t

t


 



r
r  (11) 

where 
2
 is the Laplace operator. The rate of change in concentration will hence 

slow as time progresses and the solution becomes increasingly homogeneous; as 

t  , the concentration of the diffusing substance will be equal throughout the 

system and the mutual diffusion process will end (Figure 16B) [66, 67].  

Translational self-diffusion (henceforth simply referred to as diffusion) is particle 

motion arising from collisions between neighbouring, thermally agitated particles 

[76, 77]. The displacement of each particle in the ensemble is random (Figure 17), 

and unlike mutual diffusion it continues as t  .  

 

Figure 17: An ensemble of thermally agitated particles (●) undergoing translational self-diffusion. 

Although no chemical concentration gradients exist, the collisions between neighbouring particles 

cause incoherent movements (as indicated by the paths of the arrows). 

 

Since the motion of the particles is undirected the net displacement of the ensemble 

will be zero. Therefore it is more useful to consider the statistical motion of the 

ensemble [45, 77]. A key concept required for this analysis is the conditional 

probability density function, P(r0,r1,t). This function describes the probability of 

finding a particle at a final position r1, after diffusion time t, having started from an 
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initial position r0. For a large number of particles, the total probability of find one of 

these particles at r1 at time t is given by [45, 78, 79] 

      1 0 0 1 0, , ,P t P t d r r r r r . (12) 

where  r0) is the initial distribution of particles. In this context, P(r0,r1,t) is also 

known as the diffusion propagator. 

P(r1,t) is a measure of the labelled particle density. Thus if it is assumed that C(r1,t) 

represents the concentration of labelled particles, P(r1,t) can be substituted for C(r1,t) 

in Eqs. (9) and (11). Due to the relationship between P(r1,t) and the diffusion 

propagator, it follows that Fick’s laws can also be rewritten in terms of P(r0,r1,t), 

providing that all diffusing particles are located at r0 when t = 0 (i.e., P(r0,r1,0) = 

 (r1 – r0), where  () is the delta function) [45, 79]. Rewriting Eqs. (9) and (11) in 

terms of P(r0,r1,t) respectively yields 

    0 1 0 1, , , ,t D P t  J r r r r  (13) 

and [45, 80, 81] 

 
 

 0 1 2

0 1

, ,
, ,

P t
D P t

t


 



r r
r r .  (14) 

where J (r0,r1,t) is the flux of the diffusion propagator and D is the diffusion 

coefficient. D is analogous to DM. However, D characterises the diffusivity of only 

one diffusing chemical species. For example, water molecules in bulk solution at 

room temperature have a D of 2.3 × 10
-9

 m
2
 s

-1
 [82]. The diffusion of sugar 

molecules in a 0.15 M aqueous glucose solution is 0.55  10
-9

 m
2
 s

-1
; the water of 

that same aqueous solution, on the other hand, will have a D of 1.81  10
-9

 m
2
 s

-1
  

[83]. 

Eq. (14) can then be solved to yield an analytical expression for P(r0,r1,t). In the case 

of one-dimensional free diffusion, this solution will have the form of a Gaussian 

function [45, 80, 81], i.e.,  

  
 

2

1 0

0 1

1
, , exp

44
P t

DtDt

 
  

 
 

r r
r r . (15) 
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However this expression is the solution for free diffusion; it assumes that the 

diffusing particles encounter no physical obstacles, barriers or other microstructures 

which restricts their motion. The effect of diffusion restriction on particle 

displacement amounts to applying different boundary conditions to Eq. (14), as will 

be discussed further below (see Section 3.2 The effect of restriction on diffusion). 

Although it is initially useful to describe particle motion as a displacement from r0 to 

r1 in time t, it is more convenient for future calculations to instead consider particle 

motion in terms of a certain displacement, R, from r0 in time t (i.e., r1 = r0 + R). 

Rewriting Eqs. (12) and (15) in this new formalism yields [45, 78, 79] 

      0 0 0 0, , ,P t P t d R r r r R r  (16) 

and [45, 80, 81] 

  
21

, exp
44

P t
DtDt

 
  

 

R
R   (17) 

where P (R) is the ensemble averaged propagator (EAP). Since the EAP is a 

probability function [45, 79], 

  , 1P t d  R R .  (18) 

By including the squared displacements of the diffusing particles in this integration, 

the mean squared displacement (MSD) of the ensemble can be calculated [45, 79, 

84], 

  2 2 ,P t d R R R R   (19) 

where ⟨.⟩ denotes the mean. Upon substituting Eq. (17) into Eq. (19), it can be 

readily calculated using the standard integral (e.g., 3.462.8 in [85]) that the MSD of 

an ensemble of particles freely diffusing along one dimension has the following 

linear relationship with time [45, 80, 81], 

 2  2DtR .  (20) 

When Eq. (19) is solved for the n-dimensional free diffusion EAP, the linear 

relationship between the MSD and t will be maintained, i.e., 
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 2  2nDtR .  (21) 

Taking the square root of Eq. (21) yields the ensemble averaged particle 

displacement [45, 80, 81], also known as the root mean squared displacement 

(RMSD) 

  2nDtR , (22) 

where ‖.‖ denotes the normal. For example, it can be calculated using Eq. (22) that 

water molecules in bulk solution at room temperature freely diffusing in three-

dimensions over a period of 50 ms will have an RMSD of ~26 μm. 

 

3.2 22BThe effect of restriction on diffusion 

Diffusion restricting microstructures hinder the movement of diffusing particles [45, 

67]. For example, in a biological system these microstructures can include cellular 

membranes/structures [86, 87] and aggregated proteins [88, 89]. The presence of 

these obstructions will result in an overall reduction of particle displacement relative 

to their displacement in a bulk solution. This reduction will become more 

pronounced as t increases and the probability of particles encountering one for more 

restricting boundaries becomes higher [45, 67].  

As the particles interact with restricting microstructures, the displacements of these 

particles are dependent on the local system structure (e.g., its shape and dimensions) 

in addition to t [45, 67]. It is this dependence that allows diffusion NMR and MRI to 

characterise the microstructure of diffusion restricting systems. As t approaches the 

long-time limit (i.e., t ≫ d
2
/D, where d is the average distance between restricting 

microstructures) the diffusing particles will have sufficient time to probe the entire 

volume of the structure that encloses them [45, 90, 91]. At this point the 

displacement of the particle ensemble becomes independent of t and solely reflects 

the structural features of the restricting system. 

The local orientations of diffusion restricting microstructures can be determined from 

measurements of particle displacement. This can be achieved by comparing 

measurements of particle mobility along a large number of different directions. 
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When diffusion displacements are equal with respect to all directions, this is termed 

isotropic diffusion (Figure 18A). Diffusion isotropy is expected when tissue 

microstructures are not coherently organised within voxels, as is often observed in 

MR images of brain grey matter [86, 92]. 

 

  

Figure 18: Two dimensional simulations of isotropic (A) and anisotropic (B) diffusion. (A) The 

distribution of particles (●) remains even with respect to direction. (B) The distribution of particles 

possesses a directional dependence due to the encapsulating parallel barriers. These figures were 

created by simulating the random walks of 10 000 particles, each undertaking 100 steps.   

 

If measurements of particle displacement indicate that motion is not restricted 

equally with respect to direction, this is termed anisotropic diffusion (Figure 18B). 

Anisotropic diffusion signifies that the restricting microstructure is coherently 

organised on the length scale of the voxel. The direction(s) of least displacement 

restriction likely indicate direction(s) where the restricting microstructure is 

elongated. Thus knowledge of diffusion anisotropy in a diffusion restricting system 

can be used to determine the prevalent orientation of organised restricting 

microstructures [86, 93, 94]. For example, anisotropically restricted diffusion has 

been previously observed in brain white matter and skeletal tissue where the 

direction of least diffusion was parallel to the orientation of the tissue fibre [86, 87]. 

As diffusion anisotropy provides an insight the coherency and orientation of cellular 

and tissue microstructures, it will prove useful later when characterising the 

morphology of grape berries via MRI (see Chapter 7 - Diffusion MRI of grapes at 

different stages of development). 

A. B. 
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3.3 23BMeasuring diffusion using magnetic field 

gradients  

Diffusion MRI is typically conducted using the pulsed gradient spin-echo (PGSE) 

nuclear magnetic resonance sequence [45, 95], a modification of the Hahn spin-echo 

sequence (Figure 19).  

 

Figure 19: A simplified pulse sequence for pulsed gradient spin-echo (PGSE) MRI sequence. This 

pulse sequence is similar to the spin-density MRI pulse sequence presented earlier (Figure 7) except 

that it includes an identical pair of diffusion magnetic field gradients spaced about the  rf pulse in 

order to weight acquired MR images with diffusion. The duration of the diffusion magnetic gradients, 

, is typically milliseconds in length while the diffusion period, , is tens to hundreds of milliseconds 

in length. 
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First, a /2 rf pulse is used to establish a net spin polarisation perpendicular to the 

static magnetic field. Shortly thereafter, the diffusion encoding gradient is applied. 

The purpose of the diffusion encoding gradient is to spatially label the starting and 

final positions of an ensemble of spins along g, much like how they can be used to 

spatially encode MR images, in order to weight the MR image with the displacement 

of an ensemble of spins. The effect is particularly easy to visualise in the short 

gradient pulse (SGP) limit [96], when δ approaches an infinitely small length while 

the product of δ and |g| remains finite as motion during the diffusion gradient pulse 

can be ignored. While this is of course technically impossible, this condition can be 

reasonably approximated if δ ≪ Δ and δ ≪ d
2
/D [45, 95, 97]. Due to the applied 

gradient pulse, the phase of each spin, ϕ0, becomes 

 0 0 0 0 0
0

B dt B


          g r g r . (23) 

As a result, the spin magnetisation vectors are arrayed in the shape of a helix along 

the direction of g (Figure 20). 

 

Figure 20: Effect of a gradient pulse on spin phase. Before the application of the gradient pulse, there 

is no difference in the phase between spins (left) and thus the magnitude of the transverse 

magnetisation (i.e., vector sum) is maximised. After the application of the magnetic gradient, g 

(represented by the yellow arrow), the phase of each spin in the ensemble changes due to the variation 

in the magnitude of the gradient pulse along the magnetic field axis. This causes the spin ensemble to 

adopt a helical shape (right) resulting in a loss of net magnetisation.  

 

After a period of time, a second rf (π) pulse is used to reverse the phase of each spin 

in the ensemble. This results in a helix of spins which is a mirror image of the first, 
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although now attenuated as a result of the mixing of spins with different phases due 

to diffusive translational motion [45, 90, 96].  

The diffusion encoding gradient is then applied, unwinding the helix and re-

establishing a net transverse magnetisation and allowing the measurement of the 

attenuated, diffusion-weighted MR signal; the effect of the second diffusion gradient 

on the phase of each spin, ϕ1, is given by [45, 96] 

 1 0 1 0 1B dt B


     



      g r  g r . (24) 

Therefore the net phase shift, Δϕ, for each spin is 

  1 0 1 0        g r r . (25) 

As spin displacement parallel to g is random, Δϕ varies between spins. It is the 

averaging of Δϕ over the spin ensemble that leads to an attenuation of the acquired 

MR signal [45, 55]. The attenuation of the measured MR signal will increase with 

increasing spin displacement and thus the length of the diffusion measurement (see 

Eq. (22)). The length of the diffusion measurement (or period), Δ, is defined as 

beginning at the leading edge of the first diffusion encoding gradient and ending at 

the leading edge of the second diffusion encoding gradient (Figure 19).  

Increasing Δ will increase the length-scale probed by the diffusing spins [45, 90, 91]. 

Increasing the strength of the magnetic gradient, on the other hand, will improve the 

resolution of the diffusion measurements. This is because stronger diffusion 

encoding gradients will tighten the winding of the magnetisation helix. As a result 

even relatively small displacements can have a noticeable effect on the attenuation of 

the MR signal, allowing the restricting effect of smaller microstructures to contribute 

[45, 96]. Uniform flow will not affect the attenuation of the measured MR signal, 

even though it will result in a net shift of the spin phase of all spins in the sample. 

This is because this coherent form of particle motion will result in a net displacement 

of the spins [45, 90]. Making the reasonable assumption that the flow velocity, v, of a 

diffusing particle remains constant over the length of the displacement, the initial 

position of a spin is r0 + vt while its final position is r1 + vt. Substituting these new 

positions into Eq. (25) results in the vt components cancelling; the magnetisation 

helix is simply translated along the direction of v. 
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One drawback of the design of the PGSE MRI sequence is that spin-spin relaxation 

will result in a continuous loss of signal during the τ periods, and that TE is longer 

than  [45, 90, 96]. Therefore increasing Δ to increase the length-scale probed by 

diffusing spins (see Eq. (22)) will require lengthening TE, resulting in further MR 

signal loss from spin-spin relaxation. If a suitable balance between MR signal 

intensity and the length-scale probed by diffusing spins becomes difficult to achieve, 

a pulsed-gradient stimulated (spin-) echo (PGSTE)-based sequence [45, 98] can be 

used instead (Figure 21).  

 

Figure 21: A simplified pulse sequence for pulsed gradient spin-echo (PGSE) MRI sequence. This 

pulse sequence is differs from  the PSGE  MRI pulse sequence presented earlier (Figure 19) except it 

replaces the  rf pulse with an identical pair /2 rf pulses. Consequently the loss of MR signal during 

the diffusion period is largely due to spin-lattice, rather than spin-spin, relaxation. 
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PGSTE is a modification of the PGSE sequence in which the  pulse is replaced by 

/2–2–/2 (with  being relabelled to 1) [45, 98]. After the first diffusion encoding 

gradient, a /2 rf pulse is used to reorient the spatially labelled spin magnetisation 

vectors so that they lie parallel to the static magnetic field. As a result, the spin 

ensemble is largely subjected to spin-lattice relaxation during  rather than spin-spin 

relaxation. However, the PGSTE sequence only refocusses half of the available 

transverse magnetisation. Consequently, neglecting losses due to relaxation, the 

measured MR signal intensity will be only half that of a Hahn-echo sequence [45, 

98]. Thus PGSTE is most useful for diffusion studies involving large/slowly 

reorientating molecules, such as studies of protein binding/aggregation [45, 99] or 

when T1 ≫  T2 and Δ must be longer than T2 to in order to probe diffusion restricting 

microstructures (see 7.4.2 Analysis of the mature olive MRI experimental results). 

 

3.4 24Bq-space imaging  

During the acquisition of the MR signal, the raw MR diffusion data is temporarily 

stored in a mathematical space known as q-space. This mathematical space is 

analogous to k-space, however spin-displacement data is being stored instead of spin-

density data. In q-space, the wave vector q = (1/2)g relates the diffusion-weighted 

MR signal to the diffusion propagator via the following Fourier transform [45, 100],  

  ( ) ( )exp 2E P i d q R q R R

W

  (26) 

where E is the attenuated diffusion-weighted signal and W  is the plane wave of the 

Fourier transform. Depending on the magnitude and direction of q, different points 

of q-space will be sampled; the magnitude of q (i.e., q) determines the distance of the 

point sampled from the centre of q-space (located at q = 0) while the orientation of q 

indicates the direction of the sampled point relative to the centre of q-space. 

It can be inferred from Eq. (26) that by sampling a sufficient number of unique 

points in q-space (i.e., E(q) values), the EAP can be reconstructed via an inverse 

Fourier transform [45, 100]. However, the Fourier transform requires that q-space 

must be sampled at each point of a dense, three-dimensional Cartesian lattice (Figure 
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22A) [101]. Unfortunately, sampling q-space in this manner would require the 

acquisition of hundreds of diffusion-weighted MR images, resulting in prohibitively 

long image acquisition times. As a consequence, a number of three-dimensional 

diffusion MRI techniques estimate the EAP using a variation of Eq. (26) to process 

diffusion data acquired using a more time efficient sampling scheme. These 

techniques commonly sample q-space using high angular resolution diffusion 

imaging (HARDI) schemes involving one or more q-shells [102, 103]. A q-shell is a 

user-defined sphere in q-space with a radius of q. By sampling points on a number 

q-shells, the angular (i.e., the anisotropy) and radial (i.e., the shape) components of 

the EAP can be estimated using far fewer points than a three-dimensional Cartesian 

lattice.  

 

 

Figure 22: Examples of q-space sampling schemes. (A) Cartesian lattice sampling, (B) low angular 

resolution sampling on a single q-shell, (C) high angular resolution sampling on a single q-shell, (D) 

high radial/low angular resolution sampling on multiple q-shells, (E) high radial/high angular 

resolution sampling on multiple q-shells. The size and shade of the markers indicates their relative 

depth in the image. The origin of q-space is indicated by a red dot. The dimensional axes of q-space 

are measured in m
-1

. 
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The accuracy of the estimation of the angular and radial component of the EAP 

depends on the number of points sampled on each q-shell and the total number of 

q-shells that are sampled. For exampling, increasing the density of points sampled on 

the q-shell will better recover the angular component of the EAP, improving the 

estimation of the orientation of the local diffusion restricting microstructure (Figure 

22B and C). Increasing the number of q-shells sampled, on the other hand, will 

improve the recovery of the radial component of the EAP (Figure 22D and E).Since 

the diffusion-weighted MR signal profile is antipodally symmetric (i.e.,  

E(q) = E(‒q)), acquiring antipodal points in q-space will not yield additional 

information regarding diffusion anisotropy. However, antipodal sampling will help 

reduce the effect of cross-term interactions between the diffusion gradients and the 

image gradients, therefore reducing an unwanted source of MR signal attenuation 

[22, 104]. 

 

3.5 25BCharacterising probability distributions 

This chapter concludes with a discussion on how the EAP, being a distribution of 

probability, can be characterised using a number of useful scalars known as 

cumulants. Cumulants are related to the moments of a distribution, and can be used 

to quantify the shape of a set of points; the EAP is related to the complex cumulant 

generating function via the relation [105] 
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where κn is the n-th cumulant of the expansion. The first cumulant of the series, κ1, is 

the mean of the distribution, and indicates the net displacement of the diffusing 

particle ensemble [106]. As previously explained, the net displacement of a diffusing 

particle ensemble will be zero. The second cumulant, κ2, is the variance of the EAP, 

which is also the MSD of the particle ensemble [106, 107]. The third cumulant, κ3, 

indicates the skewness of the EAP; an EAP that is skewed (i.e., κ3  0) will be an 

asymmetric distribution [106, 107]. Skewness is difficult to accurately measure using 

diffusion MRI (see Appendix A - Generalised diffusion tensor imaging) and as a 
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result, the skewness of the diffusion propagator is typically assumed to be zero. The 

fourth cumulant, κ4, reflects the kurtosis of the EAP and describes the ‘peakedness’ 

of the EAP [80, 106, 107]. When diffusion is restricted, kurtosis will be non-zero. As 

the density of microstructures within a restricted system increases, the distance 

between these structures decreases. As a result, smaller particle displacements 

become relatively more likely than larger displacements and the diffusion propagator 

will become narrower (i.e., the peak of the distribution becomes sharper) [108]. 

Examples of how the shape of the EAP are described using these four cumulants are 

presented below (Figure 23). While cumulants beyond these four exist, they do not 

have an intuitive physical meaning.  

 

Figure 23: Describing the shape of the EAP using cumulants. Here several distributions have been 

provided which have a mean of zero (1 = 0) and the same area under the curve. Both the green and 

black distributions are Gaussian (3 = 0 and 4 = 0). However, the green distribution has a greater 

variance than the black distribution (2 = 2 and 2 = 1, respectively). The blue distribution is 

asymmetrical and thus is skewed (3 = 3). The red distribution, on the other hand, has a sharpened 

peak relative to the Gaussian distributions, and thus has higher kurtosis (4 = 10). 
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Chapter 4 - 2BDiffusion magnetic resonance 

imaging techniques 

 

Having reviewed the fundamental principles of diffusion MRI, a method for 

processing the MR diffusion data must be selected which will be appropriate for the 

needs of the present work. There are a great many diffusion MRI techniques 

available. A generous selection of these are reviewed in the appendix (see Appendix 

A), detailing the core principles that underpin these methods, their minimum 

requirements, advantages, limitations, as well as how components of the diffusion 

data can be visualised. Each diffusion MRI technique has associated advantages and 

limitations, and is suited to different circumstances. A flowchart summarising the 

selection of an appropriate diffusion MRI technique for different criteria has been 

provided below (Figure 24). 

For the studies within this thesis, the selection of a diffusion MRI technique to 

analyse the acquired diffusion MR data was based on its performance in three key 

areas; its accuracy in reconstructing cell/tissue orientation, its computational 

robustness and its ability to process noisy diffusion MR data. After considering the 

pool of diffusion MRI techniques available, two candidates were short listed; 

diffusion tensor imaging (DTI) and Bessel Fourier reconstruction (BFOR) imaging. 

DTI is a well-established and popular diffusion MRI technique; it solves the Bloch-

Torrey equation to determine the effect of diffusion on the net spin magnetisation. 

BFOR imaging is a relatively recent diffusion MRI technique which solves Eq. (26) 

to determine the diffusion propagator from the diffusion-weighted MR signal. To aid 

later discussion and analysis of the diffusion MR data, the theory for both of these 

diffusion MRI techniques is presented in this chapter. 
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Figure 24: A flowchart showing the selection of an appropriate diffusion MRI technique for a given 

set of conditions. This chart includes diffusion tensor imaging (DTI), spherical deconvolution imaging 

(SDI), diffusion orientation transform (DOT), q-ball imaging (QBI), persistent angular structure 

(PAS) MRI, diffusion spectrum imaging (DSI), spherical polar Fourier imaging (SPFI), Bessel Fourier 

orientation reconstruction (BFOR) MRI, generalised DTI (GDTI), and anomalous DTI (ADTI). 
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4.1 26BThe Bloch-Torrey equation 

The Bloch-Torrey equation is a modification of the Bloch equation (cf. Eq. (6)) 

which includes terms to account for the effect of diffusion and flow on M [109], 

 
 0 2

2 1

ˆ ˆ ˆ
x y z

M M M M
D

t T T


 
       



i j kM
M B M + v M . (28) 

Assuming that there is no flow (i.e., v = 0) and that B is parallel to k̂  (i.e., Bx = 0, By 

= 0 and Bz = B0 + gr), the transverse component of Eq. (28) can be rewritten in terms 

of mxy = Mx + iMy, 

   2
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xy xy

xy xy xy

m m
i B m i m D m

t T
 


      


g r .  (29) 

mxy relaxes exponentially with time, and Eq. (29) can be readily solved to determine 

the attenuation of the diffusion-weighted MR signal [45, 95], 

  
  2 2 2

0

exp
3

S g
E g g D

S


 

  
     

  
 , (30) 

where S is the measured diffusion-weighted MR signal intensity, S0 (= S(0)) is the 

diffusion-unweighted MR signal intensity. The analysis of diffusion MRI data could 

be simplified by rewriting Eq. (30) as a linear relation, i.e.,  

  ln E b bD  . (31) 

However, due to the inclusion of the natural logarithm in Eq. (31), the effect of MR 

signal noise will appear more pronounced at high b than at low b. Thus if the ln E(b) 

values are not appropriately weighted, there could be significant error associated 

with the calculated value for D [45, 110]. Consequently, it is preferable to calculate 

D by fitting Eq. (30) to the diffusion data. Regardless, if Eq. (30) or (31) is used to 

analysis data from a diffusion restricted system, D will be dependent on δ and Δ in 

addition to the geometry of local restricting microstructure. In this context, D is an 

apparent diffusion coefficient (ADC), or more accurately, a time dependent diffusion 

coefficient [45, 111, 112].  
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To simplify future calculations, the effective diffusion weighting of the pulse 

sequence in Eq. (30) will be summarised as a single scalar factor, b = 2
g

2
δ

2
(Δ ‒ δ/3). 

For clinical diffusion MRI, a maximum b-value of 1/D is typical; for example, when 

studying the human brain a maximum b-value of 1000-1500 × 10
6
 s m

-2
 might be 

employed [113]. However, some diffusion MRI techniques may require the use of 

much higher b-values. This will be discussed further when these special cases arise.  

 

4.2 27BDiffusion tensor imaging 

As previously discussed (see Section 3.2 The effect of restriction on diffusion), 

anisotropic diffusion measurements are highly useful for determining the orientation 

of coherent restricting microstructures. However, D in Eq. (30) has no directional 

dependence, and hence does not provide any information regarding diffusion 

anisotropy. DTI replaces D with a mathematical object known as a tensor [114]. 

Tensors are special multi-dimensional arrays which are used to express a linear 

relationship between scalars, vectors or other tensors [115, 116]. Within this thesis 

the dimensionality of a tensor will be indicated by its order (e.g. a zeroth order tensor 

is a scalar, a first order tensor is a vector, a second order tensor is a matrix) while the 

lengths of the columns and/or rows of the tensor will be described by its rank. Unless 

explicitly stated otherwise, the components of these tensors are described in the 

laboratory reference frame using x, y and z, and will thus have a column and/or row 

rank of three. 

Tensors are commonly used to establish a linear relation between two vector 

quantities which do not share the same orientation [115, 116]. For example, scalar D 

in Eq. (13) can only relate the flux of diffusion probability and the diffusion 

propagator if J (r0,r1,t) and P(r0,r1,t) are collinear. However, by replacing D with a 

symmetric, second-order diffusion tensor, D, Eq. (13) becomes 
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 . (32) 

The diagonal elements of D relate the components of J (r0,r1,t) and P(r0,r1,t) which 

are parallel to each other; the off-diagonal components, on the other hand, couple the 

components of J (r0,r1,t) and P(r0,r1,t) which are orthogonal to each other [114-

116]. As D is a symmetric tensor (i.e., Dij = Dji), it possesses a subset of six 

independent elements, Dxx, Dyy, Dzz, Dxy, Dxz, and Dyz, with which it is possible to 

reconstruct the entire tensor. When the off-diagonal components of the tensor are 

zero (i.e., the tensor is diagonalised) the diagonal elements of D are termed principal 

diffusion coefficients of the diffusion tensor, and are equivalent to the eigenvalues of 

the tensor [117]. The nature and determination of the eigenvalues of D will be 

explained in further detail below. 

An ADC associated with an arbitrary direction vector û  can be determined from D 

using matrix multiplication 

   Tˆ ˆD u u Du , (33) 

where 
T
 indicates the vector transpose. This relationship can be used to incorporate D 

into the Stejskal-Tanner equation; if û  is collinear with g , Eq. (33) can therefore be 

substituted into Eq. (30), yielding [114] 

     2 2 Texp 3E     g g Dg . (34) 

Recalling Eq. (31), Eq. (34) can also be reduced to a straightforward, linear 

relationship between the parameters of the magnetic diffusion gradient and the 

attenuated diffusion-weighted MR signal. To do so, Eq. (33) is first rewritten as a 

mathematical series. As D is symmetric, Eq. (33) can be rewritten as 
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This expansion can be written as 

  
3 3

1 1

: i j ij

i j

D u u D
 

 u U D = .  (36) 

where U is a symmetric, second order direction tensor, the elements of which are 

equal to uiuj and U : D is the tensor dot product (i.e., scalar product) of the two 

tensors. 

Assuming for now that only one b-value is used for all diffusion measurements, U 

can be multiplied by b to create a second order diffusion-weighting tensor, b, which 

describes the diffusion magnetic gradient in three dimensions, i.e. 
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Replacing U with b in Eq. (36) yields 
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Eq. (38) can now be substituted into Eq. (31); effectively, b and D are replaced with 

the tensor dot product of their respective tensors, b and D [114], yielding 

 ln : 2 2 2xx xx yy yy zz zz xy xy xz xz yz yzE b D b D b D b D b D b D       b D = . (39) 

Rewriting Eq. (39) as a system of linear equations for n unique diffusion gradient 

unit vectors therefore yields 
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The independent elements of D can then be determined from Eq. (40) using an 

appropriate method for solving a system of linear equations. These methods can be 

classified as being either an iterative (i.e., a process that repeatedly refines 

estimations of the elements of D), or a direct (i.e., the system of linear equations is 

rewritten in the form of vectors and matrices, so that elements of D can be calculated 

directly by matrix multiplication) reconstruction approach. Further details regarding 

iterative and direction reconstruction methods can be found in Appendix B. As D 

possesses six independent elements, the system of linear equations must contain a 

minimum of six equations in order to reconstruct the diffusion tensor. Consequently, 

q-space must be sampled in at least six points of a single q-shell in addition to the 

origin of q-space (i.e., the diffusion-unweighted MR signal) [114]. These first six 

points must be unique; they may not be antipodal or have more than two points 

sharing the same plane [118]. Ideally these points will be spaced evenly over the 

surface of the q-shell to reduce directional bias in the diffusion measurements. 

Including additional diffusion measurements (i.e., with q oriented at different 

directions) in the system of linear equations (i.e., overdetermining) will assist the 

reconstruction by reducing the effect of MR signal noise on the diffusion 

measurements and improving the angular resolution of D. 

Once D has been determined, the information it contains can be extracted and 

visualised. There are many ways that this can be accomplished. For example, using 

Eq. (33) and a set of gradient directions defined on the surface of a sphere, the ADC 

with respect to each of these directions can be expressed as the radius of a function in 

spherical coordinates (Figure 25A) [114, 119]. Typically these apparent diffusivity 

profiles are represented by an isosurface (i.e., a surface which passes through the 

points described by the scaled vectors) to assist in visualisation (Figure 25B). The 
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diffusivity profile of isotropic diffusion will be a sphere, while anisotropic will be 

distinctly peanut shaped.  

 

Figure 25: (A) A three-dimensional apparent diffusivity profile created by plotting the ADCs 

associated with ninety-six different gradient directions as the radius of a function in spherical 

coordinates. The ADCs were calculated using Eq. (33) and a diagonalised diffusion tensor (Dxx = 

0.425  10
6
 s m

-2
, Dyy = 0.425  10

6
 s m

-2
, Dzz = 1.90  10

6
 s m

-2
). The x, y, and z axes correspond to 

where the projected ADC equates to Dxx, Dyy and Dzz, respectively (unit length of each axes is not to 

scale). (B) The same apparent diffusivity profile, but represented as an isosurface.  

 

4.2.1 58BEigenvectors, eigenvalues and useful scalars of the diffusion 

tensor 

Since D is a square matrix (see Eq. (32)), it can be decomposed into is corresponding 

eigenvectors and eigenvalues [117]. These components of the tensor are rotationally 

invariant, and are highly useful when analysing and comparing complicated porous 

structures. 

An eigenvector,  , is a unit vector that when multiplied by a square matrix such as 

D will result in itself multiplied by a scalar, λ (i.e., its eigenvalue), i.e., [120] 

 i i iD  . (41) 

Since D is a third rank tensor it possesses three eigenvectors and three corresponding 

eigenvalues. D is also a positive-definite matrix; its eigenvalues are real, positive 

values and its eigenvectors form a complete orthonormal basis, i.e., 

x  

y  

z A B 

x  

y  

z  
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To calculate the eigenvalues and eigenvectors of D, Eq. (41) is rewritten as [120] 

   0 D I  .  (43) 

As   will be a non-zero vector and a non-trivial solution is expected from Eq. (43), 

the determinant of D ‒ λI must be zero [120]. Thus, 
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Rewriting Eq. (44) as a polynomial [120] yields 
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Finding the roots of Eq. (45) will therefore yield the eigenvalues of D. Once the 

eigenvalues are known, the eigenvectors can be calculated by rewriting Eq. (41) as a 

system of linear equations, i.e., [120] 
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Solving Eq. (46) for each eigenvalue will hence result in the components of the 

corresponding eigenvector. When eigenvalues are used to describe anisotropic 

diffusion, one or more of the eigenvalues of D will differ from the remainder (the 

eigenvalues will be equal in value when diffusion is isotropic). The eigenvector 

associated with the largest eigenvalue (i.e., the principal eigenvector,  1) indicates 

the direction of least diffusion restriction [117]. In ordered structures, such as muscle 

fibres and brain white matter, the principal eigenvector is usually assumed to be 

parallel to the longest axis of the restricting microstructure (e.g. the length of a 

cylinder) [114]. Image maps of  1 are highly useful in determining connections 
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between restricting microstructures in neighbouring voxels. These maps can either be 

visualised as a two or three-dimensional field of vectors (Figure 26A) [121] or as a 

diffusion encoded colour image (Figure 26B) [122]. In the latter case, the hue of the 

voxel indicates the orientation of  1. The intensity of coloration can also be 

employed to provide additional diffusion information, such as the degree of diffusion 

anisotropy (see below). For a more complete representation of three-dimensional 

diffusion the three orthogonal eigenvectors of D can be scaled by their respective 

eigenvalues and plotted in a three-dimensional space. When this simplified apparent 

diffusivity profile is converted into an isosurface, it is known as a diffusion ellipsoid 

(Figure 26C) [117]. 

 

 

Figure 26: Three different ways of representing three-dimensional diffusion in a mouse brain. Two-

dimensional vector maps (A) and diffusion colour encoded images (B) indicate the orientation of the 

principal eigenvector. Diffusion ellipsoids can be used instead to create a complete representation of 

three-dimensional diffusion (C). The three diffusion tensor images of the mouse brain were created 

from a set of thirty-six diffusion-weighted MR images acquired using a Bruker 500 MHz wide bore 

NMR spectrometer. The parameters used included three different b-values (60 × 10
6
 s m

-2
, 

239 × 10
6
 s m

-2
 and 537 × 10

6
 s m

-2
) and twelve different diffusion gradient directions (the vertices of 

an icosahedron in Cartesian coordinates). Voxel size is 98  98  500 m. Special thanks to Dr T. 

Stait-Gardner for supplying the mouse brain (under tissue sharing arrangements). 

 

A B C 
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In addition to eigenvalues and eigenvectors, a number of invariant scalar features can 

also be extracted from D. These scalar features are often useful for making 

comparisons between different diffusion restricting systems. One example is the 

mean diffusivity, ⟨D⟩, which can be calculated by finding the mean of the trace (i.e., 

the sum of the diagonal elements of the tensor) of D, [123] i.e., 

   / 3xx yy zzD D D  D . (47) 

Since the trace is an invariant property and not dependent on any particular 

coordinate system, ⟨D⟩ is also equivalent to the mean of the eigenvalues of D [123]. 

Maps of the mean diffusivity are capable of detecting small changes in the 

permeability of porous microstructures, such as changes to cell membrane 

permeability in the case of ischemic cell death [124, 125], as will be demonstrated 

later (see Chapter 8 - Time course study of grape berry split using diffusion MRI). 

The components of the diffusion tensor can also be used to quantify the overall 

anisotropy of a diffusivity profile with a scalar known as a diffusion anisotropy index 

(DAI). Of the many DAI variants that exist, the three most frequently cited are the 

fractional anisotropy (FA), volume ratio (VR) and relative anisotropy (RA) indices 

[126-128]. These three DAIs measure the overall deviation of the 

eigenvalues/diagonal elements of D from its mean diffusivity, i.e., 
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Eqs. (48) – (50) include scaling factors so that each calculated DAI has a value 

between zero (isotropic diffusion) and one (complete anisotropic diffusion). Of these 

three DAIs, FA indices are the most featured in the literature; FA indices are more 

sensitive to variations in anisotropy than RA and VR indices and also have a lower 

sensitivity to errors in D (Figure 27A) [126-128]. However, both RA and VR indices 
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possess useful qualities. For example, VR indices exhibits a stronger contrast than 

FA between image regions with different degrees of anisotropy (Figure 27C), which 

could potentially be useful for biological tissue segmentation. The characteristics of 

RA indices are between those of FA and VR indices. RA indices have a moderate 

level of anisotropic detail and region contrast, as well as a moderate susceptibility to 

errors in D (Figure 27B), offering a compromise between the other two indices [126-

128]. An example of the use of DAIs in clinical studies has been in the investigation 

of neurological impairment after traumatic brain injury [129, 130]. These injuries 

altered the coherence of microstructure within the affected region of brain tissue, 

resulting in highly noticeable changes in diffusion anisotropy. 

      

 

Figure 27: Comparing FA (A), RA (B) and VR (C) maps of a mouse brain. Although all three DAI 

images vary between zero (isotropy) and one (complete anisotropy), the tissue contrast between the 

three images differs. The three DAI images of the mouse brain were created from a set of thirty-six 

diffusion-weighted MR images acquired using a Bruker 500 MHz wide bore NMR spectrometer. The 

parameters used included three different b-values (60 × 10
6
 s m

-2
, 239 × 10

6
 s m

-2
 and 537 × 10

6
 s m

-2
) 

and twelve different diffusion gradient directions (the vertices of an icosahedron in Cartesian 

coordinates). Voxel size is 98  98  500 m. Special thanks to Dr T. Stait-Gardner for supplying the 

mouse brain (under tissue sharing arrangements). 

 

As DTI requires a minimum of seven images to reconstruct D, the total acquisition 

time of DTI can be kept relatively short compared with other three-dimensional 

diffusion MRI technique (see Appendix A), especially when a fast diffusion MRI 

sequence such as echo-planar PGSE imaging [131] is employed. DTI it is most 

effective when the voxels of its images contain only a single fibre population (i.e., 

A B C 
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anisotropically diffusion restricting microstructures within the voxel all having a 

similar orientation. For example, a voxel containing aligned elongated cells, or a 

voxel containing coherent, fibrous protein structures, such as collagen. Figure 28A). 

DTI has been used to great effect in skeletal muscles [87, 132] and the spinal cord 

[130, 133, 134]. However, D possesses only a single principal eigenvector; as a 

consequence, it is impossible to correctly infer the shape and orientation of the 

restricting microstructures when multiple fibre populations are present within a voxel 

(Figure 28B  D). This can be problematic in complicated diffusion restricting 

systems, such as brain white matter [86, 94], and in determining the connections 

between separated brain regions [128, 135, 136]. 

 

Figure 28: Examples of different fibrous microstructure configurations with a voxel (top) and their 

corresponding three-dimensional apparent diffusivity profiles (bottom). These diffusivity profiles 

were created using a second order diffusion tensor. The diffusion profile associated with a single fibre 

population (A) can be readily interpreted to determine its orientation. However, the diffusion profile 

cannot convey the orientation of these fibrous structures when they diverge (B) or bend (C) or 

intersect (D).  

A B D C 
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4.3 28BBessel Fourier orientation reconstruction 

imaging 

One advantage that several diffusion MRI techniques possess over DTI is their 

ability to reconstruct the EAP. Thus, these diffusion MRI techniques can 

simultaneously capture both the angular and radial components of the diffusion-

weighted MR signal. This information can potentially be used to determine the 

orientations of overlapping diffusion restricting microstructures as well as estimate 

the size, shape and density of diffusion restricting microstructures. As discussed in 

Appendix A, diffusion MRI techniques capable of reconstructing the EAP from the 

diffusion-weighted MR signal include DSI [101], DOT imaging [137], DPI [138], 

SPFI [139] and BFOR imaging [140, 141]. Of the listed diffusion MRI techniques, 

BFOR imaging appears to be particularly promising. BFOR imaging was specifically 

designed to accommodate diffusion-weighted images with a low SNR and diffusion 

data with relatively few samples of q-space (both in terms of the number of q-shells 

and the number of points sampled on each q-shell). 

The BFOR algorithm assumes that the diffusion-weighted MR signal satisfies the 

diffusion (or heat) equation (cf. Eq. (14)) [140, 141], 

  
 2

,
,

E t
E t

t


 



q
q  . (51) 

The diffusion equation is a generalisation of the Laplace equation (i.e., 
2
E(q) = 0); 

these two different expressions become equal when the former reaches the steady 

state (i.e., t →  ). Since the diffusion equation is the generalised case, it imposes 

few constraints when solving a given problem. Additionally, the dependence of the 

MR signal attenuation on t will later prove useful when smoothing the EAP. 

In order to find the solution of Eq. (51), the expression can be treated as a Cauchy 

problem with the boundary condition [141, 142] 

    2

i i i   q q   (52) 

where ψi(q) and i are the i-th eigenfunctions and eigenvalues of the Laplace 

operator, respectively. The solution to Eq. (51) is then given by [143],  
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where ci are the coefficients of the expansion. Thus by finding the eigenfunctions and 

eigenvalues of the Laplace operator, the coefficients of the series can be calculated. 

The solution for the Cauchy boundary condition can be derived by separating ψi(q)  

into its angular and radial components [140, 141], i.e., 

      ,i iR q Y  q , (54) 

Rewriting Eq. (52) in spherical coordinates yields 
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Thus by using the technique of separation by variables (see Appendix C), it can 

found that Eq. (55) will possess two solutions, 
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where  in this context is a constant, and R(q) and Y(,) represent the radial and 

angular components of the attenuated diffusion-weighted MR signal, respectively. 

Upon further separation by variables, it can be shown that Y(,) consists of 

spherical harmonic functions (see Appendix C), a set of orthogonal basis functions 

which are highly useful for approximating functions on the surface of a sphere. As 

such, spherical harmonic functions are well suited to capturing the angular 

component of the attenuated diffusion-weighted MR signal. Spherical harmonic 

functions are given by  [144, 145] 
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where  m

l P  are the associated Legendre polynomials of the first kind (i.e., l is an 

integer describing the angular order of the polynomial and m is an integer describing 

the degree of the polynomial). If R(q) is redefined so that 

    
2

i i

i

q R q
q




R  , (59) 

Eq. (56) can then be rewritten, using the relation  
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as [140, 141] 
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This expression is a scaled version of the Bessel differential equation [146]. 

Therefore the solution to Eq. (61) is 

  1 2i l iJ q R   (62) 

where Jl+1/2(x) is a Bessel function of the first kind. Upon converting Jl+1/2(x) into its 

corresponding spherical Bessel function of the first kind, jl (x), the solution of Eq. 

(56) becomes (Eq. 10.1.1 of [147]) 

    i l iR q j q  . (63) 

The spherical Bessel functions and the spherical harmonic functions can then be 

multiplied together to yield an orthonormal basis [140, 141], 

      
1 0

l
m m

nl l nl l

n l m l

C j q Y 
 

  

q q , (64) 

where m

nlC  are the coefficients of the expansion. As spherical Bessel functions 

indefinitely oscillate about zero, a radial distance in q-space must be defined as the 

point at which the radial component of the diffusion-weighted MR signal finally 

decays to zero. In practice, τ is defined as the largest q-value plus the difference 
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between q-values used (i.e., q’ + q) [140, 141]. Since the radial component of the 

diffusion-weighted signal is assumed to decay to zero at τ, it can be inferred that 

     0nl l nlR j    .  (65) 

The values of nl   which satisfy Eq. (65) are known as the roots of the spherical 

Bessel function of the first kind. Thus if nl is designated as the n-th root of the l-th 

order spherical Bessel function of the first kind, the eigenvalues of the Laplace 

operator are given by 
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Therefore, by combining Eqs. (53), (64) and (66), and truncating the expansion to a 

particular radial, N, and angular order, L, the diffusion-weighted MR signal can be 

expanded as [140, 141] 
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where all of the coefficients featured in these equations have been combined into 

m

nlC . The coefficients of Eq. (67) can then be calculated by using this expression as 

the basis for a system of linear equations. Written as a matrix operation, Eq. (67) 

becomes 

 E ZC   (68) 

where C is a vector containing the coefficients of Eq. (67) and 
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Since the diffusion signal is considered to be acquired when t = 0, the exponential 

function featured in Eq. (67) is excluded from Z [140, 141]. Since BFOR MRI uses 

the spherical harmonic series to model the angular component of the diffusion-

weighted MR signal, the minimum number of points that must be sampled on each 

q-shell is given by Eq. (116). The number of q-shells that must be sampled, on the 

other hand, is equal to the radial order by which Eq. (67) was truncated.  

If Z is an ill-conditioned matrix, the Laplace-Beltrami operator can be used to 

regularise the matrix [148, 149]. This matrix regularisation helps smooth spherical 

functions by penalising higher order tensor terms which do not significantly improve 

the accuracy of the reconstruction. This in turn improves the robustness of the matrix 

pseudo-inversion of Z. To perform Laplace-Beltrami, Eq. (68) is rewritten as 

  
1

T T

L N 


  C Ζ Z L N Z E  (70) 

where λL is the angular regularisation constant, L is the angular regulation matrix, N 

is the radial regularisation constant and N is the radial regulation matrix. The L and 

N matrices are diagonal matrices with entries  
22 1l l   and  

22 1n n , respectively. 

Appropriate values for regularisation constants will need to be carefully selected in 

order to ensure that the higher order terms of C are not over smoothed. Useful values 

for the regularisation constants can be found using the L-curve numerical method 

[150], or by simple trial-and-error. 

Once the expansion coefficients of Eq. (68) have been calculated using a matrix 

inversion, the EAP can be reconstructed using Eq. (26). However, this first requires 

that the plane wave featured in Eq. (108) be rewritten in terms of spherical wave 

functions, i.e. 
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Substituting Eq. (71) into Eq. (26) will yield 
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where  
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Solving and truncating this resultant expression with Eq. (67) yields [140, 141] 
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Since the solution of this equation will decrease exponentially as t increases, t can be 

adjusted so as to smooth out high frequency noise in the measured MR signal. Once 

P (R,t) has been determined for a large set of R defined on the surface of a sphere, 

the probability isosurface can be plotted by expressing P (R,t) as the radius of a 

function in spherical coordinates (see Figure 25). The resultant probability profile 

will have high angular contrast and low susceptibility to signal noise (Figure 29). A 

MATLAB script written in-house for processing diffusion MRI data via BFOR 

imaging, and displaying the processed data as a field of probability isosurfaces, is 

included in Appendix D. 

 

 

Figure 29: BFOR EAP profile of water diffusing through two overlapping fibres separated by 45° as 

simulated in MATLAB. The parameters used for the simulations included 200 diffusion gradient 

directions, b = 74, 297, 668, 1187, 1854, 2670 ( 10
6
 s m

-1
),  = 2.5 ms and Δ = 30 ms. The maximum 

spherical harmonic order of the reconstructions was six and the maximum radial order was five. The 

fibres were simulated as cylinders with a 5 m radius and 100 m length. 
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Similarly to DTI, a number of useful scalars can be calculated from the EAP; for 

example, the generalised fractional anisotropy (GFA) index, which is calculated by 

modifying the definition of the FA index (cf. Eq. (48)) [151], yielding 

 
  
  

  

 

  

 

2
2

1

2
2

1

std
GFA

1rms

n

i

i

n

i

i

P PP P dP n

nP P d P






  





 

R
R wR

R R w R

  (75) 

The zero displacement probability, P (0), can also be calculated from the 

reconstructed EAP [140]. P (0) describes the likelihood of individual particles 

having no net displacement during the diffusion period. This probability will increase 

as the restricting microstructure becomes narrower. Thus, this value can be used as 

another measure of diffusion anisotropy. An analytical expression for the zero 

displacement probability can be calculated by solving Eq. (74) with R = 0, i.e.,  
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Finally, the MSD of the EAP can be calculated by exploiting the relationship 

between the Laplacian of E(0) and the MSD [140]. This will yield 
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 R .  (77) 

The greatest limitation of BFOR MRI is that the radial basis does not naturally decay 

to zero. While this does not affect the accuracy of the angular component 

reconstruction of the EAP, it will affect the reconstruction of the radial component 

[140]. Additionally, BFOR imaging was developed with the intention of 

characterising narrow cellular and tissue structures, such as white matter neural 

connectors. BFOR imaging may therefore prove to be an unsuitable diffusion MRI 

method for characterising biological structures which are considerably wider, such as 

the pericarp cells of grape berries (see Chapter 6 - Assessing the use of BFOR 

imaging for botanical studies). 
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Chapter 5 - 3BMaterials and methods  

 

5.1 29BBotanical specimen handling 

Botanical specimens examined within this thesis included grape berries (Vitis 

vinifera L.), olives (Olea europaea L.) and calamondins (Citrofortunella 

macrocarpa). The examinations of the olives and calamondins were included 

primarily to support, or provide complementary comparisons, for the grape berry 

studies. All botanical specimens were stored at 4 °C while not in use. Once selected 

for imaging, the specimen had approximately 30 minutes to equilibrate to 22.0 ± 

0.1 °C during the spectrometer setup and calibration stages. Botanical specimens 

were dried at 70 °C after imaging to determine the dry weight. When a grape berry 

was imaged, the total soluble solids was estimated based on the average of three 

refractormeter (PAL-1, Atago Co., Ltd., Tokyo, Japan) readings obtained from 

berries of the same bunch. 

 

5.2 30BGrape berry growing conditions 

All wine grape berries, cv. Semillon (clone DA16162, own roots), examined within 

this thesis were obtained from 18 grapevines grown in a glasshouse at the National 

Wine & Grape Industry Centre, Wagga Wagga, NSW, Australia. The plants were 

maintained in 35 L pots containing sandy loam. In late winter each plant was pruned 

to a pair of two-bud spurs and brought into the glasshouse to commence a fifth 

season of vegetative growth. Average daily maximum/minimum temperature and 

relative humidity in the glasshouse across the growing season were 30/17 C and 

75/40%, respectively. Each plant was watered beyond field capacity four times per 

day via a pair of drip emitters. Diluted fertiliser (Megamix Plus, Rutec Pty Ltd, 

Tamworth, Australia, 20 mL per plant) was applied fortnightly to the soil and 

wettable sulphur/tribasic copper sulphate was sprayed on the shoots. The shoots were 

trained vertically and pruned to one inflorescence each approximately six weeks after 
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bud burst. The date of bud burst was assessed on each bud [32] and the date of 

flowering (approximately 100 % capfall) was assessed on each inflorescence. All 

table grapes, cv. seedless Thompson and cv. Red Globe, examined within this thesis 

were obtained from a local green grocer, Campbelltown, NSW. 

 

5.3 31BMRI hardware and software 

All MRI was performed on a 500 MHz (11.7 T) wide-bore nuclear magnetic 

resonance spectrometer (AVANCE II; Bruker Biospin Co., Ltd., Germany), 

equipped with triple axis gradients capable of generating 1.5 T m
-1

 magnetic field 

gradients. This spectrometer was located in the Biomedical Magnetic Resonance 

Facility at the Campbelltown Campus of the University of Western Sydney, NSW, 

Australia. Each imaging experiment employed a 30 mm birdcage radio frequency 

coil insert. Bruker MRI sequences were used with minor adjustments as noted in the 

descriptions of each experiment. The interior temperature of the spectrometer was 

maintained at 22.0 ± 0.1 °C during the course of the experiments. Data acquisition, 

post-processing and imaging was controlled from a computer terminal running a 

Linux operating system, using ParaVision (version 5.1; Bruker Biospin Co., Ltd.). 

Image analysis and additional post-processing was performed on a separate computer 

terminal running Microsoft Windows 7. The raw MRI data were imported into 

MATLAB (8.0.0.783, the MathWorks, USA) for analysis. The MATLAB scripts 

used in conducting the analysis of the results were created in-house. 

 

5.4 32BMRI pulse sequences and parameters 

The MRI pulse sequences employed during the studies contained within this thesis 

included fast low angle shot (FLASH) MRI, multi-slice multi-echo (MSME) MRI, 

relaxation enhancement and variable repetition time (RARE VTR) MRI and PGSE 

echo planar DTI.  

FLASH MRI was used to produce two-dimensional MR images weighted by spin-

density. These spin-density MR images were typically employed to check the 
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position of the grapes within the NMR spectrometer and confirming the formation of 

splits in the epidermis of the berries. The FLASH MRI pulse sequence is similar to 

the spin-density MRI pulses sequence presented earlier (Figure 7), except the  rf 

pulse is excluded and the /2 rf pulse is replaced with an rf pulse which rotates spins 

by  (where   /2) [152].  

MSME MRI was used to produce two-dimensional images weighted by spin-spin 

relaxation. These spin-spin relaxation images were used to observe structural features 

of the grape berries. The MSME MRI pulse sequence is similar to the CPMG MRI 

pulse sequence presented earlier (Figure 12), except it has been modified to acquire 

MR data from multiple image within one pass of the MRI pulse sequence [153].  

RARE VTR MRI was used to produce sets of two-dimensional images weighted by 

varying degrees of spin-spin and spin-lattice relaxation. These relaxation weighted 

images were primarily used to examine the vascular/extra-vascular transport of 

paramagnetic ions throughout the grape berry pericarp. The RARE VTR MRI pulse 

sequence is similar to the CPMG MRI pulse sequence presented earlier (Figure 12) 

except multiple sets of spin-echo images are acquired and TR is varied between these 

different image sets [154]. 

PGSE echo planar DTI was used to produce two-dimensional images weighted by 

diffusion. These diffusion-weighted images were used to study the morphology of 

grape berry tissues, or changes in berry morphology/physiology over time due to 

experimental treatments. Echo planar PGSE is a modification of the PGSE pulse 

sequence presented earlier (Figure 21) allowing the acquisition of the entire image in 

a small number of segments rather than acquiring each individual line of voxels 

along the phase spatial encoding direction of the image [114, 131].  

The MRI pulse sequence parameters (including FOV, MTX, THK, TR, TE and NA, 

as well as the number of echoes,  and  if applicable) are listed with each MRI 

experiment. The voxels sizes of the MR images included in this thesis are indicated 

in the corresponding figure captions. 
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5.5 33BConfocal microscopy 

All microscopy images include in this thesis were acquired using a confocal 

microscope (LSM5 Pascal; Zeiss, Germany) employing a 488 nm Argon laser and a 

10 × objective Plan-Apochromatic lens. The microscopy images were acquired from 

a computer terminal running a Windows 7 operating system using Zen 2009 (Zeiss, 

Germany). 
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Chapter 6 - 4BAssessing the use of BFOR 

imaging for botanical studies 

 

6.1 34BIntroduction 

Having reviewed both DTI and BFOR, it is apparent that both techniques have a 

number of associated advantages. For example, DTI is highly robust and requires 

fewer diffusion-weighted MR images than BFOR imaging. DTI is also a well-

established diffusion MRI technique; it has already been employed in previous 

studies to examine the morphology of fibrous botanical samples such as celery and 

asparagus [24, 155-157]. BFOR imaging, on the other hand, can better capture 

complicated angular and radial components of the diffusion-weighted MR signal. 

However, as previously mentioned, BFOR imaging was originally designed with 

intention of characterising narrow cells and tissue structures, such as studies of brain 

white matter. As neural fibres measure only a few micrometres in diameter [158, 

159], BFOR imaging may struggle to accurately reconstruct the angular 

characteristics of microstructures which are considerably wider (see Section 1.1.1 

Cell sizes of the grape berry pericarp tissues). This capability must be tested to 

determine the suitability of BFOR imaging for studying botanical specimens. 

The objective of the experiments described in the current chapter was to assess the 

capabilities of BFOR imaging. The articles that describe the original implementation 

of BFOR imaging focussed primarily on testing its ability to reconstruct features 

from the radial component of the EAP (i.e., MSD, P0 and GFA) [140, 141]. To 

provide a contrast to these previous tests, this investigation instead focused on testing 

the accuracy of the angular reconstruction of the EAP. This was done by measuring 

the deviation of the EAP isosurface maxima from the true orientation of two distinct 

and overlapping simulated fibre populations. These simulations included the 

reconstruction of EAP isosurfaces for different spherical harmonic orders, degrees of 

MR signal-to-noise and fibre geometries. In previous tests of the capabilities of 

BFOR imaging the attenuation of the diffusion-weighted MR signal was simulated 
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using a three-dimensional bi-exponential diffusion model [140, 141]. A disadvantage 

of using this model to simulate the diffusion-weighted signal is that its physiological 

implications [160, 161], and the dimensions of the diffusion restricting 

microstructure being simulated, are not clear. Consequently, for this investigation the 

simulated diffusion data was created using an eigenvalue expansion of the diffusion 

propagator within a cylindrical geometry [162-165] which would reasonably 

approximate the size and shape of grape berry mesocarp cells. 

 

6.2 35BMethod 

6.2.1 59BDiffusion model for data simulation 

The attenuation of the diffusion-weighted MR signal was simulated using the Fourier 

relationship between E and the EAP (see Eq. (26)). This involved calculating the 

EAP via the eigenvalue expansion of the diffusion propagator within a cylindrical 

geometry [162-165] before substituting EAP into Eq. (26), under the SGP condition, 

to yield E for a number of different q (see Section 6.2.2 Independent simulation 

parameters and 6.2.3 Dependent simulation parameters). The diffusion experiments 

were all simulated in MATLAB; special thanks go to Benjamin Moroney for sharing 

his MATLAB code for simulating the diffusion data using this method. 

 

6.2.2 60BIndependent simulation parameters 

The parameters selected for the simulation of the attenuated diffusion-weighted MR 

signal were chosen so as to be similar to those used in the original articles [140, 141].  

Thus, E(q) was calculated using,  = 50 ms,  = 1 ms, q-values 50, 100, 150, 200, 

250, 300  10
3
 m

-1
 (i.e., b-values 124, 497, 1118, 1987, 3104, 4470  10

6
 s m

-2
) and 

D = 2.3  10
-9

 m
2
s

-1
. The attenuated diffusion-weighted MR signal was simulated for 

100 directions evenly spaced over the surface of each q-shell using an electrostatic 

repulsion model.  was kept much shorter than in the papers cited above in order to 

meet the SGP condition. The BFOR reconstruction was performed with N = 6 and  

= 350  10
3
 m

-1
. R = 50  10

-6
 m and t = 0 for the respective reconstruction and 

smoothing of the probability isosurface. Two overlapping cylindrical geometries 
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were simulated in each experiment. The length of the restricting cylindrical geometry 

was maintained at 250 μm. 

 

6.2.3 61BDependent simulation parameters 

Rician noise [166, 167] was added to simulated E(q) values in order to achieve SNRs 

of 10, 50 and 100. These respectively indicate low, moderate and high MR signal-to-

noise. The harmonic order of the spherical harmonic functions used in the processing 

of the diffusion data included L = 4, 6, 8 and 10. Three different diameters for the 

cylindrical geometry were included in the simulation, including d = 5, 25 and 50 μm, 

and the two simulated fibres were separated by 0, 30, 45, 60 and 90 (a fibre 

separation of 0 yields the same result as a single simulated fibre). Each combination 

of the parameters listed in this section was tested, resulting in 180 different 

experiments. A hundred simulations were run for each of these experiments for 

statistical analysis. The coefficients of the Bessel-Fourier expansion (see Eq. (67) 

were angularly and radially regularised before being used to calculate the EAP [168] 

in order to smooth the probability isosurfaces. The values of these regularisation 

constants depended upon the SNR and the width of the cylinder used in the 

simulation (Table 1). 

 

Table 1: The constants employed to regularise the angular component of the Bessel-Fourier expansion 

coefficients. The constants used to regularise the radial component were ten times the magnitude of 

the values in this table. 

  Width 

SNR d = 5 μm d = 25 μm d = 50 μm 

10 1 1 1 

50 100  10
-3 

1 1 

100 1  10
-6

 1 1 

 

 

6.2.4 62BReal data from a botanical system 

To conclude the test, BFOR imaging was used to reconstruct diffusion data acquired 

from a real botanical system. As the structure of the grape berry mesocarp is quite 
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simple, the botanical specimen selected was a ripe calamondin. The flesh of the 

calamondin is divided into a number of self-contained segments (i.e. multiple carpels 

fused together). The calamondin carpels in turn consist of irregularly shaped pulp 

vesicles [169]. These vesicles are large plant cells, measurable on the millimetre 

scale and visible to the eye. Since it is possible to achieve an image voxel size on the 

micrometre scale, the reconstructed EAP isosurfaces will reflect the internal 

structures of the cell. 

A PGSE echo planar DTI sequence was used to produce two-dimensional diffusion-

weighted images of the calamondin. The sequence parameters used included THK 1 

mm, MTX 128 × 128, δ 1 ms, Δ 70 ms, TE 76 ms, TR 11000 ms and NA 2. Five 

diffusion measurements, b = 500, 1000, 1500, 2000 and 3000  10
6
 s m

-2
 (q  85, 

120, 147, 169, 208  10
3
 m

-1
) were performed along forty-two directions (the 

vertices of a pentakis icosidodecahedron). One S0 image was also acquired in order 

to normalise the diffusion weighted images. The total acquisition time was ~16.5 h. 

Diffusion data from a single transverse slice of the calamondin was acquired, located 

near the equator of the fruit. The acquired diffusion data was reconstructed using 

DTI and BFOR imaging. For the BFOR image reconstruction, L = 4 and  

 = 350  10
3
 m

-1
. The EAP was reconstructed with N = 1 and N = 5. The DTI and 

BFOR images were reconstructed as maps of diffusion ellipsoids and probability 

isosurfaces respectively. To smooth the BFOR probability isosurfaces, 

R = 350  10
-6

 m and t = 0. The expansion coefficients were regularised using an 

angular/radial regularisation constant of 3  10
3
 or 30  10

3
, respectively 

 

6.3 36BResults 

6.3.1 63BSimulated data 

The results of the simulations for angular orders 4, 6, 8 and 10 are presented in the 

tables below (Table 2 through Table 5, respectively). The effect of the width of the 

cylindrical geometry on the accuracy of the reconstructed fibre orientations was quite 

marked. For example, diffusion data with a moderate or a high SNR simulated from 

a pair of 5 μm diameter cylinders could be used to determine their orientations with a 

mean deviation from the ground truth by less than 5 for most cases. However, for 
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50 μm diameter cylinders, the reconstructed fibre orientation notably deviated from 

the ground truth except for fibre separations of 0 and 90. There were difficulties in 

resolving the two simulated fibres when they were only separated by a small degree 

of separation (i.e., 30 μm). Only when the spherical harmonic order of the Bessel-

Fourier expansion was high (i.e., L = 10) could two pairs of local maxima be 

observed. However, increasing the spherical harmonic order also resulted in a higher 

sensitivity to MR signal-to-noise. 

 

6.3.2 64BReal data 

The diffusion data were reconstructed within a selected region of interest which 

included multiple calamondin vesicles (Figure 30). As previously described [169], 

these vesicles were irregular in both size and shape. The dimensions of the vesicles 

within the region of interest varied between 0.5 and 4 mm. The diffusion data were 

reconstructed as DTI, QBI and BFOR images (Figure 31). The principal orientation 

of the diffusion ellipsoids from the diffusion tensor image was comparable to the 

probability isosurfaces of both BFOR images. The probability isosurfaces that 

constituted the BFOR (N = 5) image tended to be more elongated than the probability 

isosurfaces of the BFOR (N = 1) image. This indicates that the voxels of the BFOR 

image typically possess a single principal orientation population. 

 

 

Figure 30: Transverse diffusion-unweighted image of the calamondin. The region of interest is 

highlighted in red. Scale bar; 3 mm. 
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Table 2: The deviation of the reconstructed simulated fibre orientations from the ground truth (in degrees). The reconstruction was performed with a spherical harmonic order 

of four. 

Fibre 

separation 

SNR 10 SNR 50 SNR 100 

d = 5 μm d = 25 μm d = 50 μm d = 5 μm d = 25 μm d = 50 μm d = 5 μm d = 25 μm d = 50 μm 

0 0.00 ± 0.00 4.88 ± 2.14 11.77 ± 6.72 0.00 ± 0.00 0.00 ± 0.00 1.62 ± 2.01 0.00 ± 0.00 0.00 ± 0.00 0.08 ± 0.56 

30 15.22 ± 0.09 15.68 ± 0.57 18.55 ± 4.29 15.26 ± 0.00 15.20 ± 0.12 15.25 ± 0.23 15.26 ± 0.00 15.23 ± 0.08 15.23 ± 0.10 

45 22.59 ± 0.09 23.05 ± 0.45 23.81 ± 3.23 22.52 ± 0.05 22.96 ± 0.08 23.19 ± 0.22 22.50 ± 0.02 23.00 ± 0.03 23.07 ± 0.23 

60 2.68 ± 1.21 26.27 ± 8.46 26.69 ± 7.88 2.93 ± 0.00 23.55 ± 8.60 29.69 ± 3.02 2.93 ± 0.00 13.06 ± 5.05 29.86 ± 1.60 

90 0.75 ± 1.11 10.26 ± 6.95 29.06 ± 14.28 0.00 ± 0.00 0.63 ± 1.16 3.86 ± 1.82 0.00 ± 0.00 0.00 ± 0.00 1.39 ± 1.41 

 

 

Table 3: The deviation of the reconstructed simulated fibre orientations from the ground truth (in degrees). The reconstruction was performed with a spherical harmonic order 

of six. 

Fibre 

separation 

SNR 10 SNR 50 SNR 100 

d = 5 μm d = 25 μm d = 50 μm d = 5 μm d = 25 μm d = 50 μm d = 5 μm d = 25 μm d = 50 μm 

0 0.00 ± 0.00 6.81 ± 3.68 16.95 ± 9.81 0.00 ± 0.00 0.37 ± 1.21 3.20 ± 2.17 0.00 ± 0.00 0.04 ± 0.40 0.65 ± 1.51 

30 15.14 ± 0.13 16.52 ± 2.65 21.48 ± 8.54 15.23 ± 0.08 15.19 ± 0.18 15.33 ± 0.35 15.26 ± 0.00 15.22 ± 0.09 15.26 ± 0.23 

45 1.48 ± 1.50 20.72 ± 5.69 23.30 ± 7.26 0.00 ± 0.00 23.05 ± 0.26 22.92 ± 1.43 0.00 ± 0.00 23.10 ± 0.12 23.20 ± 0.59 

60 2.20 ± 1.18 17.31 ± 8.86 29.87 ± 15.71 1.08 ± 0.53 4.51 ± 0.97 16.59 ± 10.53 0.98 ± 0.28 3.67 ± 0.80 7.70 ± 2.95 

90 0.98 ± 1.37 15.21 ± 7.17 29.72 ± 13.95 0.00 ± 0.00 1.96 ± 1.51 6.17 ± 2.18 0.00 ± 0.00 0.40 ± 0.89 2.74 ± 1.56 
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Table 4: The deviation of the reconstructed simulated fibre orientations from the ground truth (in degrees). The reconstruction was performed with a spherical harmonic order 

of eight. 

Fibre 

separation 

SNR 10 SNR 50 SNR 100 

d = 5 μm d = 25 μm d = 50 μm d = 5 μm d = 25 μm d = 50 μm d = 5 μm d = 25 μm d = 50 μm 

0 3.82 ± 1.49 37.37 ± 25.70 39.44 ± 23.91 0.00 ± 0.00 1.04 ± 1.84 3.95 ± 2.03 0.00 ± 0.00 0.28 ± 1.02 1.58 ± 2.00 

30 13.26 ± 4.29 40.26 ± 17.79 38.19 ± 17.29 15.27 ± 0.05 15.25 ± 0.25 15.55 ± 1.14 15.28 ± 0.03 15.20 ± 0.16 15.39 ± 0.30 

45 4.08 ± 1.70 40.36 ± 19.09 41.68 ± 18.31 1.69 ± 0.71 23.06 ± 0.94 21.57 ± 4.55 1.97 ± 0.20 23.24 ± 0.40 22.33 ± 1.56 

60 4.86 ± 1.22 36.64 ± 21.36 39.97 ± 20.68 1.48 ± 0.00 5.08 ± 1.22 13.08 ± 6.71 1.48 ± 0.00 4.01 ± 0.80 7.81 ± 3.72 

90 4.02 ± 1.66 46.21 ± 18.99 43.06 ± 19.74 0.00 ± 0.00 3.14 ± 1.64 8.11 ± 2.99 0.00 ± 0.00 0.78 ± 1.13 4.00 ± 1.72 

 

 

Table 5: The deviation of the reconstructed simulated fibre orientations from the ground truth (in degrees). The reconstruction was performed with a spherical harmonic order 

of ten. 

Fibre 

separation 

SNR 10 SNR 50 SNR 100 

d = 5 μm d = 25 μm d = 50 μm d = 5 μm d = 25 μm d = 50 μm d = 5 μm d = 25 μm d = 50 μm 

0 2.99 ± 2.17 44.73 ± 24.00 46.84 ± 24.20 3.98 ± 0.00 1.74 ± 2.26 5.39 ± 2.46 3.98 ± 0.00 0.16 ± 0.78 2.73 ± 2.22 

30 9.76 ± 6.31 40.98 ± 19.00 39.62 ± 18.74 3.31 ± 0.44 15.27 ± 1.29 14.78 ± 2.66 3.21 ± 0.00 15.28 ± 0.27 15.50 ± 0.35 

45 6.77 ± 4.77 46.88 ± 19.09 44.83 ± 20.82 2.10 ± 0.52 21.09 ± 4.03 22.84 ± 9.78 1.99 ± 0.00 22.42 ± 2.58 22.98 ± 7.41 

60 7.26 ± 4.43 39.63 ± 19.80 42.40 ± 20.50 3.95 ± 0.48 6.04 ± 1.54 12.33 ± 5.34 3.75 ± 0.46 4.41 ± 1.37 8.48 ± 2.87 

90 7.92 ± 5.90 44.76 ± 18.62 41.53 ± 16.97 1.99 ± 0.00 4.26 ± 1.63 9.47 ± 2.61 1.99 ± 0.00 2.08 ± 1.52 5.17 ± 1.81 
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Figure 31: DTI (A), BFOR (N = 1) (B) and BFOR (N = 5) (C) profile of water diffusing through the 

calamondin region of interest (see Figure 30).  When performing the BFOR reconstructions, L = 4 and 

 = 350  10
3
 m

-1
. The MRI pulse sequence parameters used for the acquisition included THK 1 mm, 

MTX 128 × 128, δ 1 ms, Δ 70 ms, TE 76 ms, TR 11000 ms and NA 2. Five diffusion measurements,  

b = 500, 1000, 1500, 2000 and 3000  10
6
 s m

-2
 (q  85, 120, 147, 169, 208  10

3
 m

-1
) were 

performed along forty-two directions (the vertices of a pentakis icosidodecahedron). 

A 

B 

C 
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6.4 37BDiscussion 

The results of simulated diffusion data experiments indicate that BFOR imaging is 

well suited to reconstructing the orientation of complicated diffusion restricting 

structures consisting of narrow fibres, such as brain matter and muscle tissue. 

However, it could be inferred from the results that this method will not be suited to 

the examination of tissues consisting of fibres 50 μm or wider. By increasing the 

length of the 50 μm simulated cylindrical geometry, the deviation of the deduced 

fibre orientation from the ground truth was reduced. Therefore the decrease in the 

accuracy of the reconstructed probability isosurface with respect to cylindrical width 

was linked to the anisotropy of the diffusion restricting simulated geometry. 

Consequently, BFOR imaging can be employed for wide fibrous tissue structures, 

provided that they are highly elongated and the diffusion period is long (i.e.,  50 

ms). This technique is suited to the characterisation of the plant vasculature, roots, 

stems and petioles due to the elongated fibres that comprise these tissues. However, 

less anisotropic biological structures can potentially be examined by decreasing the 

spherical harmonic order of the Bessel-Fourier expansion and ensuring that the 

diffusion-weighted images have a high SNR. While expansions of the MR signal at 

low spherical harmonic orders result in probability isosurfaces with poor angular 

resolution, expansions at high spherical harmonic orders are much more sensitive to 

MR signal noise as the more complicated isosurface fits more closely to noisy 

diffusion data. 

The BFOR images reconstructed from the diffusion data acquired from the 

calamondin were a promising indicator of the suitability of this diffusion MRI 

technique for imaging complicated botanical systems. The calamondin presented a 

special challenge as the large size of its vesicles meant that a subcellular image 

resolution was achievable. While the vesicles of the calamondin were irregular in 

shape, there was a preference for radial cell elongation. However, within the cells 

much more diverse environments are possible. To provide a standard with which to 

compare the reconstructed BFOR images, the diffusion data was also reconstructed 

as a DTI image. Due to the low anisotropy of the vesicle microstructure, the 

spherical harmonic order of the BFOR reconstructions was kept relatively low (i.e. 

L = 4).  
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Overall, both BFOR images compared favourably with the DTI image, with the 

shape of the BFOR (N = 5) probability isosurfaces tending to fall somewhere 

between that of diffusion ellipsoids and the BFOR (N = 1) probability isosurfaces. 

The BFOR probability isosurfaces typically exhibited a single pair of maxima, 

indicating only one principal direction of diffusion within the voxel. However, in 

some regions of the cell, the shape of the probability isosurface indicated that there 

was more than one preferred diffusion direction population present. These voxels 

likely reflect the anisotropic microstructure of cellular organs. 

 

6.4.1 65BSelecting probability isosurface smoothing constants 

Selecting an appropriate set of constants to smooth reconstructed probability 

isosurfaces was important to consider when processing the diffusion data. The choice 

of these constants was made to maximise the smoothness of the isosurface while 

sacrificing as little angular resolution as possible. The smoothness of the 

reconstructed isosurface was largely dictated by the choice of the angular and radial 

regularisation constants. The value of these two regularisation constants was in turn 

dependent on two primary factors; the width of the cylindrical geometry and the 

maximum harmonic order of the spherical harmonic functions used in the diffusion 

model. Probability isosurfaces reconstructed from diffusion models with a high 

harmonic order (i.e., 8 or 10) generally required regularisation constants much 

smaller than one to ensure the smoothness of the surface. As the width of the 

simulated fibre increased, the value of regularisation constants had to be likewise 

increased in order to smooth the isosurface. This is because the effect of MR signal 

noise has a stronger influence over the shape of the isosurface when the cylindrical 

geometry is less anisotropic.  

The regularisation constants were not changed between experiments which differed 

only by SNR or the degree of separation between simulated fibres. This is because a 

pair of regularisation constants that were suitable for regularising the coefficients of 

the Bessel-Fourier expansion when the diffusion data had a low SNR was also 

suitable for coefficient regularisation when the diffusion data has high SNR. 

Likewise, a pair of regularisation constants that were suitable for regularising the 

coefficients of the Bessel-Fourier expansion when the simulated fibres were 
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separated by a small degree was also suitable for coefficient regularisation when the 

fibres had a higher degree of separation. It was observed that probability isosurfaces 

reconstructed from diffusion data with a high SNR and/or with a low spherical 

harmonic order could be regularised with a wider range of regularisation constants 

without notably changing the shape of the isosurface. Another reason for not 

changing the regularisation constants due to variations in the degree of separation 

between simulated fibres is that this would require a priori information regarding the 

restricting microstructure.  

The use of t as smoothing factor was found too unreliable for use in these tests. 

Values of t greater than zero radically smoothed and altered the probability of the 

isosurface but did not approach a stable shape unlike when regularising the 

coefficients of the Bessel-Fourier expansion. It was therefore impossible to discern 

the correct shape of the isosurface without a priori knowledge of the diffusion 

restricting system by employing this smoothing factor.  This finding is unfortunate as 

the inclusion of t in Eq. (74) offered a potential method for controlled isosurface 

smoothing and an additional advantage over other diffusion MRI techniques, such as 

q-ball imaging and diffusion propagator imaging (see Appendix A - q-ball imaging 

and Appendix A - Diffusion propagator imaging), where isosurface smoothing 

cannot be controlled. 

To accommodate the presence of both high and low anisotropy diffusion restricting 

microstructure within a diffusion-weighted image, a hybrid spherical harmonic order 

scheme could be employed. The diffusion data could first be processed using q-ball 

imaging in order to estimate the GFA (see Appendix A - q-ball imaging). Regions 

which have a high GFA could be modelled using BFOR at a high spherical harmonic 

order of regions while regions with a low GFA could be modelled at a lower 

spherical harmonic order. However, the coefficients of the Bessel-Fourier expansion 

relating to these different regions must be regularised with different constants in 

order to ensure that the probability isosurface remains smooth. 

The results of the simulations indicate that BFOR imaging is not well suited to 

imaging grape berries. The large dimensions of the grape berry cells (see Section 

1.1.1 Cell sizes of the grape berry pericarp tissues) could result in a poor fit using 

BFOR imaging. Additionally, from previous observations gathered using traditional 
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optical microscopy [4, 27], it is known that the bulk of the grape berry consists of 

radially elongated parenchyma. Consequently, there is a great likelihood that only 

one principal direction of diffusion will exist per voxel. Hence from this point 

forward, the diffusion-weighted images of the grape berry pericarp will be processes 

using DTI. However, it will be noted here that BFOR imaging could potentially 

prove useful for studying narrow and complicated plant tissue structures, such as root 

systems and leaf petioles. 
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Chapter 7 - 5BDiffusion MRI of grapes at 

different stages of development 

 

[The results contained within this chapter were presented in ‘Dean, R. J., T. 

Stait-Gardner, S. J. Clarke, S. Y. Rogiers, G. Bobek and W. S. Price (2014). 

"Use of diffusion magnetic resonance imaging to correlate the developmental 

changes in grape berry tissue structure with water diffusion patterns." Plant 

Methods 10, 35.’] 

 

7.1 38BIntroduction 

Having selected DTI as the diffusion MRI method of choice for investigating the 

tissues of the grape berry pericarp, the diffusion MRI investigation of pericarp 

morphology could commence. The first objective of the relaxation and diffusion 

MRI experiments was to verify whether they can accurately reflect the relative size, 

orientation and organisation of the cells that constitute the different tissues of the 

grape berry pericarp. As previous MRI studies of grape berry tissue structure have 

focussed on grape berries at single time-points, the second objective of the study was 

to examine structural changes across grape berry development via diffusion and 

relaxation MRI. A brief and complementary MRI study on mature olives was also 

included in this chapter in order to determine the applicability of relaxation and 

diffusion MRI to fruits and vegetable with high natural oil content. Natural oils 

extracted from plant materials, such as olive, coconut, corn and palm oil, are often 

highly valued commodities [170]. As natural oils are highly hydrophobic, it is 

reasonable to hypothesise that diffusing water molecules are likely to treat small 

droplets of oil encountered in the cell cytoplasm [171] as diffusion restricting 

obstacles. Depending on the concentration of oil in the cytoplasm, water diffusion 

could potentially be heavily restricted. High concentrations of oil in the cell 

cytoplasm could prevent water molecules to reaching and probing surrounding 
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diffusion restricting cellular boundaries. Consequently, it may prove that diffusion 

MRI is unsuitable for examining the morphology of fruits and vegetables with high 

oil content. Mature olives were determined to be an ideal candidate for this 

complementary study as they are also comparable to grape berries in terms of their 

internal tissue structure and cellular dimensions [172, 173]. 

 

7.2 39BMaterials and methods 

7.2.1 66BExperimental procedures 

Berries were sampled fortnightly for imaging, beginning four weeks after flowering 

and ending three months later. To minimise developmental variability at each 

sampling event, grape bunches were assigned to classes according to flowering date 

(28, 41, 55, 70, 84, 95 and 109 DAF respectively). Seven bunches were randomly 

chosen per sampling event. Each sample consisted of the distal portion of the bunch 

(approximately 10 berries), which were obtained by cutting the rachis while it was 

momentarily submersed in tap water. The detached, distal portion of the bunch was 

wrapped in a moist paper towel, placed in a zip-lock bag and shipped overnight to 

the Biomedical Magnetic Resonance Facility. Three berries were examined per age 

class (for a total of twenty-one grape berries) to monitor changes in the diffusion 

pattern across the berry over the course of its development. Berries of an average size 

(with respect to the bunch) were cut 3 to 4 mm above the pedicel. All MRI protocols 

were completed within 11 hours of berry detachment. Three detached, mature olives, 

cv. Correggiolla, were also imaged over the course of this study to offer a 

comparison to the grape berries. These two different fruits were imaged using the 

MRI sequences described below. 

 

7.2.2 67BMRI pulse sequence protocols for the grape berries 

A MSME MRI sequence was employed to produce two-dimensional images of the 

grape berries which were weighted by spin-spin relaxation. The sequence parameters 

used included THK 1 mm, MTX 256 × 256, a train of 16 echoes spaced 10 ms apart, 

TR 5 s and NA 2 (total acquisition time ~32 min).  A PGSE echo planar DTI 
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sequence was used to produce three-dimensional images of the grape berries 

weighted by diffusion. The sequence parameters used included THK 1 mm, MTX 

128 × 128, δ 1 ms, NA 1 and 13 segments. Two diffusion measurements (b 

weighting of 250 and 500 s mm
-2

) were performed along forty-two directions (the 

vertices of a pentakis icosidodecahedron). One S0 image (which had a negligible 

diffusion weighting) was also acquired in order to normalise the diffusion weighted 

images. The echo-planar DTI pulse sequence parameters were set in order to 

maximise the length of Δ and minimise the loss of MR signal due to spin-spin 

relaxation. Additionally, the TR was adjusted to be five times the length of the 

maximum spin-lattice relaxation time (5  T1) of each grape berry in order to 

minimise unintended spin-lattice relaxation weighting. Due to differences in the spin-

spin and spin-lattice relaxation properties of the berries grape across their 

development, Δ, TE and TR were adjusted for each age class of grape berry (total 

acquisition time ~2.1  3.8 h) (Table 6). 

 

Table 6: Summary of the Δ, TE and TR values used for the DTI sequences. These values were 

adjusted for each age class of grape berry due to changes in the transverse and spin-lattice relaxation 

properties of the berries across their development. 

Berry age 

(DAF) 
Δ (ms) TE (ms) TR (ms) 

28 25 40 12500 

41 50 65 15000 

55 50 60 15000 

70 50 60 10000 

85 25 35 8000 

95 25 35 7000 

109 25 35 7000 

 

 

 



 

92 

7.2.3 68BMRI pulse sequence protocols for the olives 

A MSME MRI sequence was employed to produce two-dimensional images of the 

olives which were weighted by spin-spin relaxation. The sequence parameters used 

included THK 1 mm, MTX 64 × 64, a train of 16 echoes spaced 10 ms apart, TR 5 s 

and NA 4 (total acquisition time ~16 min). A PGSTE DTI pulse sequence was 

employed to produce three-dimensional images of the olives which were weighted by 

diffusion. A faster (i.e. echo planar variant) diffusion MRI sequence could not be 

employed due a noticeable loss of radio-frequency magnetic pulse power arising 

from the high concentration of salt in the olives. Additionally, since a low mean 

diffusivity coefficient was expected for the olive pericarp tissue, a lengthy diffusion 

period was imposed to ensure that diffusing water molecules had ample time to probe 

restricting tissue microstructures. Consequently, a PGSE DTI sequence could not be 

employed due to prohibitive MR signal loss arising from spin-spin relaxation.  

The sequence parameters of the PGSTE DTI pulse sequence used included THK 1 

mm, MTX 64 × 64, δ 6 ms, Δ 80 ms, TE 20 ms, TR 3500 ms and NA 4 (total 

acquisition time ~10 h). Two diffusion measurements (b weighting of 80000 and 

160000 s mm
-2

) were performed along twenty directions (the vertices of a 

dodecahedron). One S0 image was also acquired in order to normalise the diffusion 

weighted images. For the analysis of the spin-spin relaxation and DT images of the 

olive, the pericarp was treated as a single tissue. This was due to the large voxel size 

of the images (i.e., 390 × 390 × 1000 μm) and lack of distinctive tissue types visible 

in the images. 

 

7.2.4 69BMR image analysis 

Each constituent tissue of the grape berry pericarp (see Section 1.1 The tissues of the 

grape berry pericarp and Figure 32) was analysed independently from all other 

regions by the application of image masks. For the analysis of the relaxation images, 

a mean T2 was determined for each of the pericarp tissues, from each grape berry in 

the same age group. A standard error was also calculated for each tissue based on the 

mean T2 values across each respective age group. The acquired DT image data, on 

the other hand, was used to create three images of each grape berry; a diffusivity map 

(a map of the average ADC for each voxel), a diffusion vector field map and a 
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diffusion colour map (to indicate the direction of least restricted diffusion). The DT 

colour maps used a symmetrical additive red/blue/green colour scheme to represent 

that the direction of least restricted diffusion in each voxel was 

horizontal/longitudinal/ perpendicular with respect to the FOV. Mean diffusivity 

values and accompanying standard errors were calculated from diffusivity maps on a 

per tissue basis. 

 

 

Figure 32: Tissue regions of the grape berry (transverse plane). Here the five tissue regions of the 

grape berry are provided with reference to a spin-spin relaxation image (A) and a diffusion tensor 

image (B). Ex: exocarp, OM: outer mesocarp, IM: inner mesocarp, S: septum, SI: seed interior. The 

outer, black dashed curve indicates the border between the outer mesocarp and the inner mesocarp 

while the inner, black dashed curve indicates the border between the inner mesocarp and the septum. 

 

A high spatial resolution diffusion tensor (DT) image of a grape berry 55 DAF was 

used to confirm whether the radial striation patterns visible in the relaxation images 

were linked to variations in cellular size across the inner mesocarp tissue. This was 

done by using the S0 image (which has a small T2 weighting, and had visible striation 

patterns in the inner mesocarp region) to create an MR signal intensity threshold 

mask. The threshold value was qualitatively chosen in order to divide the inner 

mesocarp into radial bands of voxels with ‘relatively high’ and ‘relatively low’ signal 

intensity. The image mask was then applied to the DT image data to create two 

populations of voxels. The three eigenvalues of the DT (i.e. three orthogonal ADCs, 
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the largest of which corresponds to the direction of least diffusion restriction) for 

each voxel were averaged over the two populations. This resulted in two groups of 

primary, secondary and tertiary eigenvalues. The mean primary eigenvalue was 

proportional to the average length of the cells in the voxel, while the mean secondary 

and tertiary eigenvalues corresponded to either the average width or depth of the 

cells (see Section 4.2.1 Eigenvectors, eigenvalues and useful scalars of the diffusion 

tensor). The Tukey-Kramer test [174, 175] (P = 0.05) was then performed to 

determine whether differences between corresponding mean eigenvalues were 

statistically significant, which would indicate if there was a significant difference in 

average cell size across the bands of the inner mesocarp striations.  

 

7.3 40BResults 

The grape berries increased in size and weight and then declined as the berries 

progressed through the ripening and senescence phases (Figure 33). The 

concentration of soluble solids in the grape berries increased sigmoidally with 

respect to time (adjusted R
2
 = 0.99).  Véraison occurred at approximately 60 – 65 

DAF, and full ripeness was placed at 95 DAF (based on the mean concentration of 

soluble solids of the sampled berries which plateaued at 26 °Brix). 

The spin-spin relaxation images of the outer mesocarp generally lacked consistent or 

well defined features (Figure 34 and 35). The mean T2 of the outer-mesocarp tended 

to be longer than those of the exocarp, but shorter than other tissues (Figure 36). The 

diffusion vectors had a rotational dependency (Figure 37, 38 and 39) and were 

aligned so as to radiate from the centre of the fruit. In pre-véraison berries, the 

diffusivity values of the outer mesocarp were amongst the highest observed. For 

post-véraison grape berries, however, the mean diffusivity values of the outer 

mesocarp declined further than other tissues (Figure 40). 
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Figure 33: The physical characteristics of the grape berries. The concentrations of soluble solids of 

the grape berries (♦), as well as the fresh weight (▲) and dry weights (▼) of the berries, are presented 

with respect to the number of days after flowering. A sigmoidal function (solid green curve) of the 

form a1 + (a1 + (a2 – a1) ∕ (1 + exp(‒DAF ‒ x0) ∕ w)) was fitted to the soluble solids values by nonlinear 

regression (adjusted R
2
 = 0.99), where a1 = 26.1 (the approximate maximum soluble solids value), 

a2 = 3.9 (the approximate minimum soluble solids value), x0 = 69.7 (the inflection point) and w = 7.4 

(the change in DAF which yielded the greatest change in the soluble solids value). The error bars 

reflect the standard deviation of soluble solids values at each time point. 

 

A notable feature in the spin-spin relaxation images of the inner mesocarp was the 

clear radial striation patterns with distinctly different (Tukey-Kramer test, P = 0.05) 

T2 values. These patterns were observed in both transverse and longitudinal image 

orientations for the inner mesocarp (Figure 34 and 35) of grape berries between 28 

DAF and 109 DAF. The striation pattern radiated throughout the entire sub-tissue, 

starting close to the septum and vascular systems at the centre of the berry (i.e., at the 

ovular and axial vascular network), and terminating at the interface between the inner 

and outer mesocarp. Additionally, upon analysing the high resolution DT image of a 

grape berry 55 DAF (Figure 41), a statistically significant difference (Tukey-Kramer 

test, P = 0.05) was noted between the mean secondary and tertiary eigenvalues across 

the striation bands (Table 7).  
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Figure 34: Spin-spin relaxation images of grape berries at seven different stages of berry development 

in the transverse plane. The images include three pre-véraison grapes, at 28 DAF (A, voxel size 59 × 

59 × 1000 μm), 41 DAF (B, voxel size 78 × 78 × 1000 μm) and 55 DAF (C, voxel size 78 × 78 × 

1000 μm), a grape undergoing véraison at 70 DAF (D, voxel size 82 × 82 × 1000 μm), a ripening 

grape at 85 DAF (E, voxel size 74 × 74 × 1000 μm), a grape which is at maturity at 95 DAF (F, voxel 

size 63 × 63× 1000 μm) and a post-maturity berry at 109 DAF (G, voxel size 86 × 86 × 1000 μm). The 

spin-spin relaxation values are indicated by the colour bar to the right of the figure. Scale bar: 3 mm. 

 

Figure 35: Spin-spin relaxation images of the same grape berries from Figure 34 at seven different 

stages of berry development but in the longitudinal plane. The images include three pre-véraison 

grapes, at 28 DAF (A, voxel size 59 × 59 × 1000 μm), 41 DAF (B, voxel size 78 × 78 × 1000 μm) and 

55 DAF (C, voxel size 78 × 78 × 1000 μm), a grape undergoing véraison at 70 DAF (D, voxel size 

133 × 133 × 1000 μm), a ripening grape at 85 DAF (E, voxel size 82 × 82 × 1000 μm), a grape which 

is at maturity at 95 DAF (F, voxel size 63 × 63 × 1000 μm) and a post-maturity berry at 109 DAF (G, 

voxel size 86 × 86 × 1000 μm). The spin-spin relaxation values are indicated by the colour bar to the 

right of the figure. Scale bar: 3 mm. 

 



 

97 

 

Figure 36: Transverse (T2) relaxation of the major tissue groups of the grape berry with respect to 

berry age (transverse plane). The spin-spin relaxation values for the exocarp (■), outer mesocarp (●), 

inner mesocarp (▲) and septum (▼). The error bars are given by the standard deviation of the spin-

spin relaxation values at each time point. 

 

 

Figure 37: DT images of grape berries at seven different stages of berry development in the transverse 

plane. The images include three pre-véraison grapes, at 28 DAF (A, voxel size 117 × 117 × 1000 μm), 

41 DAF (B, voxel size 156 × 156 × 1000 μm) and 55 DAF (C, voxel size 156 × 156 × 1000 μm), a 

grape undergoing véraison at 70 DAF (D, voxel size 164 × 164 × 1000 μm), a ripening grape at 85 

DAF (E, voxel size 148 × 148 × 1000 μm), a grape at maturity at 95 DAF (F, voxel size 125 × 125 × 

1000 μm) and a post-maturity berry, at 109 DAF (G, voxel size 171 × 171 × 1000 μm). The colours in 

the figure indicate the direction of least restricted diffusion (bottom right glyph). Scale bar: 3 mm. 
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Figure 38: DT images of the same grape berries from Figure 37 at five different stages of berry 

development but in the longitudinal plane (data not available for 28 and 41 DAF). The images include 

a pre-véraison grape at 55 DAF (A, voxel size 156 × 156 × 1000 μm), a grape undergoing véraison at 

70 DAF (B, voxel size 164 × 164 × 1000 μm), a ripening grape at 85 DAF (C, voxel size 172 × 172 × 

1000 μm), a grape which is at maturity at 95 DAF (D, voxel size 125 × 125 × 1000 μm) and a post-

maturity berry at 109 DAF (E, voxel size 172 × 172 × 1000 μm). The colours in the figure indicate the 

direction of least restricted diffusion (bottom right glyph). Scale bar: 3 mm. 

 

 

Figure 39: Diffusion vector field map overlaying the S0 image of a grape berry 41 DAF (transverse 

plane). The diffusion vectors (blue arrows) indicate the direction of least restricted diffusion in each 

voxel. Voxel size: 156 × 156 × 1000 μm, bar length: 1000 μm. 
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Figure 40: Mean ADC of the major tissue groups of the grape berry with respect to berry age. The 

total soluble solids with respect to berry age are also shown. The mean ADC for the exocarp (■), outer 

mesocarp (●), inner mesocarp (▲) and septum (▼) decrease sigmoidally (adjusted R
2
 = 0.99) with 

respect to sigmoidally increasing (adjusted R
2
 = 0.99) dissolved solids content (♦). The error bars 

reflect the standard deviation of the mean ADC at each time point. 

 

 

Table 7: Each eigenvalue is expressed as the mean of the diffusion tensor eigenvalues (ADCs). The 

standard error was not included as it was insignificant (< 1% of the values listed). Asterisks denote 

values between which there was no statistically significant difference (Tukey-Kramer test, P = 0.05). 
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Figure 41: Mean ADC map of a grape berry 55 DAF (transverse plane). Voxel size 78 × 78 × 1000 

μm, bar length: 3000 μm. 

 

Prior to 95 DAF, the mean T2 of the inner mesocarp was consistently higher than 

other tissues (Figure 36). After the concentration of soluble solids plateaued, the 

mean T2 of this tissue declined, accompanied by a partial loss of its radial striation 

pattern. The diffusion vectors of the inner mesocarp had a rotational dependency 

similar to that of the outer mesocarp. For most of berry development, the inner 

mesocarp was also consistently associated with the largest mean diffusivity values, 

relative to the other tissues examined (Figure 40). Furthermore, the diffusion vectors 

were predominantly parallel to the radial striation bands (Figure 37  39), except for 

grape berries 28 DAF or past 95 DAF (Figure 42). However, upon approaching full 

ripeness, regions of the berry inner mesocarp exhibited a loss of coherence in 

orientation of diffusion anisotropy (Figure 42). This was accompanied by a decline in 

T2 values and partial loss of the radial striation pattern in the spin-spin relaxation 

images of these same regions. 

The septum was readily distinguishable from the surrounding mesocarp tissue in the 

spin-spin relaxation images. This was due to the presence of curved striation patterns 

which were perpendicular to the striation patterns of the inner mesocarp (Figure 34 

and 35). These striation patterns were curled about the central vascular bundles and 

extended through the septum to the seeds and locules. Prior to 95 DAF, the mean T2 
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of the septum was consistently higher than the exocarp, but lower than the inner 

mesocarp. After 95 DAF, the septum had the highest mean T2 (Figure 36). Unlike the 

inner mesocarp, the diffusion vectors of the septum were not consistently parallel to 

the striation patterns of the tissue (Figure 37  39). The anisotropic diffusion pattern 

of the septum differed on a per berry basis. The septal-mesocarp boundary could be 

discerned by abrupt changes in the local orientation of diffusion vectors. The mean 

diffusivity value of the septum was the lowest of all the examined tissues pre-

véraison, but had a mean diffusivity greater than that of the exocarp and outer 

mesocarp post-véraison (Figure 40).  

In the grape seed interior, the nucellus (located towards the bulbous distal end of the 

seed) was identified in grape berries aged 28 and 41 DAF. It could be readily 

identified in berries of this age, as it occupies a sizeable portion of the seed and has a 

stylised ‘3’ shape when imaged through the transverse plane [176]. The nucellus 

demonstrated a highly characteristic anisotropic diffusion pattern which was 

rotationally dependent, similar to the anisotropic diffusion pattern of the inner 

mesocarp tissue (Figure 37, 38 and 43). After 41 DAF, the MR signal from this 

region decayed too rapidly to be visible in the DT and spin-spin relaxation images.  

The spin-spin relaxation images of the mature olive pericarp, in comparison to the 

grape berry pericarp, lacked well-defined macroscopic features such as the radial 

striation patterns previously noted [27, 176]. However, the anisotropic diffusion 

patterns (Figure 44, A) and diffusion vectors (Figure 44, B) associated with the olive 

pericarp exhibited a rotational dependency and were aligned so as to radiate from the 

centre of the fruit. The mean T2 of the olive pericarp was determined to 45 ± 3 ms 

across the imaged olives while the mean diffusivity value of the olive pericarp was 

6.07 ± 0.46 × 10
-12

 m
2
 s

-1
.  
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Figure 42: Diffusion vector field map overlaying the S0 image of a grape berry 109 DAF (transverse 

plane). The orientation of diffusion vectors are indicated by the blue arrows. There was a loss of 

diffusion-weighted signal in the region denoted by the red dashed line. Voxel size: 133 × 133 × 1000 

μm, bar length: 1000 μm. 

 

 

Figure 43: Diffusion vector field map overlaying the S0 image of a grape berry seed interior 28 DAF 

(transverse plane). The diffusion vectors (blue arrows) indicate the direction of least restricted 

diffusion. Voxel size: 117 × 117 × 1000 μm, bar length: 1000 μm. 
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Figure 44: DT and diffusion vector field images of a mature olive (transverse plane). The DT image 

(A, voxel size 390 × 390 × 1000 μm) and diffusion vector map (B, voxel size 390 × 390 × 1000 μm) 

of an olive pericarp. Bar length 1000 μm. 

 

7.4 Discussion 

7.4.1 70BAnalysis of the grape berry MRI experimental results 

The anisotropic diffusion patterns observed in the grape berry pericarp were due to 

the restricting effects of cell membranes on diffusion. For example, in the mesocarp 

of grape berries 28 DAF, the diffusion anisotropy exhibited low coherence. This was 

because the parenchyma cells of the mesocarp were not fully elongated [177], as 

demonstrated by confocal microscopy (Figure 45). Between 41 DAF and 95 DAF, 

however, the anisotropic diffusion pattern was radially dependent, thus reflecting the 

radial orientations of the elongated inner mesocarp cells [4, 27, 177], as shown by 

confocal microscopy (Figure 46).  
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Figure 45: Confocal micrograph of the pericarp of a grape berry prior to véraison 41 DAF (transverse 

plane). Scale bar; 1000 μm. 

 

Figure 46: Confocal micrograph of the pericarp of a grape berry undergoing véraison 55 DAF 

(transverse plane). Scale bar; 1000 μm. 

 

Between 85 and 109 DAF, the T2 values for all berry tissues noticeably decreased. 

The decline of T2 values would begin at the interface between the outer and inner 

mesocarp, and would steadily shift toward the centre of berry as the grape 

approached full ripeness. An increase in cellular fluid viscosity could reduce the 

rotational velocity of spin bearing molecules in the berry; however, there is no 

straightforward relationship between the observed spin-spin relaxation rate and the 

measured concentration of soluble solids in the final stages of berry ripening. It is 

also doubtful that the increased spin-spin relaxation rate could be caused by a sudden 
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influx of free paramagnetic ions. Due to the small width of the voxels constituting 

the T2 images (i.e. 60 – 80 μm) the read gradients of the T2 MR imaging sequence 

may have caused unaccounted diffusion-weighted signal relaxation [178]. However, 

this seems unlikely, as T2 MR images have previously been taken of a geranium leaf 

petiole with a voxel width of 39 μm [19]. Despite the small voxel width, these 

images exhibited a strong contrast between the primary tissues of the petiole. The 

maximum observed T2 value of the petiole was also less than 85 ms, similar to the 

maximum observed T2 values of the grape berries. It is possible that the observed 

decrease in T2 values is linked to apoptotic cell death occurring throughout the berry 

mesocarp. Programmed cell death has been observed across the mesocarp of certain 

wine grape berries during the later stages of ripening [179, 180]. Although Semillon 

grape berries were not included in these studies, for the varieties tested cellular 

vitality began to decrease at a point between 85 and 109 DAF, which also 

corresponded with the occurrence of a noticeable decrease in T2 across the tissues of 

the Semillon grape berry (Figure 36). Apoptotic cell death has previously resulted in 

decreases of T2 and apparent diffusivity values relative to their healthy counterparts 

[181] and it would also explain the loss of diffusion vector coherence observed late 

in berry ripening. The sigmoidal decrease in apparent diffusivity with respect to 

berry age could also be potentially associated with the sigmoidal increase in sugar 

concentration within the grape berry (Figure 40). The increased sugar concentration 

could be increasing viscosity in the cell vacuoles where sugars and other solutes are 

stored [182, 183]. As diffusing water molecules assist in transporting these sugars 

across the grape berry pericarp, this potential relationship could have important 

implications for sugar accumulation rates in the grape berry and hydraulic resistance 

across the grape berry and should be explored further detail in a future study to 

determine if these two factors are related. 

The radial striation patterns noted in the grape berry mesocarp were also noted in the 

spin-spin relaxation MR images of a previous investigation [27]. By comparing their 

spin-spin relaxation MR images to bright field light micrographs they had taken of 

the berry inner mesocarp, the authors of this previous study suggested that these 

patterns arise in the MR images due to the arrangement of alternately sized radially 

elongated parenchyma cells in the grape berry mesocarp tissue. The results of the 

current study agree with this theory. There was no statistically significant difference 
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between mean primary eigenvalues from striation bands with ‘relatively high’ and 

‘relatively low’ MR signal intensity, thus indicating that the cells belonging to both 

populations have the same mean length. However, there was a statistically significant 

difference between the mean secondary and tertiary eigenvalues of the two 

populations. The ‘relatively low’ MR signal intensity population was associated with 

the lower eigenvalues, indicating that the cells belonging to this population were less 

wide than their counterparts in the ‘relatively high’ MR signal intensity population. 

As the parenchyma cells are radially elongated in grape berries older than 28 DAF, 

the spin-spin relaxation striation patterns thus aligned with the anisotropic diffusion 

patterns in the mesocarp of these berries. The spin-spin relaxation images of the 

septum demonstrated striation patterns similar to those found in the inner mesocarp. 

It is therefore likely that the septal cells are grouped in bands of cells which alternate. 

However, the orientation of anisotropic diffusion within the septum was largely not 

aligned with these septal striation bands; this indicates that the septal cells are not 

radially aligned with the striation bands. This agrees with previous descriptions of 

the septum, which states that the septal cells are irregular in shape and orientation 

[4].  

The rotationally dependent anisotropic diffusion patterns noted in the outer edge of 

young seed nucelli are due to the diffusion of water through the seed integument. 

These cells are known to be tabular in shape and are radially arranged [184]. 

However, after 41 DAF, there was a decline in the measurable MR signal from the 

integument tissue due to tissue dehydration and mechanical hardening. Concurrently, 

the seed nucellus deteriorated and is replaced by the liquid endosperm [185, 186]. 

The liquid endosperm has a spin-spin relaxation significantly less than 30 ms (~10 

ms). As a result, after 41 DAF the MR signal from the seed interior decayed too 

rapidly for the imaging protocols used in the current study. 

 

7.4.2 71BAnalysis of the mature olive MRI experimental results 

Due a noticeable loss of radio-frequency magnetic pulse power, fast diffusion MRI 

sequences could not be used, which increased the length of the total image 

acquisition. This loss of radio-frequency magnetic pulse power was attributed to the 

high salt content of the fruit. The number of image averages and the size of the image 
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voxel were thus increased to compensate for this loss of signal. Consequently, the 

diffusion MRI images still possessed a good signal-to-noise ratio and a voxel volume 

less than 1 mm
3
. The low mean diffusivity value of olive pericarp also necessitated 

the use of very high diffusion magnetic gradients to perform the diffusion 

measurements and a lengthy diffusion period was used to ensure that the slowly 

diffusing molecules had sufficient time to probe the restricting tissue microstructure. 

To prevent prohibitive MR signal loss arising from spin-spin relaxation, a PGSTE 

MRI sequence was employed instead of a PGSE MRI sequence.  

The radial anisotropic diffusion pattern observed in the olive pericarp indicated that 

the cells of the mesocarp were radially elongated. This results agrees with what is 

known of the olive mesocarp structure [187] and appeared similar to that of a 

Semillon grape berries at véraison. Additionally, the mean T2 value of the olive 

pericarp was comparable to those of a Semillon grape berry pericarp at véraison, 

which is not unexpected given that olives and grape berries have similar cellular 

dimensions [172, 173].  

These results indicate that diffusion MRI can be successfully used to investigate 

morphological and physiological features of plant tissues with high oil content. As 

was hypothesised, there was a large difference between the mean ADC of the olive 

pericarp and the grape berry pericarp tissues, which was attributed to the presence of 

oil droplets in the olive pericarp cell cytoplasm [171]. This area of research deserves 

further investigation, as these low rates of diffusivity could hold a number of 

practical implications for transpiration, drying and water/solute transportation rates 

within olives and other plant tissues with high oil content. 

 

7.4.3 72BPractical implications of this research for other plant tissues 

and organs 

The results of this study demonstrate that relaxation and diffusion MR images reflect 

both grape berry and olive morphology. This study also provides a novel and non-

invasive perspective on the development changes that occur in grape berries as they 

ripen, in addition to a supplying a library of images and relaxation/diffusion data for 

comparisons to treated grape berries in sequence chapters. The question remains as to 
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the applicability of relaxation and diffusion MRI in the examination of other plant 

species and organs. It is expected that these MRI techniques can be applied broadly 

across botanical studies for the non-invasive study of many different important 

aspects of plant biology. However, its applicability will be dependent upon the 

amount of unbound water the organ contains. Tissues with low water content, such as 

the solid endosperm of seeds and the cotyledons of beans, will be difficult to 

examine, although anisotropic water movement has been previously been 

successfully demonstrated using diffusion MRI in macadamia nuts [188]. Tissues 

consisting of smaller cells will be easier to examine than tissues with larger cells; 

however, providing that Δ is long enough to ensure that a large population of water 

molecules are able to interact with the surface of the cellular boundaries, diffusion 

anisotropy will be evident. Upon considering these limitations, good botanical 

candidates for future relaxation and diffusion MRI studies are hypothesised to 

include other sink organs, plant stems, petioles and root systems. 

 

7.4.4 73BComparing the results of the study to the literature 

In a recent study, DT images of the grape berry vascular system were reconstructed 

[156]. However, the orientation of anisotropic diffusion within the berry pericarp was 

also visible in these images. The anisotropy of these observed diffusion patterns did 

not correlate with the results from the current study, nor the known pericarp tissue 

structure. While the experimental procedures employed in both studies were largely 

similar, they differed in two important respects. First, the TE of the PGSE MRI pulse 

sequence used in the previous study was shorter than those used in the current study. 

TE limits the maximum length of Δ, so although the length of Δ was not specified in 

the study by Gruwel et al., it can be inferred from the TE used (26 ms) that it was 

less than the shortest Δ employed in the current study. This difference is noteworthy 

because as Δ increases, the water molecules have more time to displace further from 

their origin and interact with different physical structures. The cells of the berry 

vasculature are less wide than the cells that make up the mesocarp, thus a short Δ 

relative to that used in the current study remains appropriate for probing the cellular 

membranes of the xylem and phloem. However, in regions where the average cell 

size is much larger, (e.g. the inner mesocarp) the diffusion anisotropy patterns are 

more likely to be observed due to interactions with cellular components rather than 



 

109 

the cellular membrane. As a result, the observations from both the current study and 

that of Gruwel et al. could be considered accurate; however, they are observations of 

the effects of different restricting structures (i.e., the results of Gruwel et al. are on a 

shorter length scale than the results of the current study). 

The second difference between the present study and that of Gruwel et al was the 

diffusion gradient schemes employed. Gruwel et al. performed diffusion 

measurements along six unique diffusion gradient vectors. While this is the 

minimum required for DTI, it is possible that gradient cross-terms (from the imaging 

and diffusion gradients) have affected the diffusion weighting of the images. The 

current study used forty-two different diffusion gradient vectors (i.e., twenty-one 

unique directions and their corresponding opposite). The inclusion of gradient 

vectors and their corresponding opposite gradient vectors reduces the effects of 

potential gradient cross-terms [22, 104]. Using a large number of unique diffusion 

gradient vectors also reduces potential directional bias when reconstructing D. 
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Chapter 8 - 6BTime course study of grape 

berry split using diffusion MRI 

 

[The results contained within this chapter presented in an article which has 

been recently accepted for publishing. ‘Dean, R. J., T. Stait-Gardner, S. J. 

Clarke, S. Y. Rogiers, G. Bobek and W. S. Price (2015). "Time course study of 

grape berry split using diffusion MRI”. Australian Journal of Grape and Wine 

Research.] 

 

8.1 41BIntroduction 

Having found a strong correlation between the known morphology and the 

anisotropy diffusion patterns of healthy grape berries at a large number of different 

development stages, the next step is to apply treatments to test the sensitivity of 

relaxation and diffusion measurements to changes in grape berry biology. For 

example, the sensitivity of diffusion measurements to changes in the microstructure 

of the grape due to physical damage through fruit split. Fruit splitting (also known as 

fruit cracking) is a widely recognised source of fruit loss in viticulture commonly 

associated with periods of high rainfall [189]. The cool, damp conditions promote the 

osmotic uptake of water into the berry while also inhibiting water loss via 

transpiration. This net uptake of water increases turgor pressure within the berry and 

can eventually lead to the mechanical failure of the epidermis. The resultant wounds 

in the berry epidermis encourage berry desiccation and greatly increase the 

probability of microbial infection, such as Botrytis cinerea, leading to reduced crop 

yields and berry quality [190]. 

There are a number of intrinsic factors that influence the susceptibility of grapes to 

fruit split. For example, these factors can include the tensile strength, elastic modulus 

and thickness of the berry epidermis [191, 192], the presence of lenticels [193], the 

shape of the berry and how tightly the berries are pressed together within the bunch 
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[194]. In certain cultivars of wine grapes, the developmental stage of the berry also 

plays a role. For example, in post-véraison Riesling grapes, mismatches in berry 

surface expansion and the disposition of the cuticular membrane place strain on the 

berry epidermis and increase the chance of microcracks and splits forming [195]. 

Conversely, Shiraz grapes become less likely to split as they approach maturity due 

to a decrease in internal turgor, resulting from widespread cell death in the berry 

mesocarp [196].  

To provide some context regarding the internal pressure required to split the 

epidermis of a table grape, some examples of grape berry internal turgor pressure are 

included here. Pre-dawn the internal turgor pressures of table grape cultivars will be 

within the vicinity of 5 kPa to 38 kPa [191, 197]. However, the internal turgor 

pressure at which table grape berries split (i.e., the critical turgor pressure) will be in 

the vicinity of 1.5 to 3.7 MPa [192, 198] and the linear strain on the berry epidermis 

will be in the vicinity of 0.027 to 0.142 [191, 198]. 

The primary objective of the current study was to investigate physical changes that 

occur in the berry mesocarp preceding and following the formation of fruit splits by 

the non-invasive examination of tissue structure using features of the diffusion 

tensor, particularly ADCs. As ADCs reflect the features of the restricting 

microstructure (e.g. relative cell size and cellular membrane permeability), as 

previously demonstrated (see Chapter 7 - Diffusion MRI of grapes at different stages 

of development). Changes in these values in the grape berry immediately preceding, 

or following, the formation of a split in the berry epidermis can thus be used as an 

indication of tissue structure alteration. 

 

8.2 Methods 

8.2.1 74BExperimental procedures 

The V. vinifera berries used in this study were a table grape variety, cv. Thompson 

seedless, purchased from a local green grocer, Campbelltown, NSW, Australia. Over 

the course of this investigation, thirty-six grapes berries were selected at random, cut 

from the bunch three to four millimetres proximal to the receptacle (the pedicel 

junction with the berry), then weighed. These berries were individually inspected for 
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obvious blemishes (e.g. tissue bruising and fruit split) and the damaged berries 

discarded. The undamaged berries were then randomly assigned to one of the 

following groups; twelve to the control group, twelve to the first experimental group 

and twelve to the second experimental group. Individual berries were sealed in a 25 

mm diameter plastic vial and held in position by a pair of four pronged acrylonitrile 

butadiene styrene holders designed specifically for this purpose. The grapes in the 

first experimental group were wrapped in damp tissue before being sealed upside 

down in a vial which had been filled with sufficient distilled water to ensure the 

pedicel and receptacle were immersed. This experimental group would represent 

grape berries experiencing damp field conditions. The grapes in the second 

experimental group had sufficient distilled water added to their vials to completely 

immerse the berries, including the pedicel and receptacle. As the number and 

severity of microcracks in the berry surface is aggravated by water [199], this would 

greatly improve the chance of observing the formation of berry splits during the 

period available for MRI. The grapes assigned to the control group had no water 

added to their vials. From each group of twelve, three grape berries were imaged, one 

at a time. The weight of the individual berries in each group was recorded within an 

hour before and after imaging to determine the change in fresh weight. 

 

8.2.2 75BMRI pulse sequence protocols 

Grape berries were imaged using the MRI protocols described below. Five transverse 

images of the berry were acquired concurrently, spaced evenly over the longitudinal 

axis of the berry. The imaging protocols alternated between a FLASH MRI sequence 

and a PGSE echo planar DTI sequence to produce diffusion weighted images.  

The FLASH imaging sequence was used to produce two-dimensional images of the 

grape berries weighted by spin-density. These images were chiefly used to confirm 

the formation of fruit splits in the berry epidermis. The protocol parameters used 

included THK 1 mm, MTX 256 × 256, a flip angle of 30°, TE 6 ms, TR 100 ms and 

NA 6 (total acquisition time ~3 min). The EPI DTI sequence was used to produce 

two-dimensional diffusion-weighted images of the berries. The protocol parameters 

used included THK 1 mm, MTX 128 × 128, δ 1 ms, Δ 25 ms, TE 32 ms, TR 8000 ms 

and NA 1. Diffusion was measured along twelve different directions (the vertices of 
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an icosahedron) using a single diffusion gradient strength (b weighting of 

800 s mm
-2

). One image with a negligible diffusion weighting was also acquired in 

order to normalise the diffusion weighted images (total acquisition time ~ 25 min).  

 

8.2.3 76BCell vitality staining 

After the scans were completed, three berries from the control group and one from 

each experimental group were sectioned transversely. These sections were made so 

as to mimic the transverse slices of the acquired magnetic resonance images. A 6 μM 

solution of fluorescein diacetate (FDA; Sigma-Aldrich, USA) in acetone was applied 

in excess to the cut surface of the grape berry sections and left to incubate for 15 min 

[179]. The excess FDA solution was then blotted from the cut surface of the berry 

and a phosphate buffer solution was applied to the cut surface in its stead (Sigma-

Aldrich, USA). The sectioned berries were then examined using a confocal 

microscope. To confirm that only vital cells exhibited fluorescence, one of the 

control grapes was microwaved for 30 s at 1100 W before the FDA was applied. This 

berry exhibited a muted fluorescent response, indicating the mesocarp cells had a 

damaged cellular membrane and/or non-living cytoplasm. Another control berry was 

also examined under the 488 nm laser without first applying the FDA solution and no 

auto-florescence was noted. 

 

8.2.4 77BDetermining the cause of cell vitality loss 

To determine the cause of cell death, a small incision was made along the length of 

six additional Thompson seedless grape berries using a razor blade. Two of these 

pre-split berries were fully immersed in water, two were fully immersed in Fomblin 

Y (Solvey Solexis, USA), a biologically and chemically inert oil, and the remainder 

left dry. These berries were then imaged over a period of twenty hours using the 

diffusion MRI protocol previously described. These berries were then sectioned 

transversely and the cells stained using the method described above, except the grape 

berries that had been immersed in Fomblin were stained using a 100 μM solution of 

propidium iodine (PI; Sigma-Aldrich, USA) in a phosphate buffer solution. 
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8.3 42BResults 

Over the twenty hour period of imaging the mean fresh weight of the berries in the 

control group berries decreased by 1.3 ± 0.6%. None of the berries in the control 

group showed evidence of fruit split during this time period. The mean fresh weight 

of the berries in the pedicel immersion experimental group increased by 1.3 ± 0.9% 

during the twenty hour period of their detachment from the bunch. Three of the 

berries exhibited splits in the epidermis about the stylar remnant. None of these splits 

intersected any of the image slices. The mean fresh weight of the berries in the 

wholly immersed experimental group increased by 4.4 ± 0.6% during the twenty 

hour period of their detachment from the bunch. Ten of twelve berries in this 

experimental group bore one or more splits in their epidermis. These splits ran 

longitudinally between the pedicel and stylar remnant, the majority of which were 

located within 5 mm of either the pedicel (54% of splits) or the stylar remnant (31% 

of splits). 

 

8.3.1 78BDiffusion MR image results 

The grape berries in the control and the experimental groups had an initial mean 

ADC of 1.1 ± 0.1 × 10
-9

 m
2
 s

-1
 across the berry pericarp. The berries in the control 

and the immersed pedicel groups exhibited no significant variance (Tukey-Kramer 

test, P < 0.05) in the pericarp ADCs over the course of twenty hours of diffusion 

imaging. The grapes in the wholly immersed experimental group exhibited no 

significant variance (Tukey-Kramer test, P < 0.05) in the pericarp ADCs prior to the 

formation of a split in the berry epidermis (Figure 47A). Upon the formation of a 

split in the berry epidermis, the mean ADC of the tissue around the split increased to 

1.5 ± 0.1 × 10
-9

 m
2
 s

-1
 (Figure 47B and C). As time progressed the region of affected 

tissue continued to increase in size (Figure 47D to H). At the end of the twenty hour 

period, the area of affected tissue varied widely between berries and the location of 

the image slice. The region of affected tissue penetrated as far as 3 mm from the split 

in the grape berry epidermis.  
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Figure 47: The development of a single split in the epidermis of a mature table grape, cv. Thompson 

seedless, and its effect on the mesocarp tissue. (A) An ADC map acquired one hour after the berry 

was fully immersed in water. (B – H) ADC maps acquired nine to fifteen hours after the berry was 

fully immersed in water (each image thereafter was acquired an hour apart). The diffusivity of the 

different tissue regions is as indicated by the colour scale. Scale bar; 6 mm. 

 

8.3.2 79BIncreased apparent diffusivity is linked to cell death 

The FDA staining of the sectioned control grapes together with the berries which had 

only their pedicels immersed in water revealed a strong fluorescent response from all 

regions of the berry pericarp. This indicated that the cells of the berry pericarp 

maintained vitality after the twenty hours spent detached from the grape bunch. The 

sectioned and FDA stained grape berries which had been fully immersed in water 

exhibited a strong fluorescent response from most regions of the grape berry 

pericarp. However, the tissue immediately adjacent to splits in the grape berry 

epidermis showed a highly muted fluorescent response after splitting had occurred, 

indicating that the cells in the regions about the splits were non-vital (Figure 48). 

These regions of non-vital cells matched the size and shape of the regions of 

increased apparent diffusivity about the splits in the epidermis. This relationship was 

also observed in water immersed berries where the epidermis had been damaged with 

a razor blade (Figure 49A and Figure 50). In contrast, Fomblin immersed berries and 

the berries that were left dry exhibited no increase in apparent diffusivity (Figure 

49B and C). 
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Figure 48: The relationship between cell vitality (A) and apparent diffusivity (B) within the mesocarp 

of a mature table grape, cv. Thompson seedless from the wholly immersed experimental group. The 

berry has developed three separate splits (i, ii and iii). Vital cells in (A) are bright green while non-

vital cells have a muted response. The apparent diffusivity values are indicated by the colour scale. 

Scale bar; 3 mm.  

 

 

Figure 49: Determining the cause of cell death in split table grapes, cv. Thompson seedless. (A) A 

mean diffusivity map of a grape berry with an incision (indicated by the white arrow) in the berry 

epidermis after twenty hours wholly immersed in water at 22.0 ± 0.1 °C. (B) A mean diffusivity map 

of a grape berry with an incision (indicated by the white arrow) in the berry epidermis after twenty 

hours immersed in 22.0 ± 0.1 °C Fomblin oil. (C) A mean diffusivity map of a grape berry with an 

incision in the berry epidermis after twenty hours left dry. 
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Figure 50: Morphological (A) and cell vitality (B) images of the same split in a mature table grape, 

cv. Thompson seedless, twenty hours after water immersion. Vital cells in image B are bright green 

while non-vital cells have a muted response. Scale bar; 1 mm. 

 

8.3.3 80BRegional expansion of the berry mesocarp  

To examine the expansion of the pericarp tissue, void spaces at the centre of the 

berry left from the abortion of the grape seeds were used as reference points to align 

MR images acquired at different time points. Upon overlaying these images it was 

found that the berry pericarp underwent one or more regional expansions rather than 

a uniform expansion (Figure 51). All splits observed in the MR images were located 

within or on the edge of a region of the berry which had undergone a regional 

expansion.  

 

8.4 43BDiscussion 

8.4.1 81BAnalysis of the diffusion MR images  

Prior to the formation of splits in the berry epidermis, the ADCs across the pericarp 

of the Thompson seedless grape berries were in the vicinity of the ADCs of Semillon 

grape berries passing through véraison (see Figure 40). However, once a split formed 

in the berry epidermis, there was an immediate change to diffusion restriction in the 

region of tissue surrounding the wound. While the increase in mean apparent 

diffusivity could potentially reflect either a substantial change in parenchyma cell 
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size or a change in cell membrane permeability, there was a close correlation 

between regions of increased apparent diffusivity and the regions of tissue about the 

split which exhibited a muted fluorescence response when stained with FDA (Figure 

48). Since FDA requires cellular enzymatic activity to activate its fluorescence, and 

an intact cellular membrane to retain the activated dye, the cells within the region of 

muted fluorescent response must have undergone ischemic cell death, and were no 

longer vital.  

 

Figure 51: The regional expansion of a mature table grape, cv. Thompson seedless, immersed in 

water at 22.0 ± 0.1 °C for approximately twenty hours. (A) An ADC map of the grape berry two hours 

after the berry was fully immersed in water; no splits were evident. (B) An ADC map of the grape 

berry twenty hours after immersion; three splits were visible in the berry epidermis (indicated with 

white arrows). (C) Image A (the blue region) overlaying image B (red region). Scale bar; 3 mm. (V) 

Void spaces, indicated by the black arrows. 

 

The increase in apparent diffusivity in regions of non-vital mesocarp cells in the split 

grape berries contrasts interestingly with the discussion arising from the results of the 

preceding study (cf. Section 7.4 Discussion), in which a decrease in apparent 

diffusivity in the berry mesocarp was attributed to apoptotic cell death (see Figure 
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40). It is probable that these differences in apparent diffusivity are reflective of the 

two different mechanisms of cell death. For example, ischemic cell death results in 

the rupturing of cellular membranes [200], allowing water to diffuse through the 

injured tissue more easily. Apoptosis, on the other, results in the collapse of cell via 

shrinkage and does not result in the cellular membrane rupturing [200]. As the cells 

shrink and become denser, diffusion restriction would be expected to increase on the 

length scale probed by the diffusing water, hence resulting in a decrease of apparent 

diffusivity. 

To determine whether the cause of the cell death was due to physical trauma, oxygen 

shock, or related to the imbibition of water, an incision was made in the epidermis of 

six Thompson seedless grape berries with a razor blade and then either wholly 

immersed in water, Fomblin oil, or left dry. The cut berries that had been immersed 

in water exhibited increases in apparent diffusivity (Figure 49A) and widespread cell 

death in the pericarp tissue surrounding the split (Figure 50). In the absence of water, 

there was no localised increase in apparent diffusivity around the epidermal splits 

(Figure 49B and C) and no widespread cell death was observed in these tissue 

regions. Therefore, the ischemic cell death of the pericarp tissue was attributed to the 

imbibition of water, rather than physical trauma or oxygen shock.  

Initially the cell vitality assays performed on the Fomblin immersed grape berries 

made use of FDA to stain cells which were vital. Despite exhibiting no change in 

apparent diffusivity around the incisions, the pericarp cells adjacent to the incisions 

of the Fomblin immerse berries appeared to be non-vital. This finding noticeably 

differed from all other results within this investigation. However, upon staining the 

Fomblin immersed grape berries with PI, a fluorescent dye that stains non-vital cells, 

no evidence of cell death was observed in the vicinity of any the incisions (Figure 

52). From this result, and due to the consistency between the apparent diffusivity 

images and the cell vitally images for the other experiments, it was concluded that 

the presence of Fomblin did not trigger cell death in the grape berry mesocarp.  In 

order to determine the reasons for why the FDA did not stain the mesocarp cells 

adjacent to the splits of the Fomblin immersed grape berries, further investigation is 

required. It is possible that the Fomblin oil was able to permeate the pericarp tissue 

surrounding the incisions or was smeared across the cut surface during hand 

sectioning, preventing the FDA from staining vital mesocarp cells in these regions.  
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Figure 52: Cell vitality image of three artificial splits in the berry epidermis twenty hours after 

Fomblin immersion. The three splits (i, ii and iii) are indicated with white arrows. Non-vital cells are 

bright red while vital cells exhibit a muted response. Scale bar; 3 mm. 

 

The sugar content of the imaged grape berries was considered largely 

inconsequential to the results of the current study. While grape berries with higher 

sugar contents will have a higher osmotic potential, the experiments in this work 

only required that the berries split/imbibed water during the period the berries were 

immersed. Consequently, the berry cultivar chosen for these experiments (i.e., 

Thompson seedless) was considered to be more influential over the outcomes of the 

study than the small variations in sugar concentration between berries. Thompson 

seedless were an excellent cultivar for the current study as these grapes maintain cell 

vitality and turgor pressure through to maturity [179], and hence remain susceptible 

to berry splitting well after véraison.  

 

8.4.2 82BAnalysis of the berry mesocarp regional expansion  

Fruit splits were only observed in regions of the epidermis where the pericarp tissue 

had undergone regional tissue expansion. A regional expansion will concentrate 

deformation stress in a small area of the epidermis, thus increasing the likelihood of 

the epidermis failing. The occurrence of regional expansions rather than uniform 

expansion could affect the outcome of previous mechanical stress models of grape 



 

122 

berry undergoing fruit split [193, 194], as these models assume that the internal 

pressure placed on the epidermis is uniform. 

It is difficult to determine whether the regional expansion of the tissue precedes the 

formation of a split in the berry epidermis. This is because it is unlikely that the splits 

originated in the same plane as the MR images. If a split were to form outside of the 

imaging slice, and then propagate along the length of the grape berry out into an 

image slice, the region of expanded tissue would be observed first (Figure 53). This 

question could be resolved if the entire grape berry volume could be imaged. This 

additional information could also be used to determine the volume of the regional 

tissue expansions and thus determine the distribution of water taken into the grape 

berry. However, this is not currently feasible as it would take many hours to acquire 

images of the entire berry volume. 

 

Figure 53: Longitudinal schematic of a grape berry explaining how regional tissue expansions could 

be observed prior to split formation. (A) A split (thick vertical line) in the grape berry epidermis 

occurs some distance from the image slice (dashed horizontal line). As water enters the split, regional 

tissue expansion occurs (dotted circle). (B) The split propagates along the length of the berry towards 

the image slice. Due to regional tissue expansion about the split, this expansion is observed to precede 

the split in the image. 

 

8.5 44BPractical implications of these findings 

The results of the wholly immersed experimental group represent the worst-case-

scenario for fruit splitting. Although the majority of water enters the berry through 

the pedicel and receptacle [201, 202], fully immersing grape berries in water 

provided ample opportunity for osmotic imbibition through splits and microcracks in 

the berry surface. Due to the link between tissue ischemic cell death and the uptake 
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of water through the splits in the berry epidermis, it can be hypothesised that a grape 

berry whose surface is left exposed to standing water after the formation of fruit 

splits is more likely to exhibit localised cell death in the grape pericarp than a fruit 

whose surface split but subsequently remained dry. Therefore, the surface of grape 

berries should be kept dry after they split, if possible, to mitigate further tissue 

damage. The amount of water left standing on the berry surface after splitting occurs 

could also correspond with increased fungal infection rates across crops as the 

presence of dead tissue about the open wounds in the berry epidermis would provide 

an ideal environment for plant pathogens, such as Botrytis cinerea, to become 

established. Follow up rain events could hence prove more important than the initial 

fruit split-inducing event for grape cultivars, particularly those which are not prone to 

fruit abscission and could impact on fungal control practices. 
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Chapter 9 - 7BThe diffusive transport of 

manganese in the grape berry 

 

9.1 45BIntroduction 

The grape-vine absorbs a variety of metal ions from the soil in order to maintain its 

numerous physiological activities, and the concentrations of these metal ions 

potentially influence the quality, taste and production of viticultural goods [203-205]. 

Examples of metal ions found in the grape berry include potassium, iron, zinc, 

copper, magnesium, calcium and manganese [206, 207]. A number of studies have 

already been conducted which examined the vasculature transport/unloading of 

photosynthates in grapes as well as other fruits/sink organs [6-8, 14, 208-211]. These 

previous studies typically employed radioactively or fluorescently labelled tracer 

compounds to examine the photosynthate transport pathway [8, 14, 210, 211]. From 

these previous studies it was determined that these large molecular weight organic 

compounds, delivered to the grape berry via the phloem, are transported through the 

pericarp initially via the symplasmic (intercellular) pathway. At the onset of ripening, 

the transport of labelled photosynthates and tracer compounds shift to the apoplasmic 

(extracellular) pathway. Metal ions, on the other hand, can be either phloem or xylem 

mobile [206]. The transport of metal ions through the grape berry pericarp is not as 

well understood, although it has been previously demonstrated in tomatoes that the 

ratios of the apoplasmic and bulk pericarp sap concentrations of metal ions vary 

between elements and with respect to berry age [212]. Due to differences between 

the mechanisms that used to transport photosynthates and metal ions, the spatial 

distribution and of these solutes in the grape berry pericarp could differ significantly. 

The objective of the current investigation was to employ MRI to non-invasively 

study the vascular/extra-vascular transport of manganese through the grape berry 

pericarp. Manganese is a xylem-mobile metal ion and, as mentioned above, it 

naturally accumulates in grape berries. Manganese is a micronutrient required for the 

synthesis of chlorophyll [185], enzymes [213] and glucosyltransferases [214]; it is 



 

126 

typically non-harmful to the grape vine but it can accumulate in toxic quantities 

when the grape vine grows in acidic soils [207, 215]. While MRI has been previously 

employed to directly observe the spatial distribution of 
1
H-rich compounds such as 

water, sugar and lipids in the grape berry [26, 27, 176], manganese has a much 

smaller gyromagnetic ratio than 
1
H (66.4 × 10

6
 rad s

-1
 T

-1
). It is also be present in the 

grape berry in far smaller quantities than 
1
H, making direct observations of 

manganese difficult. However, manganese is paramagnetic; consequently this study 

employed manganese ions as a paramagnetic relaxation contrast agent (see Section 

2.6.1 Paramagnetic relaxation contrast agents), indirectly observing its uptake and 

subsequent transport via its effect on the spin-lattice relaxation rate of water. Studies 

of manganese transport and spatial distribution in the grape berry pericarp may also 

assist in transport studies of diamagnetic calcium. Calcium is also xylem mobile 

[206] and certain ion transport channels/mechanisms have been determined to 

transport both calcium and manganese [216-218]. Calcium is an important 

macronutrient for many fruits; amongst other health problems, a deficiency of 

calcium in a fruit can result in increased occurrences of fruit split [219, 220]. 

 

9.2 46BMethods 

9.2.1 83BExperimental procedures 

The grape berries used in this study were a table grape variety, cv. Red Globe. Over 

the course of this investigation, eight grapes berries were selected at random and cut 

from the bunch three to four millimetres above the pedicel. These berries were 

visually inspected for obvious blemishes (e.g. tissue bruising and fruits split) before 

four were randomly assigned to the control group and the remainder to the 

experimental group. 

Each berry was placed upside down in separate 25 mm diameter plastic vials, and 

held in position by a pair of four pronged acrylonitrile butadiene styrene holders 

designed specifically for this purpose. The experimental grapes had a sufficient 

amount of 10 mM manganese chloride (MnCl2.4H2O, Sigma Aldrich) solution added 

to their vial to immerse the stem and pedicel of the berry. This manganese chloride 

solution was less concentrated than what is typically used for mammalian studies 
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[60, 221] in order to minimise additions to the endogenous manganese pool. The 

control grapes instead had a sufficient amount of distilled water added to their vial to 

ensure the pedicel and receptacle was immersed. Each grape berry was imaged over 

an immersion period of nineteen hours using the MRI protocols described below. 

 

9.2.2 84BMRI pulse sequence protocols 

The RARE VTR MRI pulse sequence was employed to produce a set of two-

dimensional images which were weighted by varying degrees of longitudinal and 

spin-spin relaxation. The sequence parameters used included THK 1 mm, MTX 256 

× 256, a train of 5 echoes (10, 30, 50, 70 and 90 ms), TR of 5550, 3000, 1500, 800 

and 536 ms and NA 1 (total acquisition time ~18 min). Fives image slices of the 

grape berry were acquired concurrently, spaced 5 mm apart (Figure 54). To better 

visualise reductions in T1 over time, the reconstructed T1 maps of each image slice 

were also normalised with respect to the T1 map of that image slice at time zero (i.e., 

     1 1 1 0* n nT T t T tt   where tn is the time point of interest, t0 represents time zero 

and T1* is the normalised T1).  

 

Figure 54: Longitudinal proton-density image of an experimental grape berry, cv. Red Globe at 

maturity. The locations of the image slice relative to the grape berry are indicated in pink. 
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The EPI DTI MRI pulse sequence was used to produce two-dimensional diffusion-

weighted images of the berries. The protocol parameters used included THK 1 mm, 

MTX 128 × 128, δ 1 ms, Δ 35 ms, TE 42 ms, TR 8000 ms and NA 1. The image was 

acquired in nine segments. Diffusion was measured along 15 different antipodal pairs 

of directions spaced evenly over a sphere, using a single diffusion gradient strength 

(b weighting of 800 s mm
-2

). One image with a negligible diffusion weighting was 

also acquired in order to normalise the diffusion weighted images (total acquisition 

time ~ 37 min). All MR imaging protocols for individual berries were completed 

within nineteen hours of detachment from the bunch. 

 

9.2.3 85BInfluence of pericarp cells on manganese transport 

To demonstrate the influence grape berry pericarp cellular membranes have on the 

distribution of manganese throughout the tissue, two additional Red Globe grapes 

were each microwaved three times at 770 W in order to disrupt their cellular 

membranes. Each period of irradiation lasted 7 s and the grapes were left to rest for 

two minutes in-between these periods. The pedicel and receptacle of the grape 

berries were wrapped with damp tissue paper prior to their irradiation to prevent their 

desiccation during the microwaving process. After their third dose of microwave 

radiation, the berries were left to rest for 30 min to allow their return to room 

temperature (22.0 ± 0.1 °C). The two microwaved grape berries were then imaged 

using the experimental procedures outline for the grape berries in the experimental 

group, as listed above. 

 

9.3 47BResults 

At time zero a number of the morphological features of the grape berry could be 

distinguished in the T1 relaxation MR images. These features include the central and 

peripheral vascular bundles, locules and the liquid endosperm of the seeds (Figure 

55). No splits were noted in the epidermis of the control berries or the experimental 

berries after this period of partial immersion. No significant changes (Tukey-Kramer 

test, P = 0.05) in T1 were noted in the relaxation images of the control grape berries 

over the nineteen hour period they spent partly immersed in water. Conversely, the 
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experimental grapes exhibited significant reductions (Tukey-Kramer test, P = 0.05) 

in T1 during their nineteen hour period of partial immersion in the manganese 

chloride solution (Figure 56).  

 

 

Figure 55: Structural features of an experimental grape berry, cv. Red Globe, visible in a transverse 

T1 relaxation image of 
1
H at ambient temperature (22.0  0.1 C) at time zero. The image was 

acquired using a VTR RARE MRI pulse sequence. (PV) peripheral vasculature, (CV) central 

vasculature, (L) locule, (S) seed, (LE) liquid endosperm.  

 

These reductions were first observed in the image slice closest to the pedicel of the 

grape berry in the peripheral vasculature of the berry. This was followed by T1 

reductions in the mesocarp tissue immediately adjacent to the peripheral vasculature 

(Figure 57). Localised reductions in T1 around sections of the peripheral vasculature 

were subsequently observed in image slices further away from the pedicel. A 

significant reduction in T1 was observed around the central region of the image 

closest to the pedicel, corresponding with the berry brush. However, no reduction in 

T1 was observed about the central or ovular vasculature (Figure 58), or in the liquid 

endosperm of the berry seeds. The final area and distribution of these regions of T1 

reduced pericarp tissue varied greatly across the experimental grape berries and 

between image slices (Figure 59).  
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Figure 56: T1 changes in a grape berry, cv. Red Globe, over nineteen hours of partial immersion in a 

10 mM manganese chloride solution. All images were from the image slice second closest to the grape 

berry pedicel. (A) T1 image of the experimental grape berry at time zero. (B – T) T1 images of the 

experimental grape berry at hours one to nineteen. 

 

The area of these T1 reduced regions as a percentage of the total area of the pericarp 

tissue in the image slice tended to decrease with increasing distance from the berry 

pedicel (Table 8), as did the rate of growth of the affected area of tissue (Figure 60).  
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Figure 57: Contrasting changes in the normalised T1 (T1*) of two sampled points in a selected 

experimental grape berry, vasculature tissue (black ■) and extra-vascular tissue (red ●), with respect 

to time. The two points were located ~350 m apart.  

 

 

 

Figure 58: T1 changes around the central (CV) and ovular vasculature (OV) of a grape berry, cv. Red 

Globe,  partially immersed in a 10 mM manganese chloride solution. All images were from the image 

slice second closest to the grape berry pedicel. (A) T1 image at time zero. (B) T1 image of the same 

grape berry after nineteen hours. (C) Normalised T1 image of (B) with respect to (A) in order to better 

visualise spatial contrast in T1 values.  
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Figure 59: Five T1 image slices (see Figure 54) of an experimental grape berry, cv. Red Globe, after 

nineteen hours of partial immersion in a 10 mM manganese chloride solution.  These image slices are 

spaced 5 mm apart along the longitudinal axis of the berry, from the proximal end at the pedicel 

junction (A) to the distal end at the stylar remnant (E). These images have been normalised with 

respect to the five T1 images of the grape berry acquired at time zero in order to better visualise 

changes in T1. 
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Table 8: The area of T1 reduced pericarp for each image slice (see Figure 54), averaged across the 

four experimental grape berries, after nineteen hours of partial immersion in a 10 mM manganese 

chloride solution. The error provided is the standard deviation of the areas between the grape berries. 

 

Image 

Slice 

Pericarp area with reduced T1 

(% of total pericarp area) 

A 78  9 

B 33  24 

C 20  15 

D 18  5 

E 29  16 

 

 

 

Figure 60: The area of the T1 reduced pericarp in each image slice with respect to time (averaged over 

the four experimental grape berries). Image slice A (black ■), image slice B (red ●), image slice C 

(blue ▲), image slice D (magenta ▼), image slice E (green ♦). The error bars reflect the standard 

deviation of the area of T1 reduced pericarp between the experimental grape berries. 

 

On average, the weight of the experimental grapes increased by 41.33  10.69 mg 

during its nineteen hours of partial immersion. Therefore the manganese content of 

the grape berries increased by 22.7  5.9 g over the course of the experiment. This 

was higher than the amount of manganese typically present in the grape berry, which 
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should be in the vicinity of 2.3 g per berry [206]. As the concentration of 

manganese within the pericarp tissues of the grape berry increased, there was a 

gradual loss of diffusion-weighted MR signal from paramagnetically enhanced spin-

spin relaxation. This problem was exacerbated by the EPI modification of the DTI 

pulse sequence used to acquire the images. Despite this loss of MR signal, apparent 

diffusivity within the five image slices remained relatively consistent over the 

nineteen hours of partial immersion in the manganese chloride solution (Figure 61). 

  

 

Figure 61: The mean ADC of each image slice, averaged across all of the experimental grape berries. 

Image slice A (black ■), image slice B (red ●), image slice C (blue ▲), image slice D (magenta ▼), 

image slice E (green ♦). The error bars reflect the standard deviation of the ADCs. 

 

9.3.1 86BThe results of irradiating grapes with microwaves 

At time zero, the microwaved grape berries exhibited a reduced T1 and a lack of 

structural details in the inner mesocarp region of the grape berry relative to un-

microwaved grape berries (Figure 62A  E, cf. Figure 55). 



 

135 

 

Figure 62: Comparison of T1 images across five slices of a microwaved grape berry, cv. Red Globe, at 

time zero (A  E) and nineteen hours (F . J) after partial immersion in a 10 mM solution of 

manganese chloride. Images F . J have also been normalised with respect to images A  E in order to 

better visualise changes in T1 (K  O). 
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Over the nineteen hours of their partial immersion in the manganese chloride 

solution, T1 values across the inner pericarp of the microwaved grape berries 

significantly decreased (Figure 62F  J). Rather than entering the image slice from 

the grape peripheral vasculature, the reduction of T1 in the microwaved berries 

originated close to the centre of the grape berry (Figure 63). The degree and extent of 

T1 relaxation was noticeably greater in the microwaved grapes than in berries that 

had not been subject to microwave radiation (Figure 63, cf. Figure 56), as was the 

rate of change of the T1 reduced pericarp tissue area (Figure 64, cf. Figure 60). 

 

 

Figure 63: T1 changes in a grape berry, cv. Red Globe, over nineteen hours of partial immersion in a 

10 mM manganese chloride solution. All images were from the image slice third closest to the grape 

berry pedicel. (A) T1 image of the microwaved experimental grape berry at time zero. (B – T) T1 

images of the microwaved experimental grape berry at hours one to nineteen. 
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Figure 64: The area of the T1 reduced pericarp in each image slice with respect to time (averaged over 

the two microwaved grape berries). Image slice A (black ■), image slice B (red ●), image slice C 

(blue ▲), image slice D (magenta ▼), image slice E (green ♦). The error bars reflect the standard 

deviation of the area of T1 reduced pericarp between the microwaved grape berries. 

 

9.4 48BDiscussion 

The results of the current study indicated that paramagnetic metal ions have great 

potential to act as tracers of vascular/extra vascular transport investigations. The 

widespread T1 reductions in the pericarp of the experimental grape berries indicated 

the successful uptake of manganese into the vasculature of the berry pedicel, 

primarily the xylem [206], and the subsequent exiting of manganese ions from the 

berry vasculature into the pericarp tissue (Figure 56). This was also supported by the 

absence of T1 reduction observed in the control berries. The presence of additional 

manganese in the experimental grape berries was not found to change the apparent 

diffusivity of the affected tissue (Figure 61). Therefore there was no noticeable 

change in intracellular viscosity, effect on cellular membrane permeability or 

evidence of cell death. The peripheral vasculature was the preferred system for 

manganese delivery within the grape berry, as there was little to no reductions in T1 

in or about the central and ovular vasculature (Figure 58).  
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The area of T1 reduced pericarp tissue tended to decrease with increasing distance 

from the berry pedicel (Table 8), as did the rate of growth of these affected regions 

(Figure 60). However, the image slice furthest from the pedicel did not follow this 

trend. This is because the density and curvature of the berry vascular bundles in this 

image slice. This increases the probability of observing the unloading of manganese 

within the image slice. The area growth rate of T1 reduced pericarp tissue in the 

image slice closest to the pedicel began to slow after eight hours of partial immersion 

(Figure 60). Thus the rate of concentration change for the manganese within the 

tissues of this image slice decreased with respect to time, indicating an approach 

towards system equilibrium as outlined by Fick’s laws. (see Section 3.1 Diffusion 

processes). This reduction in manganese uptake is therefore consistent with a mutual 

diffusion dominated transport process. Unfortunately, the actual concentration of 

manganese in the tissue is difficult to quantify using paramagnetic enhanced spin-

lattice relaxation MRI, as the relationship between the measured MR signal intensity 

and manganese concentration is relative [222]. The consistency of the mean ADCs 

exhibited in the experimental grape berries across the nineteen hours of partial 

immersion in the manganese chloride solution demonstrates that the uptake of 

manganese did not noticeably increase intracellular viscosity or influence cellular 

membrane permeability. 

 

9.4.1 87BEvidence for controlled diffusive transport 

The results of this study indicate that once manganese entered the experimental grape 

berry peripheral vasculature, a difference in manganese ion concentration was 

established and maintained between the vasculature and the surrounding extra-

vascular tissue (Figure 57). However, if the exiting of manganese ions from the berry 

xylem was driven by mutual diffusion processes alone, it is expected that manganese 

would exit from all points of the peripheral vasculature and into the surrounding 

tissue. However, many extra-vascular regions adjacent to the peripheral vasculature 

of the experimental grape berries exhibited no appreciable reductions in T1 relaxation 

despite other regions exhibited much greater reductions in T1. Additionally, there 

were occasions when images slice further from the berry pedicel exhibited reductions 

in T1 relaxation in the berry pericarp to a greater extent than images slices closer to 

the berry pedicel (Figure 59 and 60). This variation in manganese distribution 
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between image slices could be due to bifurcations and xylem unloading mechanisms 

within the berry vasculature influencing the spatial distribution of manganese 

‘downstream’ of the berry pedicel. 

Further evidence for controlled diffusive transport of metal ions in the experimental 

grape berries was provided by the two Red Globe table grapes which were briefly 

microwaved in order to disrupt the membranes of their pericarp cells. This disruption 

was indicated by the observed widespread reduction in T1 in the microwaved grape 

berries and the loss of detailed tissue structure in inner mesocarp region (Figure 62A 

 E). The disruption of the inner mesocarp cellular membranes was also reflected in 

the rate at which the manganese entered the inner mesocarp of the microwaved grape 

berries and its spatial distribution in the tissue. For example, the rate of the area of 

the T1 reduced pericarp tissue changed faster in microwaved berries than in the 

experimental grapes (Figure 64, cf. Figure 60). This rate of change also slowed in the 

image slices with time, reflecting the driving mutual diffusion process. Additionally, 

from the T1 images (Figure 63) it appears that the reduction of T1 in the microwaved 

grape berries began in the central tissue of the grape berry, rather than near the 

peripheral vasculature, and that the spatial distribution of the manganese within these 

berries was more isotropic when compared with the more anisotropic distributions of 

their un-microwaved counterparts (Figure 56). Importantly, the distribution of 

manganese in the microwaved grape berries was also noticeably more homogeneous 

than in the grape berries which had not been irradiated. For these results, the 

transport of manganese between pericarp cells must be controlled.  

The microwaved grape berries exhibited lower T1 values after nineteen hours of 

partial immersion in the manganese chloride solution compared to their un-

microwaved counterparts. This difference in T1 could potentially be attributed to 

microwave damage to the berry pedicel, receptacle and/or the epidermal tissue 

surrounding the receptacle providing an easier point of ingress for the aqueous 

manganese. However, the overall increase in microwaved grape berry weight after 

nineteen hours of partial immersion in the manganese chloride solution (33.50  

19.09 mg) was not greater than the increased weight of the experimental grape 

berries. This indicates that the microwaved grape berries did not necessarily take up 

more manganese than the un-microwaved berries. It is possible that the manganese 
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ions taken up by the experimental grape berries are being stored in parenchyma cells 

in such a way that limits the contact of these ions with mobile water molecules. 

 

9.4.2 88BComparing the results of the study to the literature 

A number of studies have been previously conducted to order to investigate xylem 

transport using xylem tracers. These tracers largely consisted of xylem-mobile dyes, 

such acid/basic fuchsin [223-225] and eosin yellow [14]. However, these organic 

molecules have a much greater molecular weight than manganese ions, and were 

largely confined to the berry peripheral vasculature. Paramagnetically enhanced 

relaxation MRI, on the other hand, offers the novel possibility of non-invasively 

tracing the transport of metal ions native to the grape berry, their exiting of the xylem 

and their subsequent transport across the grape berry pericarp. 

Other previous studies, which employed phloem tracers instead of xylem tracers, also 

offer interesting comparisons for the results of this investigation. For example, from 

the results of the current study it appears that the percentage area of the T1 reduced 

tissue tends to be greater in image slices closer to the berry pedicel. A similar result 

was obtained in a previous study in which the uptake of 
14

C labelled sucrose into the 

grape berry via the pedicel was observed [14]. However, these results disagree with 

those of another previous study [8], which indicate that 
14

C labelled photosynthates 

appear to be evenly unloaded across the length of the berry peripheral vascular 

system. One difference between these three studies was the method used to deliver 

the tracer molecules to the berry pedicel. In the current study and the study of 

Findlay et al., a highly concentrated solution containing the tracer molecules was 

applied directly to the freshly cut berry pedicel. However, Zhang et al. used a fine 

wick to deliver small amounts of the labelled photosynthates to the pedicel of the 

berry over a longer period of time (72 hours). In the current study, manganese was 

supplied to the experimental grape berries at non-physiological concentrations to 

ensure strong contrast in the relaxation images. Any potential problems arising from 

this could be reduced by developing a method of delivering a more dilute solution of 

manganese to the berry pedicel in smaller quantities over a longer period of time, or 

by introducing the manganese at a more basal site. However, this will result in 

significantly decreased contrast in the relaxation MR images.  
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Chapter 10 - 8BConclusions 

In this chapter, conclusions are drawn from the studies within the thesis to 

demonstrate the contributions of this research to furthering knowledge of grape berry 

morphology and physiology and how these contributions relate to one another. This 

chapter also includes an assessment of whether the research presented here met its 

intended objectives. 

The first objective of this thesis was to determine the applicability of different 

diffusion MRI techniques for the processing of MR data acquired during studies of 

grape berry morphology. From the extensive list of diffusion MRI techniques 

considered, two methods were short listed; DTI and BFOR imaging. DTI possesses 

advantages in its simplicity and robustness, while BFOR imaging is able to model 

more complex tissue geometries than DTI. However, the results of the BFOR 

imaging simulations found that BFOR imaging did not appear well suited to 

reconstructing the relatively wide microstructures expected in the grape berry 

pericarp. The probability isosurfaces reconstructed using BFOR imaging had a 

noticeably reduced ability to accurately reconstruct the simulated cell geometries 

wider than 10 µm. For this reason, DTI was selected for processing the data of the 

diffusion MRI studies contained within this thesis. As has been previously 

established, the bulk of the grape berry consists of radially aligned parenchyma cells. 

Therefore DTI would be sufficient for reconstructing the orientation of grape 

pericarp microstructures even with its relatively low angular contrast.  

Having selected an appropriate diffusion MRI technique to analyse the diffusion MR 

data, the second objective of the thesis was to use diffusion MRI to study the 

morphology of healthy grape berries across their development. In addition to 

providing a novel prospective on grape berry development, this investigation also 

established a library of relaxation and diffusion MR images/values of normal grape 

berries for comparisons with the results of different grape treatments in following 

studies. The results of the DTI studies of the untreated grape berries demonstrated 

that diffusion anisotropy patterns correlated with the microstructure of the major 

pericarp tissues of cv. Semillon grape berries, including the exocarp, outer and inner 

mesocarp and seed interior development. Microstructural variations in the grape 
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berry tissues could also be inferred from the MR images which corresponded with 

well-known stages of grape berry development. For example, an increase in diffusion 

vector coherence between 28 and 41 DAF indicating the transition from non-

elongated to radially elongated mesocarp cells, and the decrease of diffusion vector 

coherence/apparent diffusivity during ripening, likely the result of the widespread 

apoptotic cell death in the berry mesocarp. It is also possible that the sigmoidal 

decrease of apparent diffusivity with grape berry is related to the sigmoidal increase 

of berry sugar. This potential relationship could have important implications for 

sugar accumulation in grapes as well as the hydraulic resistance across the berry, and 

should be explored further in a future study. Another interesting feature observed in 

the diffusion MR images of the grape berry pericarp was the rotationally dependent 

anisotropic diffusion patterns noted in the seed integument of young grape berries. 

These diffusion patterns could only be observed early in the development of the 

grape berry, due to the dehydration of the seed integument and the replacement of the 

nucellus by the liquid endosperm. DTI could hence prove to be a useful tool for 

future studies of water transport across the seed coat while the seed is still maturing. 

Additionally, the analysis of diffusion MR images revealed that these striation 

patterns, readily visible in the relaxation images of the grape berry pericarp, 

corresponded with variations in apparent diffusivity. This result provided further 

evidence that the inner mesocarp striation patterns previously noted in the spin-spin 

relaxation weighted images from the studies of Pope et al. (1993) and Glidewell et al. 

(1997) arise due to variations in cell width across the striation bands.  

Although the diffusion measurements were made from berries detached from the 

bunch and in a sealed environment, it is expected that an actively transpiring berry 

still attached to the vine would not exhibit a noticeable difference to the results 

presented here. As was previously explained, diffusion measurements are of the 

random, thermally driven movement of water molecules. These measurements will 

hence not be affected by uniform water flow caused by active transpiration. 

Differences between the acquisition parameters of the different diffusion MRI 

experiments in this thesis added an additional step of complexity when comparing 

diffusion results between studies. However, the TR and TE were maintained between 

diffusion MR images acquired in the same set; hence spin-spin and spin-lattice 

relaxation could be normalised from the diffusion MR images during their 
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reconstruction. Differences in Δ between diffusion MR images was more of a 

concern as it changes the length scale probed by diffusing water molecules. 

However, although the difference in Δ between the experiments contained within this 

thesis could appear significant, the difference in the RMSD (i.e. the length scale 

probed by the diffusing water) differs by a few micrometres, which is quite small 

relative to variations in grape berry cell size (see Section 1.1.1 Cell sizes of the grape 

berry pericarp tissues). It is therefore quite unlikely that differences in the MR 

experiment parameters would noticeably impact on any comparisons made between 

different grape berry diffusion experiments. 

Having established a close relationship between the diffusion MRI images and the 

morphology of the grape berry, the third objective of this thesis was to investigate 

how changes to the grape berry morphology arising from berry diseases/physical 

injury could potentially provide information regarding the mechanism of important 

fruit afflictions, such as grape berry split. Table grapes, cv. Thompson seedless, were 

studied during this investigation due to their predisposition to splitting. No changes 

in the diffusion MR images were observed prior to the formation of a split in the 

berry epidermis that would indicate a change in berry morphology with the exception 

of localised expansions in the grape berry pericarp. However, the diffusion MR 

studies did reveal that a number of morphological and physiological changes occur in 

the berry pericarp once splits form in the berry epidermis. Significantly, there was an 

increase in the mean apparent diffusivity of the tissue surrounding these wounds 

relative to healthy tissue/grape berries. The increase in apparent diffusivity was 

attributed to ischemic cell death in the affected berry mesocarp tissue. This result 

contrasted interestingly with the decrease in apparent diffusivity observed in the 

Semillon grapes as a consequence of cell shrinkage from widespread apoptosis in the 

berry pericarp. Upon comparing water soaked pre-split berries to pre-split berries 

that had been immersed in Fomblin oil or left dry, it was concluded that ischemic cell 

death was triggered by the osmotic imbibition of water through the openings in the 

berry epidermis. In the context of a vineyard, the amount of standing water on the 

surface of split grape berries may be an important determinant of the cellular 

response of the fruit to this trauma, and the subsequent establishment of adventitious 

fruit pathogens. 
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The fourth and final objective of this thesis was to investigate how paramagnetically 

enhanced spin-lattice relaxation MRI could be used to investigate the transport and 

diffusion of manganese across the berry pericarp. This study differed somewhat from 

other investigations within this thesis; instead of making direct measurements of 

water diffusion in order to determine the morphology of the grape berry pericarp, 

indirect observations of the diffusion of paramagnetic ions were made to better 

understand this physiological process within the grape berry. This method is a highly 

novel approach; previous studies of vasculature and extra-vascular solute transport 

typically employ radioactively or fluorescently labelled compounds which are 

constrained to large molecule transport pathways. The relaxation MRI experiments 

revealed that manganese is preferentially transported across the length of grape berry 

by the peripheral vasculature. However, the manganese was not evenly distributed in 

the berry pericarp; some regions of the grape berry received a higher concentration of 

manganese than others over the nineteen hours the grape berry pedicels were 

immersed in the manganese solution. In some cases, image slices further from the 

berry pedicel exhibited more noticeable changes in T1 than image slices closer to the 

pedicel. These results, in conjunction with the relaxation MRI experiments on 

microwaved grape berries, imply that the grape berry xylem is able to control the 

point at with manganese exits ‘downstream’ of the pedicel while the cellular 

membranes of the extra-vascular tissue cells are able to influence the spatial 

distribution of manganese within the pericarp tissue. Unlike large molecular weight 

xylem-mobile dyes, manganese can freely exit the xylem and diffuse through the 

berry pericarp, therefore serving as an excellent tracer for xylem vascular/extra-

vascular metal ion transport. Other paramagnetic ions that the grape berry naturally 

accumulates, such as iron and copper, are likely to prove useful for studying 

vascular/extra-vascular metal ion transport as well. Future botanical investigations 

making use of paramagnetically enhanced relaxation MRI could prove to be very 

valuable in determining how botanical species are able to transport and store these 

materials. 

Relaxation and diffusion MRI will be useful in the examination of the morphology 

and physiology of other plant species and organs, providing the constituent tissues 

contain sufficient unbound water. While tissues consisting of smaller cells are easier 

to investigate than tissues with larger cells, diffusion anisotropy will remain evident 
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if Δ is long enough to ensure that a large population of water molecules can interact 

with the surface of the cellular boundaries. The applicability of relaxation and 

diffusion MRI to the study of the biology of plant species with high oil contents is of 

great interest as natural plant oils are often highly valued botanical commodities. 

Although natural oils are hydrophobic, and diffusing water molecules treated 

droplets of oil encountered in cell cytoplasm as diffusion restricting obstacles, a short 

diffusion MRI investigation of mature olives found that diffusion MRI is quite 

possible on plant organs with high oil contents. Olives were an ideal candidate for 

this small study, as olives are comparable in size to grape berries and also have a 

similar internal structure and cellular dimensions, and the relaxation and diffusion 

results of this investigation neatly complemented the results of the grape berry MRI 

investigation.  

In closing, this thesis has met all its intended objectives. It has demonstrated that 

diffusion MRI is an effective tool in the study of botany with MR images of the 

grape berry pericarp providing complementary information regarding grape 

morphology and physiology. The exciting results of the studies within this thesis also 

provide a strong foundation for future research into the use of novel MRI 

technologies for furthering our understanding of plant biology. 
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9BAppendices 

 

49BAppendix A 

The ability to determine the orientation of overlapping fibre populations is highly 

desirable for analysing complicated biological systems. As a result, there has been 

much interest from biomedical researchers since the inception of DTI to improve 

upon the limited angular resolution provided by the second order diffusion tensor. 

The objective of this appendix is to introduce and discuss a large variety of the three-

dimensional diffusion MRI techniques available. Also included is an assessment of 

the requirements and capabilities of each of the listed techniques in their respective 

sections. 

 

89BHigher order diffusion tensor imaging 

Expanding on the concept of the diffusion tensor directly, the diffusion imaging 

technique known as higher order diffusion tensor imaging (HOTDI) replaces D with 

a tensor of a higher order. The increased dimensionality of higher order tensors 

allows for more complicated coupling between the components of B and the 

measured diffusion-weighted MR signal. As a result, HODTI provides a more 

complete description of diffusion anisotropy and correspondingly provides additional 

information regarding complicated restricting microstructures. Replacing D with a 

symmetric tensor of an arbitrary higher order is a straightforward process largely 

because the tensor product operation is allowed for any two tensors of equal rank. If 

U and D in Eq. (36) are replaced with tensors of some arbitrary order, the expression 

becomes [226], 

      

1 2 1 2

1 2

3 3 3

1 1 1

ˆ :
n l

l

l l

i i i i i i

i i i

D u u u D
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  u U D  (78) 

where U
(l)

 is an l-th order directional tensor, D
(l)

 is an l-th order diffusion tensor and 

li  is the l-th spatial coordinate index of the subscripted tensor (i.e., , ,ki x y z  where 
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1 k l  ). The order of D
(l)

 is generally restricted to an even integer; this is because 

the multiplication of an odd number of u  components in Eq. (78) would imply that 

    ˆ ˆD D  u u  (79) 

and negative diffusion coefficients cannot exist for a real system (i.e., the values 

would be non-physical). Analogous to Eq. (37), multiplying U
(l)

 by b yields a tensor 

that describes a multi-dimensional description of the magnetic diffusion gradient, b
(l)

, 

i.e., 

 
   l l

bb U . (80) 

The second order b and D tensors in Eq. (39) can then be replaced with b
(l)

 and D
(l)

, 

      

1 2 1 2

1 2

3 3 3
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ˆln :
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l

l l

i i i i i i
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E b D
  

    u b D  (81) 

While an l-th order diffusion tensor possesses 3
l
 elements, the symmetry of the tensor 

implies that (similarly to D) it contains a subset of independent elements. For 

example, D
(4)

 contains fifteen independent elements: Dxxxx, Dyyyy, Dzzzz, Dxxxy, Dxxxz, 

Dxxyy, Dxxyz, Dxxzz, Dxyyy, Dxyyz, Dxyzz, Dxzzz, Dyyyz, Dyyzz  and Dyzzz. 

The number of independent elements in a diffusion tensor of any order can be found 

by using an index replacement strategy. This strategy begins with Dxxx…xx, an element 

of an l-th order diffusion tensor. As all the indices are identical, Dxxx…xx is an 

independent element of the tensor and is not equivalent to any other element in 

tensor. Now consider an element which differs by one index (i.e., one index of the 

element is either y or z). Recalling that the order of the element indices is not 

important due to the symmetry of the tensor, this replacement creates two new 

independent elements (i.e., Dxxx…xy and Dxxx…xz). Likewise, if an element differs from 

Dxxx…xx  by two indices and from Dxxx…xy and Dxxx…xz by one index this would lead to 

the creation of three additional independent elements (i.e., Dxxx…yy, Dxxx…yz and 

Dxxx…zz). Generalising this replacement strategy yields the relation 

  
  1

1

1 2
1 2 3 1

2

l

x

l l
N x l





 
        . (82) 
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Since the independent elements can appear more than once in the array, the diffusion 

tensor is a multiset. The number of equivalent elements (i.e., the multiplicity of each 

element) in a multiset is given by 

 
!

! ! !x y z

l

n n n
  (83) 

where nx, ny and nz are respectively the number of the x, y and z components of the 

tensor. Using Eqs. (82) and (83), Eq. (81) can be easily rewritten as a system of 

linear equations. For example, in order to reconstruct a fourth order diffusion tensor, 

Eq. (81) can be expressed as 
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 . (84) 

The elements of D
(l)

, for a particular order l, can hence be determined using a 

standard iterative or direct tensor reconstruction method (see Appendix B). As D
(4)

 

contains fifteen independent elements, Eq. (84) can only be solved if the system 

contains a minimum of fifteen equations (i.e., q-space must be sampled on at least 

fifteen or more unique points of a single q-shell in addition to the origin of q-space). 

Once the independent elements of D
(l)

 have been determined, the visualisation of the 

diffusion data can begin. Since higher order diffusion tensors are not matrices, linear 

algebraic operations, such as eigen-decomposition, are possible in theory but are not 

straightforward to implement [227, 228]. As a result, D
(l)

 is typically visualised as an 

apparent diffusivity profile by extrapolating ADCs from D
(l)

 using Eq. (78) for a 

large number of non-collinear u, similar to how an apparent diffusivity profile can be 

created from D. The profile can then be converted into an isosurface (Figure 65). 

However, the question remains as to what order of D
(l)

 is appropriate for a given 

restricted system. If the order of the tensor is too low, the angular resolution of the 

tensor will be insufficient to resolve the effect of restricting structure on the apparent 

diffusion profile. If the order of the tensor is too high, the total acquisition image 

time is significantly increased for little gain. 
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Figure 65: Diffusivity isosurfaces of overlapping fibre populations constructed using diffusion tensors 

of different orders. The orientation of each fibre population is indicated with double-headed arrows. 

As the number of overlapping fibre populations increases, tensors of a lower rank become less 

effective in describing the more complicated diffusion patterns. However, the diffusivity isosurfaces 

do not necessarily indicate the correct orientation of these fibre populations. 

 

The minimum order of D
(l)

 required to characterise a restricted system can be defined 

as the point at which increasing the order of the diffusion tensor no longer 

significantly changes the shape of the apparent diffusivity profile. For example, for a 

voxel containing a single fibre population, the apparent diffusivity profile is identical 

for a second, fourth or sixth order tensor (Figure 65, left column). Therefore a second 

order diffusion tensor is sufficient to characterise this system. If two fibre 

populations are present, using a tensor of an order greater than four results in no 

further changes to the appearance of the apparent diffusivity profile (Figure 65, 

middle column). Therefore a fourth order diffusion tensor is sufficient to characterise 

this system. This pattern is repeated for increasing numbers of intravoxel fibre 

populations. In general, a tensor with an order of 2n is required to characterise 

diffusion within voxels containing n fibre populations. 

Similarly to the second order diffusion tensor, scalar features can also be extracted 

from higher order diffusion tensors. For example, a generalised FA (GFA) index can 

be calculated by expanding Eq. (48) in accordance with the definition of the FA 
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index: the deviation of the eigenvalues/diagonal elements of D
(l)

 from the root mean 

square of D
(l)

 [151], i.e.,  
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where n equal to the number of ADCs extracted from D
(l)

 (see Eq. (78)) and ⟨D(l)⟩ is 

the mean diffusivity of the higher order diffusion tensor, i.e. 

    
1

1
ˆ

n
l

i

i

D
n 

 D u .  (86) 

The accuracy of the GFA can be improved by increasing the number of ADCs 

included in Eq. (85). As the GFA index is an extension of the FA index, the value 

will range between zero and one. 

The greatest drawback of HODTI is that the local maxima of higher-order tensor 

apparent diffusivity profiles do not correspond to the orientations of overlapping 

fibre populations (Figure 65). This discrepancy can be explained using the following 

example; consider a voxel which contains n ≥ 2 distinct fibre populations. The 

probability of a single water molecule displacing R in time t is given by  

    
1

, ,
n

i i

i

P t f P t


R R   (87) 

where fi and Pi (D,t) are the respective volume fraction and diffusion propagator 

associated with i-th fibre population. Likewise, if it is assumed that the contribution 

of each fibre population to the measured diffusion-weighted signal add 

independently, 

     
1

ˆ ˆexp
n

i i

i

E f bD


 u u   (88) 

where Di(u) is the ADC associated with the i-th fibre population when diffusion is 

measured along u. Thus, the observed ADC is 
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Thus from Eq. (89) it can be seen that the ADCs corresponding to each fibre 

population do not add linearly. Consequently, the ADCs of directions which are 

super-positions of the fibre orientations are larger than the ADCs of directions 

parallel to the fibres. Consequently the local maxima of the apparent diffusivity 

profile do not correspond to the orientations of the overlapping fibre populations. 

However Eq. (87) demonstrates that the diffusion propagators of different fibre 

populations do add linearly; therefore, the local maxima of a diffusion propagator 

(i.e., probability) isosurface will match the orientation for any number of overlapping 

fibre populations. This concept is discussed further in following section. 

 

90BGeneralised diffusion tensor imaging 

Generalised diffusion tensor imaging (GDTI) is a natural extension of DTI and 

HODTI. Instead of characterising diffusion with a single diffusion tensor, GDTI 

employs a series of tensors with an infinitely increasing order [229, 230]. For 

example, generalising Eq. (13) in this manner yields 

                    2 1 3 2 4 3

0 1 0 1 0 1 0 1J , , D , , D , , D , ,P t P t P t P t      r r r r r r r r   (90) 

where 

  

1 2 l

l

i i iu u u


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  
 . (91) 

The advantage of using a series of tensors is that each array contains non-redundant 

information regarding diffusion (i.e., information is not shared between the tensors). 

Each tensor describes a different aspect of diffusion, such as variance, skewness or 

kurtosis (the diffusion, skewness and kurtosis tensors, respectively) [229, 230]. It 

also means that unlike DTI and HODTI, GDTI does not require the assumption that 

diffusion is free. Replacing the ADC in the Bloch-Torrey equation (see Eq. (28)) by 

the tensor series featured in Eq. (90) gives 
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Rewriting Eq. (92) in the rotating frame and in terms of its transverse magnetisation 

therefore yields 
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As mxy relaxes exponentially with time, when Eq. (93) is integrated, 

   2expxy Dm m i t t T   g r   (94) 

where mD is the component of the transverse magnetisation affected by diffusion. 

Substituting Eq. (94) in Eq. (93) yields, 
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Using an approach similar to Bloch-Torrey (see Section 4.1 The Bloch-Torrey 

equation), Eq. (95) can be solved leading to the expression [109, 229], 
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where     
1 2 1 2

1 1
l l

l l

i i i i i ig g g l l     B  are the components of the l-th 

order magnetic gradient tensor 
 lB . 

The physical meaning of each tensor in the series depends upon the order of the 

tensor. For example, D
(2)

 = D, and thus describes the variance in diffusion 

displacement. D
(3)

, on the other hand, reflects diffusion skewness while D
(4)

 depicts 

the extent of diffusion kurtosis. Diffusion tensors with an order higher than four do 

not have a physical analogy; they are best thought of as increasingly higher 

dimensional descriptors of the diffusion profile. In the case of free diffusion, the 

diffusion propagator exhibits no skew or kurtosis; thus the elements of the diffusion 

tensors of an order greater than two are equal to zero. From Eq. (96) it can also be 

inferred that the magnitude (i.e., real component) of the diffusion-weighted MR 
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signal relates to the tensors of the series with an even order while the phase (i.e., 

imaginary component) of the MR signal relates to tensors with an odd order. 

Unfortunately, MR signal phase is easily corrupted; for example, by eddy currents 

[231] or subject motion. Since accounting for or correcting these phase errors is a 

very difficult task, diffusion MRI data sets typically only contain the signal 

magnitude values. As a result, the odd order tensors (e.g. the skewness tensor) are 

excluded from the tensor series. This is unfortunate because only the odd ordered 

tensors are able to account for asymmetric diffusion (e.g. when a single fibre 

population diverges within a voxel). 

When the diffusion tensor series in Eq. (96) is truncated to a specific order, it can be 

rewritten as a linear equation. For example, truncating Eq. (96) to the fourth order, 

and excluding the odd order tensor from the series, yields 
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.  (97) 

Similarly to Eq. (84), this equation can be used as the basis of a system of linear 

equations. In order to calculate the independent elements of each diffusion tensor in 

the linear equation, this system must contain a number of linear equations equal to or 

greater than the total number of independent elements present (e.g. a minimum of 

twenty-one linear equations are required to solve Eq. (97)). Since GDTI provides 

information regarding the radial component of the apparent diffusion processes, q-

space must be sampled on multiple q-shells (i.e., one q-shell per tensor in the series). 

The number of points sampled on each q-shell must also equal or exceed the number 

of independent elements contained within the highest order diffusion tensor present 

in the series. For example, to determine the independent elements of D
(2)

 and D
(4)

 

using the system of questions constructed from Eq. (97) would require sampling q-

space on a minimum of two different q-shells with fifteen points on each shell in 
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addition to the q-space origin. The independent elements of each diffusion tensor in 

the series can be determined using an iterative or direct diffusion tensor 

reconstruction method, similarly to DTI and HODTI (see Appendix B). Although 

this method requires a greater number of points of q-space to be sampled relative to 

DTI and HODTI, GDTI can still be performed in a time period acceptable for a 

clinical setting with fast diffusion MRI sequences. 

Once the independent elements of Eq. (97) have been calculated, the higher order 

diffusion tensors can be visualised. As previously discussed (see Appendix A Higher 

order diffusion tensor imaging), it is advantageous to visualise the diffusion 

propagator profile rather than the apparent diffusivity profile. Since the diffusion 

propagator is described in terms of its cumulants, and the higher order diffusion 

tensors that have been calculated must be converted into their corresponding 

cumulant tensors. Fortunately this conversion process can exploit the fact that the 

natural logarithm of characteristic functions (e.g. E(q)) can be expanded as a series 

of cumulants using the cumulant generating function, 
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where 
1 2 li i i  is a component of the l-th order cumulant tensor, 

(l)
. Therefore, 

comparing Eqs. (98) and (96), 
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Once the cumulant tensors have been calculated, P(r) can then be reconstructed 

using the Gram-Charlier A series (i.e., the Fourier expansion of P(r) in terms of 

Hermite polynomials [232] allowing the approximation of a probability distribution 

as a series of its cumulants) for a large number of r [230, 233], 
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where H
(l)

(R) is the symmetric l-th order Hermite tensor, which is comprised of the 

components 
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For example, the elements of the first to fourth order Hermite tensor are given by  
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Upon reconstructing the diffusion propagator profile using Eq. (100), the profile can 

then be converted into a probability isosurface similarly to how a large collection of 

ADCs can be used to construct an apparent diffusivity profile (see Section 4.2 

Diffusion tensor imaging). The maxima of this probability isosurface will correspond 

to the orientation of the present fibre populations. This allows the orientations of 

complicated restricting microstructures to be examined without a priori knowledge 

of the system. 

 

91BAnomalous diffusion tensor imaging 

Recalling Eq. (31), it can be inferred that the relationship between ln E(b) and b will 

remain linear for all values of b. However, this relationship hinges on the condition 

that diffusion is free. For diffusion within restricted system the relationship between 

ln E(b) and b may be non-linear (Figure 66) [45, 95]. The gradient of a linear fit is 

therefore dependent on the distribution of b-values with which E(b) was sampled, 

potentially leading to significant variations in calculated ADCs or elements of 

diffusion tensors. This problem affects any diffusion MRI measurement of a system 

involving restricted diffusion where it is simplistically assumed that the decay of the 
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diffusion-weighted MR signal is a monoexponential function (e.g., Eq. (30)) or that 

the diffusion propagator can be modelled as a Gaussian function (e.g. Eq. (15)). 

 

 

Figure 66: The non-linear relationship between ln E(b) and b for restricted diffusion. Here the 

attenuation of the diffusion-weighted MR signal has been recorded for a number of different b-values 

(●). By attempting a linear fit to non-linear diffusion data, the gradient of the fitted curve will depend 

on the distribution of b-values the diffusion-weighted MR signal was sampled. For example, if the 

diffusion-weighted MR signal was only sampled using values of b ≤ 1000 × 10
6
 s m

-2
, the gradient of 

the curve (i.e., the ADC) is 1.76 × 10
6
 m

2
 s

-1
 (blue unbroken line). Sampling the MR signal up to b = 

2000 × 10
6
 s m

-2
, on the other hand, results in an ADC of 1.45 × 10

6
 m

2
 s

-1
 (red dashed line). 

 

The non-linear relationship between ln E(b) and b for the case of restricted diffusion 

arises due to the presence of two or more diffusion compartments within the voxel 

which restrict diffusion to different degrees [234, 235]. The superposition of the 

resultant diffusion-weighted MR signal profiles results in the observed non-linear 

relationship between ln E(b) and b. One method for resolving this problem for simple 

tissue samples (i.e., tissues consisting of a single type of cells) involves fitting a bi-

exponential model (see Eq. (88), where n = 2) to the diffusion-weighted MR signal 

decay curve [234, 236].  

The slower apparent diffusivity component is generally attributed to diffusion in the 

intracellular space and the faster apparent diffusion component to diffusion in the 
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extracellular space. However, the volume fractions of these two cellular 

compartments do not necessarily match their physiological volume fractions [161, 

234]. An alternative to the bi-exponential model is to treat diffusion as a 

heterogeneous process [237]. In other words, when the diffusion process is modelled 

as a random walk, the step size (i.e., the displacement per iteration of the simulation) 

is not fixed. This form of the random walk model is known as a Lévy flight [238, 

239]: a series of small, localised movements interspaced by larger, periodic 

displacements (Figure 67). The small displacements can be attributed to diffusion 

within highly restricted regions while the larger displacements correspond to 

diffusion within regions which are less restricted. Aspects of the local environment 

can therefore be inferred without the need to model any part of the restricting 

microstructure. 

 

 

Figure 67: Representing anomalous diffusion of a single particle in a restricted system as a Lévy 

flight. The displacement of the particle at each time point (as indicated by changes in the direction of 

the red path) is dependent upon the degree of diffusion restriction. The particle can diffuse through 

both white and black regions, although the white regions restrict diffusion less than the black. 

 

 



 

159 

Since in a Lévy flight the displacement of a particle is treated as a function of 

position, it is possible that the mean square displacement of the diffusing ensemble 

no longer has a linear relationship with time. The one dimensional MSD equation 

(see Eq. (20)) must therefore be generalised to account for this change [240, 241], 

i.e., 

 2  2DtR  (103) 

where ς is a unitless stretching exponent. The stretching exponent indicates the 

complexity of the diffusion path within the restricted system. For example, when 

ς = 1, the diffusion process is free and Eq. (103) equates to Eq. (20). However, when 

ς  1 the diffusion process is anomalous. ς is related to the fractal dimension, dw, of 

the local microstructures restricting diffusive motion via the relation, 

 2 wd  . (104) 

The fractal dimension is a useful scalar index which characterises how the detail of 

restricting microstructure changes with the scale of the measurement. It can thus be 

used to describe the heterogeneity of the restricting microstructure within a voxel.  

 

The EAP of an ensemble of anomalously diffusing particles (i.e., the anomalous 

EAP) is a Lévy distribution. The Fourier transform of the anomalous diffusion 

propagator, AP (R), in the one dimensional case is a stretched exponential [241-243] 

       exp expA AE P R i gR dR bD


    (105) 

where DA is the anomalous ADC, also known as the distributed diffusion coefficient. 

While DA is analogous to D (cf. Eq. (31)), the two values are only equal when ς  = 1. 

The values of DA and ς  can be calculated by fitting a power law model to the 

diffusion data, i.e., 

  expE Ab    (106) 

where A = DA
ς
. This model of heterogeneous diffusion can be easily fitted to the 

diffusion data. Thus a complicated restricted system can be potentially characterised 
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using a small number of scalar values, without a priori knowledge of the number or 

size of the diffusion compartments present. 

This one-dimensional anomalous MRI technique can be modified to account for 

anomalous diffusion anisotropy by replacing A and ς with their respective second-

order tensors, A and ζ, similarly to how DTI replaces D with D [244]. This diffusion 

imaging technique is known as anomalous diffusion tensor imaging (ADTI). 

Analogously to Eqs. (31) and (39), Eq. (106) becomes 

          T
2Tln 2 xx xx yz yzu u

xx xx yz yzE b u A u A b
 

    
u ζu

u u Au . (107) 

This expression can thus be used as the basis for a system of non-linear equations. 

Since Eq. (107) possesses two second-order symmetric tensors, q-space must be 

sampled on a minimum of two q-shells with six unique points on each shell. 

Additionally, since Eq. (107) is non-linear, an iterative approach is required in order 

to determine the independent elements of the two tensors (see Appendix B). As A 

and ζ are second-order tensors, the information contained within them (e.g. 

eigenvalues, eigenvectors) can be extracted and visualised in the manner previously 

described for DTI. However, as A and ζ also possess the same tensor properties of D, 

ADTI suffers from poor angular contrast when multiple intravoxel fibre populations 

are present. 

 

92BDescribing diffusion with the diffusion propagator 

Thus far a number of three-dimensional diffusion MRI techniques have been 

described that determine the effect of diffusion on net spin magnetisation by solving 

the Bloch-Torrey equation. However, these methods tend to require certain 

assumptions be made about the diffusion process (e.g. DTI and HODTI both require 

the assumption that the diffusion process is free) or require extensive modelling (e.g. 

GDTI and ADTI). 

The inverse Fourier transform of Eq. (26), on the other hand, allows the direct 

reconstruction of the one-dimensional EAP from the diffusion weighted signal 

attenuation 
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  ( ) ( )exp 2P E i d  R q q R q . (108) 

Since the reciprocal space of the Fourier transform is described in terms of q, 

diffusion MRI techniques that make use of this formalism are commonly referred to 

as q-space imaging techniques. While no assumptions regarding the EAP are 

required to solve Eq. (108), three key conditions need to be met. Firstly, it must be 

assumed that the SGP condition has been met. If this condition is violated, 

quantitative measures of the size and density of restricting microstructures are likely 

to be underestimated [245, 246]. Secondly, the diffusion measurement must be taken 

in the long time limit to ensure that the diffusing spin ensemble has adequate time to 

probe the system microstructure [247]. Thirdly, the maximum q-value, q’, used must 

be large enough to achieve near complete MR signal attenuation. Using q-values of 

this magnitude is necessary to avoid truncation artefacts when taking the inverse 

Fourier transform of the MR signal data [248]. Truncation artefacts, also known as 

Gibbs artefacts, result in spurious, relatively high signal intensities appearing near 

sharp transitions in the image (i.e., at the boundaries between regions with very 

different signal intensities); this creates the distinct, ring shaped appearance of this 

image artefact. Due to these three conditions, q-space diffusion MRI techniques are 

best suited to a spectrometer capable of producing powerful diffusion-sensing 

magnetic gradient pulses with fast gradient ramp up times. 

 

93BDiffusion spectrum imaging 

Diffusion spectrum imaging (DSI) [101] has perhaps the great potential of all three-

dimensional diffusion MRI techniques. This technique samples q-space using a 

Cartesian lattice sampling scheme (see Section 3.4 q-space imaging ); thus Eq. (108) 

can be used to directly reconstruct the EAP from the measured diffusion-weighted 

MR signal. This reconstruction is achieved without a model of diffusion or prior 

assumptions of the angular or radial characteristics of the diffusion-weighted MR 

signal profile. The EAP should therefore possess all of its angular and radial features, 

including the orientations of overlaying fibre populations and distributions of fibre 

diameter, length and density.  
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As previously discussed, a Cartesian sampling scheme must be quite dense so as to 

prevent aliasing the EAP. Sampling q-space in this manner requires vast amounts of 

diffusion data, leading to lengthy acquisition times. Fortunately, by employing a 

diffusion-weighted echo-planar MRI pulse sequence (a fast diffusion MRI protocol), 

it is possible to reduce the total acquisition time of DSI to a clinically acceptable 

timeframe while maintaining an acceptable spatial resolution [249]. However, even 

with these fast diffusion MRI sequences, there is still not enough time to sample the 

entirety of q-space. As a consequence, only the region of q-space around the origin 

(i.e., lower q-values) is typically sampled. 

The lack of diffusion data sampled at high q-values can result in the appearance of 

truncation artefacts. To reduce the appearance of these artefacts, the diffusion data 

can be multiplied with a Hann window function [250], ϖ(q), i.e., 

  
1 2

1 cos
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q
q



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where the FWHM is the full-width at half-maximum of the window. Window 

functions have a value of zero outside of a chosen interval and thus help ensure a 

smooth decay of the diffusion-weighted MR signal at high q-values.  

Due to the limitations of the diffusion gradient coils of clinical NMR spectrometers, 

the length of the diffusion gradient are often similar to that of the diffusion period. 

This unfortunately violates the SGP condition. Thus the current use of DSI in clinical 

studies is primarily useful for providing qualitative contrast rather than quantitative 

measurements of restricting microstructures [251]. Consequently, many diffusion 

MRI techniques solely reconstruct the angular component of the EAP using the 

aforementioned HARDI sampling scheme with a large number of points sampled on 

a small number of q-shells. This allows the orientation of restricting microstructure 

to be determined while also reducing the total length of the MR acquisition. The size 

of the q-values can also be kept small in order to minimise the length of the diffusion 

gradient. 
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94Bq-ball imaging 

As discussed previously, HARDI q-space sampling schemes are more time efficient 

than sampling on a Cartesian lattice. However, the Fourier transform featured in Eq. 

(108) requires that the diffusion data be sampled at each point of a Cartesian lattice. 

Therefore, Eq. (108) will need to be suitably modified in order to reconstruct the 

EAP from diffusion data acquired over the surface of a sphere. This can be achieved 

using a number of different approaches. One example is the q-space MRI technique 

known as q-ball imaging (QBI), which estimates the angular component of the EAP 

from diffusion data acquired on a single shell of q-space [151, 168, 252]. Diffusion 

anisotropy can be observed by calculating the radial projection of the EAP, more 

commonly known as the orientation distribution function (ODF), i.e., 

     2

0
P R d



  R R R  (110) 

where ψ(R’) is the ODF. The definition of the ODF given here differs from the 

original, which did not include the 2R  term in Eq. (110) [151]. The R
2
 factor 

prevents the artificial weighting of the EAP at large and small values of R, and also 

eliminates the need for a normalisation constant [101, 103]. 

In the original implementation of QBI, the ODF was calculated from the diffusion-

weighted MR signal using an operation known as the Funk-Radon transform (FRT). 

The FRT integrates a spherical function over its own equator, resulting in a new 

spherical function. Thus, the FRT of E(q) involves the integration of E(q) over a set 

of points perpendicular to q, [151], 

      E E d    q q q w qG  (111) 

where w is a unit vector perpendicular to q (i.e., qw=0). Using the relationship 

between the diffusion-weighted MR signal and the EAP in Eq. (26), 

      ( )exp 2E P i d      q R q R q w qG   (112) 

Eq. (112) can be expanded as a series of cylindrical waves [151]. Rewriting this 

expression in the form of a Hankel (i.e., Fourier-Bessel) transform yields 

      02 2E q P J qR d  q R R  (113) 
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where J0 is the zeroth order Bessel function of the first kind. Substituting Eq. (113) 

into Eq. (111) yields 

        02 2 1E q P J qR d       q R R w RG .  (114) 

Comparing Eqs. (110) and (114), it becomes apparent that 

    E     R qG ,  (115) 

allowing the estimation of the ODF using Eq. (114).  

The sharpness of the ODF profile is dependent on the width of the Bessel function 

(i.e., 1 q ) [151, 253]. Thus when low q-values are employed, the ODF profile will 

exhibit a low angular contrast and it is difficult to separate overlapping fibre 

populations. An alternative approach to performing QBI which allows good angular 

contrast at low q-values is one that utilises a basis constructed from spherical 

harmonic functions in the place of Bessel functions [168, 252].  

Using this real symmetrical spherical harmonic basis, the number of coefficients 

required to describe diffusion anisotropy reduces to 
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Since the spherical harmonic functions are independent of the radial component of 

E(q’), the diffusion-weighted MR images can be acquired on a single shell of q-

space; thus the total acquisition time required for QBI is similar to HODTI and is 

achievable in a clinically acceptable time frame. 

In order to determine the ODF from the spherical harmonic coefficients of E(q’), 

E(q’) is redefined in terms of infinite series of spherical harmonic functions 

(Appendix C, see Eq. (208)) and then substituted into Eq. (111). Using the 

relationship in Eq. (115), the ODF can therefore be expressed as  

      
l

m m

l l

l m l

Y d  




    w q q w q . (117) 
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Since spherical harmonic functions are analytical with respect to the equator of the 

FRT [168, 252], 

        = 2 0m m m

l l lY d Y    q q w q wP .  (118) 

Therefore, using the relationship featured in Eq. (118), Eq. (117) can thus be 

rewritten as  

      2 0
l

m m m

l l l

l m l

Y  




w wP .  (119) 

Using the same process for creating apparent diffusivity and probability isosurfaces, 

a profile of the ODF can be created. This can be done by extrapolating ODF values 

from the spherical harmonic coefficients using Eq. (119) in conjunction with a large 

number of w vectors spaced evenly over the unit sphere. This profile can then be 

readily converted into an isosurface (Figure 68). Additionally, certain invariant scalar 

features can be extracted from the ODF in much the same way values are extracted 

from a higher order diffusion tensor. For example, the GFA index of the ODF profile 

can be calculated by modifying Eq. (85) [151], i.e. 
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  (120) 

where n is equal to the number of values in the ODF profile (see Eq. (119)) and ⟨ψ⟩ 

is the mean of the values in the ODF profile. 

Since the ODF is an estimation of the angular component of the EAP, it will indicate 

the orientations of the intravoxel fibre populations. However, the number of different 

fibre orientations that can be resolved is dependent on the maximum spherical 

harmonic order that the spherical harmonic series is truncated (see Appendix C, Eq. 

(209)). In order to resolve n distinct fibre populations, the maximum spherical 

harmonic order of the spherical harmonic series must be equal to or greater than 2n. 

Unlike HODTI, increasing the maximum spherical harmonic order of the spherical 

harmonic series beyond the minimum value required will continue to improve the 

angular contrast of the ODF, although this requires an increase in the density of 
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points sampled on the q-shell (see Eq. (116)). Other methods of improving angular 

contrast include sampling q-space at a larger q-value and the use of ad hoc post-

processing methods to exaggerate the shape of the ODF isosurface, such as min-max 

normalisation [151], i.e. 

  
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   

min

max min

 

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w w
w

w w
  (121) 

where ψ’(w) is the normalised ODF. Unfortunately, ODF profiles still tend to have 

low angular contrast when the orientations of two or more fibre population are 

separated by a shallow angle. This problem will be demonstrated in the following 

section (see Appendix A Diffusion orientation transform imaging). 

 

95BDiffusion orientation transform imaging 

Diffusion orientation transform (DOT) imaging is an analytical method for 

computing the Gaussian EAP from apparent diffusivity profiles or diffusion tensors. 

To perform a DOT [137, 254], the plane wave featured in Eq. (108) is first rewritten 

in terms of spherical wave functions, i.e. 

          
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Substituting Eq. (122) into Eq. (108) yields 
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where 

      2

0
0

4 2l lI q J qR E dq 


  q q .  (124)  

E(q’) is given by solving  Eq. (28) for free diffusion under the SGP condition, i.e., 

     2 2exp 4E q D   q q  (125) 

where D(q’) has been calculated from a higher order tensor for each diffusion 

gradient direction (see Eq. (78)). 
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Figure 68: ODF isosurfaces which correspond to one (column A), two (column B) and three (column 

C) intravoxel fibre populations. The orientation of each fibre population is indicated with a double 

headed arrow. The first row of ODF isosurfaces were generated from simulated diffusion data where b 

= 1500 × 10
6
 s m

-2
 and a spherical harmonic series truncated at L = 6 with no additional isosurface 

post-processing. The isosurfaces in the second row are the same as the first but with min-max ODF 

normalisation. The third row of ODF isosurfaces were generated from simulated diffusion data where 

b = 4000 × 10
6
 s m

-2
 and a spherical harmonic series truncated at L = 12 with min-max ODF 

normalisation. 
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Solving Eq. (124) using the standard integral (6.631 (1) [85]) yields 
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where 1F1(,,) is the confluent hypergeometric function of the first-order and () is 

the gamma function. Since Il(q’) is a distribution of orientation, Eq. (126) can be 

written as a series of spherical harmonics, i.e., 
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where '

'

m

ll  are coefficients of the series. Eq. (127) can be rewritten as 
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    q q q .  (128) 

Thus, substituting Eq. (128) into Eq. (123) allows the diffusion propagator to be 

expanded as a Laplace series, 
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The series coefficients for Eq. (129) can be calculated by solving Eq. (128) using a 

direct or iterative reconstruction method. For the direct method, Eq. (127) can be 

written as the matrix multiplication, 

 l lΙ Yα . (130) 

Y is a matrix constructed from the spherical harmonic basis,  
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while l  is a vector containing the spherical harmonic coefficients associated with Il, 

a vector containing Il(q’) for the harmonic order l. Thus, 
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 (132) 

Eq. (132) can be solved using matrix inversion to determine the series coefficients 

for each harmonic order l. These coefficients can then be substituted into Eq. (129) to 

yield the EAP. The EAP can be visualised using the standard approach for 

visualising probability isosurfaces (see Section 4.2 Diffusion tensor imaging). 

Alternatively the EAP can be converted into an ODF profile by multiplying the series 

coefficients by  2 0m

lP  (see Eq. (119)). Using Eq. (120), the GFA index can be 

calculated for either the probability profile or the ODF profile. 

The advantages of DOT imaging relate to its analytical nature; for example, q-space 

can be treated as continuous space rather than a discrete one and it can extend to 

infinity. The calculations are also fast and robust. Unfortunately, the ODF 

isosurfaces reconstructed using DOT (and QBI) often have low angular contrast 

[255]. When two or more intravoxel fibre populations are present and their 

orientations differ by a small angle, the maxima of the ODF isosurface merge 

making it difficult to discern the orientations of these intravoxel fibres (Figure 69).  

 

 

Figure 69: Simulated ODF profiles of the diffusion of water in two overlapping fibres separated by 

45° (orientation indicated by double headed arrows), reconstructed using (A) QBI and (B) DOT MRI. 

The parameters used for the simulations included 200 diffusion gradient directions, b = 2000  10
6
 s 

m
-1

,  = 2.5 ms and Δ = 30 ms. The maximum spherical harmonic order of the reconstructions was 

four. The fibres were simulated as cylinders with a 5 m radius and 100 m length. 
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Additionally, the calculated EAP will be a Gaussian function due to the inclusion of 

Eq. (125) in the reconstruction. As a result, DOT MRI only reconstructs the angular 

component of the EAP. 

 

96BPersistent angular structure MRI 

An alternative to the ODF calculated by QBI and DOT, which has better angular 

contrast, is the radially persistent angular structure (PAS) of the EAP [256]. 

Similarly to the ODF, the PAS of the EAP indicates the relative mobility of particles 

along different directions by projecting P (R) onto a sphere (see Eq. (108)), i.e., 

    
 0

2

0

R R
P p

R

 
R R   (133) 

where p(R) is the PAS. The choice of R0 will determine the smoothness of p(R), and 

it can be arbitrarily adjusted to increase structure sensitivity at the expense of 

increased noise. The relationship between the diffusion-weighted MR signal and the 

PAS can be demonstrated by substituting Eq. (135) into Eq. (26). The resultant 

expression, when rewritten using Euler’s formula (i.e., exp(i x) = cos x + i sin x), is 

given by 

      2

0 cos 2E R p d q R q R R .  (134) 

Since it can be reasonably assumed that    P P R R  when no bulk motion is 

present, the imaginary component can be omitted from this equation. 

PAS MRI is able to extract the PAS from E(q) by using the principle of maximum 

entropy. This principle states that for precisely stated prior data (e.g. a set of 

conserved quantities that describe a probability distribution), the probability 

distribution which best represents this data will also possess the greatest information 

entropy. The information entropy, Is, of a probability distribution is given by  

    lnsI P P d  R R R . (135) 

By applying an equality constraint to the information entropy, the maxima of Is, can 

be found using the method of Lagrange multipliers [257], i.e. 
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where Λ is known as the Lagrangian function (or Lagrangian), λi represents the 

Lagrange multipliers, xi represents the constraint functions and μ is a constant that 

controls the normalisation of P(R). Using Eq. (133), and the plane wave function 

featured in Eq. (26) as the constraint function, the Lagrangian function becomes 
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where nq is the number of diffusion measurements made on a single q-shell. The 

maxima of Is, occur when the variational derivative of the Lagrangian is equal to 

zero, i.e. 
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Therefore, information entropy is maximised when 
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where 0 1   . To assist in the stabilisation of fitting algorithms, Eq. (139) can be 

rewritten using Euler’s formula, yielding 
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By combining Eqs. (134) and (140), non-linear regression can be used to determine 

the values of the Lagrange multipliers. Suggested initial values for the iterative 

minimisation algorithm include 0 = ‒ln(4), that all other Lagrange multipliers are 

equal to zero, and R0 = 1.4 [256]. Once the Lagrange multipliers have been 

calculated, they can be substituted into Eq. (140) to determine p(R). The PAS profile 

can then be visualised using the same approach employed for visualising apparent 

diffusivity, probability and ODF isosurfaces (see Section 4.2 Diffusion tensor 

imaging). Similarly to the ODF profile and the probability profile, the PAS profile 
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can be used to calculate invariant scalar features of diffusion, such as the GFA index 

using Eq. (120). 

Simulations suggest that PAS MRI has a lower sensitivity to diffusion-weighted MR 

signal noise than spherical deconvolution imaging [258]. These simulations also 

suggest that PAS profiles exhibit better angular contrast than ODF profiles. 

However, the computation times associated with PAS MRI are very long, relative to 

previously described diffusion MRI methods. This is because the number of 

Lagrange multipliers that must be calculated is equal to the number of points 

sampled on the q-shell. While the computation time could be decreased by reducing 

the number of points sampled in q-space, the angular contrast of the PAS isosurface 

would likewise be reduced. Also, since the fitting algorithm can never be over 

determined, the PAS isosurface is potentially less stable than its ODF counterpart.  

 

97BSpherical deconvolution imaging 

While the ODF and PAS can give a good approximation of the orientation of 

multiple intravoxel restricting microstructures, the relationship between these 

functions and the true orientations of intravoxel fibre populations is not explicit. It 

would therefore be advantageous if the true fibre ODF (fODF) could be directly 

reconstructed from E(q), for example by using the q-space diffusion MRI technique 

known as spherical deconvolution imaging. 

Convolution is a mathematical operation performed on a pair of functions, yielding a 

modified version of one of the original functions. For example, spherical 

deconvolution imaging treats the measured diffusion-weighted MR signal as though 

it is the rotation of a response function, (φ), by the fODF, F (,φ), i.e. 

      , ,E      F   (141) 

where ⊗ is the convolution operator. In spherical deconvolution imaging it is 

generally assumed that the fODF is the sum of n Dirac delta functions, where each 

delta function is aligned with one of the intravoxel fibre populations present. The 

response function, on the other hand, is assumed to be equivalent to the attenuated 
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diffusion-weighted MR signal profile of a single intravoxel fibre population aligned 

along the z-axis (Figure 70). 

 

 

Figure 70: The convolution of the attenuated MR signal originating from a voxel containing two 

distinct fibre populations. The attenuated MR signal can be considered the linear combination of the 

attenuated signal from the two fibre populations, or the convolution of a response function (q,x) 

with the true fibre ODF. 

 

The fODF can be extracted from E(q)  by the process of spherical deconvolution. To 

perform the deconvolution, E(q), and F (x) are first decomposed into a series of 

spherical harmonics, i.e. 
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and 

    
0 1

l
m m

l l

l m

f Y


  

 q qF   (143) 

where m

ls  and m

lf are the respective spherical harmonic coefficients of E(q)  and  

F (x). By truncating Eqs. (142) and (143) to L, and excluding the spherical 

harmonics with odd orders (due to their lack of symmetry), the coefficients of the 

two series can be calculated (see Appendix A q-ball imaging). These coefficients are 

then grouped to create a set of vectors sl and fl, i.e. 

 2 2 1 2l l l

l l l ls s s     s   (144) 

E(q) = + f2E2(q) =  f1E1(q)  (φ) (,φ)  



 

174 

and 

 2 2 1 2l l l

i l l lf f f     f  (145) 

for l = 0,2,…L. The convolution operation in Eq. (141) then becomes a matrix 

multiplication for each harmonic order [259], i.e. 

 
l l ls fR   (146) 

where lR  is a  2 1l  ×  2 1l   rotational harmonic matrix. The elements of lR  

are the coefficients of the rotational harmonic decomposition of (q). Unfortunately, 

the rotational harmonic decomposition is not straightforward [259]. However, since 

(q) is assumed to be aligned along the z-axis, the attenuated diffusion-weighted MR 

signal profile will be axially symmetric. Consequently, only the diagonal elements of 

lR  will be non-zero, i.e., 

 l l lr IR   (147) 

where lI  is an identity matrix of rank l. lR  can thus be reduced to a single scalar 

per harmonic order, rl, and Eq. (146) can be rewritten as 

 l l lrs f . (148) 

To progress further, a model for (q) is required. If a voxel containing a single fibre 

population (e.g. a voxel which has a very high FA index) can be identified, the F (x)  

associated with this voxel will collapse to form a single Dirac delta function. By 

adjusting the image reference frame so that the fibre population in this voxel is also 

aligned with the z-axis, the response function will become equivalent to the 

attenuated diffusion-weighted MR signal profile of the fibre population [260, 261]. 

Additionally, since sl and fl, are aligned along the z-axis, they are axially symmetric, 

and spherical harmonic coefficients where m  0 will equal zero. This allows rl to be 

calculated on a per element basis, i.e., 
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With the calculated rl values and Eq. (147), the rotational harmonic matrix can be 

reconstructed. If it is assumed that the response function is consistent across the 

whole sample, this matrix needs to be calculated only once. Once lR  has been 

reconstructed, Eq. (146) can be rewritten to yield fl, by using matrix inversion, i.e., 

 1

l l l

f sR . (150) 

Substituting the calculated coefficients of fl, into Eq. (143) will therefore yield the 

fODF. The fODF profile can be visualised using the same approach for visualising 

profiles of apparent diffusivity, ODF or probability, and will yield an isosurface with 

high angular contrast (Figure 71) [262]. To find the n Dirac delta functions that 

correspond to the orientations of the intravoxel fibre populations present, a peak 

finding algorithm can be used to find the directions associated with the local maxima 

of the isosurface. However, it is often beneficial to leave the reconstructed fODF as a 

profile, as its shape will indicate the fibre orientation probability. 

 

 

Figure 71: Simulated ODF profiles of the diffusion of water in two overlapping fibres separated by 

45° (orientation indicated by double headed arrows), reconstructed using (A) QBI and (B) and non-

negative constrained spherical deconvolution imaging. The parameters used for the simulations 

included 200 diffusion gradient directions, b = 2000  10
6
 s m

-1
,  = 2.5 ms and Δ = 30 ms. The 

maximum spherical harmonic order of the reconstructions was ten. The fibres were simulated as 

cylinders with a 5 m radius and 100 m length. 

 

Unfortunately spherical deconvolution is highly susceptible to signal noise. This 

susceptibility can result in spurious and/or negative local maxima in the fODF. To 

improve robustness of the algorithm, and smooth the fODF, regularisation terms can 

be incorporated into the reconstruction algorithm. For example, non-negativity 

constraints can be included in the algorithm to prevent the calculation of a non-
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physical fODF [261]; and confidence bands can be calculated for the fODF to 

determine the uncertainty in the estimation [263]. Another limitation of spherical 

deconvolution imaging is that it requires the assumption that the response function 

will be the same for all intravoxel fibre populations. In a real system, it is likely that 

different fibre populations will have a different density, permeability and packing 

configuration, and will thus have a different response function. If the true response 

function differs significantly from the estimated response function, the reconstruction 

of the fODF can be adversely affected [264]. 

 

98BDiffusion propagator imaging 

As the spherical harmonic basis employed by QBI and DOT MRI does not model the 

radial component of the EAP, it would be advantageous to combine the spherical 

harmonic basis with a radial function. Diffusion propagator imaging (DPI) is a 

diffusion MRI technique that employs one such combined basis [138].  

From the earlier derivation of the spherical harmonic functions (see Appendix A q-

ball imaging), a solution for the Laplace equation in spherical coordinates was 

calculated which contained only the radial component of the harmonic function (i.e., 

R(r)). If spin displacement is measured in terms of q (i.e., r = q), and it is assumed 

that  = l(l + 1), Eq. (195) can be solved for R(q).  

Using the ansatz that Rk(r)  r
k
, two solutions for Rk(q)  can be found; Rl(q) = q

l
 and 

Rl(q) = q
‒(l+1)

. Multiplying these radial functions with the spherical harmonic 

functions featured in Eq. (194) will yield two sets of solutions; these are the regular 

solid harmonic functions, 
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and the irregular solid harmonic functions, 
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Combining Eqs. (151) and (152) results in the orthonormal solid harmonic basis. 

Expanding E(q) in this basis (see Eq. (208)) yields 
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where m

lc  and m

ld  are the respective irregular and regular solid harmonic coefficients 

of the series. Similarly to QBI and DOT, only even values of l are included in the 

expansion. To calculate m

lc  and m

ld , these coefficients are written in the form of a 

pair of vectors, Xc  and Xd. Eq. (153) is then rewritten as a system of linear 

equations, i.e., 

          c dq q  E q Y q G X Y q F X  (154) 

where E(q)  is a vector containing the diffusion-weighted signal attenuation values 

for q. G and F are square, diagonal matrices which respectively contain the regular 

and irregular solid harmonic coefficients of the series, i.e. 
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F . 

Rewriting Eq. (154) in the general linear form, E AX , yields 
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E
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   
   

           
   
   

X

E A

YG YF

YG YF X

X

YG YF

 . (155) 

The series coefficients can be reconstructed using matrix pseudo-inversion 

(Appendix B). In order to perform this reconstruction, q-space must have been 

sampled on two or more q-shells as the radial component of the diffusion-weighted 

MR signal is described in terms of both its regular and irregular solid harmonics. The 

minimum number of non-antipodal points that must be sampled on each q-shell can 
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be calculated using Eq. (116), as the angular component of the EAP is described 

using spherical harmonic functions. 

If A is an ill-conditioned matrix, the Laplace-Beltrami operator can be used to 

regularise the matrix [148, 149]. This matrix regularisation helps smooth spherical 

functions by penalising higher order tensor terms which do not significantly improve 

the accuracy of the reconstruction. This in turn improves the robustness of the matrix 

pseudo-inversion of A.  

When employing Laplace-Beltrami regularisation in DPI, X can be determined using 

the expression 

  
1

T T


 X A A L A E  (156) 

where L is the Laplace-Beltrami regulation matrix and λL is the angular 

regularisation constant. The Laplace-Beltrami regulation matrix is a diagonal matrix, 

the entries of which are  
22 1l l  . 

However, this method requires an appropriate value for λ so that the higher order 

terms are not over smoothed. A good value for this regularisation constant can be 

found using the L-curve numerical method [150]. 

Upon calculating the solid harmonic coefficients of E(q), the EAP can be calculated. 

Substituting Eq. (153) into Eq. (124) gives, 

      
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Solving Eq. (123) using Eq. (157) will then yield [138] 

  
 

 
 

2 1

0

1 2
2

2 1 !!

l l ll
m m

l l

l m l
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
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
R R  (158) 

where (i ‒ 1)!! = (i ‒1)× (i ‒1)×…× 3 × 1. The regular solid harmonic functions are 

not present in the final equation because, unlike the irregular solid harmonic 

functions, they are not antipodally symmetric. The EAP can then be visualised using 

the previously discussed approach for visualising probability isosurfaces (see Section 

4.2 Diffusion tensor imaging). The shape of the probability isosurface will be 
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dependent on the choice of R0; as R0 increases, so does the angular contrast of the 

isosurface. However, high values of R0 can result in spurious peaks appearing in the 

probability isosurface. 

In addition to the previously discussed GFA index, another scalar index known as the 

zero displacement probability, P (0), can be calculated. P (0) describes the 

likelihood of individual particles having no net displacement during the diffusion 

period. This probability will increase as the restricting microstructure becomes 

narrower. Thus this value can be used as a measure of diffusion anisotropy. An 

analytical expression for the zero displacement probability can be calculated by 

substituting Eq. (153) into Eq. (108), and solving the resultant expression where  

R = 0 [138], i.e.,  

   2 0 0

0 0

2
0

3

q
P q c d

 
  

 
 . (159) 

The advantage of using DPI is chiefly due to the analytical relationship between the 

diffusion-weighted signal approximation in the solid harmonic basis and the 

diffusion propagator. As such, the angular and radial components of the diffusion 

propagator can be estimated without assumptions regarding the angular or radial 

profile of the diffusion-weighted signal. Since the number of points in q-space 

required is moderate, the total length of the acquisition is comparable to that of GDTI 

and is acceptable for a clinical setting. However, it is unclear as to how the Laplacian 

is able to model the measured diffusion-weighted MR signal functions. The inclusion 

of irregular solid harmonic functions in the radial model also requires the unrealistic 

assumption that E(0) does not exist (see Eq. (153)). Consequently this model results 

in the nonsensical prediction that the second order cumulant of the EAP will be zero 

[140]. The inclusion of the Laplace equation also results in the intrinsic smoothing of 

the diffusion propagator. While this smoothing is useful in removing spurious peaks 

from the diffusion propagator profile, the degree of smoothing cannot be controlled. 

This could lead to the over smoothing of the EAP, thus removing the fine details of 

the profile. 
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99BSpherical polar Fourier imaging 

An alternative to DPI is the diffusion MRI technique known as spherical polar 

Fourier imaging (SPFI) [139, 265]. SPFI was designed with the intention to process 

noisy diffusion-weighted MR images with few radial samples of q-space. It was also 

designed to provide a generic framework for the reconstruction of many different 

features of the EAP. 

SPFI expands E(q) in the spherical polar Fourier (SPF) basis, 

      
l

m m

kl k l

k l m l

E R q Y
 



q q   (160) 

where m

kl  denotes the coefficients of the expansion, k indicates the radial order and 

Rk(q) represents the spherical polar Fourier radial basis functions of the expansion. 

The radial basis functions consists of orthonormal Gaussian‒Laguerre polynomials, 

  
 

1 2
2 2

1 2

3 2
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k  
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      
  (161) 

where ζ is the scaling factor for the function (found by fitting the Gaussian-Laguerre 

polynomials to the diffusion-weighted MR signal profile) and 
 y

kL (x) is the 

generalised Laguerre polynomial,  

         1 11 ! , 1,
y

k k
L x y k F k y x     (162) 

with (x)n = (x + n)/(x). Gaussian-Laguerre polynomials are well suited to 

describing the radial component of E(q) even when little radial information is 

available [139, 265]. For example, if diffusion is sampled on a single q-shell, the 

radial component of E(q)  will be modelled as a Gaussian profile. However, as the 

number of q-shells sampled is increased, the radial functions will be able to model 

the oscillation of the diffusion-weighted MR signal that occurs at high q-values.  

To determine the series coefficients in Eq. (160), the equation can be used as the 

basis of a system of linear equations and rewritten as the matrix operation 

    E q Ψ q A  (163) 
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where A  is a vector containing the coefficients of Eq. (160) and (q) is the SPF 

basis matrix, 
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The series coefficients can therefore be calculated by matrix inversion. Since this 

method also uses spherical harmonic functions to model the angular component of 

the EAP, the number of points that must be sampled on each q-shell can be 

determined using Eq. (116). The number of q-shells that must be sampled, on the 

other hand, is equal to the radial order by which Eq. (160) was truncated. However, 

unlike many other diffusion MRI techniques, SPFI is well suited to processing 

diffusion data with either few or many radial samples of q-space.  

Once the nlma  coefficients of Eq. (160) have been calculated a number of different 

descriptors of diffusion can be reconstructed. These include the EAP, ODF and 

return to zero probability. In the original implementation of SPFI, these diffusion 

features were reconstructed using the generic mathematical framework [139] 

      P H d  kk R R RG   (165) 

where G (k) is a particular feature of the EAP and Hk (R)  is the corresponding 

projection (i.e., kernel) function. For example, if Hk (R) = R
2
 Eq. (165) will be 

equivalent to Eq. (110); thus G (k) corresponds to the ODF. As the SPF functions 

form an orthonormal basis, the following relationship is implied 
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k
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where hk (q)  is the inverse Fourier transform of Hk (R) and nlmhk  are the SPF 

expansion coefficients of hk (q). Thus the problem can be reduced to a 

straightforward dot product between the nlma  coefficients and the nlmhk  coefficients. 

To calculate the nlmhk  coefficients, Hk (R) is transformed into hk (q) using the inverse 

fast Fourier transform. This transform must be performed along a large number of 
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directions in q-space, evenly spaced over the unit sphere. Unfortunately, these 

calculations are highly computationally intensive. However, the process can be 

accelerated when calculating the angular features of the EAP (e.g. the ODF) by 

exploiting the rotational properties of spherical harmonics [259]. Upon calculating 

the 
nlmhk  coefficients of hk (q) along one direction in q-space (e.g. parallel to the z-

axis), the remaining 
nlmhk  coefficients corresponding to other directions in q-space 

can be determined by using matrix rotation, i.e., 

        ',, ,0 , ,0
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l l
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   k k k
W , (167) 

where nlmhk  signifies the rotated coefficients and W(φ,,0) is the real Wigner rotation 

matrix in terms of Euler angles [266-268]. The real Wigner rotation matrix is given 

by, 
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where 
 l
m md  () is the Wigner (small) d-matrix, 
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Once the nlmhk  coefficients have been calculated, these coefficients can be substituted 

into Eq. (166), along with the anlm coefficients to create the profile of G (k). This 

feature of the EAP can then be visualised using the same method for visualising 

probability isosurfaces.  

A list of example kernel functions is given in Table 9 [139, 265]. The modular nature 

of the generic framework is one of the advantages of SPFI. It allows the extraction of 

useful information from diffusion data sets covering different regions of q-space and 

can also make use of new kernel functions when they are derived. 
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Table 9: Kernel functions for SPFI 

 kG   HK R  

FRT    02 2 1qJ qR    R k  

ODF     1  R k R k  

EAP   R k  

Zero 

displacement 

probability 

  R  

 

An alternative approach to SPFI, similar to DOT MRI and DPI [265], uses derived 

analytical expressions for the nlmhk  coefficients corresponding to a number of 

different G (k) (see Eq. (166), Table 10). By replacing  E q  in Eq. (124) with 

Eq. (160), the expression becomes 
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Table 10: The kernel function coefficients for SPFI. 

 kG  nlmhk  

FRT      22 0 m

n l lq R q P Y k  

ODF 

 
 

   3 4
3 2

4 1 0
!

n m

l l

n
Y

n
 

 
 kP  

EAP 
 

 

 
 

 

   

 

3 2 3 2

2

0

0

0

2 1 2

2 2

1 1 0

4 1 ,
3 2

1 21 2 3
2

! 2

2 3 2 3
, , 2

2 2

l l l N
l

nlm nlm

n

n

n

i

i

l i

m

l

k
f R a

l

n l i

n ii

i l l
F R Y k

 


 

 

 





 


 



      
     

    
 

      
  





 

Zero 

displacement 

probability 

 
 3 4

,0,0

3 2
4 1

!

n

n

n
a

n


 
  

 



 

184 

When Eq. (170) is substituted into Eq. (123), it can be shown that [265]  

    
l

m m

l l

l m l

P c Y




R q ,  (171) 

where m

lc  are the coefficients of the expansion (see Eq. (161)), which are given by 
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with 
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This process thus avoids the need for Fourier transformation (and rotation) of the 

kernel functions, allowing the analytical calculation of the full EAP and its features. 

SPFI is a robust, noise insensitive diffusion MRI technique. It requires no prior 

assumptions regarding the radial or angular components of the diffusion-weighted 

signal attenuation profile and requires fewer samples of q-space. The use of the SPF 

basis also allows E(q) to be described using a single set of SPFI coefficients. Unlike 

DPI, no information is discarded when the EAP is reconstructed. The different kernel 

functions provide a number of analytical solutions for many diffusion features of the 

EAP. As many of the reconstruction kernels are based on spherical harmonic 

functions, the number of points on each also benefits from increased computational 

stability. Additionally, the MSD of the EAP can be calculated as E(q = 0) exists. 

However, it has been found that SPFI has a tendency to severely underestimate the 

true MSD of the EAP; it has been speculated that the reason for this is because the 

SPFI basis is not an eigenfunction of the Laplacian operator [140]. 

 

  



 

185 

50BAppendix B 

In the case of the iterative reconstruction, S0 and the elements of D can be estimated 

by substituting estimates of S0 and the elements of D into Eq. (39) and minimising 

the difference between the resultant values of S and the measured values of S. In 

order to perform iterative diffusion tensor reconstruction, Eq. (39) is first rewritten as 

a system of non-linear equations, 
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. (174) 

Then using a multivariate least-squares regression method, such as the Levenberg-

Marquardt method [269, 270], S0 and the independent elements of D can be estimated 

from Eq. (174). The elements of D can then be arranged to create D. The iterative 

diffusion tensor reconstruction method can be applied to any tensor-based diffusion 

MRI technique by replacing the system of equations in Eq. (174) with the 

appropriate model. Direct diffusion tensor reconstruction methods, on the other hand, 

rely on matrix operations to calculate the unknown elements directly. For the direct 

reconstruction of the second-order diffusion tensor there are several variations of the 

method. Two of these variations will be described here. 

The first direct method of diffusion tensor reconstruction requires a minimum of six 

S images and one S0 image. The S0 image is required to normalise the S images. To 

begin the reconstruction, Bi and D are both rewritten as vectors,  

 2 2 2i xxi yyi zzi xyi xzi yziB B B B B B   b  (175) 

 
T

a xx yy zz xy xz yzD D D D D D   d . (176) 

Upon substituting Eqs. (175) and (176) into Eq. (39), 

  0  expi i aS S b d . (177) 

Eq. (177) can then be rewritten as 
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Working on a per voxel basis, the diffusion weighted signal data for the selected 

voxel for each image is combined into a single vector, Ya’,  
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and the b-vectors are combined into a single matrix, Ba,  
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Upon substituting Eqs. (179) and (180) into Eq. (178), 

 a a a Y B d  (181) 
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.  

The second method of diffusion tensor reconstruction, on the other hand, requires a 

minimum of seven S images. Rather than using an S0 image to normalise the S 

images, it estimates S0 based on the supplied S values.  

Similar to the first method of direct diffusion tensor reconstruction, B and D are both 

rewritten as vectors. However, a notable difference between the two methods is that 

B and D are rewritten to include ‒1 and ln (S0), respectively, 

 2 2 2 1i xxi yyi zzi xyi xzi yziB B B B B B     (182) 
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  
T

0lnb xx yy zz xy xz yzD D D D D D S   d . (183) 

Upon substituting Eqs. (182) and (183) into Eq. (39), 

   ln i i bS   d . (184) 

Working on a per voxel basis, the diffusion weighted signal data for the selected 

voxel for each image is combined into a single vector, Y, 

      
T

1 1ln ln lnb nS S S   Y  (185) 

and the b-vectors are combined into a single matrix, Bb,  

  
T

1 2b nB b b b  (186) 

 

1 1 1 1 1 1

2 2 2 2 2 2

2 2 2 1

2 2 2 1

2 2 2 1

xx y y zz xy xz yz

xx y y zz xy xz yz

xx y y zz xy xz yz

b

n n n n n n

b b b b b b

b b b b b b

b b b b b b

 
 

 
  
 
 
 

B .  

Upon substituting Eqs. (179) and (180) into Eq. (178), 

 b b b Y B d  (187) 
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 
 
   
   

          
           
 
 

.  

Due to the notable similarities in Eqs. (181) and (187), the computation for both 

methods from this point is much the same. If the b-matrix used is a square, invertible 

matrix, Eqs. (181) and (187) can be rearranged as  

 
1

k k k

 d B Y  (188) 
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Where 1

k


B is the inverted B-matrix. If Bk is not a square, invertible matrix, it can be 

pseudo-invertible instead. Pseudo-inversion of the Bk can be achieved by either using 

the relation 

  
1

T T

k k k k




B B B B , (189) 

where 
k


B is pseudo-inverted Bk, or by the singular value decomposition of Bk [271]. 

Upon substituting 1

k


B  in Eq. (188) with k


B , 

 
k k k

 d B Y . (190) 

Once kd has been calculated, the components of this vector can be rearranged to 

produce D. In order to directly reconstruct the diffusion tensor, it must have the form 

of Eq. (190). This limits this reconstruction method to imaging techniques which 

have a single tensor (i.e., DTI and GDTI). However, direct diffusion tensor 

reconstruction does have some advantages over iterative methods. Firstly, it is more 

robust. It does not require a starting point for the calculations, and is unaffected by 

local minima errors. Direct diffusion tensor reconstruction is also quicker to perform 

as it is a single calculation rather than many. It should be noted that calculations 

involving very large B and/or D tensors place high demands on computer system 

memory. 

For example, the relation between the calculated α values and A is given by 
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                           
 
 

 . (191) 
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51BAppendix C 

Due to the popularity of the spherical harmonic basis for the analysis of diffusion 

data acquired using HARDI sampling schemes, the derivation of the spherical 

harmonic functions is provided here. 

A harmonic function, F, is a function that satisfies the Laplace equation, 

    
2 2 2

2

2 2 2
, , , , 0F x y z F x y z

x y z

   
     

   
.  (192) 

When rewritten in spherical coordinates, Eq. (192) becomes 

   
2

2 2

2 2 2 2 2

1 1 1
, , sin , ,

sin sin

0

F r r F r
r r r r r

    
    

    
   

    



    
    
       (193) 

where r is the characteristic radial length of the function, φ is the azimuth angle (0 ≤ 

φ ≤ 2) and θ is the colatitude angle (0 ≤ θ ≤ 2). Assuming that the angular 

component, Y (,φ), of the harmonic function is independent of its radial component, 

R(r), i.e. 

      , , ,F r R r Y    ,  (194) 

these two components can be separated. Substituting Eq. (194) into Eq. (193) will 

yield two solutions, 

 
 

 

 

 22

2

2d R r dR rr r

R r dr R r dr
    (195) 

and 

 
 

 

 

 2

2 2

, ,1 1
sin

, sin , sin

Y Y

Y Y

   
 

        

  
   

   
, (196) 

where λ is a constant. Assuming that Y (,φ) can be further separated (i.e., Y (,φ) = 

(,) (φ)) , Eq. (196) will yield the solutions 
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 

 2

2

2

1 d
m

d



 


 


  (197) 

and 

 
 

 2 2sin
sin sin

dd
m

d d


  

  

 
  
  

  (198) 

where m is a constant. Integrating Eq. (197) gives the result, 

  exp im   ;  (199) 

Eq. (198) on the other hand, assuming that  = l(l + 1) and that |m| ≤ l, can be 

rewritten as 

 
   

   
2 2

2 2

cos
1 0

sin sin

d d m
l l

d d

 


   

   
      

 
.  (200) 

Eq. (200) has the same form as an associated Legendre differential equation (a 

generalisation of the Legendre differential equation). Therefore Eq. (200) has the 

solution 

      1 2cos cosm m

l lc c    P Q   (201) 

where c1 and c2 are constants,  m

l xP  are the associated Legendre polynomials of 

the first kind (i.e., when l is an integer) and  m

l xQ  are the associated Legendre 

polynomials of the second kind (i.e., when l is not an integer). l denotes the harmonic 

order of the polynomial while m indicates its phase. To ensure that Y (,φ) is regular 

at the poles of the function (i.e.,  = 0,), l must be a non-negative integer. Thus,   

    1 cosm

lc   P .  (202)  

where 

  
 

   
2

2 2
1

1 1
2 !

m l m
m l

m

l l l m

d
x x x

l dx






  P . (203) 

Multiplying Eqs. (200) and (199) therefore yields  
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  
 

 
   

!2 1
, exp cos

4 !

m m

l l

N

l ml
Y im

l m
   







P . (204)  

The solutions of Eq. (204) are termed spherical harmonic functions (Figure 72). 

These functions form a complete orthonormal basis, i.e. 

 

   

     
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2 1
'
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0 1
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 










 

    (205)  

where ij is the Kronecker delta,  

 
0

1
ij

i j

i j



 


, (206) 

and * denotes the function complex conjugate. The complex conjugate of a spherical 

harmonic function is given by 

      , 1 ,
mm m

l lY Y   
    . (207) 

 

 

Figure 72: Representations of spherical harmonic function for the first few harmonic orders. The red 

component of each surface is the positive component of the spherical harmonic while the green 

indicates the negative component. 
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Using the spherical harmonic functions as a basis, a harmonic function can be 

approximated on the surface of a sphere; for example, expanding E(q’) using an 

infinite series of spherical harmonic functions as a linear basis yields  

    
l

m m

l l

l m l

E Y




 q q   (208) 

where m

l  are the spherical harmonic coefficients of the series. These coefficients are 

a continuous representation of the diffusion-weighted signal. The coefficients of 

Eq. (208) can be found by truncating the expansion to a finite harmonic order, L, 

yielding the linear equation,  
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q q

q q q

q q q q q

q q

.  (209) 

Similar to Eq. (39), Eq. (209) can be used to construct a system of linear equations 

which can be solved to determine the coefficients of the spherical harmonic 

functions. Since it can be assumed that E(q’) is real, positive and antipodally 

symmetric, diffusive motion can be described using a subset of spherical harmonic 

functions which are both real and symmetric [168], i.e. 

 

 

 

0

2 Re 0

0

2 Im 0

m

l

m

l l

m

l

Y m l

Y Y m

Y l m

  



 


  

 (210) 

where l is also an even integer. 
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52BAppendix D 

%== BFOR image reconstruction (v 1.0)  1 
%== By Ryan J. Dean 2 
%== May 2015 3 

  4 

%=================================================================== 5 
% SYNTAX: [P, basis] = BFOR_image_recon(images, n_factor, diff_grads, q_values, tau, Lmax_input, Nmax_input,  6 
% reg_factors) 7 
% 8 
% INPUTS: 9 
% 10 
% images        - The diffusion-weighted (S) image stack (including the diffusion-weighted (S0) image) [ n x m x 3 ]  11 
%                 I.e., [ S0; S(q(1), diff_grad(1)); S(q(2), diff_grad(1)); ...; S(q(n), diff_grad(1)); ...; S(q(n), 12 
diff_grad(n)) ];                           13 
% n_factor      - Threshold for image noise (voxel with an S0 value < n_factor will not be reconstructed) 14 
% diff_grads    - Diffusion gradient directions (normalised) [ n x 3 ] 15 
% q_values      - List of q-values used in mm^-1 16 
% tau           - q-value that the MR signal should attenuated to 0 in mm^-1 17 
% Lmax_input    - Maximum spherical harmonic order of the reocnstruction (must be an even number > 0)  18 
% Nmax_input    - Maximum radial order of the reconstruction (must be > 0)  19 
% reg_factors   - [Ll, Ln, t, p, t] 20 
%                    - Ll is the angular Laplace-Beltrami regularisation coefficient (e.g. 0.1) 21 
%                    - Ln is the radial Laplace-Beltrami regularisation coefficient (e.g. 0.1) 22 
%                    - t is time (e.g. 0) 23 
%                    - p is the particle displacement distance in mm (e.g. 25 x 10^-3 mm) 24 
% 25 
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% OUTPUTS: 26 
% 27 
% P             - Probability values [ n x 1 ] 28 
% H             - Reconstruction basis [ n x 3 ] 29 
%           30 
%=================================================================== 31 

  32 

function [P, H] = BFOR_image_recon(images, n_factor, diff_grads, q_values, tau, Lmax_input, Nmax_input, reg_factors) 33 

  34 

%== Begin timer 35 
tic 36 

  37 

%== Start MATLAB pool for parallel processing (if the pool is not open) 38 
if matlabpool('size') == 0 39 
    matlabpool(4) 40 
end 41 

  42 

%== Extract the S0 image 43 
S0 = images(:,:,1); 44 

  45 

%== Extract the S images 46 
S = zeros([size(S0) size(images,3)-1]); 47 

  48 

for i = 2:size(images,3) 49 
    S(:,:,(i-1)) = images(:,:,i); 50 
end 51 

  52 
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%== Create a stack of attenutated MR images  53 
E_stack = zeros(size(S)); 54 
for y = 1:size(S0,1) 55 
    for x = 1:size(S0,2)         56 
        if (S0(y,x) > nfactor) 57 
            E_stack(y,x,:) = S(y,x,:)/S0(y,x); 58 
        end        59 
    end 60 
end        61 

  62 

%== Extract the regularisation coefficients 63 
Ll = reg_factors(1); 64 
Ln = reg_factors(2); 65 
t = reg_factors(3); 66 
p = reg_factors(4); 67 

  68 

%====== Image processing ================================================== 69 

  70 

%== Create figure 71 
figure 72 
hold on 73 

  74 

%== Renaming Lmax_input 75 
Lmax = Lmax_input; 76 

  77 

%== Reconstruction scheme (vertices and facets) 78 
V = load('/sampling_and_reconstruction_schemes/On_the_sphere/514_shell.txt'); 79 
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F = load('/sampling_and_reconstruction_schemes/On_the_sphere/514_sphere_facets.txt'); 80 
 81 
% The sampling and reconstruction schemes loaded here are a part of   82 
% the 'Suite of functions to perform uniform sampling of a sphere' package  83 
% created by Anton Semechko (a.semechko@gmail.com). 84 
% This package is available from the MATLAB Central File Exchange. 85 

 86 

%== Divide the reconstruction scheme further for a smoother reconstructed isosurface 87 
TQ = TriQuad({V,F});  88 

  89 

% 'TriQuad' was written by Anton Semechko (a.semechko@gmail.com) 90 
% It is a function from the 'Suite of functions to perform uniform sampling of a sphere' package. 91 
% This package is available from the MATLAB Central File Exchange. 92 

 93 

V = cell2mat(TQ(1)); 94 
F = cell2mat(TQ(2)); 95 

  96 

%== Principal code loop 97 
for im_y = 1:size(E_stack,1) 98 
    for im_x = 1:size(E_stack,1) 99 

         100 

        %== Do not reconstruct voxels below the S0 threshold 101 
        if S0(im_y, im_x) > n_factor 102 

             103 

            %== Loop for each radial order 104 
            for N_index = 1:Nmax_input 105 

                 106 
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                %== Current radial order 107 
                Nmax = N_index; 108 

                 109 

                %== Attenuated MR signal for the current voxel 110 
                E = squeeze(E_stack(im_y, im_x,:)); 111 

                 112 

                %== Local variables 113 
                n_E = length(E);                 114 
                n_LM = (Lmax+1)*(Lmax+2)*0.5; 115 
                n_NLM = Nmax*n_LM; 116 

  117 

                %== Create the spherical harmonic (SH) matrix 118 
                Y = construct_SH_basis(Lmax, diff_grads, 2, 'real'); 119 

                 120 

                % 'construct_SH_basis' was written by bjian 121 
                % It is a function from the 'High Angular Resolution Diffusion Imaging (HARDI) Tools' package, 122 
                % compiled by Canales-Rodríguez, Melie-García, Iturria-Medina, Alemán-Gómez 123 
                % This package is available from the MATLAB Central File Exchange. 124 

                 125 

                %== Local variables for finding the roots of the spherical Bessel function 126 
                bessel_x_axis = (0.0001:0.0001:5); 127 
                SqrtLambda = zeros(Lmax+1, Nmax); 128 

  129 

                %== Loop for each SH order 130 
                for l = 0:Lmax 131 

  132 

                    %== Generate the values of the Bessel functions 133 
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                    J = zeros(length(bessel_x_axis),1); 134 
                    for i = 1:length(bessel_x_axis) 135 
                        J(i) = sphericalbesselj(l, bessel_x_axis(i)*tau); 136 
                    end 137 

                     138 

                    %== Estimate the zero crossing points 139 
                    X = []; 140 
                    for i = 2:length(bessel_x_axis) 141 
                        if J(i-1) >= 0 && J(i) <= 0 142 
                            X = [X; bessel_x_axis (i-1) bessel_x_axis (i)]; 143 
                        end 144 

  145 

                        if J(i-1) <= 0 && J(i) >= 0 146 
                            X = [X; bessel_x_axis (i-1) bessel_x_axis (i)]; 147 
                        end 148 

  149 

                        if size(X,1) >= Nmax 150 
                            break 151 
                        end 152 
                    end 153 

  154 

                    %== Check to ensure there are enough roots. 155 
                    %== If not, increase the max value of bessel_x_axis 156 
                    if size(X,1) < Nmax, error('There are not enough Bessel function roots!); end     157 

  158 

                    %== Find the nth root for each spherical bessel function 159 
                    for n = 1:Nmax 160 
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                        x0 = X(n,1); 161 
                        z = fzero(@(sqrtlambda) sphericalbesselj(l, tau*sqrtlambda), x0); 162 
                        SqrtLambda(l+1,n) = z; 163 
                    end 164 
                end 165 

  166 

                %== Convert square root lambda to lambda 167 
                Lambda = SqrtLambda.^2; 168 

  169 

                %== List of SH orders in j notation 170 
                l_list = []; 171 
                for l = 0:2:Lmax 172 
                    for m = -l:l 173 
                        l_list = [l_list; l]; 174 
                    end 175 
                end 176 

  177 

                %== Create the expanded SH basis (to account for different q-values) 178 
                YQ = []; 179 
                for j = 1:size(Y,1) 180 
                    for q = 1:length(q_values) 181 
                        YQ = [YQ; Y(j,:)]; 182 
                    end 183 
                end 184 

  185 

                %== Create the BFOR reconstruction matrix 186 
                Z = []; 187 
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                for n = 1:Nmax  188 

  189 

                    U = []; 190 

  191 

                    for j = 1:n_E 192 

  193 

                        %== Select a q-value 194 
                        v = mod(j, length(q_values)); 195 
                        if v == 0, v = length(q_values); end         196 
                        q = q_values(v); 197 

  198 

                        U_vector = []; 199 

                         200 

                        for i = 1:n_LM 201 

  202 

                            %== Select the SH order 203 
                            l = l_list(i); 204 
  205 
                            %== Select the root value 206 
                            a = SqrtLambda(l+1,n); 207 

  208 

                            %== Spherical Bessel value 209 
                            J = sphericalbesselj(l, q*a); 210 

  211 

                            if J == 0 212 
                                error('The Bessel function returned zero.') 213 
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                            end        214 

  215 

                            %== Complete the basis 216 
                            U_vector = [U_vector, YQ(j,i)*J]; 217 
                        end 218 

  219 

                        U = [U; U_vector];           220 
                    end 221 

  222 

                    Z = [Z, U]; 223 
                end 224 

  225 

                %== Laplace-Beltrami regularisation 226 
                Lreg = []; 227 
                Nreg = []; 228 

  229 

                for n = 1:Nmax 230 
                   Nreg = [Nreg; (n^2)*((n + 1)^2)*ones(n_LM,1)]; 231 
                   Lreg = [Lreg; l_list.*l_list.*(l_list + 1).^2]; 232 
                end 233 

  234 

                Nreg = diag(Nreg); 235 
                Lreg = diag(Lreg); 236 

  237 

                C = ((Z'*Z + Ll*Lreg + Ln*Nreg)^-1)*Z'*E; 238 

  239 
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                %== Reshape the regularisation coefficient vectors for later use 240 
                C0 = C; 241 
                C = reshape(C, n_LM, Nmax); 242 

  243 

                %== SSE value (indicates the goodness of fit) 244 
                SSE_E = Z*C0; 245 
                SSE = sum((SSE_E-E).^2); 246 

  247 

                %== Calculate the Legendre polynomials for diffusion propagator reconstruction 248 
                K = []; 249 
                for L = 0:2:Lmax 250 
                    for m = -L:L 251 
                        Pnm = legendre(L,0);  252 
                        K = [K; Pnm(1)];        253 
                    end 254 
                end 255 

  256 

                %== Multiply the expansion coefficents by the Legendre polynomials 257 
                LPM = []; 258 
                for n = 1:Nmax 259 
                    LPM = [LPM, C(:,n).*K]; 260 
                end 261 
                C = LPM; 262 

  263 

                %== Create the SH matrix for the BFOR reconstruction 264 
                H = construct_SH_basis (Lmax, V, 2, 'real'); 265 

                 266 
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                % 'construct_SH_basis' was written by bjian 267 
                % It is a function from the 'High Angular Resolution Diffusion Imaging (HARDI) Tools' package, 268 
                % compiled by Canales-Rodríguez, Melie-García, Iturria-Medina and Alemán-Gómez 269 
                % This package is available from the MATLAB Central File Exchange. 270 

                 271 

                %== Reconstruct the diffusion propagator 272 
                P = zeros(size(H,1),1); 273 
                parfor h = 1:size(H,1) 274 
                    for n = 1:Nmax 275 
                        for j = 1:n_LM 276 

  277 

                            l = l_list(j); 278 

  279 

                            part1 = ((-1)^(l*0.5)); 280 
                            part2 = exp(-(Lambda(l+1,n)^2)*t); 281 
                            part3 = sqrt(SqrtLambda(l+1,n)*tau) 282 

    part4 = besselj(l-0.5,SqrtLambda(l+1,n)*tau)*sphericalbesselj(l,2*pi*tau*p); 283 
                            part5 = 4*pi*pi*p*p-Lambda(l+1,n)*t; 284 

  285 

                            P(h) = P(h) + part1*C(j,n)*part2*H(h,j)*(part3*part4)/part5; 286 

  287 

                        end 288 
                    end 289 
                end  290 

  291 

                %== The diffusion propagator 292 
                P = 2*tau*sqrt(2*pi*pi*pi)*P; 293 
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  294 

                %== Negative probability values are non-physical 295 
                for i = 1:size(P,1) 296 
                    if P(i) < 0  297 
                        P(i) = 0; 298 
                    end 299 
                end 300 

  301 

                %== Normalise P 302 
                norm_P = P./max(P); 303 

  304 

                %== Local variables for visulisation 305 
                Origin = [im_y*2 im_x*2 0]; 306 

                 307 

                %== Plot the diffusion propagator 308 
                plot_ODF(norm_P, V, F, Origin);  309 

                 310 

                % 'plot_ODF' was written by Pedro Valdez Hernandez 311 
                % It is a function from the 'High Angular Resolution Diffusion Imaging (HARDI) Tools' package, 312 
                % compiled by Canales-Rodríguez, Melie-García, Iturria-Medina and Alemán-Gómez 313 
                % This package is available from the MATLAB Central File Exchange. 314 
            end 315 
        end 316 
    end 317 
end 318 
  319 

 320 
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%====== Complete visualisation  321 
axis equal;  322 
axis off; 323 
view(0,90) 324 

  325 

camlight left 326 
camlight right 327 
lighting phong 328 
set(gcf,'color','w'); 329 

  330 

%== BFOR image reconstruction complete 331 
toc 332 
end 333 
 334 

 335 

%== Function for calculating spherical Bessel functions  336 
% (this code snippet should be saved in a separate function file) 337 
function [J] = sphericalbesselj(l, x) 338 
    J = sqrt(pi/(2*x))*besselj(0.5+l,x); 339 
end  340 
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