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Impact of radial and angular sampling on

multiple shells acquisition in diffusion MRI

Sylvain Merlet1, Emmanuel Caruyer1, Rachid Deriche1

Athena Project-Team, INRIA Sophia Antipolis - Méditerranée, France

Abstract. We evaluate the impact of radial and angular sampling on
multiple shells (MS) acquisition in diffusion MRI. The validation of our
results is based on a new and efficient method to accurately reconstruct
the Ensemble Average Propagator (EAP) in term of the Spherical Po-
lar Fourier (SPF) basis from very few diffusion weighted magnetic res-
onance images (DW-MRI). This approach nicely exploits the duality
between SPF and a closely related basis in which one can respectively
represent the EAP and the diffusion signal using the same coefficients.
We efficiently combine this relation to the recent acquisition and recon-
struction technique called Compressed Sensing (CS). Based on results
of multi-tensors models reconstruction, we show how to construct a ro-
bust acquisition scheme for both neural fibre orientation detection and
attenuation signal/EAP reconstruction.

Keywords: Diffusion MRI, Compressed sensing, Ensemble Average Prop-
agator recovery, Propagator, Orientation Distribution Function, Spheri-
cal Polar Fourier, Multiple Shells Sampling.

1 Introduction

Since the introduction of CS by [5], this method has been used in a large range
of domains including image and video compression as well as geophysics and
medical imaging. In [8], we apply CS in diffusion magnetic resonance imaging
(dMRI) for modelling the EAP, in SPF basis introduced by [1], from highly
under sampled diffusion weighted MR images (DW-MRIs).

In [8], the quality of reconstruction is sensitive to the acquisition scheme.
Hence, in order to remove the variance of the results due to the random aspect
of the sampling scheme, it is necessary to find a robust and efficient way to ac-
quire DW-MRIs. For this purpose, we propose to evaluate and compare several
sampling protocols. In this study, we begin in 2 by summarizing the EAP based
CS-reconstruction proposed in [8]. The section 3 aims to describe some tech-
niques to build sampling scheme. Finally in section 4 we present several sets of
experiments in order to examine the robustness and efficiency of these schemes.

2 EAP based CS reconstruction

The method described in [8] enables the modeling of the EAP in the SPF basis,
using the recent technique known as Compressed Sensing (CS). The method



allows us to analytically reconstruct the propagator at any radius and, also, to
derive one of its famous feature: the Orientation Distribution Function (ODF).
The CS reconstruction is based on a l1 minimization scheme promoting the signal
sparsity. For a more mathematical definition, suppose our signal of interest is a
vector x ∈ R

m. Let y ∈ R
n, with n ≪ m, be an observation representative of

x given by the sensor of a given application. y = Ax + η, where A ∈ R
n×m is

the measurement matrix, so called the CS matrix, and η ∈ R
n represents the

acquisition noise. Our goal is to find x given the measurement vector y. Since
y has less entries than x, this ill-posed problem cannot be resolved without any
prior knowledge about the signal to recover.

We condider the signal admits a sparse representation with respect to an
orthonormal basis B. c ∈ R

nc is the vector of transform coefficients {ci =
〈x, bi〉, bi ∈ B, i = 1, ..., nc}. We can constrain most of the transform coeffi-
cients to be zero by minimizing the l1 norm defined by ‖c‖1 =

∑nc

i=1 |ci| [7].The
solution x of our problem is given by solving the following convex optimization
problem :

arg min
x
J(x) = ‖Ax − y‖2

2 + λ‖c‖1. (1)

The first term is the data consistency constraint, ‖c‖1 is the sparsity constraint.
λ is the Lagrange parameter that balances the confidence between the measured
signal y and the sparsity constraint. The data consistency constraint enables the
solution to remain close to the raw data acquisition, whereas the minimization of
the second term promotes sparsity. In short, this mathematical problem searches
for the sparsest solution while remaining close to the acquired data.

In our previous paper [8], we define B as the so called Spherical Polar Fourier
(SPF) basis in spherical coordinates (r, θ, ϕ). This orthonormal basis is the com-
bination of the real spherical harmonics Y l

m and the Gauss-Laguerre functions
Rn. It is expressed as Ψnℓm(r, θ, φ) = Rn(r)Y ℓ

m(θ, φ), where ℓ ∈ N is the spheri-
cal harmonic order, −l ≤ m ≤ l the SH degree and n the Gauss-Laguerre order.
This basis enables a complete description of the diffusion propagator.

We described a method to accurately reconstruct the EAP P from under-
sampled measurements. In this method P was estimated by a truncated linear
combination of the SPF basis functions Ψnℓm

P (r, θ, φ) =

N
X

n=0

L
X

ℓ=0

ℓ
X

m=−ℓ

cnℓmΨnℓm(r, θ, φ), (2)

where cnℓm = 〈P, Ψnℓm〉 are the SPF transform coefficients.

While modelling the EAP with respect to the SPF basis, we have shown
that we can reconstruct the corresponding attenuation signal E by keeping the
same coefficients {cnℓm, n = 0, ..., N, l = 0, ..., L, m = −l, ..., l} but by using
a new family of functions called the SPF dual basis {Φnℓm, n = 0, ..., N, l =
0, ..., L, m = −l, ..., l}. E can, thus, be written as



E(q, θ, ϕ) =
N

X

n=0

L
X

ℓ=0

ℓ
X

m=−ℓ

cnℓmΦnℓm(q, θ, φ) (3)

where q = |q| is the norm of the effective gradient q in q-space and θ, ϕ the
direction angles. Suppose nq is the number of measurement samples, E ∈ R

nq

a vector representing the signal attenuation, c ∈ R
nc a vector of the SPFd

coefficients cnℓm and Φ ∈ R
nq×nc the matrix constructed with the SPFd basis

functions

Φ =

0

B

@

Ψnℓm(r1, θ1, φ1) · · · ΨNLL(r1, θ1, φ1)
...

. . .
...

Ψnℓm(rnq , θnq , φnq ) · · · ΨNLL(rnq , θnq , φnq )

1

C

A
, (4)

We can write equation (3) as an over determined linear system, E = Φc
Let Φu ∈ R

nu×nc be the undersampled version of Φ operator and Eu ∈ R
nu the

vector of undersampled signal attenuation. We can rewrite the problem described
in equation 1

arg min
c
J(c) = ‖Φuc − Eu‖

2

2 + λ‖c‖1. (5)

Eq. (5) searches for the EAP coefficients with respect to the SPF basis, i.e.
we can compute a continuous version of the true propagator. Using the same
coefficients, we can as well model the attenuation signal with respect to the
SPFd basis functions. Moreover, in [8] we give an analytical estimate of the
ODF in terms of spherical harmonic functions and the coefficients cnℓm.

In [8], we randomly took 80 measurements spread on 3 shells with b values
1000, 2000, 3000 s/mm2. However, the random aspect of the acquisition process
makes the reconstruction very sensitive to the sampling scheme. We selected it
as follow: on 100 sampling schemes generated, we kept the one that leads to
the best results. In this way, good results were observed while performing the
reconstruction on our data set but were not observed in all cases. In the next
section, we propose several sampling schemes in order to make the method more
robust to this reconstruction phase.

3 Sampling design

3.1 Jones

References [6, 4] give an algorithm to uniformly distribute N points qn ∈ R3 on a
sphere by considering each point as an antipodal pair of electrical charges. The
method involves the minimization of the electrostatic force of repulsion between
each couple of charges. The electrostatic repulsion between two points qi and qj

is given by

E(qi, qj) =
1

‖qi + qj‖
+

1

‖qi − qj‖
(6)



For a set of N points, the energy to minimize becomes

JJ =
X

i6=j

E(qi, qj) (7)

Reference [3] provides Camino, an Open-Source Diffusion-MRI Reconstruc-
tion and Processing software. They include several sets of directions, from N=3
to 150 points, computed by electrostatic energy minimization.

3.2 Generalized Jones

This method is proposed by [2] as a generalization of [6] to multi-shells acqui-
sition. It enables the distribution of N points qn ∈ R3 on K shells of radius rk.
The points from each shell have staggered directions and follow a near-optimal
uniform distribution. Another important point in this method is the possibility
to balance the proportion αk of samples between shells. We will take advantage
of this feature in order to test out different spherical distributions.

Firstly, the method consists in minimizing the electrostatic repulsion between
every point for each shell independently, that is

E1 =
X

k

rkαk

X

i6=j s.t ‖qi‖=‖qj‖=rk

E(qi, qj) (8)

Then, in order to have staggered directions between shells, [2] introduces a
new term that minimizes the electrostatic repulsion of the N points projected
on the unit sphere. It comes to minimize

E2 =
X

i6=j

1
‚

‚

‚

qi

‖qi‖
−

qj

‖qj‖

‚

‚

‚

+
1

‚

‚

‚

qi

‖qi‖
+

qj

‖qj‖

‚

‚

‚

(9)

Finally, the energy to minimize is JGJ = (1 − µ)E1 + µE2, where µ is a
weighting factor.

3.3 5 sampling schemes

We perform our experiments on five sampling schemes to evaluate the impact
of the angular sampling in MS acquisition : Regular sampling (RS) means
we take the same directions on each shell. These directions are provided by
the application of Jones algorithm. Uniform Jones sampling (UJS) uses
the generalized Jones algorithm by setting the parameters in such way that the
samples are distributed along a spherical uniform law (The number of point
on each shell is proportional to the square of its radius). Constant Jones
sampling (CJS) uses the generalized Jones algorithm by setting the parameters
in such way that there is a constant number of samples by shell. Constant
random sampling (CRS) means we randomly take directions on each shell
by setting a constant number of samples by shell. Uniform random sampling
(URS) means we randomly take directions on each shell in such way that the
samples are distributed along a spherical uniform law.



4 Experimental results

In this section, we review the outcome of angular sampling as well as radial
sampling on the CS reconstruction defined in section 2. The performance of
each sampling scheme is determined on both attenuation signal reconstruction
and neural fibre orientation which is given by the maxima of the estimated ODF
estimated as in [8]. We evaluate the maxima extraction by the Percentage of
Corrected Number of Detected Maxima (PCNDM) obtained on a predefined
number of trial. Each time the number of detected maxima Nm is correct we
also compute the Angular Error in degrees 1

Nm

∑Nm

m=0
180
π

arccos(ũm·um), where
ũm is the orientation of the detected maxima and um the ground truth. The
mean over all the trial gives the Mean Angular Error (MAE).

The quality of the signal attenuation estimation S̃ is given by the Nor-
malized Mean Square Error (NMSE). For N sampling points qn the NMSE is
PN

i=1
|S(qi)−S̃(qi)|

2

P

N
i=1

|S(qi)|2
, where S is the ground truth signal attenuation. Then, we

average the NMSE obtained in all the trials.

Before initiating the procedure, we set some reconstruction parameters. SNR
ζ=20, for average quality data. In eq. 5, we set λ to 0.01 as in [8].

We reconstruct the propagator from a multi-Gaussian model through four
scenarios : One fiber, two 60◦-crossing fibres, two 70◦-crossing fibres, two 90◦-
crossing fibres. All the results are obtained on 1500 independant trials.

Angular profile : For each scenario we use three shells with b values equal to
500, 1500, and 3000. We begin by evaluate the five sampling schemes presented
in section 3.3 while using only N=60 samples in the reconstruction. Figure 1
presents the results through the computation of the Percentage of Corrected
Number of Detected Maxima (PCNDM), the Mean of Angular Error (MAE) in
degrees and the Normalized Mean Square Error (NMSE) respectively on line 1,
2 and 3. Each color corresponds to one the five sampling schemes. Each group
of five bars correspond to one of the scenarios presented at the beginning of
the section (One fiber, two 60◦-crossing fibres, two 70◦-crossing fibres, two 90◦-
crossing fibres). We can see that, in term of PCNDM, two schemes stand out: the
UJS and RS schemes (green and dark blue). However, due to the bad capacity
of the RS scheme to resolve 60◦-crossing fibres and most probably low degrees
as well, we cannot rely upon it for maxima extraction. This is verified by looking
at the MAE (second line) of RS scheme. Once again UJS gives the best results,
i.e. the lowest MAE. Overall, orientation detection is better performed when a
spherical uniform distribution is applied compared to a constant distribution.
Constant distribution means we take the same number of samples on each shell.
Random angular sampling confirms this point. Concerning the NMSE (third
line), three sampling schemes are quite equivalents: the RS, the UJS and CJS
schemes. Even if the regular one is slightly better than the other, it is difficult
to distinguish one scheme from another. Here again random sampling does not
meet the CS expectations.



Fig. 1. Reconstruction results while using only N=60 samples in the reconstruction.
Five angular sampling schemes are examined : Regular sampling (dark blue bars), Con-
stant Jones sampling (light blue bars), Uniform Jones sampling (green bars) Constant
random sampling (orange bars), Uniform random sampling (red bars). From top to
bottom the three lines respectively represent the Percentage of Corrected Number of
Detected Maxima (PCNDM), the Mean of Angular Error (MAE) in degrees and the
Normalized Mean Square Error (NMSE). Each group of five bars correspond to one of
the following scenarios : One fiber, two 60◦-crossing fibres, two 70◦-crossing fibres, two
90◦-crossing fibres (from left to right).

We illustrate, as well, the evolution of the PCNDM, MAE and NMSE (from
left to right in fig. 2) against the number of samples taken in the reconstruction.
Only the results for 60◦-crossing fibres are represented. For maxima extraction
(see PCNDM (a) and MAE (b)), the UJS overcomes the other schemes for every
number of samples. In term of NMSE, the figure 2.c shows that the gap between
the RS, the UJS and CJS is not sufficiently large in order to distinguish one
scheme from another. Random sampling gives less stable curves than the others.
It shows the problem of sensibility for this kind of scheme in our reconstruction.

In conclusion with respect to the angular sampling, UJS is a robust and
efficient way to build MS schemes.

Radial profile : Now we want to examine the influence of the radial sampling.
Due to the robustness of UJS, we decide to keep it while changing the number
of shells from 1 to 12.

Let us examine the figure 3(a) and (b). These results show that, above 3
shells, the MAE and the PCNDM do not vary a lot. It means the uniform
sampling scheme is not sensitive to the number of shells used for the acquisition
when fibre orientation detection is required. With 1 and 2 shells, we get a higher
PCNDM than previously. However this improvement is done to the price of an
increasing MAE. Moreover, when few shells are taken for sampling, it is more
difficult to catch significant information of the radial profile. The b values have
to be cautiously chosen if few shells are used. By regularly taking more and more



Fig. 2. Evolution of the reconstruction results against the number of samples for the
60◦-crossing fibres. Five angular sampling schemes are examined : Regular sampling
(dark blue), Constant Jones sampling (red), Uniform Jones sampling (black) Constant
random sampling (green bars), Uniform random sampling (light blue). (a) represents
the Percentage of Corrected Number of Detected Maxima (PCNDM), (b) the Mean of
Angular Error (MAE) in degrees and (c) the Normalized Mean Square Error (NMSE).

shells in a MS process, we cover more precisely the radial profile of our signal
and we get rid of the choice of b-values.

Concerning the NMSE, figure 3(c) shows that increasing the number of sam-
ple decreases the NMSE until the number of shells exceeds a specific value. This
limit may due to the fact that a too big increase of the radial resolution lead
to a fall of the angular resolution. Figure 3(c) shows a limit of 9 shells in our
case. However, we dont need to reach this point. Indeed the quasi-flatness of the
curves before 9 shells allows us to use less shells for sampling while keeping the
advantage of MS sampling.

Fig. 3. Evolution of the reconstruction results against the number of shells. Uniform
Jones sampling is used while changing the number of shells from 1 to 12. Four scenarios
are examined : One fiber (blue curve), two 60◦-crossing fibres (red curve), two 70◦-
crossing fibres (black curve), two 90◦-crossing fibres (green curve). (a) represents the
Percentage of Corrected Number of Detected Maxima (PCNDM), (b) the Mean of
Angular Error (MAE) in degrees and (c) the Normalized Mean Square Error (NMSE).



Conclusion of the experiments: With respect to the angular profile, one
sampling scheme stand out : the UJS scheme. It allows us to correctly detect the
orientation of neural fibres and especially for low number of samples (N=60).
It also gives good results in terms of NMSE. The results show again that the
signal attenuation reconstruction and maxima extraction are very sensitive to
the sampling scheme. Even if random sampling (CRS, URS) can work better
than near-regular sampling (RS, CJS, UJS), we cannot ensure that it will work
in every case. Fibre orientation detection is not sensitive while changing the
number of shells of the UJS scheme. A great advantage of MS sampling, compare
to one shell sampling, lies in the quasi non-sensibility in the choice of b-values.
Indeed we just need to acquire our signal on shells regularly spaced. On the
other hand, due to the small number of point used, a compromise has to be
done between radial and angular resolution.

5 Conclusion

The main contribution of this paper is to evaluate different way to sample q-space
in dMRI. We showed that multiple shells acquisition is of great interest when
dealing with fibres orientation detection and attenuation signal reconstruction.
Hence this method generalizes the Q-ball imaging while being able to reconstruct
the EAP and signal attenuation at any radius. In our study, we also showed
that generalized Jones algorithm is a good way to build robust multiple shells
sampling schemes and that the use of a spherical uniform distribution improves
the results.
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