84 research outputs found

    Partial parallelization of VMEC system

    Get PDF

    Porting the Sisal functional language to distributed-memory multiprocessors

    Get PDF
    Parallel computing is becoming increasingly ubiquitous in recent years. The sizes of application problems continuously increase for solving real-world problems. Distributed-memory multiprocessors have been regarded as a viable architecture of scalable and economical design for building large scale parallel machines. While these parallel machines can provide computational capabilities, programming such large-scale machines is often very difficult due to many practical issues including parallelization, data distribution, workload distribution, and remote memory latency. This thesis proposes to solve the programmability and performance issues of distributed-memory machines using the Sisal functional language. The programs written in Sisal will be automatically parallelized, scheduled and run on distributed-memory multiprocessors with no programmer intervention. Specifically, the proposed approach consists of the following steps. Given a program written in Sisal, the front end Sisal compiler generates a directed acyclic graph(DAG) to expose parallelism in the program. The DAG is partitioned and scheduled based on loop parallelism. The scheduled DAG is then translated to C programs with machine specific parallel constructs. The parallel C programs are finally compiled by the target machine specific compilers to generate executables. A distributed-memory parallel machine, the 80-processor ETL EM-X, has been chosen to perform experiments. The entire procedure has been implemented on the EMX multiprocessor. Four problems are selected for experiments: bitonic sorting, search, dot-product and Fast Fourier Transform. Preliminary execution results indicate that automatic parallelization of the Sisal programs based on loop parallelism is effective. The speedup for these four problems is ranging from 17 to 60 on a 64-processor EM-X. Preliminary experimental results further indicate that programming distributed-memory multiprocessors using a functional language indeed frees the programmers from lowl-evel programming details while allowing them to focus on algorithmic performance improvement

    HPCCP/CAS Workshop Proceedings 1998

    Get PDF
    This publication is a collection of extended abstracts of presentations given at the HPCCP/CAS (High Performance Computing and Communications Program/Computational Aerosciences Project) Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective of the Workshop was to bring together the aerospace high performance computing community, consisting of airframe and propulsion companies, independent software vendors, university researchers, and government scientists and engineers. The Workshop was sponsored by the HPCCP Office at NASA Ames Research Center. The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance Computing and Communications Program and the Computational Aerosciences Project; ten sessions of papers representative of the high performance computing research conducted within the Program by the aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special presentation by Mr. James Bailey

    Performance Variability of Highly Parallel Architectures

    Full text link
    The design and evaluation of high performance computers has concentrated on increasing computational speed for applications. This performance is often measured on a well configured dedicated system to show the best case. In the real environment, resources are not always dedicated to a single task, and systems run tasks that may influence each other, so run times vary, sometimes to an unreasonably large extent. This paper explores the amount of variation seen across four large distributed memory systems in a systematic manner. It then analyzes the causes for the variations seen and discusses what can be done to decrease the variation without impacting performance

    Generalized Portable SHMEM library for high performance computing

    Get PDF
    The Generalized Portable SHMEM library (GPSHMEM) is a portable implementation of the SHMEM library originally released by Cray Research Inc. on the Cray T3D. SHMEM and GPSHMEM realize the distributed shared memory programming model, that is, a shared memory programming model in environments in which memory is physically distributed. It is intended for use on a large variety of hardware platforms, including distributed systems with a network interconnect. The programming interface of GPSHMEM follows that of SHMEM and includes remote memory access operations (one-sided communication) and a set of collective routines such as broadcast, collection and reduction. Programming interfaces for C and Fortran are provided. Because of the minimal assumptions about the underlying hardware, GPSHMEM does not implement the full SHMEM T3D interface. The lack of a few functions is compensated by a set of extensions, including dynamic memory allocation for Fortran 77. To ease porting of SHMEM-enabled scientific Fortran 77 code from the Cray machines to use with GPSHMEM, a specialized Fortran 77 preprocessor was designed and developed

    Evaluating NIC hardware requirements to achieve high message rate PGAS support on multi-core processors

    Full text link

    Remote Store Programming: Mechanisms and Performance

    Get PDF
    This paper presents remote store programming (RSP). This paradigm combines usability and efficiency through the exploitation of a simple hardware mechanism, the remote store, which can easily be added to existing multicores.Remote store programs are marked by fine-grained and one-sided communication which results in a stream of data flowing from the registers of a sending process to the cache of a destination process. The RSP model and its hardware implementation trade a relatively high store latency for a low load latency because loads are more common than stores, and it is easier to tolerate store latency than load latency. This paper demonstrates the performance advantages of remote store programming by comparing it to both cache-coherent shared memory and direct memory access (DMA) based approaches using the TILEPro64 processor. The paper studies two applications: a two-dimensional Fast Fourier Transform (2D FFT) and an H.264 encoder for high-definition video. For a 2D FFT using 56 cores, RSP is 1.64x faster than DMA and 4.4x faster than shared memory. For an H.264 encoder using 40 cores, RSP achieves the same performance as DMA and 4.8x the performance of shared memory. Along with these performance advantages, RSP requires the least hardware support of the three. RSP's features, performance, and hardware simplicity make it well suited to the embedded processing domain

    Automating Topology Aware Mapping for Supercomputers

    Get PDF
    Petascale machines with hundreds of thousands of cores are being built. These machines have varying interconnect topologies and large network diameters. Computation is cheap and communication on the network is becoming the bottleneck for scaling of parallel applications. Network contention, specifically, is becoming an increasingly important factor affecting overall performance. The broad goal of this dissertation is performance optimization of parallel applications through reduction of network contention. Most parallel applications have a certain communication topology. Mapping of tasks in a parallel application based on their communication graph, to the physical processors on a machine can potentially lead to performance improvements. Mapping of the communication graph for an application on to the interconnect topology of a machine while trying to localize communication is the research problem under consideration. The farther different messages travel on the network, greater is the chance of resource sharing between messages. This can create contention on the network for networks commonly used today. Evaluative studies in this dissertation show that on IBM Blue Gene and Cray XT machines, message latencies can be severely affected under contention. Realizing this fact, application developers have started paying attention to the mapping of tasks to physical processors to minimize contention. Placement of communicating tasks on nearby physical processors can minimize the distance traveled by messages and reduce the chances of contention. Performance improvements through topology aware placement for applications such as NAMD and OpenAtom are used to motivate this work. Building on these ideas, the dissertation proposes algorithms and techniques for automatic mapping of parallel applications to relieve the application developers of this burden. The effect of contention on message latencies is studied in depth to guide the design of mapping algorithms. The hop-bytes metric is proposed for the evaluation of mapping algorithms as a better metric than the previously used maximum dilation metric. The main focus of this dissertation is on developing topology aware mapping algorithms for parallel applications with regular and irregular communication patterns. The automatic mapping framework is a suite of such algorithms with capabilities to choose the best mapping for a problem with a given communication graph. The dissertation also briefly discusses completely distributed mapping techniques which will be imperative for machines of the future.published or submitted for publicationnot peer reviewe

    How Are We Doing? A Self-Assessment of the Quality of Services and Systems at NERSC - (Oct. 1, 1997-Dec. 31, 1998)

    Full text link

    Venice: Exploring Server Architectures for Effective Resource Sharing

    Get PDF
    Consolidated server racks are quickly becoming the backbone of IT infrastructure for science, engineering, and business, alike. These servers are still largely built and organized as when they were distributed, individual entities. Given that many fields increasingly rely on analytics of huge datasets, it makes sense to support flexible resource utilization across servers to improve cost-effectiveness and performance. We introduce Venice, a family of data-center server architectures that builds a strong communication substrate as a first-class resource for server chips. Venice provides a diverse set of resource-joining mechanisms that enables user programs to efficiently leverage non-local resources. To better understand the implications of design decisions about system support for resource sharing we have constructed a hardware prototype that allows us to more accurately measure end-to-end performance of at-scale applications and to explore tradeoffs among performance, power, and resource-sharing transparency. We present results from our initial studies analyzing these tradeoffs when sharing memory, accelerators, or NICs. We find that it is particularly important to reduce or hide latency, that data-sharing access patterns should match the features of the communication channels employed, and that inter-channel collaboration can be exploited for better performance
    corecore