
Venice: Exploring Server Architectures for Effective
Resource Sharing

Jianbo Dong1, Rui Hou1, Michael Huang2, Tao Jiang1, Boyan Zhao1, Sally A. McKee3, Haibin Wang4, Xiaosong Cui4, and

Lixin Zhang1

1SKL Computer Architecture, ICT, CAS, {dongjianbo, hourui, jiangtao, zhaoboyan, zhanglixin}@ict.ac.cn
2University of Rochester, michael.huang@rochester.edu

3Chalmers University of Technology, mckee@chalmers.se
4Huawei Technologies Co., Ltd, {benjamin.wanghaibin, cuixiaosong}@huawei.com

ABSTRACT
Consolidated server racks are quickly becoming the back-
bone of IT infrastructure for science, engineering, and busi-
ness, alike. These servers are still largely built and organized
as when they were distributed, individual entities. Given that
many fields increasingly rely on analytics of huge datasets,
it makes sense to support flexible resource utilization across
servers to improve cost-effectiveness and performance. We
introduce Venice, a family of data-center server architectures
that builds a strong communication substrate as a first-class
resource for server chips. Venice provides a diverse set of
resource-joining mechanisms that enables user programs to
efficiently leverage non-local resources.

To better understand the implications of design decisions
about system support for resource sharing we have con-
structed a hardware prototype that allows us to more accu-
rately measure end-to-end performance of at-scale applica-
tions and to explore tradeoffs among performance, power,
and resource-sharing transparency. We present results from
our initial studies analyzing these tradeoffs when sharing
memory, accelerators, or NICs. We find that it is particu-
larly important to reduce or hide latency, that data-sharing
access patterns should match the features of the communica-
tion channels employed, and that inter-channel collaboration
can be exploited for better performance.

1. INTRODUCTION
Users and organizations increasingly rely on large-scale

datasets in science, engineering, and business. With grow-
ing datasets, modern workloads increasingly involve the the
cooperation of many servers simultaneously. Consolidated
data centers are thus rapidly becoming the main comput-
ing platforms, yet their architecture has remained relatively
static, consisting largely of a simple aggregation of com-
modity servers. There thus remain several mismatches be-
tween modern workloads and conventional server architec-
tures, primarily in the communication substrate.

Server networking is primarily concerned with reaching
remote destinations. As a result, nodes are typically con-
nected in a tree topology. Even communicating with a
neighboring node requires traversing long cables and going
through massive, energy-intensive switches with non-trivial
latencies. First, studies have shown that, unlike in a campus
environment where most traffic (95%) is outbound (north-
south), in a data center environment, the majority of the traf-
fic is internal (east-west) [1]. Second, conventional network-
ing interfaces are designed for environments with long, of-
ten unreliable connection media. Error handling and other
protocol overheads coupled with relatively slow hardware
interfaces may not create performance issues for campus en-
vironments, but they become more problematic with increas-
ing server-to-server communication and interaction.

In this traditional organization, servers can be viewed as
little more than isolated islands, much like the 118 individual
islands located in the marshy Venetian lagoon. Only by con-
necting the islands with bridges do we get the city of Venice
that we know today. Moving forward, we are seeing less
rigid boundaries among servers within a data-center server
rack. Many resources may need to be flexibly shared in or-
der to make such servers more versatile and cost-effective
than their isolated ancestors.

Here we propose the Venice (Figure 1) family of exper-
imental architectures. Venice supports highly transparent,
multimodal communication for flexibly sharing resources
among nodes. Note that other proposals and designs exist
for systems that can use remote resources [2, 3, 4]. For in-
stance, some systems support RDMA [3], but performance
for random, fine-grain access is insufficient to support direct
sharing of remote memory. As another example, Scale-out
NUMA [2] supports remote memory usage but requires pro-
grams to be rewritten using a new programming model, as
opposed to just linking with a new library.

Based on our analyses we believe Venice requires the
symbiosis of three things:

978-1-4673-9211-2/16/$31.00 c© 2016 IEEE 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70615790?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Integration of communication: To minimize laten-
cies, the interconnect fabric needs to be directly inte-
grated on-chip rather than accessed via I/O buses and
adapters.

2. Multi-modality: To translate raw fabric capabilities
into application performance benefits, the architecture
and software stack must support common communica-
tion patterns for resource sharing. These include ex-
plicit communication and remote memory accesses at
both coarse and fine granularities.

3. Transparency: The system needs to provide inter-
faces that not only minimize user-level runtime over-
heads but require few, if any, changes to user programs.

The designs for other proposed systems that share remote
resources [2, 3] are often evaluated with simulations that are
subject to biases introduced by the assumptions and abstrac-
tions that we necessarily build into our modeling tools. To
better understand some of the design issues and their impli-
cations, we built an experimental prototype that faithfully
implements remote accesses within a cluster.

Accessing remote resources will always be less efficient
than accessing local ones, and sharing beyond some distance
may not be profitable. Even with the support Venice pro-
vides, the resources within a collection of servers cannot ap-
pear completely “flat”. Venice makes resources appear flat-
ter, though, by utilizing them more efficiently. It represents
a first step in exploring the design space of effective server
architectures, but several important questions remain to be
addressed in greater depth, e.g., fault containment and scal-
ability. Nonetheless, this paper makes three main contribu-
tions to the design of data-center server architectures:

• We propose a novel architectural design;

• We construct and study a fully functional hardware
prototype — an instance of a Venice architecture —
to expose technical issues and provide faithful evalua-
tions of long-term system behavior; and

• We discuss design rationales, experimental results, and
some lessons learned to instill a more concrete un-
derstanding of the opportunities, limitations, and chal-
lenges of resource sharing in server environments.

Our experiments show that fully utilizing communica-
tion channels requires that the granularity of communication
(e.g., page, block, or cacheline transfers) match the fabric
capabilities. In particular, low latency is crucial for fine-
grained communication, and thus hiding and/or reducing la-
tencies is necessary for efficient resource sharing. Finally,
when a node integrates multiple communication channels,
inter-channel collaboration delivers the best performance.

2. RELATED WORK
The most common resource-sharing examples are sym-

metric multiprocessor (SMP) and hardware distributed
shared-memory (DSM) systems that target scientific and
high-performance computing (HPC). Such systems deliver
high performance, but they also come with high price tags [5,
6, 7]. More cost-effective software DSM systems incur

significant overhead maintaining cache coherence [8, 9].
Like us, other researchers have studied leveraging remote
idle memory for swap space [10, 11, 12], checkpoint stor-
age [13], or file caching [14, 15], but these solutions retain
fabrics intended for HPC communication, not data center
traffic. Note that resource utilization in systems targeting
HPC is notoriously low, which drives the TCO unacceptably
high for clouds.

Many higher-end HPC systems employ specialized inter-
connects to support efficient communication. For instance,
the Cray T3E uses a custom ASIC to instantiate a 3D torus
network that provides much higher bandwidth, faster chip
interfaces, and better scalability than previous systems [16].
Other examples include the IBM PERCS switchless inter-
connect [17], the Tofu interconnect for the Fujitsu K su-
percomputer [18], and the TianHe-1A interconnection fab-
ric [19]. These expensive, custom solutions are intended
to support MPI, sockets, and PGAS language-based HPC
applications having very different traffic patterns from data
center software. Their first-order design goals are perfor-
mance and reliability, not low power, high density, incre-
mental scaling, and flexible resource sharing.

In contrast, AMD SeaMicro’s Freedom Fabric [20],
Calxeda’s Fleet Fabric [21], and Intel’s Rack-Scale Archi-
tecture [22] specifically target cloud platforms. These high-
density computing fabrics disaggregate the compute, mem-
ory, and storage capacities within a rack to support more
flexible resource sharing and scaling, but the latter two sac-
rifice software transparency by implementing custom APIs.
Intel RSA introduces high-speed, fat bandwidth (off-chip)
silicon photonic links [22]. This architecture also supports
logically composing physically separated pooled resources.
Finally, PCIe has also been explored as a low-cost, flexible,
but lower-performing data center interconnect [23, 24, 25].

Researchers have also begun pursuing promising ap-
proaches to remote resource sharing in data center platforms.
For instance, Lim et al. [26, 27, 28] introduce disaggregated
memory, which allows multiple compute blades to access
dedicated memory blades via HyperTransport or PCIe in-
terconnects. Novakovic et al. [2] propose Scale-out NUMA
(so-NUMA), an architecture, programming model, and com-
munication protocol for using remote memory. They use an
RDMA-inspired programming model and a stateless mes-
saging protocol on top of a NUMA memory fabric. Put-
nam et al. [29] implement Catapult, which accesses dis-
tributed accelerators through an FPGA-based network. All
these projects focus on sharing one specific remote resource,
whereas Venice provides a common substrate to enable ex-
perimentation with more holistic approaches to sharing mul-
tiple types of resources. Note that so-NUMA and disaggre-
gated memory have thus far been explored only in simula-
tion, which necessarily abstracts away many low-level de-
tails of hardware implementation. In contrast, we provide
a hardware vehicle to facilitate more realistic design-space
exploration. The current prototype is thus a strawman ex-
perimental system, not an end-product.

3. THE VISION FOR VENICE
To better explain the composition and operation of our

proposed Venice architectures, we start with a concrete ex-

2

MC
RC

DD
R

PC
Ie

Figure 1: Venice architecture organization

ample of a likely memory-sharing scenario. We then discuss
the high-level structure of Venice support for such sharing.

Consider a node running an in-memory database like Re-
dis. In a conventional server, each node has its own fixed
set of resources, including memory. The DB application can
find out the memory size, and it may execute system calls
to request all of it. Venice systems report memory availabil-
ity to software running on a Monitor Node (MN), much like
a NameNode in a Hadoop system (¬ in Figure 2). When
a node requests more memory than is locally available, the
kernel memory manager sends a request to the MN (). The
MN1 finds an appropriate donor node, tells the donor’s soft-
ware agent to hot-remove a portion of its memory, sets up a
Venice interface to service requests to that region (®), and
tells the recipient node to hot-plug the newly acquired mem-
ory region and to set up its own Venice interface (¯). Once
this connection is established, accesses to the borrowed re-
gion on the recipient node are intercepted by hardware and
routed to the donor node.

Monitor Node
User
Space

Kernel
Space

User
Space

Kernel
Space

HW

Resource
Registration

Table

Resource
Manager 1

HW

User Applications

Processor

Requester Node

Venice HW

User Applications

Donor Node

1

2

3

4

Processor
Venice HW

Fabric

Request / Ack

Hot-remove / Ack
Used

Memory

Borrowed
MemoryUsed Memory

Memory Hotplug Memory ManagementAgent

Memory Hot-remove Memory ManagementAgent

Hot-plug / A
ck

Resource
Allocation

Table

Topology
Status
Table Removed

Memory

Figure 2: Memory sharing flow diagram

The ability to access remote resources exists in many cur-
rent systems — e.g., modern systems allow remote memory
access via RDMA over a fast network [30]. But such capa-
bilities are not designed with true resource sharing in mind
and do not perform well enough to use remote resources as
if they were local. At the other end of the spectrum, tightly
coupled shared memory architectures have the most flexibil-
ity for resource sharing. Shared-memory systems let nodes
share the same resource simultaneously and provide fine-
1Note that the MN must be spared to avoid a single point of failure;
our small prototype does not yet implement this redundancy.

grained flexibility, but maintaining cache coherence and con-
sistency models incurs large performance and energy costs.
This makes large-scale shared-memory systems too expen-
sive to deploy in cost-conscious data centers.

Venice architectures will break the traditional boundaries
of physical nodes (Figure 1). Each Venice node can eas-
ily (transparently to user-level applications) and efficiently
(with tolerable latencies) utilize idle remote resources. Re-
call that multiple requesters only use the same resource via
time sharing. To enable such resource sharing, our prototype
Venice system embodies three layers of support.

Resource sharing fabrics: Historically, conventional
networks were non-central system components with long
connections over unreliable media and deep software stacks,
which makes them a poor match for datacenter traffic. And
although PCIe provides a straightforwad interface by which
to connect nodes, but it was designed for peripheral man-
agement, and current implementations perform poorly for
fine-grained communication. In contrast, Venice systems
are more sensitive to fabric performance, especially latency.
To reduce communication overheads, our prototype (1) in-
tegrates the fabric directly on chip, avoiding speed bumps
in the I/O buses, adapters, and converters; (2) employs an
ultra-lightweight protocol intended for short-distance links
in reliable, well controlled data center environments; and
(3) avoids relying on large, distant switches (as in Ether-
net or IB) that further contribute to performance overheads
for common-case usage of proximal resource sharing, e.g.,
within a rack.

Mapping and joining mechanisms: Raw interconnect
performance is useless if user-level software must traverse
thick layers of middleware to access remote resources.
Venice architectures thus accelerate common tasks in hard-
ware. Venice supports a set of efficient resource-joining
mechanisms that maintain user-level transparency. For
example, accessing remote memory via CRMA (through
load/store instructions) requires no special API, and the soft-
ware abstraction layer removes the need for applications to
be aware of accelerator location.

Runtime management: The previous two layers provide
the mechanisms to use remote resources. Venice runtime
systems then manage the allocation and release of those re-
sources. An agent on each node periodically collects re-
source usage information and reports it to the central MN.
When a node needs resources beyond its local capacity, it

3

sends a request to the MN, which selects appropriate donor
nodes. We describe our prototype’s current, skeletal runtime
implementation in the next section, but broader analysis of
the runtime design space is beyond the scope of this archi-
tectural discussion.

With these three enabling components, our Venice archi-
tectures can support at least two kinds of resource shar-
ing: borrowing resources in independent nodes and access-
ing dedicated, “passive” resource pools, such as memory or
IO boards. These capabilities allow single nodes to access
larger scales of resources and enable more powerful and flex-
ible resource provisioning within cloud architectures.

4. LATENCY ANALYSIS
Whether future servers can make efficient use of remote

resources depends largely on the performance of the inter-
connect between participating nodes. Therefore we first per-
form a feasibility study to discover whether the latencies of
today’s high-performance interconnects (together with their
software stacks) are low enough to support extensive cross-
node resource sharing.

4.1 Limitations of Commodity Interconnects
We start with a legacy system of x86 servers connected by

commodity interconnects such as 10Gb Ethernet and Infini-
Band, based on which we build a set of software solutions to
access remote memory2. We also build a semi-custom PCIe
interconnect solution that supports direct remote memory ac-
cess either via on-demand cacheline fills (Cacheline Remote
Memory Access, or CRMA) or via swapping over the block
device using DMAs. For all configurations, we provide 4GB
local memory and execute the BerkeleyDB with a 6GB ar-
ray and a random access pattern. The read-write ratio is set
to 80-20, which is typical for OLTP databases. Fig. 3 shows
execution times of the sharing configurations normalized to
that of using only local memory.

Ethernet Infiniband

SRP

PCIe

RDMA

PCIe

LD/ST

10

20

30

40

50

E
x
e
c
tu

ti
o
n
 T

im
e
 N

o
rm

a
liz

e
d

to
 U

s
in

g
 a

ll
L
o
c
a
l
M

e
m

o
ry

4
2

1
9

1
2

1
9

1

13

Figure 3: Remote memory efficiency with commodity inter-
connects. Note that the PCIe CRMA configuration suffers
from a crippling, but fixable, limit due to the commodity
PCIe chip.

This comparison shows that accessing remote memory
over commodity interconnects experiences varying degrees
of slowdown compared to having all local memory. This is

2For 10Gb Ethernet, we use remote memory as a swap partition
via a vDisk driver in Linux. We use a similar setup for InfiniBand,
leveraging its SCSI RDMA Protocol (SRP) to generate the virtual
block device.

due to the demanding access pattern stressing the intercon-
nect — other, more forgiving applications or access patterns
may tolerate the overheads of commodity interconnects bet-
ter. Nevertheless, it is clear that commodity interconnects
are not (yet) designed to support fast, random remote access:
they incur overheads from multiple sources. Relying only on
them to support inter-node resource sharing will greatly limit
its efficiency, and thus its practicality.

4.2 Impact of Architectural Support
We next investigate the potential benefits of adding archi-

tectural support for remote resource access. We employ a
second prototype platform (shown in Fig. 4) that consists of
an array of Xilinx ZC706 boards [31], each equipped with
an FPGA and ARM Cortex-A9 processors. The nodes run
a complete software stack including the Linux OS (Linaro
13.09). We implement the interconnect fabrics in pro-
grammable logic, connecting the ARM processors via AXI
buses with support for cache coherence.

Figure 4: Eight-node prototype connected by a 3D-mesh net-
work

To accurately estimate the performance of target systems
whose bottlenecks potentially differ from our prototype’s,
we use the programmable logic to allow us to set through-
put caps and to insert delays to slow down relatively fast
components. This gives us much more modeling acuity than
simulation-based studies. For instance, when validating our
prototype against an Intel Xeon E5620 server running the
same workloads and software stack, the wall-clock times we
measure are consistently about 1/16th those on the target
machine (within 10% variation).

4.2.1 Impact of latency tolerance/reduction
With this prototype we can emulate designs with more

built-in support for reducing remote access latency. We con-
trast these designs with those that try to tolerate such la-
tencies. In particular, we implement the design proposed
in Scale-out NUMA, which uses a user-level asynchronous
programming style over a Queue Pair (QPair) communica-
tion channel. Such latency tolerance works best with ap-
plications like PageRank that present few data dependencies
among transactions.

Figure 5 compares the performance of several systems
running PageRank and BerkeleyDB3. We start with a legacy
3For BerkeleyDB, we set up the client with 1000 transactions com-

4

configuration (labeled “off-chip QPair” in the figure) in
which remote data is accessed through a QPair channel on an
IB network. Next, we implement QPair support mechanisms
on-chip (labeled “on-chip QPair”) to reduce access latencies.
In the third configuration, we rewrite the application to or-
chestrate the software-based asynchronous communication
proposed in Scale-out NUMA [2]. In the next two config-
urations (labeled “off-chip CRMA” and “on-chip CRMA”),
we add hardware to support cacheline fills from a remote
node with off-chip and on-chip interface logic, respectively.
For these configurations, the code needs no explicit commu-
nication, but instead it accesses remote memory as if it were
local: once the connection is set up, cache misses to remote
memory are automatically handled by the hardware. In all
cases, the application uses a gigabyte of data in the memory
of a remote node that is directly connected (i.e., without an
intermediate router node). We normalize execution time of
all configurations to a system having all memory local.

Off-Chip

QPair

On-Chip

QPair

Async

On-Chip

QPair

Off-Chip

CRMA

On-Chip

CRMA

2

4

6

8

10

12

E
x
e
c
u

ti
o

n
 T

im
e

 N
o

rm
a

liz
e

d

to
 A

ll
L
o

c
a

l
M

e
m

o
ry

PageRank

BerkeleyDB

7
.6

9

5
.9

6

3
.1

2

3
.0

1

2
.1

2

1
1
.9

2

1
0
.9

1

1
0
.8

3

3
.4

3

2
.4

8

Figure 5: Relative performance of our system configurations

Our experiments show that when the algorithm permits,
redesigning the communication pattern to hide latencies can
deliver significant performance gains. PageRank’s massive
parallelism can be exploited to initiate multiple streams of
communication in the background, thereby tolerating remote
access latencies. In this case, performance is comparable
to building off-chip support for cacheline fills from remote
memory. When the cacheline fill support is integrated on-
chip, we see another performance boost (1.4x).

For BerkeleyDB, the asynchronous QPair shows very few
performance benefits over legacy QPair. This is because the
client must check the return status before processing the next
query.

Based on these results, we conclude that hardware sup-
port for remote memory access is clearly worthwhile. First,
the benefit is real. Even for applications with significant par-
allelism that can be exploited by a sophisticated software
implementation, the performance with hardware support for
memory access is still higher — with no extra application
programmer effort.

Second, the support need not be complex. Note that re-
mote memory access does not necessitate hardware cache
coherence. We envision a “single-subscriber” model in
which the OS/hypervisor of a physical node ensures that a
region of memory is owned by a single node at any time.

posed of five random queries (four gets and one put). The server
stores the records in remote memory. When a query arrives, the key
is used to look up the address of the corresponding record.

The hardware support then amounts to address translation
and packetization. In fact, the hardware cost of such sup-
port is less than that of on-chip QPair. A typical QPair im-
plementation supports hundreds of queue pairs, each requir-
ing around a dozen registers. This requires tens of kilobytes
more SRAM than does CRMA. And the logic complexity (in
terms of LUT counts) of QPair is about twice that of CRMA.

4.2.2 Impact of router delay
In the experiments above, we directly connect the two

nodes via an optical link. Our measurements suggest that
the latency of the physical layer (PHY) is a significant, and
sometimes dominant, component of overall transaction la-
tency. This means that when the interconnection between
two resource-sharing nodes relies on an indirect network
with an external router (which is typical for datacenters),
the additional hop should noticeably increase end-to-end la-
tency. To understand the impact on performance, we repeat
the experiment with a router inserted between the two nodes.
Figure 6 shows performance results for this configuration.

Off-Chip

QPair

On-Chip

QPair

Async

On-Chip

QPair

Off-Chip

CRMA

On-Chip

CRMA

0

5

10

15

20

25

P
e

rf
o

rm
a

n
c
e

 O
v
e

rh
e

a
d

w
/

O
n

e
-L

e
v
e

l
R

o
u

te
r PageRank

BerkeleyDB

1
1

.7
0

1
3
.4

2

2
.0

2

1
3
.9

2

2
2

.7
2

7
.6

6

7
.3

3

7
.3

9 1
1

.0
8 1

6
.1

3

Figure 6: Performance impact of off-chip router delay

Obviously, the impact of additional router delay is greater
for higher-performing configurations. The only exception is
when the code already hides latency well via asynchronous
programming. For configurations supporting CRMA, the
impact of going through an external router is large (over
20%). Given this, direct chip-to-chip communication will
be a desirable feature for direct remote memory accesses.

To recap, our end-to-end performance evaluations (of real
hardware) show:

1. Commodity interconnects, especially those with rela-
tively thick protocol stacks, still limit performance of
extensive cross-node resource sharing. Using remote
resources over commodity interconnect is an order of
magnitude slower than using local resources.

2. Additional architectural support for high-performance
communication can be very effective, bringing remote-
access penalties down to much more tolerable levels
(e.g., 2-3×).

3. For remote resource usage to be highly effective, la-
tency reduction is crucial. Application-level latency
tolerance is effective for some workloads, but not all.

4. In our opinion, reducing latency requires on-chip sup-
port for remote access, and it probably requires support
for direct interconnections.

5

These observations motivated a number of elements in the
design of Venice that reduces access latency of remote re-
sources. We describe our design next.

Figure 7: Fabric structure

5. OUR VENICE DESIGN
Recall that Venice represents a family of architectures, al-

lowing much flexibility in individual implementations. Here
we describe the details of the initial implementation the we
designed as a vehicle for design-space exploration.

5.1 Resource-sharing fabrics
The interconnect forms the foundation of Venice architec-

tures. Its performance — in terms of both latency and band-
width — directly impacts the effectiveness of resource shar-
ing. We therefore integrate the Venice interconnect directly
into the processor to avoid the overhead of going through ad-
ditional chip interfaces, I/O hubs, and/or adapters. We em-
bed the switch to allow direct chip-to-chip communication
without relying on intermediary switch modules. Section 7.3
discusses the costs of such integration. Of course, external
switch modules are still important for scalability.

5.1.1 Fabric structure
Figure 7 shows the structures of the IC and protocol. The

Venice prototype supports basic flow control and error cor-
rection. It can also support emerging features such as flow-
based QoS for software-defined networks, but these are be-
yond the scope of this discussion. The aforementioned func-
tionalities are implemented in its Control Center and the
transport, network, datalink, and physical layers. We discuss
these layers bottom-up.

Datalink and physical layers. The datalink and physical
layers support multiple I/O ports. The datalink is responsible
for point-to-point reliable transmission. We use credit-based
flow control to prevent buffer overflow at the receiver. Er-
ror detection with Cyclic Redundancy Check (CRC) on the
receiver side and a corresponding replay mechanism on the
sender side guarantee packet correctness.

Network layer. A main design decision was to make the
fabric capable of operating in a “switchless” mode for di-
rect chip-to-chip communication. By not traversing faraway
central switch modules, this mode provides low-latency and
low-power communication to neighboring nodes. The ben-
efits justify the reasonable hardware implementation costs

with respect to pin requirements, on-chip real-estate, power,
and design complexity.

We believe the on-chip switch will be of low dimen-
sion: first, the chip will be pin-limited, which makes it dif-
ficult to support namy wide channels, and second, we ex-
pect Venice to be most cost-effective when sharing resources
within a small diameter. For more remote sharing, an ex-
ternal, high-dimension switch module can complement the
on-chip switch.

5.1.2 Remote access channels
To ensure that raw fabric performance is not masked by an

inefficient software stack, we support multiple mechanisms
for giving user-level applications direct access to remote re-
sources. Venice’s transport layer mechanisms consist of a
CRMA channel, an RDMA channel, and a QPair channel.
As suggested by the name, the light-weight CRMA chan-
nel supports remote memory accesses via direct load/store
instructions. The RDMA channel is more suitable for large-
volume data movement. And the QPair channel supports
user-level, socket-based communication. Each channel has
its own address window in local memory, and thus Venice
implements a Remote Address Mapping Table (RAMT) and
a Transport-Layer TLB (TLTLB) (Figure 7) to facilitate ad-
dress translation.

CRMA channel. Remote memory access in Venice is
set up by software on both the local (recipient) and remote
(donor) nodes. The local node first allocates address space
for remote memory blocks. It then sends the donor node a
memory-sharing request specifying the amount of memory
needed. After the handshake with the remote node, it creates
an entry in the RAMT (Figure 8). The remote node creates
a matching entry in its own mapping table. When the pro-
cessor issues a memory request to an address in the RAMT,
the CRMA channel captures, packetizes, and sends it to the
donor. Finally, either of the nodes may initiate a stop-sharing
request to its counterpart. Relevant entries from the RAMTs
in both nodes are invalidated after proper cleanup.

V Local Addr Base Node ID Remote Addr Base

= HitHigh address +

Masking register

Local Addr

Lookup Addr

Remote
Addr

V Node ID Flow ID Out Port

&

Link
Status

Data

Packet Assembling logic

Tag

Forwarding
Request

Node ID

Multiple links

LSBMSB

Local/Remote Address Mapping table

Routing table

Transmission Buffer

Offset

0000000111111111

Figure 8: Remote address mapping/routing tables

RDMA channel. Whereas the CRMA channel serves
cacheline requests (fetches or writebacks) triggered by in-

6

dividual memory instructions, the RDMA channel handles
software-initiated DMA requests with remote memory as the
source/destination. State machines and control registers di-
vide the memory region into chunks for packetization.

QPair channel. Venice’s QPair mechanism is a bidirec-
tional channel between two communicating threads. Once
established, data written into the local send queue will be
delivered to the counterpart’s receive queue. The benefit of
the QPair is that the well defined, low-level queue manage-
ment maps well to hardware state machines. This frees up
the CPU and transfers efficiently large blocks.

5.1.3 Inter-channel collaboration
Based on our experience with the prototype, we find all

three channels to be necessary, even though any one chan-
nel can mimic the functionality of others. In particular,
the CRMA channel is most efficient when the access pat-
tern is random (as for in-memory databases) or the commu-
nication granularity is small. We therefore implement an
adaptive communication library that makes intelligent de-
cisions about channel choices based on communication de-
mands and that allows channels to supplement each other.
This means that the channels are no longer independent en-
tities: packets may arrive out of order, necessitating a se-
quence number (something we learned the hard way).

Consider credit-based flow control, which is widely used
in communication systems like the Sockets Direct Proto-
col (SDP) over InfiniBand. Credits indicate the number of
available buffers at the receiver. Before each transmission,
the sender checks the credit and only continues the transfer
(and decrements the credit) when there are enough buffers
available. In a traditional design, flow-control packets are
transmitted through a QPair channel just like data packets.
However, the relatively long latency for these small pack-
ets brings down link bandwidth utilization. We thus propose
to send flow-control packets through the CRMA channel to
reduce the latency for updating credits, which we store in
a separate memory region. These flow-control packets are
overwriteable and irrelevant to data packets, allowing us to
simplify the collaboration between the channels.

Figure 9: Credit packet transmission via QPair and CRMA

5.2 Resource-sharing mechanisms
Venice is comprised of several kinds of hardware re-

sources, including computing resources (CPUs, GPGPUs,
and accelerators), memory, disk, and other IO devices. Pro-

gramming models like Hadoop, MPI, sockets, or PGAS lan-
guages provide good support for using remote CPU and disk
resources (e.g., via NFS or NAS). Using remote memory, ac-
celerators, and other IO devices is more challenging, since
their use often imposes stringent requirements on the per-
formance of the sharing mechanisms. These challenges are
exactly what Venice architectures are intended to address.

We provide software mechanisms that closely mesh with
the hardware to complement the Venice architecture. These
mechanisms follow three general design guidelines:

• To enhance programmer productivity, we keep re-
source joining as software-transparent as possible. Ap-
plications are concerned only with allocating the re-
sources they need, without regard to their whereabouts.

• To maximize portability, we leverage existing (Linux)
interfaces to enable remote resource access.

• To maximize efficiency, the software and hardware are
tightly coupled and highly optimized.

5.2.1 Using remote memory
Nodes report idle memory regions to the MN, after which

remote nodes may request them. On such a request, a region
is removed from the control of the local OS and managed
henceforth by the recipient node. The functionality of re-
moving a memory region from the view of the software is
already supported by Linux.

Direct remote memory access. Perhaps the most user-
transparent use of remote memory is to treat it as ordinary
local memory. To do so, we need to present the remote re-
gion to the (local) OS, for which we use the Linux memory
hot-plug mechanism. Figure 10 illustrates this process. Ini-
tially (step 0), both Node A and Node B contain 4GB physi-
cal memory, of which 1GB (high addresses in the figure) in
Node A is reported as available to share. In step 1 of allocat-
ing this memory to Node B, the region is hot-removed and
no longer visible to software on Node A. In step 2, Node B
uses hot plugging to create the illusion of additional mem-
ory. The Venice hardware on both nodes is configured so
that accesses to the new address region on Node B (0x1 0000
0000–0x1 3FFF FFFF) are captured by the CRMA channel
and routed to Node A for servicing.

0x00000000
~

0xBFFFFFFF 0x00000000
~

0xFFFFFFFF

Node A
(3GB)

Node B
(4GB)

0xC0000000
~

0xFFFFFFFF

Hot Remove

0x00000000
~

0xBFFFFFFF 0x00000000
~

0xFFFFFFFF

Node A
(3GB)

Node B
(5GB)

0x100000000
~

0x13FFFFFFF

Hot Plug

0x00000000
~

0xBFFFFFFF 0x00000000
~

0xFFFFFFFF

Node A
(4GB)

Node B
(4GB)

0xC0000000
~

0xFFFFFFFF

Step 0 Step 1 Step 2

0xC0000000
~

0xFFFFFFFF
Map

Figure 10: Direct remote memory access

Remote memory as swap space. We implement a high-
performance virtual block device to interact with remote

7

memory used for page swapping. To reduce interrupt over-
heads, our device driver uses double buffering to interact
with descriptors for RDMA transactions. The driver can use
memory regions from multiple nodes by presenting them as
multiple block devices.

5.2.2 Using remote accelerators
Sharing accelerators can improve utilization and reduce

over-provisioning in a data center environment. To maintain
transparency for user applications, Venice abstracts acceler-
ators as message-passing mailboxes (implemented as buffers
pinned in memory), as shown in Figure 11. A mailbox con-
tains: (1) a request buffer for storing executables to run on
the accelerator, (2) an input data buffer, (3) a return data
buffer, (4) a task start flag, and (5) a completion flag. A
kernel thread running on the donor node processes the mail-
box and launches tasks on remote accelerators on behalf of
recipient nodes.

Venice provides an optimized communication path for
donor accelerators that are exclusively shared with one re-
cipient. The accelerator access interface (memory-mapped
buffers and control registers) is exclusively mapped to the
recipient node similarly to how a memory region is shared.
The recipient directly manipulates the accelerator input and
output buffers, which improves efficiency on both nodes.

As a concrete example, when an application needs accel-
erators, it uses our API to invoke library calls that request
accelerator(s) from the resource management middleware
(running on the monitor node). The management middle-
ware makes information about each allocated accelerator —
including node ID and mailbox base address — available to
the library.

Figure 11: Using remote accelerators

Figure 11 shows an example in which an application on
Node 0 receives two FFT and one crypto accelerator. Ac-
celerator details are abstracted away from the application,
which merely sends requests through the library. The li-
brary handles all details, including dispatching tasks using
the right channel to send to each accelerator mailbox.

5.2.3 Using remote NICs
Venice supports dynamically leveraging remote NICs to

increase network bandwidth for network-bound applications
(or even application phases). Figure 12 shows our IP-over-
QPair interface (labeled VNIC in the figure) that enables
TCP/IP traffic to seamlessly traverse the QPair channel.
Specifically, we have developed a pair of drivers (front-end

and back-end) to emulate the NIC. The drivers share a MAC
address. If Node 0 wants to use the NIC on Node 1, the
Node 0 front-end driver presents the NIC interface to appli-
cations, and the Node 1 back-end driver forwards packets to
the real Node 1 NIC via the software network bridge. The
Linux network bonding mechanism combines the local and
emulated NICs on Node 0 to create a single, virtual network
interface. One hardware QPair services each IP-over-QPair
connection.

Venice Interconnect

Network Protocol Stack Remote Node 1 Remote Node N

VNIC 1
Front-end

Driver

VNIC N
Front-end

Driver

Real NIC
Driver

Network Bonding

Qpair Qpair

Back-end
Driver

VBridge

Qpair

Real NIC
Driver

Back-end
Driver

VBridge

Qpair

Real NIC
Driver

RNIC RNIC RNIC

Ethernet Fabric

Figure 12: Using remote NICs

5.3 Resource-management runtime
Recall that Venice systems include three layers. The de-

sign of the third, the runtime system, is a broad topic involv-
ing interactions among reliability, scalability, QoS, and var-
ious policy choices in resource allocation and optimization.
Exploring this rich design space falls outside the architec-
tural discussion presented here, and much of it belongs to
future work. Our Venice prototype will facilitate that explo-
ration.

To set up sharing, we implement a skeletal version of the
management runtime, which we describe here. The global
view of available resources, their allocation status, and the
status of system components (e.g., links) is maintained by
three tables in the MN.

1. The Resource Registration Table (RRT) tracks avail-
able resources in the rack. The RRT contains metadata
for each resource, including address, size, and capabil-
ities. A daemon process in each node collects avail-
ability information and periodically reports to the MN,
serving as a heartbeat for the MN to infer node status.

2. The Resource Allocation Table (RAT) tracks all alloca-
tion records. The RRT and RAT give the MN a global
view of available resources.

3. The Topology Status Table (TST) tracks fabric link sta-
tus. The daemon tests and reports the status of the
Venice fabric links on every heartbeat.

With this information, the MN responds to requests for
remote resources by allocating from the most appropriate
donor nodes. The allocator should consider distance be-
tween potential donor and recipient, the nature of the shar-
ing (and thus bandwidth demand), and existing traffic over
involved links. Given the scale of our prototype, our current
algorithm only considers distance. Note that it is possible

8

for MN records to be stale, allowing it to ask for more idle
memory than are currently available. We employ handshake
and retry mechanisms to address this.

6. EXPERIMENTAL METHODOLOGY
Our experimental analysis primarily relies on our hard-

ware prototype, as shown in Fig. 4. With the prototype
system, we can expose hidden technical issues that will in-
form the design of subsequent Venice systems. In contrast, a
conventional simulation-only approach only models perfor-
mance effects (rather than actually carrying out actions), and
thus inherently ignores unforeseen interactions (and fails to
shed light on the unavoidable uncertainties in interactions
among the many parameters). In addition, the prototype al-
lows us to observe long-term behavior in production-scale
application scenarios. Indeed, comparing our simulation re-
sults from sampled execution [32] with those from complete
simulations (costing thousands of hours) reveals discrepan-
cies of up to 6.6× in performance gains. Prototype measure-
ments agree with full-length simulations much more closely,
with the remaining difference probably being due to the OS
(our simulations are user-mode only).

Table 1 shows the configurations for our evaluations. Our
workloads include Hadoop [33] and Spark [34] applications
from BigDataBench [35], Graph500 [36], and an in-memory
database [37]. We use FFT [38] and Iperf [39] to study spe-
cific components in greater detail.

Table 1: Platform configuration

Hardware Parameters
System 8 nodes, 3D mesh
Nodes Xilinx ZC706, Linux (Linaro 13.09)
Processor ARM Cortex-A9, 667MHz
Memory 1GB SODIMM (active)

Fabric
Parallel/serial clock 125MHz/5GHz,
P2P latency 1.4µs, bandwidth 5Gbps×6

Big Data Applications
Hadoop Grep, 9.7GB Dataset

Spark
Connected Components (CC),
8192 nodes, 21461 edges

Graph500 R-MAT scale 22, R-MAT edge factor 14

Inmem DB
Redis w/ 1-2.5GB memory
Berkeley DB w/ 1GB dataset

MySQL 400M entries×64B dataset
PageRank vertices 1488712, edges 8678566

Other Benchmarks
SPLASH2 FFT 512MB input
IPerf 4-256B packets

7. EVALUATION RESULTS
We perform quantitative experiments to better understand

resource sharing on Venice. Specifically, we conduct three
case studies of sharing different types of remote resources.
We then analyze several architectural design decisions. Fi-
nally we discuss hardware cost.

7.1 Resource-sharing case studies
Leveraging remote memory. We construct a mini data-

center system to run a (near) real-world workload consist-
ing of a database query service running in parallel with sev-

eral instances of Spark’s Connected Components (CC). Fig-
ure 13 shows the six-node system, which includes two x86
servers and four nodes of our Venice prototype.

Clients

Application
Server

MySQL Server

Database

Connected
Components

Donor Node

Connected
Components

Memory cache

Redis Server

Connected
Components

Donor Node

Donor Node

X86 Cluster Zynq Cluster

Idle Memory
Providing

Figure 13: Our mini data-center system

One x86 server runs MySQL [40], and one of the Venice
nodes runs the Redis [41] in-memory database service that
works as key/value cache. The MySQL database and the Re-
dis server collaborate to create a typical web-service archi-
tecture. When the application server receives a query from
the clients, it first checks the Redis server for a match. Only
upon a miss will the database server be accessed. The other
x86 server works as an internet client issuing online query
requests, dispatches queries, and collects results. The re-
maining Venice nodes run CC graph analyses, which mimics
a situation where nodes with CPU-intensive workloads can
contribute other resources such as memory.

To see the effect of Redis server using remote memory, we
keep only a minimum amount of local memory (50MB) for
Redis to start properly. The rest of the memory is provided
by donor nodes. We measure a few configurations with dif-
ferent amount of remote memory (in 70MB increments). All
execution time is measured after propoer initialization and
warmup. Figure 14 shows performance for 10000 random
queries as we vary the total amount of memory.

70MB

140MB

210MB

280MB

350MB

25K

50K

75K

100K

125K

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

local memory

remote memory

(a) Execution Time

70MB

140MB

210MB

280MB

350MB

0

20

40

60

80

100

In
-M

e
m

o
ry

 D
B

 m
is

s
 r

a
te local memory

remote memory

(b) Miss Rate

Figure 14: System performance

As we can see, the Redis hit rate clearly improves with
increases in memory resources, which is the major reason
of performance improvement. The corresponding execution
times decrease from 11900s (with 70MB memory) to 758s
(with 350MB), a 15.7x performance improvement. When
contrasting the performance using remote and local mem-
ory, we can see that there is very slight difference, because
the time spent on missed queries dominates the overall exe-
cution time. When the miss rate decreases to near 5% (the
last set of results), the benefit of having memory being local

9

(7% faster) is more visible. We note that the performance
impact to the workload running on doner nodes (CC) is neg-
ligible because the memory traffic caused by remote sharing
is insignificant.

Figure 15 compares performance of accessing remote
memory either directly (through the CRMA channel) or as
swap space via the RDMA channel. For reference, we also
show performance when local memory is big enough (ideal),
or when the portion of remote memory is supplied by swap-
ping to local storage as is the conventional case.

In-Mem DB CC Grep Graph500

0

1

10

100

P
e

rf
o

rm
a

n
c
e

 N
o

rm
a

liz
e

d
 t

o

L
o

c
a

l
M

e
m

o
ry

 S
w

a
p

 S
p

a
c
e

all local (ideal)

remote access via CRMA

remote access via RDMA

4
0
3
.8

0

1
.1

3 2
.4

8 6
.9

0

1
5
9
.0

0

0
.6

5

1
.0

7

4
.8

6

3
.3

0

1
.1

0

2
.0

7

3
.2

2

Figure 15: Remote memory access performance with 75%
remote memory and 25% local memory. All results are nor-
malized to the case where local swapping is needed to supply
memory capacity.

We make three observations. First, memory is a critical
resource. If swapping (to local storage) is avoided by adding
sufficient local memory, performance can be orders of mag-
nitude higher. Second, with the high-efficiency support of
Venice, remote memory can be quite effective. Relative to
using all local memory, the slowdown is limited to 1.03x
to 2.5x. Compared to the costly resource overprovisioning,
sharing nearby resource can be much more cost-effective.
Finally, applications have different access locality: some fa-
vor direct fine-grain access to remote memory, while others
benefit more from page-level swapping. The difference in
speed between the two modes is non-trivial (up to 6.8×).
This shows the utility of supporting different modes.

Leveraging remote accelerators. Hardware accelera-
tors that execute special (offloaded) computations are com-
mon resources in modern systems. Most of these devices
are designed to only accelerate portions of typical work-
loads. As such, some are likely to be most efficient as shared
resources. To analyze the impact of the Venice commu-
nication substrate when sharing acclerators we implement
SPLASH2 [38] FFT on a Xilinx board (XFFT) and com-
pare the effects of using the accelerators locally or remotely
through Venice. Figure 16a summarizes performance results
normalized to those for using a local accelerator. Perfor-
mance improves almost linearly with the number of accel-
erators, indicating that Venice introduces insignificant over-
heads throughout the entire system stack.

Leveraging remote NICs. Figure 16b shows perfor-
mance for sharing remote I/O devices. We use the iPerf
toolset to measure bandwidth when using remote NICs. For
clarity, we focus on two representative configurations (send-
ing tiny, 4B packets and larger, 256B packets) and only
show observed throughput. Venice overhead is noticeable
for the tiny packets. With three remote NICs, effective uti-
lization of available bandwidth is around 40%. Utilization

LA+1RA LA+2RA LA+3RA

1

2

3

4

P
e

rf
o

rm
a

n
c
e

 N
o

rm
a

liz
e

d

to
 U

s
in

g
 a

 L
o

c
a

l
A

c
c
e

le
ra

to
r

8MB Dataset

512MB Dataset

(a) Remote Accelerators
LN+1RN LN+2RN LN+3RN

1

2

3

4

P
e

rf
o

rm
a

n
c
e

 N
o

rm
a

liz
e

d

to
 U

s
in

g
 a

 L
o

c
a

l
N

IC

8MB Dataset

512MB Dataset

(b) Remote NICs

Figure 16: Performance benefits of sharing remote accelera-
tors and NICs. LA and RA (LN and RN) stand for local and
remote accelerators (NICs), respectively.

for more “normal” 256B packes quickly rises to about 85%.
This again confirms that when sharing nearby resources over
Venice, the system imposes insignificant overhead for all but
the most fine-grain communication patterns.

Note that all these studies are limited by the scale of our
prototype. Studying the effects of sharing faraway resources
or sharing multiple resources that may cross paths with one
another is part of future work, as is studying the effects of
queuing delay from potential bottlenecks (such as the Mon-
itor Node).

7.2 Analysis of multi-modality
Venice supports three transport channels each of which

can emulate the functionality of the others when coupled
with software support. The reason to include all three is to
ensure highest efficiency in supporting different access pat-
terns.

Figure 17 illustrates this point by comparing perfor-
mances for applications using remote resources over differ-
ent channels. For clarity, measurements are normalized to
those with the highest performance. The figure shows that
different situations benefit from different channels, and none
of the channels can be efficiently replaced by another.

In-Mem DB

random

access

CC

contiguous

access

Iperf

msg

passing

0

20

40

60

80

100

N
o

rm
a

liz
e

d
 t

o
 H

ig
h

e
s
t

P
e

rf
o

rm
a

n
c
e

CRMA

RDMA

QPair

1
4
.5 2
3
.7

5
7
.7

1
2
.2

4
.2 1

2
.0

Figure 17: Performance comparison of resource sharing over
three different channels

Having three channels optimized for different communi-
cation patterns also allows Venice to deliver better perfor-
mance by using channels collaboratively. Figure 18 shows
the impact of using the CRMA channel to facilitate credit-
based flow control for communications over the QPair chan-
nel. Effective bandwidth of the QPair channel improves
from 28% to 51%, depending on packet size. Improvement
is greater for small packets.

10

4B

word

8B

double

word

16B

quad

word

32B

cache

line

64B

dual

cache

line

128B

quad

cache

line

0

20

40

60
B

a
n
d
w

id
th

 I
m

p
ro

v
e
m

e
n
t
(%

)

Figure 18: Bandwidth improvement through synergistic op-
eration

7.3 Hardware and programming cost
In a typical implementation, we expect the Venice sub-

strate to support a low-dimension network with a few pins
per channel, where each channel delivers around tens of gi-
gabits per second. Our prototype thus includes a custom
radix-7 switch plus the three transport layer channels.

Except for the physical layer (PHY), our design is fully
synthesizable, and we implement it in Global Foundries
28nm technology with SPG [42], a standard Synopsys ASIC
design flow. We use the Synopsis Design Compiler for logic
synthesis and the IC Compiler for floorplanning, placement,
clock-tree synthesis, and routing. Evaluation results show
that the logic can run at 1GHz for the typical corner. Re-
sults from EDA tools report a 2.73 mm2 total layout area
and 32KB total SRAM. And we estimate the area of PCIe
Gen4 x1 PHY as 0.5 mm2, which makes the total area of
PHYs about 3.5 mm2. For comparison, note that die sizes
of Haswell-EP processors range from 300mm2 (8 cores) to
600mm2 (18 cores) at a 22nm technology [43]. The architec-
tural support for Venice thus imposes an insignificant area
cost (about 2% of the total chip).

8. CONCLUSIONS AND FUTURE WORK
We propose Venice architectures to break though the hard-

ware boundaries of traditional physical nodes. In these ar-
chitectures, nodes can easily and efficiently use remote idle
resources according to the dynamic workload requirements.
Three key techniques enable this: a tightly-coupled inter-
node fabric, efficient transport-layer mechanisms for joining
resources, and an intelligent runtime to manage resources.
Here we focus on the first two layers of hardware support.

From our initial case studies and control experiments, we
make the following observations:

1. Our results indicate that resource sharing is a promis-
ing feature in data center architectures.

2. Different workloads have different access patterns. For
high efficiency, we explore three separate channels to
facilitate the access behaviors. We find the three chan-
nels to have their own strengths, and it is difficult
to substitute one for another without hurting perfor-
mance. Moreover, the presence of all three channels al-
lows synergistic optimizations in the implementation.

3. Venice architectures can be built at reasonable cost.
With further design-space exploration and system opti-
mization, we believe sharing-centric architectures will
ultimately be much more cost-effective than statically
resourced designs.

Many issues require further exploration to Making
resource-sharing robust requires further exploration of many
issues, including reliability, scalability, and QoS. Our results
point to promising directions for further optimization — for
instance, an intelligent runtime is crucial, as distance, topol-
ogy, and traffic all affect the desirability of co-opting a re-
mote resource. Our maturing prototype serves as a valuable
vehicle to support these studies.

9. ACKNOWLEDGMENT
This work was partly supported by the Huawei High

Throughput Computing Program for Data Center 3.0 Archi-
tecture establishment, and the prototypes in this work are our
preliminary efforts to evaluate the key features of Data Cen-
ter 3.0 [44], such as the optical interconnect and the Pooled
Resource Access Protocol (PARP). It was partly supported
by the National Science Foundation of China under grant
No. 61402439, No. 61402438, and No. 61522212. It
was partly supported by the National Science Foundation
under grants No. 1217662 and 1514433 and by the Chi-
nese Academy of Sciences President’s International Fellow-
ship Initiative under grant No. 2015VTB053. We thank the
anonymous reviewers for their valuable comments and sug-
gestions.

10. REFERENCES
[1] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proc. 10th ACM SIGCOMM
Conference on Internet Measurement, pp. 267–280, Nov. 2010.

[2] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot,
“Scale-out NUMA,” in Proc. 19th International Conference on
Architectural Support for Programming Languages and Operating
Systems, pp. 3–18, Mar. 2014.

[3] Mellanox, “Infiniband Performance.”
http://www.mellanox.com/page/performance_infiniband.

[4] Y. Durand, P. Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy,
G. Gaydadjiev, J. Goodacre, M. Katevenis, M. Marazakis, E. Matus,
I. Mavroidis, and J. Thomson, “EUROSERVER: Energy efficient
node for European micro-servers,” in Proc. IEEE Euromicro
Symposium on Digital System Design, pp. 206–213, Aug. 2014.

[5] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA highly
scalable server,” in Proc. 24th Annual International Symposium on
Computer Architecture, pp. 241–251, June 1997.

[6] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta,
J. Hennessy, M. Horowitz, and M. Lam, “The Stanford Dash
multiprocessor,” Computer, vol. 25, pp. 63–79, March 1992.

[7] ScaleMP, “Versatile SMP (vSMP) Architecture.”
http://www.scalemp.com/technology/versatile-smp-vsmp-
architecture/.

[8] K. Li and P. Hudak, “Memory Coherence in Shared Virtual Memory
Systems,” ACM Transactions on Computer Systems, vol. 7,
pp. 321–359, Nov. 1989.

[9] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel, “TreadMarks: shared memory
computing on networks of workstations,” Computer, vol. 29,
pp. 18–28, Feb. 1996.

[10] J. Oleszkiewicz, L. Xiao, and Y. Liu, “Parallel network RAM:
effectively utilizing global cluster memory for large data-intensive

11

parallel programs,” in Proc. International Conference on Parallel
Processing, vol. 1, pp. 353–360, Aug. 2004.

[11] E. Felton and J. Zahorjan, “Issues in the implementation of a remote
memory paging system,” Tech. Rep. 91-03-09, University of
Washington, Department of Computer Science and Engineering,
Mar. 1991.

[12] M. Hines, M. Lewandowski, and K. Gopalan, “Anemone: Adaptive
network memory engine,” in Proc. 20th ACM Symposium on
Operating Systems Principles, p. 1, Oct. 2005.

[13] H. Jin, X.-H. Sun, Y. Chen, and T. Ke, “REMEM: Remote memory
as checkpointing storage,” in Proc. 2nd International Conference on
Cloud Computing Technology and Science, pp. 319–326, Dec. 2010.

[14] M. Feeley, W. Morgan, E. Pighin, A. Karlin, H. Levy, and
C. Thekkath, “Implementing global memory management in a
workstation cluster,” in Proc. 15th ACM Symposium on Operating
Systems Principles, pp. 201–212, Dec. 1995.

[15] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson,
“Cooperative caching: Using remote client memory to improve file
system performance,” in Proc. 1st USENIX Conference on Operating
Systems Design and Implementation, p. 19, Nov. 1994.

[16] E. Anderson, J. Brooks, C. Grassl, and S. Scott, “Performance of the
Cray T3E multiprocessor,” in Proc. ACM/IEEE 1997 Conference on
Supercomputing, pp. 39–39, Nov. 1997.

[17] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The
PERCS high-performance interconnect,” in Proc. IEEE 18th Annual
Symposium on High Performance Interconnects, pp. 75–82, 2010.

[18] Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, and T. Shimizu, “The
Tofu Interconnect,” in Proc. IEEE 19th Annual Symposium on High
Performance Interconnects, pp. 87–94, Aug. 2011.

[19] M. Xie, Y. Lu, K. Wang, L. Liu, H. Cao, and X. Yang, “Tianhe-1A
interconnect and message-passing services,” IEEE Micro, vol. 32,
pp. 8–20, Jan. 2012.

[20] A. Rao, “AMD | SeaMicro Technology Overview.”
http://www.seamicro.com/sites/default/files/SM_TO01_64_v2.7.pdf,
Oct. 2012.

[21] T. P. Morgan, “On-Chip Networking May Survive Calxeda
Shutdown.” http://www.enterprisetech.com/2014/01/02/chip-
networking-may-survive-calxeda-shutdown, Feb.
2014.

[22] M. Kumar, “Rack scale architecture for cloud,” in Intel IDF, 2013.

[23] D. Mayhew and V. Krishnan, “PCI Express and advanced switching:
Evolutionary path to building next generation interconnects,” in Proc.
11th Symposium on High Performance Interconnects, pp. 21–29,
Aug. 2003.

[24] R. Hou, T. Jiang, L. Zhang, P. Qi, J. Dong, H. Wang, X. Gu, and
S. Zhang, “Cost effective data center servers,” in Proc. IEEE
International Symposium on High Performance Computer
Architecture, pp. 179–187, Feb. 2013.

[25] J. Regula, “Integrating rack level connectivity into a PCI Express
switch,” in Proc. Hot Chips: A Symposium on High Performance
Chips, pp. 259–266, Aug. 2013.

[26] K. Lim, Y. Turner, J. Santos, A. AuYoung, J. Chang, P. Ranganathan,
and T. F. Wenisch, “System-level implications of disaggregated
memory,” in Proc. 18th International Symposium on High
Performance Computer Architecture, pp. 1–12, Feb. 2012.

[27] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and

S. Reinhardt, “Understanding and designing new server architectures
for emerging warehouse-computing environments,” in Proc. 35th
Annual International Symposium on Computer Architecture,
pp. 315–326, June 2008.

[28] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. Reinhardt, and
T. Wenisch, “Disaggregated memory for expansion and sharing in
blade servers,” in Proc. 36th Annual International Symposium on
Computer Architecture, pp. 267–278, June 2009.

[29] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. Prashanth, G. Jan,
G. Michael, H. S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Yi, and
D. Burger, “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proc. 41st Annual International Symposium
on Computer Architecuture, pp. 13–24, June 2014.

[30] R. Noronha and D. Panda, “Designing high performance DSM
systems using InfiniBand features,” in Proc. 4th IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGRID), pp. 467–474, Apr. 2004.

[31] “Zynq-7000 All Programmable SoC.” White Paper, 2014.

[32] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program behavior,” in
Proc. the Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 319–326,
Oct. 2002.

[33] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Communications of the ACM, vol. 51,
pp. 107–113, Jan. 2008.

[34] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX
Conference on Hot Topics in Cloud Computing, p. 10, June 2012.

[35] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu,
“BigDataBench: a big data benchmark suite from internet services,”
in Proc. 20th IEEE International Symposium On High Performance
Computer Architecture (HPCA), pp. 488–499, Feb. 2014.

[36] Graph500, “http://www.graph500.org/.”

[37] Oracle Berkeley DB,
“http://www.oracle.com/technetwork/database/database-
technologies/berkeleydb/downloads/index.html.”

[38] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological
considerations,” in 22nd International Symposium on Computer
Architecture, pp. 24–36, May 1995.

[39] Iperf, “http://iperf.fr/.”

[40] Oracle Corp., “MySQL: The world’s most popular open-source
database.” http://www.mysql.com, 2014.

[41] J. Zawodny, “Redis: Lightweight key/value store that goes the extra
mile,” Linux Magazine, Aug. 2009.

[42] Synopsys. http://www.synopsys.com/Community/Partners/
CommonPlatform/Pages/ReferenceFlow.aspx.

[43] Wiki, “Intel Xeon microprocessors,
http://en.wikipedia.org/wiki/list_of_intel_xeon_microprocessors#haswell-
based_xeons.”

[44] Huawei. http://www.huawei.com/en/industry-insights/huawei-
voices/white-papers.

12

