
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1999

Partial parallelization of VMEC system Partial parallelization of VMEC system

Mei Zhou
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Zhou, Mei, "Partial parallelization of VMEC system" (1999). Graduate Student Theses, Dissertations, &
Professional Papers. 5507.
https://scholarworks.umt.edu/etd/5507

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5507?utm_source=scholarworks.umt.edu%2Fetd%2F5507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University o fMONTANA

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

* * Please check "Yes" or "No" and provide signature * *

Yes, I grant permission ^
No, I do not grant permission _____

Author's Signature I _̂_______

D ate__ S / * Q / q Cj_____________________________

Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

Partial Parallelization o f V M EC S ystem

by

Mei Zhou

Presented in partial fulfillment of the requirements

for the degree of

Master of Science

in Computer Science

The University of Montana-Missoula

May 1999

Approved by:

Chairperson

Dean, Graduate School

5 - 2<
Date

UM1 Number: EP40971

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMJ
Dissertation Publishing

UMI EP40971

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106- 1346

Mei Zhou, M.S., May 1999 Computer Science

Partial Parallelization of VMEC System

Director: Donald J. Morton, Jr.

The VMEC (Variational Moments Equilibrium Code) is ported to a Cray T3E
parallel computer system. Part of the code is parallelized using HPF (High Per
formance Fortran). Parallel processing concepts and im portant HPF features are
reviewed. The two steps in improving VMEC’s performance are described. First,
array operations in Fortran 90 are used to optimize the code. Then, data mapping
and parallelism features of HPF are used to parallelize two subroutines of VMEC.
Finally, testing results are presented and analyzed.

T A B L E O F C O N T E N T S

A B S T R A C T .. ii

A C K N O W L E D G M E N T S ... vi

1 In tro d u ctio n ... 1

2 Parallel P rocessin g ... 3

2.1 Parallel C o m p u te rs 3
2.2 Parallel C o m p u ta tio n s ... 4

2.2.1 D ata P a ra l le l is m .. 5
2.2.2 Shared M em o ry .. 5
2.2.3 Message Passing .. . 6

2.3 Performance Issues ... 7

3 H igh Perform ance F ortran ... 8

3.1 Basics of High Performance F o r tr a n ... 8
3.1.1 Fortran 9 0 ... 9
3.1.2 Compiler D irectives.. 10
3.1.3 Parallelism Features ... 11

3.2 D ata Mapping 12
3.2.1 DISTRIBUTE directive .. 13
3.2.2 ALIGN d i r e c t iv e .. 13
3.2.3 TEMPLATE d i r e c t iv e 14
3.2.4 PROCESSOR directive .. 15
3.2.5 D ata Mapping for Procedure A rg u m e n ts 15

3.3 D ata Parallelism ... 17
3.3.1 FORALL statement ... 17

iii

3.3.2 INDEPENDENT d ire c tiv e .. 17
3.4 Performance I s s u e s ... 18

3.4.1 Sequential B o ttle n e ck s ... 18
3.4.2 Communication Costs ... 19
3.4.3 Limitations of H P F .. 20

4 T h e V a ria tio n a l M o m e n ts E q u ilib r iu m C o d e (V M E C) S y s te m 22

4.1 VMEC System .. 22
4.2 Space Transform Subroutines ... 24
4.3 Tokamak and S te lla ra to r ... 25

5 P o r tin g V M E C S y stem to C ra y T 3 E .. 27

5.1 Cray T 3 E .. 27
5.2 Portland Group H P F .. 29

5.2.1 Portland Group H P F ... 29
5.2.2 F90 Features and HPF features Unsupported in PG H PF . . . 30

5.3 Problems and Solutions.. 31

6 P a r t ia l P a ra lle liz a tio n o f V M E C S y s te m ... 38

6.1 Vector M o d ifica tio n s .. 38
6.1.1 Array O p e ra tio n s ... 38
6.1.2 Matrix O p e ra t io n s .. 39
6.1.3 R e s u l t ... 40

6.2 D ata Parallelism .. 41
6.2.1 FORALL statem ent .. 42
6.2.2 INDEPENDENT do lo o p s .. 43

6.3 D ata M ap p in g ... 46
6.3.1 Distributed A r r a y s .. 46
6.3.2 Nondistributed D a t a .. 48

7 T e stin g R e su lt a n d A n a ly s is ... 51

7.1 2D Tokamak E quilibrium ... 51
7.2 3D QOS Stellarator E quilib rium .. 54
7.3 Conclusion.. 55

iv

8 C onclusion

R E F E R E N C E S

A C K N O W L E D G M E N T S

I want to thank my advisor, Dr. Ware, for giving me the chance to work on

this interesting project. During the whole project, he always showed great help and

patience. He has spent a lot time helping me understand the physics background

knowledge, analyzing and starting up the project, and finding solutions when prob

lems are found. I also want to thank Dr. Morton, who has provided very helpful

advice on deciding some im portant issues of this project and also on solving several

H PF problems.

I want to thank my husband, Yong, for his help and encouragement. Only with

his support, could I have concentrated on this project. At last I would like to thank

my parents for letting me come to this university to study.

The support of this work by National Energy Research Scientific Computing

Center and Arctic Region Supercomputing Center is gratefully acknowledged.

vi

C H A P T E R I
IN T R O D U C T IO N

Parallel processing is making a tremendous impact on many areas of computer

applications. W ith the high computing power of parallel computers, it is now pos

sible to address many applications tha t were until recently beyond the capability of

conventional computing techniques. Parallel processing is extensively used in areas

like weather prediction, biosphere modeling, and pollution monitoring, as well as in

scientific computing.

In this project, we tried to port an existing program called Variational Moments

Equilibrium Code (VMEC) to parallel structures. VMEC is used in plasma physics

to find the equilibrium state of a given plasma. The origianl version of VMEC was

w ritten in 1986 by S. P. Hirshman and the current version has been updated to Fortran

90. Although it can be run conveniently on a variety of different platforms, it usually

takes a long time for complicated problems. This is because of the large number

of scientific computations in the code and its modular structure. This problem is

especially obvious for large input files. To find the equilibrium status of the plasma,

a large number of poloidal and toroidal Fourier modes is usually required for a good

representation of the equilibrium. And for each Fourier mode, the magnetic field

needs to be calculated. In some cases, there can be more than 1000 modes, and the

calculations for all those modes will take a long time. In order to make the code run

more efficiently for large input files, optimization and parallelization of the code is

necessary.

1

In this project, the VMEC is ported to parallel structure using High Performance

Fortran. The parallel version of VMEC is implemented and tested on the Cray

T3Es at NERSC (National Energy Research Scientific Computing Center). The HPF

compiler used is the Portland Group HPF (PGHPF).

The process of parallelizing VMEC can be divided into two steps. First, modi

fications are made to optimize the sequential performance, and the code structure of

VMEC. Then, two space transform subroutines are parallelized with the data map

ping and parallelism features in HPF.

In the following chapters, chapter 2 will give a brief introduction to parallel

processing, and chpter 3 will discuss the High Performance Fortran language. Chap

ter 4 is an introduction to VMEC and some of the background knowledge in plasma

physics. Chapter 5 and chapter 6 are detailed descriptions of the two steps in par

allelizing VMEC, as mentioned in the above paragraph. The parallel code is tested

for two kinds of plasma configuritions: tokamak and stellarator. The timing results

and the analysis is given in chapter 7. Finally, chapter 8 talks about conclusions and

future work.

C H A P T E R II
PA RALLEL PR O C E SSIN G

This chapter is a brief introduction to parallel processing. The following sections

will talk about some of the most popular parallel computer architectures and parallel

programming paradigms, as well as some concepts of parallel processing.

2.1 Parallel C om puters

A parallel computer is a set of processors that are able to work cooperatively to

solve a computational problem. We usually call the traditional sequential computer

architecture SISD (single instruction single data). For parallel computers, some of the

most im portant architectures are: SIMD (single instruction multiple data), MIMD

(multiple instructions multiple data), and multicomputers.

SIMD machines take advantage of the fact th a t a lot of programs apply the

same operation to many different data sets in succession. In a SIMD machine, all

processors execute the same instruction stream on a different piece of data. This

approach has less complexity for both hardware and software compared to other

parallel architectures but is appropriate only for specialized problems characterized

by a high degree of regularity, for example, image processing and certain numerical

simulations.

For a broader range of parallel programs, such as programs th a t need each proces

sor to execute a separate instruction stream and work on different data, there are

MIMD computers. MIMD computers are probably the most popular supercomputer

architecture today because of their flexibility, and because manufacturers can take ad

vantage of economies of scale by building such machines with hundreds or thousands

of standard, and relatively cheap microprocessors. Unfortunately, greater flexibility

also makes MIMD computers more difficult to program than the SIMD architectures.

The multicomputer is in many ways very similar to distributed-memory MIMD

computers. It comprises a number of computers linked by an interconnection network.

Each computer executes its own program on its own data set. The principal difference

between a multicomputer and the distributed-memory MIMD computer is th a t in a

multicomputer, the cost of sending a message between two nodes is independent both

of node location and other network traffic, while in the distributed-memory MIMD it

is not [7].

Two classes of computer systems that are sometimes used as parallel computers

are the local area network (LAN), and the wide area network (WAN). In a LAN

system, computers in close physical proximity are connected by a fast network while

in a WAN system geographically distributed computers are connected. E thernet and

asynchronous transfer mode (ATM) are commonly used network technologies in such

systems [4].

2.2 Parallel C om putations

A parallel computer is of little use without efficient parallel algorithms. The

issues involved designing parallel algorithms are very different from those involved

designing their sequential counterparts. A significant amount of work is being done

to develope efficient parallel algorithms for a variety of parallel architectures. Some

of the most im portant parallel programming paradigms include: data parallelism,

message passing and shared memory.

2.2.1 D ata Parallelism

D ata parallelism exploits the fact that many programs apply the same opera

tion to each element of a composite data structure, such as an array or list, before

applying any other operation to any other data structure. So if we can apply data

decomposition to the data structure, the operations on different portions of the data

can be carried out concurrently.

The main advantage of the data parallel programming model is tha t it makes

programs easier to write and to read. The main drawback of the data-parallel model

is th a t it is hard to express irregular or heterogeneous computations in it. Algorith

mic decomposition, for example, cannot be implemented, since a pipeline’s different

stages usually need to execute different operations at the same time. Similarly, as

the computations to be carried out on the elements of a composite data structure

become more dependent on the values of those elements, or their past histories, data

parallelism becomes less helpful.

2.2.2 Shared M em ory

In the shared-memory programming model, tasks share a common address space,

which they read and write asynchronously. Various mechanisms such as locks and

6

semaphores may be used to control access to the shared memory. An advantage of

this model is that it simplifies the program development since there is no need to

specify explicitly the communication of data from producers to consumers due to the

lack of data “ownership” . However, it also makes programming more difficult because

of the difficulties in understanding and managing locality in such models.

2.2.3 M essage Passing

Message passing is the main alternative to shared-memory programming models

on present-day parallel computers and it is probably the most widely used parallel

programming model today. In a message passing program, processes do not communi

cate through shared data structures; instead, they send and receive discrete messages

to and from named tasks. Message passing programs create multiple tasks, with each

task encapsulating local data. The main advantage of message passing model over

shared memory model is modularity: by eliminating shared structures, and making

both the reading and writing ends of communication explicit, the software can be

more robust[7]. Also, by enabling the programmer to handle communication details,

programming in message passing is more flexible. However, the cost of these advan

tages is th a t programming becomes more complicated and the programs are more

error-prone.

7

2.3 Perform ance Issues

There are two major components of parallel algorithm design. The first one is

the identification and specification of the overall problem as a set of tasks tha t can

be performed concurrently. The second is the mapping of these tasks onto different

processors so that the overall communication overhead is minimized[14]. The first

component specifies concurrency, and the second one specifies data locality. The

performance of an algorithm on a parallel architecture depends on both. Concurrency,

also called parallelism, is necessary to keep the processors busy. Locality is im portant

because it determines communication cost. Ideally, a parallel algorithm should have

maximum concurrency and locality. However, for most algorithms, there is a trade-off.

An algorithm th a t has more concurrency often has less locality.

C H A P T E R III
H IG H P E R F O R M A N C E FO R T R A N

High Performance Fortran (HPF) is an extended version of Fortran 90 for parallel

computer systems. It combines the full Fortran 90 language with special user anno

tations dealing with d ata distribution. The new features provided by H PF include:

mapping data to multi-processors, specifying data parallel operations and methods

for interfacing HPF programs to other programming paradigms [6j. This chapter will

give a brief description of some of those features in H PF and how to implement those

features.

3.1 Basics o f H igh Perform ance Fortran

For most parallel programming languages, it is up to the programmer to handle

all the details of parallelism as well as the communications between processes, which,

as a result, will put a very extensive knowledge requirement and intensive amount

of work on the programmer. Compared with those parallel programming languages,

H PF uses a very high-level data mapping strategy to load much of the burden from the

programmer to the compiler. The user of HPF needs to give the compiler information

about the program and the data mapping strategy the user intended. The system will

generate the details of the communication according to the data mapping strategy

and the information of the program the user implied. However, it is still in great part

the programmer’s responsibility to minimize the communication cost when deciding

the da ta mapping pattern.

9

3.1.1 Fortran 90

Since Fortran 90 is the basis for HPF, we will give a brief introduction to the

main features of Fortran 90, especially those tha t have an impact on HPF.

Fortran 90 (F90) is a complex language. It augments Fortran 77 with pointers,

user-defined datatypes, modules, recursive subroutines, dynamic storage allocation,

array operation, new intrinsic functions, improved input and output, and many other

features. Among all the new features, two of them are most relevant to parallel

programming: the array assignment statem ent and the array intrinsic functions [6].

We will here focus on these two features.

The array assignment statem ents in Fortran 90 allow operations on entire arrays

w ithout explicit DO loops. Following is an example of how a nested do-loop in Fortran

77 can be expressed in one simple array assignment statem ent in Fortran 90:

Fortran 77: DO i = 0, 10

D O j = .0 ,10

A(i.j) = B(i,j) + C(i,j)

END DO

END DO

Fortran 90: A = B + C.

The array assignment statem ent in Fortran 90 provides for element-by-element

operations on entire arrays. When executing such a statement, the compiler will make

sure th a t the entire right-hand side of an assignment is evaluated before the left-hand

10

side is modified, and prohibit attem pts to do multiple updates to a left-hand side.

In doing so, the particular order of evaluation is not specified by the language. Such

semantics of Fortran 90 allow these array assignment statem ents to be executed in

parallel. For example, in HPF, if the arrays associated with the left-hand-side of the

expression are distributed over processors, then each node or processor on the parallel

system will execute only its local part of the computation.

All Fortran intrinsic functions that apply to scalar values can also be applied to

arrays, in which case the function is applied to each array element. And, when the

array elements are distributed over processors in a parallel architecture, just as with

the array assignment statements, the intrinsic function can also be parallelized by

localizing array indices. Some of the array intrinsic functions provided by Fortran 90

include: MAXVAL. MINVAL, SUM, PRODUCT, MAXLOC, MINLOC, MATMUL,

D O T_PROD U CT, TRANSPOSE and CSHIFT[4].

3.1.2 Com piler D irectives

Both array assignment statements and array intrinsic functions are explicit par

allel operations that the compiler can detect easily. For those parallel structures that

are hard to detect. HPF provides compiler directives for the programmer to suggest

implementation strategies or assert facts about a program to the compiler. Compiler

directives help the compiler to detect as much parallelism in the program as possible.

Compiler directives form the heart of the HPF language. Directives are actually

only Fortran comments. Thus, they may be ignored by a standard Fortran compiler.

11

But, to an HPF compiler, although most directives are not directly executable, they

can supply the information needed to optimize the performance, while not changing

the value computed by the program. A HPF directive has one of the following forms:

!HPF$ hpf- directive

CHPFS hpf- directive

*HPF$ hpf- directive

The first form above is the most recommended because it is the only form th a t works

for free source form in Fortran 90 syntax[6]. Most of the parallelism features in HPF

are expressed as compiler directives.

3.1.3 Parallelism Features

In HPF, the two most im portant parallelism features -and probably the most

publicized features- are data mapping and data parallelism.

D ata mapping describes how data is divide among the processors in a parallel

machine. It implicitly determines the communication patterns in a program. In HPF,

there are two data-to-processor mapping stages: the DISTRIBUTION and ALIGN

directives.

D ata parallelism describes operations in the program tha t can be performed in

parallel if the computer has the resources. There are two main data parallel constructs

in HPF: the FORALL statem ent and the INDEPENDENT directive.

Besides data mapping and data parallelism features, HPF also provides a large

set of intrinsic functions and library procedures. Many of them are data parallel

12

operations. The user can also get information about the state of the machine or an

array’s distribution using a number of inquiry subroutines in HPF. The rest part of

this chapter will describe some features in HPF that were used in this project.

3.2 D ata M apping

!HPF$ TEM PLA TE !HPF$ PROCESSORS

implementation dependent
grid mapping!HPF$DISTRIBUTE

abstract processors
with grid topology

physical processors
with arbitrary topologydata objects template

Figure 3.1:

D ata mapping in HPF is described in Figure 3.1 as a three-level model: first,

arrays are aligned relative to one another using ALIGN directives; then, this group of

arrays is distributed onto a user-defined, rectilinear arrangement of abstract proces

sors using DISTRIBUTE and PROCESSORS directives; the final mapping from ab

stract to physical processors is not specified by HPF and it is language-processor

dependent.

13

3.2.1 D IS T R IB U T E directive

The DISTRIBUTE directive specifies a mapping of data objects to abstract

processors in a processor arrangement. Technically, the distribution step of the HPF

model applies to the template of the object to which the array is ultimately aligned.

Each dimension of an array may be distributed in one of three ways:

* No distribution

BLOCK(n) Block distribution (default: n = N /P)

CYCLIC(n) Cyclic distribution (default:n=l)

Some examples are illustrated in Figure 3.2.

i i i ; ii n ■ i i r
J i i_J i i LI I I I I I

.1— 1. - 1— L ..1. I L -
I I I I I I I

■ 1 1
M“ T

— I—

_ t : EEZ I
~j _i_

'1 1 " 1 J
! T "

"1 i .

d t h- 7—r'T7-
'TIFX....

— i . ___

r r r
t 1 r

_ _ L _I

(B L O C K , *) (* , BLOCK) (B L O C K ,B L O C K)

1 I I I I

J I I 1 I I L

I I I I I

J I I I I L

...f'-y..('.f 1
J ! j

! i 1 i i
1 1 1
j 1 1
l 1 1 1
j } [1 r ■
i i i i i

(C Y C L I C , *) (C Y C L I C , C Y C L I C) (C Y C L I C , B L O C K)

Figure 3.2:

3.2.2 A L IG N directive

The ALIGN directive is used to specify tha t certain data objects are to be mapped

in the same way as certain other data objects. Operations between aligned data

14

objects are likely to be more efficient than operations between data objects th a t are

not known to be aligned. Examples of ALIGN statements are shown in Figure 3.3.

(a) 00 (c)
A|

B|
y V 1 f 'f

ALIGN A (I)
WITH B (I)

A

B

s \ c l

Bl ex e 1:1: i
ALIGN A (I)

WITH B (1 + 2)

(d)
D

E

I i
it

■i r-

8?§
? ■

J h
j i
5

ALIGN C (I)
WITH B (2 * 1)

CO

ALIGN D (; , *)
WITH A (:)

ALIGN A (;)
WITH D (* , z)

ALIGN D | I , J)
WITH E (J , I)

Figure 3.3:

Note tha t it is illegal to explicitly realign an object if anything else is aligned to it

and it is illegal to explicitly redistribute an object if it is aligned with another object.

3.2.3 TE M PL A TE directive

The TEM PLATE directive declares one or more templates of a certain rank and

shape each time the data is distributed. In HPF, we can think of each array as being

aligned with a specific template. If no template is explicitly declared for an array, by

default, it is aligned to its natural template, i.e. template with the same rank and

15

shape as the array. T he following are some examples of TEMPLATE directives:

E xam ple 1 Examples of TEM PLATE directives:

!HPF$ TEM PLATE T 1(100), T2(N,2*N)

!HPF$ TEM PLATE , D ISTRIBU TE(BL0 CK) :: A(N)

3.2.4 PR O C E SSO R directive

The PROCESSOR directive declares one or more rectilinear processor arrange

ments with specific rank and shape [4]. Only rectilinear processor arrangements are

allowed in HPF.

E xam ple 2 Examples of PROCESSORS directives:

!HPF$ PROCESSORS P(N)

!HPF$ PROCESSORS BIZARRO(1972;1997, -20:17)

The final mapping of abstract to physical processors is not specified by HPF, and

it is language-processor dependent. However, if two objects are mapped to the same

abstract processor at a given instance during the program execution, the two objects

are mapped to the sam e physical processor at tha t instant.

3.2.5 D ata M apping for P rocedure A rgum ents

Since the actual argument and the dummy argument has separate templates, they

don’t necessarily have to be mapped the same way. So, when calling subroutines,

16

we often face one of the following situations related to the mapping of the dummy

arguments:

1. The mapping of the dummy arguments is known at compile time and it is to

be enforced regardless of the mapping of the actual argument. In this case, the

mapping of the dummy argument must be defined explicitly, and it must also appear

in interface blocks.

2. The mapping of the dummy argument is known at compile time and it is the same

as th a t of the actual argument. In this case, we use a descriptive form of mapping

directives with asterisks proceeding the mapping specifications.

E xam ple 3 Descriptive mapping of the dummy argument:

!HPF$ D ISTRIBU TE A *(BLOCK)

The above example asserts the compiler that A is already distributed BLOCK

onto processors so, if possible, no data movement should occur.

3. The mapping of the dummy argument is not known at compile time and it should

be the same as that of the actual argument. In this case, we use a transcriptive format

of mapping directives.

E xam ple 4 Trans crip tie mapping of the dummy argument

!HPF$ D ISTRIBU TE A * ONTO *

The above example specifies tha t mapping of A shold not be changed from tha t

of the actual argum ent.

17

3.3 D ata Parallelism

The HPF language in conjunction with Fortran 90 array features provides sev

eral methods for the programmer to convey parallelism which the HPF compiler will

detect and parallelize. This section describes the FORALL statem ent and the INDE

PENDENT directive.

3.3.1 FORALL statem en t

The FORALL statement provides a convenient syntax for simultaneous assign

ments to large groups of array elements. The functionality they provide is very similar

to th a t provided by the array assignments.

E xam ple 5 FORALL statement:

FORALL(I=1:100) B(I) = 1.0

In FORALL blocks, the array elements may be assigned in an arbitrary order, in

particular, concurrently. Each array element must be assigned only once to preserve

the determinism of the result.

3.3.2 IN D E P E N D E N T directive

The INDEPENDENT directive asserts tha t the iterations of a DO or FORALL

do not interface with each other in any way. By preceding a DO loop or a FORALL

statem ent, the directive provides information about the program the compiler will

use to parallelize and optimize the execution of the program. For example:

18

!HPF$ INDEPENDENT

FORALL (1=1:100) B(I)=1.0

3.4 Perform ance Issues

Since HPF is a very high level parallel programming language, the performance of

a program depends not only on the skill of the programmer but also on the capability

of the compiler.

There are two major obstacles that impact the performance of an H PF program:

sequential bottlenecks and excessive communication costs. In the following subsec

tions, we will discuss these two obstacles.

3.4.1 Sequential B ottlenecks

A sequential bottleneck occurs when a code fragment is not parallelized sufficiently

or when parallelism exists but cannot be detected by the compiler. In either case, the

code fragment can only be executed sequentially. In situations where the program

is relatively small and is only going to execute on a small number of processors, the

sequential bottleneck may be insignificant. But for large programs, and especially for

those intended to run on a large number of processors, this bottleneck can have great

impact on the effectiveness of parallelism. According to Amdahl’s law, if some fraction

1/s of a program ’s total execution time executes sequentially, then the maximum

possible speedup that can be achieved on a parallel computer is s. Thus, the smaller

the fraction of code that executes sequentially, the greater speedup we can get.

19

3.4.2 C om m unication C osts

There are actually several issues that can affect the communication cost of HPF

programs. The first one is array assignments. Array assignments and FORALL state

ments can result in communication if the computation on one processor requires data

values from another processor. Also, cyclic distributions will often result in more com

munication than will block distributions. However, by scattering the computational

grid over available processors, better load balance can result in some applications.

Different mappings of arrays is another main source of communication cost. Any

operation performed on nonaligned arrays can result in communication. But, to

convert the arrays to a common distribution before the operation will cause another

kind of communication cost, array remapping.. So, extra precautions should be made

for this kind of problem.

Procedure boundaries will often cause communication costs, too. This kind of

communication often occurs when the distribution of the dummy arguments differs

from the distribution of the actual arguments, since, for each subroutine, there is often

a distribution of its dummy arguments and local variables tha t is optimal in the sense

th a t it minimizes execution time in tha t subroutine. However, this optimal distrib

ution may not correspond to the distribution specified in the calling program. This

will result in the different distributions for the actual arguments and the dummy

arguments, which may cause high communication costs when remapping the array

from actual arguments to the dummy arguments when the subroutine is called, then

20

later from the dummy arguments back to the actual arguments when the subroutine

returns. To reduce such communication cost, we need to evaluate different data map

ping approaches carefully and choose the optimal data mapping strategy considering

the whole structure of the program.

3.4.3 L im itations o f H P F

Compared to other popular parallel programming languages and tools like MPI

and PVM, programmers for HPF are freed from the job of generating communication

code and can focus on the tasks of identifying opportunities for concurrent execution

and determining efficient partition, agglomeration, and mapping strategies. However,

since the communication cost of a program is directly determined by its data mapping

strategy, it is still the programmer’s responsibility to choose the optimal data mapping

for the program to minimize the overhead in communication.

Another limitation of HPF is the limited range of parallel algorithms tha t can

be expressed in HPF. W ith the compiler directives and other parallel features, HPF

can only be targeted to the SPMD programming model. Thus, its effectiveness is

limited to programs that are suitable for data decomposition or programs th a t contain

intensive array operations. For programs with large portions of serial code embedded

in them, the usage of HPF may cause very high overhead cost and is not recommended.

Finally, although a HPF DO loop can be executed using INDEPENDENT di

rectives, there is no way to express the inter-dependence of statements within a DO

loop. Therefore, all statements in the DO loop under the same loop index have to be

executed serially. This also limits the full parallelization of the code.

C H A P T E R IV
T H E V A R IA TIO N A L M O M E N T S E Q U IL IB R IU M C O D E (V M E C)

SY ST E M

4.1 V M E C System

Plasma is currently an active research area in the physics society. The practical

terrestrial applications of man-made plasmas are very extensive. They range from

the microfabrication of electronic components to demonstrations of substantial ther

monuclear fusion power from magnetically confined plasmas. In studying plasma, the

concept of magnetolrydrodynamic (MHD) is often used. MHD provides a macroscopic

dynamical description of an electrically conducting fluid in the presence- of magnetic

fields. MHD has been very successful in solving problems in plasma, such as: finding

magnetic field configurations capable of confining a plasma in equilibrium, the linear

stability properties of such equilibria and the nonlinear development of instabilities

and their consequences [3].

The basis of this project is an existing program called VMEC (Variational Mo

ments Equilibrium Code), which solves three-dimensional MHD equilibrium equations

using Fourier Spectral (Moments) Methods.

VMEC consists of two parts. The first part of the program is the equilibrium

solver. It calculates the equilibrium state of a given plasma by minimizing the total

energy - magnetic plus thermal - of a plasma confined in a toroidal domain flp:

22

23

To calculate the magnetic field of the plasma, both a cylindrical coordinate repre

sentation (R, Z, <F coordinates) and a magnetic coordinate representation (s, f , 0

coordinates) are used. In the magnetic coordinate, s is the flux surface label, which is

equal to 1 on the outermost surface of the plasma and is 0 for the innermost surface,

i.e. the poloidal axis of the plasma, s is proportional to r2, in which r is the radial

coordinate (as shown in Figure 4.1(b)). In the magnetic coordinate, the calculation is

carried out by dividing the toroidal domain of the given plasma into different surfaces

along radial(r) coordinate, then each surface is further divided into small areas by

grid points along poloidal(9) and toroidal(Q coordinate. On each surface, the plasma

pressure remains constant in equilibrium state[12].

*
\ z I

(a) Cylindrical Coordinate in Plasma (b) Magnetic Coordinate in Plasma

Figure 4.1:

The second part of the program is the optimizer. In this part, several target

param eters are defined. After each equilibrium of a plasma is solved, VMEC calculates

its “distance” from the target plasma. Then changes the input parameters and checks

24

to see if it has moved closer to the target. This process is carried out by calling the

equilibrium code repeatedly to find the nearest solution to the target plasma. The

most recent version of VMEC optimizer contains a fast ballooning code(COBRA) to

include ballooning stability in the optimization.

The original VMEC was written in Fortran 77 by S. P. Hirshman in 1985. New

features have been added to the code constantly since then and the code has been

updated to Fortran 90. The current code is version 5.20, which is also the version

used in this project.

4.2 Space Transform Subroutines

In this project, we targeted on parallelizing the VMEC equilibrium solver, which

contains the major calculations in the whole program. There are about 40 subroutines

in the this part of the code. Among them, two subroutines contribute to almost 40%

of the whole equilibrium calculation time. Therefore, we focused our efforts first on

parallelizing these two subroutines.

These two subroutines are called space transform subroutines. W hat they do

is to transfer from real space to Fourier space before equilibrium calculation and

transfer MHD forces from Fourier space back to real space after the calculation is

done. Computations performed in these two subroutines are:

B (0 . C) = ^ ^ H m ,n c o s (m 0 - n C)
m n

25

1
2n f / B(9, () cos(m9 — nQdOdQ

The number of calculations in the above equations depends on the maximum

values of m,n,d(9 and d£, which are determined by the values in the input file. For

equilibriums with a lot of structure, more than 10,000 grid points can be used in the

calculation.

Two kinds of plasma configurations are used in this project to test the performance

of the parallel version VMEC: the tokamak and the stellarator.

The tokamak is a toroidally symmetric plasma trap that uses a large plasma

current to produce a confining poloidal magnetic field [5]. Because of its symmetry

along the toroidal coordinate, we only need to consider the magnetic field along the

other two coordinates, radial coordinate and poloidal coordinate. Therefore we can

think of the tokamak as a 2D equilibrium and it requires much less calculation than

a 3D stellarator (explained in the following paragraph). The tokamak input file used

in this project has 558 Fourier modes and the magnetic field is calculated for each of

the Fourier modes.

Stellarators are nonsymmetric plasma traps relying on external coils to produce

the internal transform needed for the confinement and stability[5]. Since there is no

symmetry along any of the magnetic coordinates, all three coordinates need to be

considered when the magnetic field is calculated. This usually results in far more

4.3 Tokamak and Stellarator

Fourier modes in the plasma and heavier computation load for the program than a

2D tokamak. The stellarator input file used in this project contains 11,016 Fourier

modes.

C H A P T E R V
PO R T IN G V M EC SY ST E M TO C R A Y T3E

The parallel computer system we have chosen to port the VMEC system to is

the Cray T3E computer system at the National Energy Research Scientific Comput

ing Center (NERSC) located at Lawrence Berkeley National Laboratory. The HPF

compiler we used is Portland Group HPF (PGHPF).

The serial version of VMEC is written in Fortran 90 and has never been tested

in the Cray T3E. Therefore, before we parallelize VMEC, modifications had to be

made to the program to make it run smoothly on the Cray T3E machine, and for the

PG H PF compiler.

This chapter will first give a brief introduction of the Cray T3E machine and the

PG H PF compiler, and then the detailed description of changes made to VMEC in

this first phase of the project.

5.1 Cray T3E

The Cray T3E machine used in this project is named mcurie. It is one of

the six high-performance Cray research computer systems at NERSC. Mcurie is a

distributed-memorv “Massively Parallel Processor” (MPP) computer with 695 indi

vidual processors, each one capable of performing 900 million floating point opera

tions per second (MFLOPS). All processors and disks are connected via a custom

high speed network.

The processors on the Cray T3E are manufactured by Digital Equipment Corpo

27

28

ration (DEC), and are known as Alpha chips. The Alpha chips have a clock speed

of 450 MHz, and can perform one floating point add and multiply per clock cycle,

giving each PE a theoretical peak speed of 900 million floating point operations per

second (MFLOPS).

In the Cray T3E, each processor has its own local memory. Together with some

network interface hardware, the processor and local memory form a Processing Ele

ment (PE). The PEs are connected by a network arranged in a 3-dimensional torus.

And in the torus, each PE is considered topologically equivalent - the concept of “near

neighbors” is not useful on the T3E as it might be on other distributed-memory par

allel computers.

Each PE of the Cray T3E has a 256 MB of memory that it can address directly.

The operating system uses approximately 12 MB on each PE, leaving about 244 MB

available for user code. The content of memory on other PEs is available by passing

messages via subroutine calls defined in message passing libraries (known as PVM,

M PI and SHMEM), or by using the data-parallel programming language HPF.

Among the 695 PEs of the Cray T3E machine, there are 640 application (APP)

PEs. These are the PEs that run parallel jobs. The other PEs, known as command

(CMD) PEs and operating system (OS) PEs, run single-processor user commands

and perform system functions, respectively. For example, when the users log into

mcurie interactively using telnet, they are running on a CMD PE.

The operating system for Cray T3E is called UNICOS/mk(microkernel). It is

designed to replace regular UNIX by serverizing it into smaller, more manageable

29

components. It provides features like: basic hardware abstraction, memory manage

ment, CPU scheduling, thread scheduling and inter-processor communication(IPC).

The Cray T3E programming environment supports programming in Fortran 90,

High Performance Fortran, C, C + + and assembler.

The Cray T3E also supplies tools to help the user debug and analyze M PP pro

grams. The debugger on Cray is called “totalview.” TotalView is a source-level

debugger and can be used to debug C, C + + , High-Performance Fortran (HPF), and

Fortran 90 programs. Another useful tool on Cray T3E is called “apprentice” . It is a

performance analysis tool that helps the user find and correct performance problems

and inefficiencies in programs. It can work with C + + , Cray Standard C, Fortran 90

and PG H PF compilers. These tools and other performance analysis tools (PAT) on

Cray T3E provides a low-overhead method for estimating the amount of time spent

in functions, determining load balance across processing elements (PEs), generating

and viewing trace files, timing individual calls to routines, performing event traces,

and displaying hardware performance counter information.

5.2 Portland Group H P F

5.2.1 Portland Group H P F

The H PF language used in this project is the Portland Group’s implementation of

H PF version 2.4. This version conforms to the High Performance Fortran Language

Specification Version 1.1, published by the Center for Research on Parallel Compu

30

tation, at Rice University, with a few limitations and modifications to the standard

High Performance Fortran Language Specifications.

Components provided in PG H PF 2.4 include: PG H PF High Performance For

tran Compiler, the PG PRO F graphical profiler and the support for the Total View

multiprocess debugger. PGH PF 2.4 is supported on a variety of High Performance

Computers, workstations and clusters. In particular, some of the supported systems

include: LINUX. Cray T3E (UNICOS/mk2.0,2.25), Cray J90, Cray C90, Cray T90,

IBM RS6000/SP (SP2), IBM RS6000 workstations running AIX 4.x and Intel Paragon

(cross compilers on SPARC systems running Solaris 2.4 or higher).

5.2.2 F90 Features and H P F features U nsupported in P G H P F

Although PG HPF is declared to be a superset of Fortran 90 and conforms with

the standard HPF language specification, there are some restrictions to the Fortran

90 and HPF features supported in PGHPF. This caused some problems when porting

VMEC to HPF. Following are some of these restrictions.

Fortran 90 pointer restrictions. In PGHPF2.4, pointers cannot be in COMMON

blocks and they can appear in a module only if they are not distributed; pointers

cannot be DYNAMIC: a scalar pointer cannot be associated with a distributed array

element; a TARGET object cannot have CYCLIC distributions; and a pointer dummy

variable cannot be used to declare other variables.

Module restrictions. Named array constants defined in a module cannot be used

as an initializer in a subprogram which USES the module; named array or structure

31

constants found in modules cannot be used in either of the following: values in CASE

statements, kind parameters in declaration statements, kind argument in intrinsics

or initial values in parameter statem ents or declaration statements.

D ISTRIBU TE and ALIG N restrictions. PGHPF 2.4 ignores the distribution

directives applied to character types, arrays subject to a SEQUENCE directive, and

NAMELIST arrays.

Besides the above restrictions, there are also unsupported features in Fortran 90 -

derived types, named constants, optional argument, PURE statem ent and HPF_LIBRARY

routines. Since those restrictions do not have much impact on this project, we will

omit their details.

5.3 Problem s and Solutions

The original VMEC code contains Unix script commands in it. It uses the C-

precompiler to produce both the machine-specific Fortran source code and makefiles.

The Cray T3E were not in its list of platforms. Therefore, options for the Cray T3E

were added to the script so tha t the Fortran code and makefiles will take up the

correct function names and compiler options.

When porting VMEC to PGHPF, there were more modifications made to the

code because of the1 unsupported Fortran 90 features in PG H PF 2.4. Changes made

to the code in this phase include:

1. Namelists in the modules: The PG H PF compiler doesn’t allow more than one mod

ule th a t contains namelists to be used in another module or a subroutine. For such a

32

situation, the compiler will give an error message on “unrecognized symbol.” To re

solve this problem, we moved the namelists from the modules to all the corresponding

subroutines.

2. Allocatable character arrays: The PGHPF compiler can not recognize allocatable

character arrays. For this problem, we changed all the allocatable character arrays

to be nonallocatable.

3. Argument passing: The Fortran 90 version of VMEC used a lot of subroutine

calls in which the actual arguments had different ranks and shapes than the dummy

arguments (as shown in Example6). This is allowed in Fortran 90 because of sequence

association (the order of array elements that Fortran 90 requires when an array, array

expression, or array element is associated with a dummy array argument). Sequence

association is a natural concept only in systems with a linearly addressed memory.

It is based on the traditional single address space, single memory unit architecture.

This model can cause severe inefficiencies on architectures where storage for variables

is mapped. As a result, HPF modified Fortran 90 sequence associations rules. In

HPF, a distributed array can be passed to a subprogram only if actual and dummy

arguments are conformable (they have the same shape). Otherwise both actual and

dummy arguments must he declared sequential. If the HPF compiler detects tha t the

actual arguments and the dummy arguments have different shapes for a subroutine

call, it will give error messages and abort.

To solve this problem, we made several attem pts from different approaches. At

first, we tried to declare both the actual arguments and the dummy arguments se

33

quentially by inserting SEQUENCE directives (shown in Example7 as solution!.). The

program worked fine on one processor. However, for multiprocessors, the distribution

of the sequential arrays are ignored by the compiler. This is because of the PG H PF

compiler’s restriction on distributing sequential variables, as we mentioned in the

previous section. Since the data mapping failed, the program can not run in parallel.

Another solution to this problem is suggested by using the RESHAPE function

(as shown in the Examples as solution2)[6]. But, we later found out th a t the PGH PF

compiler worked differently from the what the standard H PF language specification

suggests. In the called subroutine, if the dummy argument’s value is changed, the

corresponding actual argument will not reflect the changes after the called subroutine

returns. This caused the result to be incorrect.

We modified solution2 to be solution3 in Example9. Solution3 uses one RE

SHAPE function both before and after the subroutine call. Before the subroutine

call, RESHAPE is used to map the actual argument to shape of the dummy argu

ment, and the result is stored in a temporary array. This tem porary array is then

passed to the dummy argument during the subroutine call. After the called subrou

tine returns, RESHAPE function is used again to copy the elements in the temporary

array back to the actual argument so that changes to the dummy argument will show

up in the actual argument. This solution works fine on both one processor and multi

processors. However, this solution caused a new problem: by using a lot RESHAPE

functions to copy elements between arrays back and forth frequently, the program is

slowed down dramatically.

34

Finally, we found the optimal solution by combining solutionl and solution3, i.e.

solution4 in the ExamplelO. In this solution, we kept all the SEQUENCE directives

in solutionl, except for those subroutines in which the dummy arguments are going

to be mapped across processors. For these subroutines, we used tem porary arrays

described in solutionh. By doing this, we can keep the overhead cost relatively low

by using as few as RESHAPE functions as possible while still being able to distribute

the dummy arguments where it is needed.

E xam ple 6 Fortran 90:

program ! tin1 calling program

real(kind=rprecJ. dimension(27) :: a ! actual argument

call callee(a)

end

subroutine callee(b)

real(kind=rprecj. d:i,m,ension(3,3,3) :: b ! dummy argument

! actions in subroutine

end subroutine

E xam ple 7 Solutionl:

program I the calling program

real(kind=rprec 1. dimension(27) :: a ! actual argument

!HPF$ SEQUENCE :: a I declare a to be sequential

call callee(a)

35

end

subroutine callee(b)

real (kind=rprec). dimension (3,3,3) :: b ! dummy argument

!HPF$ SEQUENCE :: b ! declare b to be sequential

! actions in subroutine

end subroutine

E x a m p le 8 Solut/ond:

program ! the calling program

real(kind=rprec), dimension(27) :: a ! actual argument

call callee(RESHAPE(a, (/3 ,3,3/)))

end

subroutine callee (b)

real(kind=rprec), dimension(3,3,3) :: b

! actions in subroutine

end subroutine

E x a m p le 9 Solut e m3:

program ! the calling program

real(kind=rprec), diimension(27) :: a ! actual argument

real(kind=rprec), dimension (3,3,3) :: temporary Array I temporary array

temporary Array=RESHAPE(a, (/3 ,3 ,3 /))

36

call callee (temporary Array)

merit

end

subroutine callee (b)

real(kind=rprec). dimension(3,3,3)

! actions in subroutine

end subroutine

E xam ple 10 Solutionp.

program ! the colling program

real(kind=rprec.), dimension(27) :: a ! actual argument

!HPF$ SEQUENCE :: a

real(kind=rprec) . dim.ension(3,3,3) :: temporary Array ! temporary array

! dummy argument will not be distributed in calleel

call calleel (a)

temporaryArray=1\ESHAPE(a, (/3 ,3 ,3 /))

! dummy argument, will be distributed in callee2

call callee2(temporary Array)

end

subroutine called (b)

real(kind=rprec), dimension(3,3,3) :: b

! actions m subroutine, b will not be distributed in the subroutine

! pass temporary array to dummy argu-

:: b ! dummy argument

end subroutine

subroutine callec2(b)

real(kind=rprecj, d,/mension(3,3,3) :: b

!HPF$ D ISTRIBU TE (block, block, block) :: b

! actions in subroutine, b is distributed in the subroutine

end subroutine

C H A P T E R VI
PA R TIAL PA RALLELIZATIO N OF V M EC SY ST E M

When porting VMEC to HPF, we focused on implementing the two of the most

im portant features of HPF, the data mapping and the parallelism. From the data

mapping perspective, computational related arrays in the space transform subroutines

were aligned to each other and distributed over processors. From the parallelism

perspective, potentially parallel structures were determined and the compiler was

informed by using compiler directives.

Before the parallelization, VMEC was optimized by using array operations to fur

ther improve the timing of the program. We call this procedure vector modifications

as opposed to parallel modifications in parallelization. Details of vector modifications

are described in the first subsection. The next two subsections will describe the two

parallelization issues, data mapping and parallelism, respectively.

6.1 V ector M odifications

6.1.1 Array O perations

The original VMEC is coded with Fortran 90. It uses many new Fortran 90 fea

tures such as more natural language syntax, data facilities, modularization facilities

and intrinsic procedures. However, it does not take much advantage of Fortran 90’s

array operation feature, which makes it easier for the compiler to determine which

operations may be carried out concurrently. So, the first thing we did before paral

lelizing the program was to use the array syntax of Fortran 90 to replace do loops

38

39

and nested do loops in the code.

E x a m p le 11 Use array operations to replace do loops in Fortran 90.

Without Array Syntax:

DO 1=1, N

A (I) = B(I+1)

END DO

With Array Syntax:

A(1:N) = B(2:N+1)

6.1.2 M a tr ix O p e ra tio n s

Besides array syntax, we also used array intrinsic functions to optimize the pro

gram. The VMEC. like most of the programs in scientific computing, contains large

amount of m atrix operations. These m atrix operations usually consume a great part

of the to tal execution time. Therefore, by optimizing the m atrix operations, not only

the code itself is simplified, but also the performance of the program will improve.

In VMEC, many m atrix operations are implemented in old Fortran 77 style, rather

than in Fortran 90 style. In other words, matrix operations are done in explicit

nested do loops rat her than using Fortran 90 intrinsic functions. To optimize m atrix

operations in VMEC. we used both DO T_PROD U CT and MATMUL intrinsic func

tions. D O T_PRO D U CT calculates the dot-product of two one dimensional arrays

and MATMUL calculates the multiplication of two one or two dimensional arrays.

40

E xam ple 12 Use -matrix operation intrinsic functions:

Without intrinsic junctions:

DO 1=1, N

DO J= l, M

A (I) = A (I) + B(I,J)*C(J)

D(I) = D(I) Hr E(J)*F(J)

END DO

END DO

With intrinsic functions:

A(1:N) = MATMUL(B(1:N, 1:M), C(1:M))

D(1:N) = DOT_ PRODUCT(E(1:M), F(1:M))

6.1.3 R esult

As a result of the vector modifications to VMEC, in one subroutine, the number

of do loop nests is reduced from 5 to 2. Keeping the number of do loop nests down

will make the struct lire of the code clearer, and will make it easier for the programmer

to recognize the relationships between arrays. It provided a better foundation for the

da ta mapping and the parallelism steps.

By using MATMUL and DOT_PRO D U CT intrinsics, the timing of the program

is improved too. The program’s execution time on the T3E’s is reduced by about

35%, as shown in the following graph:

41

Performance Improvement by Array
Operations

B Without Array Operations

■ With Array Operations

Figure 6.1:

6.2 D ata Parallelism

In parallelization, data is usually distributed according to the parallel operations

th a t the data is involved in. Thus data parallelism is usually done before the data

mapping phase. Here, we will first explore data parallelism strategies used in this

project.

The array syntax we described in the previous section can form implicit parallel

operations when the array is mapped across processors. For parallel operations that

need to be declared explicitly, INDEPENDENT directives are used.

6.2.1 FORALL statem ent

42

The FORALL statements and INDEPENDENT directives are the two most used

parallelism features in HPF. However, we avoided the use of FORALL statem ents in

this project on purpose. There are several reasons for this. The first reason relates

to Fortran 90 compatibility. Since the FORALL statem ent is a new feature in HPF,

a Fortran 90 compiler will not recognize it.

The other reason is concurrency. In a FORALL block, the execution of the array

assignments may require interstatement synchronizations: the evaluation of the left

hand side expression of the FORALL assignment must be completed for all array

elements before the actual assignment is made. Then, the processors must be syn

chronized again, before the next array assignment is processed. In some cases these

synchronizations may not be necessary and they can cause longer execution time for

the program. Compared to the FORALL statement, each iteration in an INDEPEN

DENT do loop can be processed independently of any computations performed in

other iterations. The diagram and example code in Figure 6.1 illustrate the concur

rency for FORALL statements and INDEPENDENT do loops respectively (lines in

the diagram symbolize' data dependencies).

end I end

FORALL (i = 1:3)
Ihsci(i) = rhsa(i)
lhsb(i) = rhsb(i)

END FORALL

!HPF$ INDEPENDENT
DO i = 1 .3

lhsa(i) = rhsa(i)
lhsb(i) = rhsb(i)

END DO

Although independent FORALL statements are equivalent with the INDEPEN

DENT do loops in concurrency, we still avoid them because of the compatibility

iwwue. Besides, the user can always use the compiler option to convert the IN

DEPENDENT do loops to INDEPENDENT FORALL statements during compiling

time, if needed.

W hen using INDEPENDENT directives, extra precautions should be given. If

the user gives the compiler the wrong information (e.g. assert th a t a do loop is

independent when it is not), and the compiler trusted the information provided by

the user, then the do loop will be distributed among processors without question, and

the result of the execution will become unpredictable.

6.2.2 IN D E P E N D E N T do loops

44

For this project since both of the space transform subroutines have complicated

code structures and relationships between arrays, two rules are used to help tell

independent loops from dependent loops: Bernstein’s conditions and the no control

dependence rule.

Bernstein’s conditions says that if R; is the “read” operation in iteration i of a

loop, and W2 is the “write” operation in iteration i, then for any i^ j it must be true

tha t

{Ri n Wj) u (wz n Rj) u (wt n w,) = 0

This means tha t no data object may be read in one iteration and w ritten in another,

nor may any data object be written in more than one iteration[6].

The no control dependence rule means that once the construction begins execu

tion, it will execute to completion. These two rules make the task of recognizing

independent loops much easier for the programmer and make the result more pre

cise. This is very im portant for a parallel code since wrong information can lead to

incorrect execution result.

However, even if all the independent loops are correctly determined, not all of

them can be declared by using INDEPENDENT directives. This is because of the

restrictions in PGHPF. PGH PF constrains the maximum number of nested INDE

PENDENT loops to be three and there can be at most one INDEPENDENT loop

directly nested within another INDEPENDENT loop. In the original VMEC, both of

the space transform subroutines contained up to 5 nested do loops and more than one

45

possible independent loop directly nested within another possible independent loop.

So it is very im portant to use the array syntax and intrinsics to simplify the code first

(as described in the previous section). The simplified code still contains three nested

do loops and two directly nested within another independent loop, as shown in the

following example:

E xam ple 13 Two directly nested do loops:

!HPF$ INDEPENDENT

DO 1=1,77

!HPF$ INDEPENDENT

DO j= l , m

A tiA) = (j-l)*n +i

END DO

!HPF$ INDEPENDENT

DO k=m. 1 1

B(kci) = /I (m-k-hl,i)

END DO

END DO

The above loop nest will not be parallelized since two independent loops are

present at the same level. To resolve this problem, we can either delete the outer

INDEPENDENT directive or one of the inner INDEPENDENT directives. To decide

which to choose, we need to take into consideration the communication cost and

46

degree of parallelism of each solution, as well as how the arrays involved in the loops

are distributed. For example, in this project, since the arrays are distributed along

the inner loop index, we choose to delete the INDEPENDENT directive for the outer

do loop. By doing this, the inner loop index can be distributed in the same way as

the computations contained in it. Thus, the whole loop can be distributed among

processors and can be executed in parallel. Details of the data distribution will be

described in the following section.

6.3 D ata M apping

In HPF, computations are partitioned by applying the owner-computes rule. This

rule causes the computation to be partitioned according to the distribution of the

assigned portion of the computation, which involves localization based on the left-

hand-side of an array assignment statement. Therefore, the data distribution over

processors determines how computations are partitioned. After computation is parti

tioned, non-local values are communicated, as necessary, for each computation. Non

distributed values are replicated by the compiler across all processors.

The data mapping strategies used in this project include handling both distributed

arrays and compiler replicated arrays (i.e. nondistributed data).

6.3.1 D istributed Arrays

In this project, we used DISTRIBUTE and ALIGN directives in data mapping.

After independent 1< >ops are recognized in the data parallelism step, data mapping

47

is focused on the arrays involved in these independent loops. First, a home array

needed to be found lor each INDEPENDENT loop. A home array is used by the

PG H PF compiler to localize loop iterations for an INDEPENDENT loop nest. The

indices of the INDEPENDENT loop are associated with dimensions of the home

array. Thus, a homo array should reference valid array locations for all values of the

INDEPENDENT indices. A home array can either be declared by the programmer

using the ON HOME clause in INDEPENDENT directives (as shown in the following

example), or, if it is not specified that way, the compiler will select a suitable home

array from array references within the INDEPENDENT loop.

E xam ple 14 ON HOME clause:

DIMENSION A (n, m)

!HPF$ DISTR1B UTE A (BLOCK, *)

!HPF$ INDEPENDENT, ON HOME (A (i,:))

DO i= L n

A(i,:) = i

END DO

After home arrays are found, they are usually distributed along the INDEPEN

DENT loop indices. Then the other arrays in the loop structure are aligned to the

home array according to the computations.

Intuitively, we would think th a t as more dimensions of the array are distributed,

we would attain a higher degree of parallelism. However, when distributing home

48

arrays, this is not always true. Sometimes, distributing a home array on more dimen

sions will mean more communication cost in replicating the arrays th a t are aligned

to the home array. The timing result of this project also verifies th a t for some arrays,

when fewer dimensions are distributed, the timing of the program improves. Addi

tionally, for programs containing highly distributed arrays, the number of processors

must be chosen can'fully, otherwise, the compiler will often get confused on how to

handle the distribution and may dump core during run time.

W hen we were distributing data in the space transform subroutines, we noticed

another problem - one array is often involved in different INDEPENDENT loop struc

tures, and in each loop structure, different distributions of the array are required to

get the best parallel performance for tha t INDEPENDENT loop. For the optimal

performance in both loops, we would want to distribute the array one way in one

INDEPENDENT loop and then redistribute the array another way in another INDE

PENDENT loop. However, we found tha t this often causes dram atic time increase

in the program. This is due to the great communication cost caused by the remap

ping process. Most of the time, a better way to resolve this problem is to sacrifice

the performance in the less important INDEPENDENT loops in order to get better

parallel performance,' in the more computationally intensive loops.

6.3.2 N ondistributed D ata

In both of the space transform subroutines, only about half of the arrays in

the subroutines are explicitly distributed or aligned using compiler directives. For

49

the other half of the arrays whose data mapping patterns are not specified by the

programmer, the compiler will by default replicate them across all processors. One

reason for not distributing or aligning an array is that there is no obvious relationship

between the array and any of the home arrays. But, more often, it is because the

array is related to more than one home array and the communication cost of aligning

it to any of the home arrays will be greater than the cost of simply replicating it

across all of the processors. This is more obvious for small arrays.

Another kind of compiler replicated data are the temporary variables in INDE

PENDENT loops. When we use Bernstein’s conditions to check the independence of

a loop structure, many conceptually independent loops would need substantial rewrit

ing to meet the rather strict requirements for INDEPENDENT. This is caused by

the tem porary data in the loop which is written and read in more than one iteration.

An example of such temporary data is the inner loop index of the nested INDEPEN

DENT loops. Following is an example of an independent loop th a t doesn’t fit into

Bernstein’s conditions.

E xam ple 15 Do loops containing temporaries S and J:

DO 1=1, N

S = SQRT(A(I)**2 + B(I)**2)

DO J=1.M

C(LJ) = S*J

END DO

50

END DO

For this kind of situations, HPF provides the NEW clause in the INDEPENDENT

directive to exclude the compiler replicated loop temporaries from the Bernstein’s

conditions. When a variable is represented in the NEW clause; the loop is treated as

if a new instance of the variable is created for each iteration of the INDEPENDENT

loop, and Bernstein's conditions are discharged. We can still declare the do loop in

the above example i o be INDEPENDENT using the NEW clause:

E xam ple 16 Usnui N E W clause to loosen the INDEPENDENT requirement:

!HPF$ INDEPENDENT, NEW(S, J)

DO 1=1, N

S = SQRT(A (I) **2 + B(I)**2)

DO J=1,M

C(I,J) = S*J

END DO

END DO

W ithout the NEW clause, one iteration of the above loop may use the values

calculated in another loop iteration, which will cause unpredictable results for the

program. The NEW clause avoids such errors by providing distinct storage units for

the temporaries in each iteration of the loop. Thus, the loop can be executed correctly

in parallel.

C H A P T E R V II
T E ST IN G R ESU LT A N D A N A L Y SIS

The parallel code was tested for two input files: 2D tokamak and 3D QOS stel-

larator. The tokamak requires calculation of the magnetic field for 558 Fourier modes.

The stellarator input file requires calculation for 11,016 Fourier modes.

7.1 2D Tokamak Equilibrium

2D Tokam ak Equilibriun

T3
C
oo0)
(ft

c
(1)
E
i-

Itomnsps Subroutin*
itotzsps Subroutine

Figure 7.1:

Figure 7.1 shows the timing result for the space transform subroutines, and Figure

7.2 shows the timing result for the whole VMEC program using a 2D tokamak input

file.

From the timings in Figure 7.1, we can see th a t for both of the subroutines,

the execution time increases for the first few processors. Then as the number of

1 3 5 7 8 10 20 30 40

Num ber of Processor?

52

2D Tokamak Equilibriur

100cn
TS c o oQ)W
c

80

60

<u
E
i- 40-

10 20 30 40
W

31 5 7 8
Number of Processor!

Figure 7.2:

processors continues to increase above eight, the execution time begins to decrease.

For the first part of the graph, the reason for the rise in the execution tim e may be

the communication cost caused by the data mapping of HPF. In HPF, no m atter

how carefully the data is mapped, communication cost caused by the data mapping

is almost always unavoidable. For a large problem, the communication cost may

be insignificant because of the relatively large speed-up gained by distributing the

computation. However, when the problem is small or when the problem is run on a

small number of processors, the communication cost caused by data mapping may be

significant. And, sometimes, when the communication cost is even greater than the

speed-up gained by data mapping, execution time will increase instead of decrease.

That is why we saw the first portion of the graph in Figure 7.1 go up.

Figure 7.2 indicates that the execution time increases for the whole program in

53

spite of the fact that the timing improved in the space transform subroutines. This

might be caused by the use of reshape functions, which we mentioned in section

5.3. These reshape functions are used to avoid ineffective distributions of sequence

associated arrays. 1 low ever, by using some of the performance analysis tools on Cray

T3E, such as apprentice, we can see that such function calls are very time consuming.

Especially for small problems like this, it sometimes will take more than half of the

execution time of the program. And, when more processors are used, the portion of

time spent on the reshape functions can become even higher. Figure 7.3 is an example

of a timing result with apprentice . For our program, the reshape function calls are

made outside the space transform subroutines. Thus, the timing result in Figure 7.1

is not influenced by it. However, for each of the space transform subroutines, there

are about 20 reshape functions used in the calling subroutine. These function calls

may have caused the program to slow down as shown in Figure 7.2.

One interesting ihing illustrated in Figure 7.2 is that there is a peak area around

30 processors. From t he more detailed testing result, we found that when the program

was run over 29 processors, the compiler threw floating exceptions and the core was

dumped. Processor numbers other than 29 worked, but for processor numbers close to

29, the execution time increased dramatically. As the number of processors increases

further above 29. the execution time decreases. We have found the same problem for

some other input files on certain other processor numbers. We still do not know what

caused this phenomenon. But, it may be related to the size and shape of the data

distributed in the program and how the compiler handles the distribution.

54

Figure 7.3:

7.2 3D QOS Stellarator Equilibrium

Figure 7.4 shows the timing result for the space transform subroutines and Figure

7.5 shows the timing result for the whole VMEC program. The input file used in this

test is much larger than in the previous test, and the result is a little different, too.

For this input file, the maximum number of processors we can use is 8 due to the

CPU time limit on the Cray T3E.

55

3D QOS Stellarator Equilibrium

3000 f

■ tomnsps Subroutine
Htotzsps Subroutine

Num ber of P r o c e sso r s

Figure 7.4:

From Figure 7.4. we can see that as the number of processors increases, the timing

improves in both of the' subroutines. And, when using a small number of processors,

the speed-up of the subroutines is more obvious.

Figure 7.5 shows that for a 3D stellarator instead of 2D tokamak, the performance

of the program improves as more processors are used.

7.3 C onclusion

By comparing Figure 7.5 and Figure 7.2 we can see th a t the speed-up of the

program is greater for 3D stellarators. This is because, for a large problem, the

communication cost is insignificant compared to the speed-up gained from distributing

the computation. Thus. H PF and, parallel computing, in general is more efficient for

large problems. And. for small problems, the relatively large communication cost will

56

3D QOS Stellarator Equilibriurr

3000-

■S 2500-
co
g 2000
V)

£ 1500-
<D
E 1000-

500-

21 3 4 6 75 8
Number of Processors

Figure 7.5: '

sometimes cause the program to slow down instead of speed up, especially when a

small number of processors are used. From our test result, the maximum speed-up is

about two for the 3D stellarator input file (as shown in Figure 7.5).

The m ajor restriction th a t prevents us from further improving the timing of

VMEC is the serial bottleneck. According to Amdahl’s law, if some fraction 1/s

of a program ’s total execution time executes sequentially, then the maximum possi

ble speedup that can be achieved on a parallel computer is s. In our program, the

parallel part of the code is the two space transform subroutines, which take about

40% of the program s total execution time. And, in these two subroutines, only about

90% of the code is parallelized. Therefore, the maximum speed up of the program

can not be more than two no m atter how many processors we use. Our test result in

Figure 7.5 is consistent with Amdahl’s Law. The following diagram shows the code

57

structure of the parallel VMEC:

D ia g ra m of P a ra l le l VMEC

Az.
Sp ace Transform from R eal Sp ace to

M agnetic Sp ace

r

C alculation o f M agn etic
F ield s

Sp ace Transform from M agnetic Sp ace to
R eal Space

4 1 ’ 1'

D eterm in e the E quilibrium

Figure 7.6:

Am dahl’s law can also help explain another phenomenon in the above figures. We

can see in Figure 7.1 7.1 and 7.5, the ends of the curves’ speed of going down is slowed

down compared t o t ao arst parts of the curves. This is because according to Amdahl’s

law, there is a maximum speed-up for each parallel program. And, the performance

of the program can not be improved without limit by using more processors. When

the program ’s performance gets close to its maximum speed-up, a further increase in

the number of processors will no longer speed up the program. Instead, it will result

in higher communication cost.

C H A P T E R VIII
C O N C LU SIO N

In this project, part, of VMEC was parallelized using H PF and the program was

ported to the Cray T3E. As a result of this project, the program ’s performance was

improved. This improvement can be divided into two stages: vector modification

and parallelization. In the vector modification stage, timing is improved by about

35% by using array operations in Fortran 90; In the parallelization stage, timing is

further improved by up to 45% by using HPF. Since this was a study in improving

performance of a very complex code, the mechanisms we used in this project are not

perfect. Future work can be performed to solve the existing problems and further

improve the system’s porformance.

There are two tilings that can be attem pted in the future work. The first thing

is to reduce the serial bottleneck in the current parallel code, which means th a t the

serial portion of the code must be reduced. To do this, more subroutines need to be

parallelized besides the two space transform subroutines. However, this will cause

the increased use of reshape functions, which will add extra execution time to the

program. To resolve this problem, it is necessary to find a more efficient way for

passing arguments than using reshape functions.

The second thing is to port the VMEC optimizer to parallel structure. The cur

rent optimizer calls die equilibrium solver repeatedly with different input parameters

and then finds out which one is closest to the target plasma. This process can be

parallelized by making different processors run the equilibrium solver with different

59

input parameters ai the same time, as shown in Figure 8.1. One advantage of this

approach will be tin low communication cost between processors. Since each proces

sor will be running the same program with its own input parameters, their execution

is relatively independent of each other. Only the result of each processor is collected

and compared at the end of the optimizer, and there will be little communication

between processors luring the execution of the equilibrium solver.

Parallelization of VMEC Optimizer

VMEC
Equilibrium

Solver

VMEC
Equilibrium

Solver

VMEC
Equilibrium

Solver

V M E C O p t im iz e r

Finding the Optimum Solution

Figure 8.1:

61

REFERENCES

[1] George S. Almasii. Allan Gottlieb, Highly Parallel Computing(Second Edition), The
Benjamin/Cummim;s Publishing Company, Inc., 1994

[2] Nicholas Carriero. David Gelernter, How to W rote Parallel Programs, The M IT Press,
Cambridge, 1990

[3] Richard Dendy, Plasm a Physics: An Introductory Course, Cambridge University Press,
1993

[4] Ian Foster, Designing and Building Parallel Programs, Addison-Wesley Publishing
Company

[5] S. P. Hirshman, et al. Three-Dimensional Free Boundary Calculations Using a Spectral
Green’s Function Method, Computer Physics Communications 43(1986) 143-155

[6] Charles H. Koelbel, et al, The High Performance FORTRAN Handbook, The M IT
Press Cambridge, Massachusetts, London, England, 1994

[7] Vipin Kumar, et a l. Fntroducion to parallel computing: design and analysis of parallel
algorithms, The Benjamin/Cummings Publishing Company, Inc., California, 1994

[8] Ewing Lusk, Ross V Ycrbeek. et al, Portable Programs for Parallel Programs, Holt,
R inetart and Winston. Inc, New York, 1987

[9] Michael Metcalf, John Reid, Fortran 90 Explained, Oxford University Press, United
Kingdom

[10] Larry R. Nyhoff, Sanford C. Leestma, FORTRAN90 For Engineers & Scientists,
Prentice Hall, Upper Saddle River, New Jersey

[11] Gregory F. Pfister. In Search of Clusters: The Coming B attle in Lowly Parallel
Computing, Preticc Hall PTR, New Jersey, 1995

[12] D. A. Spong, S. P. Hirshman, et al., Design Studies of Low-Aspect Ratio Quasi-
Omnigenous Stellarators, Phys. Plasmas 5, 1752(1998)

[13] Gary Sabot, High Performance Computing: Problem Solving with Parallel and Vector
Architectures, Addison-Wesley Publishing Company, Inc., 1995

[14] Gregory V. Wilson. Practical Parallel Programming, The M IT Press, London, 1995

	Partial parallelization of VMEC system
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.TcEf2

